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Reconstruction of Turbulent Flows at High Reynolds
Numbers Using Data Assimilation Techniques

Zeno Belligoli,∗ Richard P. Dwight,† and Georg Eitelberg‡

Delft University of Technology, 2629 HS Delft, The Netherlands

https://doi.org/10.2514/1.J059474

This paper presents two novel data assimilation (DA) techniques for reconstructing steady turbulent flows at high

Reynolds numbers by introducing perturbations to the Reynolds stress tensor computed by the turbulence model of a

Favre-averaged Navier–Stokes (FANS) code. These techniques minimize the least-squares difference between an

experimentally measured mean flow quantity and the corresponding quantity as computed by the FANS code. The

two DA methods differ from each other in the choice of the control parameters: one perturbs the eigenvalues and

eigenvectors of a baselineReynolds stress, whereas the other perturbs the components of a baseline realizable Reynolds

stress such that theperturbed result is still realizable.For theoptimizationprocedure, a gradient-basedalgorithmisused

in combination with a discrete adjoint methodology. The DAmethods are applied to high-Reynolds-number problems,

and their results compared with a reference technique. The results show that the approaches developed in this work

are more effective at reconstructing the turbulent flowfield than standard techniques, but are more computationally

expensive due to the high dimensionality of the optimization problem. Furthermore, it appears that only small

perturbations to the control parameters are necessary to obtain significant improvements over the baseline results.

Nomenclature

B�⋅� = projection operator
b = normalized anisotropy tensor
c = chord length, m
cL = lift coefficient
cp = pressure coefficient

d = dimension of the problem
d = vector of observations
E = total energy per unit mass, m2∕s2
G = random matrix with I as mean
h = unit quaternion
I = identity matrix
J = cost function

Ĵ = error function

k = turbulent kinetic energy, m2∕s2
L = upper triangular matrix from Cholesky decomposi-

tion of G
LR = upper triangular matrix from Cholesky decomposi-

tion of R
1�⋅� = indicator function
M∞ = freestream Mach number
Nd = number of observations
Nm = number of control variables
p�⋅� = probability density function
Q = rotation matrix
R = Reynolds stress tensor, m2∕s2
R�⋅� = operator representing the Reynolds-averaged

Navier–Stokes equations
S = strain rate, s−1

U = vector of state variables
v = velocity vector, m∕s
X = eigenvector matrix
�xB; yB� = barycentric coordinates
y� = dimensionless wall distance

α∞ = freestream angle of attack, deg
β = corrective term for the turbulence production
Γ�⋅� = gamma function
γ = under-relaxation parameter
δ = dispersion parameter
δij = Kronecker delta

δ99 = boundary-layer thickness, m

ϵ = observation noise
θ = vector of control parameters
Λ = eigenvalue matrix
λi = eigenvalue of b
νturb = kinematic eddy viscosity, m2∕s
ρ = density, kg∕m3

σexp = observation standard deviation

σθ = control variable standard deviation
ϕ = rotation angle, deg
φi = eigenvalue of R
ω = specific dissipation rate, s−1

I. Introduction

D ESPITE the continuous growth in computational power, the
routine use of direct numerical simulations (DNSs) or large-

eddy simulations (LESs) in many industry applications is unfeasible
due to the extremelyhigh requirements in termsof power,memory, and
time. This is why Reynolds-averaged Navier–Stokes (RANS) com-
puter codes are still the workhorse for turbulent simulations of indus-
trial flows. However, RANS numerical results are affected by mesh
quality, iterative convergence thresholds, level of detail of the geo-
metry, and modeling of turbulence effects. Although techniques exist
forminimizing the first three types of errors, there is no straightforward
way to address errors due to the modeling of turbulence.
According to Duraisamy et al. [1], these can be categorized

broadly as 1) structural errors, essentially arising from the choice
of independent variables of the turbulence model; 2) functional
errors, due to the choice of the functional form to describe the
physical processes of the independent variables; and 3) parametric
errors, caused by the nonuniversality of the values of closure coef-
ficients. These factors cause the result of the simulation of a specific
flow condition to deviate from the truth.
Data-driven methods make use of the increasing availability of

high-fidelity data (from LES, DNS, experiments) either to build
predictive models that can correct turbulence-model errors [2–5],
or to apply Bayesian inference [6] to compute the optimal values of
parameters or variables associated with the turbulence model for a
particular test case. This paper focuses on the latter topic and,
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in particular, on using variational data assimilation (DA) techniques
to correct functional and structural errors.
Parametric errors are the most tractable because they form a low-

dimensional vector that can be recalibrated by exploiting the full
capabilities of aBayesian inversion procedure. Several studies [7–11]
dealt with parametric error correction and showed that recalibration
of the closure coefficients can improve RANS results. However, the
effectiveness of correcting parametric errors is limited by their inabil-
ity to influence more general types of error, such as functional and
structural errors.
Dealing with functional and structural errors in turbulence models

implies solving high-dimensional inverse problems. The most
commonmethods to approach these types of problems are variational
or Kalman filtering techniques. Dow and Wang [12,13] and Parish
and Duraisamy [14] and Singh and Duraisamy [15] used variational
DA to compute a corrective scalar field of the eddy viscosity and of
the turbulent production term, respectively. Duraisamy et al. showed
that their variational technique couldworkwith few high-fidelity data
and for high-Reynolds-number cases. Their work was extended to
three-dimensional flows by He et al. [16], and used for the correction
ofwind-tunnel interference effects byBelligoli et al. [17]. Singh et al.
[18] introduced the use of variational techniques for correcting
structural errors by using the perturbations to the eigenvalues of the
anisotropy tensor as control parameters. Belligoli et al. [19] extended
this variational technique to include the perturbation to the anisotropy
eigenvectors. In parallel, Xiao et al. [20] and Wang and Xiao [21]
developed the same conceptwith the ensembleKalman filter (EnKF).
This technique has the advantage of providing confidence intervals
on the elements of the vector of optimal control parameters, but
requires mapping the control vector to a lower-dimensional space
due to the high dimensionality of the inverse problem. Finally,
Schmid and coworkers [22] used variational techniques to compute
an optimal forcing term corresponding to the divergence of the
Reynolds stress tensor. However, this methodology worked only at
low Reynolds numbers because of difficulties in computing a physi-
cal initial solution to the steady Navier–Stokes equations with zero
forcing at high Reynolds numbers [23].
In this paper, which is an extension of our previous work [19], we

