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Summary

Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of
Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease
in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the
orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s
surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether
that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op-
erators work with to schedule science missions and commercial services, as well as use to prove compliance
with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years.

An orbital lifetime prediction rests primarily on three pillars - numerical orbit propagation, thermo-
spheric density prediction, and the ballistic coefficient of the spacecraft. The latter is an indication of the
interaction the spacecraft has with local atmosphere and how heavily it is influenced by the atmospheric
drag. Linearly dependent on the spacecraft’s mass and reference area, as well as the local drag coefficient,
the ballistic coefficient is commonly well-known for larger spacecraft. For micro- and pico satellites an accu-
rate ballistic coefficient is often not known, as well as for most space debris. This thesis discusses a method
capable of estimating an arbitrary 1U CubeSat’s ballistic coefficient by analyzing both its historical Two-Line
Element data and the density it experienced along its trajectory according to the empirical thermospheric
density model NRLMSISE-00. In parallel the same is done for a spherical satellite which already has a pre-
liminary well-known ballistic coefficient, given the two objects are experiencing near-similar atmospheric
conditions. Any density error associated with NRLMSISE-00 along that trajectory can be largely mitigated,
resulting in a model-dependent estimated ballistic coefficient βE . This procedure can be iterated upon with
a batch of CubeSats, leading to a single method capable of estimating the ballistic coefficient of a large group
of target satellites. In this research, around 60 CubeSats have been subjected to this method.

Literature commonly addresses the drag coefficient used within the ballistic coefficient to be constant at
CD = 2.2 for both CubeSats and spherical satellites. This would imply that upon computing βE its value would
remain constant throughout its lifetime given no mass is expelled from the spacecraft. However, an object’s
drag coefficient is dependent on the ambient gas composition, as well as its geometry and freestream velocity
and can thus not be considered constant. This thesis additionally implements a method capable of adjusting
an epoch-associated βE to account for changing ambient gas composition over time and altitude, for which
the output of NRLMSISE-00 is used. Within the analytical CD computation, based on Sentman’s rarefied aero-
dynamic equations, the energy accommodation coefficient α plays an important role, and yet again in most
literature this is considered constant at values ranging between 0.8 and 1.0. Langmuir’s adsorption model
however considers α variable and a function of the presence of local atomic oxygen. Second to βE being ad-
justed for the epoch-associated CD , this thesis also investigates the impact a constant α = 0.8 and the effect
that incorporation of Langmuir’s isotherm has on adjusting βE to βCD ,α=0.8 and βCD Lang mui r respectively.

A distinction has been made between CubeSats at altitude higher than 500 km (in-orbit group) and Cube-
Sats which already re-entered (re-entry group). These objects have had their three discussed β computed
and evaluated with a reference and a verification orbit based on their historical TLE. The re-entry group
demonstrated improvements of 35.65% for its βE values compared to a standard β0 of 0.03125, and have
shown Langmuir’s adsorption model becomes unsuited for orbits lower than 300 km. Two out of three in-
orbit groups showed an improvement of 5% with βE , yet this rose to 10% with βCD Lang mui r , thus showing
for higher orbits Langmuir’s adsorption model does perform better instead of constant α. Furthermore, the
groups highlighted the sensitivity of the iteration process and the criteria of when two objects experience
near-identical atmospheric conditions. Overall, this thesis demonstrated the possibility of a global ballistic
coefficient estimation model which can be extended with other satellites and/or space debris. The adjust-
ment of the epoch-associated βE to account for the varying CD significantly improved the decay prediction
for higher orbits, though for objects close to re-entry a deeper investigation into the computation of α would
have to be considered.
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Abstract

The ballistic coefficient β of a satellite indicates the influence atmospheric drag has on the orbital decay of
said satellite. The method developed in this study estimates the ballistic coefficients of 1U CubeSats by ana-
lyzing both its historical TLE data and the density it experienced along its trajectory according to the empirical
density model NRLMSISE-00. In parallel the same is done for a spherical satellite with an already known bal-
listic coefficient, given the object is experiencing near-similar atmospheric conditions as that of the CubeSat.
Any density error associated with NRLMSISE-00 along that trajectory is consecutively largely mitigated, re-
sulting in an improved model-dependent estimated ballistic coefficient for the CubeSat. This procedure is
iterated upon with a batch of 60+ CubeSats, leading to a single procedure capable of estimating the ballistic
coefficient of a large group of objects.

The estimated β are consecutively adjusted for the epoch- and altitude-dependent drag coefficient, per-
formed analytically as a function of ambient gas-composition and spacecraft geometry. Additionally, an in-
vestigation in the computation of the energy accommodation coefficient α, an essential variable for the CD

computation, is performed, assessing whether a constant α = 0.8 can be assumed or if Langmuir’s adsorption
model based on the ambient presence of atomic oxygen would not be more suited.

When subjecting the estimated and adjusted β values to a propagator build in TUDAT, based on Runge-
Kutta-Fehlberg 7(8), and comparing them to their actual orbits, prediction improvements of up to 40% are
observed compared to regular non-adjusted β values for CubeSats re-entering the atmosphere. For CubeSats
orbiting Earth above 500 km, improvements between 5% and 15% are observed. The research furthermore
highlighted the sensitivity of the iterative process and the orbital element selection criteria through which
satellite pairs are assumed to have near-similar atmospheric conditions – the tighter the selection criteria the
better the quality of the β estimations were, though at the cost of fewer β estimations to occur.

Overall, it can be concluded that the β estimation method can be applied on a scale covering multiple
satellites, potentially growing to a global ballistic coefficient estimation model which could also include space
debris. Improvements to orbital lifetime predictions are primarily seen in the lower parts of LEO. Further-
more, the adjustment for the variable drag coefficient proved most useful for the CubeSats above 500 km,
given Langmuir’s adsorption model was used. For the lower orbits, Langmuir’s adsorption model lost its ac-
curacy and an adaptation of Langmuir’s model which considers an object’s historical orbit data is suggested.
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Preface

Concluding this thesis is the pinnacle of 7 years of my education at Delft, University of Technology. Starting in
September 2010 with the Bachelor Aerospace Engineering, I quickly found my enthusiasm towards anything
that had to do with rockets and outer space. From almost day one I immediately joined the Delft Aerospace
Rocket Engineering (DARE) student team, a voluntarily student organization working on in-house developed
rockets. A couple of years of building, launching, and yes, also crashing rockets was an unforgettable experi-
ence. This experience in combination with my Bachelor thesis work revolving around a Phase-A study of an
Earth Observation satellite made me decided to continue my academic career within the Spaceflight Master
Track at the Aerospace Faculty.

Initially following the Space Engineering specialization, I remember my most favored course being an
elective course from the Space Exploration specialization - Mission Geometry and Orbit Design taught by Ir.
R. Noomen to be precise. Though still enthusiastic about space engineering, I was more attracted to con-
clude my Master with a thesis subject from the Space Exploration department. After numerous talks with R.
Noomen on potential graduation topics, the idea of working on orbital lifetime predictions was the one that
excited me the most and made me decide to formally switch specialization, and thus graduate from the Space
Exploration department under the supervision of assistant professor Dr. Ir. Eelco Doornbos, the faculty’s ex-
pert in thermospheric research.

Straight from the get-go I was made aware of the complexity of orbital lifetime predictions, and the huge
amount of uncertainties associated with it. The two month literature study taught me a great deal, and it
made me appreciate my topic choice more and more. In the end I decided to contribute to the body of
knowledge by researching ballistic coefficient estimations and its adjustments for the temporal drag coeffi-
cient, an aspect I knew little about barely a year ago but of which I can now confidently say I have a thorough
understanding of. Second to the gained knowledge, the thesis research enabled me to become more disci-
plined and structured when conducting an academic experiment - an asset I shall carry with me indefinitely.

During the entire graduation process, from literature study to this final thesis report, Eelco’s guidance en-
sured that the research was always focused towards the final goal and that I wouldn’t stray too far from that
path whenever I wanted to investigate seemingly interesting yet unrelated things. Without his insights and
continuous availability throughout the project this research would not have been where it is now - for this I’d
like to thank him. Furthermore, I would like to thank Dr. Ir. Dominic Dirkx for his tremendous help with the
TUDAT library. Whenever a TUDAT-related programming issue surfaced, Dominic managed to understand-
ably break-down the problem, enabling me to use my time more efficiently.

Last but not least I’m thanking my parents, for having at all times supported me on my journey in becom-
ing an aerospace engineer. It wasn’t always an easy road, but no matter what I was facing they were there for
me. For that I’m forever grateful.

M.R. Haneveer
Delft, June 2017
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Introduction

This document presents an investigation into a ballistic coefficient (β) estimation procedure, as well as the
influence a variable drag coefficient has on β component. The research is directly related to orbital lifetime
predictions, and the thereby associated topics of atmospheric densities and orbit propagation. The selection
of this topic came to be when discussing potential thesis topics with a few professors from the Space Explo-
ration department, where the prospect of graduating on orbital lifetimes caught my enthusiasm. The work
presented in this document covers a total period of nine months, two of which have been dedicated to a lit-
erature review and the remaining seven on the actual research. With these nine months being concluded, a
thesis defense and engineering exam are held on the 01-06-2017 to assess the academic quality of the con-
ducted research, after which the author shall in all likelihood receive his Master of Science title.

To start things of, a brief introduction is given in the next two pages highlighting the importance of accu-
rate lifetime predictions, on what specific branches within the body of knowledge this research has its focus
on, and how this research is conducted. In chapter 2 and chapter 3 a deeper technical briefing is given on the
theoretical background necessary for this research - though the rough lines and extend of this project should
become apparent with solely this chapter. Concluding this section, the research question and accompanying
sub-questions are stated, as well as a directive on to accomplish them.

1.1. Orbital lifetime predictions in the thermosphere
Though the space around Earth is huge, and there are many different orbits at various altitudes possible,
there is always the small chance an object will collide with another. Such a collision, whether between space
debris or an active satellite, can result in an escalating effect by generating more space debris and thereby
increasing the risk of future collisions. This risk is especially present in the thermospheric region of Earth
atmosphere, spanning an altitude range between 200 km and 2,000 km. In this Low Earth Orbit (LEO) region
around 500[7] commercial, Earth Observation, military, and educational satellites orbit Earth are present, as
well as mankind’s current only space habitat; the International Space Station. Knowing accurately how long
an object remains in orbit around Earth, whether an active satellite or space junk, results in a better insight
on how much future space objects have to be removed to contain or de-escalate the risk on in-orbit collisions.

International agreements[36] have been put in place to push satellite operators to remove their satellite
from crowded and commonly used orbits either by de-orbiting the satellite or by putting it in a graveyard orbit
- an orbit generally a few hundred kilometer higher. Moreover, during the mission design phase, the customer
might request for example 12 years minimum operational lifetime. As the designer, the worst-case scenario
could ensure these 12 years in orbit, yet during nominal or optimal Solar conditions this lifetime could sud-
denly jump up to 15+ years. Obviously this is not a negative thing for the satellite operator - they can now
use the satellite longer than intended (solely considering orbital lifetime, not functionality). However, if a
satellite’s lifetime suddenly exceeds the 25 years threshold, the mission design might have to be adjusted to
include disposal of the satellite. A longer lifetime furthermore requires a new estimate on operational costs
for that particular mission, as that would also increase if over time the satellite’s lifetime proves to be longer
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2 1. Introduction

than calculated. The opposite has an equal impact on the operators business model as well, as a shorter mis-
sion duration impacts the amount of science that can be conducted or the amount of commercial services
that can be provided.

For mainly these reasons it is important to aim for an accurate orbital lifetime prediction - both for a bet-
ter understanding towards space debris mitigation policies and for commercial purposes. However, as this
chapter will clarify, orbital lifetime predictions are no straightforward analytical calculations. With the main
contributor to orbital decay being atmospheric drag, and that drag being a function of atmospheric behavior
and satellite characteristics there are many fluctuating parameters and uncertainties that need to be consid-
ered. Whether it is through reducing uncertainties in predicting future Solar activity, or estimating a better
ballistic coefficient of the satellite as opposed to the β calculated initially by the satellite operator, efforts can
and have to be made to decrease the gap between worst-case and optimal orbital lifetime prediction.

1.2. Research framework and objective
To address the stated problem, a literature review has been performed prior to this thesis research. The sole
purpose of this review was to clarify the current state-of-the-art science on orbital lifetime predictions, and
to identify in which areas a contribution could still be made towards this body of knowledge. Concluding
this literature review, it was decided upon to extend the research performed by J.T. Emmert, P. Mehta, and
B. Bowman, where the orbital decay of spherical objects and target satellites are analyzed to derive model-
dependent ballistic coefficients for these target satellites. In short, a spherical ’parent’ satellite and a target
’child’ satellite are identified based on whether they are experiencing near-similar atmospheric conditions.
Consecutively the matched satellites have their Two-Line-Element (TLE) data analyzed to, in corporation
with a thermospheric density model, estimate a better β value for the child satellite. With this method the er-
ror coming from the empirical thermospheric density model, one of the main uncertainties in orbital lifetime
predictions[10], can be largely mitigated, and by incorporating an iterative process the β values for a large
group of satellites can be estimated simultaneously.

Additionally, the epoch-dependent estimated β values are being adjusted to account for temporal drag
coefficient (CD ) variations - a variable upon which β is linearly related. Generally CD is assumed constant
with a value of 2.2 in orbital lifetime predictions, though according to the theory it would be better estimated
as a variable. The computation of these drag coefficients are performed analytically as a function of satellite
geometry and ambient gas composition, based on the work of M. Pilinski[41] and Sentman’s aerodynamic
equations. Within the theory of analytically computing a drag coefficient, a choice can be made to either
keep the energy accommodation coefficient α constant or to let it be dependent on the presence of atomic
oxygen in the ambient gas composition - the latter being referred to as Langmuir’s adsorption model. Within
this research, both the impact of a constant α = 0.8 and Langmuir’s isotherm are investigated.

This would lead to a total of three different β values per object, one being the estimated βE and the other
two the adjusted for the varying CD , or βCD ,α=0.8 and βCD ,Lang mui r . The performance of these ballistic coeffi-
cients are assessed by subjecting them to a special perturbation propagator and compare them to the object’s
verification orbits build-up from their historical TLE data. To keep the research from growing too complex,
it has been decided to solely consider 1U CubeSats in the target satellite database, primarily due to their
uniform shape and large presence in LEO and as a follow-up research from D. Oltrogge[35] who performed
an evaluation of CubeSat orbital decay back in 2011. Around a hundred 1U CubeSats have been found that
would be suited for this research, together with close to thirty spherical satellites for the spherical satellite
database. With the need and framework for this research having been discussed, the research question can
thus be formulated as follows:

How do estimated ballistic coefficients adjusted for atmospheric density errors and the inclusion of
an ambient gas-composition dependent CD affect orbital lifetime predictions?

Researching this statement can provide insight in how historical data sets can be used to obtain accurate
lifetime predictions for satellite operators, as well as potentially debunk the commonly used assumption that
a constant CD of 2.2 is a valid constant throughout a complete orbital lifetime analysis.
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To support the stated hypothesis, this thesis shall also investigate and answer the following sub-questions:

• How can variations in CD as function of gas composition be accurately modeled for calibration spheres
and tumbling CubeSats?

• Is Langmuir’s isotherm model suited for thermospheric energy accommodation coefficients?

• In what regions do this method perform best, and how sensitive are the results to the initial sample
size?

• Can this method be extended for satellites with more complex geometries?

To fully be able to answer these question, the methods described by Emmert, Bowman, Vallado, and Pilin-
ski are to be incorporated into a computer program, include a function for the CD variation. Subsequently
verification of the software by reproducing their datasets shall confirm the righteous implementation of the
theory and models. Ultimately, the propagation results should provide insight into whether the inclusion of
the CD variation does indeed result in more accurate lifetime predictions, as well as the β estimation proce-
dure is valid for large groups of satellites. Further details on the experimental set-up can be found in chapter 6.

A set of objectives have been set up to assist in the development of the complete experiment. These ob-
jectives shall form the backbone for the programming outline and project planning, and make use of the
methodologies described in section 4.1 and section 4.2.

• Objective 1: Demonstrate capability of batch orbit propagations.

• Objective 2: Introduce an adequate TLE filtering algorithm.

• Objective 3: Develop the ability to estimate βE values according to J.T. Emmert’s theory[13].

• Objective 4: Demonstrate capability of computing CD as function of ambient gas composition

• Objective 5: Incorporate Langmuir’s adsorption model into objective 4.

• Objective 6: Propagate objects for the different β values and analyze the propagation results.

The described objectives are in a logical development order, where first an emphasis is set on being able
to properly propagate a TLE to predict its orbital lifetime, and from there continue building the program until
the research questions can be answered.

1.3. Thesis outline
The structure of this document starts with a discussion on the state-of-the-art technology in orbital lifetime
predictions and thermospheric modeling (chapter 2 and chapter 3), as well as a discussion on the β esti-
mation procedure in section 4.1 and the computation of an gas composition dependent drag coefficient in
section 4.2. The implementation of this theory is discussed in the methodology chapter, after which the
software implementations are verified separately at the end of that chapter. Having established a verified
software package, the experimental set-up as well as the object databases are discussed in chapter 6, where
the various scenarios and assessment merits are explained as well.

Logically, the scenarios and objects discussed earlier are subjected to the verified software package, from
which propagation results are the product. This data is presented in chapter 7 for the different groups and
scenarios, though a discussion on these results are held later in chapter 8. The discussion will form the foun-
dation upon which the hypothesis and sub-questions are answered, which is done in the same chapter. The
document concludes with an overview of the findings, complimented by a recommendation section on what
could or should be done in the future when one is considering to extend this research.
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The Basics of Orbital Lifetime Predictions

This chapter will provide the reader with an overview of the essentials in orbital lifetime predictions. In the
introduction an indicative in the three main pillars have been presented, which shall be put in context in the
next few pages. The relation between the atmospheric drag, thermospheric density models, and numerical
propagators in the determination of the orbital lifetime is presented here. In subsequent chapters the dis-
cussed topics will be reviewed more closely, and a deeper insight into the current state of technology will be
discussed. Later in the report, techniques that could potentially improve the accuracy of OLP are discussed,
simulated, verified, and their results analyzed and presented.

2.1. Reference Frames

A brief introduction to the reference frames used in this thesis is presented in this chapter. The coordinate
system most regularly used is the cartesian coordinate system, a system that specifies points within a three
dimensional space using a set of three numerical coordinates, commonly denoted x, y, and z, which are
signed distances from a fixed centre point measured in an equal unit of length. The set of coordinates can
be extended to include position related information, such as the position derived velocity and acceleration.
Within this report, the Cartesian coordinate system is used to express an object’s position (x,y,z) and velocity
(X,Y,Z) .

Cartesian coordinates can be translated to a spherical coordinate system, which is useful when the points
of interest describe a sphere, such as is the case when geographical (position on Earth) or celestial (orbital
plane) representations are expected. The Cartesian coordinates x, y, z aretranslated to the spherical coor-
dinates radial distance r, azimuthal angle θ, and polar angle φ using a simple set of three equations not
further discussed in this report.

5
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The spherical coordinate system uses radians in-
stead of degrees and measures the azimuthal angle
counter-clockwise from the x-axis to the y-axis. The
polar angle is zero at the horizon and positive towards
the North pole. The spherical coordinate system can
subsequently be changed towards a geographical
coordinate system where the positions are measured
in latitude, longitude, and altitude, convenient for
when the Earth is taken as reference center and the
coordinates are to be related to specific geographic
positions on or above Earth. Figure 2.1 gives a visual
presentation the Cartesian and spherical coordinate
systems.

Figure 2.1: Cartesian and spherical coordinate
system

2.1.1. Earth-Centered Inertial (ECI) and Earth-Centered Earth-Fixed (ECEF)
Earth-Centered Intertial (ECI) is the inertial reference frame and often used frame for this thesis. The frame is
non-rotating and therefore common when considering space objects. The x-y plane coincides with the Earth’s
equatorial plane. The xeci axis is permanently fixed in a direction relative to the celestial sphere (which does
not rotate like the Earth does). The zeci axis lies at a 90 angle to the equatorial plane and extends through the
North Pole. Due to forces exerted from the sun and moon, the Earth’s equatorial plane moves with respect to
the celestial sphere. The Earth rotates, the ECI Coordinate system does not. The origin of the system lies in
Earth’s center of mass.

The effects of nutation, precession, and the acceleration of the Earth around the Sun results in the system
being a quasi-inertial reference frame, and as mentioned result in the equoatorial plane moving with respect
to the celestial sphere. Varying according to date, particular epochs have been specified to ensure the scien-
tific community use the same reference frame notations. The two ECI-frames used in this thesis are the J2000
and TEME reference frame - J2000 in the Runge-Kutta 7(8) propagation in TUDAT and TEME as output from
the SGP4 propagator.

J2000 - One commonly used ECI frame is defined with the Earth’s Mean Equator and Equinox at 12:00 Terres-
trial Time on 1 January 2000. It can be referred to as J2000 or EME2000. The x-axis is aligned with the mean
equinox. The z-axis is aligned with the Earth’s spin axis or celestial North Pole. The y-axis is rotated by 90°
East about the celestial equator.

TEME - The ECI frame used for the NORAD two-line elements is called True Equator, Mean Equinox (TEME).
An exact operational definition of TEME is very difficult to find in the literature, but conceptually its primary
direction is related to the “uniform equinox”[50]. This cited work provides the reader with the coordinate
frames definition used for the US space object catalogs.

To clarify, if Earth would be modeled in the ECI frame, it would be seen rotating over time whilst with the
ECEF frame the Earth would be seen as being stationary (thus the ECEF frame itself is rotating). For orbital
motions and the accompanying equations of motion it is recommended to perform these calculation in the
ECI frame. Also, the ECI frame is more useful when specifying the direction towards celestial objects such as
the Sun, Moon, and Mars, all three of them used in the equations of motion described in chapter 3.

Earth Centered Earth Fixed, also an inertial reference frame in Cartesian coordinates, is used as well in
this thesis and denoted with the subscript ecef. with the point (0,0,0) located in the centre of mass of the
Earth. Its axis are aligned with the international reference pole (IRP) and international reference meridian
(IRM), fixed with respect to Earth’s surface. The z-axis is aligned with the true North, not to be confused with
Earth’s rotational axis. The ECEF frame co-rotates with the Earth’s around the Zi axis, with the subscript i
standing for the ECI z-axis. This frame is commonly used to project positions onto Earth’s surface in the form
of latitude and longitude. The International Terrestrial Reference Frame (ITRF) is an ECEF frame maintained
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Figure 2.2: Earth Centered Earth Fixed (ECEF) refer-
ence frame

Figure 2.3: Earth Centered Intertial (ECI) reference frame

by the International Earth Rotation Service (IERS) and are subjected to small variations such as tectonic and
tidal deformations.

In this research, every object (or TLE) is initially considered a point mass in the ECI frame. When using
the SGP4 propagator to retrieve the orbital elements from the TLE data, the used reference from is the TEME
(True Equator Mean Equinox), an ECI-frame which incorporates the mean motion, precession, and nutation
for Earth’s rotation. To include thse effects, additional input factors for the transformation from TLE to TEME
are required, namely the polar motion coefficients as a function of Julian date.

The motion of the rotation axis of the Earth relative to the crust, known as polar motion, is represented in
the Earth Orientation Parameter xp and yp , or EOP. In the terrestrial ECEF frame, the equatorial coordinate of
the pole are x and -y. It has two major components: (i) a free oscillation with period about 435 days (Chandler
wobble) and (ii) an annual oscillation forced by the seasonal displacement of air and water masses. The EOP
xp and yp are denoted in degrees and needed for the transformation from TEME to the terrestrial ECEF frame.
The resulting absolute difference is visualized in Figure 2.4 for the years 2000-2011. The term polhody refers
to a chart depicting the motion of the terrestrial pole as a function of time.

ITRF: The International Terrestrial Reference Frame is a reference frame suitable for use with measurements
on or near and specified by Cartesian ECEF coordinates. The ITRF solutions are in a geocentric coordinate
system and thus do not directly use an ellipsoid. If needed the Cartesian coordinates can be transformed to
geographical coordinates when referred to an ellipsoid. Updated yearly, the ITRF is commonly use for accu-
rate geographical coordinate transformations. The WGS-84, discussed below, has been derived from an ITRF
referred an an ellipsoid and is identical at one meter level[58].

WGS-84: As Earth is not a perfect sphere and hence local altitude and gravitational accelerations are not uni-
form over the sphere, the geographical coordinate system is extended to a geodetic coordinate system. The
geodetic system represents Earth as a reference ellipsoid derived from raw altitude data. The most commonly
used geodetic reference system is the World Geodetic System (WGS). This comprises a standard Earth coor-
dinate system with a standard spheroidal reference surface and gravitational equipotential. The latest and
most accurate version is WGS84 is the one selected for this research due to its accuracy and availability in
MatLab and TUDAT.
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Figure 2.4: Polar motion, 2001-2006.Solid line : mean pole displacement, 1900-2006[44].

2.1.2. Conversion between TEME, ECEF, and J2000
Celestrak.com provides proper documentation on the process of converting TLE data to the TEME, ECEF,
and J2000 reference frames, based on the work of Vallado[55]. When intending to convert a TEME ephemeris
to another ECI ephemeris, they recommend not doing this rotation directly as there are many variables un-
known. Instead, going to ECEF first is better and simpler. From there the ECEF data can be converted to
J2000. These transformations are described below, together with the MatLab files provided by Celestrak.com.

• Use SGP4 to transform a TLE to TEME Cartesian coordinates.

• Rotate from the TEME to ECEF coordinate frames (teme2ecef.m).

• Use the ECEF vectors to find latitude and longitude (ijk2ll.m).

• Convert from ECEF to J2000 (ecef2eci.m).

In subsection 5.1.3 these Matlab files are used for the coordinate frame transformations. Due to the wide-
spread use of Vallado’s theory and software, the mathematical details behind the transformations shall not
be elaborated on but assumed correctly incorporated by Vallado in these functions. No tempering with these
original MatLab files shall be done throughout the thesis work.

2.1.3. UT1, UTC, and TAI
Within this thesis, three time notations are used in which the aforementioned reference frames can be ex-
pressed - UT1, UTC, and TAI. The International Atomic Time, or TAI, is an atomic time standard using the
combined output of about 400 atomic clocks spread around the globe. Though highly accurate - only devi-
ating 1 second in up to 100 millions years -, it does not take into account Earth’s slowing rotation. Universal
Time, or UT1, is a measure of time related to sidereal time, or more specifically the rotation of Earth relative
to a fixed celestial background, and thus does include the variations induced by Earth’s rotation. A constant
comparison between the two is made to ensure the difference between the two time scales does not exceed
0.9 seconds. If this difference does however occur, a leap second is added to the Coordinated Universal Time
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(UTC), the third time scale considered the world’s standard and onto which all clocks and timings are regu-
lated.

Daily values for the difference between UT1 and UTC are provided by the International Earth Rotation
and Reference Systems Service (IERS), as well as regular updates of the current Earth Orientation Parameters
(EOP) xp and yp . For transformation between either timescales or reference frames, the latest values from
IERS are to be consistently used. To give an example relevant to this thesis, the output of the orbital propa-
gator SGP4 are coordinates in the TEME reference frame and UTC time scale. If these coordinates are to be
used in for instance the atmospheric density model NRLMSISE-00, these coordinates would first have to be
transformed to the ECEF-frame and adjusted to the UT1 timescale, as these are the expected input reference
frame and timing.

2.2. Aerodynamic Drag
Beginning by the basics, the aerodynamic drag is the most influential non-gravitational force acting on ob-
jects orbiting Earth in orbits below 2,000 km. Rarefied gas particles interact with an object such as a satellite,
resulting in energy dissipation and thus in a reduction in orbital period and altitude. An accurate determi-
nation in the aerodynamic force is thus key in deriving the lifetime of an object. Let’s first start with a small
introduction into the fundamentals behind aerodynamic drag force.

Even in an orbit around the Earth, in the near-vacuum of space, a satellite still experiences an aerody-
namic drag due to Earth’s atmosphere. This drag slows the spacecraft down (energy dissipation) and results
in the degradation of the semi-major axis. Over time, the orbit will have degraded so much it starts to re-
enter the atmosphere and most likely burn up. The drag an object experiences can be best quantified by
determining its drag coefficient. The drag coefficient CD is a normalized representation of the drag force FD

experienced by the object:

CD = FD

Ar e f
1
2ρv2

r

= maD

Ar e f
1
2ρv2

r

(2.1)

in which m is the mass of the object, aD the drag acceleration, Ar e f a reference area, ρ the local mass
density and vr the relative velocity of the atmospheric particles interacting with the satellite. The dimension-
less drag coefficient is often considered to be constant and therefore a convenient way to quantify perfor-
mance compared to other objects. The drag acceleration itself, aD = FD /m, can generally be derived from
accelerometers such as on GRACE, CHAMP, and GOCE[14] and Two-Line Elements (TLE) from satellite track-
ing observations[39]. For this research, solely TLE data shall be used as this data is excessive and openly
accessible.

Using this approach leads to an estimated drag coefficient. This estimated drag coefficient will come close
to the value of the true drag coefficient, but due to its empirical nature the estimated drag coefficient will
always have a small relative error. Moreover, the true mass density is also not a parameter readily available
due to the high complexity of the atmosphere and the lack of global recurring in-situ observations. Generally,
ρ is predicted through a density model, resulting in a model-based estimated drag coefficient. Many ther-
mospheric density models are currently in use, each with a different approach on the mass density computa-
tions. Obviously this leads to discrepancies amongst the models, and each associated model-based estimated
drag coefficient. E. Doornbos, S. Bruinsma, M. Pilinski, and B. Bowman, discuss the implications this has on
current mass density derivation techniques and urge for a global standard in satellite drag computation[12].

aD = FD

m
=CD

Ar e f

m

1

2
ρv2

r (2.2)

Using this estimated drag coefficients, the drag acceleration can be computed using Equation 2.2, which
can subsequently be used for the derivation of the decay rate and the associated orbital lifetime. However,
the reference area and/or mass of an object is not always known. Satellites can be tumbling, resulting in a
fluctuating reference area, or due to out-gassing have lost a portion of their mass. Or consider space debris,
where the reference area and mass are even harder to accurately determine. For these objects it makes more
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sense to estimate the (inverse) ballistic coefficient according to Equation 2.3. This term is especially useful
when the right-hand side is considered constant and is largely determined by the shape and attitude of the
satellite as compared to variation of temperature and gas composition at the specific altitude.

B = 1

β
=CD

Ar e f

m
(2.3)

This thesis takes it one step further though to retrieve accurateβ estimations through analysis of historical
TLE data and combine this in orbit propagation with the inclusion of the variable drag coefficient as function
of ambient gas composition. This discussion will be continued in chapter 2, but the importance of the drag
and ballistic coefficient to the decay rate and associated orbital lifetime has become clear.

