

Delft University of Technology

Quality Assurance Awareness in Open Source Software Projects on GitHub

Zaidman, A.E.; Khatami, Ali

DOI
10.1109/SCAM59687.2023.00027
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 23rd IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM)

Citation (APA)
Zaidman, A. E., & Khatami, A. (2023). Quality Assurance Awareness in Open Source Software Projects on
GitHub. In L. Moonen, C. Newman, & A. Gorla (Eds.), Proceedings of the 23rd IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM) (pp. 174-185). (Proceedings - 2023 IEEE
23rd International Working Conference on Source Code Analysis and Manipulation, SCAM 2023). IEEE.
https://doi.org/10.1109/SCAM59687.2023.00027
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SCAM59687.2023.00027
https://doi.org/10.1109/SCAM59687.2023.00027

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Quality Assurance Awareness in Open Source
Software Projects on GitHub

Ali Khatami
Delft University of Technology

Delft, The Netherlands
s.khatami@tudelft.nl

Andy Zaidman
Delft University of Technology

Delft, The Netherlands
a.e.zaidman@tudelft.nl

Abstract—Software engineers employ a variety of approaches
to ensure the quality of software systems, including software
testing, modern code review, automated static analysis, build au-
tomation, and continuous integration. To make effective decisions
regarding quality assurance (QA), software engineers need to
have an awareness of (1) the QA approaches that are in use in
a project, and (2) how they are used. Through an exploratory,
mixed-methods investigation we set out to better understand the
awareness of software engineers in open-source software (OSS)
development with regard to QA practices. This involved a large-
scale survey of 471 maintainers and contributors on GitHub.
Our findings indicate that a high-level awareness among the
respondents is common, but also that the respondents are less
certain about how the practices are adopted; we further consider
the perspective of both the contributor and the maintainer.

Index Terms—Software Quality Assurance, Open Source Soft-
ware (OSS), Software Engineering, Software Testing, Code Re-
view, Continuous Integration, Automation Workflows, GitHub

I. INTRODUCTION

As we have grown accustomed to living in a software-
filled world, the quality assurance of that software is in-
dispensable [1], because of the potential catastrophic conse-
quences [2]. To ensure the quality of these software systems,
software engineers can use a range of quality assurance
approaches, e.g., software testing [3]–[12], modern code re-
view [5], [13]–[15], automated static analysis [16]–[21], and
build automation [22]–[27].

In order to make effective decisions with regard to quality
assurance, we postulate that software engineers need to have
an awareness of the quality assurance (QA) approaches that
are in use in a project. This corresponds with the situational
awareness (SA) theory from psychology, that describes that
an understanding of an environment, its composing elements,
and its evolution over time, is important for effective decision
making in many environments [28]. This study projects situa-
tional awareness onto the domain of QA in software engineer-
ing [29]. Our motivation to study the awareness that software
engineers working in the Open Source Software (OSS) domain
have, is driven by the fact that while many QA tools and
principles are available, and many OSS projects adopt them,
it is as yet unclear how aware software engineers are about
the use of QA in the project. Building up our understanding of
their awareness, can be a stepping stone towards understanding
the decision making process surrounding QA, and potentially
improving existing tools to stimulate awareness.

While there have been investigations into the information
needs in such contexts as agile software development [30],
software development analytics [31], collocated software de-
velopment teams [32], contemporary code review [33], and
CI & CD [34], there is a notable research gap concerning
the overall awareness of quality assurance practices among
software engineers in the context of OSS development. An
additional dimension of interest is that GitHub as a social
coding platform offers several features to enable or stimulate
quality assurance, e.g., the pull-based development model [35],
modern code review [13], code coverage reporters [36], and
the utilization of GitHub Actions [37], Apps, and Bots [38],

We carry out an exploratory investigation to find out more
about OSS developers’ awareness about quality assurance in
their projects on GitHub. For our investigation, we conduct an
online survey with 471 maintainers [39] and contributors [40].
As a means of measuring awareness, we include questions
regarding their adoption of various QA tools and practices,
but we equally gauge for their knowledge regarding what
actually happens during these QA practices, e.g., how many
code review comments did you get, or what type and level of
code coverage is reported for your project? Our investigation
is steered by the following five research questions.

RQ1 How aware are developers of testing in their projects?

Our first research question investigates how aware OSS
maintainers and contributors are when it comes to automated
testing, a QA practice that was earlier identified to be impor-
tant in the pull-based development model [40].

RQ2 How aware are developers of code reviews in their
projects?

In our second RQ we gauge how aware the software
engineers that we survey are with regard to code reviewing, a
QA practice that has been shown to decrease functional and
maintainability defects in code [13], [15], [41].

RQ3 How aware are developers of automation workflows in
their project, and what are the purposes for which they
employ these workflows?

Third, our investigation delves into the awareness of main-
tainers and contributors regarding automation workflows [42],
[43]. These encompass various tools such as GitHub Actions

174

2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM59687.2023.00027

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l W

or
ki

ng
 C

on
fe

re
nc

e
on

 S
ou

rc
e

C
od

e
A

na
ly

si
s a

nd
 M

an
ip

ul
at

io
n

(S
C

A
M

) |
 9

79
-8

-3
50

3-
05

06
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

SC
A

M
59

68
7.

20
23

.0
00

27

979-8-3503-0506-7/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

(GHA)1, GitHub Checks2, GitHub Apps3, and bots, and can
help ensure the quality of software during development.

RQ4 How aware are developers of continuous integration in
their projects?

Next, we zoom in on the awareness of maintainers and
contributors in OSS of CI, as an established QA practice that
checks builds, tests, static analysis, etc. [17], [22], [44].

RQ5 How aware are developers of guidelines in their project?

Lastly, we ask OSS maintainers and contributors to find
about whether they are aware of their projects contributing
guidelines (e.g., a CONTRIBUTING.md file). We mainly aim
to investigate whether projects have contribution guidelines for
newcomers, and if projects have any guidelines to keep their
software buildable after making changes [29], [45], [46].

Our research findings indicate that respondents are generally
aware of the quality assurance practices in use in their OSS
projects, however, when it comes to more detailed questions
like when a specific QA should be used, or to what level
a QA practice is (or should be) done, e.g., levels of code
coverage, there is generally a lack of awareness. Similarly, we
also noted a lack of awareness surrounding the use of auto-
mated workflows, and the benefits of code reviews. Overall,
maintainers of projects are more aware of QA practices than
contributors, with the notable exception of the presence and
use of contribution guidelines.

II. BACKGROUND AND RELATED WORK

Software quality assurance is composed of an ensemble of
techniques to guard the quality of a piece of software under
scrutiny. As such, various sources of information together
provide a comprehensive understanding of the state-of-the-
quality. These sources include testing reports, code reviews,
CI & CD reports, documentation, and potentially other reports.
The knowledge of, and ability to access and utilize this
information enhances software engineer’s awareness of quality
problems, and forms an important prerequisite for further
(preemptive) actions. In the next sections, we explore literature
of quality assurance practices in software engineering.

A. Information Needs in Software Engineering

Several studies have explored the information needs of soft-
ware engineers. Baysal et al. have investigated the information
needs of software engineers when working with bugs, and have
made suggestions for improving issue tracking systems [47].
Buse and Zimmermann have studied the information needs
of software development managers and have distilled a set
of guidelines for software analytics tools [31]. Pascarella et
al. highlighted seven high-level information needs in modern
code review [33], while Ahmad et al. have categorized infor-
mation needs in the context of Continuous Integration [48].

1https://docs.github.com/en/actions, last visit on July 2023.
2https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/

collaborating-on-repositories-with-code-quality-features/
about-status-checks#checks, last visit on July 2023.