usevariationalDA to correct theReynolds stress tensor approximated
by a turbulence model in two different ways. In the first one, we take
the perturbations to the eigenvalues and eigenvectors of the Reynolds
stress tensor as control parameters. In the second case, we exploit the
random matrix approach [24] to ensure the physical realizability of
the Reynolds stress tensor by selecting the perturbations to the
elements of the upper triangular matrix resulting from its Cholesky
decomposition as control variables. We compare these methodolo-
gies with the one proposed by Parish and Duraisamy [14] and Singh
andDuraisamy [15], which is taken as reference for its simplicity and
efficacy.All themethods are formulated fromaBayesian perspective,
and the resulting error function computing the differences between
high-fidelity data and the simulations corresponds to the maximum a
posteriori (MAP) estimate of the posterior distribution of the control
parameters. The optimization problem is solved using a gradient-
based technique with gradients computed using a discrete adjoint
methodology. As validation cases, we choose high-Reynolds-num-
ber flow problems with phenomena known to be hard to reproduce
with standard turbulence models, such as separation induced by an
adverse pressure gradient.
This paper is structured as follows. In Sec. II we introduce the

structure of a general DA problem starting from Bayes’s theorem
(Sec. II.A), and then we illustrate the derivation of each of the DA
variants used in this work (Secs. II.B–II.D). Section III presents the
results of the application of the DA methods to two test cases: one
used for validation purposes (Sec. III.A) and the other for a more in-
depth analysis (Sec. III.B). Finally, Sec. IV summarizes the main
findings and discusses future improvements.

II. Proposed Methodology

When working with compressible flows, a density-weighted (or
Favre) averaging is used, with ~A � ρA∕ρ being the Favre-averaged

mean quantity, A 0 0 representing the turbulent fluctuations such that

an instantaneous flow variable can bewritten asA � ~A� A 0 0, and �⋅�
and �⋅� 0 are the notations for Reynolds-averaged mean and fluctuat-

ing quantities, respectively. After the averaging process, a term

representing the effect of turbulence on the mean flow appears. This

is the Reynolds-stress tensor Rij � gv 0 0
i v

0 0
j , whose value in terms of

averaged quantities is unknown. RANS closure models construct an

approximation of this term, and eddy viscosity models based on the

Boussinesq hypothesis are industry’s favorite choice. These models

assume thatRij is linearly related to themean rate of strainSij through
a scalar turbulent viscosity νturb, i.e.,

Rij ≈ Rev
ij � −2νturbSij �

2k

3
δij (1)

where k is the turbulent kinetic energy, and Sij � �∂j ~vi � ∂i ~vj�∕2 −
∂n ~vn∕3 is the deviatoric, trace-free part of the strain rate tensor. Eddy-
viscosity models introduce additional transport equations for quan-

tities connected to νturb in order to close the system of equations. In

this work, we use Menter’s k − ω shear stress transport (SST) model

[25], which uses transport equations for the turbulent kinetic energy

and the specific dissipation rate ω.
In principle, if turbulence modeling errors were eliminated, RANS

simulations could compute the exact values of the mean flow quan-

tities. Hence, our aim is to develop and compare variational DA

techniques that correct the errors introduced by eddy viscosity mod-

els in order to reconstruct the turbulent flowfield at a given flow

condition. Avariational DA uses a gradient-based algorithm to tune a

vector of Nm control parameters θ in order to minimize an error

function expressed as the difference (in a certain norm) between Nd

high-fidelity (e.g., from an experiment) measurements of a quantity

and the same quantity as computed by a numerical simulation. The

techniques presented in this paper differ from each other in the

specification of the vector of control parameters used in the optimi-

zation process.
Gradient-based methods are suited for this type of high-

dimensional optimization thanks to the adjoint approach [26,27], a

mathematical technique that allows one to obtain the gradients of the

objective function with respect to any number of control parameters

at the cost of only one additional flow evaluation [28,29]. Thanks to

the work of Albring et al. [30,31], the SU2 [32,33] CFD software

comes with a discrete adjoint framework based on algorithmic differ-

entiation that makes it possible to obtain the gradients of many

objective functions with minimal source code modifications.
This work makes use of the low-memory Broyden–Fletcher–

Goldfarb–Shanno (L-BFGS) [34] optimization algorithm to update

the value of θ and compute the step size of the optimization. The

initial values of the control parameters are dependent on the DA

methodology, but the general idea is to specify them in such a way

that the result of the first optimization iteration is that of a RANSwith

an uncorrected turbulence model. Finally, the optimization termi-

nates when either

max�j∂iJ j� ≤ 5 ⋅ 10−5 for i � 1; : : : ; Nm

or

J q − J q�1

maxfjJ qj; jJ q�1j; 1g ≤ 10−3

where q is the qth optimization iteration, J is the objective function,

∂iJ is the gradient of the objective function with respect to the ith
control parameter, and the value of the thresholds are specified by

the user.
The results of the DA are valuable both when forecasting the

behaviour of complex systems and for recalibrating numerical mod-

els for future model development. In the next section, we use a

Bayesian perspective to formulate the DA problem in a general,

probabilistic setting.
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A. Bayesian Formulation of the Problem

Quantities d ∈ RNd measured experimentally differ from the true

values of those quantities dtrue ∈ RNd due to measurement noise, and
experimental bias. We model this discrepancy statistically as

d � dtrue � ε; ε ∼N �0; σ2exp� (2)

where we assume zero bias, and noise to be independent, identically
distributed (i.i.d.) normal random variables with known standard
deviation σexp (obtained from the experimental procedure). Given

some flow-state U � �ρ; ρv; ρE; ρk; ρω�⊤ ∈ U, let B:U → RNd be a
projection that extracts the measured quantities. Under most circum-
stances, including here, this operator will have negligible error, so
that d � B�Utrue� � ε is a reasonable generalization of Eq. (2)
(where Utrue ∈ U is the true state).
However, Utrue is unknown, and approximated by solving the

RANS equations including boundary-conditions

R�Û� � 0 (3)

where Û ≠ Utrue, introducing nonnegligible modeling error. Follow-
ing the seminalwork ofKennedy andO’Hagan [6] and previouswork
in fluid dynamics [7,9], we could write

d � ψ�x� ⋅ B�Û� � ε (4)

where ψ ∼ GP�μψ ; rψ � is a Gaussian process needed to account for

the errors inR�⋅�. A function of the spatial locationx (e.g., see [8]), its
mean μψ �⋅�, and covariance functions rψ �⋅; ⋅�must be identified from

the data (under some priors). This formulation allows predictions of
the quantity d at unmeasured locations, but says nothing about other
quantities. For example, if d are measurements of pressure, ψ repre-
sents model error in pressure and does not speak to velocity.
Therefore in this work we deviate from Kennedy and O’Hagan’s

formulation by moving the statistical term representing model error
into the operator R. This is logical: the source of error is within R,
and identification of this error will allow us to make predictions of
unmeasured quantities. Let this discrepancy term be θ ∈ Θ, and
modify the governing equations as

R�U; θ� � 0 (5)