2.3. Orbit Determination
The contribution of atmospheric drag to the orbital decay rate has now been established. However, at lower
levels of the thermosphere the mass density increases and thus results in a larger decay rate, or, the decay rate
is not a constant but is a function of the local mass density. To estimate an orbital lifetime one has to first es-
tablish an initial unperturbed state and current position of the object. During the design phase an estimate is
made on where the satellite is injected into orbit, and this will be considered the unperturbed initial state, or
orbit injection state. However, when observing orbiting objects in space it becomes important to acquire an
accurate estimation of its current position. Orbit determination (OD), or the tracking of objects, is amongst
other done by NORAD and NASA, who have a publicly available database on the (historical) orbital elements
of over 16,000 objects presented in a standard called Two-Line Elements (TLEs).

The TLEs are based on a number of observations of the object, after which the simplified perturbation
SGP4 model derives the orbital elements. This is done by applying the perturbation model to the observa-
tions and find fitting orbital elements, resulting in the final TLE not being the precise orbital elements but an
average over a certain time span. Same as with the drag coefficients, these are estimated orbital elements and
thus include a magnitude of error in them. The SGP4 perturbation model does include the main perturbing
forces (gravitational, radiation, drag, third-bodies, see section 3.2), but its analytical nature does impose lim-
itations. During a single day, the semi-major axis error could accumulate to 1 km per day, an error which
can significantly propagate when the TLE is not updated frequently. There are other ways to more accurately
determine the orbital elements, for instance by enhancement of GPS or Satellite Laser Ranging (SLR) observa-
tions or by using special perturbation models, see subsection 3.3.1. However, the NORAD database accessible
through CelesTrak.com provides such an abundance of TLE information that in most cases these orbital ele-
ments are used for orbital lifetime predictions and thermospheric mass density computations[39][4][11][13].

The Two-Line Elements provide temporal orbital element sets, determined at an epoch inconsistent through-
out the day. Using these orbital elements, the decay rate can be deduced by observing the change in semi-
major axis, see Equation 4.2. The historical TLE data can furthermore be investigated to increase the accuracy
of the orbital lifetime predictions. For instance, in their paper, C. Levit and W. Marshall[27] demonstrated a
major improvement in reducing the error drift by applying a Least-Square Batch Approach.

The importance of the atmospheric drag and unperturbed orbit determination for the orbital lifetime pre-
diction have been discussed. Subsequently an introduction has been made on the use of TLE data and the
sense of using the (inverse) ballistic coefficient, as well as the distinction between true and (model-based)
estimate drag coefficient has been discussed. The orbital prediction is still far away, as the influence of the
solar activity and its effect on the thermospheric density and gas composition have not been reviewed yet.
Thermospheric density prediction models are essential when considering orbital lifetime, and how exactly
this fits in the bigger picture is presented in the next section.

2.4. Solar Influence and Thermospheric Density Prediction
The energy input of the Sun into the atmosphere is not constant, but varies with time. Mostly the changes can
be attributed to established solar cycles, but instantaneous events on the Sun can also have an influence in
the space weather around Earth, though within a smaller order of magnitude. Electromagnetic radiation and
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charged particles in the form of Solar wind interacts with both Earth’s magnetic field and the composition
of the atmosphere, most extremely in the Magnetosphere, Ionosphere, and Thermosphere. The fluctuating
energy input results in expansion and shrinking of the atmosphere, similar to when a balloon filled with air
is heated or cooled. Expansion of these layers of the atmosphere in which an object is orbiting Earth can
significantly increase the local mass density, sometimes even up to 10x the nominal value during high solar
activity[11]. Thus when considering orbital lifetime one should also include a prediction model on the ther-
mospheric mass density as the effects of solar activity can result in extremes of predicted lifetimes of 2 years
being shortened or extended by tens of percentages, see Figure 2.5.

Standards on the solar activity and the geomagnetic activity have been established that can be used as
input to the thermospheric density models. These indices, such as the F10.7 solar radio flux proxy or the Kp

global geomagnetic activity, serve as indications on the future solar weather. In subsection 3.4.1 the details
on the solar activity and its relation to the fluctuations in local mass density is discussed, as well as the origin
and usefulness of these indices.

At the moment there are a couple of commonly used empirical thermospheric density models, see Fig-
ure 3.6, which use parameters such as the solar and geomagnetic indices together with the location of interest
to estimate the mass density set in the future. The model families have their own underlying principles and
are based on past observations (hence empirical) such as radar and accelerometer data, or a combination of
the two. Though all applicable to the thermospheric regime, the mass densities might differ in certain peri-
ods of a solar cycle or at the boundaries of the thermosphere. Furthermore, not all models are made publicly
available, forcing scientist to make due with the most suited model available. However, the models can be
calibrated with additional accelerometer data if need be. This thesis shall however not consider that option.
Amongst the output variables is the local mass density, which can subsequently be used for the computation
of the atmospheric drag as explained in previous sections.

2.5. Computing Orbital Decay
At this point, all the input variables for the computation of the orbital decay are ready. The initial unper-
turbed position of the object has been discussed, along with the expected local mass density values and the
estimated drag coefficient. From here it is the question how to model the trajectory of the object for the next
weeks, months, or even years. As will be mentioned in section 3.3, a perturbation model will have to compute
the position of the object for the upcoming time span and with the SGP4 perturbation model an error of 1
km per day could arise. Imagine if this error is extrapolated over a time span of years the impact of this error
could be enormous. Figure 2.5 provides an example of how errors in lifetime predictions could creep on to-
wards large final lifetime estimation errors, the sensitivity of orbit decay prediction.

The example used is not of a real spacecraft, but depicts a clear image on how errors propagate in time.
The perturbation model will have to take into account the main perturbing forces, but for obvious reasons
the errors are induced by neglecting the smaller perturbations or by taking too large step sizes. A perturba-
tion model including all known perturbations and taking step sizes in the order of seconds will drastically
reduce the error, but at a severe cost of computational time. The main distinction for perturbation models
and propagators are whether an (semi-)analytical or numerical approach is used. An analytical approach will
provide an absolute result and will receive its from the sophistication of the functions describing the forces
acting on the body, whilst the numerical approach will provide an highly accurate approximation, seeing its
accuracy primarily dependent on step size and truncation errors. section 3.3 presents the commonly used
general perturbations and special perturbations method.

The initial unperturbed state, whether theoretical or observed (be aware of potential bias error), is subse-
quently projected into the future with an orbit propagator. Primarily due to the atmospheric drag at the lower
altitudes the orbit of a satellite will slowly decay, or more strictly experience a reduction in its semi-major axis
until it will eventually re-enter Earth’s atmosphere. The propagation of the orbit can be done in various ways,
with the distinctions being made between analytical and numerical, see section 3.3. Though orbital mechan-
ics is subjected to high-order terms, and is therefore tedious if not impossible to solve accurately analytically.
Therefore orbit propagation is often performed numerically, which can provide much higher accuracies. Af-
ter running the propagator to the new time of interest, the user would want to receive new/updated state
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Figure 2.5: Example error sensitivity for 28°inclination 500 km altitude orbit, with a medium peak flux for cycle 25[2].

vectors or orbital elements from which the orbital lifetime can be deduced.

At one point, the orbit propagator will state that the satellite is at a certain altitude at which the mass den-
sity of the atmosphere is simply too high and will cause the satellite to burn up. At this point, the satellite will
cease to exist and will have come to the end of his lifetime. The importance of prediction this lifetime is tied
to both mission planning and the engineering process. Stakeholders are expecting the satellite to perform a
certain amount of time, his mission lifetime. Engineers will have to ensure the satellite will be able to perform
this long, not only mechanically but also taking into account the decay of its orbit and the corresponding im-
pact it has on satellite performance. Furthermore, if it might become apparent during the design phase that
the satellite could potentially orbit Earth longer than 25 years, considerations regarding a re-entry propulsion
system might have to be made.

Due to the many inaccuracies in the aspects leading up to the orbit lifetime prediction, the predicted val-
ues often deviate from the actual lifetime, sometimes in the order of only days but potentially also in the order
of weeks to months. To reduce this error, various techniques to reduce the errors emerging from uncertain-
ties in atmospheric behaviour, solar activity, and satellite in-orbit properties, have been thought of. Two of
those, focused on the ballistic coefficient estimation and the inclusion of a varying drag coefficient, shall be
the focus of this research, and are further discussed in section 4.1 and section 4.2 respectively.
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Numerical Orbit Propagation

To this point, the need for orbital lifetime predictions, scope of this thesis, reference frames, and research ob-
jects have been discussed. The chapter shall provide the framework for the transformation of specific initial
orbital positions to positions in the future, and thereby provide the possibility to predict the orbital lifetime
of an object.

Defining the orbital lifetime requires knowledge on the determination of unperturbed orbit, the addition
of perturbing forces, and how to propagate these forces numerically. As atmospheric drag is the prime con-
tributor to orbit decay, special attention shall be given to the estimation of the local atmospheric densities
and the thermospheric models used in this thesis.

3.1. Determination of the Unperturbed Orbit
When determining an initial (or unperturbed) state multiple approaches are possible, such as satellite laser
ranging (SLR), radar tracking, optical sightings, and GPS observations. The US Space Surveillance Network
(SSN) provides radar and optical tracking data from which orbital elements are derived. CelesTrak.com uses
this data, together with publicly available GPS data, to generate Two-Line Elements (TLEs), a data set con-
sisting of orbital elements of an object. These TLEs are elaborated on in more detail below.

3.1.1. Two-Line Elements (TLE)
Two-Line Elements are standard data sets used by NORAD and NASA to represent observed orbits of radar
and optical observations. The elements in the TLEs are mean elements calculated to fit the set of observa-
tions using the SGP4 orbital model, and are in the Earth-centred inertial reference frame (ECI) and delivered
in UTC. Published SGP4 TLEs are Kozai mean elements modified to express the mean motion in its original
Brouwer form[39]. Kozai elements are from the Kozai theory-based Simplified General Perturbations (SGP)
astrodynamics model, and Brouwer elements thus underlying formalism in the SGP4 propagator. The SGP4
propagator first converts the published TLEs from the Kozai mean elements to the Brouwer values, before
computing a state vector. As the TLEs are fitted on a set of observations, there will be a slight error in the
observed orbital elements and the actual orbital elements.

TLEs are consistently used in orbit determination, and there set format will therefore be shortly discussed
in this section. A extensive data base consisting of TLEs of around 16,000 objects, defined at a reference
epoch and orbiting Earth, can be publicly accessed on CelesTrak.com. Data for each TLE object consists of
three lines in the following format below. Line 0 is a twenty-four character name consistent with the name
length in the NORAD satellite catalogue (SATCAT). Line 1 and 2 are the standard Two-Line Orbital Element
Set Format, an example is presented in Figure 3.1. Archived historical TLE data is publicly available through
CelesTrak.

A small note on the β? value appearing in the TLE format, the β? is a drag-related parameter and could
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Figure 3.1: Two-Line Elements Break-Down [Credit: NASA HSF]

be converted to the ballistic coefficient β according to the following formula:

β= 1

12.74162β?
kg .m−2 (3.1)

The β? drag term is used in the SGP4 propagator and estimates the effects of atmospheric drag on the
satellite’s motion. This drag coefficient incorporates not only atmospheric drag, but serves as a fit parameter
in the orbit determination/update process. Therefore,this term may also include effects due to sensor bias,
non-modeled force terms (e.g. in solar radiation pressure and atmospheric perturbations), variation in the
drag coefficient CD , etcetera. It is therefore not advised to use the β? drag coefficient in any mass density or
ballistic coefficient derivation, β? shall thus not be used in this research.

3.1.2. Equations of Motion
Without taking into account perturbations, the equations of motion of an object orbiting Earth can be de-
rived from Kepler’s law for a two-body astrodynamics problem. In this unperturbed situation, all orbits are
solutions of this two-body problem in an inertial Earth centred (ECI) reference frame considering only the
gravitational attraction by the assumed spherically symmetric Earth:

r̈ =− µ

r 2
r̂ (3.2)

where r is the inertial position vector of the satellite andµ equals the Earth’s gravitational parameter, equal
to the product of the gravitational constant and the mass of Earth. In this equation, the mass of the satellite
is neglected compared to the magnitude of Earth’s mass. Manipulating this equation according to the laws of
astrodynamics presented in many astrodynamics textbooks such as that of Wakker[59] demonstrates that the
orbit can be described by the semi-major axis a and eccentricity e:

r = a(1−e2)

1+ecos(θ)
(3.3)

With r and θ being the polar coordinates. Figure 3.2 represents a visualization of this 2D orbit of an ellip-
tical satellite orbit. Kepler’s third law can be derived after further manipulation of Equation 3.2, relating the
semi-major axis with the orbital period P, see Equation 3.4. Furthermore, the mean motion expressing the
number of orbital revolutions per unit of time is given is Equation 3.5.

P = 2π

√
a3

µ
(3.4)

n = 2π

P
=

√
µ

a3
(3.5)
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Especially the mean motion is useful as it can be directly retrieved from TLE data, see subsection 3.1.1.
These basics of orbital mechanics do only take into account the gravitational attraction of a spherically sym-
metric Earth (with a homogeneous density distribution) and no other forces acting on the satellite. In real
life though this is not the case, and the satellite will be subjected to other accelerations due to deviations in
Earth’s shape and mass distribution, as well as contributing factors from solar radiation, atmospheric drag,
and third-body accelerations from celestial bodies such as the Moon and Sun; these will be described further
in section 3.2.

Figure 3.2: Geometrical parameters of an elliptical satellite orbit[11]

For orbital lifetime predictions an initial unperturbed state is chosen after which a perturbing force model
assesses the change in semi-major and consequently the decay rate and lifetime of the satellite’s orbit. This
unperturbed state can be determined theoretically during the design phase for orbit lifetime predictions be-
fore the start of the satellites mission (often the orbit injection state), or an observation in for instance the
TLE format can be used as the initial unperturbed state when the satellite is already orbiting Earth. Though
orbit lifetime predictions before the mission commences are getting more and more accurate, corrections
will still need to be made to this prediction once the satellite is actually in orbit. Before heading into these
perturbation forces and models, a little elaboration on this TLE format is given in the next section. An impor-
tant observation on using TLEs as starting state, in their paper C. Levit and W. Marshall[27] noted that using
the latest TLE as starting state might not improve the orbit propagation when comparing a SP approach to a
GP approach. The key is to finding a better initial starting state derived from multiple historic TLE data. TLE
orbits are most accurate when evaluated 1-3 days before the TLE epoch[11].

3.2. Perturbing forces
The acquisition of an unperturbed state of the object has been discussed, and it is time to introduce it to the
many perturbing forces acting on bodies in LEO. To keep within the scope of this theis only four perturbing
forces will be discussed, see list below. These perturbing forces are selected on their order of magnitude
and their presence (in the form of parametric equations) in the most wide-spread perturbation models. An
example on the impact of the individual perturbing forces on the ISS in LEO at 380 x 390 km and an inclination
of 51.6°is presented in Figure 3.4[60].

• Non-spherical Gravity

• Solar Radiation Pressure

• Atmospheric Drag

• Third Body Perturbations

The following sections will provide an introduction to these perturbations and their influence on the or-
bital elements. How these are consecutively incorporated in perturbation models and which models are used
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for this research will be discussed in section 3.3.

Non-spherical Gravity
Earth is not a perfect sphere, and neither does it have a homogeneous mass distribution. The shape of the
Earth can be approximated by an ellipsoid with an equatorial radius about 20 km larger than the polar ra-
dius. Together with the non-homogeneous mass distribution the gravitational force varies with the latitude
and longitude of an object, resulting in an Earth potential V that can be expressed by a spherical harmonic
expansion:

V = µ

r
[1−

∞∑
n=2

(
ae

r

n
JnPn(si n(φ))+

∞∑
m=1

∞∑
n=2

(
ae

r

n
[Cnmcos(mλ)+Snm si n(mλ)]Pnm(si n(φ))] (3.6)

with ae being the semi-major axis, r the geocentric distance of the satellite, and φ and λ being the latitude
and longitude respectively. Jn , Cnm , and Snm represent zonal (m=0) and tesseral (m6=0) coefficients of the
harmonic development determined through a known Earth model. Finally, Pn and Pnm represent the Legen-
dre polynomials and the corresponding Legendre functions. Variations in these groups occur with increasing
subscript, for this research the spherical harmonics shall be to a degree of 5.

Primary secular variations of orbital parameters are produced by even-degree zonal coefficients, and the
odd-degree zonal coefficients produce long-period perturbations. The tesseral coefficients on the other hand
produce short-periodic perturbations. The largest order of magnitude is induced by the J2 term, the harmonic
coefficient modeling the ellipsoidal shape of the Earth considering a homogeneous density. For a satellite in
a GPS orbit the perturbation due to the J2 effect is roughly 5∗10−5 m

s2 . Though an order 10−4 lower than the
central gravitational force of Earth it is still an order magnitude of 2 higher than the remaining harmonics.
Nodal regression is one of the main changes in orbital elements due to the non-spherical shape and non-
homogeneous gravity field of Earth. Figure 3.3 demonstrates an exaggerated effect of spherical harmonics,
and then more specifically the J2-perturbation, on the precession of the right ascension of the ascending
node of an arbitrary elliptical orbit.

Figure 3.3: Nodal Regression due to J2[60]
Figure 3.4: Impact of individual perturbing forces on

the ISS in LEO[60]

Solar Radiation Pressure
Expelled by the Sun, photons are traveling at high speed through space away from the Sun and upon impact
with an object result in a minute exchange in energy and momentum. This exchange in energy perturbs the
orbit of the object, the severity of which depending on factors such as the cross-sectional area exposed to
the Sun, the solar activity, and the mass and reflectivity of the satellite. The order of magnitude is roughly in
the 1∗10−7 m

s2 range and around 700 km can match the perturbation experienced by atmospheric drag. Solar
radiation is more predictable and consistent though, and does not require sophisticated numerical models.

Atmospheric Drag
Similar to Solar radiation pressure, small particles from Earth’s atmosphere interact with an object resulting



3.3. Numerical Orbit Integration 17

Figure 3.5: Effects of Perturbation Forces on Orbital Elements

in energy dissipation and the decline of the objects orbit (or more accurate, the reduction of the semi-major
axis and eccentricity). Geometrical factors such as reference surface area as well as the mass of the object are
key in the influence the particles exert on the body, as well as the ambient mass density and gas composition.
Being the most important perturbing force in LEO when considering orbital lifetime predictions and being
the main topic for this research, additional information is presented in chapter 4.

Third Body Perturbations
The presence of other celestial bodies such as the Sun and the Moon allow for a perturbing force due to their
respective gravitational field, with the Moon producing the largest perturbation force. Though the Sun is
much more massive than the Moon, the gravitational effect is proportional to the inverse of the square of
the distance and therefore the effect of the Moon is larger than the Sun’s. What is more, these forces induce
tidal effects deforming Earth’s shape and affecting its gravitational potential. These tidal effects produce ac-
celerations in the order of 1∗10−9 m

s2 on GPS satellites and are still three magnitudes lower than that of the
gravitational forces of the Moon and Sun. For most propagation models the tidal effects are neglected.

The effect of these perturbations on the orbital elements is presented in Figure 3.5, with the change in
the orbital element c being attributed to the secular effects (straight line), long-periodic effects (large oscillat-
ing line), and the short-period effects (small oscillating line)[60]. The presented example is exaggerated but
representative of orbit degradation and fluctuation.

3.3. Numerical Orbit Integration
In most orbital dynamic computations, higher-accuracy orbits are not determined analytically but require
effective algorithms in a numerical orbit integration approach due to their complex nature. Orbit-integration
problems range in complexity following from the time span, number of orbiting bodies, and inclusion of per-
turbing forces. An integrator can be assessed in the accuracy of the integrated values, the memory usage,
computational time. In this section a brief introduction on the various integration methods is presented, fol-
lowed by the integrators commonly used in orbital mechanics. Basically, a division into three groups have
been made; a numerical table look-up, semi-analytical, and high-precision numerical approach. Within this
thesis and the respective required accuracy no use shall be made of the numerical look-up tables.

In a semi-analytical method the mean orbital elements will be subjected to the larger order orbit pertur-
bations such as J2 and J3, as well as estimated drag-induced perturbations, expressed in analytical expres-
sions. This method is not a direct 3-dimensional numerical integration, and though it lacks in the accuracy
of a high-precision numerical integrator the inclusion of the larger perturbations significantly increase the
accuracy as compared to the numerical look-up table. An altitude-dependent ballistic coefficient can be in-
corporated, but it is generally advisable to estimate an average ballistic coefficient[52]. This is the approach
that is taken by the General Perturbations (GP) method, where general differential equations of the motion or
change in orbital elements are solved analytically. An analytical approach to a problem solves the orbit de-
termination directly by a set of equations. The higher and more accurate the number of equations the higher
the accuracy of the solution will be, though also at the cost of computation time. Due to its analytical nature,
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the complexity of the equations of motion is limited by the computation time and in orbital mechanics is less
preferable as compared to a numerical approach if high-accuracy is a requirement, see subsection 3.3.1.

3.3.1. General and Special Perturbations
Orbit integration using GP takes advantage of the fact that orbits are decaying at a very slow rate under the
influence of their perturbations. A two-body orbit approximation with only a few of the higher order per-
turbations is already sufficient, as the GP approach characterizes an orbit analytically in terms of an ellipse,
and describes a low-order analytic solution to Newton’s second law with a realistic gravitational potential and
atmospheric environment. To be more precise, the GP processor only includes the zonal harmonics through
J5 and has a few enhancements for resonant tesseral terms[61], leaving the element sets incapable of repro-
ducing the satellites motion perturbed by short periodic terms as not enough accuracy in the tesseral terms
is acquired.

The GP approach using the SGP4 perturbation model, see next subsection, has been used to derive the
TLEs from observed changes in the mean motion and semi-major axis by the Naval Space Command and
NORAD, resulting in the earlier mentioned TLE set of six orbital elements with an average error drift of 1.0-
1.5 km/day. However, the increase in available processing power over the years have enable the possibility to
achieve a higher accuracy when using high-precision numerical integration.

The Simplified General Perturbations (SGP) integrators are commonly used to calculate orbital state vec-
tors of satellites and space debris, relative to ECI. There are five mathematical models (SGP, SGP4, SDP4,
SGP8, and SDP8), of which SGP4 is most often used for the generation of TLEs by NORAD and NASA. SDP
stands for Simplified Deep Space Perturbations and is applied to trajectories exceeding orbital periods of 225
minutes. For any trajectory with shorter orbital periods the SGP is the proper model to select. These mod-
els predict the perturbations due to the Earth’s shape, drag, radiation, and third body gravitational effects.
Though often used in orbital lifetime predictions, these models often have a ~1.0 km altitude error at epoch
which can grow to ~1.0-1.5 km a day. The Naval Space Command use the Simplified General Perturbations-4
(SGP4) propagator[39] to characterize the orbits of the objects it tracks until recently, when it decided to start
switching switching to an SP database.

A note when using state vectors as input for the SGP4 propagator. The TLE use the mean motion in terms
of the Kozai’s theory (1959), though the SGP4 model is based on Brouwer’s theory (1959). This has no impli-
cation when using SGP4 to convert TLEs to initial conditions, though take care when considering converting
a state vector from an ephemeris generated from another model. In that case, the semi-major axis needs to
be converted first to the suitable Brouwer’s mean motion before using SGP4. In his paper of 2008, David A.
Vallado[55] provides the motivations and technicalities on how to do this. This shall not be discussed further
here as the TLEs are directly inserted into the SGP4 propagator within this project.

Though an analytical approach provides an absolute solution to the problem, in astrodynamics and espe-
cially orbital mechanics solving an analytical solution involves too many equations and is not efficient time
wise. Problems in orbital mechanics are more often solved numerically, which basically uses a set of dif-
ferential equations describing the behavior of the object over time and then determining the change in the
initial variables over a period of time. This approach will not provide an absolute solution, but can provide
high accuracy approximations. The most accurate method is using a numerical integrator which includes an
accurate high-order perturbation model. In methods of Special Perturbations (SP), datasets consisting posi-
tion, velocity, and acceleration are subjected to numerical integration of the equations of motion. Basically,
the position and velocity is perturbed directly as opposed to using the observed changes in orbital elements.
The possibility of using ever-increasing processing power enables orbit determination to be done more ac-
curate with the use of the SP method as compared to a GP approach.

The SP approach performs a direct numerical integration of Newton’s differential equation with detailed
representations of the forces experience by the object[14]. The accuracy achieved using an SP propagator is
significant,with 5-10 times smaller error growth as compared to the GP propagator. In their paper, C. Levit
and W. Marshall[27] concluded that with using an SP propagator the error growth was only 0.1 km/day against
the 1.0-1.5 km/day resulting from the GP method. An effort is made to also have the incoming observations
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Table 3.1: Comparison between Cowell’s and Encke’s RK 7(8) propagation in TUDAT with similar initial conditions.
Three satellites propagated for 100 days starting 21.04.2016 and their final semi-major axes compared to their respec-
tive historical TLE data. Values shown are the difference between propagation and verification orbit.

NORAD Cowell Encke

33497 0.305 km 0.382 km
35932 0.221 km 0.381 km
35933 0.131 km 0.313 km

into the SP format, together with the current GP derived TLE elements, according to the procedure described
by Wilkins[61]. This will provide users with both TLE data presented in GP orbital elements and SP state vec-
tors. In the future, the maintenance of the GP catalog will most likely be canceled as the GP elements can also
be derived from the SP state vectors, mitigating the need for catalog machinery dedicated for the GP catalog.

When a user is deciding for a numerical SP approach, it is possible to develop their own propagator based
on Cowell’s or Encke’s method combined. Cowell’s method is the simplest SP method which basically sums
the Newtonian forces on body i from other bodies j in x, y, z components and integrate these numerically
to form new velocity and position vectors. Encke’s method includes the osculation of orbits as described in
Figure 3.5 and can compute more accurate orbits. The added complexity and the need for the occasionally
required updating of the osculating orbit (known as rectification) in Encke’s method are (recently) incorpo-
rated in the TUDAT libraries. Though the initial preference for this thesis was to use Encke’s method, it has
been decided to use Cowell’s method instead due to faster computation times and in practice better results
as compared to Encke’s method using the TUDAT libraries.

During the selection process, a comparison has been made to justify the choice for Encke’s method over
Cowell’s method, three satellites have been propagated for a period of 100 days with similar initial settings.
The outcome semi-major axes have in turn been compared to their historical TLE dataset of the same times-
pan. The results can be seen in Table 3.1, which unexpectedly show a decrease in accuracy when using Encke’s
method. Moreover, the observed computation time was between 2x and 4x longer as compared to Cowell’s
method. Potentially this unexpected result could be due to parts of Encke’s script in TUDAT not being verified
properly yet, but irregardless of the error source the choice has been made to switch back to using Cowell’s
method.

3.3.2. Runge-Kutta Integration Methods
Numerical integration requires an integration method for solving the differential equation set with a balance
between accuracy and computation time. In orbital mechanics, (variations on) the Runge-Kutta method is
often applied. Developed around 1900 by the German mathematicians C. Runge and M. Kutta, these methods
are often used in approximation of solutions of ordinary differential equations (ODE) such as for orbit prob-
lems in celestial mechanics[57]. A difference between implicit and explicit integration methods can be made.
Without going into too much mathematical detail, implicit integration methods find a solution by solving an
equation involving both the current state and the later state of a system, while an explicit method calculates
the state of a system at a later time from the state of the current time.

Mathematically the state Y (t ) of the current system and Y (t +∆t ) the state of the later time, would be
solved with the implicit method by:

G(Y (t ),Y (t +∆t )) = 0 (3.7)

and for the explicit method:

Y (t +∆t ) = F (Y (t )) (3.8)
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The implicit method requires an extra computation to solve for Y (t+∆t ) and is therefore harder to imple-
ment. However, orbital mechanics problems are often stiff, or in other words, are comprised of differential
equations for which the numerical methods could become numerically unstable unless step sizes are taken at
extremely small sizes. Therefore, using an explicit method often requires an impractical small step size ∆t to
keep the error within bound. In their paper, J. Aristoff and A. Poore[1] demonstrate the superiority of implicit
methods over explicit methods in orbital propagation for objects in LEO, GEO, and highly elliptic orbits.

Computation time and (truncation) error control are the two important considerations when selecting a
integration method, but apart from only making a selection between an implicit or explicit method, one could
also decide to select between a fixed or adaptive method. The difference between these two lies in the step
size, with the first having a fixed step size and the latter a varying step size. An adaptive integration method
redefines its step size at the beginning of every integration step by calculating all the derivatives of the ODE
and lower the step size if the derivatives grow above a predefined value or will increase the step size if the
derivatives go below this value. In his paper, Oleg Golberg[15] presents a quick and comprehensive overview
of the advantages of an adaptive step size numerical method by implementing it into a standard Euler inte-
gration. He demonstrates the computational effectiveness of an adaptive integration method for ODE. The
Runge-Kutta-Fehlberg (RKF78), Runge-Kutta-Nyström (RKN1210), and Dormand-Prince (RK87) method also
incorporate adaptive step sizes and are used more commonly in practice. Some of these integrators such as
the RK 7(8) and SGP4 are available in TUDAT, a function library from Delft University of Technology, and in
MatLab code packages respectively.

3.4. Thermospheric density models
The presence of rarefied gas in the upper atmosphere is the main contributor to orbital decay in LEO. Particles
interacting with the surface of the satellite slow down the object into atmospheric layers with higher density,
thereby decreasing the semi-major axis. In the previous chapter the effect of Solar activity on the atmosphere
has been described, and how atmospheric layers expand and shrink. Continuing from this, a review on the
existing thermospheric models will be presented in this chapter. What are the advantages and limitations of
the most up-to-date models, what are the major uncertainties and how are these induced, how are the mod-
els calibrated, and which model is most suited for thermospheric mass density computations?

In their comparison of density models, Montenbruck and Gill [31] conclude that the “models have sta-
tistical inaccuracies of about 15%, and there has been no significant improvement in density models over
the past two decades.” Though since the publication of their book in 2001 there have been improvements in
the density models, it is apparent that inaccuracies still dominantly persist in these models, especially dur-
ing geomagnetic storms or with large variations in solar activity. Therefore most models are evaluated and
compared to each other on different global regions and time spans to determine which model performs best
under what conditions and how future models can be calibrated to include these improvements. The models
discussed in this chapter are only empirical models.

3.4.1. Solar and geomagnetic indices
To retrieve an atmospheric gas composition and local air density estimation from an atmospheric model, a
couple of necessary inputs are required. Epoch date and position of the position of interest are obviously
required, but so is the influence the Solar and geomagnetic activity has on the atmosphere in that period of
time. To describe the solar activity in a quantitative sense, various indices have been defined over time. The
first such index is the relative sunspot number R. This index stood for 100 years, until the discovery of solar
radio radiation the 10.7 cm radio flux index F10.7, or Covington index CI was introduced in 1946. Correspond-
ing to the mean spectral energy flux density of the solar disk at a frequency of 2800 MHz, the F10.7 index is
measured in ”solar flux units” (s.f.u.) and widely used for research related to solar weather predictions[34].
The F10.7 index has been recorded since its introduction in 1946 and tracks well with observed sensitivities
in the Ionosphere and upper atmosphere imposed by solar extreme ultraviolet (EUV) radiation. It also re-
lates strongly to its predecessor index, the number of sunspots R, which was later discovered is a meaningful
indicator of future solar activity[17]. Unlike many solar indices, the F10.7 radio flux can easily be measured
reliably on a day-to-day basis from the Earth’s surface, in all types of weather[2]. This data is publicly available
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through the on-line data service of the Space Weather Prediction Center (SWPC) of the National Oceanic and
Atmospheric Administration (NOAA). To give an example, when the solar activity is quiet, or below nominal,
the corresponding Covington index CI = 66, while in extreme cases values of CI = 300 can be reached.

