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Exploiting neuro-inspired dynamic sparsity
for energy-efficient intelligent perception

Sheng Zhou 1, Chang Gao 2, Tobi Delbruck 1, Marian Verhelst 3 &
Shih-Chii Liu 1

Artificial intelligence (AI) has made significant strides towards efficient online
processing of sensory signals at the edge through the use of deep neural
networks with ever-expanding size. However, this trend has brought with it
escalating computational costs and energy consumption, which have become
major obstacles to the deployment and further upscaling of these models. In
this Perspective, we present a neuro-inspired vision to boost the energy effi-
ciency of AI for perception by leveraging brain-like dynamic sparsity. We
categorize various forms of dynamic sparsity rooted in data redundancy and
discuss potential strategies to enhance and exploit it through algorithm-
hardware co-design. Additionally, we explore the technological, architectural,
and algorithmic challenges that need to be addressed to fully unlock the
potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient
perception.

In response to ever more complex and diverse perception tasks, AI
models have grown substantially in both size and computational
requirements. This trend follows empirical scaling laws1, increasing the
energy demands for training and inference. It poses a critical challenge
to the deployment of AI models, particularly on edge platforms tar-
geting applications such as mobile computing, smart wearables, and
autonomous robots, where dynamic real-time interaction with the
environment is necessary2,3.

This Perspective focuses on AI perception systems that process
input from sensors of various modalities used for extracting infor-
mation in natural scenes. These systems typically exploit neural net-
works consisting of convolutional and recurrent layers, and recently,
more complex architectures like transformers. To deploy perception
systems on energy-constrained hardware platforms, huge efforts have
been made to reduce unnecessary computations within the networks,
that is, to increase the compute sparsity, whichwill improve the energy
efficiency of the corresponding hardware platforms.

Traditional approaches focus on what we term static sparsity—
sparsifying network connections by applying pruning techniques4. To
further minimize the size and complexity of the model, pruning is
often combinedwith other optimization techniques suchasparameter
quantization5 and neural architecture search6. Although these static

sparsity methods have yielded substantial model-size reduction and
inference acceleration (e.g., 2 × smaller and 1.8 × faster convolutional
models for image recognition7), these approaches are inherently
static and do not account for the characteristics of the actual
data input during runtime. Recently, several data-driven dynamic
sparsity approaches are on the rise, to further decrease the number of
computations at runtime. Yet, this emerging field is still highly scat-
tered, and opportunities for perception systems remain largely
underexplored.

This Perspective therefore explores the various forms of dynamic
sparsity, with a focus on context-aware sparsity, which seek to reduce
computation basedon the dynamic structureof the incoming data and
the evolving context of a task, particularly for systems that operate in
natural environments. This data-driven approach is inspired by the
redundancy in the sensor and network output due to intrinsic spatio-
temporal correlations of natural stimuli as wewill discuss further in the
next section. Rather than processing every component of the model
for every input sample, a system employing dynamic context-aware
sparsity would be selectively activated by the input, and would then
execute the network computations and memory accesses only when
needed. This concept is inspired by biological brains, which operate
under strict energy budgets with tight latency constraints, and have
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evolved to process information in an adaptive, context-dependent
manner.

While spiking neural networks (SNNs) operating on data from
event-based sensors serve as the prototypical example, we will
demonstrate that the concept of dynamic sparsity is much more
general and broadly applicable across neural network architectures
beyond SNNs. For example, transformers8,9, the current workhorses of
large-scale foundation models, exploit a form of data-driven dynamic
attention. Here, the self-attentionmechanism takes into account some
contextual information from the token sequence. Typical transfor-
mers, however, execute this attention mechanism in a dense fashion,
primarily towards increased accuracy rather than reduced computa-
tion counts. They can also benefit from reduced computation by using
the sparse dynamic outputs of event-based vision sensors10. However,
they leave a lot of margin for further exploiting dynamic sparsity in a
data-driven and context-aware fashion, as nature does.

This Perspective outlines the broad potential of dynamic sparsity
as a key enabler of the next wave of energy-efficient intelligent per-
ception. We draw on biological insights to demonstrate how the brain
exploits dynamic sparsity in various ways, present a taxonomy of
the sparsity types, then explore how dynamic sparsity can be intro-
duced at multiple algorithmic and hardware levels through both
sparsity-enhancing and sparsity-exploiting techniques. Additionally,
we examine open challenges in architectures, algorithms, and tech-
nologies, as well as potential applications for future exploration and
innovation in dynamic-sparsity-aware, neuro-inspired AI systems. In
particular, we focus on the opportunities arising from dynamic spar-
sity for artificial neural networks (ANNs), where we identify greater
potential benefits than for SNNs, which already have closer connec-
tions to biology.

Neural inspiration
Animals can only sustain themselves with the amount of energy they
can forage11, making energy efficiency crucial for survival. Conse-
quently, the brain’s computation must be highly energy-efficient. This
demand for efficiency suggests that neurons in the brain must fire
sparsely, since spike generation accounts for more than 50% of brain
energy consumption12. Various estimates indicate that the average
firing rate of cortical neurons is approximately 1 Hz (Box 1). The sparse
firing of neurons can be directly observed in an example calcium
imaging recording of brain slices, as shown in Fig. 1A.

The sparsity of neural activity suggests that the brain uses sparse
firing patterns to encode information, a concept known as sparse
coding13. Theoretical and experimental evidence supports this

principle across various sensory modalities, including vision14,
audition15, and olfaction16. Sparse coding is consistent with the
redundancy-reduction hypothesis17, which postulates that sensory
systems aim to preserve essential information while discarding
redundant input. Natural scenes, such as a horse in motion illustrated
in Fig. 1B, exhibit high spatiotemporal redundancy:most pixels change
little over time, and nearby pixel values are highly correlated. There-
fore, encoding only the spatiotemporal changes drastically reduces
the number of spikes required to represent the stimuli17.

Another important property of nervous systems is their stateful-
ness. Neurons maintain localized states through a variety of mechan-
isms such as synaptic connections, neuron membrane potentials,
calcium concentrations, and many other localized, time-varying state
variables18,19. These states—distributed at different synapses, neurons,
and brain areas—allow biological neural networks to integrate sensory
information across a range of temporal and spatial scales, forming
context-aware models of the environment. This stateful computation
approach enables efficient processing: rather than recalculating
everything from scratch, the brain updates only what is necessary
based on its current state using sparse local communication.