By the implicit function theorem, Eq. (5) defines a function
U:Θ → U, so that we can construct the statistical model

d � dtrue � ε � B�U�θ�� � ε (6)

as an alternative to Eq. (4). To complete the model, it remains to
define priors on θ.
The objective of the methods presented in this work is to find the

MAP estimate of θ, minimizing the difference between experimental
data and simulated prediction, subject to reasonable priors on the
model error. This is an inverse problem and can be formulated in a
general way using Bayes’s theorem:

p�θjd�αp�djθ�p0�θ� (7)

wherep0�θ� represents available knowledge about θ in the absence of
d;p�djθ� is the likelihood that represents the probability of observing
the data given a certainvalue of θ, modeledwith Eq. (6); andp�θjd� is
the posterior probability distribution, which is the updated probabil-
ity of θ informed by the data. The posterior is not a single parameter
vector, but a distribution over the parameter space. Therefore, when a
representative realization of control parameters must be chosen, one
reasonable choice is the MAP estimate of p�θjd�. Because we
assumed that the noise elements are i.i.d., the likelihood function
can bewritten asp�djθ� � p�d1jθ� ⋅ p�d2jθ� ⋅ : : : p�dN jθ�. Further-
more, we assumed that they are normally distributed with standard
deviation σexp with mean given by B�θ� ≔ B�U�θ��. Hence the like-
lihood is

p�djθ� �
 

1

σexp
������
2π

p
!

Nd

exp

 
−
XNd

i�1

�B�θ�i − di�2
2σ2exp

!
(8)

In case of uninformative objective priors, we have that
p�θjd� ∝ p�djθ�, and theMAP estimate can be found byminimizing

the negative of the exponent of the likelihood function as

min
θ

Ĵ �
XNd

i�1

�B�θ�i − di�2
2σ2exp

(9)

If, on the other hand, we choose to specify a prior probability density

function (PDF) for our control parameters θ, and we assume that they
are independent and normally distributed with mean given by θj;prior
for j � 1; : : : ; Nm, and standard deviation σj;θ , the MAP can be

obtained as

min
θ

J �
XNd

i�1

�B�θ�i − di�2
2σ2exp

�
XNm

j�1

�θj;true − θj;prior�2
2σ2j;θ

(10)

Hence Eq. (10) is equivalent to a least-squares regression with

Tikhonov regularization, i.e., a ridge regression. The second term in
Eq. (10) acts as a regularization term that penalizes departures of the

parameter vector from its presumed value. For simplicity, we make
use of constant prior variances, so that the objective function can be

also written as

min
θ

J �
XNd

i�1

�B�θ�i − di�2 � λ
XNm

j�1

�θj;true − θj;prior�2 (11)

where λ � σ2exp∕σ2θ is a relaxation parameter. The methodologies

presented in Secs. II.B and II.C have an objective function similar to
that of Eq. (10). In general, the type of prior specified determines the

form of the regularization term, thus affecting the outcome of the
minimization problem. The methodology presented in Sec. II.D

uses a combination of Gaussian and gamma distributions for its
priors and thus will present a different form of the regulariza-

tion term.

B. Turbulent Production Perturbation Method

For a general k − ω turbulencemodel, the structure of the transport

equations for k and ω is

Dk

Dt
� Pk�U� −Dk�U� � Tk�U� (12)

Dω

Dt
� Pω�U� −Dω�U� � Tω�U� (13)

where Pi�U�, Di�U�, and Ti�U� are the production, destruction,
and cross-production terms, respectively. Following Parish and

Duraisamy [14] and Singh and Duraisamy [15], a multiplicative
corrective term is introduced in the turbulence model in order to

correct the functional form of themodel discrepancy. This is achieved
by rewriting the production term in one of the transport equations,

e.g., as β�x� ⋅ Pω�U��x�. Just like Pω�U�, β is a spatially varying
scalar field defined everywhere in the domain. The corrective term

can take both positive and negative values, thus being able to influ-
ence the balance of terms of the transport equation. After the discre-

tization of the RANS equations, β becomes a high-dimensional
vector, with as many elements as the mesh points. Hence, in this case

θ � θTPP ≡ β. We take as prior θTPP ∼N �1.0; σ2βI� so that the objec-
tive function in Eq. (10) becomes

J �
XNd

i�1

�B�θ�i − di�2
2σ2exp

�
XNm

j�1

�βj − 1.0�2
2σ2β

(14)
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where Nd and Nm are the number of high-fidelity data and mesh
points, respectively, and the value of σβ is based on the user’s knowl-
edge of the particular problem at hand.
In practice, this technique recalibrates the balance of terms within

the transport equation, thus correcting functional errors. It has been
applied to a variety of test cases [16,17,19], proving to be robust and
effective. This is why it is chosen as a reference for comparing the
performances of the two novel techniques presented in Secs. II.C
and II.D.

C. Anisotropy Tensor Perturbation Method

The correction proposed in Sec. II.B can influence the balance of
terms in the turbulent transport equations. However, its range of
action is constrained by the Boussinesq hypothesis, and the correc-
tion can address only functional errors. Structural errors can be
tackled by directly correcting thevalues of the Reynolds stress tensor.
To this end, it is useful to decompose Rij into factors determining its
amplitude, shape, and orientation [35]. The Reynolds stress tensor is
a symmetric positive-semidefinite tensor and, as such, can be decom-
posed in an anisotropic and isotropic components as

Rij � 2k

�
bij �

δij
3

�
(15)

where bij � Rij∕2k − δij∕3 is the normalized anisotropy tensor, and

the tilde notation has been omitted for simplicity. The symmetry of
the Reynolds stress implies that bij is also symmetric and the trace of

the turbulence anisotropy is zero by construction. The requirement of
physical realizability imposes thatRij has to be positive semidefinite,

which can be expressed through constraints on the elements of bij,
namely, that bij ∈ �−1∕3; 2∕3� for i � j, and bij ∈ �−1∕2; 1∕2� for
i ≠ j [36]. In addition, the anisotropy tensor can be factored into

b � XΛXT (16)

where X is a matrix whose columns are orthonormal eigenvectors,
and Λ is the diagonal matrix of real eigenvalues such that λ1 ≥
λ2 ≥ λ3. Because bij has zero trace, then we can write λ3 �
−�λ1 � λ2�. The amplitude, shape, and orientation of the Reynolds
stress tensor are represented by the turbulent kinetic energy k, the
turbulence anisotropy eigenvalues, and eigenvectors, respectively.
The coordinate system described by the eigenvectors is called

the principal coordinate system, and the eigenvalues represent the
magnitude of the tensor in each of the eigenvector directions. The
eigenvalues of the Reynolds stress (φi) and those of the turbulence
anisotropy (λi) are related via

λi �
φi

2k
−
1

3
(17)