Geomagnetic indices are used to characterize the variability of Earth’s magnetic field. These indices are
represented in single numbers and can be divided into two main categories, the K-index (non-linear, 0-9
scale) and A-index (linear, 0-400 scale). In these categories, subscripts denote further specialization of each
index. The main geomagnetic indices (Kp and ap ) are subsequently being used most often as input for atmo-
spheric models are presented below. The definitions of the indices in this report are deduced from informa-
tion by NOAA and the International Service of Geomagnetic Indices (ISGI).

• Kp - A non-linear index used to characterize the intensity of geomagnetic activity on a planetary scale
(however because of the historical context at the time of its creation, the Kp network is heavily weighted
towards Europe and Northern America).

• ap - To linearize the Kp index, an average of eight 3-hour Kp values is converted to ap values, providing
a daily average level for geomagnetic activity.

• aa - To measure the amplitude of global geomagnetic activity during 3-hour intervals normalized to
geomagnetic latitude around 50 degrees. aa was introduced to monitor geomagnetic activity over the
longest possible time period.

• am - To provide a characterization of global geomagnetic activity using a large set of stations represent-
ing all longitudes and possible hemispheric discrepancies. am = (an + as) / 2.

• an - The geomagnetic index to characterize geomagnetic activity on the Northern hemisphere.

• as - he geomagnetic index to characterize geomagnetic activity on the Southern hemisphere.

• Dst - To monitor the axis-symmetric magnetic signature of magnetosphere currents, including mainly
the ring current, the tail currents and also the magnetopause Chapman-Ferraro current.

• AE - The Auroral Electro-jet (AE) index measures the global electro-jet activity in the auroral zone.

Depending on the atmospheric model, a combination of these indices are inserted in the model to re-
trieve the local air density. Within the computations performed for this thesis, these indices are automatically
downloaded and stored. Take note though that when performing an orbital lifetime prediction, predicted val-
ues of F10.7 and the APH values are provided by NOAA yet they increase in inaccuracy the further away the
prediction goes into the future. The predicted values are not wild guesses though, as Solar activity analysis
from data going back decades[19][37][43] has already provided insights in the most dominant Solar cycles
upon which future predictions can be extrapolated from.
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3.4.2. Empirical density models
Empirical models are based on fitting parametric equations to a set of observations, the accuracy of these
models depending greatly on the quality of the observations and the complexity of the equations, as well
as the ability to interpolate and extrapolate the observation data between time steps. The earliest empirical
models go back as early as the Harris and Priester model presented in 1962[16], and with the availability of
more and more data these models have frequently been updated with increasing accuracies. In Figure 3.6 an
overview of the development of these atmospheric models is presented. There are three model families that
have been used most widely within thermospheric research; Jacchia, MSIS, and DTM. Development within
these families dates back all the way to the early 1960’s and 1970’s[21], several of these will be discussed fur-
ther in this chapter.

Figure 3.6: Development of atmospheric model [56].

This research uses solely open-source software, and therefore does not consider models such as HASDM.
The NRLMSISE-00 mentioned in this report has calibration capabilities, though no elaboration shall be given
as this calibration shall not be performed.
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Ballistic Coefficient and Drag Coefficient

Numerical propagating an orbit is not the novelty on which this thesis research is focused on, instead the
research has its emphasis on two important parameters needed for orbital lifetime prediction - namely the
ballistic coefficient β and drag coefficient CD . The ballistic coefficient is essentially an indication of the in-
fluence the atmosphere has on the decay of an object; simply stated a small heavy object orbits Earth longer
than a large light object with the same initial conditions and under similar atmospheric conditions. Though
computing the ballistic coefficient is simple and straight-forward (see Equation 2.3), being able to provide
accurate values for the mass, drag coefficient, and reference area prove to be a difficulty.

Most man-made space objects are well-documented, and the mass and reference area can be found in lit-
erature quite easily. However, some (small) satellite operators tend to present rounded values for their mass,
e.g. 1 kg instead of the actual 800 gr mass, or the satellite is freely tumbling and does not have a properly
defined reference area for the incoming aerodynamic flow. Furthermore, the drag coefficient is subject to
variation as well throughout the object’s lifetime - though in most orbital lifetime prediction tools this drag
coefficient is considered constant with a value around CD = 2.2[49][28]. The theory described in this chapter
shall elaborate on ways to get a better estimate of the ballistic coefficient of an object by analyzing its histori-
cal TLE data and comparing it with decay data of objects experiencing the same atmospheric conditions, and
the implementation of a varying drag coefficient as opposed to a constant one.

To summarize the identified problem, there are two categories of uncertainty when determining the bal-
listic coefficient of an object - first the uncertainty in an object’s mass and reference area and second the
variability and uncertainty of the drag coefficient. Based on the literature study performed prior to this re-
search, methods that could mitigate these uncertainties have been found and are to be incorporated in this
research. Afterwards, an assessment shall be performed to determine the actual contribution of these new
methods as explained in chapter 6. The two main research topics for this thesis are thus:

• Ballistic coefficient estimation through analysis of historical TLE and density data based on the work
of J.T. Emmert[13].

• Drag coefficient determination as a function of ambient gas composition and object geometry based
on the work of M. Pilinski[41], L. Sentman[51], and K. Moe[30].

In this chapter solely the theory is described, the implementation and verification shall be discussed in
section 5.2 and section 5.3. The experimental set up, including the CubeSat subjected to the various experi-
mental scenarios, hypotheses, and sub-questions are discussed in chapter 6.

23



24 4. Ballistic Coefficient and Drag Coefficient

4.1. Ballistic Coefficient Estimation
The importance of estimating the ballistic coefficient lies in the uncertainties in an object’s initial estimation,
the dependency orbital decay calculations have on this parameter, and the variability it can have throughout
its lifetime. As seen in Equation 2.3, β is dependent on mass m, reference area Ar e f , and drag-coefficient CD .
Assuming the objects of interest do not expel mass during their mission, it is still possible to have a varying
Ar e f when an object exhibits a tumbling behavior or has its attitude actively controlled. Furthermore, CD is
a function of ambient gas composition and geometry, and thus has a temporal variation as the experienced
ambient gas composition varies with altitude and solar activity. Though at the start of a mission the β can be
assumed, it could prove that the actual βT deviates significantly from this initial value.

This chapter will provide the reader with the ballistic coefficient estimation method, the backbone of this
thesis. The theory shall be discussed first, followed by how this is implemented into the software. Apart from
purely the software implementation, the focus shall also be on any assumptions made, database set-up, and
intermediate procedure steps. This chapter shall conclude with the verification of the software in accordance
with the original theory. An estimated β using this procedure is expected to result in more accurate β values,
which is expected to be seen back in the assessment of this theory in chapter 7.

In theory, theβ estimation procedure is based on one single aspect - the cancellation of the thermospheric
model error between two objects experiencing similar local atmospheric conditions. How similar exactly one
wants to have these local conditions depend on a set of criteria based on epoch and orbital element range;
more on this in subsection 5.2.2. Assumed is that the only contributing factor to an objects orbital decay is
the local thermospheric mass density ρ, a value that can be obtained in two ways:

• Model-estimated mass density ρM - by inserting the object’s positioning and epoch in the NRLMSISE-
00 model and retrieve its total mass density as output.

• Orbit-derived mass density ρT - by quantifying the change in observed time-integrated value of the
drag-induced acceleration v̇ , which can be derived from observing the changing mean semi-major axis
seen in historical TLE data.

When both ρM and ρT are computed over the same time period the difference can be attributed to errors
in the NRLMSISE00 model - errors that are temporal and spatial and therefore are not consistent. Now con-
sider this procedure being applied to an object with an accurately known β. When a second object is within
the same atmospheric region, and thus experiencing the same atmospheric conditions, the atmospheric er-
ror can be canceled out and a more accurate β is estimated for the second object.

4.1.1. Orbit-derived mass density
The most straight-forward way to derive thermospheric mass density from observation is by assessing the
drag-induced acceleration experienced by satellites orbiting in the thermosphere. The drag-induced acceler-
ation is given by:

ad = v̇ =−1

2
ρβ|v − va |2ev−va (4.1)

where v̇ , or ad , represents the drag-induced acceleration, ρ the local atmospheric mass density, v the
velocity of the satellite, va the local velocity of the atmosphere, ev−va the directional unit vector of relative ve-
locity, and the inverse ballistic coefficient is represented by β (see Equation 2.3). From this equation, density
can be directly determined when β, v̇ , and va are known. The acceleration can be measured by examining
orbital changes through for instance TLE data or accelerometers on-board the satellite, resulting in orbit-
derived density and accelerometer-derived density (see Equation 2.2) respectively. The orbit-derived mass
density is discussed in the next subsection. The determination of β is discussed in subsection 4.1.2.
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Drag acceleration changes the trajectories of orbiting bodies, and when this change is observed time-
integrated values of v̇ , and thus ρ can be derived. The primary effect of drag acceleration is the change in
semi-major axis which decreases over time. The perturbation theory gives:

d a

d t
=−a2ρβ|v − va |(v − va)∗ v

GM
(4.2)

where a represents the semi-major axis, G the gravitational constant and M the central body mass (in this
case, that of Earth). In their paper, J. Picone, J. Emmert, and J. Lean[39] estimated the wind-related error in
the drag force to be largest for an equatorial orbit and for altitude below 400 km; the peak average error is
estimated to be around 3%. The changes in the acceleration are not measured instantaneous, but are obser-
vations with non-uniform time-spacing. Therefore, the density derived from this approach are average along
the trajectory. The temporal resolution is generally in hours to days, depending on the observation instru-
ments and the priority the object has. The ISS orbiting Earth in LEO will have more frequently updated TLEs
as compared to space debris in GEO.

Furthermore, additional perturbing forces have to be taken into account. The forces associated with the
aspherical gravitational field of Earth are typical larger than the drag, but are periodic for altitude and thus
average out[14]. Moreover, the radiation pressure perturbation will have to be subtracted from the observa-
tion data before any drag accelerations data can be extracted. How these perturbations are computed and
the effect this has on the TLE computations will be discussed further in section 3.2.

4.1.2. Estimation of model-dependent β and ρ values
As mentioned before, the estimation of the ballistic coefficient β and thermospheric mass density ρ is still
difficult due to lack of true β and ρ values and simplifications in the estimated β and ρ values. Model-based
estimated β and ρ values are however computed more often by analyzing TLE data. In 2013, J. Sang, J. Ben-
nett, and C. Smith[47] presented a method to estimate the ballistic coefficient of LEO debris objects from
historical TLE data, using the drag perturbation equation. Studies on β are mainly related to the estimation
of the drag coefficient and attitude of the satellite, though mass might also be a factor of uncertainty. For
for instance spherical objects with known surface properties, CD can be theoretically computed depending
on the atmospheric gas composition and mass of the satellite, as the reference area will remain the same. B.
Bowman and K. Moe, 2005[4] have concluded that the CD value computed with these theoretical methods
have an uncertainty of only 3% and have used this method to calibrate the Jacchia-70 thermospheric model.

In 2009, J.T. Emmert[13] used TLE data to estimate thermospheric mass densities and estimated his ac-
curacy to be 2%, and for the long-term accuracy around 5 - 10%. The long-term accuracy is limited due to
geometry uncertainties in his used reference spherical object, the Starshine 1. Furthermore, variations of the
drag coefficient with ambient composition haven’t been considered in his method, which he recommends to
be done in the future. However, an important aspect is in how he estimated the ballistic coefficient. In his
paper published in 2005[39], a method to estimate the inverse ballistic coefficient for an irregularly shaped
object (”A”’) from a near-spherical reference object (”S”) is described:

B E?
A = B M

A

B E
S

B M
S

(4.3)

where the M stands for the model derived ballistic coefficient by considering mass densities computed
by NRLMSISE-00, the E stands for the estimated ballistic coefficient, and E? for the model-based estimated
ballistic coefficient. This method is only possible if the reference object is in the vicinity of object A, other-
wise the computed mass densities would deviate too much from each other. The more accurately B E

S and the
ambient composition and density are known, the higher the accuracy of B E?

A can be derived. Here the useful-
ness of a calibration sphere is again highlighted thanks to the consistent attitude-independent reference area.

The model-based estimation of the ballistic coefficient B E?
A can be done at a single point in time and po-

sition in the orbit, or taken over a period of time. If a non-spherical object is tumbling, the estimated ballistic
coefficient derived at a single point in time might be an outlier as opposed to the average ballistic coefficient.
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Table 4.1: Objects groups for the beta estimation algorithm, with the spherical parent satellites having pre-determined
β values.

Subscript Description

{S} Parent object - satellite with B E
S . Initially from spherical satellite database

{A} Child object - Satellite for B E?
A . Consisting solely of 1U CubeSats.

Table 4.2: Time spans for minimum TLE pair julian date spread, βM evaluation period, and integration time steps

Condition Time span

TLE pair ti j ≥ 3 days
B M evaluation period te ' 30 days
Integration time step in Equation 4.4 1 minute

Ambient composition will change the ballistic coefficient over time as well, furthermore reducing the effi-
ciency of determining B E?

A at a single point in time. It is however also possible to evaluate B E?
A at multiple

instances in a given time period and derive an averaged value for the object, or to retrieve the change in drag
coefficient from it for research in how satellite bodies interact with the thermospheric gas composition. For
the β estimation procedure discussed in this chapter, a single B E?

A is computed with the TLE pair covering at
least a period ti j > 3 days to reduce the effect observation errors have on the TLE pair. This is repeated with
new >3 day TLE pairs within a total evaluation period of te = 30 days, thus resulting in thirty different B E?

A
values, which are subsequently averaged out resulting in the estimated β of object A. Table 4.2 summarizes
the used evaluation periods and integration time steps.

In Equation 4.3, the value B E
S is already known and assumed constant over the evaluation period. B M

∆t (ti j )
is left to be determined, representing the ballistic coefficient CD Ar e f /m of the objects, and basically the rela-
tion between the observed orbit-derived mass density and model-estimated mass density. These values are
calculated using the following equation:

B M
∆t (ti j ) =

2
3µ

2/3[nM (ti j )]−1/3∆i j nM∫ ti
t j
ρM v3F d t

(4.4)

where µ=GM is the gravitational constant, nM the Kozai mean motion of the orbit, i and j the indices of
the pair of TLE’s, ρM the mass density from the NRLMSISE-00 model, v the orbital velocity, and F the dimen-
sionless windfactor, see Equation 5.3. The propagator SGP4 is used for the orbital trajectory computation of
each TLE [18].

With object A having a newly estimated B E?
A , this object can subsequently be inserted in the S database

with itsβbecoming a new B E
S for the next iteration. With this iterative approach, new objects in the A database

can be matched and have its β estimated. Within this report, all spherical satellite database have the sub-
script S and act in the first iteration as the parent for all matched child CubeSats with subscript A. The next
iteration, the objects with estimated B E?

A values become the parents with subscript S to interact with the re-
maining child CubeSats, and so forth.



4.2. Variable Drag Coefficient 27

Figure 4.1: Drag coefficient variation of geometry and altitude[11]

4.2. Variable Drag Coefficient
The ballistic coefficient estimated in section 4.1 is from an associated epoch, an epoch that has its own spe-
cific atmospheric conditions. When time and position progress, these conditions start deviating from the
original conditions, either due to the thermosphere expanding or contracting due to solar activity, or sim-
ply because the satellite is undergoing decay and thus starting to orbit through lower altitudes, consequently
having the satellite experience a varying CD instead of a constant value. The implication this can have on β is
not insignificant, as β is directly related to the drag coefficient CD , see Equation 2.3.

This chapter shall focus on the determination of a satellite’s drag coefficient as a function of gas composi-
tion and geometry, starting with the underlying theory, the current approach on computing CD , and how this
approach can be included in the orbit propagation software such that β estimates start varying over time as
well.

Theory: the CD varies over time and location due to changing atmospheric conditions such as temperature
and ambient ga composition and the impact these conditions have on the drag coefficient.

Problem: in most propagation methods a constant around CD = 2.2[49][28] is assumed, as well as constant
energy accommodation coefficients α

Need: a tool that determines the drag coefficient of a cube and sphere as a function of ambient gas composi-
tion and have this incorporated in the propagation software.

• Drag coefficient for a sphere shall be used to provide better initial of the ballistic coefficients of the
spheres from the spherical satellite database as their mass and diameter are already well-documented
and known.

• Drag coefficient for a cube shall be used to determine the change in estimated ballistic coefficient
βE from section 4.1 between first the epoch of the βE estimation and start of propagation period and
second over the complete propagation period.

The drag experienced by a satellite in orbit is solely due to the interaction its geometry has with the ambi-
ent gas particles. These particles hit the satellite under a certain angle, depending on the satellite’s geometry
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Figure 4.2: CD algorithm output for a 1U CubeSat for different energy accommodation coefficients as a function of
altitude.

and attitude, and thereby decelerate the satellite. The drag coefficient CD is a dimensionless parameter used
to quantify the object’s drag or resistance behavior in a fluid environment - in the case of the near-vacuum
of Earth’s atmosphere the ’fluid environment’ is considered the sparse presence of rarefied gas. Having the
capability to analytically determine CD and eventually the change of CD over the propagation period is an
important facet of this research. This chapter shall focus on two ways of computing the drag coefficient, one
being applied to spherical shapes and the other for cubical shapes.

The theory shall be primarily based on Sentman’s rarified aerodynamic equations, explained in detail in
the upcoming sections. Within these equations, the energy accommodation coefficient α plays an important
role as well, a coefficient that is often considered constant with a value ranging between 1.0 and 0.8, though it
is also possible to vary this coefficient as a function of the presence of ambient atomic oxygen. The impact a
variable drag coefficient has on the propagation results shall be assessed for these two conditions, one where
α is kept constant and one where it is varied in accordance with Langmuir’s adsorption model. This shall be
discussed further in section 4.2.

4.2.1. Sentman’s rarified aerodynamic equations
A 1U CubeSat can be seen as a block of six panels, each of the same dimensions of 0.1 x 0.1 meter. These
panels are interacting with gas particles found in the thermosphere - though not present in a large quantity
these particles are enough to eventually decelerate the spacecraft until re-entry. To assess determine the drag
coefficient of this 1U cubesat as a function of local gas composition, Sentman’s rarified aerodynamic equa-
tions are used. These equations have also been used in the work of E. Doornbos[11], which includes data
results which shall be used for verification of the implementation of these equations in subsection 5.4.3.

First let’s examine a single flat panel. Depending on the orientation (or θ angle) the drag, lift, and nor-
mal vectors can be determined according to Equation 4.5, Equation 4.6, and Equation 4.7, see visualized in
Figure 4.3. Though the lift coefficient CL shall not be used in this thesis the complete formula shall still be
verified in subsection 5.4.3 for the verification of correct formula implementation.

ûD = vr

||vr ||
(4.5)

ûL,i = (ûD xn̂i )xûD

||(ûD xn̂i )xûD ||
(4.6)



4.2. Variable Drag Coefficient 29

Figure 4.3: Definition of the velocity components and unit vectors used in the aerodynamic calculations for a flat
panel[11].

γi = cos(θi ) =−ÛD · n̂i , li =−ûL · n̂i (4.7)

Having defined the angles and normal vectors, the impact various gas composition have on each panel
can be assessed. It should be noted that even when γ = 90 degrees, there shall still be a portion of drag coef-
ficient present due to the random thermal motion of the gas flowing over the panel. It is for this reason that
long slender satellites experience a large drag coefficient as can be seen in Figure 4.1. The formulas for the
drag and lift coefficient, used in the same manner as [53] and [30], are presented in Equation 4.8 and Equa-
tion 4.9.

CD,i , j =
[

Pi , jp
π
+γi Q j Zi , j + γi

2

vr e

vi nc
(γi

p
πZi , j +Pi , j )

]
Ai

Ar e f
(4.8)

CL,i , j =
[

li Q j Zi , j + li

2

vr e

vi nc
(γi

p
πZi , j +Pi , j )

]
Ai

Ar e f
(4.9)

where

G j = 1

2S2
j

, Pi , j = 1

S j
exp(−γ2Sγ

j ), Q j = 1+G j , Zi , j = 1+erf(γi S j ) (4.10)

With the error function erf being defined as:

erf(x) = 2p
π

∫ x

0
exp(−y2)d y (4.11)

The relation a single particle has to the drag coefficient is defined in the speed ratio S of the bulk velocity to
the most probable thermal velocity, see Equation 4.12. This most probable thermal velocity cmp of molecules
and atoms is a function of the particle’s molecular mass m j and presented in the gas kinetic theory[3]. The
subscript j represents the different molecular masses present in the ambient gas composition. For this the-
sis, and as output from the NRLMSISE00 thermospheric model: [ j = He,O, N2,O2, Ar, H , N ,and atomic O].
Furthermore, kb is the Boltzmann constant and T the local temperature (second temperature output from
NRLMSISE00).

cmp, j =
√

2
kb

m j
T , S j = vr

cmp, j
(4.12)

Both Equation 4.8 and Equation 4.9 rely on the ratio of the velocity of the re-emitted particles (vr e ) to that
of the incoming particles (vi nc = vr ). This ratio can be described as a function of the energy coefficient α
and the wall temperature TW as presented in Equation 4.13. This function has been proposed by [23] after
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analysing the velocity ratio derivation presented by [30].

vr e

vi nc
=

√√√√1

2

[
1+α

(
4RTW

v2
i nc

−1

)]
(4.13)

R represents the gas constant, which is Avogado’s constant N a multiplied by the Boltzman Constant kb .
Throughout the research a value of R = 8.314459 was used.

Using the above equations, the drag and lift coefficient of a single panel can be derived for an arbitrary
particle with a known molecular mass as a function of the attitude related angle θ. Theoretically one could
simulate an arbitrary body under different attitude conditions as long as this body has been build up by mul-
tiple panel representations. To get the total aerodynamic force on the body the lift and drag coefficients for
each panel will have to be added and multiplied by the particle’s density ratio to the total density of the flow,
see Equation 4.14. The subscript j relates to the different molecular masses and the subscript i to each panel
used to construct the satellite’s body.

Ca =∑
i

∑
j

ρ j

ρ
(CD,i , j ûD,i +CL,i , jÛL,i ) (4.14)

For this thesis, this method is solely used to determine the drag coefficient of a non-rotating 1U CubeSat.
Eventually this particular method could be extended to include a rotating body, though that is left to be out
of the scope of this research. The verification of the implementation of subsequent equations is performed
in subsection 5.4.3, and the final discussion on the effect the energy accommodation coefficient has on the
propagation accuracy can be found in subsection 8.1.4.

4.2.2. Drag Coefficient for a sphere
A different method is used for the determination of the drag coefficient of a sphere. Where for a single cube
only two orientation angles θ had to be considered (0 and 90) and simply added for one frontal plate and four
side panels, the method for a sphere does not use the same panel principle. Instead, Pilinski[41] provides a
method to determine the drag coefficient of a sphere as function of ambient gas composition by assessing the
incoming kinetic temperature with the re-emitted kinetic temperature of each gas particle in the freestream
flow.

Tk,i =
mv2

i

3k)b
(4.15)

Tk,r = m

3kb
v2

i (1−α)+αTw (4.16)

where Tk,i is the kinetic temperature carried to the surface by an incoming molecule. Furthermore, Tk,r

represents the kinetic temperature of the reflected molecule and TW the kinetic temperature the molecule
would have if it was re-emitted at the wall temperature, or simply wall temperature[41].

s = viβ, β=
√

m j

2kbTk,i
(4.17)

The speed, or velocity, ratio is denoted in Equation 4.17 where again the subscript j relates to the molec-
ular mass of the incoming particle and kb the Boltzmann constant. Together with Tk,i and Tk,r , these are the
only parameters needed to compute the drag coefficient CD, j as a function of an incoming particle, see Equa-
tion 4.18. The total drag coefficient CD,spher e is computed in a similar fashion to Equation 4.14 except without
the summation of the i term, solely the addition of the j subscripts multiplied with the respective partial mass
density ratio to the total mass density.
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CD, j = 2s2 +1p
πs3

exp(−s2)+ 4s4 +4s2 −1

2s4
er f (s)+ 2

p
π

3s

√
Tk,r /Tk,i (4.18)

The advantage of this method compared to a full CFD-simulation is that a simple straight-forward ana-
lytical implementation can be performed, thereby not straining the computational time of the propagation
program.

4.2.3. Langmuir’s Energy Accommodation
In both the drag coefficient computations for the cube and sphere geometries the parameter α is present,
representing the energy accommodation coefficient. α characterizes the behavior of gas particles in their
collisions with a body surface and depends most dominantly on the composition and pressure of the gas
mixture and surface material of the body. As can be seen in Figure 5.15, the energy accommodation coeffi-
cient does have a clear effect on the drag coefficient, thereby demonstrating the importance of choosing a
value for α in the drag computations.

Often constant or a table look-up values of α= 1.0 and α= 0.8 are considered when computing CD , as is
the case with for instance the research of B. Bowman[4] and P.M. Mehta[29]. However, the presence of atomic
oxygen in the ambient gas mixture affect this energy accommodation coefficient as it attaches itself to the
surface layer of the body and softens the impact other particles have on the body. Pilinski [41] described it as
a ’softening’ of the outer plate and thereby absorbing more momentum energy from the incoming particles.
With low quantities of atomic oxygen this can have a large effect on the energy accommodation, where α can
theoretically start to assume values well below α = 0.8, see Figure 5.16.

One of the cases investigated in this thesis is the addition of Langmuir’s energy accommodation in the
determination of the drag coefficient CD . The formulation for this term as described by Pilinski is presented
in eq. (4.19).

α= K ·P

1+K ·P
(4.19)

where there partial pressure P of atomic oxygen is defined as the product of the number density and tem-
perature PO = nOT , both outputs of the NRLMSISE-00 model. The constant K has been given a value of 7.5
·10−17 after fitting energy accommodation data to the curve of Figure 5.16.

Note however that this constant K is selected as an optimum fitting to certain solar activity, and that no fit-
ting points have been present at altitudes above 500 km, apart from a single data point at 650 km. Though the
inclusion of the Langmuir isotherm does provide a variable and gas composition dependent α, it might still
not optimally represent the energy accommodation coefficient at different solar activity or higher altitudes.
As can be seen in Figure 5.16, α quickly drops, based on the fitted data - yet in real life this curve might not be
the best representation of α as a function of atomic oxygen. To investigate this a little further, chapter 7 also
includes results where the energy accommodation is being kept constant at 0.8 and compared to Langmuir’s
term for higher altitudes.
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Methodology

The previous chapters provided the fundamentals of numerical propagation orbit and thermospheric den-
sity models, as well as demonstrate the influence that β and CD have on the decay of the satellite. Having
described the theory, this chapter shall elaborate on the theory implementation and methodology used for
this specific research. This chapter is divided in three separate section, focused on orbit propagation, β es-
timation, and CD determination respectively. For each of these sections, the underlying theory is explained,
followed by the software implementation and verification:

• Orbit Propagation - section 5.1 elaborates on the models and software used for the orbit propagations
and the specifics of the thermospheric density model settings.

• Ballistic coefficient estimation - section 5.2 presents the theoretical background on deriving a ballistic
coefficient from the historical TLE datasets of two objects experiencing similar atmospheric conditions.
The section ends with the software implementation being discussed and verified.

• Drag coefficient determination - section 5.3 emphasizes on an analytical method determining CD val-
ues for spheres and cubically shaped objects as a function of ambient gas composition. Similarly this
section ends with a discussion on the software implementation and verification.

At the end of this chapter, the reader should have a clear understanding of the three pillars that make up
this research. In chapter 6 the experimental set-up following from the software packages and the data formats
are discussed, upon which consecutively the results are presented in chapter 7.

5.1. Orbit propagation software
Previously the necessities for adequate orbit propagation have been discussed, such as the potential candi-
dates for any mathematical integration, the possible empirical thermospheric density models, and the per-
turbing forces that are all to be put together into an orbit propagation model. However, the accuracy re-
quirements for the propagation model change depending on the scenario - for the creation of the actual orbit
propagation advanced SP perturbation models are required whilst for the ballistic coefficient estimation pro-
cedure a less accurate GP perturbation model can be used, hence the earlier described decision to script the
models in two different coding languages, MatLab and C++.

This section elaborates on the selection procedure for the atmospheric density model, the integrators,
and the perturbation models, as well as how these could be recreated by any researcher wishing to verify this
work. At the end of this section an overview of the final propagation model, perturbing forces, and integrator
selection is presented.

33
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5.1.1. Thermospheric density model
As reviewed in section 3.4, there are three candidate models for this thesis research - JB2008, NRLMSISE-00,
and DTM2013. As a reminder, these three candidates have been selected based on open-source availability,
accuracy, and ease of integration. Since assessing the accuracy for these models in detail is not the essential
part of this thesis, and as the accuracies do not deviate much from each other to begin with, the decision was
made to incorporate NRLMSISE-00 based on two main criteria:

• NRLMSISE-00 is directly available and incorporated in the MatLab and TUDAT libraries.

• NRLMSISE-00 has been used in research of J.T. Emmert[13] and J.M. Picone[39] which form the funda-
mental of this thesis.

NRLMSISE-00, which stands for Naval Research Laboratory and Mass Spectrometer and Incoherent Scatter
Radar, is the latest model in the NRLMSIS family. As input, this model relies on F10.7 data (81 day average
and daily), geomagnetic indices (daily), and aspects such as date, time, and location in geodetic altitude,
geodetic latitude, and longitude. The model and the corresponding NRLMSIS database include (1) total mass
density from satellite accelerometers and from previous OD data of Jacchia and Barlier, (2) temperature from
incoherent scatter radar, and (3) molecular oxygen number density [O2][38]. The latter allows for oxygen con-
tributions to the total mass density at high altitudes, commonly starting from an altitude of 500 km. It bases
its density computations on a history of ap values for 57 hours prior to the time of interest[5]

The NRLMSISE-00 model incorporates the advantages of the other two models Jacchia-70 and MSISE-
90, which are the improved predictions of the MSIS-class models in winter conditions and higher accuracy
of the Jacchia-70 model under a combination of summer, low solar activity, high latitudes, and high alti-
tudes. In their paper, Picone, Hedin, and Drob[38], a detailed comparison between the achievements of
NRLMSISE-00, its predecessor MSISE-90, and the model Jacchia-70 is presented. Here it is demonstrated
that the NRLMSISE-00 model considers both regimes together and achieves improved predictions in com-
parison to MSISE-90 and Jacchia-70. The DTM2013 has not been selected since when selection the best
suited model there was only one evaluation of the DTM2013 model present[6], which was an evaluation by
an employee of the institute responsible for the development of DTM2013 - therefore it was decided to not
consider DTM2013 until additional evaluations would have been performed.