While modern AI models do employ states—such as hidden states
in recurrent neural networks (RNNs)20, KV cache inTransformers21, and
long-term memory banks in memory-augmented models22—they typi-
cally process all inputs and all model components densely at each
inference step. This dense processing undercuts the potential gains
from statefulness by incurring high energy and latency costs. In con-
trast, the brain performs selective and sparse updates, often triggered
by surprise or salient stimuli.

Two key mechanisms have been proposed to explain how the
brain maintains sparse activity and energy-efficient inference: pre-
dictive coding and attention-based gating. Predictive coding23 posits
that the brain actively generates top-downpredictions of the incoming
stimuli and compares themwith the actual inputs. The predictions are
then updated by the bottom-up error signals. This feedback process
allows the brain to focus its processing resources on unexpected
inputs (surprise). For example, in a driving scene (Fig. 1C), the back-
groundmotion is highly predictable, whereas a child suddenly running
across the street generates a significant prediction error, rapidly
engaging sensory processing and motor response. Fig. 1D illustrates
the consequence of such a predictive model, where the prior estab-
lished by the first sentence biases the interpretation of “flies” in the
second sentence, necessitating a reset. Nevertheless, this bias dyna-
mically lowers the inference cost and latency by constraining the
search space.

BOX 1

How sparse is the brain’s spiking activity?
A dominant form of dynamic sparsity in the brain is the sparsity of the
spikes—the fundamental units of neural computation. But how sparse
is the brain’s spiking activity? More than 50% of mammalian brain
power is dedicated to generating spikes12, and a back-of-the-envelope
estimatea relating human brain power of P ≈ 10W to the average spike
rate R suggests that R ≈ 1 Hz95,153. This estimate applies to the entire
brain, andneurons in higher cortical areas havemuch lower spike rates
than those near the sensory periphery13. If we take the computation
time scale to be 1ms (based on the response time of excitatory post-
synaptic potentials), this implies that the human brain’s spiking activity
is roughly 99.9% sparse, with an active (spiking) duty cycle of only 10−3.
Although the average spike rate is only 1Hz, we clearly operate with
much higher sensing and processing bandwidths.

Since the brain produces spikes only when needed, synaptic
operations are likely to be highly significant. This contrasts starkly with

current ANNs, which perform multiply-and-accumulate (MAC) opera-
tions indiscriminately using oversimplified point neuron models. To
make the most of every precious spike, biological neurons employ a
series of stateful computations. For example, many biological neurons
high-pass filter their input through spike-frequency adaptation18. Fur-
thermore, synaptic events have rich dynamics integrated within the
nonlinear dendritic trees. Neurons with expansive dendritic non-
linearities and depressing synapses act as novelty filters at a
finer scale.

a P = 10W=R (Hz) × 1011 neurons × 104 synapses/
neuron × (10−1 V × 10−10 A × 10−3 s)/spike ⇒ R ≈ 1 Hz
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In parallel, attention mechanisms24 serve as top-down processes
that prioritize relevant inputs and modulate the activation of various
computational pathways. This formof selective processing constitutes
a coarse but powerful implementation of dynamic sparsity. By focus-
ing only on salient information, attention enables the brain to allocate
resources more effectively and reduce overall processing cost.

Figure 2 shows an example of embedding neuro-inspired dynamic
sparsity in a vision sensor. Retinal circuits respond primarily to chan-
ges in the visual field25, and event camera pixels26 mimic this behavior
by producing output events only when brightness changes above a
certain threshold occur. These neuromorphic sensors generate sparse,
low-latency event streams that better capture dynamic visual infor-
mation without the redundancy of frame-based input, offering sub-
stantial advantage in terms of latency, temporal resolution, energy
efficiency, and dynamic range27.

The neural foundation of dynamic sparsity as well as its demon-
strated effectiveness in neuromorphic vision sensors, motivate the
exploration of its broader applications in energy-efficient AI. To con-
nect insights from neuroscience with the recent progress in various
fields—such as neuromorphic engineering, deep learning, and domain-
specific accelerators—and to systematically frame the key design
considerations for implementing this principle, the next section ela-
borates a necessary taxonomy of dynamic sparsity.

Types of dynamic sparsity
Sparsity plays a crucial role in both biological and artificial perception
systems. By eliminating non-informative redundancy, sparsity reduces
unnecessary computation and communication, thereby shortening
processing latency and lowering energy consumption. Depending on
whether the eliminated redundancy is data-dependent, sparsity in

perception systems canbebroadly classified into twocategories: static
sparsity (Fig. 3A) and dynamic sparsity (Fig. 3B).

Static sparsity exploits predetermined and fixed redundancy,
resulting in a fixed processing flow during perception. Methods for
obtaining static sparsity include fixed duty cycling of sensors28, using a
preset camera region of interest, as well as pruning the weights of a
neural network29. Although static sparsity effectively reduces compu-
tation and data movement demand for a given task, it enforces an
identical processing flow regardless of input data variations. This fixed
connectivity map can potentially miss out on further data-dependent
optimization as discussed next.

Dynamic sparsity, in contrast, leverages data-dependent redun-
dancy. Box 2 provides a formal definition of dynamic sparsity. Our
definition of dynamic sparsity is distinct from a class of network
pruning methods known as dynamic pruning30 or dynamic sparse
training31–34. Although these methods dynamically adjust the sparse
neuron connectivity during training, the sparsity is fixed once the
training is completed (i.e., during inference). In contrast, we focus on
algorithms and hardware designs targeting sparse computational flow
that can dynamically change in a data-driven fashion during inference.

Prior works that have discussed and incorporated various forms
of dynamic sparsity are often applied to solve specific, isolated pro-
blems, resulting in a fragmented landscape. For example, some works
focus exclusively on activation sparsity in convolutional neural net-
works (CNNs) (e.g., skipping zero-valued ReLU outputs35,36, dynamic
channel and activation pruning during inference37) or subnetwork
gating for large language models (LLM) (e.g., Mixture of Experts
(MoE)38–40, and speculative decoding41–43), while others explore stateful
temporal sparsity in RNNs (e.g., delta networks44,45). These various
forms of dynamic sparsity have rarely been analyzed within a unified

A B C

D "Time flies like an arrow"
"Fruit flies like a banana"

30um

Fig. 1 | Examples of dynamic sparsity. A Sparse spiking activity (arrows) observed
through calcium imaging of a brain slice from mouse frontal cortex (courtesy R.
Loidl). B Muybridge’s 1878 Horse in Motion sequence repeats nearly exactly the
same information across frames, albeit with severe aliasing. C Driving sequence is

dense and highly repetitive; the critical pixels with the child (circled) are a tiny
fraction of total. D Example used by J. Hopfield in his Caltech teaching of forming
attentional expectation bias in language that sparsifies subsequent inference.