These considerations permit to describe different limiting behaviors
of turbulence in relation to φi. One-component turbulence (only one
φi ≠ 0) indicates that turbulent fluctuations exist only along one
direction. Two-component turbulence (two φi ≠ 0) indicates that
the velocity fluctuations are active in the plane formed by the prin-
ciple axes associated with the nonzero φi. Three-component turbu-
lence (all three φi ≠ 0) indicates that fluctuations exist in various
strengths along any direction. Finally, the plane strain state is encoun-
tered when at least one anisotropy eigenvalue λi is equal to zero. In
this case the turbulence along the direction corresponding to that
eigenvalue is due only to isotropic stress. This is the state that pertains
to all Reynolds stress tensors computed with eddy viscosity turbu-
lence models.
A powerful tool to visualize the magnitude of the anisotropy is the

barycentric map proposed by Banerjee et al. [36]. This mapping
leverages the fact that any realizable state of turbulence is a convex
combination of its three limiting states. These can be taken to be the
vertices fx1c; x2c; x3cg of an equilateral triangle arbitrarily located in
the Euclidean space. Each state of turbulence can be represented by a
point xB � �xB; yB� in the barycentric map as

xB � C1cx1c � C2cx2c � C3cx3c

yB � C1cy1c � C2cy2c � C3cy3c

withC1c � λ1 − λ2,C2c � 2�λ2 − λ3�, andC3c � 3λ3 � 1. The bar-
ycentric map is shown in Fig. 1. States within its boundaries are
physically realizable and turbulent phenomena computed using an

eddy viscosity model will have barycentric coordinates lying along

the plane strain line because the Boussinesq hypothesis assumes that

the effect of turbulence is proportional to the mean rate of strain. This

mapping will be used to study how the proposed DA methodologies
affect the characteristics of turbulence of the test cases.
To correct the Reynolds stress tensor computed with a turbulence

model, we perturb the decomposed Rij computed from a precursor

RANS simulation as

R�
ij � 2k�

�
X�Λ�X⊤� � δij

3

�
(18)

where k� � k� Δk, Λ� is the matrix of perturbed eigenvalues, and

X� is thematrix of perturbed eigenvectors. The perturbed eigenvalues

are implicitly defined through perturbations to the coordinates of the

barycentric map x�B � �xB � ΔxB; yb � ΔyB�. The perturbed eigen-
vector matrix is defined asX� � Q�X � �Q� ΔQ�X, whereQ is a

rotationmatrix expressed by a combination of the elements of the unit

quaternion

h �
�
cos

ϕ

2
; n1 sin

ϕ

2
; n2 sin

ϕ

2
; n3 sin

ϕ

2

�
� cos

ϕ

2
� n1 sin

ϕ

2
i� n2 sin

ϕ

2
j� n3 sin

ϕ

2
k

� hr � hii� hjj� hkk (19)

Given two sets of orthonormal eigenvectors X and X� sharing the

same origin O, the Euler’s rotation theorem states that there exists a

unique axis of unit vectorn ≡ fn1; n2; n3g∕knk and angleϕ such that

X� can be obtained by rotating X by ϕ about an axis n that runs
through the origin O. The rotation matrix is defined as

Q�

0BB@
1− 2�h2j �h2k� 2�hihj −hkhr� 2�hihk �hjhr�
2�hihj�hkhr� 1− 2�h2i �h2k� 2�hjhk −hihr�
2�hihk −hjhr� 2�hjhk �hihr� 1− 2�h2i �h2j �

1CCA (20)

In 2D, the only parameter needed to uniquely identify Q is the

rotation angle ϕ, because any rotation can only be about the z axis

Fig. 1 The barycentric map domain. The dashed line corresponds to
plane strain limit.
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such that n1 � n2 � 0 and n3 � 1. The baseline rotation matrix has
ϕ � 0 and thus coincides with the identity matrix, i.e., Q � I, and
ΔQ is constructed by perturbing the rotation angle and the vector
components as ϕ� Δϕ, ni � Δni for i � 1; 2; 3. Note that repre-
senting the eigenvector perturbations as a rigid body rotation auto-
matically preserves their orthonormality. With this formulation
structural errors in the modeling of turbulence can be corrected by
directly assimilating perturbations to the eigenvectors and eigenval-
ues of the baseline Reynolds stress tensor. In practice, however, this
makes the simulation difficult to converge as shown in the work of
Symon et al. [23]. Hence, a turbulence model is still used for
stabilizing the RANS simulation via an adaptive under-relaxation
technique. This consists in expressing the Reynolds stress tensor as

Rij ≈ �1 − γ�Rev
ij � γR�

ij (21)

where γn � γmax minf1; �n∕nmax�g, and nmax is the iteration count
after which γ is fixed to the value of γmax. Note that the value of the
turbulent kinetic energy k in Eq. (15) could, in principle, be assimi-
lated as well. However, in this work, it is extracted from the transport
equation of the turbulence model and hence Δk � 0. Furthermore,
the same Reynolds stress tensor computed in Eq. (21) is also used in
the turbulent transport equations of k and ω to compute a modified
production term, in line with the approach of Mishra et al. [37] and
Kaandorp and Dwight [4].
In the anisotropy tensor perturbation (ATP) technique, the vector

of control parameters comprehends six perturbation fields: two for
the perturbation of the barycentric coordinates and four for the
perturbations of the eigenvectors. Hence, the total number of control
variables is six times the number of mesh points and θ �
θATP ≡ �ΔxB;ΔyB;ΔϕB;Δn1;Δn2;Δn3�⊤. We assume the priors of

each random field of θATP to beΔxB ∼N �0; σ2xB�,ΔyB ∼N �0; σ2yB �,
Δϕ ∼N �0; σ2ϕ�, and Δni ∼N �0; σ2ni� for i � 1; 2; 3, and we can

write the objective function in Eq. (10) as

J �
XNd

i�1

�B�θ�i − di�2
2σ2exp

�
XNm

j�1

"
�ϕj − 0�2

2σ2ϕ
� �ΔxB;j − 0�2

2σ2xB

� �Δn1;j − 0�2
2σ2n1

� �Δn2;j − 0�2
2σ2n2

� �Δn3;j − 0�2
2σ2n3

#
(22)

which has the same structure of Eq. (14), but a different regularization
term due to a different choice of design variables.