3https://github.com/marketplace?type=apps, last visit on July 2023.

B. Quality Assurance Practices

Key QA practices include testing, code reviews, continuous
integration (CI), and automated static analysis. These prac-
tices have been extensively studied both individually and in
combination [29].

Kochhar et al. found that open-source projects with more
lines of code, and a higher number of developers tend to have
a greater number of test cases [49]. Vassallo et al. investigated
automated testing and source code quality inspection in OSS
and found that only 11% of builds do quality control in
CI [50]. Hilton et al. zoomed in on usage, costs, and benefits
of CI in OSS. They found popular projects are more likely to
use CI, and projects using CI, release more often, accept pull
requests faster, and have developers who are less concerned
about build breakage compared to projects not using CI [24].
Cassee et al. investigated the impact of CI on code reviews.
They found adopting CI leads to an average reduction of one
review comment per pull request, highlighting the time-saving
benefits of adopting CI in code review [51]. McIntosh et
al. studied the impact of modern code review on software
quality. Their results indicate the negative impact of poorly
reviewed code on software quality [52]. Beller et al. found
that 60% of the most popular open-source projects seem to
use automated static analysis tools (ASATs) [16]. Zampetti
et al. found that open-source software (OSS) build breakages
resulting from automated static analysis tools (ASATs) failures
mostly result from failure to adhere to code standards and
missing licenses; vulnerabilities contributed less frequently to
build failures [53]. In the context of automated workflows,
studies looked at expectations of code review bots [54], usage
of GHA [37], [55], [56] and its influence on the adoption
of other CI services on GitHub [57]. However, there remains
a knowledge gap regarding the awareness of all these tools
within the QA context. Khatami and Zaidman investigated
the state of QA practices in OSS quantitatively, revealing that
QA techniques are mostly not being used in conjunction [29].
Complementing their study, our study will provide insights
into the awareness of software engineering professionals re-
garding QA practices.

III. STUDY METHODOLOGY

With approval from our university’s ethics committee,
we conducted a mixed-methods exploratory study, utilizing
multiple-choice and open-ended questions in our survey. We
used both qualitative and quantitative approaches to analyze
the collected data to assess the level of awareness among 471
contributors and maintainers of open-source software projects
on GitHub regarding quality assurance in their projects.

A. Survey Design

Our survey follows a specific structure, encompassing
the following components: informed consent, 7 demographic
questions, 24 question regarding quality assurance practices
within GitHub (see Table II).

Prior to the main survey, we conducted a pilot run with six
colleagues to gather feedback on the survey. Their feedback

175

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

contributed to refining the phrasing of questions and answer
options, and adding a back button to our survey.

We run our survey on the Qualtrics4 platform.

B. Sampling

In our study, we focused on engaging with active and
popular open-source software projects on GitHub. To ensure
a representative sample, we utilized GitHub Search [58] to
select projects. We selected projects with more than 100 stars,
over 50 contributors, and more than 100 pull requests, while
excluding forks. We also only considered recent projects with
a last commit made after January 1, 2023. This yielded a
total of 5,273 projects. We used this set of projects to invite
participants for the subsequent phase of our study.

C. Attracting participants

In addition to promoting the online survey through our
Twitter accounts to invite open-source developers to partic-
ipate, we proactively reached out to the developers of our
selected projects on GitHub (Section III-B) to encourage
their involvement in our survey. We specifically targeted
three groups of developers in the selected projects: assignable
users5 of projects, authors, and assignees of their most recent
pull requests. In doing so, we aimed to ensure a balanced
representation of both contributors and maintainers.

We collected 18,287 data records containing developers’
contact information. We removed any redundant records, re-
sulting in a final dataset of 12,337 unique records.

To invite these developers to voluntarily participate in our
survey, we sent personalized emails to 12,337 email addresses.
In each email, we included relevant information such as their
GitHub user account, the repository they have contributed to,
a clear explanation of our research objectives, and estimation
of the time needed to complete the survey (15 minutes).
Besides, we emphasized the anonymity of their participation
by providing an anonymous link to the survey.

Because of the anonymous link to the survey, we are not
able to provide an exact response rate for each source of
recruitment (targeted recruitment versus Twitter).

We conducted our survey from February 19 to March 10,
2023, and we received 644 non-empty submissions. After
filtering out incomplete submissions, we obtained a final total
of 471 complete responses. However, this does not mean that
all questions were answered since the survey questions were
optional. Precise information regarding how many participants
answered each question is presented in the results section.

D. Data Analysis

Out of the 24 non-demographic and non-consent questions
in the survey, 11 were open-ended. To analyze these open-
ended questions, we employed an open card sorting ap-
proach [59]. Initially, the first author independently performed
coding and categorization, manually sorting the responses into
meaningful groups [60]. To establish consensus, a discussion

4https://www.qualtrics.com/, visited on July 2023.
5https://docs.github.com/en/graphql/reference/objects

TABLE I
PARTICIPANT RESPONSES TO DEMOGRAPHIC QUESTIONS.

<1 1—3 3—6 7—10 >10

Experience in Software 2 38 101 76 252
Development (in years) (0.4%) (8.1%) (21.9%) (16.1%) (53.5%)

OSS Experience 25 82 122 83 157
(in years) (5.3%) (17.6%) (26.1%) (17.6%) (33.3%)

Occupation(s) Academia Industry OSS Other
(multiple choice) 15.4% 65.2% 34% 12.8%

Role in Project Contributor Maintainer
187 (39.8%) 283 (60.2%)

Contributing to an Yes No
OSS project is the main 174 (36.9%) 297 (63.1%)professional activity?

meeting was conducted between both authors to finalize the
code names and categories for each question. We opted for
open card sorting to allow codes and categories to emerge
naturally, without imposing pre-defined groups.

For questions primarily focused on naming tools or in-
dicating the presence or absence of specific practices, we
categorized the responses into a limited number of emerging
categories. Conversely, for questions allowing more open-
ended responses, we employed a combination of open coding
and card sorting techniques to identify themes.

Additionally, we included 10 text-entry fields for certain
answer options in multi-option questions. We did this to clarify
the “Other” option and to collect specific information such as
comment counts based on selected options, or relevant links.
We also used open card sorting.

IV. PARTICIPANTS

Our survey had seven demographic questions, gauging the
experience of our 471 participants. In particular, we asked how
long they have been developing software, how long ago they
first contributed to an OSS project, the repository handle of the
project they recently contributed to, how many pull requests
they made, their role in the project, their occupation, and if
contributing to OSS is their main professional activity.

Table I shows an overview of the participants to our survey.
Regarding participant roles, the majority (60.2%) identified
themselves as maintainers, integrators, project (co-)owners, or
other similar positions. We refer to this group as maintainers.
The remaining participants self-identified as contributors, and
only one respondent left this question open.

Of all respondents, 451 provided the handle
(username/repository) of the most recent GitHub
project they had contributed to. There were 415 distinct OSS
repositories mentioned in total.

V. RESULTS

In this section, we present an analysis of the survey data,
structured along the quality assurance practices and our re-
search questions, see Table II.

In our investigation, we aimed to gather insights into the cur-
rent landscape of QA awareness among OSS developers by ex-
amining both their awareness and adoption of consolidated QA

176

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

resources on GitHub. We evaluated respondents’ awareness
level based on five types of answers to our survey questions:
(1) “I don’t know’‘ answers, these responses explicitly indicate
a lack of awareness. (2) “No or Zero’‘ answers: these answers
indicate that the practice is not followed in the project or no
information is available in that area, which we use as a proxy
for lack of awareness. (3) “No Answers’‘: when respondents
leave a question blank, we also consider it as a proxy for
lack of awareness, although it is a limitation of our work as
some respondents might be aware but chose not to answer. (4)
“Invalid Answers’‘: these are answers that are not related to
the question or are too general or vague, implicitly indicating a
lack of awareness about the topic. (5) “Other Answers”: these
are informative and valid responses that explicitly indicate the
respondent’s awareness of the topic. A summary of all answers
is shown Figure 1; we will use this information to answer each
of the research questions.