A

B

C

photoreceptor bipolar ganglion cells

I

logI

ON

OFF

Brightness change events make sparse helix in space-time

Frames are blurred and aliased

Fig. 2 | Dynamic sparsity in neuromorphic vision sensors. A The three layers of
the biological retina25. Left to right: photoreceptors, bipolar cells, and ganglion
cells. B Silicon implementation of the retina cells in a neuromorphic event camera

pixel26. C Comparison of dense frames (top) and sparse brightness-change events
(bottom) from a spinning dot stimulus, recorded by a hybrid vision sensor152.
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framework. While existing surveys on dynamic neural networks46 or
ephemeral sparsification29 summarized the algorithmic aspects of
dynamic sparsity within neural networks, a systematic treatment of
dynamic sparsity for intelligent perception systems, encompassing
both algorithm design and hardware optimization throughout the
entire processing chain, is still missing.

As a first step towards a more unified view and to encourage a
more holistic approach to system design, we categorize dynamic
sparsity along three independent yet interrelated aspects: sparsity
dimension, structuredness, and statefulness. This taxonomy of
dynamic sparsity is applicable throughout the perception pipeline,
from the sensory periphery and early feature extraction to multi-

Unstructured sparsity Structured sparsitySpatial sparsity Temporal sparsity

t

D.C. E.

Stateful sparsityStateless sparsity

Dimension of dynamic sparsity Statefulness of dynamic sparsityStructuredness of dynamic sparsity

Stateless
Compute

Stateful
Compute

Requires
internal states

No internal
states

A. Static sparsity B. Dynamic sparsity

Time Time Time Time

Data-agnostic
processing flow

Data-dependent
processing flow

Fig. 3 | Taxonomy of sparsity. Sparsity is classified based onwhether it is data-
dependent. A Static sparsity is fixed and leads to a static processing flow. Weight
sparsity, commonly employed in neural network compression, falls into this cate-
gory.BDynamic sparsity is data-dependent and leads to a dynamic processingflow.
Rooted in data redundancy, it can be further categorized based on its dimension,
structuredness, and statefulness. C Dynamic sparsity can be spatial, temporal, or

spatiotemporal, depending on the dimension along which the information redun-
dancy is exploited. D Dynamic sparsity can be either structured or unstructured,
depending on whether such sparsity should satisfy any spatial or temporal struc-
tural constraints. E Dynamic sparsity can be either stateless or stateful, depending
on whether extramemory or states are employed to induce sparse representations
from dense representations.

BOX 2

A formal definition and taxonomy of dynamic sparsity
We model the computation of an AI system as a (possibly stateful)
mapping Φ : X ×S ! Y ×S, where X is the input space (e.g., sensory
inputs),Y is the output space (e.g., predictions or control outputs), and
S is the state space (e.g., recurrent states or internal memory). For any
(xt, st)2 X ×S, wherext2 X is the current input and st2 S is the current
state, wewriteΦ(xt, st) = (yt, st+1), where yt 2 Y is the current output and
st+1 2 S is the updated state.

We index the operations to computeΦby i = 1, 2,…,n, wheren is the
total number of operations. Each operation might be low-level (e.g.,
scalar multiplications or additions) or high-level (e.g., activation of a
sensor or a sub-network). To sparsifyΦ, we introduce a (possibly time-
dependent) binary maskmt = (mt,1,mt,2, …,mt,n) ∈ {0, 1}n, wheremt,i = 1
means operation i is executed when processing (xt, st), and mt,i = 0
means operation i is skipped. Thus, when using the sparsifiedmapping
(denoted as Φm) to compute (yt, st+1), only the operations with mt,i = 1
are performed.

The sparsity of Φm is static if the mask m is fixed during inference
(e.g., obtained by offline pruning) and does not depend on xt or st. In

contrast, the sparsity is dynamic ifm is determined on-the-fly based on
xt, st, or both. In other words,mt =g(xt, st) is a function of xt and st.

With this framework, we can also formalize the proposed taxonomy
of dynamic sparsity:

1. Sparsity dimension (Fig. 3C):
• Spatial: For a given time t and a set of operations I , mt,i = 0 for
some i 2 I .

• Temporal: For a given operation i, mt,i = 0 at certain time t.

2. Structuredness (Fig. 3D):
• Unstructured: mt can take any pattern in {0, 1}n.
• Structure: mt is restricted to a subset of patterns P � f0, 1gn.

3. Statefulness (Fig. 3E):
• Stateless:mt depends only on the current input xt but not on the
state st.

• Stateful: mt depends on state st, and thus also on the past inputs
x1, x2, …, xt−1.
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modal integration towards higher-level decision-making. The tax-
onomy presented here is based on pixel- or neuron-level dynamic
sparsity, andwe extend it later to a coarser granularitywhendiscussing
system-level dynamic sparsity.

Dimension of dynamic sparsity
Spatial sparsity (Fig. 3C, left) refers to the sparse activity of a collection
of neurons or pixels within a time window. It originates from infor-
mation redundancy along the spatial dimensions. Examples of spatial
redundancy are zero-values in the feature maps in CNNs35,36, the
sparsely firing channels/pixels/taxels of event-driven neuromorphic
sensors26,47,48, and the similarity between spatially neighboring pixels49

or neurons50 at a given time point.
Temporal sparsity (Fig. 3C, right) refers to the sparse activity of a

single neuron or pixel over time. It takes advantage of information
redundancy in the temporal dimension. Examples of temporal
redundancy are the predominance of environmental noise for speech
processing tasks51, the spectral similarity between neighboring audio
frames52, the slow variation of neuron activation over time44,45, and the
dynamically gated neuron updates in RNNs53,54.

Spatial and temporal dynamic sparsity are notmutually exclusive.
In fact, many stimuli exhibit redundancy in both space and time,
leading to spatiotemporal sparsity. For example, in the driving scene
shown in Fig. 1C, the relevant objects, such as vehicles and pedestrians,
are normally located in the bottom half of the camera view, while the
tophalf can bemostly regarded asbackground and ignored, exhibiting
spatial sparsity. Meanwhile, themovement of the vehicles or the traffic
lanes are highly predictable, exhibiting temporal sparsity. Spatio-
temporal sparsity canbedirectly visualized in Fig. 2C, where the sparse
brightness-change events create a helix in spacetime.