For NRLMSISE-00 to be used, the variables depicted in Table C.1 are to be inserted. These variables are
related to position in the geodetic WGS-84 ECEF reference frame, epoch, F10.7 and APH values, and an array
of flags for the 23 setting parameters, see Table C.3. The F10.7 and APH values are automatically downloaded
from Celestrak.com and stored in a database for use with each respective epoch. As output, the model pro-
vides the local temperatures and gas density compositions, see Table C.2.

In all computations done with NRLMSISE, the flags are by default set to 1 except for Flag(9) = -1. This
setting uses the entire matrix APH rather than just APH(:,1). Furthermore, the OTYPE input is set to include
Oxygen for the total mass density output. The sixth column in the density output matrix is used for the total
mass densities as opposed to summation of the individual gas density components.

NRLMSISE-00 requires the latitude, longitude, and altitude in the ECEF coordinate system, yet the output
of the SGP4 propagator is in TEME coordinates. In subsection 5.1.3 the procedure to perform these trans-
formations are discussed. However, for this transformation additional inputs are required, namely the polar
motion variables xp and yp and the UT1-UTC timing difference, see section 2.1. An EOP database consisting
of the EOP data from 1962 to now has been downloaded from IERS, and used in the transformation from
TEME to ECEF and consequently to the J2000 frames.
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5.1.2. Propagation models
Having established the empirical thermospheric density model, the propagation methods can be discussed.
As the reader might has seen in previous sections, there shall be two orbital propagation methods used in
this research - one for conversion of TLE data and low-accuracy propagation and another for a high-accuracy
propagation:

• General Perturbation propagation with SGP4 in the MatLab 2016a environment. Used for convert-
ing TLE data to Cartesian coordinates and orbital elements, and for the ballistic coefficient estimation
procedure.

• Special Perturbation propagation using the Runge-Kutta Fehlberg 7(8) integrator performed with Cow-
ell’s method. Due to its computationally intensiveness this propagation method is performed in com-
piled C++ in the TUDAT environment.

The software of both models, as well as instructions on how to integrate these in one’s own propagation
model, is all open-source. Details on both propagators, why they have been selected, and their usage are
presented in the next two subsections. The special perturbation model allows for more accurate propagation
results, though as mentioned in computationally intensive. Since SGP4 is also a necessity for TLE coordinate
conversion, the decision was made to also perform the ballistic coefficient estimation procedure with this
propagator, as for this procedure a high accuracy is not required.

5.1.3. SGP4 propagator
SGP4 has been selected as a necessity for the conversion from TLE data to TEME coordinates. This propa-
gator shall also be used for establishing TLE-derived verification orbits. A general perturbation propagator,
SGP4 is unsuited for long-term orbit propagation without a significant loss of accuracy - hence a second, spe-
cial perturbation propagator is selected for the actual orbit lifetime predictions. SGP4 has an open-source
software package based on Vallado’s research readily available use with MatLab. This section elaborates on
the origin of the script, the in- and outputs, and the integration and usage in MatLab. The SGP4 propagator is
directly downloaded from Celestrak.com. The script is open-source, fully compatible with MatLab, and pro-
grammed by David Vallado based on the principles described in his book Fundamentals of Astrodynamics
and Applications[9]. The SGP4 propagator is used to fulfill three functions:

• 1) TLE conversion to Cartesian coordinates in the TEME frame and the subsequent conversion to or-
bital elements.

• 2) Propagation of two orbits in a 30-day interval used for the estimation of an updated ballistic coeffi-
cient, see section 4.1.

• 3) Construction of verification orbits with a set of historical TLE data, to be used for the performance
assessment of the TUDAT propagated orbit outputs.

In order to properly execute these three functions, the SGP4 software package will need to be set up and
used as intended. David Vallado has described this procedure in detail, and is listed in , Table 5.1 - note that
the first function of TLE conversion relates to the first procedure. The second procedure, involves the cre-
ation of the latitude and longitude ephemeris, which are needed as inputs for the NRLMSISE-00 atmospheric
density program, and the last procedure transforms the TEME coordinates to J2000 for input in the TUDAT
model.

The three procedures discussed in Table 5.1 are the backbone for determining the initial conditions for
both the SGP4 and TUDAT propagation, the use of NRLMSISE-00, and the creating of the verification orbits.
When the initial conditions are retrieved from the TLE data, they are converted to J2000 coordinates and writ-
ten to a .text file which is consecutively read by TUDAT. The program has been set up such that an array of
objects can have their initial conditions determined simultaneously, as well have the propagation in MatLab
and TUDAT run parallel to each other.
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Table 5.1: Vallado’s SGP4 software architecture

Creating Cartesian position and velocity ephemeris from a TLE

1 Read in the data file containing the TLE information
2 Convert the TLE information (twoline2rv.m)
3 Initialize SGP4 (sgp4.m with 0.0 time)
4 Loop through the desired time period:

-Call SGP4 and obtain the position and velocity vectors in TEME (sgp4.m)
-Write out the relevant parameters: time since epoch, TEME position and velocity

5 End loop

Create a latitude and longitude ephemeris from a TLE

1 Read in the data file containing the TLE information
2 Convert the TLE information (twoline2rv.m)
3 Initialize SGP4 (sgp4.m with 0.0 time)
4 Loop through the desired time period:

-Call SGP4 and obtain the position and velocity vectors in TEME (sgp4.m)
-Convert the position and velocity vectors to latitude and longitude:

-Rotate from the TEME to ECEF coordinate frame (teme2ecef.m)
-Use the ECEF vectors to find latitude and longitude (ijk2ll.m)

Write out the relevant parameters: time since epoch, latitude, longitude
5 End loop

Converting a TEME ephemeris to a J2000 ephemeris

1 Convert the position and velocity vectors from TEME to ECF (teme2ecef.m)
2 Convert from ECEF to J2000 (ecef2eci.m)
3 Write out the relevant parameters: time since epoch, ECI position and velocity

Regarding the main MatLab file, sgp4.m, two internal operation modes are used. The first operation mode
is the manual ’m’ mode, where a single TLE is converted to Cartesian coordinates at solely its epoch period.
This mode is used as a preparation for the verification orbit. Multiple TLE can be converted at once using the
manual mode, resulting in a set of epochs related to each individual TLE. With these epochs defined, middle
points between the epochs can be determined which can in turn be related to a specific number of minutes
before and after an epoch. So let’s say for a verification orbit consisting of an arbitrary number of TLE the
TLE data files will have to be modified to include the time to and from the two closest middle points of their
neighboring epochs, the procedure to do so would look as described above is visualized in Figure 5.2.

• 1. Request start and end epoch of the verification orbit

• 2. Retrieve all TLE data within this epoch range

• 3. Extract the epochs from each TLE

• 4. Find the middle point between each consecutive TLE

• 5. Determine minutes between original epoch and middle point of the two neighboring TLEs.

• 6. Store these values back into the original TLE in the exact format represented in Figure 5.1.

The resulting format, displayed in Figure 5.1 and Table 5.2, are exactly the input needed for the second
internal operation mode of the SGP4 propagator - the verification ’v’ orbit mode. In this mode, a TLE set is
read with for each TLE the start and end time in minutes before and after the respective epoch. With the ver-
ification mode a verification orbit can be set up based on the historical TLE data of an object, and the initial
conditions of the first TLE are stored and send to TUDAT for the actual propagation.
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Table 5.2: TLE format for verification orbit input of the SGP4 propagator.

TLE Line Position Description

Line 2 Character 71 to 81 Start epoch of propagation, in minutes before TLE epoch.
Line 2 Character 84 to 95 End epoch of propagation, in minutes after TLE epoch.
Line 2 Character 97 to 104 Step size of propagation, in minutes.

Output of the SGP4 propagation are coordinates in the TEME reference frame, see section 2.1. Using the
teme2ecef.m function these coordinates are transformation to ECEF coordinates - a necessity when one in-
tends to use the NRLMSISE-00 atmospheric density model. The open-source SGP4 software is well-documented
and is not difficult to use, though special care has to be taken to follow the right steps and to properly modify
the TLE .txt files when creating a verification orbit.

Figure 5.1: Visualisation of the TLE format for verification orbit input of the SGP4 propagator

5.1.4. Runge-Kutta Fehlberg 7(8)
SGP4 is certainly beneficial for the functions described earlier, yet it lacks in accuracy in long term orbit
propagation - that is, when looking at more than a couple of days. In section 3.2 the advantages of a special
perturbation propagator have been discussed, along with Runge-Kutta integration methods. The need for a
SP propagator is high, as without it any potential advances made with the estimation of the ballistic coef-
ficient and incorporation of a variable drag coefficient might not be retrievable from the data as the errors
induced by the SGP4 propagator simply are in a higher order. Therefore, an accurate numerical integrator is
required - which is provided by the Runge-Kutta Fehlberg 7(8) integrator.

The Runge-Kutta Fehlberg 7(8) integrator shall be the backbone of the SP propagator, together with the
NRLMSISE-00 density model. To reduce the computation time, a decision has been made to incorporate the
SP propagator in C++, and more specifically using the TUDAT environment, see subsection 5.1.5. The incor-
poration of the Runge-Kutta Fehlberg 7(8) integrator in TUDAT can be done with a simple line of code, which
due to the way the TUDAT library is set up can be done in a simple ’plug-and-play’ manner - the script behind
the integrator is already verified and present in the TUDAT library.

Table 5.3: Input settings Runge-Kutta-Fehlberg 7(8) and accompanying evaluation periods.

Description Value

Absolute Error Tolerance 1.0E-12
Safety Factor for next stepsize 0.8
Maximum Factor Increase for next stepsize 4.0
Minimum Factor Decrease for next stepsize 0.1

TLE pair ti j ≥ 3 days
B M evaluation period te ' 30 days
Integration time step in Equation 4.4 1 minute

The additional input settings for the selected Runga-Kutta Fehlberg 7(8) are described in Table 5.3. In this
table, the timing periods used for the propagation are presented as well.
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Figure 5.2: Visualization of modification TLE for verification

5.1.5. TU Delft Astrodynamics Toolbox - TUDAT
The software is written in two languages - MatLab and C++. MatLab is a widely used programming envi-
ronment and shall therefore, by itself, not be elaborated on. TUDAT on the other hand is an environment
most probable not encountered often outside of astrodynamic computations and shall therefore be discussed
briefly in this section.

The TU Delft Astrodynamics Toolbox (Tudat) library is a set of open-source C++ software libraries, devel-
oped and maintained by staff and students in the Astrodynamics and Space Missions research group from
Delft, University of Technology. This toolbox provides a user with a robust and large set of astrodynamic
applications, such as atmospheric models, mathematical integrators, and acceleration models. These C++ li-
braries can be implemented into a custom astrodynamics application, as has been done for this research. The
choice for TUDAT was made due to its (open-source) availability, the computationally fast C++ programming
language (up to 50x faster compared to MatLab), and the customization possibilities. Here, an explanation
regarding the various libraries used for this research, as well as a road map of the software structure.

Setting up TUDAT libraries
A detailed installation guide on how to use the TUDAT libraries can be found on tudat.tudelft.nl, however a
quick recap shall be presented here. Via GitHub a user can download the whole TUDAT library, including
the Eigen, CSpice, and Boost packages. The data on GitHub is actively and regularly updated by the Astro-
dynamics and Space Missions research group, so be sure to frequently check if you have the latest version. A
handy tool for this is SmartGit, a program which can search for any updates in the libraries on your computer
and the files available through GitHub. Any new updates can be incorporated automatically on your local
machine.

To be able to compile the files, a C++ compiler and a software development program should be present on
the local machine. TU Delft advises using CMake as the C++ compiler and QT Creator as software developer.
Installation of these programs are straight forward, after which the user can start compiling the libraries.
Compilation of the complete TUDAT library can take up to an hour, but after all functionality is present.
Before heading into making a custom application, it is advised to inspect the overall structure and compo-
nents of TUDAT, including the functionality of Boost, CSpice, and Eigen. Furthermore, there are frequently
updated example applications, as well as an easy to use template application. The example applications pro-
vide a solid basis on how to set up a new application using the pre-made template. The functions of the
propagation model created in TUDAT are presented in Table 5.4.

With these functions present in the propagation software, it is possible for initial conditions in the J2000
frame to be propagated into time using the aforementioned NRLMSISE-00 model and integration method.
The initial conditions are created in MatLab from transformed TLE data to TEME coordinates, a process de-
scribed further in subsection 5.1.3, and propagated according to the scenarios described in chapter 6. The
objects subject to the propagation are stated in section 6.1. Depending on the scenario, the option for the
inclusion of the CD calculation is turned on or off. All output is stored as .dat files and analyzed in MatLab.
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Table 5.4: Functionality of TUDAT propagation script

Function Description

Input and Output Loading the initial conditions set up in MatLab and the WGS84 coefficients. Data
output stored automatically to .dat files.

Body Definition Defining the celestial bodies Sun, Earth, Mars, Moon, and Venus.
Body Objects Creates body properties such as the spherical harmonic gravity field and atmo-

spheric settings for Earth.
Frame Orientation Setting all frames to the J2000 ECEF frame.
S/C Definition Defining the S/C using input values for the mass, reference area, and initial drag

coefficient.
CD Calculation Option to continuously update the drag coefficient as function of ambient gas

composition and S/C geometry, see section 4.2.
S/C Objects Creates S/C properties such as aerodynamic coefficient settings and satellite radi-

ation pressure settings.
Set acceleration Links the bodies with the S/C with central gravity accelerations for all celestial

bodies, cannon ball radiation pressure from the Sun, and the aerodynamic ac-
celeration from Earth’s atmosphere. All accelerations are stored in a acceleration
model map.

Set propagation Defines the distance and velocity vectors (initial conditions) used in the propaga-
tion as well as defines the mathematical integrator model (RK78) and the selection
of Cowell’s method.

Propagate Orbit Actual propagation of the orbit based on input values for start and end ephemeris
using the defined bodies and the acceleration and propagation settings. Output is
stored and saved in .dat files.

To summarize, Table 5.5 presents an overview of the used models. All apart from the SGP4 propagator
are in the TUDAT environment, MatLab only uses the SGP4 propagator and NRLMSISE-00 thermospheric
density model.

Table 5.5: The models and their specifics used within this research.

Propagation models

General Perturbation SGP4 (MatLab)
Special Perturbation TUDAT (C++), Cowell’s method

Perturbing forces

Non-spherical Gravity WGS-84, Spherical Harmonics up to degree 5
Solar Radiation Pressure Cannon ball radiation pressure, Ar e f assumed constant 1U
Atmospheric Drag Thermospheric density from NRLMSISE-00
Third-Body Perturbations Earth, Moon, Sun, Mars, and Venus

Integrator

Variable step-size, Explicit

Runge-Kutta Fehlberg 7(8)
absoluteErrorTolerance = 1.0E-12
safetyFactorForNextStepSize = 0.8
maximumFactorIncreaseForNextStepSize = 4.0
minimumFactorDecreaseForNextStepSize=0.1
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5.2. Ballistic Coefficient Estimation
The propagation model has been discussed, and its implementation shall be verified later in this chapter.
One of the two main aspects of this research focuses on the estimation of an object’s ballistic coefficient - that
method is discussed in more depth here. in short, the CubeSat and spherical satellite databases are analyzed
to detect whether any set of sphere (parent) and CubeSat (child) can be found that experience near-similar
atmospheric conditions. To establish whether a match occurs, a proximity algorithm has been set up. When
a match, or a group of matches, have been found, the model-dependent ballistic coefficient of both objects
are determined by examining the mean motion difference retrieved from the TLE data and combining that
with the expected density output of NRLMSISE-00 for that specific trajectory. The resulting two βM values
have atmospheric density errors induced by NRLMSISE-00 incorporated in them, though due to having ex-
perienced near-similar atmospheric conditions the ratio between the two βM values and the true βT values
are the same. Hence, with βT known for the parent, an estimated βE for the child can be established.

Important details to this method include a TLE filtering algorithm, the development of the proximity algo-
rithm, and eventually the establishment of an iterative βE estimation procedure. These aspects are discussed
further in this section.

5.2.1. Two-Line Element Filtering

Every propagation performed in this research has its initial conditions and object characteristics derived from
Two-Line Element data. The proper transformation from TLE data to initial conditions in the J2000 frame
have been discussed in subsection 5.1.3. Though the TLE are not solely used for derivation of initial condi-
tions - they are also used to assess an object’s mean motion difference, as well as used to create verification
orbits. The first, the assessment of the average mean motion and mean motion difference, is key to this β
estimation method, and if possible corrupt or bad TLE data are preferably removed from the TLE database
before usage. Such a TLE filtering algorithm has been set up performing a set of three filtering procedures in
accordance with J.T. Emmert’s paper[13].

J.T. Emmert argues that the TLEs are preferably not to be taken directly after each other, but that a separa-
tion of preferably three days is required when selecting an optimal TLE set. This is to ensure a better reading
of the change of mean motion - with the difference and absolute mean motion being from here on associated
to an epoch in the middle of the two TLE sets. Referred to as the 3-day monotonicity, this filter has been in-
corporated in this thesis’s algorithms.

Apart from solely a selection based on the julian dates of the epochs (3 days difference), a filtering based
on the mean motion (element 8 on Line 2 in the TLE) can ensure TLEs containing a rise in orbit due to for in-
stance actively controlled thrusters are discarded as well. Logically, when considering passive satellites solely
experiencing drag, the mean motion is expected to rise. For a 3-day separated TLE set, a negative mean mo-
tion difference is expected to be seen, any positive difference implies either a maneuver to have taken place
or noise in the TLE time series is present - these TLE sets are obviously filtered out.

A third and final filter is incorporated, one that dictates that no match between parent and child is to be
made within 30 days of an object’s re-entry with the atmosphere as the rapid orbital changes experienced in
this phase are deemed to increase the noise of the observation data. The filter is easily applied by determining
the epoch of the match and compare that with the re-entry epoch, if that exists for either the parent or child
historical TLE set.

In his paper J.T. Emmert incorporates two additional filters, one to filter out highly elliptical orbits and
deep space objects, and another determining the Drag-to-Noise ratio of an object to be able to exclude objects
with a too low mass or too low reference area which could result in inaccurate atmospheric drag readings. As
the initial CubeSat and spherical satellite databases consist solely of (near-)circular LEO spacecrafts, it has
been decided to not incorporate these two filters as it would not result in any filtering from those databases.
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5.2.2. Proximity algorithm
The atmospheric error can only be canceled out if the atmospheric conditions between the matched par-
ent and child objects are considered near-similar. Looking at Figure 5.3 and Figure 5.4 it can be seen that
thermospheric densities varies primarily over inclination, right ascension of the ascending node, epoch, and
altitude. Figure 5.3 clearly demonstrates a variation at the two different epochs, as sthe gas composition can
be seen to change significantly between the year 2000 and 2006 for a same altitude - indicating the impor-
tance epoch and altitude have when trying to establish the aforementioned similar atmospheric conditions.
This document has elaborated on that in section 4.2 where the contribution a varying gas composition has
on the CD of an object and the impact this has on the ballistic coefficient is discussed.

Figure 5.3: Altitude profiles of atmospheric mass percent concentrations for low (left) and high(right) solar activity
levels, according to the NRLMSISE-00 model, evaluated over Delft, at 18:00 on July 15, 2000 and 2006[11].

Having established epoch and altitude as prime criteria, Figure 5.4 demonstrates how determining an
inclination and RAAN range are important as well. Though this figure only represents a single epoch, it can
clearly be seen that there is a density variability spread over the Earth, at the altitude of 400 kilometer in
this particular case. Same as goes with the altitude and gas composition profile, these contour maps change
considerably over altitude and epoch - an object with an inclination of 5° and RAAN of 30° will most likely
encounter vastly different mass densities as opposed to an object with an inclination of 55° and RAAN of 10°
orbiting Earth at the same altitude. For this reason, inclination and RAAN have been selected to form the
other two criteria for the proximity algorithm. Note that in this particular case the wording ’proximity’ is not
directly related to absolute position but whether the orbital parameters of the two objects are within prede-
fined criteria ranges.

Within the proximity algorithm, these criteria for these four orbital elements have to be set up to optimize
the number of potential matches whilst still ensuring only small thermospheric density deviations. Ideally,
one would aim to keep the range on epoch within a mere few days and the altitude in the tens of kilometer
range as these two are most defining for the density variations, however, regarding the perfect ranges for these
criteria nothing much can be said at the moment.

In chapter 6 it shall be mentioned that multiple groups are established for this research, all with different
criteria sets. The specific values for these sets are clearly stated there, and are selected to later in chapter 7
discuss the influence certain ranges might have on the quality of the parent-child matches. To summarize,
the four orbital element selection criteria are presented below order to their assumed priority in minimizing
the range for that particular criteria:
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Figure 5.4: Maps of modelled density at 400 km altitude,on July 15, 2006 at 18:00:00 UTC (F10.7=70.2, ap=3). The map
projections are, from left to right, a Winkel Tripel projection, and two orthographic hemispherical projections centered

on the geographic South Pole and North Pole[11].

• 1)Epoch

• 2) Altitude

• 3) Right Ascension of the Ascending Node

• 4) Inclination

The criteria for determining whether a parent, being it a spherical satellite or a CubeSat with itsβE already
estimated, can be paired with a child (always CubeSats) have now been established - the exact values follow
in chapter 6. The proximity algorithm initiates with converting all TLEs in the spheres and CubeSat databases
to their orbital elements using the SGP4 propagator. This output is stored, together with their respective row
number for look-up purposes. A series of for-loops iterates over these four criteria and establishes when all
criteria are met, consecutively storing the corresponding row numbers of the paired TLEs. It is possible multi-
ple instances occur when objects meet each other - in that case the algorithm selects the TLEs corresponding
to the largest spread between first encounter and last encounter. For example, if object 1077 meets object
3022 on two occasions, once covering only twenty matching TLEs and the other covering 430 matching TLEs,
the latter is chosen as the best match between these objects.

There is one more step necessary before the ballistic coefficient for the CubeSats can be determined, and
that is to select the Julian dates and corresponding TLEs that cover the aforementioned evaluation period te

of 30 days. Taking the example mentioned above, the middle of the 430 TLEs is selected as the centre point
and the TLEs spanning 15 days before and after this point are stored as the TLE set to be used for the βE es-
timation. In the end, the large initial sphere and CubeSat databases have been reduced to solely comprise of
matched objects with for at least 30 days of overlapping TLE data.

5.2.3. Ballistic coefficient estimation
Estimating the ballistic coefficient of the objects in the CubeSat database, B E?

A , requires the computation of
two other ballistic coefficients first - namely B M

A and B M
S . The subscripts A refers to the child, or CubeSat, ahd

S to the parent. This is done in accordance with Equation 4.4, though this does require some attention. First
of all, lets focus on the numerator, which essentially is the portion related to the orbit-derived mass density:

2

3
µ2/3[nM (ti j )]−1/3∆i j nM (5.1)

As mentioned, ti j is defined as a TLE pair at least covering 3 days, and evaluated at its mid-point. Over this
set, the mean and difference between the Kozai mean motions are determined. In order to later divide this by
the denominator, the amount of data points will have to be the same. Therefore, for every mid-point position
of a TLE pair data points for the mean and difference in nM are determined, resulting in a set of epochs in
Julian dates with the two corresponding ∆i j nM and nM (ti j ). The epochs are rounded to their nearest minute,
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after which the ∆i j nM and nM (ti j ) are interpolated with an integration time step tstep of 1 minute. Hence, a
m x 3 matrix is created with the first column being the Julian data, the second the interpolated average of the
mean motion, and the third the interpolated difference of the mean motion.

The denominator represent the portion related to the model-estimated mass density, and consists of the
density ρM , its orbital velocity v and the wind factor F :

∫ ti

t j

ρM v3F d t (5.2)

For each TLE pair in ti j there is a start and end epoch. The algorithm takes the starting TLE and, with the
SGP4 propagator, integrates to the end epoch of the TLE pair with a integration time of again 1 minute. The
output are the position and velocity vectors in the TEME-frame, see section 2.1. The velocity vector, contain-

ing vx , vy and vz are used to compute the v parameter through v =
√

v2
x + v2

y + v2
z . With the same data in the

TEME-frame, the wind factor is computed in accordance with Equation 5.3. This wind factor is an approxi-
mation which King-Hele[22] argues to be a suitable one compared to for instance more realistic wind models
such as HWM-07.

F ' (1− r w

v
cos(i ))2 (5.3)

where r is the distance of the object from the centre of the Earth, w the angular velocity of the Earth’s
rotation, and i is the angle of inclination of the orbit. The plot at the third row, second column position in
Figure 5.9 shows the approximation in comparison to the HWM-93 model.

The final parameter from Equation 5.2 is the model-estimated mass density, which in the software re-
quires an additional few steps before this value is computed. The procedure below describes the acquisition
process of these mass density values. Keep in mind that the same vector length as for the velocity v and wind-
factor F is used - that is, the total integration period with time-steps of one minute.

• Step 1: Determine epoch dates for integration period.

• Step 2: Determine xp and yp values to account for polar motion, see section 2.1.

• Step 3: Convert position and velocity vectors from TEME to ECEF in the WGS-84 system.

• Step 4: Acquire APH values corresponding to the integration period.

• Step 5: Initiate NRLMSISE-00 model with ECEF geodetic λ, φ, altitude, date, and APH values. For
additional settings, see subsection 5.1.1.

• Step 6: Store total mass density output from NRLMSISE-00.

Equation 5.2 is at this point evaluated over the integration period and subsequently used to divide Equa-
tion 5.1 resulting in the B M

∆t (ti j ). Having performed this for both B M
A and B M

S (the model-dependent ballistic
coefficients for parent and child), and with the value of B E

S pre-determined (the ’true’ ballistic coefficient of
the parent), B E?

A from Equation 4.3 is estimated and assigned to the respective child object.

To summarize, for each object, its ballistic coefficient is computed using its historical TLE observation
data and the thermospheric density model NRLMSISE-00. The ballistic coefficients, B M

S and B M
A , both have

an error introduced to it based on the errors in the density model, see section 3.4. However, this error is
mitigated using Equation 4.3 through assessing the ballistic coefficient of the parent, here B M

S experiencing
similar atmospheric conditions, and whose ballistic coefficient, B E

S , is predetermined and more accurately
known. In this manner, a ballistic coefficient B E?

A relieved of most of its atmospheric error is computed. Fig-
ure 5.5 shows the output ballistic coefficients on the left-hand side of Equation 4.3 of the matched spherical
parent Westpac and the child CubeSat DTUSAT. As expected, the ballistic coefficients of both objects varies
quite significantly over time, dominantly through atmospheric errors, and potentially also due to the object
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tumbling or TLE observation errors, though the general trend for both objects are reasonably similar. When
evaluating Equation 4.3, the mean of both B M

S and B M
A are taken to compute B E?

A .

Figure 5.5: Example of left-hand side of Equation 4.3 for the matched spherical parent Westpac (blue) and the child
CubeSat DTUSAT (black). The averaged lines for both satellites are considered to be B M

S and B M
A respectively.

5.2.4. Iteration procedure
The β estimation procedure above describes the steps necessary to first determine whether a child object is
experiencing the same atmospheric conditions as a parent object and how consecutively a model-based B E?

A
was estimated. With the newly acquired B E?

A , other objects within {A} (the child object dataset)could poten-
tially have its ballistic coefficient estimated as well - after all, child of the first iteration might come within
range of other objects in CubeSats that the original spheres didn’t come even remotely close to. This can have
an escalating effect, where for instance in the first iteration a single parent object meets three child objects,
which in turn find an additional few child objects each, and so forth. This iteration procedure is initiated
relatively simple. At the end of each iteration round, all child objects with a B E?

A are removed from the child
database and used to create a new parent data set.

Once indeed the algorithm detects no new matches being found, the algorithm terminates. Depending
on the initial epoch and orbital element criteria set at the start, the group of CubeSats will have their ballistic
coefficients estimated. A small note, a child object could potentially have been interacting with more than
one parent object and have thereby its B E?

A estimated multiple times as well. In that case, mean for the mul-
tiple ballistic coefficients have been taken for that specific NORAD identifier.

Since the estimation of a new B E?
A takes roughly six minutes computation time on the set-up used for this

thesis, intermediate data saves have been incorporated in the software. After each B E?
A estimation, the value

is stored both externally in an Excel file as in a .mat matrix. The β estimation software is thus only required to
run once and is not required every time a new orbital lifetime is predicted. However, as a future recommen-
dation, it could be beneficial to translate the code to C++ and have the computational time reduced.
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5.3. Varying Drag Coefficient
Theoretically the drag coefficient is dependent on the ambient gas composition, the satellite’s geometry, and
its freestream velocity. As shown in Figure 4.1, a range of drag coefficients for cubical and spherical shapes
can be observed throughout the lower (<1000km) regions of the atmosphere. Furthermore, in section 4.2 the
energy accommodation coefficient α modeled by Pilinski[41] using Langmuir’s isotherm, was also discussed
demonstrating the effect anomalous oxygen has on the total drag coefficient. Though the aforementioned
drag coefficient range was between CD = 2.0 and CD = 3.5, still a constant CD = 2.2 is generally considered
when computing the ballistic coefficient of an object orbiting Earth in LEO - an assumption that introduces
a potential error source during orbit propagation. This section shall describe the process on how the theo-
retical background is incorporated in the software algorithms, that is in the ballistic coefficient estimation
software as well as in the orbit propagation software.

Figure 5.6: Visualization of ballistic coefficient estimation and the corresponding drag coefficients used in Equation 5.4

Figure 5.6 visualizes the process of estimating βC 2 and consecutively propagating Cube C2 - a process
similar to what shall eventually be performed to all βE estimations for the scenarios described in chapter 6.
In this particular case, sphere S1 matched with Cube C1 and had its β?cubeC 1

estimated. After a time interval

the orbital parameters of Cube C1 approaches those of Cube C2 and in a similar fashion β?cubeC 2
, or βC 2 is es-

timated at that particular epoch. Eventually Cube C2 is propagated with a modified βC 2 value to compensate
for the changed CD .

One should keep in mind that at each β estimation epoch a CD is associated. Apart from documenting
the β?M , it is also key to document the associated CD value. If at another epoch the β?M is required again,
whether it is for a new β estimation or for propagating purposes, its value will have to modified in accordance
to Equation 5.4 to accommodate for the drag coefficient at that particular epoch. The assumption for this to
be valid is that the mass and frontal area of the target object remains constant over time and thus the only
varying parameter in the β computation is that of the drag coefficient.