A. RQ1) How aware are developers of testing in their
projects?

T-Q1) Does the project have automated (scripted) tests?:
The majority of respondents (87.5%) reported having auto-
mated tests in their project, while 10% said they do not have
tests, and 2.5% did not know the answer to this question.
Respondents who did not select “Yes” as their answer to this
question were excluded from getting any subsequent questions
about testing in the survey.

T-Q2) What kind of (functional) tests do you have in the
project?: Out of all respondents, 84.7% reported knowing
the specific type(s) of testing used in their project (e.g., unit
testing, integration testing, etc.). A large subset of the popula-
tion indicated to have unit tests in their project (92%), while
72% mentioned having integration tests (72%). A smaller
group of respondents reported using validation (29%) and
system testing (24%). Another 30 respondents (7.5%) selected
the “Other” option and specified additional testing methods
not included in the answer options. Among those end-to-end
testing (7), fuzzing, performance, and UI testing (3) were the
most frequent ones.

T-Q3) What kind of test coverage information is available
for the project?: Of the respondents who answered this ques-
tion, 80.8% reported that statement/line coverage information
was available in their project. Branch coverage was indicated
to be available by 41.4% of respondents, while 8.8% reported
using mutation score to assess their tests. Additionally, 43
respondents (17.3%) selected the “Other” option and specified
additional types of code coverage; out of those responses,
32 were valid, with 25 indicating that no code coverage
information was available to them, while 2 were unsure. Other
responses included using Coveralls.io6 (1), class coverage (1),
line coverage (2), and branch coverage (1).

6https://coveralls.io/, last visit on July 2023.

T-Q4) Considering your answer to the previous question,
do you know how much is the code coverage of the project?:
Around half of the participants (53.7%) reported that code
coverage information was not available on the project’s GitHub
page. In contrast, 32.6% of respondents indicated that they
knew their project’s code coverage, and 13.7% reported that
the information could be found on the project’s GitHub page.

We asked the participants who indicated that they knew
the value of code coverage to provide this value through a
text input field. Out of 124 entries received, 106 contained
valid code coverage information. For participants that reported
that the code coverage information was available on their
project’s GitHub page, we requested the specific location
of the information through a separate text input field; of
the 52 entries received, 11 provided a valid location for
the code coverage information, while 21 provided the actual
code coverage. The participants identified various locations to
access code coverage information, including the README on
Github, GitHub Actions, external tool reports (e.g., Codecov7,
pull requests, CI status/pipeline, and build artifacts.

Further analysis based on the classification scheme proposed
by Heitlager et al. [61] showed that most (61.3%) respondents’
projects have either high (39) or very high code coverage (26),
while 24.5% had a moderate level of code coverage (26), and
the remaining 14.2% of projects had either a low (12) or very
low (3) code coverage levels.

Participants were more responsive when asked about the
type of code coverage in their project (T-Q3 with 249 re-
sponses) compared to when asked about its value (T-Q4 with
176 responses saying either they know the value or they can
find it on project’s GitHub repository).

T-Q5) What kind of tooling do you use for testing the
project?: Of all responses, 343 provided valid inputs. Upon
analysis (explained in Section III-D – Data Analysis) of
responses, we found that all respondents mentioned the name
of at least one tool, framework, library, or approach for testing
in their project, with some mentioning up to 15 such tools. The
mean number of tools mentioned was 2.16, and the median
was 2. From these responses, we selected the most commonly
mentioned tools, which are shown in Table III.

RQ1 summary. Figure 1 shows that ∼87% of the partic-
ipants to our survey indicate to know whether the project
they most recently contributed to has test scripts (T-Q1).
Similarly, ∼85% of the respondents know the type(s) of
tests a project employs (T-Q2), and ∼74% know the testing
tools in use (T-Q5). However, the awareness surrounding the
type of test coverage (T-Q3; ∼53%) and the actual level of
test coverage (T-Q4; ∼37%) is considerably lower.

B. RQ2) How aware are developers of code reviews in their
projects?

For the following questions, we asked the survey partic-
ipants to reflect on their most recent involvement in a pull

7https://about.codecov.io/), visited on July 2023.

177

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SURVEY QUESTIONS DETAILS

Code QA-related Category Question Type

T-Q1 Testing Does the project have automated (scripted) tests? multiple-choice
T-Q2 Testing What kind of (functional) tests do you have in the project? (leave open if you don’t know) multiple-choice
T-Q3 Testing What kind of test coverage information is available for the project? (leave open if you don’t know) multiple-choice
T-Q4 Testing Considering your answer to the previous question, do you know how much is the code coverage of the project? multiple-choice
T-Q5 Testing What kind of tooling do you use for testing the project? (frameworks, libraries, etc.) text entry

CR-Q1 Code Review How many comments did you receive (as the author of the pull request), or give (as the maintainer)? text entry
CR-Q2 Code Review The comments that you received/gave were about: multiple-choice
CR-Q3 Code Review How many code reviewers were involved in the pull request? (Not considering code review bots) multiple-choice
CR-Q4 Code Review Does the project use GitHub’s Checks in pull requests? multiple-choice
CR-Q5 Code Review What kind of reports do you get from GitHub’s Checks’ comments on your pull requests? multiple-choice
CR-Q6 Code Review How does code reviewing help you? text entry

AW-Q1 Automation Workflows Do you use GitHub Actions and/or GitHub Apps in the project? multiple-choice
AW-Q2 Automation Workflows Which type of GitHub Actions do you use in the project? (Please name them) text entry
AW-Q3 Automation Workflows Which GitHub Apps do you use in the project? (Please name them) text entry
AW-Q4 Automation Workflows Do you use bots in the project? multiple-choice
AW-Q5 Automation Workflows Which bots do you use in the project? (Please name them) text-entry
AW-Q6 Automation Workflows Do you use ASATs in the project? multiple-choice

CI-Q1 Continuous Integration Does the project have CI workflows configured on GitHub? multiple-choice
CI-Q2 Continuous Integration How do you (or other people in the project) configure CI workflows on GitHub? text entry
CI-Q3 Continuous Integration When and how do you check the project’s CI results on GitHub? text entry
CI-Q4 Continuous Integration Describe a situation in which CI workflows helped you in your contribution to the project. text entry

G-Q1 Guidelines Does the project have a checklist/guideline to check before contributors submit or maintainers review a pull request? multiple-choice
G-Q2 Guidelines Does a newcomer get any guidelines about how to contribute to the project? If yes, can you provide a link to it? text entry
G-Q3 Guidelines Does the project have specific guidelines (e.g., CONTRIBUTING.md) to make the latest version of the project

buildable/compilable?
text entry

request (PR) when responding.

CR-Q1) How many comments did you receive (as the author
of the pull request), or give (as the maintainer)?: Figure 2
displays a box plot based on the number of comments provided
by 373 respondents. Also, 57 responses were excluded due
to imprecise or vague numerical ranges (e.g., thousands,
hundreds, or less/more than 10, etc.). Only exact values or
specific ranges were included, and in cases of ranges, the
average was calculated. Accordingly, the median number of
comments per PR is 3. Furthermore, 50% of the respondents’

TABLE III
TOP 50% TOOLING, FRAMEWORKS, LIBRARIES, OR APPROACHES USED

FOR TESTING (T-Q5). ALL WEBSITES VISITED JULY 2023.