Structuredness of dynamic sparsity
Unstructured sparsity (Fig. 3D, left) allows for arbitrary patterns of
inactive neurons. There is no restriction as to which neurons can be
active or inactive at anymoment. Many neuromorphic sensors26,47,48 as
well as spiking55,56 and non-spiking35,57 neural network accelerators,
utilize unstructured sparsity. Without structural constraints, it

provides the finest sparsity granularity and maximum flexibility in
skipping useless computations.

Structured sparsity (Fig. 3D, right), on the other hand, requires the
sparse elements to have regular patterns. In general, this entails
grouping theneurons so that thosewithin the samegroupare all active
or inactive simultaneously. The neuron grouping defines the granu-
larity of structured sparsity. Example groupings are locally neighbor-
ing elements58, entire rows or columns59, CNN feature maps60, and all
neurons in the same layer61. Such regularity allows for more efficient
hardware implementations compared to unstructured sparsity.

Statefulness of dynamic sparsity
Stateless sparsity (Fig. 3E, left) does not require any internal states to
induce sparse representations from dense representations. It relies
solely on the instantaneous input to identify redundant operations and
determine the sparse computational pattern. Skipping zero activation
values in a neural network35,36 provides a canonical example of stateless
sparsity.

Stateful sparsity (Fig. 3E, right) derives the sparse representation
by taking into account not only the current input but also an internal
state variable that encodes the past inputs. Examples that incorporate
stateful sparsity are spiking neuron models implemented in neuro-
morphic spiking sensors26,47,48 and SNN processors55,56. Notably, the
highly sparse computation in the brain is inherently stateful due to its
complex dynamics, suggesting the potential advantage of stateful
sparsity over stateless sparsity.

Dynamic sparsity enhancing and exploitation
techniques
The brain’s ability to induce and exploit dynamic sparsity has long
inspired designers of intelligent perception systems, be it robots,
wearables, or smart spaces. In this section, we review these state-of-
the-art techniques in light of the proposed taxonomy and identify the
keydesign considerations for leveraging dynamic sparsity. As shown in
Fig. 4, dynamic sparsity can be incorporated within the three major
components of an intelligent perception system, namely, the sensor,
memory, and neural-compute subsystems. In addition, it can also be

5%

50 μW

0.5 mW

100 mW

100%

0.2%
<0.01%

Power

Active time

D.

Motion?

Sparse coding Activation compression

Sparse IMC

Weight access skipping

on

Event-driven vision

Sparse activation
function

disable

0

Zero-gating Zero-skipping

Spiking network

Delta network

Δ
t t

A. B. C.

Event-driven audition
t

f

Sensor Memory Neural-compute

Activation Weight

off

10 mW

Events? Fall?

Fig. 4 | Enhancing and exploiting dynamic sparsity in perception systems.
A The sensor subsystem uses methods such as sparse coding and event-based
representation to suppress data redundancy at the very first stage of perception.
B The memory subsystem provides storage for both activations and weights. It
exploits dynamic sparsity by reducing the data traffic to and from the memory,
using methods such as activation compression, sparse in-memory computing

(IMC), and weight access skipping. C The neural-compute subsystem enhances
dynamic sparsity through both stateless (e.g., ReLU) and stateful approaches (e.g.,
spiking network and delta network). Techniques such as zero-gating and zero-
skipping exploit the induced sparsity. D At the system level, dynamic sparsity
brings further energy savings by de-activating and gating entire system modules.
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applied at the system level, which involves dynamically activating the
entire modules or subsystems.

Sensor subsystem
Exploiting dynamic sparsity at the sensor subsystem—the very first
stage of the processing pipeline—offers a significant advantage in
terms of system-level energy and latency, as much less sensory data
needs to be transmitted or processed by the subsequent stages62. Both
stateful and stateless techniques can be applied to substantially
improve energy efficiency and reduce the burden on later processing
stages.

The most widely used stateless methods for initial sparsification
include sparse coding and vector symbolic architecture (VSA) (also
known as hyperdimensional computing). Sparse coding aims to
represent input signals using an overcomplete set of basis vectors,
ensuring that only a few coefficients are nonzero, so the data repre-
sentation is highly sparse13. Similarly, VSA employs high-dimensional
sparse vectors to encode information, naturally promoting sparsity in
the activation space by emphasizing zero-valued components in
representations63. While these stateless techniques effectively exploit
the instantaneous sparsity of the original signal, they are inherently
limited in exploiting temporal correlation as they lack internal states to
memorize previously seen input patterns.

Stateful methods can be employed to achieve higher sparsity
levels. Thesemethods leverage past information or spatial correlations
to encode the data more efficiently. Compared to stateless methods,
stateful methods are particularly effective in natural environments
where input signals have strong spatiotemporal correlations, because
they dynamically adapt to the characteristics of the signals. Using
these correlations, algorithms can drastically reduce power con-
sumption and bandwidth requirements, making them ideal for
resource-constrained perception tasks.

A prominent example, shown in Fig. 2, is the neuromorphic
dynamic vision sensor (DVS)26, also known as the event camera27. In
DVS, pixels use deltamodulation64 to remove temporal redundancy by
asynchronously quantizing temporal changes in scene brightness (the
logarithm of intensity) as ternary ON/OFF events that encode the
location, time, and brightness-change polarity. After each event, the
current brightness is stored in the pixel on a capacitor to detect the
next change. The sparse event-based camera output enables the sub-
sequent neural network to selectivelyprocess only reflectance changes
on an event-by-event65 or patch-by-patch basis10. A simple scheme,
such as processing accumulated event frames only when event counts
reach a few thousand, can effectively save idle computation without
compromising latency66. To further increase the output sparsity, spa-
tial filtering before the temporal delta modulation removes spatial
redundancy49. Although maintaining the states requires extra circuit
area and energy, the resulting enhancement in output sparsity can
reduce the response latency to sub-millisecond under most illumina-
tion conditions26, sensor output bandwidth by more than 100×67 and
the computational burdenon subsequent stages by 20×65 compared to
frame-based cameras. Advances in image sensor wafer stacking have
reduced the complex pixel size to only a few times that of standard
frame-based imagers68.