β j =βi
CD, j

CD,i
(5.4)

where the subscript i corresponds to the epoch at which that particular β was estimated and j the epoch
at which β is again called upon. During orbit propagation the initial ballistic coefficient β j would thus have
to predetermined after which the drag coefficient is to be constantly computed and updated throughout the
propagation period. The formulation for the β estimation as described in eq. (4.3) hence becomes:

B E?
A = B M

A

B E
S

B M
S

CD,S, j

CD,S,i
(5.5)

For example, the ballistic coefficient of a spherical satellite with known diameter and mass is initially de-
termined by assuming a CD,i = 2.2, yet at the epoch at which Equation 5.5 the actual CD, j is computed and
turns out to be 2.3 Hence the B E

S is adjusted in accordance to the ratio described in Equation 5.4. The resulting
B E?

A, j is saved, though with its own respective epoch-associated drag coefficient according to its geometry. If
B A is also a sphere, the same value of CD = 2.3 can be stored. However, as for this research B A is a CubeSat, the
CD, j for this geometry is computed simultaneously and stored along with B E?

A . For any future computation
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with B E?
A , the associated CD is used as the CD,i value to be inserted in Equation 5.4.

5.3.1. Algorithm implementation
In order for the varying drag coefficient to be computed both during the propagation and for adjustment of
the βE estimations, three separate algorithms have been written. These three algorithms relate directly to the
theory from section 4.2, namely the calculations for the CD of a sphere and a cube, and the calculations using
Langmuir’s isotherm to model the energy accommodation coefficient:

• CD cube - considers a non-rotating stabilized 1U CubeSat and derives the total drag coefficient by ana-
lyzing the impact the gas mixture has on each panel.

• CD sphere - applicable for a spherical object and derived the total drag coefficient as a function of
the kinetic temperature of the incoming particles Tk,i and the kinetic temperature of the re-emitted
particles Tk,r .

• Langmuir’s isotherm - calculates the energy accommodation coefficient α as a function of presence of
atomic oxygen in the ambient gas mixture. α is a required parameter for the two above scripts.

The scripts have been written in both MatLab and C++, such that it can also be used in the TUDAT propa-
gation program during the propagation period. The software architecture is similar for the two programs, and
is displayed in Figure 5.7. The MatLab scripts are stand-alone and are just to adjusts a set of βE estimations
given the epoch and altitude of the matched objects are also provided. These two are needed to allocate the
parent’s and child’s CD to that specific epoch.

Figure 5.7: Inputs and outputs for the drag coefficient computation for an object at an arbitrary position. The input
NRLMSISE-00 data is respective to that position.

An important aspect of having the capability to assess an object’s drag coefficient is that this can now be
combined with the output of the initially estimated ballistic coefficients B E?

A . For the objects which have had
their β estimated, it is possible to adjust their β values without re-running the whole β estimation procedure.
By using Equation 5.6 the ratio between CD, j and CD,i together with the ratio of βC 1ol d

and βC 1,i are used to
update the ballistic coefficients.

B E?
A = B M

A

B E
S

B M
S

CD,S, j

CD,S,i
(5.6)

In order to do so, all that is required is a list of corresponding CD values for each object at epoch at which
they were matched with their parent satellite - for the first iteration these values would of course need to be
computed with the CD sphere algorithm, all the others are computed with the CD cube algorithm. An im-
portant note though for this computation - the average density and temperature output from NRLMSISE-00
evaluated over one revolution starting at the epoch is used as input for these functions. This is to retrieve an
accurate representation of the average felt CD instead of a value associated with specific position, which as
can be seen in Figure 5.4 can vary over latitude and longitude.
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5.4. Verification
Having discussed the theory behind the methods described in this chapter and elaborated on the software
implementation of the theory, this final section focuses on verifying the correct implementation of the soft-
ware. Literature essential for this research, such as the work of J.M. Picone[39], M.D. Pilinski[41], and E.
Doornbos[11], provided (graphical) data with which the software implementations can be verified. Out-
put position and velocity coordinates from the SGP4 and TUDAT propagator are also investigated to ensure
proper usage of the reference frames and proper transformations between those two.

5.4.1. SGP4 and TUDAT
An arbitrary satellite was chosen to verify the propagation outputs from the SGP4 propagator and the TUDAT
propagation model. The selected object was 37851, in which in Figure 5.8 the position and velocity coor-
dinates in the TEME reference frame are depicted. The red line represents the output data from the SGP4
propagator and the black dotted line that of the TUDAT propagator. The verification has been performed by
starting at the same time, T0, though for demonstration purposes the SGP4 propagation results, or the red-
line, are appearing in the graph after roughly 3000 seconds to ensure the black dotted line is still visible and
not continuously overlapped by the red line.

Figure 5.8: Software verification of object 37851 demonstrating correct reference frame usage for SGP4 and TUDAT
propagation models.

As can be seen, the data overlaps each other - which was to be expected, especially close with the data
being so close to the T0. If one were to either zoom in or extend the propagation for a couple of weeks, devia-
tions between the SGP4 verification orbit and TUDAT propagation would logically start to appear. However,
the sole purpose of Figure 5.8 was to demonstrate similar initial conditions are used for both propagators,
initial conditions derived from Two-Line Elements to the TEME frame, converted to the J2000 ECI frame for
propagation with TUDAT, and when converted back to the TEME ECI frame it proved to still be overlapping
each other. Concluding, it can be stated that the reference frame transformations are performed properly and
in accordance with the theory described in section 2.1.
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5.4.2. Ballistic coefficient estimation
This section discusses the verification process for the β estimation procedure. The theory behind this pro-
cedure is largely based on work of J.T. Emmert[13] and J.M. Picone [13][39]. In their papers, they provide
intermediate figures and datasets of their steps, related mostly to Equation 4.4. These figures have been re-
produced using the details provided in their papers.

The focus of the verification process for theβ estimation software lies in three components - TLE element
conversion, NRLMSISE-00 usage and atmospheric error computation. Demonstrating the software is ca-
pable of reproducing the data mentioned before and performing these three components accordingly shall
be considered prove of verification.

Figure 5.9: Software verification for computation of mass densities, velocities, velocity factors [F], and altitude of
Explorer 6 (NORAD 60). Left side is the developed software and on the right side the graphs from Picone’s work[39].

Starting with Figure 5.9, the right hand side showcases the original figures of J.M. Picone, with on the left
hand the figures resulting from the thesis software. Present are the density, v3, windfactor, and altitude of
NORAD object 60 (Explorer 8) on the 30th of March 2000 from 00:00 UT to 06:00 UT. The data match each
other perfectly, verifying the capability of downloading an arbitrary TLE dataset, convert the data to TEME
coordinates using SGP4 and consecutively transform this to the ECEF frame. Furthermore, it verifies correct
NRLMSISE-00 usage and the computation of the windfactor approximation.

The verification of the above five points form the backbone for the B E?
A estimation, which shall be dis-

cussed now. As mentioned, the B E?
A is basically the orbit-derived mass density from the TLE data divided

by the model-estimated mass density from the NRLMSISE-00 model. In his paper, Picone[39] provides the
ratio of observed effective density to the NRLMSISE-00 effective mass density for again the Explorer-8, yet
now computed over the full year 2000. This figure, shown in Figure 5.10, showcases the atmospheric error the
NRLMSISE-00 model has over that year compared to the TLE data. With the β estimation software, this figure
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has been reproduced, see Figure 5.11. The capability of the software to compute B E?
A is henceforth verified.

Figure 5.10: The ratio of the observed effective density to the NRLMSISE-00 effective model density, computed from
TLEs (SGP4) and from SP state vectors/B-values for Explorer-8 during 2000. The nominal integration time interval for

the TLE-based density ratio, equation (22), was 3 days, as was the SP fit span[39]

Figure 5.11: Reproduced Figure 5.10, demonstrating the capability of reproducing the ratio of observed effective density
to the NRLMSISE-00 model and the effective density retrieved from analysis of historical TLE data .

To summarize, a verified software tool has been created that is capable of estimation ballistic coefficients
of objects orbiting Earth in near-similar atmospheric conditions as that of the initial dataset consisting of
spherical satellites. The next section shall elaborate on the incorporation of a variable drag coefficient, de-
pendent on the local gas composition and temperature. Similar to this chapter, the theory shall be elaborated
on first, followed by the implementation and eventually the verification.

5.4.3. Variable drag coefficient
Verifying the software is key before use can be made during the propagation. This verification process is per-
formed in two phases - first, a Matlab script is made and verified with the literature of Doornbos and Pilinski.
Second, the script is translated to C++ and incorporated in the TUDAT library, where it is again verified with
data from Doornbos. The reasoning behind this is that Matlab allowed for rapid prototyping and debugging,
saving quite some time before implementing the code in C++. Moreover, now the same scripts can be called
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upon in both Matlab and TUDAT, instead of solely in TUDAT.

Starting with Seltman’s rarified aerodynamics equations, the related equations are used to provide drag
and lift coefficients as a function of angle θ and molecular mass. Figure 5.12 demonstrates the results Eelco
Doornbos has from his work[11] at the top half and the values retrieved from the MatLab script on the bot-
tom half. The molecular mass associated to these plots is that of the oxygen atom, thus m j = 16, assuming a
velocity of 7600m/s and an energy accommodation coefficient α= 1.0.

Figure 5.12: Verification of drag coefficient computation for a flat plate. Top side is data from E. Doornbos[11] and the
bottom part are the recreated values from the Matlab script.

Clearly, the two profiles correspond, and therefore verify the script’s capability of deducing a CD and CL

value from an arbitrary plate under arbitrary gas composition outputs from NRLMSISE-00. A note on the 90
degree angle and non-zero drag coefficient - the random thermal motion of the gas particles also impact the
plate when it is parallel to the velocity vector, which creates a small yet notable drag coefficient contribution.
It is due to this phenomena that slender satellites experience higher CD values than their shorter counter-
parts.
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Following a similar fashion, the drag and lift coefficient as a function of energy accommodation coeffi-
cient are verified by recreating Figure 5.13, where the top is from Eelco Doornbos[11] and the bottom from
the Matlab script. The same velocity and molecular mass is used (7600 m/s and 16 kg/mol), yet the plate’s
orientation is set as perpendicular to the flow field. Finally, the energy accommodation coefficient is verified
with data from Pilinski and Doornbos in Figure 5.15. Here, the constant K as described in Equation 4.19 has
been set to 7.50 x 10−17.

Figure 5.13: Verification of CD and CL computation for a panel as a function of gas particle mass. Top side is data from
E. Doornbos[11] and the bottom part are the recreated values from the Matlab script.

From verifying Figure 5.12, Figure 5.13, Figure 5.15, and Figure 5.16 the following can be said about the
implementation of the drag coefficient determination software based on the interaction between flat panels
and the ambient gas mixture:

1) CD and CL for a plate under arbitrary θ can be calculated.
2) The incorporation of α is done correctly.
3) Langmuir’s isotherm follows the procedure described by Pilinski[41]

In a similar fashion as done with Figure 4.2, Figure 5.14 presents the drag coefficient algorithm output of
an arbitrary sphere under solar maximum and minimum conditions for two constant energy accommoda-
tion coefficients (0.8 and 1.0), as well as computed with Langmuir’s adsorption model. The CD ranges from
2.0 to 2.3, a much lower spread compared to the CubeSats, though this was expected through the discussion
held in section 4.2.
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Figure 5.14: CD algorithm output for an arbitrary spherical satellite for different energy accommodation coefficients as
a function of altitude.

Having described the methodology for estimating βE values and adjusting them for the varying drag co-
efficient, both for a constant α = 0.8 and according to Langmuir’s adsorption model, the software implemen-
tations have consecutively been verified and deemed ready for usage. The next chapter elaborates on the
experimental set up and which spherical satellites and CubeSats are having their ballistic coefficients up-
dated.

Figure 5.15: Verification of the CD,cube software (bottom) with Doornbos’s work[11](top). From left to right, the θ angles
are 90, 45, and 0 degrees respectively.
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Figure 5.16: Verification of Langmuir’s isotherm and the energy accommodation coefficient as a function of altitude and
solar activity inputs. Top side is data from Pilinski[41] and the bottom part are the recreated values from MatLab.
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Experimental Set up

The objects that are to be subjected to the methodology described in chapter 5 are described in this chapter
- both the initial parent dataset consisting of spherical satellites as the child dataset consisting of 1U Cube-
Sats. For all satellites, a distinction is made between objects still orbiting Earth and those that already have
re-entered the atmosphere. Within these two categories, the in-orbit or re-entry category, the proximity al-
gorithm is used to establish three satellite groups for the in-orbit category and two for the re-entry category.
The satellite composition of these groups are discussed in section 6.1.

These satellite groups are all subjected to four propagation scenarios that have been established to prop-
erly assess the accuracy of the estimated ballistic coefficients, the adjusted βE values for the varying drag
coefficient, and another where the energy coefficient follows Langmuir’s adsorption model. These scenarios
and the assessment merits through which the performance is quantified is discussed in section 6.2.

6.1. Satellite Test Group
This thesis focuses on orbital lifetime prediction updates for the CubeSat community, and more specifically
for a method for estimating ballistic coefficient for CubeSats in the 1U class. Selecting this class is based on a
simple need - to have a large set of test objects with comparable geometric properties. CubeSats are increas-
ingly present in Low Earth Orbits (LEO) due to recent advancements in satellite miniaturization and launch
cost reductions, resulting in hundreds of potential candidate objects over the last ten years. Moreover, the
dimension standardization for CubeSats allows the candidate objects to be easily categorized according to
their geometries.

Apart from the CubeSat database of test objects, a database containing spherical satellites have also been
set up, which as discussed in section 4.1 function as parent objects in the first iteration. Due to their geome-
try the observed reference area of the satellite is independent of their attitude, which allows for the ballistic
coefficient estimation of the CubeSat test objects when both a sphere and Cube are experiencing the same
atmospheric conditions, more on this in subsection 5.2.2.

6.1.1. CubeSat database
A CubeSat is a miniaturized satellite with as primary mission providing affordable access to space for small
payloads - whether for commercial, educational, scientific, or technology demonstration purposes. Started
in 1999, the purpose of the CubeSat Program was to provide a standard for design of picosatellites to reduce
cost and development time, increase accessibility to space, and sustain frequent launches[54]. A CubeSat is
build up in Units, with a single Unit (1U) being a 10 x 10 x 10 cm cube with a mass of up to 1.33 kg. If a mission
desires, these cubes can be grouped together to form 2U, 3U, or sometimes even 6U and 12U satellites.

Due to their sizing limitations, functionality of a single CubeSat does not compare to that of a classical
larger satellite. Yet advancements in miniaturization, in-orbit inter-satellite cooperation, and the cheap de-

55
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velopment and launch cost have seen the volume of CubeSats present in LEO grow exponentially over time -
in mid-February 2017, a PSLV has delivered 104 different satellites into orbit in a single launch, of which 80+
were 3U CubeSats. Such volume growths and complex launch operations are unprecedented in the space
business and is one of many signs that industry is starting to embrace this sector and nurture its growth.

The dimension standardization is however not a guarantee that all 1U CubeSats are exactly the same -
there are still numerous design possibilities enabling 1U CubeSats to exceed the initial 1U volume once in-
jected into their orbit.Deployable solar arrays, antennae, or baffles, show that not all CubeSats will have the
same reference area. Figure 6.1, Figure 6.2, and Figure 6.3 show three different 1U CubeSats, each with their
own design and outer dimensions, to give the reader a feel for the variability in deployed outer dimensions.
As a final note, there are missions that have active stabilization while others might just be tumbling through
space. This has an impact on the computation of experienced drag acceleration, as tumbling 1U CubeSats
will have a changing and generally larger reference area as opposed to an actively stabilized CubeSat. Though,
as discussed in section 4.2, during the drag computations all CubeSats are considered to be active attitude-
controlled with only one panel directly facing the freestream velocity to avoid additional complexity and
computation time.

Figure 6.1: Aerocube 4 (NORAD
38769)

Figure 6.2: AAU CubeSat (NORAD
27846)

Figure 6.3: Duchifat-1 (NORAD
40021)

A database has been set up consisting of 96 1U CubeSats which have been placed in LEO between January
2009 and December 2016, resulting in two sub-categories:

• Re-entry group - consisting of roughly 25 CubeSats deployed from the ISS or at the same altitude as the
ISS. These ISS deployed CubeSats have almost all already re-entered. This sub-category shall be used
when evaluating the effectiveness of the proposed orbital lifetime estimation in the lower part of the
thermosphere and closer to the end of life of an object. The assessment merit shall be the decay epoch,
see section 6.3.

• In-orbit group - the majority of the CubeSats have been injected at orbits above 500 kilometer and
are still orbiting Earth. This sub-category is used to evaluate how estimating βE and incorporation a
varying CD affects the prediction of altitude decay. The assessment merit shall be the mean altitude of
the last 10 orbits of the object compared to a verification orbit, see section 6.3.

The database solely consists of the satellite’s name and NORAD designator - see Table 6.1. As the ballistic
coefficients of these objects shall be estimated according to the procedure discussed in section 4.1, no data
on the mass and reference area is stored. An attempt has been made to get an accurate initial mass and ref-
erence area, yet often the information provided in the satellite’s data sheet proved to be too inaccurate and
inconsistent to be used. Instead, the following three values for the mass, reference area and drag coefficient
are assumed for all 1U CubeSats:

The reference area is larger than the standardized 10 cm x 10 cm dimensions for a 1U CubeSat, and has
been intentionally increased to 12.5 cm x 12.5 cm (hence the 0.01562 m2) as it is assumed that most of the
CubeSats are not actively controlled and thus experiencing a tumbling behavior. Secondly, a drag coefficient
of 2.8 has been selected as initial estimate when computing the βE based on Figure 4.1.
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Table 6.1: 1U CubeSat database - total of 96 objects present

Name NORAD ID

DTUSAT 27842
CUTE-1 27844
AAU CUBESAT 27846
CANX-1 27847
CUBESAT XI 4 27848
NCUBE-2 28897
UWE-1 28892
CUBESAT XI 5 28895
EGYPTSAT 1 31117
CSTB 1 31122
LIBERTAD 1 31128
CP3 31129
CAPE 1 31130
CP4 31132
AEROCUBE 2 31133
COMPASS 1 32787
AAUSAT CUBESAT 2 32788
SEEDS 32791
SDS-1 33497
CP6 35003
HawkSat I 35004
AEROCUBE 3 35005
SWISSCUBE 35932
BEESAT 35933
UWE-2 35934
ITUPSAT 1 35935
HAYATO 36573
Waseda-SAT2 36574
Negai 36575
DICE 1 37851
DICE 2 37852
AUBIESAT-1 37854
M-CUBED/EXP-1 PRIME 37855
ROBUSTA 38084
UNICUBESAT 38085
SDS-4 38339
CP5 38763
AEROCUBE 4.5A 38767
AEROCUBE 4.5B 38768
AEROCUBE 4 38769
FITSAT-1 38853
TechEdSat 38854
F-1 38855
We-Wish 38856
AAUSAT3 39087
SOMP 39134
BEESAT 2 39136
PhonesSat Bell 39142

Name NORAD ID

PhoneSat Alexander 39144
PhoneSat Graham 39146
NEE 01 PEGASUS 39151
CUBEBUG 1 39153
ESTCUBE 1 39161
PHONESAT 2.4 39381
ArduSat1 39412
ArduSatX 39414
ZACUBE 39417
WNISAT 1 39423
BRITE-PL 39431
ICUBE 1 39432
HUMSAT D 39433
WREN 39435
VELOX-P 2 39438
FIRST-MOVE 39439
NEE 02 KRYSAOR 39441
PUCP-SAT 1 39442
FUNCUBE 1 39444
HINCUBE 39445
UWE-3 39446
MCUBED-2 39469
CUNYSAT-1 39470
IPEX 39471
SKYCUBE 39567
UAPSAT 39568
ArduSat2 39571
ITF-1 39573
OPUSAT 39575
KSAT2 39578
BRITE TORONTO 40020
DUCHIFAT-1 40021
NANOSAT C BR1 40024
DTUSAT-2 40030
POLYITAN 1 40042
NLS 7.1/CANX 4 40055
NLS 7.2/CANX 5 40056
FOX-1A (AO-85) 40967
ARC-1 40969
PROPCUBE 3 40973
SINOD-D 1 40974
PROPCUBE 1 40976
SINOD-D 3 40977
OUFTI-1 41458
E-ST@R-II 41459
AAUSAT-4 41460
STMSAT 1 41476
SWAYAM 41607
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6.1.2. Spherical satellite database
In the early space era, calibration spheres where launched into the thermosphere mainly to calibrate radar
systems by detecting the reference area from the ground and match this with the known diameter of the
sphere - any offset between the observed and known area resulted in the radar system being calibrated to en-
sure these values were equal again. This property of calibration spheres to have an observed area irrespective
of its attitude is what makes the β estimation procedure discussed in this thesis possible - the drag experi-
enced by a sphere is uniform regardless of attitude, something that is not the case with tumbling objects of
which the attitude dynamics are unknown or complex to compute.

Preferably, only perfect spheres with a known diameter, mass, and outer material are selected for the
database. These perfect spheres should provide the most accurate estimation of βS , yet selecting a database
with only perfect spheres greatly reduces the number of potential spheres. Therefore, spherical satellites with
an approximate spherical shape have been selected for this database as these still approach a spherical geom-
etry and the property of attitude-independent reference area. A sphere is assumed to approximate a spherical
shape when only small indentations are present yet the overall shape can still be described as a sphere.

Figure 6.4: LCS-1 (NORAD 1361)

Figure 6.5: LARES (NORAD 38077)

Figure 6.6: ANDE-C (NORAD 35693) and ANDE-P
(NORAD 35693)

Figure 6.4 and Figure 6.5 represent the LCS-1 and LARES satellite respectively. Launched on May the 6th

1965, the Lincoln Calibration Sphere 1 has been contributing to the calibration of radar systems for over 50
years now, and is one of the oldest spacecraft still in use. The Laser Relativity Satellites, or LARES, is a passive
satellite launched on the 13th of February 2012 and is being tracked by international laser ranging stations
for measurements of the Lense-Thirring effect. Its data is also used in the fields of geodynamics and satellite
geodesy.

The Atmospheric Neutral Density Experiment (ANDE) satellites depicted in Figure 6.6 have been designed
and used specifically for measurements of thermospheric neutral densities and for use as test object for both
radar and optical U.S. Space Surveillance Network sensors. Their orbit insertion occurred on the 30th of
July 2009. Three different satellite missions have been described here, yet the fact that all three have an
(approximate) spherical geometry makes them suited for this thesis research.
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For this research, a total of 28 spheres have been found and taken into the database. Some of them have
been orbiting Earth for as long as 1965 (LCS-1), whilst others have already decayed in the atmosphere (GFZ-
1). A small survey has been performed to confirm at least a couple of these spheres are within a close orbital
parameter range of the two CubeSat in-orbit and re-entry sub-categories, ensuring at-least a couple of groups
within both categories can be established. The algorithm used for these proximity checks are further elabo-
rated on in subsection 5.2.2.

The spheres shall be used to estimate the βE for the objects in the CubeSat database, and hence accurate
mass and diameter values are required for these spheres. Luckily, better documentation on the spheres exist
as opposed to the documentation of most CubeSats - especially since some of the spheres are used for ther-
mospheric density derivations themselves the open-source information on the mass and diameter are more
reliable. These values have been added to the database, along with the resulting reference area and βspher e .
For the βE computation, a drag coefficient CD = 2.3 has been assumed based on Figure 4.1.

Table 6.2: Spherical satellite database

NORAD CAT ID Satellite Name Mass [kg] Diameter [m] Ar e f β

900 CALSPHERE 1 [24] 0.98 0.356 0.0995 0.2336
902 CALSPHERE 2 [24] 9.8 0.356 0.0995 0.0234

1361 LCS 1 [25] 34 1.12 0.9852 0.0666
1512 TEMPSAT 1 [8] 9 0.356 0.0995 0.0254
1520 CALSPHERE 4(A) [24] 1.96 0.356 0.0995 0.1168
2872 SURCAL 159 [33] 3.8 0.82 0.5281 0.3196
2909 SURCAL 150B [33] 1.5 0.41 0.1320 0.2024
4168 TEMPSAT 2 [8] 9 0.356 0.0995 0.0254
5398 RIGIDSPHERE 2 [20] 34 1.12 0.9852 0.0666
7646 Starlette [42] 47.29 0.24 0.0452 0.0022

22824 Stella [26] 48 0.24 0.0452 0.0022
23558 GFZ-1 [4] 20.63 0.215 0.0363 0.0040
25398 Westpac [42] 23.8 0.245 0.0471 0.0046
25769 STARSHINE [48] 39 0.475 0.1772 0.0105
26929 STARSHINE 3 [48] 91 0.945 0.7014 0.0177
26996 STARSHINE 2 [48] 39 0.475 0.1772 0.0105
27944 Larets [26] 23.28 0.245 0.0471 0.0047
29664 ANDE-RR [42] 52.04 0.4826 0.1829 0.0081
29667 ANDE -Fcal[42] 62.7 0.448 0.1576 0.0058
35693 ANDEP [42] 50 0.48 0.1810 0.0083
35694 ANDEC [42] 25 0.48 0.1810 0.0166
35871 BLITS [42] 7.53 0.17 0.0227 0.0069
38077 LARES [42] 400 0.364 0.1041 0.0006
39267 DANDE [40] 50 0.46 0.1662 0.0076
39268 POPACS 1 [40] 1 0.1 0.0079 0.0181
39269 POPACS 2 [40] 1.5 0.1 0.0079 0.0120
39270 POPACS 3 [40] 2 0.1 0.0079 0.0090
40314 SPINSAT [32] 57 0.558 0.2445 0.0099
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6.2. Propagation scenarios
In coherence with the previously discussed theory and satellite test groups, a total of four different scenarios
are established. These scenarios have been created such that the contribution of the βE estimation and vary-
ing CD can be assessed independently. The objective of the experimental set up is to answer the hypotheses
stated in chapter 1, and to subsequently assess the affectx of including Langmuir’s isotherm to the energy
accommodation coefficient calculations. The scenarios, summarized in Table 6.3, enable a qualitative as-
sessment the estimation of a ballistic coefficient through analysis of historical TLE data and the inclusion of
a varying drag coefficient have on orbital lifetime predictions.

Furthermore, a distinction between the assessment for the two CubeSat categories discussed at the be-
ginning of this chapter has been made. For all CubeSats a 100 day verification orbit based on the historical
TLE data is established. Consecutively scenario 1 creates an orbit propagated with the ballistic coefficient
β0 being set to 0.03125 in coherence with the 1U CubeSat dimensions assumed earlier. The reason for this
scenario is to create a baseline orbit with which the other scenarios can be assessed. All scenarios shall have
errors induced from the propagation model, and to be able to detect a change solely due to any of the methods
described before, a baseline orbit with an unbiased β is created. Elaboration on the assessment is provided
in section 6.3.

Scenario 2, scenario 3, and scenario 4 correspond to first determining the effect of the estimated ballistic
coefficient βE , followed by the orbits of the adjustment for the varying CD with Langmuir’s isotherm, and the
last a scenario in which the energy accommodation coefficient is kept constant at 0.8.

Table 6.3: The eight different scenarios to which the CubeSat database is subjected to and their assessment criteria.

In-orbit groups Re-entry groups

Verification Orbit [-] [-]
Scenario 1 - Baseline orbit with β0 ∆ s.m.a. [km] Re-entry epoch [days]
Scenario 2 - Orbits with estimated β values ∆ s.m.a. [km] Re-entry epoch [days]
Scenario 3 - Orbits adjusted for CD with Langmuir’s isotherm ∆ s.m.a. [km] Re-entry epoch [days]
Scenario 4 - Orbits adjusted for CD with constant α ∆ s.m.a. [km] Re-entry epoch [days]

The propagations shall all be performed over the same evaluation period and assessed according to iden-
tical merits. The details on the assessment are explained further in section 6.3. As will become clear in sub-
section 6.2.1 and subsection 6.2.2, the propagation periods for the in total ten different orbits shall all be 100
days. To keep track of the different ballistic coefficients the following subscripts have been defined:

Table 6.4: Scenario subscript clarification

Baseline β0 - original coefficient of 0.03125
Scenario 2 βE - estimated coefficient
Scenario 3 βCD ,Lang mui r - adjusted for CD with Langmuir’s isotherm
Scenario 4 βCD ,α=0.8 - adjusted for CD with α= 0.8

Throughout the remainder of this thesis report, these subscripts shall be used to refer to the ballistic co-
efficients of the four scenarios. As stated, the CubeSat groups are subdivided in two categories - the in-orbit
and re-entry groups. The next sections shall elaborate on the establishment of a total of five target groups,
based on the orbital element selection criteria and proximity algorithm - three in the in-orbit group and two
in the re-entry group. This chapter shall conclude with a further elaboration on the performance assessment
for each category.
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6.2.1. In-orbit groups definition
The complete TLE database for the spheres and CubeSats have been downloaded and stored, and are sub-
jected to the proximity algorithm described in subsection 5.2.2. The goal of this algorithm is to define a set of
satellite pairs that are within the pre-defined orbital parameter criteria set and are thus experiencing similar
atmospheric conditions. For the in-orbit dataset the minimum altitude has been set at 500 km. Furthermore,
two different criteria sets have been researched to analyze the sensitivity of the initial orbital parameter cri-
teria and secondary to assess the influence of individual iteration group size. The two groups that are re-
searched, together with their orbital parameter criteria, are displayed in Table 6.5 and Table 6.6. Both groups
shall be subjected to the four scenarios where the influence of an estimatedβ and varying CD can be assessed.
Furthermore, in section 8.1 a discussion is held on any notable discrepancies between the two groups which
could lead to more insight in the sensitivity of the orbital parameter criteria selection.

Table 6.5: Orbital parameter criteria for the in-orbit groups

In-orbit Group 1 In-orbit Group 2 In-orbit Group 3

Overall inclination range [degrees] 50 - 110 50 - 110 50 - 110
Overall altitude range [km] 500 - 1000 500 - 1000 500 - 1000

∆max altitude [km] 40 50 25
∆max inclination [degree] 10 10 15
∆max RAAN [degree] 20 20 30
∆max epoch [days] 10 10 10

# of cubes in altitude and inclination range 59 59 59
# of spheres in altitude and inclination range 23 23 23
# of cubes found with proximity algorithm 43 51 52
# of spheres found with proximity algorithm 6 5 6
# of matches from proximity algorithm 146 192 126

Table 6.6: Total satellites in within each iteration for the in-orbit groups

In-orbit Group 1 In-orbit Group 2 In-orbit Group 3

Initial spherical satellites 6 5 6
Total 1U CubeSats 43 51 52

Iteration 1 12 16 12
Iteration 2 3 23 15
Iteration 3 19 6 7
Iteration 4 9 5 11
Iteration 5 0 1 4
Iteration 6 0 0 3

Table 6.7, Table 6.8 and Table 6.9 contain the NORAD identifiers of the CubeSats and spheres for in-orbit
group 1, 2, and 3 respectively, including their iteration number based on the proximity algorithm. Addition-
ally Figure 6.7, Figure 6.8, and Figure 6.9 represent the epoch and altitude of each CubeSat at which they are
matched with their parent satellite, including the 81-day averaged F10.7 solar activity data. In accordance
with Figure 4.2 it is expected to see a decrease in CD when time progresses and the s.m.a. decreases between
i and j, though expansion of the atmosphere due to an increase in solar activity would result in an expected
decrease of the atomic oxygen density number. This would directly affect (increase) Langmuir’s isotherm and
could potentially nullify the β change.