D. RandomMatrix Perturbation Method

In general, a Reynolds stress tensor computed with an eddy-
viscosity model may not be physically realizable [38]; i.e., its eigen-
values may lie outside of the barycentric triangle. The framework
presented in Sec. II.C does not guarantee the realizability of Rij, and
additional constraints must be enforced for this to happen. For
example, every time a point is displaced outside of the barycentric
map by the perturbations to the barycentric coordinates, it could be
brought back to the closest border of the triangle as discussed byXiao
et al. [20]. The ideal solution is a procedure that automatically
guarantees realizability without imposing additional constraints.
This is the case for the random matrix approach [24,39], which
models the Reynolds stress tensor as a random matrix defined on

the setM�0
d of positive semidefinite matrices of rank d − 1 � 2 (we

consider only the positive definite case here, because it is easily
obtainable from a positive semidefinite matrix by adding a small
positive quantity on its diagonal elements).
Xiao et al. [24] demonstrated that this constraint is sufficient to

guarantee the realizability of each realization of the random matrix.
Furthermore, it allows one to impose the minimum amount of con-
straints on the prior of the control parameters, thus making the DA
procedure able to explorewider portions of the barycentric map. This
is achieved by using the maximum entropy principle to specify the
distribution of theReynolds stress tensor, which states that, among all
the PDFs mapping from M�0

d to R�, the most noncommittal is the

one that satisfies all available constraints without introducing addi-

tional artificial ones. This is obtained by maximizing the entropy

S�p� of the PDF p�R� of a random Reynolds stress tensor �R�:

S�p� � −
Z
M�0

d

p�R� ln p�R� dR (23)

whereR is a realization of the randomReynolds stress tensor, andwe

use the notation �⋅� for random matrices. For RANS turbulence

modeling, the constraints that must be satisfied are as follows:
1) All realizations R must be realizable. This constraint is auto-

matically satisfied by defining the random Reynolds stress tensor on

the setM�0
d .

2) The integral of the PDF over the set must be equal to
unity: ∫M�0

d
p�R� dR � 1.

In practice, it is easier to work with a normalized positive definite

random matrix whose mean is the identity matrix, i.e., Ef�G�g � I.
We can write

�R� � L⊤
R �G�LR (24)

where LR is an upper triangular matrix with nonnegative diagonal

entries obtained from theCholesky factorization ofR. The PDFof �G�
must also satisfy the maximum entropy principle. Taking this into

consideration, and after using the Cholesky factorization such that

�G� � �L�⊤�L�, the following can be shown [24]:
1) The off-diagonal elements of the upper triangular random

matrix �L� are �Lij� � σdwij, with σd � δ × �d� 1�−1∕2, δ being a

user-defined dispersion parameter such that 0 < δ <
���
2

p
∕2 ford � 3,

and wij are independent Gaussian random variables with zero mean

and unit variance.
2) The diagonal elements are �Lii� � σd

�������
2ui

p
, where ui is a

positive-valued gamma random variable with the following PDF:

p�u� � 1R��u� ζ
αuα−1 exp�−ζu�

Γ�α� (25)

which is the classical expression of a gammaPDFwith u; α; ζ > 0. In

the random matrix approach we have ζ � 1 and α � �d� 1∕2δ2��
�1 − i�∕2. Note that 1R��u� is an indicator function; i.e., it is one if
u ∈ R�, and zero otherwise.
The random matrix perturbation (RMP) technique uses the three

diagonal and three off-diagonal elements of �L� at every mesh point

as control parameters. Hence, the total number of control variables

is six times the number of mesh points and θ � θRMP≡
�L11;L12;L13;L22;L23;L33�⊤. Because the prior of the diagonal

elements is not Gaussian, the regularization term of the objective

function does not have the structure of Eq. (10), but rather

J �
XNd

i�1

�B�θ�i−di�2
σ2exp

�
XNm

j�1

 
L2
12;j�L2

13;j�L2
23;j�L2

11;j�L2
22;j�L2

33;j

2σ2d
�

− ln �1R�
0
�L11;j�Ls1−1

11;j ⋅1R�
0
�L22;j�Ls2−1

22;j ⋅1R�
0
�L33;j�Ls3−1

33;j �
!

(26)

where si � �4∕δ2� � 1 − i, Lij are realizations of the random vari-

ables �Lij�, and we assumed no spatial correlation for the elements of

�L�. The complete derivation of the objective function can be found in

AppendixA. The presence of the logarithmic term penalizes negative

and small values of the diagonal terms so as to keep them positive. In

this way,Gwill be positive definite and sowillR, thus automatically

making it realizable, without the need to impose additional con-

straints as for the ATP method.
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III. Results

In this section, theDA techniques proposed in Sec. II are applied to
reconstruct the flow of cases for which eddy viscosity models are
known to perform poorly. These are the flow over an S809 airfoil at
high angle of attack, and the separated flow behind a wall-mounted
hump. The first case was used by Singh and Duraisamy [15] and
Singh et al. [40] in their work and it was chosen to validate the novel
methods presented in this paper. The second test case is part of the
NASA Turbulence Modeling Resource database [41], and it is known
to be challenging for eddy viscosity turbulence models. While the
frameworks presented in this work can be usedwith different types of
high-fidelity data (e.g., velocity, pressure, skin friction), we choose to
use only surface pressure data because these are one of the most
common types of data obtainable from experiments. This choice also
allows us to observe to what extent the DA frameworks of this study
can correct unobserved quantities not used in the objective function,
such as the velocity field.

A. High-Angle-of-Attack Flow over S809 Airfoil

The S809 airfoil is commonly used for the design of the blades of
horizontal-axis wind turbines and was chosen by Singh and Durais-
amy [15] and Singh et al. [40] as the test case for their field-inversion
machine-learning framework. Experimental data at Rec � 2 × 106,
M∞ � 0.2, and at a variety of angles of attack are available from the
study of Somers [42]. In our case, we perform the inversion at the
highest angle of attack of the database, i.e., α∞ � 14.24°, for which a
large region of turbulent separation with an adverse pressure gradient

is present. The same structured C-grid with approximately 5.5 × 104

points as in thework of Singh andDuraisamy [15] was used. The grid
convergence index based on the separation location is approximately
2% and can be used as an estimation of the discretization error [43].
The pressure coefficient from the experiment of Somers [42] is
chosen as training data for the objective function. Because extracting
the data is prone to errors in proximity of regions with high gradients,
only the suction pressure data in the range 0.05 < x∕c < 0.8 were
used. The value of γ was set to 0.5 for both the ATP and RMP

methods, σexp � 10−2, and all the other standard deviations were

set to unity.
Figure 2 shows the baseline and assimilated pressure coefficients

over the airfoil and the optimization histories for the different meth-
ods. The baseline SST model does a poor job and overpredicts the
pressure on the suction side as well as the location of the separation
point. All three assimilations are capable of correcting this error and
no substantial differences among them are observed. However, by

looking at Table 1, which shows the values of the error function Ĵ ,
one can notice that the ATP method has the best agreement with the
experimental data, followed by the turbulent production perturbation
(TPP) method and the RMPmethod. The optimization history shows

that theRMPmethod has difficulties finding a descent direction at the

beginning and then has a higher final Ĵ than the TPPmethod because
the optimization converged to either a local minimum or a saddle

point. This is a known problem of gradient-based optimizations, for

which reaching a global optimum remains an subject of research.
Figure 3 compares the near-wall streamlines for the baseline SST

model, and theTPP,ATP, andRMPmethods. The size of the separation

bubble is significantly larger in the results of the DA methods with

respect to that of the baseline. This implies that the flows separate
earlier and thus that turbulent production is decreased.
In the experiments, the separation is observed at midchord,

whereas it is predicted to be at x∕c � 0.55 by the baseline SST

model. All the assimilations, on the other hand, predict the separation
location to be very close to x∕c � 0.50, as shown in the last column

of Table 1. The same table also compares the posterior lift coefficients

cL, the experimental one being cL;exp � 1.083. Once again, we

observe a decisive improvement over the baseline results; hence we

consider the ATP and RMP methodologies to be validated.
Figure 4 shows the perturbations to the barycentric coordinatesΔxb,