Another example of a stateful spiking sensor is the neuromorphic
silicon cochlea47, which uses leaky integrateand-fire (LIF) neurons to
generate sparse outputs. Specifically, a LIF neuron maintains a state
using its membrane potential that integrates the input current. When
the integrated value crosses a threshold, an output pulse is generated,
and the state is reset. Therefore, the amplitude of a constant input is
converted into a corresponding output pulse frequency, naturally
producing a sparser output for a low-amplitude input69. However,
using a LIF neuron to encode an input sound can lead to a large
number of events unless the input sound is largely absent. To address
this, the silicon cochlea leverages the time-varying temporal frequency

composition of natural sounds by filtering the original sound through
different frequency channels70 before applying event-based encoding.
The resulting output events are sparse across both frequency channels
and time. This event readout can reduce computational cost by 40×47

and achieve better localization accuracy for short latencies below
500ms compared to generalized cross-correlation algorithms71.

The fundamental consideration in designing dynamic-sparsity-
aware sensor subsystems is the trade-off between the cost of inducing
dynamic sparsity and the gain from exploiting it. The costs include
larger pixels, potential information loss, extra encoding/decoding
circuits, and state maintenance overhead for stateful methods. The
gains include energy, bandwidth, and latency savings in sensor readout
and subsequent processing. This trade-off can be addressed in three
ways: (1) Reducing the cost of inducing dynamic sparsity, such as
sharing periphery circuits via time-multiplexing72, imposing structural
regularity on the sparsity58, devising more power- and area-efficient
circuits73 and leveraging advanced fabrication technologies68. (2)
Improving the gain of exploiting dynamic sparsity, such as con-
ditioning the signal to enhance sparsity49,70, applying power- and clock-
gating to idle circuits52 and skipping incoming events whenever
possible10,67. (3) Striking a balance between cost and gain, which
involves analyzing the data distribution for the targeted application
and selecting the most appropriate implementation, as demonstrated
in ref. 74 for voice activity detection.

Memory subsystem
The memory subsystem is a critical bottleneck in modern computing
systems, consuming a significant portion of the system’s area and
energy footprint75,76. As such, the design of the memory subsystem of
an intelligent perception systemmust bemeticulously planned to fully
leverage the benefits of dynamic sparsity. In the context of brain-
inspired computing, memory is primarily used to store weights and
activations, which have distinct requirements in terms ofmemory size,
latency, and bandwidth. The difference between the less frequently
updated weight memory and the activation memory necessitates
unique design trade-offs when exploiting dynamic sparsity.

The activation memory is a natural candidate where dynamic
sparsity can be exploited. In biological neural networks, the action
potentials are transmitted from one neuron to another through axons,
requiring no additional storage or buffering for the sparse neural
activities. While implementing such a direct routing scheme in hard-
ware is possible for tiny neural networks77,78, routing congestion and
energy overhead dominate as the network grows larger and more
complicated79. Eventually, this approach becomes infeasible with cur-
rent technology.

In modern neural processing systems, this routing issue is
resolved by buffering the intermediate activations in memory after
computation and loading them from memory later. By leveraging
dynamic sparsity, the activation data can be compressed before writ-
ing to the activation memory, thereby reducing the required memory
capacity and bandwidth. Depending on the characteristics of the
activation sparsity, different encoding methods and compression
algorithms can be applied. Stateless methods, such as sparsity map35,
run-length encoding80,81, Huffman coding82, and least-square fitting83,
are relatively simple to implement and can achieve a moderate com-
pression ratio of up to 5× 35. Stateful methods, such as bit-plane
compression84 or feature-map-based compression85, leverage extra
state memory to achieve a compression ratio exceeding 10×.

Although the weights are static, the weight memory can also
leverage and benefit from the dynamic sparsity of the activations. In
the biological brain, the synaptic weights are co-located with the
neurons. Such an organization allows computation to be performed
without expending energy or time tomove theweights to the compute
unit. To achieve the same goal in hardware, similar weight memory
organization can be implemented using in-memory computing (IMC)
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architectures76,86,87. In these architectures, the weights are stored in a
matrix of memory cells capable of performing MAC operations in-
place. The input activations are sent through the bit lines along the
rows, and the output activations are obtained from the word lines
along the columns. While exploiting weight sparsity in IMC archi-
tectures is a challenge88, dynamic activation sparsitymore easily offers
energy and latency savings to IMCby reducing the frequency ofbit line
activations. For example,89 showed that when there are many zeros in
the activation, more bit lines can be activated simultaneously to
reduce compute latency by up to 2.7× for typical CNNmodels. By using
bit-serial encoding for input activations, savings can even be achieved
when the activation magnitudes are small but not exactly zero, as
demonstrated in ref. 90 for diffusionmodels. Similarly, by using binary
events to encode input activations, IMC accelerators for SNNs77,78

naturally scale their power consumption with the input activity rate.
Although IMC architectures closelymimic the organization of the

neural system, scaling them to larger networks91,92 using current
complementary metal-oxide semiconductor (CMOS) technology is
extremely costly. Assuming 1-bit precision, storing all 1015 synaptic
weights of the human brain in a 2 nm CMOS process93 would require
26m2 of chip area, which is four orders of magnitude larger than a
typical die94. Therefore, in many systems, the network weights are
stored in dedicated memory with higher density, such as off-chip
DRAM, and must be moved to the arithmetic units before
computation95. Since accessing off-chip DRAM requires 100× more
energy while providing less than 0.01× bandwidth compared to on-
chip SRAM75, dynamic activation sparsity can offer a huge power and
latency advantage by skipping all DRAM access for the fan-out weights
of an inactive neuron. For example,96 achieved a 10× speedupwith 90%
temporal activation sparsity for an RNN, while97 reduced the genera-
tion latency by 1.8× with 50% sparsity for a transformer-based LLM.

Just as in the sensor subsystem design, it is crucial in memory
subsystem design to balance the hardware overhead of handling
dynamic sparsity with the resulting energy and bandwidth savings.
Unlike sparse weights, which can be statically compressed before
deployment, sparse activations must be handled on-the-fly. This
overhead can be controlled through either dedicated hardware enco-
ders/compressors in the memory interface/arithmetic unit front-end
or through optimized software-level implementations. For instance,
onprogrammable accelerators likeGPUs, dedicatedGPUkernels could
be used to manage dynamic sparsity by optimizing dataflow without
requiring specialized circuitry57,98. On application-specific hardware,
designers often use dedicated silicon area to minimize the sparsifica-
tion and encoding overhead to dig out as much speedup as possible
from the activation sparsity35,99.