Though an interesting field to study, no additional attention shall be given to the potential influence of
the solar activity on the changingβ values, though it will be mentioned again in the recommendation section.
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Figure 6.7: Altitude and solar activity F10.7 at epochs of matched satellites in in-orbit group 1.

Figure 6.8: Altitude and solar activity F10.7 at epochs of matched satellites in in-orbit group 2.

Figure 6.9: Altitude and solar activity F10.7 at epochs of matched satellites in in-orbit group 3.
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Table 6.7: CubeSats and spheres for in-orbit group 1 - sorted on their iteration.

Satellite composition in-orbit group 1

Spheres Surcal 150B (2909) RigidSphere-2 (5298) Westpac (25398)
Larets (27944) Blits (35871) Lares (38077)

Cubes iteration 1 DTUSAT (27842) CUTE-1 (27844) AAU CubeSat (27846)
CANX-1 (27847) XI-4 (27848) SDS-1 (33497)
SwissCube (35932) BeeSat (35933) Uwe-2 (35934)
ITUPSAT-1 (35935) AAUSat-3 (39087) Brite-PL (39431)

Cubes iteration 2 Dice-1 (37851) Dice-2 (37852) WNISAT-1 (39423)

Cubes iteration 3 EgyptSat-1 (31117) Compass-1 (32787) AAUSAT-2 (32788)
SEEDS (32791) AubieSat-1 (37854) M-Cubed (37855)
ZaCube (39417) ICube-1 (39432) HumSat-D (39433)
PUCP-Sat-1 (39442) FunCube-1 (39444) HinCube (39445)
DuchiFat-1 (40021) C-BR1 (40024) DTUSat-2 (40030)
PolyItan-1 (40042) UFTI-1 (41458) E-Star-1 (41459)
AAUSat-4 (41460)

Cubes iteration 4 Pegasus-1 (39151) CubeBug-1 (39153) EstCube-1 (39161)
Velox-P-2 (39438) First-Move (39439) KRYSAOR (39441)
Uwe-3 (39446) CANX-4 (40055) CANX-5 (40056)

Table 6.8: CubeSats and spheres for in-orbit group 2 - sorted on their iteration.

Satellite composition in-orbit group 2

Spheres Surcal 150B (2909) RigidSphere-2 (5298) Larets (27944)
Blits (35871) Lares (38077)

Cubes iteration 1 DTUSAT (27842) CUTE-1 (27844) AAU CubeSat (27846)
CANX-1 (27847) XI-4 (27848) Uwe-1 (28892)
XI-5 (28895) SDS-1 (33497) SwissCube (35932)
BeeSat (35933) Uwe-2 (35934) ITUPSAT-1 (35935)
Dice-1 (37851) Dice-2 (37852) AubieSat-1 (37854)
M-Cubed (37855)

Cubes iteration 2 EgyptSat-1 (31117) Compass-1 (32787) AAUSAT-2 (32788)
SEEDS (32791) Pegasus-1 (39151) CubeBug-1 (39153)
EstCube-1 (39161) ZaCube (39417) ICube-1 (39432)
HumSat-D (39433) Velox-P-2 (39438) First-Move (39439)
PUCP-Sat-1 (39442) FunCube-1 (39444) HinCube (39445)
Uwe-3 (39446) DuchiFat-1 (40021) C-BR1 (40024)
DTUSat-2 (40030) PolyItan-1 (40042) UFTI-1 (41458)
E-Star-1 (41459) AAUSat-4 (41460)

Cubes iteration 3 CSTB-1 (31122) CP-4 (31132) AeroCube-2 (31133)
KRYSAOR (39441) CANX-4 (40055) CANX-5 (40056)

Cubes iteration 4 Libertad-1 (31128) CP-3 (31129) Cape-1 (31130)
SDS-4 (38339) Brite-PL (39431)

Cubes iteration 5 WNISAT-1 (39423)
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Table 6.9: CubeSats and spheres for in-orbit group 3 - sorted on their iteration.

Satellite composition in-orbit group 3

Spheres Surcal 150B (2909) RigidSphere-2 (5298) Westpac (25398)
Larets (27944) Blits (35871) Lares (38077)

Cubes iteration 1 DTUSAT (27842) CUTE-1 (27844) AAU CubeSat (27846)
CANX-1 (27847) XI-4 (27848) Uwe-1 (28892)
XI-5 (28895) SDS-1 (33497) SwissCube (35932)
BeeSat (35933) Uwe-2 (35934) AAUSAT-3 (39087)

Cubes iteration 2 EgyptSat-1 (31117) ItupSat-1 (35935) Pegasus-1 (39151)
CubeBug-1 (39153) EstCube-1 (39161) ZaCube (39417)
WNISAT-1 (39423) Velox-P-2 (39438) First-Move (39439)
KRYSAOR (39441) FunCube-1 (39444) HinCube (39445)
Uwe-3 (39446) CANX-4 (40055) CANX-5 (40056)

Cubes iteration 3 CSTB-1 (31122) SEEDS (32791) SDS-4 (38339)
Brite-PL (39431) ICube-1 (39432) HumSat-D (39433)
PUCP-Sat-1 (39442)

Cubes iteration 4 Libertad-1 (31128) CP-3 (31129) Cape-1 (31130)
CP-4 (31132) AeroCube-2 (31133) Compass-1 (32787)
AAUSAT-2 (32788) Dice-1 (37851) Dice-2 (37852)
AubieSat-1 (37854) M-Cubed (37855)

Cubes iteration 5 DuchiFat-1 (40021) UFTI-1 (41458) E-Star-1 (41459)
AAUSat-4 (41460)

Cubes iteration 6 C-BR1 (40024) DTUSat-2 (40030) PolyItan-1 (40042)
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6.2.2. Re-entry groups definition
Due to the lack of spheres in this region, three CubeSats which have had their β estimated manually have
been added to the initial database of reference satellites. These cubesats are ITF-1 (39573), F-1 (38855), and
AeroCube 3 (35005). Without the inclusion of these three objects to the initial spherical satellite database no
more than 2 CubeSats were found with the orbital parameter criteria in Table 6.11. The increase in potential
test subjects from 2 to between 17 and 19 justify the choice of adding these CubeSats to the spherical satellite
database. Note though that the expected accuracy of these ballistic coefficients are thus lower than those of
other spherical satellites used in this research.

Table 6.10: Orbital parameter criteria for the re-entry groups

AeroCube 3 [35005] F-1 [38855] ITF-1 [39573]

Ballistic coefficient 0.078571429 0.03125 0.025028

Figure 6.10: Propagated orbit for AeroCube 3 compared to
verification orbit.

Figure 6.11: Propagated orbit for F-1 compared to
verification orbit

Figure 6.12: Propagated orbit for ITF-1 compared to
verification orbit

Table 6.10 contains the manually optimized ballistic
coefficients for the three objects to be placed in the
spherical satellite database. To confirm the values
are accurate, Figure 6.10, Figure 6.11, and Figure 6.12
show the overlap between the propagated orbit (red)
and the verification orbit (blue). The bare visibility of
the blue verification orbits already shows the ballistic
coefficient values have been determined accurate
enough to be placed in the other database.

With the addition of these three satellites, the prox-
imity algorithm is run for the CubeSats which have
already re-entered the atmosphere to acquire two dif-
ferent re-entry groups. The orbital element selection
criteria for these two groups are found in Table 6.11,
along with their initial altitude and inclination range.
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The resulting composition of the re-entry groups is shown in Table 6.11, followed by Table 6.12 and Ta-
ble 6.13 containing the NORAD ID’s of the CubeSats in each respective group.

Table 6.11: Orbital parameter criteria for the re-entry groups

Re-entry group 1 Re-entry Group 2

Overall inclination range [degrees] 0 - 110 0 - 110
Overall altitude range [km] <500 <500

∆max altitude [km] 40 75
∆max inclination [degree] 15 20
∆max RAAN [degree] 30 30
∆max epoch [days] 10 10

# of cubes in altitude and inclination range 23 23
# of spheres in altitude and inclination range 6 6
# of cubes found with proximity algorithm 10 12
# of spheres found with proximity algorithm 4* 4*
# of matches from proximity algorithm 17 22

Initial spherical satellite* 4 4
Total 1U CubeSats 10 12

Iteration 1 7 10
Iteration 2 3 2

The number of objects in both groups are significantly lower compared to the in-orbit group due to the
objects decaying faster in this regime and therefore having a smaller time period in which matches could be
found. Since group 1 and 2 are not that different in composition, it was decided to keep with only two groups.

Table 6.12: CubeSats and spheres for re-entry group 1 - sorted on their iteration.

Satellite composition re-entry group 1

Spheres* AeroCube-3 (35005) ITF-1 (39573) SpinSat (40314)

Cubes iteration 1 CP-6 (35003) HawkSat-1 (35004) FitSat-1 (38853)
TechEdSat (38854) We-Wish (38856) ArduSat-2 (39571)
OpuSat (39575)

Cubes iteration 2 ArduSat-1 (39412) ArduSat-X (39414) SkyCube (39567)

Table 6.13: CubeSats and spheres for re-entry group 2 - sorted on their iteration.

Satellite composition re-entry group 1

Spheres* AeroCube-3 (35005) ITF-1 (39573) SpinSat (40314)

Cubes iteration 1 CP-6 (35003) HawkSat-1 (35004) Robusta (38084)
UniCubeSat (38085) FitSat-1 (38853) TechEdSat (38854)
We-Wish (38856) SkyCube (39567) ArduSat-2 (39571)
OpuSat (39575)

Cubes iteration 2 ArduSat-1 (39412) ArduSat-X (39414)

Note the asterix * for when mentioning the initial spheres for the two re-entry groups. Only the SpinSat
satellite is a sphere. The other three satellites are the three CubeSats mentioned above that take in the place
of a sphere as their ballistic coefficient have already been established and verified.
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6.3. Performance Assessment
Depending on whether the object is still in-orbit or performing a re-entry, two different assessment merits
have been established. For the in-orbit target group, the difference in the mean semi-major axis of the last
10 orbits of the propagation period is analyzed. To clarify, the Cartesian coordinates of the verification and
propagation orbit are used to assess its orbital velocity and subsequently its orbital period. The timespan
covering the 10 final orbital periods of the verification and propagation orbit are used to determine a mean
semi-major axis for both orbits. The absolute difference with the verification orbit is consecutively computed
and stored for comparison with the other scenarios. The motivation behind this approach is to ensure that
the orbital variation in the semi-major axis is averaged out equally for all objects.

As this research is to establish the contribution effect of the β estimation and CD inclusion algorithms
and not the orbital propagator, the difference between the verification orbit and the baseline orbit (scenario
1) shall form the baseline to which the other three scenarios are assessed. For example, an object in the
in-orbit group exhibiting a s.m.a. difference of 1.3 km between verification and scenario 1 and a s.m.a. differ-
ence of 1.1 km between verification orbit and scenario 2 is evaluated to have a performance improvement of
100− (100 · 1.1

1.3 ) = 15.4%.

Regarding the re-entry target group, the verification orbit’s latest TLE is regarded as the re-entry epoch.
At this epoch, the re-entry altitude altr e−entr y is determined and used to remove any propagation data points
below this altitude. Consecutively the epoch date of the last propagation data point, the one now thus cor-
responding with altr e−entr y , is used to determine the absolute difference in re-entry epoch. Similar to the
in-orbit group, the difference between verification orbit and scenario 1 form the baseline of any assessment
done for scenario 2, 3, and 4.

For example, the re-entry difference between verification orbit and scenario 1 is 6 days, whilst for ver-
ification orbit and scenario 2 this is 3 days. The performance improvement would then be assessed to be
100− (100 · 3

6 ) = 50.0%

Table 6.14: Propagation and evaluation period for the four scenarios in-orbit group 1, 2, and 3 are subjected to.

Propagation period and assessment merits for in-orbit group 1 and group 2

Start propagation date 21-April-2016
Propagation period 100 days
Assessment merit 1 S.m.a. difference with verification orbit [for scenario 1-2-3-4]
Assessment merit 2 S.m.a. difference with baseline orbit [for scenario 2-3-4]

Table 6.15: Propagation and evaluation period for the four scenarios re-entry group 1 and group 2 are subjected to.

Propagation period and assessment merits for re-entry group 1 and group 2

Start propagation date Last known TLE date minus propagation period
Propagation period 100 days
Assessment merit 1 Re-entry epoch difference with verification orbit [for scenario 1-2-3-4]
Assessment merit 2 Re-entry epoch difference with baseline orbit [for scenario 2-3-4]

For the in-orbit group, the starting propagation date is specifically set at 21-April 2016 as with this date
propagation for 100 days would still be possible for all objects and have the availability of the required solar
activity data.
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Results

The experimental set-up explained the four different propagation scenarios to assess the effectiveness of es-
timating a ballistic coefficient and the subsequent adjustment of βE to accommodate for the varying drag
coefficient. Within the theory of computing an objects CD a distinction can be made with the selection of the
energy accommodation coefficientα - a constant value ofα = 0.8 can be assumed or anα that is related to the
local presence of atomic oxygen, also known as Langmuir’s isotherm. As discussed, the ballistic coefficients
related to these four scenarios can be recognized with these four different subscripts: β0, βE , βCD Lang mui r ,
and βCD ,α=0.8 for scenario one to four respectively.

The objects that are subjected to each scenario have been discussed as well, with the main distinction be-
ing between the objects being in-orbit or experiencing a re-entry. Within these two categories, three groups
are created for the in-orbit category and two groups for the re-entry category, each with different orbital el-
ement selection criteria for the proximity algorithm - thus resulting in a different CubeSat composition for
each group. Furthermore, both categories are assessed according to their respective merits, which have been
discussed in section 6.3. In that section, the propagation periods for both categories have been discussed as
well, and though the start of the propagation periods are different between the two categories, all objects in
every group are propagated for an equal period of 100 days.

This chapter shall present (a summary of) the propagation results for all groups discussed in the experi-
mental set-up. The way the data is presented is uniform irregardless of the category, and follows the following
structure for each group:

• 1. Presentation of βE values and the mean and median of the βE values.

• Presentation of βCD Lang mui r and βCDα=0.8 values and the mean and median of these values.

• Presentation of the propagation results in the format of their respective assessment merit.

As the propagation data output of the objects within each group is simply to large to display separately
in each section, most of this data is stored in the appendices. However, summaries of the propagation re-
sults are of course presented in their relevant sections. These summaries have been established identically
for each group, both for the in-orbit and re-entry groups, as to eventually have a consistent overview of the
output data for all these groups. The results are discussed further in chapter 8, after which the conclusions
and recommendations are presented in that chapter as well.

69



70 7. Results

7.1. In-orbit category
This section provides the results for the in-orbit propagation groups as discussed in subsection 6.2.1. To re-
vise, cubes and spheres orbiting above 500 km and currently still orbiting Earth have been subjected to the
proximity algorithm with three different orbital parameter criteria sets. This resulted in three groups, see Ta-
ble 6.7, Table 6.8, and Table 6.9, which consist largely of the same satellites though the spread in number of
objects per iteration is different from each other. All objects in turn have their ballistic coefficient estimated as
per procedure discussed in section 4.1. The resulting ballistic coefficients have consecutively been adjusted
for the varying drag coefficient experienced between the determination epoch and start of the propagation
period.

Each object is propagated for 100 days starting from 21-April-2016 until 30-July-2016 for four scenarios
using the TUDAT propagation software to assess the performance of newly estimated βE values, and the
influence of the inclusion of a variable drag coefficient and Langmuir’s isotherm. Reasoning behind these
specific dates is that within this time period it can be ensured the latest solar and geomagnetic indices can be
used in the TUDAT propagation model.

Within the in-orbit category three groups have been established with both different orbital parameter cri-
teria for the proximity algorithm. These criteria and the resulting composition of group 1, group 2, and group
3 have been discussed before and are recapped below:

Table 7.1: Orbital parameter criteria for the in-orbit groups

In-orbit Group 1 In-orbit Group 2 In-orbit Group 3

Overall inclination range [degrees] 50 - 110 50 - 110 50 - 110
Overall altitude range [km] 500 - 1000 500 - 1000 500 - 1000

∆max altitude [km] 40 50 25
∆max inclination [degree] 10 10 15
∆max RAAN [degree] 20 20 30
∆max epoch [days] 10 10 10

# of cubes in altitude and inclination range 59 59 59
# of spheres in altitude and inclination range 23 23 23
# of cubes found with proximity algorithm 43 51 52
# of spheres found with proximity algorithm 6 5 6
# of matches from proximity algorithm 146 192 126

For each of the three in-orbit groups, the results are presented in an consequent manner - for each group
the estimated ballistic coefficients βE of all objects from scenario 2 are presented. The average difference per
iteration group βE has with β0 is given, as well as the mean and medianβE values. Consecutively the adjusted
βCD Lang mui r and βCD ,α=0.8 are presented, corresponding to scenario 3 and 4 respectively.

Again an overview of the differences these values have with βE is given, as well as the mean and median
values, both in a table as graphically. The result section for that particular group is concluded with a summary
of the propagation results for all scenarios, with the complete list of propagation results being presented in
the appendix.
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7.1.1. Group 1 - Estimated ballistic coefficients
Presented are the βE values for in-orbit group 1. The procedure to acquire these values corresponds to the
procedure explained in section 4.1 and using the proximity algorithm described in subsection 5.2.2. The
ranges for these criteria have been discussed at the beginning of this section.

Table 7.2 contains the estimated βE values for the in-orbit group 1. The difference in percentage with
βbasel i ne has been included as well to give a sense of the order of magnitude difference it had with the initially
assumed ballistic coefficient. Though not used in any calculations henceforth, Table 6.4 contains the average
difference for each iteration.

Table 7.2: Estimated βE values for in-orbit group 1, compared to βbasel i ne .

NORAD βE ∆β Iteration # NORAD βE ∆β Iteration #

DTUSAT (27842) 0.0358623 14.76 1 ICube-1 (39432) 0.0543246 73.84 3
CUTE-1 (27844) 0.0374755 19.92 1 HumSat-D (39433) 0.0697332 123.15 3

AAU CubeSat (27846) 0.0295936 -5.3 1 PUCP-Sat-1 (39442) 0.058023 85.67 3
CANX-1 (27847) 0.0297268 -4.87 1 FunCube-1 (39444) 0.0388896 24.45 3

XI-4 (27848) 0.0339202 8.54 1 HinCube (39445) 0.0373839 19.63 3
SDS-1 (33497) 0.0257445 -17.62 1 DuchiFat-1 (40021) 0.0528104 68.99 3

SwissCube (35932) 0.0671967 115.03 1 C-BR1 (40024) 0.0475302 52.1 3
BeeSat (35933) 0.0581878 86.2 1 DTUSat-2 (40030) 0.0392147 25.49 3
Uwe-2 (35934) 0.0515293 64.89 1 PolyItan-1 (40042) 0.0478618 53.16 3

ITUPSAT-1 (35935) 0.0539599 72.67 1 UFTI-1 (41458) 0.0305887 -2.12 3
AAUSat-3 (39087) 0.038552 23.37 1 E-Star-1 (41459) 0.031164 -0.28 3

Brite-PL (39431) 0.0219296 -29.83 1 AAUSat-4 (41460) 0.0433227 38.63 3
Dice-1 (37851) 0.030932 -1.02 2 Pegasus-1 (39151) 0.0532586 70.43 4
Dice-2 (37852) 0.037905 21.3 2 CubeBug-1 (39153) 0.0406202 29.98 4

WNISAT-1 (39423) 0.024921 -20.25 2 EstCube-1 (39161) 0.0401614 28.52 4
EgyptSat-1 (31117) 0.0269426 -13.78 3 Velox-P-2 (39438) 0.0389125 24.52 4
Compass-1 (32787) 0.0464152 48.53 3 First-Move (39439) 0.0773811 147.62 4

AAUSAT-2 (32788) 0.0526421 68.45 3 KRYSAOR (39441) 0.0356835 14.19 4
SEEDS (32791) 0.0443297 41.86 3 Uwe-3 (39446) 0.0434253 38.96 4

AubieSat-1 (37854) 0.0349132 11.72 3 CANX-4 (40055) 0.032113 2.76 4
M-Cubed (37855) 0.0343275 9.85 3 CANX-5 (40056) 0.037138 18.84 4

ZaCube (39417) 0.0399416 27.81 3

Table 7.3: Average difference in percentage between estimated ballistic coefficient and the baseline ballistic coefficient
for in-orbit group 1.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Average ∆ between βE and βbasel i ne [%] 28.98 0.01 39.85 41.76

Furthermore, the average difference between βE and βbasel i ne is provided in Table 7.3. This difference
is the average of the absolute percentage differences presented in Table 7.2 and demonstrates a significant
overall change from the initially assumed βbasel i ne . The βE values have been put in a histogram, Figure 7.1, to
visualize the distribution of βE . The mean and median values of in-orbit group 1 are present in Table 7.4.

Table 7.4: Mean and median for in-orbit group 1.

Mean βE Median βE

In-orbit group 1 0.037668 0.034856
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7.1.2. Group 1 - Adjusted to accommodate for varying drag coefficient
Per procedure discussed in section 4.2 the βE values have been directly adjusted to the βCD Lang mui r and
βCDα=0.8 values. These values are displayed in Table 7.5, sorted for each iteration group. The values for the
average percental difference is presented in Table 7.6.

Table 7.5: Adjusted βCD l ang mui r and βCDα=0.8 values for in-orbit group 1, compared to βE .

NORAD βCD Lang mui r βCDα=0.8 NORAD βCD Lang mui r βCDα=0.8

DTUSAT (27842) 0.034311 0.032451 ICube-1 (39432) 0.044467 0.041947
CUTE-1 (27844) 0.039497 0.037306 HumSat-D (39433) 0.060203 0.056772

AAU CubeSat (27846) 0.031791 0.030058 PUCP-Sat-1 (39442) 0.054057 0.050996
CANX-1 (27847) 0.032295 0.030605 FunCube-1 (39444) 0.033432 0.03158

XI-4 (27848) 0.035988 0.033977 HinCube (39445) 0.032133 0.030399
SDS-1 (33497) 0.024665 0.023371 DuchiFat-1 (40021) 0.042601 0.040178

SwissCube (35932) 0.064943 0.062098 C-BR1 (40024) 0.037968 0.035806
BeeSat (35933) 0.055392 0.052737 DTUSat-2 (40030) 0.031481 0.029690
Uwe-2 (35934) 0.048969 0.046802 PolyItan-1 (40042) 0.038554 0.036355

ITUPSAT-1 (35935) 0.051181 0.048745 UFTI-1 (41458) 0.024553 0.024348
AAUSat-3 (39087) 0.041866 0.039643 E-Star-1 (41459) 0.024939 0.024730

Brite-PL (39431) 0.023423 0.022462 AAUSat-4 (41460) 0.034783 0.034501
Dice-1 (37851) 0.025739 0.025286 Pegasus-1 (39151) 0.046748 0.044182
Dice-2 (37852) 0.031201 0.030934 CubeBug-1 (39153) 0.034600 0.032945

WNISAT-1 (39423) 0.030957 0.029492 EstCube-1 (39161) 0.034905 0.033110
EgyptSat-1 (31117) 0.025340 0.024002 Velox-P-2 (39438) 0.032549 0.030741
Compass-1 (32787) 0.033791 0.031873 First-Move (39439) 0.065237 0.061561

AAUSAT-2 (32788) 0.041938 0.039594 KRYSAOR (39441) 0.031583 0.029882
SEEDS (32791) 0.039215 0.037010 Uwe-3 (39446) 0.035976 0.034002

AubieSat-1 (37854) 0.025135 0.024858 CANX-4 (40055) 0.028948 0.027385
M-Cubed (37855) 0.024602 0.024452 CANX-5 (40056) 0.033732 0.031945

ZaCube (39417) 0.035543 0.033526

Table 7.6: Average difference in percentage between estimated ballistic coefficient and scenario 3 and scenario 4 for
in-orbit group 1.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Average ∆ between βCD Lang mui r and βE 2.43% -4.32% -3.5% -1.44%
Average ∆ between βCDα=0.8 and βE -2.49% -7.45% -7.85% -6.72%

The data from Table 7.5 is used to display the difference it has with the βE values, as well as the average
difference in percentage for each iteration group, in Figure 7.2. In section 8.1 the expected βCD Lang mui r and
βCD ,α=0.8 are compared to the actual output data, where a discussion is held whether the results follow the
trend which was to be expected from the theory.

Similarly to what was done for the βE values, the mean and median have been computed and can be
found in Table 7.7.

Table 7.7: Mean and median for in-orbit group 1.

Mean βCD Lang mui r Median βCD Lang mui r Mean βCDα=0.8 Median βCDα=0.8

In-orbit group 1 0.037237 0.03460 0.0354496 0.032945
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Figure 7.1: Histogram of BE values for in-orbit group 1

Figure 7.2: Difference of βCD ,Lang mui r (red) and βCD ,α=0.8 (blue) values with βE for in-orbit group 1
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7.1.3. Propagation results in-orbit group 1
Having estimated and computed all required βE and βCD values, the objects are subjected to the propagation
software and assessed based on their difference in semi-major-axis of their last 10 orbits. The data is stored in
Table A.1, where column 6, 7, and 8 represent the difference in kilometer between the baseline propagation
and scenario 2, 3, and 4 respectively.

A histogram and probability density function for the propagation results of scenario 2, 3, and 4 has been
created and can be seen in Figure 7.3, Figure 7.4, and Figure 7.5 respectively. For the propagation result data
presented henceforth outlying data points exceeding 3σ have been removed. Note that a positive x-axis
represent an improvement compared to the baseline propagation. Finally, the mean and variance of each
scenario is presented in Table 7.8.

Figure 7.3: Histogram and probability density function (pdf) of the difference in propagated altitude between scenario 1
and scenario 2 - in-orbit 1.

Figure 7.4: Histogram and probability density function (pdf) of the difference in propagated altitude between scenario 1
and scenario 3 - in-orbit 1.
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Figure 7.5: Histogram and probability density function (pdf) of the difference in propagated altitude between scenario 1
and scenario 4 - in-orbit 1.

Table 7.8: Mean and variance for each scenario for in-orbit group 1

βE βCD Lang mui r βCD ,α=0.8

Mean 0.01487 0.0206 0.00965
Variance 0.01137 0.03125 0.03085

Additionally, all altitude gains (or losses) compared to the baseline propagation is summarized in Ta-
ble 7.9. In this table the overall altitude improvements is presented for each scenario, as well as the subse-
quent improvements per iteration. If interested, the reader can find the differences between the verification
orbits and the propagated baseline and scenario orbits back in Table A.1.

Table 7.9: Mean propagation difference and overall improvement [km] w.r.t. baseline orbit for each scenario in in-orbit
group 1. Outlying data points exceeding 3σ have been removed.

Baseline Scenario 2 Scenario 3 Scenario 4

Iteration 1 - Mean ∆ with baseline - 0.232 0.171 0.676
Iteration 2 - Mean ∆ with baseline - 0.104 0.464 -0.072
Iteration 3 - Mean ∆ with baseline - -0.665 0.486 -0.701
Iteration 4 - Mean ∆ with baseline - -0.067 -0.248 -0.092

Difference with verification orbit 10.392 10.789 9.519 10.581
Improvement w.r.t. baseline [km] - -0.397 0.874 -0.189
Improvement w.r.t. baseline [%] - -3.82 8.41 -1.82

Results with data points exceeding 3σ removed

Difference with verification orbit 9.8823 9.2878 8.4896 9.1922
Improvement w.r.t. baseline [km] - 0.5945 1.3927 0.6901
Improvement w.r.t. baseline [%] - 6.01 14.09 6.98
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7.1.4. Group 2 - Estimated ballistic coefficients
Table 7.10 contains the estimated βE values for the in-orbit group 2. The difference in percentage with
βbasel i ne has been included as well to give a sense of the order of magnitude difference it had with the ini-
tially assumed ballistic coefficient. Though not used in any calculations henceforth, Table 7.11 contains the
average difference for each iteration.

Table 7.10: Estimated βE values for in-orbit group 2, compared to βbasel i ne .

NORAD βE ∆β Iter. # NORAD βE ∆β Iter. #

DTUSAT (27842) 0.0210409 -32.67 1 Velox-P-2 (39438) 0.0363764 16.4 2
CUTE-1 (27844) 0.0292684 -6.34 1 First-Move (39439) 0.0797694 155.26 2

AAU CubeSat (27846) 0.0225876 -27.72 1 PUCP-Sat-1 (39442) 0.0479971 53.59 2
CANX-1 (27847) 0.0214136 -31.48 1 FunCube-1 (39444) 0.0446474 42.87 2

XI-4 (27848) 0.0262563 -15.98 1 HinCube (39445) 0.0434722 39.11 2
Uwe-1 (28892) 0.0180465 -42.25 1 Uwe-3 (39446) 0.0429833 37.55 2

XI-5 (28895) 0.0176252 -43.6 1 DuchiFat-1 (40021) 0.0560602 79.39 2
SDS-1 (33497) 0.0087204 -72.09 1 C-BR1 (40024) 0.0498429 59.5 2

SwissCube (35932) 0.0148236 -52.56 1 DTUSat-2 (40030) 0.0415419 32.93 2
BeeSat (35933) 0.0189423 -39.38 1 PolyItan-1 (40042) 0.0504061 61.3 2
Uwe-2 (35934) 0.0116449 -62.74 1 UFTI-1 (41458) 0.0357838 14.51 2

ITUPSAT-1 (35935) 0.0172787 -44.71 1 E-Star-1 (41459) 0.0330449 5.74 2
Dice-1 (37851) 0.0381696 22.14 1 AAUSat-4 (41460) 0.0503592 61.15 2
Dice-2 (37852) 0.0281322 -9.98 1 CSTB-1 (31122) 0.0362094 15.87 3

AubieSat-1 (37854) 0.0354586 13.47 1 CP-4 (31132) 0.0320172 2.45 3
M-Cubed (37855) 0.0363141 16.21 1 AeroCube-2 (31133) 0.0285963 -8.49 3

EgyptSat-1 (31117) 0.0232904 -25.47 2 KRYSAOR (39441) 0.0291033 -6.87 3
Compass-1 (32787) 0.0243445 -22.1 2 CANX-4 (40055) 0.0253088 -19.01 3

AAUSAT-2 (32788) 0.0571467 82.87 2 CANX-5 (40056) 0.0492311 57.54 3
SEEDS (32791) 0.0446805 42.98 2 Libertad-1 (31128) 0.0340605 8.99 4

Pegasus-1 (39151) 0.0340485 8.96 2 CP-3 (31129) 0.0362997 16.16 4
CubeBug-1 (39153) 0.0371008 18.72 2 Cape-1 (31130) 0.0340953 9.11 4
EstCube-1 (39161) 0.0123144 -60.59 2 SDS-4 (38339) 0.0152165 -51.31 4

ZaCube (39417) 0.0382208 22.31 2 Brite-PL (39431) 0.0147273 -52.87 4
ICube-1 (39432) 0.0444745 42.32 2 WNISAT-1 (39423) 0.0167363 -46.44 5

HumSat-D (39433) 0.0586152 87.57 2

Table 7.11: Average difference in percentage between estimated ballistic coefficient and the baseline ballistic coefficient
for in-orbit group 2.