Categories URL # of %
mentions

PyTest https://pytest.org/ 50 6.8%
PHPUnit https://phpunit.de/ 35 4.8%
GitHub Actions https://docs.github.com/en/actions 35 4.8%
Go test https://pkg.go.dev/testing 30 4.1%
JUnit https://junit.org/ 26 3.5%
Cargo (Rust) https://doc.rust-lang.org/cargo/ 24 3.3%
Custom 22 3%
Rust test https://doc.rust-lang.org/cargo/ 20 2.7%
Jest https://jestjs.io/ 19 2.6%
CodeCov https://about.codecov.io 15 2%
Rspec (Ruby) https://rspec.info/ 12 1.6%
Scripts (bash, etc.) 12 1.6%
Unittest (Python) https://docs.python.org/3/library/unittest.html 11 1.5%
Google test https://github.com/google/googletest 10 1.4%
Coveralls https://coveralls.io 9 1.2%
Xunit (.Net) https://xunit.net/ 8 1.1%
Coverage.py https://coverage.readthedocs.io/en/7.2.7/ 8 1.1%
Playwright https://playwright.dev/ 8 1.1%
Jenkins https://www.jenkins.io/ 7 1%
Cypress https://www.cypress.io/ 7 1%

Others (246 different categories) 366 50%

Total 734 100%

PRs had between 1 and 3 comments, while the remaining 50%
ranged from 3 to 11 comments.

CR-Q2) The comments that you received/gave were about?:
We received 387 responses for this question. The majority of
respondents (63%) reported that their comments were related
to Code Quality or Maintainability Defects [15], while 35.7%
of respondents indicated that their comments were about
“Functional Defects”. A slightly lower percentage indicated
the “Tests” option (32%). Moreover, 39.5% selected the
“Other” option to specify additional topics for their comments
in a PR.

For this question, we asked participants to indicate the
number of comments they had per specific topic they selected
from the answer options. The comment count distribution for
each topic is depicted in Figure 3. The median number of
comments for the “Tests” and “Functional Defects” categories
was 1, which was lower compared to the other two categories
with a median of 2. The number of responses provided for
each topic were as follows: “Tests” (52), “Code Quality or
Maintainability Defects” (100), “Functional Defects” (62), and
“Others” (49).

We present the qualitative analysis (see Section III-D)
of the “Other” responses in Table IV. The “functional as-
pects” of change encompass comments related to business
logic, code behavior, design decisions, architecture, features,
functionality, implementation, solution/approach, compatibil-
ity, dependencies, CI, build, testing, bugs, defects, and API.
The “maintainability aspects” involve comments related to
code quality of the contribution, textual content, formatting,
code style, documentation, change log, and typos. The “non-
functional aspects” of change include mentions of perfor-
mance, accessibility, and appearance. In the category of “so-
cial and communication”, respondents highlighted comments

178

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

2

10

12

4

2

6

5

2

7

28

37

65

7

33

40

4

3

7

19

40

59

1

1

17

41

58

11

21

32

6

11

17

1

1

2

17

47

64

2

5

7

3

5

8

25

22

47

123

81

204

35

19

54

42

9

51

57

23

80

45

29

74

128

62

190

105

59

164

41

26

67

131

36

167

67

21

88

63

27

90

31

41

72

122

100

222

41

50

91

50

73

123

22

20

42

51

33

84

3

3

6

3

1

4

91

62

153

108

66

174

1

1

97

98

195

231

173

404

2

1

3

161

122

283

1

1

2

2

96

97

193

87

89

176

87

85

172

3

3

6

56

49

105

56

49

105

1

4

5

27

15

42

23

7

30

16

8

24

3

3

36

6

42

12

11

23

22

8

30

6

5

11

257

155

412

253

146

399

162

87

249

120

56

176

233

110

343

196

131

327

233

154

387

234

173

407

196

126

322

193

125

318

153

114

267

231

125

356

167

78

245

53

14

67

135

84

219

119

65

184

161

87

248

230

140

370

146

73

219

184

86

270

175

94

269

133

101

234

159

112

271

156

101

257

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

Maintainer

Contributor

All

T-Q
1

T-Q
2

T-Q
3

T-Q
4

T-Q
5

CR-Q
1

CR-Q
2

CR-Q
3

CR-Q
4

CR-Q
5

CR-Q
6

AW
-Q
1

AW
-Q
2

AW
-Q
3

AW
-Q
4

AW
-Q
5

AW
-Q
6

CI-Q
1

CI-Q
2

CI-Q
3

CI-Q
4

G
-Q
1

G
-Q
2

G
-Q
3

Testing
Code Review

Autom
ated W

orkflow
s

Continuous Integration
G
uidelines

I don't know
N
o/Zero

N
o Answ

er
Invalid Answ

ers
O
ther Answ

ers

Fig. 1. Summary of answers to all questions.

0 20 40 60 80 100
Number of Comments

Fig. 2. Comments received/given in a pull request.

that involve pinging someone to review the PR, expressing
gratitude towards contributors, and providing encouragement.
Lastly, the “suggestions” category includes comments that
offer improvements, suggestions, clarification, verification of
changes, and discussions about unnecessary changes.

Of interest to note here is that respondents used the “Other”
category to list defects that we would classify as either
functional or maintainability aspects (also see the work of
Beller et al. [15]). However, the respondents were perhaps
not aware of the exact terminology. We explicitly chose to not
reclassify these answers.

CR-Q3) How many code reviewers were involved in the
pull request? (Not considering code review bots): Among
the respondents that provided an answer, 11% reported that
no reviewers were involved in their PR, 46.6% reported
one reviewer, while 28.4% had two reviewers, and 12.5%
selected the “more than 2 reviewers” option. With 1.5% of
the respondents indicating to be unsure of how many reviewers
were involved, we observe a high level of awareness.

CR-Q4) Does the project use GitHub Checks in pull re-
quests?: GitHub Checks provide information on build outputs,
static code analysis results for the changes made in a PR. This
information is provided on GitHub’s PR page, and contributes
to the general QA awareness. We asked respondents whether
they use this feature in their projects.

Half of the respondents (50.3%) indicated to use Checks,
while 35.9% said they do not, and 13.8% are not aware of it;
four did not provide an answer.

CR-Q5) What kind of reports do you get from GitHub’s
Checks’ comments on your pull requests?: Participants who

0 10 20 30 40
Number of Comments

Tests
Code Quality

or Maintainability Defects
Functional Defects

Other

Fig. 3. Count of comments per topic in a pull request.

TABLE IV
CATEGORIES OF OTHER TOPICS OF COMMENTS IN A PR (CR-Q2)

Categories # of mentions %

Functional, logical, behavioral aspects of change 51 38%
Maintainability aspects of change 29 22%
Social and communication 21 16%
Suggestions, improvements, and verification of change 18 13%
Non-functional aspects of change 3 2%

Other 12 9%

Total 134 100%

179

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

TABLE V
CATEGORIES OF HOW DOES CODE REVIEWING HELP YOU (CR-Q6)

Categories # of mentions

Non-Functional (173)
Code Quality 161
Code Performance 8
Security 4

Functional (124)
Error/Bug Prevention 120
Verification 14

Knowledge Sharing (65)
Learning & Knowledge Sharing 65

Other (29)
Design (code, architecture, and software) 12
Testing 6
Speed-up Workflow 3
Community 3
Collective Decision-making 1
Static Analysis 1
Team Confidence 1
Think More 1
Project Policy 1

answered Yes to CR-Q4 were asked about the types of reports
they receive from the Checks feature. The most commonly
selected ones were “Test results” (57.8%) and “Build checks”
(55%); these two options were frequently selected together
because tests are run during the build. Other options selected
were “Code quality warning” (39.4%) and “Code coverage
reports” (23.3%). Only a small percentage (4%) selected the
“Other” option. Of those, 22 respondents provided additional
information about the types of checks they use, including
DCO (Developer Certificate of Origin)/commit format checks,
licensing checks, compatibility checks, and security checks.