Often, techniques with more aggressive data compression rates
come with more complex encoder/decoder designs and increased
hardware overhead. This trade-off can be addressed in two ways: (1)
Avoiding the overhead of irregular memory access by aiming for
structured instead of unstructured dynamic sparsity. This enables the
memory subsystem to fetch and store a fixed amount of data words
per compressed data tile and maintain data layout regularity100,101.
While structured sparsity102,103 has seen adoption in commercial pro-
ducts for static weight sparsity, it is still under-explored for dynamic
sparsity. (2) Dynamically adapting the compressionmode and sparsity
handling method according to the specific levels of dynamic
sparsity104. This allows for dynamically switching between optimized
configurations based on the data statistics.

Neural-compute subsystem
Electronic systems with real-time heterogeneous sensory input increas-
ingly process these signals using neural networks. The neural-compute
subsystem is, hence, another crucial area where dynamic sparsity can be
exploited to reduce computation and improve energy efficiency.

Stateless dynamic sparsity in the intermediate activations of
neural networks naturally arises from sparse activation functions such
as ReLU105, thresholded ReLU106, and Sparsemax107. Training methods
such as L1-regularization108 that penalize large activation values further
enhance the dynamic sparsity. By applying magnitude-based sorting
and thresholding, sparsity can also be induced for other activation
functions that do not produce zero-valued outputs, such as softmax38

and sigmoid54.While sparse activation functions produce unstructured
dynamic sparsity with an unpredictable sparsity level, the sorting-
based methods38,54 lead to structured dynamic sparsity since the
number of active neurons in each layer is always fixed. Similarly, the
winner-take-all mechanism109 also enforces structuredness in sparsity
by retaining only the largest activation. This structuredness results in
more predictable workloads, which are easier to exploit at the
hardware level.

The dynamic sparsity introduced by various algorithms can be
exploited by hardware MAC units using features such as zero-gating
and zero-skipping. With zero-gating, the MAC units are dynamically
deactivated to reduce dynamic power upon encountering zero-valued
operands. With the levels of sparsity observed in typical CNNs, a 1.6×
energy saving can be achieved36. Compared to zero-gating, zero-
skipping allows more gains by processing only non-zero values
through data-dependent scheduling. This improves the utilization of
MAC units and leads to additional 2.3× energy savings compared to
zero-gating81. Stateless dynamic sparsity is gradually being adopted in
production-scale models110 and accelerators111.

The prototypical example of statefully sparse neural networks is
SNNs, in which each neuron maintains its membrane potential as a
state and emits spikes only when its membrane exceeds a
threshold112,113. Various SNN accelerator designs have beenproposed to
verify the feasibility of this neuromorphic computation model55,56,114.
Yet, other networks can also exploit stateful sparsity with less of the
major SNN drawback of unpredictable memory access. In delta
networks44, fully connected RNNs retain their previous neuron acti-
vation as states and compute new activation only if the activation
change exceeds a threshold, thus inducing dynamic sparsity at the
column level of the weight matrix. CNNs115 and transformers116 can
undergo a delta transformation so that a neuron holds state in return
for fewer operations but more memory for holding state. Also, LLMs
use state, in the form of the KV cache to avoid re-computation of the
data elements117,118, and smart KV caching optimization techniques try
to reduce this state while maintaining state information119–121. Taking
this one step further, the state can be more than just the previous
activation value. By equipping each neuron with an additional gating
input that determines when the neuron is allowed to communicate its
output53, the neurons can be activated more intelligently using a
combination of spatiotemporal information.

Dynamic sparsity benefits are not for free. Gating or skipping of
redundant computations are accompanied by overheads in control,
memory, and scheduling that demand analysis. For example, the
control and scheduling overhead differ greatly between unstructured
and structured sparsity. Unstructured sparsity122 creates irregular,
data-dependent memory access patterns, complicating hardware
schedulers, which must dynamically generate addresses for non-zero
data, introducing latency and causing significant workload imbalances
across parallel processing elements. One way to address this is to
design intrinsically structured dynamic sparsity, e.g., delta networks44,
process entire weight matrix columns corresponding to above-
threshold activation vector changes, dramatically simplifying control
logic and ensuring predictable, regular data access. This regular
sparsity structure can also be imposed by dropping a fraction of acti-
vation values123,124. Moreover, run-time load balancing can also be used
through sparsity-dependent input and output data rerouting, as seen
in SpArch125.
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Stateful sparsity also increases memory requirements, which can
overshadow the benefits. A delta network, for example, already stores
its hidden states, but it must also store the previous pre-activation
state of each neuron. However, since the state space of RNNs is tiny
compared to the weight space, a recurrent layer with 512 neurons with
16-bit precision requires only an additional 1 kB. But for feedforward
CNNs, using temporal sparsity may not make sense because the state
spaces (feature maps) are often larger than the number of weights.
Using temporal sparsity with these architectures requires holding all
units in memory all the time, and reading feature maps to check for
changes before writing new values. For these architectures, temporal
sparsity might only benefit very sparse applications like surveillance115.

When applying stateful sparsity in large models, this state foot-
print can become prohibitive unless mitigated by new techniques that
can compress the state itself or recompute it on the fly when needed.
Overall, balancing the complexity of hardware implementations with
the benefits of sparsity remains a critical challenge.

Modular system-level dynamic sparsity
The subsections above focusmainlyon the exploitation of fine-grained
dynamic sparsity in individual subsystem components, such as within
single accelerator cores. SoCs increasingly exploit dynamic sparsity
across the three subsystem levels to improve energy efficiency and
latency. Examples include designs that do keyword spotting126,127 and
face recognition128,129. In these state-of-the-art designs, spatial and
temporal sparsity are leveraged at the level of system modules, in
which complete subsystems are dynamically activated and de-
activated during system operation. More examples can be found in
consumer mobile electronics, implanted biomedical devices, and
space missions130, which must run on limited energy. These systems
use wake-up sensors to monitor the information content of incoming
sensor data, and only selectively wake up other system components
when deemed useful and necessary.