Δyb and the unit quaternion component hr for the ATP and RMP

methods. The former two are a function of the eigenvalue perturbations,
whereas the latter is a function of the eigenvector perturbations, which,

for 2D cases, are given by a rotation about the axis perpendicular to the

flow.The anisotropyperturbations are concentrated close to thewall and

in the separated region, and aremuch stronger for the ATPmethod than
the RMPmethod. This is in linewith the fact that the RMPmethod has

reached a different local minimum than the ATP method, due to a

different, possibly rougher, topology of the optimization space. For

both methods, the ΔxB perturbations tend to move the anisotropy
toward the axisymmetric contraction line (i.e., the line joining the 2c
and 3c corners of the barycentric map) and away from the two compo-

nent limit (i.e., the line connecting the 2c and 1c corners of the

barycentric map). The eigenvalue perturbations are driving the correc-
tion to the turbulence model, because the value of hr is close to unity
everywhere in the domain for both the ATP and RMP methods. The

only noticeable perturbations are visible for the RMP method and are

Fig. 2 Left: pressure coefficient distribution. Right: optimization history.

Table 1 Comparison of the value of the error function

Ĵ , the lift coefficient cL, the separation location x∕c, and
the number of optimization iterations among the baseline

result and the MAP of the TPP, ATP, and RMP methods

Case Ĵ cL x∕c iterations

Baseline SST 1.416 1.243 0.55 ——

TPP 0.0227 1.105 0.49 28
ATP 0.0163 1.108 0.50 44
RMP 0.0298 1.101 0.51 33
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located at the edge of the separated region, in an area untouched by the

anisotropy perturbations. For the sake of completeness, the corrective

field β from the TPP method is presented in Appendix B.

B. Separated Flow Behind a Hump

The flow over a 2D hump is one of the test cases selected by NASA

for the validation and verification of turbulence models. It presents

separated flow behind a smooth hump protruding from a flat wall as

shown in Fig. 5. Eddy viscosity turbulence models underpredict the

turbulent stresses in the separated region, thus causing a too-long

separation bubble. The domain consists of a rectangular channel with

an inlet and an outlet, a solid bottomwall with the hump, and an upper

boundary to which a symmetry boundary condition is applied. The

Reynolds number based on the chord c is 9.36 × 105 and the Mach

number is 0.1. The structured mesh has 4.5 × 104 points, with

y� ≈ 0.7. The upstream length of the channel was set to allow the

natural development of the fully turbulent boundary layer in order

achieve the experimental boundary-layer thickness of δ99 � 0.0035 m
at x∕c � −2.14 [44]. The grid convergence index based on the reat-

tachment location is less than 1%. For the assimilation, experimental

pressure coefficients on the surface of the hump in the interval −0.8 <

x∕c < 2.2 are used as training data (note that x∕c � 0 corresponds to

the hump’s leading edge). Thevalue ofσexp is set to10
−3 as specified in

the experiment of Greenblatt et al. [44], whereas all the other standard

deviations are set to unity.

The surface pressure coefficient cp over the hump of the three DAs

is shown in Fig. 6. The baseline SSTmodel overpredicts the pressure

trough at x∕c ≈ 1.3. This is a known issuewith eddy viscositymodels

in presence of separated flow. All DAmethods significantly improve

the baseline results, with the ATP and RMP methods showing an

almost perfect agreement with the reference. In particular, we high-

light their ability to capture subtle features such as the pressure kinks

at x∕c � 0.5 and x∕c � 1.2. The TPP method obtains better results

than the baseline but not as good as the twomethods presented in this

Fig. 3 Normalized streamwise velocity as computed by the baseline SSTmodel (top left), theTPP (top right), theATP (bottom left), and theRMP (bottom
right) methods.

Δ Δ

Fig. 4 Perturbations to barycentric coordinates ΔxB (left), ΔyB (middle), and hr (right) for the ATP (top) and RMP (bottom) methods.

Fig. 5 Close-up of the mesh in proximity of the hump (left) and the streamwise velocity field obtained from PIV [45] (right).
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work, especially downstream of the reattachment point, and in cor-
respondence of the pressure kinks.
Figure 7 shows the normalized streamwise velocity in the sepa-

rated region. The baseline model predicts too strong a reversed flow
after x∕c � 1.0, which causes a large separation region. All the DAs
do a better job, in particular for x∕c > 0.9. The ATP and RMP
methods predict similar velocity profiles, with excellent agreement
for y∕c > 0.10, although they predict a slower streamwise velocity in
the central part of the region 0.05 ≤ y∕c ≤ 0.10, where the TPP
method is slightly more accurate. In any case, the differences among
the DA methods are very small as shown in Table 2, whereas the

improvement over the baseline is evident. This result also demon-
strates that it is sometimes possible to use only high-fidelity pressure
data to better predict unobserved quantities such as the velocity.
Figure 8 shows that, for the ATP andRMPmethods, the anisotropy

perturbations are concentrated in the recirculation region behind
the hump and persist downstream of it in the wake of the flow. The
ATPmethod is capable of stronger perturbations toΔxB andΔyB than
the RMP method, although they are quantitatively similar. On the
other hand, no significant perturbations tohr can be observed for both
methods, thus suggesting that, for this particular test case, the eigen-
vector orientations remain alignedwith themean rate of strain and do

Fig. 7 Streamwise velocity profiles in the separation bubble.

Fig. 6 Left: Pressure coefficient over the hump as computed by theTPP,ATP, andRMPmethods. Right:Optimization history as a percentage reduction

with respect to the initial value of Ĵ .