CR-Q6) How does code reviewing help you?: A total of
297 responses were collected for the question. However, 30
of these responses were excluded as they were considered too
general (e.g., “yes,” “no,” “it doesn’t”) or unrelated to the ques-
tion. We conducted a qualitative analysis (see Section III-D)
of the remaining responses and identified several high-level
categories. The frequency of these categories is summarized in
Table V. It should be noted that some respondents mentioned
multiple reasons why code reviewing was helpful to them.
The most frequently mentioned category was “improving code
quality” (173 mentions), followed by “error/bug prevention”
(124 mentions), and “knowledge sharing” (65 mentions).

RQ2 summary. Figure 1 shows that ∼69% (CR-Q1) and
∼68% (CR-Q4) of respondents are aware of the number
of code review comments and the usage of Checks during
PRs. Similarly, ∼68% of survey respondents indicate to
be familiar with GitHub Check reports (CR-Q5). Most
respondents are aware of the number of reviewers involved
(∼86%; CR-Q3) and the type(s) of comments they give
(∼82%; CR-Q2). We observe a lack of awareness regarding
the benefits of code reviewing (∼57%; CR-Q6).

C. RQ3) How aware are developers automation workflows
in their project, and what are the purposes for which they
employ these workflows?

AW-Q1) Do you use GitHub Actions and/or GitHub Apps
in the project?: GitHub Marketplace offers two distinct types
of tools for automating development workflows: GitHub Apps
(Apps) and GitHub Actions (GHA). Both offer similar func-
tionality, including the ability to automate tasks, customize
and extend GitHub’s features, and integrate with third-party
services. However, there are also differences between these
two tools. GHA is built into GitHub’s platform, whereas
Apps are integrated through the GitHub API. As a result,
GHA is primarily focused on automating workflows within
a repository, while Apps are more versatile and can be used
to interact with multiple repositories and third-party services.

We included this survey question to determine participants’
awareness and usage of these two tools. Out of 470 responses,
56.6% reported using only GHA, while 17.2% used both GHA
and Apps, and 15.7% used only Apps. Also, 15% reported not
using either tool, and 8.5% were unaware of the answer.

AW-Q2) Which type of GitHub Actions do you use in the
project? (Please name them): From the 347 respondents that
indicate to use GHAs in AW-Q1, 276 provided input for this
question. After excluding 24 invalid inputs, we qualitatively
analyzed the responses (see Section III-D), resulting in the
categories presented in Table VI. CI/CD, environment setup,
and code quality analysis are among the top Actions types
used by the respondents of our survey.

These findings offer insights into the awareness of our
survey participants about types of GHAs used in their projects.

AW-Q3) Which GitHub Apps do you use in the project?
(Please name them): Similar to AW-Q2 we surveyed the 90
respondents who reported to use Apps in AW-Q1, and 67 of
them (74.4%) provided input to this question. The respondents
mentioned a wide variety of Apps, with Codecov (19) , Reno-
vate (9), CodeQL (5), Slack (4), Travis CI (4), Dependabot (3),
DCO8 (3), Azure Pipelines (3), AppVeyor (3), Vercel (3), and
SonarCloud (3) being the most commonly mentioned ones.

AW-Q4) Do you use bots in the project?: Before gauging the
awareness surrounding bots, we made it clear to respondents
that we were referring to bots such as Dependabot. We
received 46.8% positive answers, while 40.6% responded to
not use a bot in their projects; 12.6% selected “I don’t know”.

AW-Q5) Which bots do you use in the project?: From the
219 respondents who indicated to use bots in their projects,
188 participants provided at least one bot. In total, we iden-
tified 54 distinct bots. Some notable bots are: Dependabot,
which was mentioned 111 times, something that could po-
tentially be attributed to the fact that we cited Dependabot
as an example in the question, Stale (14 mentions), Renovate

8This App enforces the Developer Certificate of Origin (DCO) on pull
requests. From https://github.com/apps/dco, visited on July 2023.

180

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
CATEGORIES OF GHA TYPES ACCORDING TO RESPONSES (AW-Q2)

Categories # of mentions

Continuous Integration and Deployment
Testing 45
CI 37
Build 36
Build/Test 31
Release/Publish 26
Deployment 18
Versioning 3
Dependency Management/Review 3
Compile 2
Close Milestones 1

Code Quality and Analysis
Code Quality/Code Style 32
CodeQL 22
Codecove/Code Coverage 15
Static Code Analysis 5
Security 2

Documentation and Management
Upload/Generate Artifacts 20
Issue/PR Management 12
Wiki/Documentation 5
Notifications 3
Update Changelog 2
UI Translation 1
License Analysis 1

Other
Environment Setup 77
Link to GHA Configurations 12
Custom 7
Check File Structure 1

(9 mentions), Bors9 (9 mentions), and Codecov (8 mentions).
Moreover, 8 respondents specified to use custom bots.

AW-Q6) Do you use ASATs in the project?: After providing
an explanation of automated static analysis tools (ASATs)
to the participants of our survey, we inquired whether they
utilize them in their projects. Out of the 470 respondents who
answered this question, the results were as follows: 52.8%
responded with “Yes”, 34.9% replied with “No”, and 12.3%
selected the “I don’t know” option.

RQ3 summary. Figure 1 shows that ∼76% of the survey
respondents indicate that they use GHA or GitHub Apps in
their project (AW-Q1). However, there is lack of awareness
about the specific type of Apps they use (∼14%; AW-
Q3) compared to Actions (∼52%; AW-Q2). Additionally,
we observe relatively low awareness of ASATs among
respondents, with ∼53% indicating to know about ASAT
usage in their projects (AW-Q6). Also, less than half of
survey participants are aware of bot usage (∼46%; AW-Q4)
and which ones they use (∼40%; AW-Q5) in their projects.

D. RQ4) How aware are developers of continuous integra-
tion in their projects?

CI-Q1) Does the project have CI workflows configured on
GitHub?: In response to AW-Q2, the respondents mentioned
Testing, CI, and Build as the most commonly used categories
for GHA types in their projects. This finding is consistent

9https://github.com/apps/bors, visited on July 2023.

with the purpose of GitHub’s automated workflow tools, which
aim to integrate continuous integration (CI) into the software
development process. These tools automate tasks such as
building and testing code changes10. In this question, we asked
participants whether they had configured CI workflows for
their projects using GitHub’s automated workflows.

Of the 469 responses received, 78.9% stated they had CI
workflows, while 9.2% reported configuring CI workflows on
platforms other than GitHub, 6.8% said they did not know
about it, and 5.1% indicated they did not have CI workflows
for their projects.

CI-Q2) How do you (or other people in the project)
configure CI workflows on GitHub?: We posed an open-
ended question to the 370 participants who reported using CI
workflows on GitHub, asking them to share how they or other
people in their project configure these workflows.

We received 278 responses, with 93 respondents reported
using GHA (GitHub Actions) for configuration, while 108
mentioned editing YAML configuration files. It is important
to note that some responses were either invalid or vague (42
in total), and 17 participants indicated that they were unsure
about the answer. Additionally, 20 respondents mentioned
services or tools outside of GitHub.

We received further insights from some of the respondents
regarding their approach to configuring CI workflows: 1) 14
respondents said they manually edit the (.yml) configuration
files, 2) 6 respondents mentioned “copying” configurations
from other projects or Stack Overflow, 3) 3 respondents
mentioned using GHA examples and shared workflows (of
GitHub) when configuring their CI.