Figure 4D illustrates such exploitation of dynamic sparsity at the
module level, in the context of a hypothetical intelligent sensor that
detects elderly fall accidents131. At the lowest power level, only the
passive infrared (PIR) motion detector is on while everything else is
sleeping, and the standby power is on the order of 50μW132. A motion
event detected by the PIR sensor turns on a sub-milliwatt event
camera133. Its sparse output with activity-dependent event rate drives a
small CNN that detects the locations of human joints134. The input
frames and layer activities are extremely sparse, and theCNNhardware
exploits dynamic sparsity to skip nonzero activations. The resulting
low-dimensional joint position locations then drive a small RNN using
temporal sparsity to skip operations45. Together, these neural net-
works burn about 10mW129,135,136 but are active only 0.2% of the time.
Only when the spatiotemporal pattern of joint motions indicates a fall,
will the radio (around 100mW) be briefly turned on to alert caregivers.
But this radio transmission occurs so rarely that the average power is
kept below 100 μW, allowing continuous operation on a small battery
for years.

In large-scale generative AI, similar hierarchical and modular
activation strategies also start to emerge. In speculative decoding137, a
small draft model proposes token sequences that are then selectively
verified by a larger target model, thereby gating compute in a data-
driven way. MoE38–40, on the other hand, is a technique where only a
subset of specialized sub-networks (experts) are activated for each
input, allowing the model capacity to scale efficiently without
increasing computation for every input. A gating network decides
which experts to use, enabling dynamic routing and improving both
accuracy and efficiency. Similarly, recent studies110,138 demonstrate that
activation sparsity can be exploited within LLMs—particularly recur-
rent ones—to reduce inference energy without loss in accuracy. These
techniques reflect a growing interest in applying dynamic sparsity
principles at architectural and algorithmic levels in mainstream AI.

Outlook
Dynamic sparsity, especially context-aware or task-aware sparsity,
holds great potential in improving the energy efficiency of perception
systems that operate in natural environments. In addition, real-world
signals recorded in naturalistic interactions can be statistically sparse,
thereby offering computational benefits for dynamic-sparsity-aware
systems. For example, a 3.5-day overhead activity-driven event camera
recording of a mouse in its cage is over 60,000× smaller than a 1 kHz
monochrome camera recording with the same spatiotemporal
resolution71. The reduced sensor data leads directly to reduction in
computes within the postprocessing network.

By adopting sparsity-enhancing techniques described earlier, the
neural networks will further provide more dynamic sparsity. As
demonstrated using a delta network136, we measured 67% dynamic
sparsity using a spoken language understanding benchmark139, repre-
senting a modest 3 × savings. We further tested the same system on a
24 h working-day cellphone audio recording from one of the authors.
Thephonewasmostly on the person except during sleeping hours. For
this recording of normal everyday sounds, the average dynamic spar-
sity in the network was over 95%, representing a 20 × savings.

Today’s solutions for perception systems still do not go far
enough in terms of brain-inspired stateful dynamic sparsity. Current AI
perception systems—such as vision systems—typically use stateless
networks that require a full network update for each input frame,
independent of the computed information from the past. Dynamic
sparsity is still beneficial for these networks when deployed on hard-
ware that supports the sparsity type, e.g., zero-skipping in CNNs35,36.
Accelerators employing stateless dynamic sparsity have already
enteredmass production111. Stateless methods require minimal shift in
both neural network and hardware architecture, and therefore will
bring advantage in the short term.

In the long term, however, we expect stateful dynamic sparsity to
hold more potential because it can exploit the context encoded in the
states (Box 2) with a closer connection to dynamical biological net-
works. To fully unlock the potential of neuro-inspired dynamic spar-
sity, we believe it is crucial to investigate how states can be used to
further enhance the sparsity level (Table 1), especially when we move
to networks that use information from multiple sensors and solve
more complex tasks. For example, for object detection and tracking,
we can leverage context-aware sparsity so that a complete update of
the network is not needed for each incoming frame. Therefore, we
have to push further along several axes to enable the multi-sensory
systems of the future.

We further elucidate the role of dynamic sparsity in a stateless
system versus a stateful system in Fig. 5. In a stateless system (Fig. 5A),
the layers in the hierarchy are updated sequentially in time for each
input frame. Dynamic sparsity-enhancing techniques described earlier
can be included in the system modules to reduce the number of
computes and memory fetches. Going one step further, adding states
to a neuron along with local recurrence as in SNNs or RNNs (Fig. 5B),
can help to further sparsify the signal output.

Finally, including top-down feedback (Fig. 5B) through bidirec-
tional connections introduces some formof speculative operation into
the overall system, enabling it to dynamically activate only certain
modules at the lower level or a sub-network within them. Yet, the
amount of sparsitywill strongly dependon the information encoded in
the states: the better the system can predict the next incoming signal
basedon its current states, themore computes canbe saved. This form
of context-aware sparsity can be useful for networks that, for example,
are trained to attend to a specific object in a scene. Likewise, biological
systems spend more attention (computational power) upon unex-
pected events using attention mechanisms and predictive models in
brain computation. Hence, the outputs, only need to carry the pre-
diction error, as proposed in various neuroscience literature140,141. This
would bepossible if the stateful systemsbecomeself-learning systems,
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capable of learning the patterns in the processed information. As
shown in Fig. 5C, the early visual areas in the brain are mutually con-
nected with the higher-level visual areas, which in turn are connected
to two key areas of the inferior temporal cortex responsible for visual
processing andobject recognition. Themutual connections allowboth
feedforward and feedback processing.

The realization of the vision projected here can, however, quickly
become too expensive in terms of the computation of such advanced
states, at the risk of introducing more overheads than the potential
savings. This will likely be the case when the computation and
exploitation of states is left to a single compute entity (a neuron or a
neural layer). The overhead can only be kept under control if states are
computed and shared between a larger set of entities. This has two
consequences. Firstly, it will require communication between different
hierarchical layers, with especially the introduction of a feedback path
from higher abstraction layers towards the lower sensory layers. Sec-
ondly, taking this one step further, this calls for a unified theory and
approach for stateful dynamical system (de)activation across different
hierarchical layers of abstraction.

Research directions
To enable the envisioned advanced dynamically sparse perception
systemsof the future, the following researchdirections shown inFig. 6,
should be explored further, from neuroscience to device technology:
1. At the neuroscience level, a better understanding of the

mechanisms used by brains to dynamically sparsify neural activity
is needed, for example, through concepts of attention, saliency,
working memory142, and learned neural representations that
match the statistics of the natural environment13. Also, the explicit
engagement of brain circuits that support predictive coding in
tackling complex tasks in natural environments should be stu-
died. Feedback is critical for stateful systems, and understanding
the role of feedback signals within a layer, between layers of the
cortex, and between different brain areas143,144 for a predictive
model will be useful for training dynamically sparse stateful
systems.