Iteration 1 2 3 4 5

Average ∆ between βE and βbasel i ne -5.01% 33.90% 6.92% -13.92% -46.44%

Table 7.12: Mean and median for in-orbit group 2.

Mean βE Median βE

In-orbit group 2 0.0334087 0.0340605

In Table 7.12 the median and mean βE values are displayed. Figure 7.6 contains a histogram of the esti-
mated ballistic coefficients for in-orbit group 2. The median is colored in red.
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7.1.5. Group 2 - Adjusted to accommodate for varying drag coefficient
Per procedure discussed in section 4.2 the βE values have been directly adjusted to the βCD Lang mui r and
βCDα=0.8 values. These values are displayed in Table 7.13, sorted for each iteration group.

Table 7.13: Estimated βCD Lang mui r and βCDα=0.8 values for in-orbit group 2, compared to βbasel i ne .

NORAD βCD Lang mui r βCDα=0.8 NORAD βCD Lang mui r βCDα=0.8

DTUSAT (27842) 0.022113 0.020787 Velox-P-2 (39438) 0.044421 0.042204
CUTE-1 (27844) 0.030813 0.028978 First-Move (39439) 0.034143 0.032516

AAU CubeSat (27846) 0.023737 0.022314 PUCP-Sat-1 (39442) 0.037162 0.035412
CANX-1 (27847) 0.022554 0.021217 FunCube-1 (39444) 0.012443 0.011824

XI-4 (27848) 0.027583 0.025918 HinCube (39445) 0.037879 0.035947
Uwe-1 (28892) 0.018408 0.017455 Uwe-3 (39446) 0.044112 0.041795

XI-5 (28895) 0.017994 0.017068 DuchiFat-1 (40021) 0.058090 0.055022
SDS-1 (33497) 0.008793 0.008356 C-BR1 (40024) 0.035946 0.034167

SwissCube (35932) 0.015188 0.014470 DTUSat-2 (40030) 0.078776 0.074778
BeeSat (35933) 0.019391 0.018562 PolyItan-1 (40042) 0.047593 0.045093
Uwe-2 (35934) 0.011915 0.011366 UFTI-1 (41458) 0.044054 0.041986

ITUPSAT-1 (35935) 0.017709 0.016881 E-Star-1 (41459) 0.042935 0.040881
Dice-1 (37851) 0.034529 0.034186 AAUSat-4 (41460) 0.042467 0.040364
Dice-2 (37852) 0.025164 0.025154 CSTB-1 (31122) 0.037383 0.035890

AubieSat-1 (37854) 0.032003 0.031825 CP-4 (31132) 0.033145 0.031851
M-Cubed (37855) 0.032640 0.032615 AeroCube-2 (31133) 0.029619 0.028469

EgyptSat-1 (31117) 0.055458 0.052611 KRYSAOR (39441) 0.028677 0.027259
Compass-1 (32787) 0.049337 0.046803 CANX-4 (40055) 0.025476 0.024298

AAUSAT-2 (32788) 0.041190 0.039072 CANX-5 (40056) 0.049471 0.047146
SEEDS (32791) 0.049932 0.047363 Libertad-1 (31128) 0.035412 0.034115

Pegasus-1 (39151) 0.032115 0.032052 CP-3 (31129) 0.037797 0.036396
CubeBug-1 (39153) 0.029690 0.029633 Cape-1 (31130) 0.035490 0.034189
EstCube-1 (39161) 0.045237 0.045149 SDS-4 (38339) 0.015414 0.014710

ZaCube (39417) 0.023540 0.022448 Brite-PL (39431) 0.015340 0.014774
ICube-1 (39432) 0.024322 0.023010 WNISAT-1 (39423) 0.017097 0.016357

HumSat-D (39433) 0.056592 0.053737

Table 7.14: Average difference in percentage between estimated ballistic coefficient and the baseline ballistic coefficient
for in-orbit group 2.

Iteration 1 2 3 4 5

Average ∆ between βCD Lang mui r and βE 0.09% -1.66% 1.99% 3.30% 2.15%
Average ∆ between βCDα=0.8 and βE -4.14% -6.02% -2.31% -0.76% -2.27%

Table 7.15: Mean and median for in-orbit group 2.

Mean βCD Lang mui r Median βCD Lang mui r Mean βCDα=0.8 Median βCDα=0.8

In-orbit group 2 0.033103 0.03264 0.031695 0.032052

The data from Table 7.13 is used to display the difference it has with the βE values, as well as the average
difference in percentage for each iteration group, in Figure 7.7. In section 8.1 the expected βCD Lang mui r and
βCD ,α=0.8 are compared to the actual output data, where a discussion is held whether the results follow the
trend which was to be expected from the theory.
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Figure 7.6: Histogram of βE values for in-orbit group 2

Figure 7.7: Difference of βCD ,Lang mui r (red) and βCD ,α=0.8 (blue) values with βE for in-orbit group 2
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7.1.6. Propagation results in-orbit group 2
Having estimated and computed all required βE and βCD values, the objects are subjected to the propagation
software and assessed based on their difference in semi-major-axis of their last 10 orbits. The data is stored in
section A.2, where column 6, 7, and 8 represent the difference in kilometer between the baseline propagation
and scenario 2, 3, and 4 respectively.

A histogram and probability density function for the propagation results of scenario 2, 3, and 4 has been
created and can be seen in Figure 7.8, Figure 7.9, and Figure 7.10 respectively. For the propagation result data
presented henceforth outlying data points exceeding 3σ have been removed. Note that a positive x-axis
represent an improvement compared to the baseline propagation. Finally, the mean and variance of each
scenario is presented in Table 7.16.

Figure 7.8: Histogram and probability density function (pdf) of the difference in propagated altitude between scenario 1
and scenario 2 - in-orbit 2.

Figure 7.9: Histogram and probability density function (pdf) of the difference in propagated altitude between scenario 1
and scenario 3 - in-orbit 2.
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Figure 7.10: Histogram and probability density function (pdf) of the difference in propagated altitude between scenario
1 and scenario 4 - in-orbit 2.

Table 7.16: Mean and variance for each scenario for in-orbit group 2

βE βCD Lang mui r βCD ,α=0.8

Mean -0.0761 -0.0494 -0.0539
Variance 0.023 0.019 0.037

Additionally, all altitude gains (or losses) compared to the baseline propagation is summarized in Ta-
ble 7.17. In this table the overall altitude improvements is presented for each scenario, as well as the sub-
sequent improvements per iteration. If interested, the reader can find all propagation results for the four
scenarios back in section A.2.

Table 7.17: Mean propagation difference and overall improvement [km] w.r.t. baseline orbit for each scenario in in-orbit
group 2.

Baseline Scenario 2 Scenario 3 Scenario 4

Iteration 1 - Mean ∆ with baseline - -1.608 -0.408 -0.080
Iteration 2 - Mean ∆ with baseline - -3.157 -2.737 -3.623
Iteration 3 - Mean ∆ with baseline - -0.146 -0.095 -0.217
Iteration 4 - Mean ∆ with baseline - -0.054 -0.098 0.403
Iteration 5 - Mean ∆ with baseline - 0.047 -0.013 -0.005

Difference with verification orbit 11.916 16.833 15.267 15.437
Improvement w.r.t. baseline [km] - -4.917 -3.351 -3.521
Improvement w.r.t. baseline [%] - -41.27 -28.13 -29.55

Results with data points exceeding 3σ removed

Difference with verification orbit 11.4715 15.1997 13.8936 14.1136
Improvement w.r.t. baseline [km] - -3.7282 -2.4221 -2.6421
Improvement w.r.t. baseline [%] - -32.49 -21.15 -23.03
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7.1.7. Group 3 - Estimated ballistic coefficients
Table 7.18 contains the estimated βE values for the in-orbit group 3. The difference in percentage with
βbasel i ne has been included as well to give a sense of the order of magnitude difference it had with the ini-
tially assumed ballistic coefficient. Though not used in any calculations henceforth, Table 7.19 contains the
average difference for each iteration. These values shall be considered later in section 8.1 to address the issue
of error heritage through the iterations.

Table 7.18: Estimated βE values for in-orbit group 3, compared to βbasel i ne .

NORAD βE ∆β Iter. # NORAD βE ∆β Iter. #

DTUSAT (27842) 0.031250 0.00 1 CANX-5 (40056) 0.006590 78.91 2
CUTE-1 (27844) 0.039130 -25.22 1 CSTB-1 (31122) 0.030464 2.52 3

AAU CubeSat (27846) 0.028797 7.85 1 SEEDS (32791) 0.015653 49.91 3
CANX-1 (27847) 0.029346 6.09 1 SDS-4 (38339) 0.004446 85.77 3

XI-4 (27848) 0.033139 -6.04 1 Brite-PL (39431) 0.012414 60.28 3
Uwe-1 (28892) 0.018046 42.25 1 ICube-1 (39432) 0.009888 68.36 3

XI-5 (28895) 0.017625 43.60 1 HumSat-D (39433) 0.012381 60.38 3
SDS-1 (33497) 0.005000 84.00 1 PUCP-Sat-1 (39442) 0.010540 66.27 3

SwissCube (35932) 0.028296 9.45 1 Libertad-1 (31128) 0.023133 25.97 4
BeeSat (35933) 0.024614 21.23 1 CP-3 (31129) 0.028815 7.79 4
Uwe-2 (35934) 0.009256 70.38 1 Cape-1 (31130) 0.023525 24.72 4

AAUSAT-3 (39087) 0.072497 -131.99 1 CP-4 (31132) 0.014460 53.73 4
EgyptSat-1 (31117) 0.005600 82.08 2 AeroCube-2 (31133) 0.014551 53.44 4

ItupSat-1 (35935) 0.018851 39.68 2 Compass-1 (32787) 0.013613 56.44 4
Pegasus-1 (39151) 0.006973 77.69 2 AAUSAT-2 (32788) 0.014291 54.27 4

CubeBug-1 (39153) 0.007976 74.48 2 Dice-1 (37851) 0.008442 72.98 4
EstCube-1 (39161) 0.008711 72.12 2 Dice-2 (37852) 0.009319 70.18 4

ZaCube (39417) 0.009765 68.75 2 AubieSat-1 (37854) 0.009434 69.81 4
WNISAT-1 (39423) 0.014098 54.89 2 M-Cubed (37855) 0.008738 72.04 4
Velox-P-2 (39438) 0.007834 74.93 2 DuchiFat-1 (40021) 0.012323 60.57 5

First-Move (39439) 0.014830 52.54 2 UFTI-1 (41458) 0.009867 68.43 5
KRYSAOR (39441) 0.007375 76.40 2 E-Star-1 (41459) 0.009095 70.90 5

FunCube-1 (39444) 0.012423 60.25 2 AAUSat-4 (41460) 0.013502 56.79 5
HinCube (39445) 0.011667 62.67 2 C-BR1 (40024) 0.010959 64.93 6

Uwe-3 (39446) 0.010559 66.21 2 DTUSat-2 (40030) 0.009123 70.81 6
CANX-4 (40055) 0.006261 79.97 2 PolyItan-1 (40042) 0.011036 64.69 6

Table 7.19: Average difference in percentage between estimated ballistic coefficient and the baseline ballistic coefficient
for in-orbit group 3.

Iteration 1 2 3 4 5 6

Average ∆ between βE and βbasel i ne 10.13% 68.10% 56.21% 51.03% 64.17% 66.81%

Table 7.20: Mean and median for in-orbit group 3.

Mean βE Median βE

In-orbit group 3 0.0162 0.0124

Figure 7.11 contains a histogram of the estimated ballistic coefficients for in-orbit group 3. The median is
colored in red.
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7.1.8. Group 3 - Adjusted to accommodate for varying drag coefficient
Per procedure discussed in section 4.2 the βE values have been directly adjusted to the βCD Lang mui r and
βCDα=0.8 values. These values are displayed in Table 7.21, sorted for each iteration group.

Table 7.21: Estimated βCD Lang mui r and βCDα=0.8 values for in-orbit group 3, compared to βbasel i ne .

NORAD βCD Lang mui r βCDα=0.8 NORAD βCD Lang mui r βCDα=0.8

DTUSAT (27842) 0.032653 0.030941 CANX-5 (40056) 0.006621 0.006293
CUTE-1 (27844) 0.040921 0.038832 CSTB-1 (31122) 0.031347 0.029929

AAU CubeSat (27846) 0.030096 0.028416 SEEDS (32791) 0.0155 0.014687
CANX-1 (27847) 0.030726 0.029138 SDS-4 (38339) 0.004486 0.004269

XI-4 (27848) 0.034644 0.032693 Brite-PL (39431) 0.012888 0.012343
Uwe-1 (28892) 0.018416 0.017431 ICube-1 (39432) 0.009758 0.009227

XI-5 (28895) 0.018003 0.017046 HumSat-D (39433) 0.012174 0.011536
SDS-1 (33497) 0.005041 0.004795 PUCP-Sat-1 (39442) 0.010404 0.009832

SwissCube (35932) 0.028992 0.027637 Libertad-1 (31128) 0.024044 0.023038
BeeSat (35933) 0.025207 0.024027 CP-3 (31129) 0.029914 0.028648
Uwe-2 (35934) 0.009476 0.009035 Cape-1 (31130) 0.024443 0.023417

AAUSAT-3 (39087) 0.075508 0.071659 CP-4 (31132) 0.01502 0.014362
EgyptSat-1 (31117) 0.005637 0.005361 AeroCube-2 (31133) 0.015156 0.014467

ItupSat-1 (35935) 0.019342 0.018435 Compass-1 (32787) 0.01369 0.012996
Pegasus-1 (39151) 0.006967 0.006613 AAUSAT-2 (32788) 0.014045 0.013342

CubeBug-1 (39153) 0.007965 0.00756 Dice-1 (37851) 0.007852 0.007763
EstCube-1 (39161) 0.008799 0.008376 Dice-2 (37852) 0.008269 0.008294

ZaCube (39417) 0.009634 0.009123 AubieSat-1 (37854) 0.008455 0.008389
WNISAT-1 (39423) 0.014354 0.013657 M-Cubed (37855) 0.007786 0.007772
Velox-P-2 (39438) 0.007725 0.007314 DuchiFat-1 (40021) 0.012121 0.011486

First-Move (39439) 0.014598 0.01382 UFTI-1 (41458) 0.008886 0.008875
KRYSAOR (39441) 0.007254 0.006865 E-Star-1 (41459) 0.008163 0.008145

FunCube-1 (39444) 0.012253 0.011603 AAUSat-4 (41460) 0.01212 0.012094
HinCube (39445) 0.011508 0.010897 C-BR1 (40024) 0.0108 0.010218

Uwe-3 (39446) 0.010409 0.009856 DTUSat-2 (40030) 0.008991 0.008517
CANX-4 (40055) 0.006289 0.005978 PolyItan-1 (40042) 0.010867 0.010298

Table 7.22: Average difference in percentage between estimated ballistic coefficient and the baseline ballistic coefficient
for in-orbit group 3.

Iteration 1 2 3 4 5 6

Average ∆ between βCD Lang mui r and βE 3.07% -0.03% 0.79% -1.62% -1.55% -1.47%
Average ∆ between βCDα=0.8 and βE -2.19% -5.09% -4.14% -4.93% -7.78% -6.69%

The data from Table 7.21 is used to display the difference it has with the βE values, as well as the average
difference in percentage for each iteration group, in Figure 7.12. In section 8.1 the expected βCD Lang mui r and
βCD ,α=0.8 are compared to the actual output data, where a discussion is held whether the results follow the
trend which was to be expected from the theory.

Table 7.23: Mean and median for in-orbit group 3.

Mean βCD Lang mui r Median βCD Lang mui r Mean βCDα=0.8 Median βCDα=0.8

In-orbit group 3 0.0167 0.0122 0.0159 0.0115
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Figure 7.11: Histogram of βE values for in-orbit group 3

Figure 7.12: Difference of βCD ,Lang mui r (red) and βCD ,α=0.8 (blue) values with βE for in-orbit group 3
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7.1.9. Propagation results in-orbit group 3
Having estimated and computed all required βE and βCD values, the objects are subjected to the propagation
software and assessed based on their difference in semi-major-axis of their last 10 orbits. The data is stored in
section A.3, where column 6, 7, and 8 represent the difference in kilometer between the baseline propagation
and scenario 2, 3, and 4 respectively.

A histogram and probability density function for the propagation results of scenario 2, 3, and 4 has been
created and can be seen in Figure 7.13, Figure 7.14, and Figure 7.15 respectively. For the propagation result
data presented henceforth outlying data points exceeding 3σ have been removed. Note that a positive x-
axis represent an improvement compared to the baseline propagation. Finally, the mean and variance of
each scenario is presented in Table 7.24.

Figure 7.13: Histogram and probability density function (pdf) of the difference in propagated altitude between scenario
1 and scenario 2 - in-orbit 3.

Figure 7.14: Histogram and probability density function (pdf) of the difference in propagated altitude between scenario
1 and scenario 3 - in-orbit 3.
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Figure 7.15: Histogram and probability density function (pdf) of the difference in propagated altitude between scenario
1 and scenario 4 - in-orbit 3.

Table 7.24: Mean and variance for each scenario for in-orbit group 3

Scenario 2 Scenario 3 Scenario 4

Mean 0.00643 0.0147 -0.0042
Variance 0.0790 0.0684 0.0708

Additionally, all altitude gains (or losses) compared to the baseline propagation is summarized in Ta-
ble 7.25. In this table the overall altitude improvements is presented for each scenario, as well as the subse-
quent improvements per iteration. The complete list of propagation results for all four scenarios of in-orbit
group 3 can be found back in section A.3.

Table 7.25: Mean propagation difference and overall improvement [km] w.r.t. baseline orbit for each scenario in in-orbit
group 3. Outlying data points are included, yet are removed in the discussion in chapter 8.

Baseline Scenario 2 Scenario 3 Scenario 4

Iteration 1 - Mean ∆ with baseline - -0.211 -0.125 -0.315
Iteration 2 - Mean ∆ with baseline - -1.569 -1.340 -1.423
Iteration 3 - Mean ∆ with baseline - -0.541 -0.358 -0.473
Iteration 4 - Mean ∆ with baseline - 2.707 2.700 2.172
Iteration 5 - Mean ∆ with baseline - 1.112 1.098 0.855
Iteration 6 - Mean ∆ with baseline - -0.009 -0.105 -0.024

Difference with verification orbit 12.1175 10.6281 10.247 11.325
Improvement w.r.t. baseline [km] - 1.48 1.87 0.791
Improvement w.r.t. baseline [%] - 12.29 15.43 6.53

Results with data points exceeding 3σ removed

Difference with verification orbit 10.7206 10.3996 9.9865 10.9305
Improvement w.r.t. baseline [km] - 0.3210 0.7341 -0.2099
Improvement w.r.t. baseline [%] - 2.99 6.847 -1.95
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7.2. Re-entry category
The results for the re-entry group are presented in this section. Similar to the in-orbit group, two different
orbital parameter criteria sets have been used to establish two separate re-entry groups. The details on these
criteria as well as the resulting NORAD satellites can be found in Table 7.26. As can be seen, the group sizes
are significantly lower than those of the in-orbit groups, this is due to the smaller concentration of objects
in this regime and the normally fast decay period. Since the objects decay relatively fast, there are a lot less
matches possible between concentrations of objects. Nonetheless, the two groups shall still be used to assess
the performance ofβ estimation and inclusion of a variable drag coefficient during the period leading towards
re-entry.

Table 7.26: Orbital parameter criteria for the re-entry groups

Re-entry group 1 Re-entry Group 2

Overall inclination range [degrees] 0 - 110 0 - 110
Overall altitude range [km] <500 <500

∆max altitude [km] 40 75
∆max inclination [degree] 15 20
∆max RAAN [degree] 30 30
∆max epoch [days] 10 10

# of cubes in altitude and inclination range 23 23
# of spheres in altitude and inclination range 6 6
# of cubes found with proximity algorithm 17 19

As the objects are assessed in their re-entry period, there is no set evaluation period such as was done for
the in-orbit groups. For the case of a subject in the re-entry groups, all objects are propagated over the last
100 days of their existence - thus before they re-enter the atmosphere. As evaluating the performance based
on a difference on semi-major axis does not make sense when considering re-entry, the objects are assessed
with the re-entry date as assessment merit, see section 6.3.

7.2.1. Group 1 - Estimated ballistic coefficients
Table 7.27 contains the estimated βE values for the re-entry group 1. The difference in percentage with
βbasel i ne has been included as well to give a sense of the order of magnitude difference it had with the ini-
tially assumed ballistic coefficient.

These are the estimated βE values that are to be used for the 100 day propagation in TUDAT to assess
scenario 1 for re-entry group 1. Contrary to the in-orbit group, the propagation period are set to be the last
100 days before re-entry of the object.

Table 7.27: Estimated βE values for re-entry group 1, compared to βbasel i ne .

NORAD βE ∆β Iter. # NORAD βE ∆β Iteration #

CP-6 (35003) 0.030978 0.87 1 ArduSat-2 (39571) 0.045133 -44.43 1
HawkSat-1 (35004) 0.034675 -10.96 1 OpuSat (39575) 0.019861 36.44 1

FitSat-1 (38853) 0.024785 20.68 1 ArduSat-1 (39412) 0.033868 -8.38 2
TechEdSat (38854) 0.032023 -2.48 1 ArduSat-X (39414) 0.041739 -33.57 2

We-Wish (38856) 0.043613 -39.56 1 SkyCube (39567) 0.037333 -19.47 2

The average the average difference between βE and βbasel i ne for iteration 1 is +5.63% and for iteration 2
+20.47%. Moreover, mean βE for re-entry group 1 equals 0.0344 and the median 0.0343 - close to the β0 of
0.03125. A histogram of the objects is depicted in Figure 7.16.
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7.2.2. Group 1 - Adjusted to accommodate for varying drag coefficient
Presented are the adjusted ballistic coefficients βCD Lang mui r and βCD ,α=0.8 for re-entry group 1. The differ-
ences that βCD Lang mui r and βCD ,α=0.8 have with the βE values are presented in Figure 7.17, where the red line
corresponds to βCD Lang mui r and the blue line with βCD ,α=0.8.

Table 7.28: Estimated βE values for re-entry group 1, compared to βbasel i ne .

NORAD βCD Lang mui r βCDα=0.8 NORAD βCD Lang mui r βCDα=0.8

CP-6 (35003) 0.034282 0.0315809 ArduSat-2 (39571) 0.0399127 0.045899
HawkSat-1 (35004) 0.0386658 0.0353342 OpuSat (39575) 0.0181943 0.0203921

FitSat-1 (38853) 0.022694 0.0254269 ArduSat-1 (39412) 0.0330025 0.0350643
TechEdSat (38854) 0.029411 0.0328339 ArduSat-X (39414) 0.0405117 0.0432511

We-Wish (38856) 0.0431707 0.0446761 SkyCube (39567) 0.0348971 0.0384859

Table 7.29: Average difference in percentage between estimated ballistic coefficient and the baseline ballistic coefficient
for re-entry group 1.

Iteration 1 2

Average ∆ between βCD Lang mui r and βE -2.25% -4.00%
Average ∆ between βCDα=0.8 and βE 2.41% 3.41%

Referring back to Figure 4.2, the deviation βCD Lang mui r and βCD ,α=0.8 have with βE is to be expected. In
the lower regions of the atmosphere in which re-entry group 2 resides one can clearly see that the expected
CD using langmuir’s adsorption model lies around 2.5, whilst for α = 0.8 this value hovers slightly above 2.8.
Remember that βE was considered to have a CD of 2.8. The resulting lower average value for βCD Lang mui r and
the slightly higher average value for βCD ,α=0.8 are thus as expected.

Table 7.30: Mean and median for re-entry group 1.

Mean βCD Lang mui r Median βCD Lang mui r Mean βCDα=0.8 Median βCDα=0.8

Re-entry group 1 0.0334 0.0346 0.0353 0.0352

Figure 7.16: Histogram of βE values for re-entry group 1
Figure 7.17: Difference of βCD ,Lang mui r (red) and
βCD ,α=0.8 (blue) values with βE for re-entry group 1
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7.2.3. Propagation results re-entry group 1
Due to the small amount of objects in re-entry group 1 and 2, there shall be no histogram presented of the
difference in decay epoch relative to the baseline orbits. Instead, the complete propagation data for all four
scenarios is presented in table format as opposed to the in-orbit group where that data has been stored in the
Appendices. Also due to the small object size no data points exceeded 3σ and thus no points have been elimi-
nated. The propagation results and the respective gains in days for re-entry group 1 is presented in Table 7.31.

Iteration 1 Difference [days] with verification orbit Difference [days] with initial orbit
NORAD Baseline βE βCD Lang mui rβCD ,α=0.8 βE βCD Lang mui rβCD ,α=0.8

CP-6 (35003) 5.918 6.545 10.177 4.575 -0.6272 -4.259 1.343
HawkSat-1 (35004) 17.439 10.428 13.798 8.759 7.010 3.641 8.679

FitSat-1 (38853) 21.336 5.815 15.576 1.927 15.521 5.760 19.409
TechEdSat (38854) 3.047 0.958 6.372 0.912 2.090 -3.325 2.135

We-Wish (38856) 34.214 0.202 5.035 2.524 34.012 29.180 31.690
ArduSat-2 (39571) 50.853 8.003 0.269 12.406 42.850 50.584 38.447

OpuSat (39575) 39.229 8.088 18.488 4.391 31.140 20.740 34.838

ABS. SUM 172.036 40.039 69.175 35.495 131.997 102.321 136.542

Iteration 2 Difference [days] with verification orbit Difference [days] with initial orbit
NORAD Baseline βE βCD Lang mui rβCD ,α=0.8 βE βCD Lang mui rβCD ,α=0.8

ArduSat-1 (39412) 1.927 9.604 3.129 12.490 -7.677 -1.202 -10.563
ArduSat-X (39414) 2.121 26.238 21.146 28.672 -24.116 -19.025 -26.551

SkyCube (39567) 30.637 39.401 35.912 40.635 -8.765 -5.275 -9.999

ABS. SUM 34.685 75.243 60.187 81.798 -40.558 -25.502 -47.113

Table 7.32: Mean propagation difference and overall improvement [km] w.r.t. baseline orbit for each scenario in
re-entry group 1. Outlying data points are included, yet are removed in the discussion in chapter 8.

Baseline Scenario 2 Scenario 3 Scenario 4

Mean - 9.1441 7.682 8.943

Difference with verification orbit 206.721 115.282 129.902 117.292
Improvement w.r.t. baseline [days] - 91.439 76.822 89.43
Improvement w.r.t. baseline [%] - 44.23 37.16 43.26

Clearly, the overall performance w.r.t. the baseline is shown to have increased significantly - close to an
45% increase for scenario 2. However, when looking more closely in the iterations themselves, it can be seen
that this increase can only be attributed to first iteration. Interestingly, when only considering the first itera-
tion, the best scenario would be scenario 4, where the energy accommodation coefficient is kept constant at
α = 0.8. chapter 8 shall go more in-depth on these results, though it can already be clearly stated that for just
a single iteration the performance increases drastically for scenario 2 and 4.
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7.2.4. Group 2 - Estimated ballistic coefficients
Table 7.2 contains the estimatedβE values for the in-orbit group 1. The difference in percentage withβbasel i ne

has been included as well to give a sense of the order of magnitude difference it had with the initially assumed
ballistic coefficient. Though not used in any calculations henceforth, Table 6.4 contains the average differ-
ence for each iteration upon which in chapter 8 conclusions are being drawn from.

These are the estimated βE values that are to be used for the 100 day propagation in TUDAT to assess
scenario 1 for re-entry group 1. Contrary to the in-orbit group, the propagation period are set to be the last
100 days before re-entry of the object.

Table 7.33: Estimated βE values for re-entry group 2, compared to βbasel i ne .

NORAD βE ∆β Iter. # NORAD βE ∆β Iteration #

CP-6 (35003) 0.030971 0.89 1 We-Wish (38856) 0.04368 -39.78 1
HawkSat-1 (35004) 0.034802 -11.37 1 SkyCube (39567) 0.017204 44.95 1
Robusta (38084) 0.032421 -3.75 1 ArduSat-2 (39571) 0.045804 -46.57 1
UniCubeSat (38085) 0.032527 -4.09 1 OpuSat (39575) 0.019803 36.63 1
FitSat-1 (38853) 0.024912 20.28 1 ArduSat-1 (39412) 0.029697 4.97 2
TechEdSat (38854) 0.031971 -2.31 1 ArduSat-X (39414) 0.029932 4.22 2

The average the average difference between βE and βbasel i ne for iteration 1 is -0.63% and for iteration 2
+4.58%. Moreover, mean βE for re-entry group 1 equals 0.0312 and the median 0.0315 - close to the β0 of
0.03125. A histogram of the objects is depicted in Figure 7.18. Compared to the re-entry group 1, lower βE

values are observed for group 2 - which started with more relaxed orbital element selection criteria. The
influence this has on the propagations is presented in subsection 7.2.6 and further discussed in chapter 8.
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7.2.5. Group 2 - Adjusted to accommodate for varying drag coefficient
The ballistic coefficients adjusted for the varying drag coefficient (including a distinction between Sesam’s
theory and α = 0.8) for re-entry group 2 is presented on this page, as well as their differences per iteration
w.r.t. βE , which is also visualized in Figure 7.19 where the red line represents βCD Lang mui r and blue βCD ,α=0.8.

Table 7.34: Estimated βE values for re-entry group 2, compared to βbasel i ne .

NORAD βCD Lang mui r βCDα=0.8 NORAD βCD Lang mui r βCDα=0.8

CP-6 (35003) 0.032217 0.031439 We-Wish (38856) 0.038082 0.044404
HawkSat-1 (35004) 0.036217 0.035329 SkyCube (39567) 0.015574 0.017623

Robusta (38084) 0.028887 0.032987 ArduSat-2 (39571) 0.039696 0.046308
UniCubeSat (38085) 0.02841 0.032934 OpuSat (39575) 0.01798 0.020358

FitSat-1 (38853) 0.023998 0.025545 ArduSat-1 (39412) 0.028655 0.030665
TechEdSat (38854) 0.027885 0.032487 ArduSat-X (39414) 0.029119 0.030894

Table 7.35: Average difference in percentage between estimated ballistic coefficient and the baseline ballistic coefficient
for re-entry group 2.