CI-Q3) When and how do you check the project’s CI
results on GitHub?: We posed an open-ended question to
participants, asking them about when and how they check CI
results on GitHub. We received a total of 295 responses, out
of which 23 were deemed invalid or vague, and 2 indicated
not knowing the answer to this question. After qualitatively
analyzing the remaining 270 responses (described in Section
III-D), categories presented in Table VII were emerged.

We observe that Pull Requests (PRs) play a crucial role
in the evaluation of CI workflows. They emphasized the
importance of reviewing CI results for each commit and
push, particularly in cases of failures. Moreover, respondents
mentioned receiving notifications on GitHub or via emails to
stay informed about these failures.

CI-Q4) Describe a situation in which CI workflows helped
you in your contribution to the project.: In total, we received
269 responses (excluding 30 invalid and vague ones) and
qualitatively analyzed them (as described in Section III-D).

We summarized the responses in Table VIII. The majority
emphasized the benefits of CI in terms of testing and bug pre-
vention. Additionally, participants highlighted the importance
of building the project in different environments, to mitigate

10From https://docs.github.com/en/actions/automating-builds-and-
tests/about-continuous-integration, visited on July 2023.

181

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
WHEN/HOW DEVELOPERS CHECK CI RESULTS ON GITHUB (CI-Q3)

Categories # of mentions

W
he

n

Per/during/after/before each PR/merge/change 154
Per each commit 42
In case of failure/error 28
Getting email/notification 26
Per each push 25
Per/during/before (code) reviewing 19
On a regular basis, daily or monthly 8
Others: per/during deploy, after manual test, part of branch
workflow, after workflows run

5

H
ow

On PR page and PR Checks tab 73
By checking emails/notification 17
On Actions tab 11
On commit Checks 9
On (badges in) README file 7

the “works-on-my-machine” mentality. They also mentioned
the impact of CI on code quality, which was mentioned almost
as frequently as building in different environments.

RQ4 summary. Based on the summary of answers pre-
sented in Figure 1, the majority of respondents indicate to
have knowledge about CI workflows configured on GitHub
(∼79%; CI-Q1). Also, ∼57% of them show awareness
of how CI helps in contributing to a project (CI-Q4).
Similarly, ∼57% know how and when to check GitHub’s CI
workflows results (CI-Q3), however, there is less awareness
on how to configure them (46.5%; CI-Q2).

E. RQ5) How aware are developers of guidelines in their
project?

G-Q1) Does the project have a checklist/guideline to check
before contributors submit or maintainers review a pull re-
quest?: Of the total number of respondents, 234 (50.3%)
answered yes to this question, while 167 (35.9%) answered
no. Another 64 (13.8%) answered that they do not know, and
6 did not answer.

Out of 234 respondents who answered positively, 173
(74%) provided input on the location of the contribution
checklist/guideline. The CONTRIBUTING.md file was the
most popular location (81 respondents), or the similar DE-

TABLE VIII
CATEGORIES OF HOW CI HELPS DEVELOPERS (CI-Q4)

Categories # of mentions

H
ow

&
in

w
ha

t
ar

ea
s?

Testing 106
Bug/failure/mistake/breakage prevention 98
Build with different versions/configurations/environments &
avoid works-on-my-machine mentality

47

Static code analysis/code style/formatting/code quality 46
Build/compile 29
PR/contribution verification 18
Automation of manual tasks: reduce workload, local envi-
ronment limitation, commits’ sign-off message, and main-
taining repo files

12

Prevention of regressions 11
Deployment/release/publishing 11
(Code) Reviews 11
Improve contribution confidence 6

VELOPER.md file (3 respondents). Another 42 respondents
pointed to an issue or pull request template, while 29 re-
spondents pointed to a separate document, and 5 persons
indicated the README.md file. Lastly, two respondents said
the information is provided privately to contributors, and five
did not provide valid responses.

G-Q2) Does a newcomer get any guidelines about how to
contribute to the project? If yes, can you provide a link to
it?: We manually reviewed a total of 366 responses to this
question. Out of the respondents, 270 (74.8%) confirmed the
presence of a contribution guideline in their project. While 216
participants provided a link to the guideline, 87 respondents
indicated that their project did not possess such a guideline,
and 8 participants were uncertain about its existence.

Interestingly, respondents shared various additional prac-
tices they employ to support newcomers in their projects. Six
participants mentioned leveraging communication platforms
like Discord or Matrix to keep in touch with and guide
newcomers. They also highlighted the significance of directing
newcomers to good first issues [62], [63] and encouraging
them to initiate discussions regarding their motivations for
contributing.

G-Q3) Does the project have specific guidelines (e.g., CON-
TRIBUTING.md) to make the latest version of the project
buildable/compilable?: Similar to the previous question, we
inquired about the existence of guidelines regarding making
the latest version of participants’ projects buildable or compil-
able. We manually reviewed a total of 366 text-entry responses
to gather insights on this topic.

Around 70% of them indicated that guidelines are in
place to ensure buildability or compilability, pointing to the
CONTRIBUTING.md, or the README.md file for these
guidelines. Another 90 respondents (24.5%) indicate to not
have these guidelines for their projects, while 8 respondents
were unsure whether these guidelines exist for their project.
Moreover, 5 respondents claim that building is not applicable
to their project, and 6 answers were considered invalid.

Additionally, (4) respondents pointed out the importance of
their CI build and test workflows in ensuring that the latest
version of their software builds successfully.

RQ5 summary. Figure 1 shows a summary of survey
respondents awareness about three types of guidelines
in projects: for newcomer contributions to project (G-
Q2; ∼58%), keeping the latest version of software build-
able/compilable (G-Q3; ∼55%), and as a checklist when
reviewing or submitting pull requests (G-Q1; ∼50%. In all,
we observe an average level of awareness about project
guidelines in OSS.

F. Maintainers & Contributors Level of Awareness

As we compare the awareness of maintainers and contribu-
tors, we turn our attention to Figure 1.

In general, we observe that maintainers are more aware
of QA activities in their projects compared to contributors.

182

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

This is in line with earlier findings from Gousios et al. who
established that maintainers are more involved in ensuring a
project’s quality [39]. This is especially true for questions
related to testing, the automation workflows in use, and CI.

However, we see a mixed picture for code reviewing, where
we see indications of higher awareness among contributors
compared to maintainers, in particular when it comes to the
number of reviewers active in a pull request (CR-Q3) and the
benefits of code review (CR-Q6).

Also, contributors are (slightly) more aware of newcomer
guidelines and pull requests’ checklist/guidelines than main-
tainers (∼60% vs. ∼56%; G-Q2, and ∼57% vs. ∼47%; G-Q1).

VI. LIMITATIONS

We conducted a survey to investigate the level of awareness
among OSS developers regarding the quality assurance (QA)
practices in their GitHub projects. To ensure unbiased re-
sponses, we carefully formulated the survey questions, avoid-
ing leading or ambiguous language. However, it is important to
acknowledge that our study has certain limitations that could
potentially impact the validity of our findings.

Generalizability. Our findings may not apply to other popu-
lations of OSS developers, or OSS projects. While we tried to
avoid constraints in our sampling, e.g., limiting the program-
ming language, we acknowledge the need for replication.

Researcher bias may introduce categorization bias when
using qualitative research methods to categorize answers of
open-ended questions in our survey. Additionally, this bias
could potentially influence the wording of the questions. To
address this limitation, we took measures to mitigate it by
conducting a pilot round of the survey (see Section III-A).

Survey responses validity. The order of questions, the pres-
ence of open-ended questions, and respondents’ inclination
to present themselves in a positive light (e.g., by claiming
awareness of all QA activities in their project) may have
influenced the accuracy of the provided answers. Similarly,
some answers might be estimations, e.g., T-Q4 about test
coverage, instead of very precise numbers.