Table 2 Root-mean-square error between the CFD velocity profiles of Fig. 7 and the experimental data at
several x∕c locations

Case x∕c � 0.65 x∕c � 0.66 x∕c � 0.8 x∕c � 0.9 x∕c � 1.0 x∕c � 1.1 x∕c � 1.2 x∕c � 1.3

Baseline 0.0403 0.0547 0.0555 0.0779 0.0955 0.1352 0.1516 0.1502
TPP 0.0869 0.0877 0.0336 0.0239 0.0328 0.0532 0.0581 0.0667
ATP 0.0494 0.0524 0.0475 0.0489 0.0467 0.0642 0.0696 0.0842
RMP 0.0551 0.0566 0.0430 0.0397 0.0413 0.0568 0.0638 0.0752
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not play a significant role in correcting the errors of the turbu-
lence model.
Figure 9 shows the barycentric map of the points extracted along a

vertical line at x∕c � 0.8. The Reynolds stress tensor was computed
using Eq. (21) with γ � 0.5 for the RMP and ATP methods, and γ �
0 for the TPP method. Both the ATP and RMP methods perturb the
barycentric coordinates of the sampled points away from the plane
strain line, toward the 1c corner. In addition, the RMP method
translates all the points to the left of the plane strain line, away from
the 1c corner. It is interesting to note that the perturbations from the
baseline, i.e., the distance of the ATP and RMP barycentric coordi-
nates from the plane strain line, are relatively small. Nonetheless,
they are sufficient to generate a Reynolds stress tensor capable of

dramatically improving the agreement with the high-fidelity data as
shown in Fig. 6. This suggests that it could be sufficient to explore a
neighborhood of the plane strain line to significantly improve eddy
viscosity models, at least for 2D flow problems.
In principle, theATP andRMP techniques can perturb the points in

the barycentric triangle in the same way. This, however, does not
happen, most likely due to different solution-space topologies of the
two optimization problems, which cause the optimized result to lay in
two different local minima.
Figure 10 shows the normalized streamwise velocity field in

proximity of the hump. The results of the three DAs are qualitatively
similar, as they all have a smaller recirculation region immediately
behind the hump than the baseline case, with approximately the same
size of the one obtained from PIV data shown in Fig. 5.
Table 3 shows the values of the error function Ĵ , the streamwise

location of the reattachment point, and the number of optimization
iterations required to compute the MAP. It is evident that using DA
techniques to correct the errors due to turbulence models is an
effective strategy, and the ATP and RMP methods do a better job
than the TPP because they are not subject to the limitations of the
eddy viscosity hypothesis. In the experiments, the recirculation
region extended to x∕c � 1.11	 0.003, and the DAs are all capable
predicting this characteristics more accurately than the baseline by
reducing the size of the recirculation bubble.
Furthermore, Tables 1 and 3 show that the number of optimization

iterations necessary to meet the stopping criteria for the ATP and
RMPmethods is higher than for the TPP method. On the other hand,
the time per iteration of the ATP and RMPmethods is practically the
same of that of the TPPmethod, because only few additional products
of 3 × 3 matrices are needed for their implementation.
In conclusion, we observed how DA techniques are effective for

reconstructing the flowfield of a particular test case by correcting the
errors due to the turbulence model. In particular, the ATP and RMP
methods have a better agreement with the high-fidelity pressure data

Fig. 9 Barycentric map of Rij extracted along a vertical line at x∕c �
0.8 in the interval 0 < y∕c < 1.4.

Δ Δ

Fig. 8 Perturbations to barycentric coordinates ΔxB (left), ΔyB (middle), and hr (right) for the ATP (top) and RMP (bottom) methods.

Fig. 10 Normalized streamwise velocitybehind the humpas computedby thebaselineSSTmodel (top left), theTPP (top right), theATP (bottom left), and
the RMP (bottom right) methods.
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used in the objective function than the TPPmethod used as reference.
All the methodologies tested were also able to correct unobserved
quantities such as the velocity field, the extent of the recirculation
region, and the location of the reattachment point.

IV. Conclusions

This paper presented two novel variational DA frameworks for
the reconstruction of turbulent flowfields by correcting functional
and structural errors introduced by eddy viscosity turbulence models.
The two approaches differ from each other in the choice of control
parameters: the ATPmethod uses the eigenvalues and eigenvectors of
the normalized anisotropy tensor, whereas the RMP method uses the
components of a positive-definite random matrix that ensures realiz-
ability of theReynolds stress tensor. Twohigh-Reynolds-number flow
cases known to be hard to simulate with eddy viscosity models were
chosen for testing. The ATP and RMP methods showed substantial
improvements with respect to the results of a baseline simulation, and
comparable or better performance than a state-of-the-art variational
DA technique used as reference. In particular, the ATP and RMP
frameworks were able to reconstruct extremely well the high-fidelity
pressure data used in the objective function, and largely improve
the reconstruction of unobserved quantities such as the velocity field,
the location of reattachment, and the size of the separation bubble.
Furthermore, only small perturbations to the control parameters were
necessary to achieve considerable improvements over the baseline
results, and correcting the eigenvector orientations does not seem
to have a decisive influence on improving the reconstruction of the
flowfield. The ATP and RMPmethods are, however, computationally
more expensive than the reference DA technique considered due to a
sixfold increase in the number of control parameters.

Appendix A: Derivation of the RMP Objective Function

To fulfill the maximum entropy principle, the random matrix
approach requires the specifications of nonnormal priors [24]. In
our case, we are interested in specifying the priors of the upper
triangular matrix �L� obtained from the Cholesky factorization of
�G�. At this point, we assume that these six random vectors are
statistically independent, which means that their PDFs have the
following property:

p�Lij� � p�L11;L12;L13;L22;L23;L33�
� p�L11� ⋅p�L12� ⋅p�L13� ⋅p�L22� ⋅p�L23� ⋅p�L33� (A1)

hence we can write, for a single point in the mesh,

p�Lijjd�∝ p�djLij�p�Lij�
� p�djLij� ⋅p�L11� ⋅p�L12� ⋅p�L13� ⋅p�L22� ⋅p�L23� ⋅p�L33�

(A2)

which implies that we can independently specify the probability
distribution of each element of �L�. Therefore, all we have to do is
derive the expressions of p�Lij� from those for wij and ui.