2. At the application level, dynamic sparsity could offer substantial
benefits across diverse energy-constrained perception systems.
Ultra-low-power intelligent sensor nodes can exploit temporal

Table 1 | Limitations and opportunities for dynamically sparse perception systems

Current limitations Bio-inspired opportunities

Significantly increasing sensor modalities and data volumes is challenging in
perception systems, even when stateless sparsity is exploited.

Stateful techniques allow to further boost sparsity due to the high spatiotemporal
correlations present in sensory inputs.

Most state-of-the-art stateful sparsity-aware hardware utilizes very simplistic
notions of state, such as (a linear combination of) a neuron’s past inputs.

Advanced states can pursue the prediction of the expected inputs, instead of
mimicking the past inputs. This allows updates only upon surprise.

Today’s stateful systems compute, retain, and utilize state purely within one
computational building block (e.g., a neuron or neural layer), raising the cost of
its computation, limiting its predictive value, and exploitation opportunities.

State information should be shared between different system components, and
especially be fed back from higher intelligence to lower sensory layers, just like
the brain feeds expectation values back into the lower areas of the cortex.

Stateful dynamically sparse systems lack a proper hierarchical organization, and
do not exploit states at and across multiple abstraction layers towards dynamic
activity gating.

Stateful dynamic sparsity should be formalized and unified across abstraction
layers, to allow a coordinated dynamic (de)activation of blocks with different
granularity.

Low-level processing

High-level processing

Decision making

Sensing

B. Stateful perception system

A. Stateless perception system

Time

Brain inspiration

C. Visual brain areas

Feature extraction

Time

Stateful neurons
Local recurrence

Top-down feedback

V1/2
V3/4TEOTE

Fig. 5 | Brain-inspiredperceptionwith stateful dynamic sparsity.Thinner arrows
indicate sparser data flow. Boxes filled in grey indicate stateful modules. Boxes
filled in blue are activatedmodules, where lighter fill color indicates fewer activated
neurons.AHierarchical updating of themodules across time for a stateless system.
Neurons within each module are sparsely activated (see Fig. 3). B More dynamic
sparsity enabled through stateful systems. Bidirectional connections across

modules indicate thebottom-up feedforward and top-down feedback seen inmany
brain areas. C Early visual areas V1/V2 extract low-level features, higher-level areas
V3/V4 extract more complex features, and inferior temporal areas TEO/TE are
involved in visual processing and object recognition. The top-down feedback helps
further reduce the signal transmission between the modules.
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redundancy in environmental data to activate processing only
when significant changes occur145. For implantable biomedical
devices, particularly processors for neural interfaces or neuro-
prostheses near or in the brain, dynamic sparsity can be extracted
by leveraging the sparse nature of neural signals for reduction in
computation. Wearable technologies, from hearables to multi-
sensor health monitors, similarly benefit by transmitting only
critical events rather than continuous data streams, simulta-
neously extending battery life and reducing wireless bandwidth
requirements146. Beyond individual devices, dynamic sparsity
addresses system-level challenges in future 6G wireless networks.
By enabling selective data transmission and reducing redundant
communication, it helps manage the power demands of inter-
connecting billions of edge devices with data centers147. Finally,
another open opportunity is to couple dynamic sparsity with
continual learning to reduce resource usage while maintaining
accuracy on real-world tasks148.

3. At the algorithmic level, new sparse update schemes are needed
for perception systems to efficiently process multiple dynamic
data streams of different temporal scales to accomplish multiple
tasks simultaneously. Innovations are also needed for future sta-
teful systems, particularly training methods for predictive coding
systems140,141,149 that determine the predictive state at the different
processing levels and the conditioning of the networks for max-
imal energy savings from the state-induced sparsity. We see the
potential increaseof dynamic sparsitywithout information loss by
using predictive coding23. We also see value in investigating
whether new stateful architecture, such as state-spacemodels and
RNNs, can benefit from dynamic sparsity-enhancing or exploiting
methods; and whether they can act as better predictors. And yet,
relatively unexplored is how dynamic sparsity could reduce the
cost of continual learning in deployed systems through fewer
weight updates and less memory access150.

4. At the architectural level, we need to replace the static scheduling
used in current AI accelerators with dynamic scheduling for
exploiting data-dependent sparsity while limiting the resulting
control overhead. Selective processing allows predictions to be
determined close to the sensors, sparsifying the wake-up of more
expensive modules. Dynamic schedulers need hardware support;
otherwise, they will be costly. Other considerations include load
balancing and efficient shared memories that allow workloads to
be dynamically shifted between processing cores. We also see
potential in combining dynamic sparsity with emerging architec-
tural paradigms, such as in-memory computing. Some of the
dynamic sparsity techniques are used in recent mass-produced
smartphone neural processing units111, but there are many
opportunities to improve them by exploiting multiple sparsity
types in combination.

5. At the circuit level, more techniques are needed to support
dynamic sparsity. These include ways of using dynamic circuits
and reducing the idle power of circuit blocks so that the power
savings from dynamic sparsity are maximized. In addition, fine-
grained dynamic sparsity exploitation could benefit from the
emerging time-domain circuits70. Introducing gating functions
coming from an auxiliary neuron or network that uses the data
and states of connected neurons or other networks will help in
dynamic reconfiguration or activation of subsystems. This is
possible by building more efficient multiplexers, which can be
rather slow (like in the brain) but need to be more energy-
efficient. Low-cost storage of this configuration locally is needed,
which boils down to the need for compact memory.

6. At the device technology level, themain limitation for our vision is
that the data movement for the feedback mechanisms and the
states are dense and ideally 3D. We need denser memories
directly stackedwith the compute layers. Just like the brain is a 3D
interwoven structure of computing and memory, emerging

Fig. 6 | Directions for further research. Realizing dynamic sparsity’s full potential calls for a cross-layer research effort spanning applications, algorithms, architectures,
circuits, and device technologies, with neuroscience providing the foundational inspiration.
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memory devices interwoven with computation and wafer
stacking68 can potentially reduce the structural dissimilarity
between the brain and conventional 2D CMOS chips, enabling
more faithful implementation of bio-inspired activity-driven
computing79,151. We need to determine the area and energy cost
of retaining state and moving data, and how this cost can be
improved by emerging memories and advanced 3D packaging.
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