Measuring awareness. While our approach described in Sec-
tion V, serves as an approximation to measure respondents’
awareness, it has limitations. Specifically, using “No An-
swers”,“No/Zero”, and “Invalid Answers” as proxies of lack of
awareness may not always be accurate, e.g., respondents may
leave a question unanswered despite having the knowledge.

VII. CONCLUSION, IMPLICATIONS, AND FUTURE WORK

We set out to better understand the situational awareness
of software engineers when it comes to quality assurance
practices in their open source software projects on GitHub.

We found that while there is awareness surrounding test
scripts (∼87%; T-Q1), types of tests (∼85%; T-Q2), and
testing tooling (∼74%; T-Q4), awareness is lacking when it
comes to test coverage (∼53%; T-Q3), either because coverage
reports are unavailable or contributors are not familiar with
them [RQ1].

In the context of code review, our findings indicate that re-
spondents demonstrated a higher level of awareness compared
to other practices (∼69%; CR-Q1, ∼68%; CR-Q4 & CR-Q5,
∼82%; CR-Q2, and ∼86%; CR-Q3). However, there is lack
of awareness surrounding the benefits of code review (∼57%;
CR-Q6) [RQ2].

We have observed that while 76% of the respondents indi-
cate that a workflow automation is in use in their project, they
generally lack awareness on the precise type of GitHub Action
(∼52%), or App (∼14%). When it comes to bots, ∼46%
indicates to know that a bot is in use, with less respondents
indicating to know which bots are in use (∼40%) [RQ3].

We see that ∼79% of the respondents are aware that there is
a CI configured for their project, yet only around 57% knows
how and when to check the CI results [RQ4].

When we turn our attention to the awareness of guidelines
in GitHub projects, we observe that only ∼50% to ∼58% of
the respondents are aware of such a set of guidelines existing.
Either creating such guidelines, or increasing the awareness
surrounding them, can likely improve the onboarding and
developer experience [RQ5].

When we compare participants’ roles, we observe that in
general maintainers are more aware of QA practices in their
projects. However, when it comes to code reviewing or guide-
lines, like the number of reviewers in a pull request (CR-Q3),
the benefits of code review (CR-Q6), newcomer guidelines (G-
Q2), and PRs’ checklist/guidelines (G-Q1) contributors show
a higher level of awareness.

Implications. The identification of awareness gaps through
this analysis can pave the way for educators to emphasize the
importance of situational awareness among the next generation
of software engineers. Tool makers can improve their tooling
to stimulate awareness among software engineers, similar to
what TestAxis does for testing [64]. Researchers should study
more deeply how and why software engineers either gain or
lack knowledge of specific QA practices.

Future work. A publicly available data set [65] with 456
anonymized survey answers of our study makes it possible
to replicate our study (15 respondents did not give consent
to archive their answers). Also, the dataset can support other
potential future research directions like: (1) using respondents’
repository handles in our data set to see how reported answer
compare to the reality of QA in OSS projects, (2) expand the
work on private repositories or industrial projects, (3) using
GitHub projects with different characteristics to see if and how
QA awareness changes among those, (4) building tools to help
increase OSS developers knowledge of QA in their projects,
particularly in areas that we observed lack of awareness.

ACKNOWLEDGMENT

This research was partially funded by the Dutch science
foundation NWO through the Vici “TestShift” grant (No.
VI.C.182.032).

183

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Jazayeri, “The education of a software engineer,” in Proc. Interna-
tional Conference on Automated Software Engineering (ASE). USA:
IEEE, 2004.

[2] A. J. Ko, B. Dosono, and N. Duriseti, “Thirty years of software problems
in the news,” in Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE).
ACM, 2014, pp. 32–39.

[3] M. Aniche, C. Treude, and A. Zaidman, “How developers engineer test
cases: An observational study,” IEEE Trans. Software Eng., vol. 48,
no. 12, pp. 4925–4946, 2022.

[4] M. Aniche, Effective Software Testing: A Developer’s Guide. Manning
Publications, 2022.

[5] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Trans. Software Eng., vol. 39, no. 6, pp. 757–773,
2013.

[6] G. Balogh, T. Gergely, Á. Beszédes, and T. Gyimóthy, “Are my unit
tests in the right package?” in 2016 IEEE 16th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2016,
pp. 137–146.

[7] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261–284, 2019.

[8] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,
and why developers (do not) test in their IDEs,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 2015, pp. 179–190.

[9] C. Marsavina, D. Romano, and A. Zaidman, “Studying fine-grained co-
evolution patterns of production and test code,” in 14th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2014, pp. 195–204.

[10] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empir. Softw. Eng., vol. 16, no. 3, pp. 325–364, 2011.

[11] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in First International Conference on Software Testing, Ver-
ification, and Validation (ICST). IEEE Computer Society, 2008, pp.
220–229.

[12] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production & test code,” in Proceedings of the
6th International Working Conference on Mining Software Repositories
(MSR). IEEE, 2009, pp. 151–154.

[13] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in 35th International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2013, pp. 712–721.

[14] M. di Biase, M. Bruntink, and A. Bacchelli, “A security perspective
on code review: The case of chromium,” in 2016 IEEE 16th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), 2016, pp. 21–30.

[15] M. Beller, A. Bacchelli, A. Zaidman, and E. Jürgens, “Modern code
reviews in open-source projects: which problems do they fix?” in 11th
Working Conference on Mining Software Repositories (MSR). ACM,
2014, pp. 202–211.

[16] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 2016, pp. 470–481.

[17] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman, “How developers engage with static analysis tools in
different contexts,” Empir. Softw. Eng., vol. 25, no. 2, pp. 1419–1457,
2020.

[18] D. Han, C. Ragkhitwetsagul, J. Krinke, M. Paixao, and G. Rosa, “Does
code review really remove coding convention violations?” in 2020 IEEE
20th International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2020, pp. 43–53.

[19] T. Buckers, C. Cao, M. Doesburg, B. Gong, S. Wang, M. Beller, and
A. Zaidman, “UAV: warnings from multiple automated static analysis
tools at a glance,” in 24th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER). IEEE, 2017, pp. 472–476.

[20] F. Zampetti, S. Mudbhari, V. Arnaoudova, M. D. Penta, S. Panichella,
and G. Antoniol, “Using code reviews to automatically configure static
analysis tools,” Empir. Softw. Eng., vol. 27, no. 1, p. 28, 2022.

[21] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and
H. C. Gall, “Context is king: The developer perspective on the usage
of static analysis tools,” in 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2018, pp. 38–
49.

[22] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
an explorative analysis of Travis CI with GitHub,” in Proceedings of
the International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 356–367.

[23] A. Rahman, A. Partho, D. Meder, and L. Williams, “Which factors in-
fluence practitioners’ usage of build automation tools?” in International
Workshop on Rapid Continuous Software Engineering (RCoSE), 2017,
pp. 20–26.

[24] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). ACM, 2016, pp. 426–437.

[25] O. Elazhary, C. M. Werner, Z. S. Li, D. Lowlind, N. A. Ernst, and
M. D. Storey, “Uncovering the benefits and challenges of continuous
integration practices,” IEEE Trans. Software Eng., vol. 48, no. 7, pp.
2570–2583, 2022.

[26] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaid-
man, M. D. Penta, and S. Panichella, “A tale of CI build failures:
An open source and a financial organization perspective,” in 2017
IEEE International Conference on Software Maintenance and Evolution,
(ICSME). IEEE, 2017, pp. 183–193.