A. Off-Diagonal Elements

We saw that �Lij� � σdwij with wij ∼N �0; 1�. For a family of

normal distributions, if X ∼N �μ; σ2� and Y � aX � b, with

a; b ∈ R, then Y ∼N �aμ� b; a2σ2�. Hence, in this case we have

�Lij� ∼N �0; σ2d�, and therefore

p�Lij� ∝ exp

�
−
�Lij�2
2σ2d

�
(A3)

B. Diagonal Elements

We want to obtain the PDF of �Lii� � σd
�������
2ui

p
, with ui being a

gamma random variable (RV). For gamma RVs, if X ∼ Γ�α; ζ�, then
cX ∼ Γ�α; �ζ∕c��, with α; ζ; c > 0. Hence 2ui ∼ Γ�α; �1∕2�� �
Γ�α; �ζ∕2��.
Furthermore, it holds that if X ∼ Γ�α; ζ�, then Xq ∼GG�r; s; t�

with r � �1∕ζ�q, s � �α∕q�, and t � �1∕q�, withGG�r; s; t� being a
generalized gammadistribution. The generalized gammadistribution
is a continuous probability distribution with three parameters, and

p�x; r; s; t� � 1R�
0
�x� tx

s−1 exp�−�x∕r�t�
rsΓ�s∕t� (A4)

Hence, in our case,

�������
2ui

p
∼GG

0@ ���
2

ζ

s
; 2α; 2

1A (A5)

Finally, for any probability distribution it holds that if Y � g�X� �
kX is the transformation from X � fxjx > 0g to Y � fyjy > 0g,
with inverse X � g−1�Y� � �Y∕k� and Jacobian �dX∕dY� �
�1∕k�, then the probability distribution of Y is

py�y� � px�x�
���� dxdy

���� � px�g−1�y��
���� dxdy

���� (A6)

In our case we have

� σd
�������
2ui

p
∼ GG

�
y

σd
; r; s; t

����� 1σd
���� � tys−1 exp�−�y∕σdr�t�

rtσ�s−1�d Γ�s∕t�

���� 1σd
����

� tys−1 exp�−�y∕σdr�t�
�rσd�sΓ�s∕t�

� GG�y; rσd; s; t� (A7)

We have the following expressions for r; s; t:

r �
���
2

ζ

s
�

���
2

p

si � 2α � 2

�
d� 1

2δ2
� 1 − i

2

�
� d� 1

δ2
� 1 − i � 4

δ2
� 1 − i

t � 2 (A8)

Hence we can write out the full expression for p�Lii�:

p�Lii� � 1R�
0

2L
�4∕δ2�−i
ii exp

�
−
	
Lii∕

���
2

p
σd


2
�

	 ���
2

p
σd

�4∕δ2��1−iΓ�s∕2�

(A9)

The Gamma function is defined as Γ�z� � ∫ ∞
0 x

z−1e−x dx and can be
easily approximated once the value of z is fixed. To fix the value of z,
we need to fix s, which implies choosing a value for the dispersion
parameter δ.

Table 3 Comparison of the value of the error
function Ĵ , the separation location x∕c, and the number
of optimization iterations among the baseline result and

the MAP of the TPP, ATP, and RMP methods

Case Ĵ x∕c Iterations

Baseline SST 0.8897 1.26 ——

TPP 0.0086 1.12 85
ATP 0.0005 1.13 99
RMP 0.0011 1.15 121
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C. Expression of the Objective Function

These modifications have an effect on the expression of the objective function that is derived as the MAP of the posterior PDF.

p�xjd� ∝ p�djx�p�x� � exp

"
−
XNd

i�1

�B�θ�i − di�2
2σ2exp

#
⋅
YNm

j�1

p�L11;j�p�L12;j�p�L13;j�p�L22;j�p�L23;j�p�L33;j�

� exp

"
−
XNd

i�1

�B�θ�i − di�2
2σ2exp

#
⋅
YNm

j�1

"
exp

�
−
L2
12;j

2σ2d

�
⋅ exp

�
−
L2
13;j

2σ2d

�
⋅ exp

�
−
L2
23;j

2σ2d

�
⋅p�L11;j�p�L22;j�p�L33;j�

#

� exp

"
−
XNd

i�1

�B�θ�i −di�2
2σ2exp

#
⋅ exp

"
−
XNm

j�1

L2
12;j �L2

13;j �L2
23;j

2σ2d

#
⋅
YNm

j�1

�p�L11;j�p�L22;j�p�L33;j�
#

� exp

"
−
XNd

i�1

�B�θ�i − di�2
2σ2exp

−
XNm

j�1

L2
12;j �L2

13;j �L2
23;j

2σ2d

#
⋅
Y3
n�1

YNm

j�1

2 ⋅ 1R�
0
�Lnn;j� ⋅Lsn−1

nn;j exp�−�Lnn;j∕σdr�2�
�rσd�snΓ�sn∕2�

� exp

"
−
XNd

i�1

�B�θ�i − di�2
2σ2exp

−
XNm

j�1

L2
12;j �L2

13;j �L2
23;j

2σ2d

#
⋅
YNm

j�1

23 exp

"
−
L2
11;j �L2

22;j �L2
33;j

�σdr�2
#
⋅
Y3
n�1

YNm

j�1

1R�
0
�Lnn;j� ⋅Lsn−1

nn;j

�rσd�snΓ�sn∕2�

� �23�Nm ⋅ exp

"
−
XNd

i�1

�B�θ�i −di�2
2σ2exp

−
XNm

j�1

L2
12;j �L2

13;j �L2
23;j

2σ2d
−
XNm

j�1

L2
11;j �L2

22;j �L2
33;j

�σdr�2
#
⋅
Y3
n�1

YNm

j�1

1R�
0
�Lnn;j� ⋅Lsn−1

nn;j

�rσd�snΓ�sn∕2�

TheMAP estimate is obtained bymaximizing the log of the posterior
PDF. Because we are interested in a minimization problem, our
objective function is the negative of the logarithm of the posterior:

J �− ln �p�xjd�� �− ln �23Nm ��
XNd

i�1

�B�θ�i −di�2
2σ2exp

�
XNm

j�1

L2
12;j �L2

13;j�L2
23;j

2σ2d
�
XNm

j�1

L2
11;j�L2

22;j �L2
33;j

�σdr�2

�−
XNm

j�1

ln

0@Y3
n�1

1R�
0
�Lnn;j� ⋅Lsn−1

nn;j

�rσd�snΓ
�sn
2

�
1A

with σd � δ × �d� 1�−1∕2 � �δ∕2�, and δ being a user-specified

dispersion parameter such that 0 < δ <
���
2

p
∕2 for d � 3; r � ���

2
p

,

si � �4∕δ2� � 1 − i, and we used the logarithmic property ln �a ⋅
b� � ln �a� � ln �b� for deriving the above expressions. Constant
terms do not influence the location of the optima, and hence the
objective function can be simplified to Eq. (26).

Appendix B: Corrective Field from TPP Method

Figure B1 shows the corrective field β obtained by using the TPP
DA methodology. The results for the s809 airfoil show a thin region
close to the surface where β > 1, thus indicating that Menter’s SST
turbulence model underpredicts the turbulent dissipation. As a con-
sequence, the flow remains attached to the airfoil for longer, and this

is the reason why the separation location for the baseline model is

located more downstream than that of the TPP method.
In the hump test case, the corrective field is active within the

separated region behind the crest of the hump, in the shear layer

above the separated region, and in the wake of the flow. The correc-

tive field increases the dissipation in the separated region, which

makes the flow reattach more upstream than in the baseline case.

Furthermore, we observe that the turbulence model overpredicts the

turbulent dissipation and overpredicts it in the shear layer above the

recirculation region and in the wake of the flow, respectively.
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