[27] C. Vassallo, S. Proksch, T. Zemp, and H. C. Gall, “Un-break my build:
assisting developers with build repair hints,” in Proceedings of the 26th
Conference on Program Comprehension (ICPC). ACM, 2018, pp. 41–
51.

[28] M. R. Endsley, “Toward a theory of situation awareness in dynamic
systems,” Human Factors, vol. 37, no. 1, pp. 32–64, 1995.

[29] A. Khatami and A. Zaidman, “State-of-the-practice in quality assurance
in java-based open source software development,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2306.09665

[30] H. Bomström, M. Kelanti, E. Annanperä, K. Liukkunen, T. Kilamo,
O. Sievi-Korte, and K. Systä, “Information needs and presentation in
agile software development,” Information and Software Technology, p.
107265, 2023.

[31] R. P. L. Buse and T. Zimmermann, “Information needs for software
development analytics,” in 34th International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2012, pp. 987–996.

[32] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in 29th International Conference on
Software Engineering (ICSE). IEEE Computer Society, 2007, pp. 344–
353.

[33] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli,
“Information needs in contemporary code review,” Proc. ACM Hum.
Comput. Interact., vol. 2, no. CSCW, pp. 135:1–135:27, 2018.

[34] A. Ahmad, O. Leifler, and K. Sandahl, “Software professionals’ infor-
mation needs in continuous integration and delivery,” in SAC ’21: The
36th ACM/SIGAPP Symposium on Applied Computing. ACM, 2021,
pp. 1513–1520.

[35] G. Gousios and A. Zaidman, “A dataset for pull-based development
research,” in 11th Working Conference on Mining Software Repositories
(MSR). ACM, 2014, pp. 368–371.

[36] D. Kavaler, A. Trockman, B. Vasilescu, and V. Filkov, “Tool choice
matters: Javascript quality assurance tools and usage outcomes in github
projects,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019, pp. 476–487.

[37] T. Kinsman, M. S. Wessel, M. A. Gerosa, and C. Treude, “How do
software developers use github actions to automate their workflows?” in
18th IEEE/ACM International Conference on Mining Software Reposi-
tories (MSR). IEEE, 2021, pp. 420–431.

[38] M. Wessel, A. Zaidman, M. A. Gerosa, and I. Steinmacher, “Guidelines
for developing bots for github,” IEEE Softw., vol. 40, no. 3, pp. 72–79,
2023.

[39] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in 37th IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2015, pp. 358–368.

184

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

[40] G. Gousios, M. D. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: the contributor’s perspective,” in
Proceedings of the 38th International Conference on Software Engineer-
ing (ICSE). ACM, 2016, pp. 285–296.

[41] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Review
participation in modern code review: An empirical study of the android,
qt, and openstack projects (journal-first abstract),” in 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE Computer Society, 2018, p. 475.

[42] M. Wessel, T. Mens, A. Decan, and P. Rostami Mazrae, “The github de-
velopment workflow automation ecosystems,” in Software Ecosystems:
Tooling and Analytics, T. Mens, C. De Roover, and A. Cleve, Eds.
Springer Nature, 2023.

[43] O. Elazhary, “Investigating the interplay between developers and au-
tomation,” in 43rd IEEE/ACM International Conference on Software
Engineering: Companion Proceedings, ICSE Companion 2021, Madrid,
Spain, May 25-28, 2021. IEEE, 2021, pp. 153–155.

[44] D. G. Widder, M. Hilton, C. Kästner, and B. Vasilescu, “A conceptual
replication of continuous integration pain points in the context of travis
CI,” in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2019, pp. 647–658.

[45] F. Hassan, S. Mostafa, E. S. L. Lam, and X. Wang, “Automatic building
of java projects in software repositories: A study on feasibility and
challenges,” in 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE Computer
Society, 2017, pp. 38–47.

[46] O. Elazhary, M. D. Storey, N. A. Ernst, and A. Zaidman, “Do as I do,
not as I say: Do contribution guidelines match the github contribution
process?” in 2019 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2019, pp. 286–290.

[47] O. Baysal, R. Holmes, and M. W. Godfrey, “Situational awareness:
personalizing issue tracking systems,” in 35th International Conference
on Software Engineering (ICSE). IEEE Computer Society, 2013, pp.
1185–1188.

[48] A. Ahmad, O. Leifler, and K. Sandahl, “Data visualisation in continuous
integration and delivery: Information needs, challenges, and recommen-
dations,” IET Softw., vol. 16, no. 3, pp. 331–349, 2022.

[49] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical study
of adoption of software testing in open source projects,” in 2013 13th
International Conference on Quality Software (QSIC). IEEE, 2013, pp.
103–112.

[50] C. Vassallo, F. Palomba, A. Bacchelli, and H. C. Gall, “Continuous
code quality: are we (really) doing that?” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing (ASE). ACM, 2018, pp. 790–795.

[51] N. Cassee, B. Vasilescu, and A. Serebrenik, “The silent helper: The
impact of continuous integration on code reviews,” in 27th IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2020, pp. 423–434.

[52] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact
of code review coverage and code review participation on software
quality: a case study of the qt, VTK, and ITK projects,” in 11th Working
Conference on Mining Software Repositories (MSR). ACM, 2014, pp.
192–201.

[53] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. D. Penta,
“How open source projects use static code analysis tools in continuous
integration pipelines,” in Proceedings of the 14th International Confer-
ence on Mining Software Repositories (MSR). IEEE Computer Society,
2017, pp. 334–344.

[54] M. S. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and M. A. Gerosa,
“What to expect from code review bots on github?: A survey with OSS
maintainers,” in 34th Brazilian Symposium on Software Engineering
(SBES). ACM, 2020, pp. 457–462.

[55] T. Chen, Y. Zhang, S. Chen, T. Wang, and Y. Wu, “Let’s supercharge
the workflows: An empirical study of github actions,” in 21st IEEE
International Conference on Software Quality, Reliability and Security
(QRS). IEEE, 2021, pp. 1–10.

[56] A. Decan, T. Mens, P. R. Mazrae, and M. Golzadeh, “On the use of
github actions in software development repositories,” in IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2022, pp. 235–245.

[57] M. Golzadeh, A. Decan, and T. Mens, “On the rise and fall of CI services

in github,” in IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2022, pp. 662–672.

[58] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 2021, pp. 560–564.

[59] T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives
on Data Science for Software Engineering, T. Menzies, L. Williams, and
T. Zimmermann, Eds. Morgan Kaufmann, 2016, pp. 137–141.

[60] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative sociology, vol. 13, no. 1,
pp. 3–21, 1990.

[61] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring
maintainability,” in Quality of Information and Communications Tech-
nology, 6th International Conference on the Quality of Information and
Communications Technology (QUATIC). IEEE Computer Society, 2007,
pp. 30–39.

[62] W. Xiao, H. He, W. Xu, X. Tan, J. Dong, and M. Zhou, “Recommending
good first issues in github oss projects,” in Proceedings of the 44th
International Conference on Software Engineering (ICSE). ACM, 2022,
pp. 1830–1842.

[63] J. W. D. Alderliesten and A. Zaidman, “An initial exploration of the
“good first issue” label for newcomer developers,” in 14th IEEE/ACM
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE). IEEE, 2021, pp. 117–118.

[64] C. Boone, C. E. Brandt, and A. Zaidman, “Fixing continuous integration
tests from within the IDE with contextual information,” in Proceedings
of the 30th IEEE/ACM International Conference on Program Compre-
hension (ICPC). ACM, 2022, pp. 287–297.

[65] A. Khatami and A. Zaidman, “Quality Assurance Awareness in Open
Source Software Projects on GitHub Analysis Dataset,” Jul. 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.8139381

185

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 15:27:35 UTC from IEEE Xplore. Restrictions apply.