Iteration 1 2

Average ∆ between βCD Lang mui r and βE -7.65 % -3.11%
Average ∆ between βCDα=0.8 and βE 0.24% 3.24%

Referring back to Figure 4.2, the deviation βCD Lang mui r and βCD ,α=0.8 have with βE is to be expected. In
the lower regions of the atmosphere in which re-entry group 2 resides one can clearly see that the expected
CD using Langmuir’s adsorption model lies around 2.5, whilst for α = 0.8 this value hovers slightly above 2.8.
Remember that βE was considered to have a CD of 2.8. The resulting lower average value for βCD Lang mui r and
the slightly higher average value for βCD ,α=0.8 are thus as expected.

Table 7.36: Mean and median for re-entry group 2.

Mean βCD Lang mui r Median βCD Lang mui r Mean βCDα=0.8 Median βCDα=0.8

Re-entry group 2 0.0289 0.0288 0.0313 0.0320

Figure 7.18: Histogram of βE values for re-entry group 2
Figure 7.19: Difference of βCD ,Lang mui r (red) and
βCD ,α=0.8 (blue) values with βE for re-entry group 2
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7.2.6. Propagation results re-entry group 2
The propagation results for re-entry group 2 are presented in Table 7.37. As opposed to the in-orbit groups,
there shall be no histograms of the relative difference in decay epoch per scenario as the number of objects
within the re-entry group allow for a better overview when the data is displayed in said table. Also due to the
small object size no data points exceeded 3σ and thus no points have been eliminated. Similarly, Table 7.38
provides a summary of the performance of the three scenarios.

Iteration 1 Difference [days] with verification orbit Difference [days] with initial orbit
NORAD Baseline βE βCD Lang mui rβCD ,α=0.8 βE βCD Lang mui rβCD ,α=0.8

CP-6 (35003) 5.918 6.603 10.400 4.830 -0.685 -4.482 1.088
HawkSat-1 (35004) 17.439 10.123 13.584 8.558 7.316 3.854 8.880

Robusta (38084) 15.189 18.796 7.929 21.424 -3.607 7.260 -6.235
UniCubeSat (38085) 12.013 16.292 4.912 19.016 -4.279 7.100 -7.003

FitSat-1 (38853) 21.336 5.087 14.798 1.470 16.249 6.538 19.867
TechEdSat (38854) 3.047 1.595 7.191 0.806 1.452 -4.144 2.241

We-Wish (38856) 34.214 0.004 4.925 2.764 34.210 29.289 31.450
SkyCube (39567) 30.637 40.863 34.528 38.630 -10.226 -3.892 -7.994

ArduSat-2 (39571) 9.466 10.135 1.848 14.165 -0.668 7.618 -4.699
OpuSat (39575) 2.947 2.750 27.527 18.243 0.197 -24.580 -15.295

ABS. SUM 152.206 112.248 127.644 129.906 39.959 24.562 22.301

Iteration 2 Difference [days] with verification orbit Difference [days] with initial orbit
NORAD Baseline βE βCD Lang mui rβCD ,α=0.8 βE βCD Lang mui rβCD ,α=0.8

ArduSat-1 (39412) 1.927 2.750 5.056 2.726 -0.823 -3.129 -0.799
ArduSat-X (39414) 3.564 4.223 8.101 3.363 -0.658 -4.536 0.201

ABS. SUM 5.491 6.973 13.157 6.089 -1.482 -7.665 -0.598

Table 7.38: Mean propagation difference and overall improvement [km] w.r.t. baseline orbit for each scenario in
re-entry group 2. Outlying data points are included, yet are removed in the discussion in chapter 8.

Baseline Scenario 2 Scenario 3 Scenario 4

Mean - 3.2062 1.408 1.809

Difference with verification orbit 157.698 119.221 140.801 135.995
Improvement w.r.t. baseline [days] - 38.477 16.897 21.703
Improvement w.r.t. baseline [%] - 24.399 10.715 13.763

As can be seen, re-entry group 2 has a positive overall performance for scenario 2, though this improve-
ment comes solely from the first iteration. Furthermore it is shown that for scenario 4 performance better
than scenario 3 in again iteration 1, though that positive performance is greatly reduced when taking into
account iteration 2. A potential error source could be the error heritage of the parents in iteration 1 flowing
through to the children in iteration 2. A discussion on this is held in chapter 8.
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7.3. Summary propagation results
The individual performances per group have been discussed and elaborated on on a per-iteration level. The
big question is how the three scenarios hold up on an overall performance, and whether anything can be de-
rived from the group’s composition. Since however the in-orbit and re-entry groups are still vastly different,
these two shall be presented separately in Table 7.39 and Table 7.40 respectively.

Table 7.39: Propagation result summary of the in-orbit groups

In-orbit group 1
Baseline Scenario 2 Scenario 3 Scenario 4

Difference with verification orbit 9.8823 9.2878 8.4896 9.1922
Improvement w.r.t. baseline [km] - 0.5945 1.3927 0.6901
Improvement w.r.t. baseline [%] - 6.01 14.09 6.98

In-orbit group 2
Baseline Scenario 2 Scenario 3 Scenario 4

Difference with verification orbit 11.4715 15.1997 13.8936 14.1136
Improvement w.r.t. baseline [km] - -3.7282 -2.4221 -2.6421
Improvement w.r.t. baseline [%] - -32.49 -21.15 -23.03

In-orbit group 3
Baseline Scenario 2 Scenario 3 Scenario 4

Difference with verification orbit 10.7206 10.3996 9.9865 10.9305
Improvement w.r.t. baseline [km] - 0.3210 0.7341 -0.2099
Improvement w.r.t. baseline [%] - 2.99 6.847 -1.95

Overall
Baseline Scenario 2 Scenario 3 Scenario 4

Difference with verification orbit 32.0744 34.8871 32.3697 34.2363
Improvement w.r.t. baseline [km] - -2.8127 -0.2953 -2.1619
Improvement w.r.t. baseline [%] - -8.06 -0.92 -6.74

The results presented here are elaborated on further in the discussion section, chapter 8, though most
apparent findings on the influence of Langmuir’s adsorption model in the adjustment for the varying drag
coefficient are still held in this section. An important note, within these results outlying data points have
been removed for points exceeding 3σ.

Table 7.40: Propagation result summary of the re-entry groups

Re-entry group 1
Baseline Scenario 2 Scenario 3 Scenario 4

Difference with verification orbit 206.721 115.282 129.902 117.292
Improvement w.r.t. baseline [days] - 91.439 76.822 89.43
Improvement w.r.t. baseline [%] - 44.23 37.16 43.26

Re-entry group 2
Baseline Scenario 2 Scenario 3 Scenario 4

Difference with verification orbit 157.698 119.221 140.801 135.995
Improvement w.r.t. baseline [days] - 38.477 16.897 21.703
Improvement w.r.t. baseline [%] - 24.399 10.715 13.763

Overall
Baseline Scenario 2 Scenario 3 Scenario 4

Difference with verification orbit 364.42 234.50 270.70 253.29
Improvement w.r.t. baseline [days] - 129.92 93.72 111.13
Improvement w.r.t. baseline [%] - 35.65 25.72 30.50
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Starting with the in-orbit category, it is apparent group 1 and 3 perform adequate, with group 1 demon-
strating an improvement of 14.09% for scenario 3. The trend that can be observed for all groups, irrespective
of the level of improvement, is that scenario 3, thus the βE adjusted for the variable drag coefficient using
Langmuir’s adsorption model does result in a positive improvement compared to scenario 2 - the estimated
ballistic coefficients. Scenario 4, using a constant energy accommodation coefficient of 0.8, does not demon-
strate a clear improvement compared to scenario 2. Therefore, the first conclusion to be drawn from the
in-orbit category is that the adjustment for the variable drag coefficient using Langmuir’s adsorption model
is a useful method to integrate.

The poor results from group 2 are however still bothersome, as solely this group drags the overall improve-
ment of the in-orbit category to a negative value. In chapter 8 a further investigation on this is performed,
though already consider that group 2 had the most relaxed initial orbital element selection criteria for the
proximity algorithm. These loose criteria could have resulted in matches being made in regions too far away
from each other - resulting in wrongly estimated βE values that could have propagated further in the later
iterations. This so called error heritage is further discussed in chapter 8.

Interestingly, the re-entry category demonstrates amazing result compared to the in-orbit category - with
a 44% performance increase in group 1. However, the trend observed in the in-orbit category regarding the
adjustment for varying drag coefficient can not be observed in the re-entry group - neither for a constant α
nor for Langmuir’s adsorption model. The initially estimated values in scenario 2 provide the best β estimate,
where adjusting these values for the changing CD in scenario 3 and 4 worsened the results - though here a
constant α = 0.8 does seem to be a better adjustment than Langmuir’s adsorption model , which at these alti-
tudes quickly converges to α = 1.0.

Again, the re-entry group with the looser selection criteria performs worst - in this case group 2. Further
discussed in chapter 8, it already seems to become apparent that these selection criteria have a large effect
on the estimated ballistic coefficient values, which is of course a logical follow-up from the theory. Loose cri-
teria allows for matches being made under atmospheric conditions that start to deviate from the near-similar
conditions advocated in the theory. However, even with loose criteria the re-entry category demonstrated the
best improvements, and with the data from this experiment it can be advised that this method performs best
for lower orbits - and can therefore be a proper addition to methods focused on re-entry predictions.

Due to the apparent sensitivity of the these selection criteria and the expected error heritage resulting
from inaccurate estimates propagating their errors to the next iterations, a sensitivity analysis is held later in
chapter 8. Furthermore, a sanity check is performed on the ballistic coefficient values for all groups and sce-
narios to determine if indeed the found β affect the orbital decay as they are expected to do. The discussions
held there are concluded with a deeper analysis on the above propagation performance results, after which
recommendations for future research are presented. These recommendations range from advised modifica-
tion for this specific research to advise on the approach when one considers to expand this research and start
incorporating (part of) this research into a global ballistic coefficient estimation model.
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Conclusion and Recommendations

With all the results presented in the previous chapter and with extended data provided in the appendices, the
experimental set-up as described in chapter 6 has come to an end. In this chapter, the data shall be analyzed
with as goal to deduct performance changes that can be specifically attributed to one or more theories de-
scribed earlier in this report. Key in this analysis are the performance indicators for the in-orbit and re-entry
groups, and data that could indicate why certain unexpected outputs occurred - though this is still an anal-
ysis based on statistical data, it is still of interest to be able to deduct why certain outliers came to be as to
hopefully prevent them in the future.

The discussion shall aim towards answering the hypotheses stated in the introduction and the sub-questions
related to this hypotheses. Any arguments made either in favor or against the statement are to be supported
by any conclusions derived from the data analysis. This chapter shall conclude with a section on recommen-
dations for any continuation of this research and on matters that, in hind-sight, would have been a more
suited approach to this research. It is believed that the theory described in this report, the required method-
ology to investigate this theory, and the described experimental set-up required to perform this research,
resulted in adequate and meaningful output data. Interpretation of this data and investigation into potential
areas of risk, improvement, or success, can hopefully in the future lead to follow-up research being conducted
on this topic.

8.1. Discussion
Leading up to any conclusion, the data is analyze and discussed in this section. A focus shall be put be-
tween first the sensitivity analysis and followed by the data analysis. They both have their respective sub-
discussion as displayed below:

• Sensitivity analysis - The error heritage from parent to child shall be investigated here, as well as the
sensitivity a group has with regards to the orbital element criteria for the proximity algorithm as well
as the sensitivity of the selected ballistic coefficients of the initial spherical satellites. The sensitivity
analysis is concluded with a discussion the size and composition of the initial database have on the
outcome.

• Data analysis - Assessment of the performance merits for both the in-orbit and re-entry groups. Fur-
thermore, a discussion on the expectancy versus outcome regarding the ballistic coefficients is held.
The data analysis is concluded with an overall advice regarding the application of the three scenarios.

The thought process behind this structure is to give the reader an understanding of the sensitivity of the
described processes and to understand what data can be considered as believable and what data could be
regarded as outlying data. As shall become clear, there are many circumstances under which the described
theory can perform exceedingly well or, in other cases, under-perform. It is therefore recommended to thor-
oughly comprehend the sensitivity analysis and sanity checks before drawing own conclusions on the data.
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8.1.1. Sensitivity analysis - Orbital element criteria and satellite database
For each group, whether it was classified as in-orbit or as re-entry, a set of orbital element criteria had been
established for the proximity algorithm. This algorithm computed any set of matching satellites experienc-
ing near-similar atmospheric conditions from the initial two (sphere and cube) satellite databases. Already
mentioned in subsection 5.2.2, the two prime selection criteria were considered to come be epoch date range
and altitude range. Table 8.1 presents a quick overview of the criteria sets for all five groups.

Table 8.1: Orbital parameter criteria for all in-orbit and re-entry groups.

In-orbit Re-entry
Group 1 Group 2 Group 3 Group 1 Group 2

∆max altitude [km] 40 50 25 40 75
∆max inclination [degree] 10 10 15 15 20
∆max RAAN [degree] 20 20 30 30 30
∆max epoch [days] 10 10 10 10 10

The main difference that is easily spotted is the variation in altitude range - both for the in-orbit as for
the re-entry groups. Remember that the initial satellite database for all groups were identical, see Table 6.1.
Based on these criteria, the proximity algorithm computed the number of satellites it could find, and the total
number of matches. Again, an overview of this is provided, see Table 8.2. A quick note on the difference be-
tween number of matches and total number of found satellites - some satellites have been matched multiple
times within an iteration, that is to say, they had multiple parents out of which their ballistic coefficient was
estimated.

Table 8.2: Summary of proximity algorithm output

In-orbit Re-entry
Group 1 Group 2 Group 3 Group 1 Group 2

CubeSats found 43/59 51/59 52/59 10/23 12/23
# of iterations 4 5 6 2 2
# of matches from proximity algorithm 146 192 126 17 22

A few interesting aspects can already be derived from these two overviews, namely that the orbital element
selection criteria have a direct effect on the total number of found satellites from an identical initial satellite
database, its composition, and is also related to the number of parents an object can have. For reference, a list
of the parents satellites for each object is given in section B.1,section B.2 ,section B.3 and. Though only three
variations for the in-orbit category and just two variations for the re-entry category have been established,
it can already be observed that the group composition is a directly related to these selection criteria, and it
seems to be mostly influenced by the altitude range. Furthermore, a relaxation of the Right Ascension of the
Ascending Node (RAAN) resulted in a large gain in total number of satellites. Whether epoch and inclination
have such a large effect can not be observed from this dataset - additional parameter optimization research
purely on initial database and selection criteria would have to be conducted for that.

Without getting too much ahead with the performance analysis, the first few observations purely on the
selection criteria and initial database can be seen. First of all, let’s compare the overall results of the five
groups with their selection criteria. Especially the in-orbit groups are beneficial for this comparison, as the
deviation in the altitude ranges allow for an expected best group (group 3), an intermediate group (group
1), and an expected worst group (group 3), due to the respective relaxation of the selection criteria. Without
going in detail, clearly group three is performing best overall for the in-orbit category, and group 1 for the
re-entry category, and, as expected, group 1 with its altitude range of 50 km is greatly under-performing in
the in-orbit category.

To go more in depth on this argumentation, the three images below contains graphical representations
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of the propagation difference of scenario 1 w.r.t. the baseline of the objects in the in-orbit groups and the
distance in kilometers that those objects had with their match(es). To clarify, the standard deviation σ for
a group has been computed and the propagation differences exceeding 3σ have been excluded from the
dataset. From that dataset, a regression line has been made in the form y = ax + b, which provides a clear
indication that performance deteriorates with growing distance between the matches.

Now, this does not mean that suddenly a complete group, such as group 2, can be considered defect or
even neglected - there is still a lot of relevant data within that group - though it does provide the first clue
as to the sensitivity of the orbital element selection criteria. Logically, with a similar satellite database there
should also be a lower bound to the selection criteria. After all, the more tightened the criteria become, the
fewer matches can be observed, and as shall become apparent in the next section, too much dependency on
just a few parent satellites can occur, increasing the probability of error heritage within the iterations. On the
contrary, an increase in objects in the initial satellite database would in turn allow for tight criteria yet still
with a healthy number of matches. The discussion on the definition of a healthy number of matches shall be
resumed in subsection 8.1.2.

Concluding the first part of the sensitivity analysis, the influence and dynamics of the initial satellite
database size and the orbital element selection criteria have on the healthiness of a group should have be-
come apparent. A small extension on this is mentioned in the recommendations, though basically a proper
performing group is already partially defined upon defining the satellite database and selection criteria. The
aim would be to increase the database size and to tighten the selection criteria, most primarily for the altitude
range. Follow-up research is encouraged to examine the effect on the tightening of the other three criteria in
more depth, for instance by keeping three criteria constant and alternate only one, and perform a similar
analysis as was performed for the graphs above. It would be interesting to see which criteria demonstrates
the steepest (negative) regression lines and is thus most influential for the performance of the overall group.

Figure 8.1: Regression line from object performance vs matched s.m.a. difference - in-orbit 1.

8.1.2. Sensitivity analysis - Error heritage
The global performance of a group when solely looking at the initial database and the orbital element selec-
tion criteria has been discussed, though within the ballistic coefficient estimation procedure there is another
sensitive aspect - error heritage. Remember that an object gets its ballistic coefficient estimated relative to
the ballistic coefficient of its parent(s). Therefore, if an object has a parent with a badly estimated ballistic
coefficient that error propagates to the child, which in turn gives it to the next iteration and so forth. To high-
light this problem, this subsection shall elaborate on this negative feature by providing an overall analysis of
this error propagation for the in-orbit groups, specifically chosen as the re-entry group do not have enough
iterations to perform a proper error propagation analysis.
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Figure 8.2: Regression line from object performance vs matched s.m.a. difference - in-orbit 2.

Figure 8.3: Regression line from object performance vs matched s.m.a. difference - in-orbit 3.

To perform a proper analysis of the supposed error heritage the following procedure has been performed.
First, the data that is analyzed is the absolute difference βE has with the verification orbit, corresponding to
column C, or 3, in the propagation results, see Appendix A. The reason behind selecting this column and not
the difference between scenario 1 and 2 is because here the interest lies in determining if a poor βE does
propagate to the next iteration, not whether it is better than β0. Secondly, section B.1 and the following 2
appendices are established containing all objects in each group and their parents. Here it already becomes
obvious that certain parent combinations are strongly influencing the later iterations.

From here, for each object (or, child) the difference with verification orbit is stored, with next to it a col-
umn with the mean difference of the parent(s) of that child. Since the interest lies in the error propagation
amongst the estimated ballistic coefficients, all children from spherical satellites are removed - that is basi-
cally iteration 1 for each group. The reasoning to do so is to purely look at error heritage in βE and not the
error induced by the accuracy of βT . Finally, outlying data points are removed by computing the standard
deviation σ from the remaining children group and exclude all objects exceeding 3σ. The data for the three
in-orbit groups are presented respectively in Figure 8.4, Figure 8.5, and Figure 8.6, in which also a regression
line of the data is presented.

As expected, the regression line shows that with increasing difference of the verification orbit of the par-
ents, the child feels this effect as well - or short, positive mean parent error (x-axis) correlates to positive child
error (y-axis). Furthermore, the dependency of a group of just a few parents is also shown in the graphs. When
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Figure 8.4: X-axis represent mean km
difference of parent(s) with the verifi-
cation orbit and the y-axis the differ-
ence of the child with the verification
orbit - in-orbit group 1.

Figure 8.5: X-axis represent mean km
difference of parent(s) with the verifi-
cation orbit and the y-axis the differ-
ence of the child with the verification
orbit - in-orbit group 2.

Figure 8.6: X-axis represent mean km
difference of parent(s) with the verifi-
cation orbit and the y-axis the differ-
ence of the child with the verification
orbit - in-orbit group 3.

looking closely, especially at in-orbit group 1 and group 2, one can see two large columns at the end of the
x-axis. In group 1, this corresponds to the mean absolute difference from satellite 37851 and 37852, for group
2 these objects are 37851, 37851, 37854, and 37855. The overall group can thus be considered to be sensitive
to the just a few select parents.

Going a little deeper, let us zoom in on Figure 8.4, representing the data of the in-orbit group 1. The high-
est point, or the one effected the most by the errors of its parents, correlates to a x-axis of 1.2 and a y-axis of
around 1.0. Noting that this 1.2 on the x-axis corresponds to the two 37851 and 37852 objects, the propaga-
tion results in chapter 7 can be used to determine which object can be associated with the y-axis. The only
possibility would be object 41460, which indeed shows a difference of almost 1 km with the verification orbit.
This object is affected the most by the error heritage, and this also comes back when looking up the corre-
sponding performance results - a loss of 0.5 km is seen between scenario 1 and scenario 2, directly making
this object the worst of its group. A similar case happens in Figure 8.5, where again the worst performing is
object 41460 after having the highest error heritage.

To conclude the error heritage examination, let us take a closer look whether any error heritage comes
from the spherical satellites. Again using the propagation results and the child-parent tables in the appen-
dices, it can be derived that object 27944, or the LARETS spacecraft, is the parent of most satellites in iteration
1 for all three groups. No verification orbit have been created for the spheres, nor has their performance based
on the originally assumed β from section 6.1 been analyzed. However, when looking at the propagation per-
formance of LARETS children, something interesting occurs - most of the poor performance in iteration 1
from group 2 and group 3 can be attributed to objects descending from LARETS, whilst for group 1 there is no
indication of poor performance due any LARETS error heritage. The LARETS spacecraft looks almost identi-
cal to Figure 6.5.

Though literature[46] often uses the sameβT for LARETS as is done in this research (β = 0.004658), it could
be that its ballistic coefficient might have to be reevaluated. The non-perfect spherical shape of LARETS,
representing the shape of a golf ball could possess a lower CD value than the originally assumed 2.3, as is
suggested M. Rutkowska’s work[45]. Furthermore, in accordance to the work of B. Bowman[4], spherical drag
coefficients differences between computed and observed values would sometimes be around % lower than
initially computed. This reduction in the real experienced CD could indicate initially assumed CD values for
the spheres - errors that can have propagated towards the child objects.

Error heritage has, as logically expected, shown to influence further iterations down the line. A healthy
group would be a group where poor βE are not propagated through in time, and where the entirety of the
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group does not depend on just a select few objects. Preferably a merit is created capable of either assessing
the quality of βE upon which a decision can be made whether or not a new match should be formed with
that value, or an object must have a minimum number of parents to average out any errors induced by a sin-
gle poor βE . A quick ad-hoc solution to this problem would be to largely increase the satellite database with
variety in orbits - this way multiple matches per object should be made possible, selection criteria could be
tightened, and most likely the group would not be dependent on a few objects or a certain iteration group.

8.1.3. Data analysis - Sanity check
The ballistic coefficients resulting from the estimation algorithms are approximations of the true ballistic co-
efficient and, inherent to the approach of acquiring βE , still septic to aspects such as bad TLE observation
data and to deviations in the computed local atmospheric density error. It is therefore that the resulting bal-
listic coefficients within a group do not always demonstrate a uniform accuracy, where some objects have
gotten their βE computed accurately, other objects might actually have received worse βE values as when
compared to their baseline orbits. The sensitivity of an object’s accurate ballistic coefficient computation has
been discussed before, where it was shown that the orbital element selection criteria, satellite database, and
the error propagation, are potential causes of an object’s extraordinary good or poor behavior. However, these
error would have been induced only once during the estimation procedure, and the resulting ballistic coeffi-
cients, whether good or bad, can still be used to analyze the performance of the drag coefficient adjustment
algorithm and the expected performance of the propagator in the form of a sanity check.

The question whether the computation of βCD Lang mui r and βCD ,α=0.8 has been properly executed can be
evaluated fairly straightforward. Figure 4.2 displays the drag coefficient of a 1U CubeSat as a function of both
Langmuir’s isotherm and an energy accommodation coefficient of α = 0.8, both for solar maximum and solar
minimum conditions. For both categories, the adjustment ofβE to obtainβCD Lang mui r andβCD ,α=0.8 has been
analyzed to see if they do indeed follow the trend from section 4.2. This has been done by simply subtracting
βCD Lang mui r from βCD ,α=0.8, thus scenario 4 - scenario 3. The differences for all objects in the in-orbit groups
and re-entry groups are visualized in Figure 8.7 and Figure 8.8 respectively. Note that the total object size of
the in-orbit category is thus 43 + 51 + 52 = 146 and that of the re-entry category is 10 + 12 = 22.

Figure 8.7: Ballistic coefficient difference between scenario
4 and scenario 3 of all re-entry objects. Positive y-axis indi-
cates βCD ,α=0.8 to exceeds βCD Lang mui r .

Figure 8.8: Ballistic coefficient difference between scenario
4 and scenario 3 of all re-entry objects. Positive y-axis indi-
cates βCD ,α=0.8 to exceeds βCD Lang mui r .

It instantly becomes apparent that the in-orbit group have (almost) all objects which have lower βCD ,α=0.8

values than βCD Lang mui r , whilst for the re-entry group this is the opposite. Referencing back to Figure 4.2, this
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was to be expected - for higher altitudes and lower solar activity Langmuir’s adsorption model computes a
significantly higher CD than when the energy accommodation coefficient α is assumed constant at 0.8. For
the lower orbits, thus for the re-entry category, the opposite is expected and proven to be the case. This simple
sanity check demonstrates that the ballistic coefficient conversions for scenario 3 and scenario 4 do indeed
follow the expected trend.

Another aspect one would logically expect to see is that with a decreasing ballistic coefficient, the orbit
would decay slower. Opposite holds true too - the higher the ballistic coefficient, the more it is affected by
the atmosphere and thus the faster it decays. With so many ballistic coefficients having been computed, this
simple reasoning should be shown back in the data by analyzing whether an object’s difference with the ver-
ification orbit either increased or decreased compared to object’s other computed ballistic coefficient.

To illustrate how this analysis was performed, remember that for each object four ballistic coefficients
have been computed, one for each scenario. The baseline scenario 1 always had a ballistic coefficient of
0.03125 assigned to the object. The difference δβ between for instance β0 and βE corresponds to a δ altitude
gain w.r.t. the verification orbit. If for instance β0 corresponds to a difference with the verification orbit of
-0.2 km and βE corresponds to a difference of +0.3 km, it is expected that βE is smaller than β0.

Due to the large sample size of the in-orbit groups, this analysis has been performed for these three groups
in a similar fashion as was done with the sensitivity analysis for the selection criteria. For all objects in each
group δβ between scenario 1 and scenario 2 and the corresponding altitude difference w.r.t. the verification
orbit has been computed. After that, the resulting data has had its standard deviation σ calculated and any
data exceeding 3σ was regarded as outlying data and discarded. The results for the three in-orbit groups
are presented in Figure 8.9, Figure 8.10, and Figure 8.11 respectively. As was expected, for all three groups it
can be demonstrated that with an increasing ballistic coefficient the altitude w.r.t. the verification orbit drops.

Figure 8.9: Altitude loss w.r.t. ∆β between scenario 1 and 2 for in-orbit 1.

8.1.4. Data analysis - Performance assessment
With the sensitivity discussion being held and having given a closer look at how the data was expected and
how it actually performed in the sanity check, a few expectations w.r.t. the performance assessment can al-
ready be stated. First of all, with the sensitivity to the orbital element selection criteria sets, it can be expected
that the group with tighter criteria shall performed best, as long as the group composition is healthy - that is,
there are multiple parents for the objects, and not just a few ancestors through which errors can potentially
propagate. Furthermore, the expected difference between βCD Lang mui r and βCD ,α=0.8 seems to follow the pre-
dicted trend. Therefore, any conclusions made between scenario 3 and scenario 4 can thus be directly related
to the theory and, more importantly, to either Langmuir’s adsorption model or the use of a constant energy
accommodation coefficient.
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Figure 8.10: Altitude loss w.r.t. ∆β between scenario 1 and 2 for in-orbit 2.

Figure 8.11: Altitude loss w.r.t. ∆β between scenario 1 and 2 for in-orbit 3.

Before any assessment is performed, the propagation results, and most specifically the propagation er-
rors between the baseline and scenario 2, are checked for outlying data points in coherence with the methods
used for the sensitivity analysis before. That is, over Column J of the data results, the standard deviation σ is
computed and all outlying data points exceeding 3σ are discarded. The impact this has on each group and on
the overall performance is presented in Table 8.3. When comparing this data with the original propagation
results, no change for the re-entry group is observed, though overall the in-orbit group has a slight increase
in performance.

Starting with the in-orbit groups, it can be seen that sadly the overall performance is negative, which can
be solely attributed to the group with the most relaxed selection criteria, group 2. Without the negative -
32.49% from group 2, the overall performance would have been positive for all scenarios - the first indication
that indeed the initial selection criteria hugely affect the performance of a group. Before going into detail
regarding the performance of the three in-orbit groups, it is interesting to note that when discarding the out-
lying data, the best performing in-orbit group has shifted from group 3 to group 1. This is not that unexpected
when taking a closer look at the individual performance of the objects in group 3. Objects 37852, 37854, and
37855 both performed exceedingly well in iteration 4, which made them according to the 3σ boundary out-
liers and were thus discarded. Hence, group 1 turned out to be the best performing group, which immediately
raises a new question - is maybe the Right Ascension of the Ascending Node another key selection criteria,
together with epoch and altitude? After all, the only two variations between 1 and 3 are the RAAN and altitude
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range.

So let’s zoom in on three groups, starting with group 1. The discarding of outliers created a new image of
this group, one in line with that expected from the theory. Scenario 1 with its estimated ballistic coefficients
proved to form a slight better overall performance, though the real outstanding data comes when consider-
ing scenario 3. Accounting for the variation of the drag coefficient computed with Langmuir’s isotherm shows
an improvement of little above 14%, remarkably close to double the accuracy gain compared to scenario 2!
Consider again scenario 4, and the performance drops closer to values that of scenario 2. Thus, for in-orbit
group 1, with a total of 43 test subjects, an altitude range of 40 km and a RAAN range of 20 degrees, it can be
stated that compared to the baseline an undeniable improvement has been achieved, especially in scenario 3.
Furthermore, Langmuir’s adsorption model for these orbits seems to outperform usage of a constant energy
accommodation coefficient of α = 0.8.

Unsettlingly group 2 behaves extremely poor - not only does it reduce the overall in-orbit group perfor-
mance to nothing, it demonstrates that cases can exist where the overall performance may drop well below
that of a constant ballistic coefficient of 0.03125. Clearly, in the estimation procedure for group 2 there have
been either misfits, ranges that exceeded the consideration of experiencing near-similar atmospheric con-
ditions, simply error heritage, or a combination of all these. Though sadly the estimation procedure proved
to have its faults, it doesn’t render the data set invalid - quite the contrary. Apart from demonstrating the
necessity of parameter research, it also shows that even with bad βE , improvements are made in scenario 3,
again proving the importance of accounting for the variable drag coefficient. And even though just barely,
scenario 3 outperforms group 4 again, strengthening the resolution that Langmuir’s isotherm does indeed
prove valuable for higher orbits.

Concluding the in-orbit category is group 3 - the former best performer though with the removal of out-
liers brought back to a second place. With only a 3% gain in performance for the estimated ballistic coeffi-
cient, scenario 2 does not seem to be that much of an improvement. However, the trend identified in group
1 and group 2 continuous in this group as well; scenario 3 almost doubles the performance and again leaves
scenario 4 way behind. With this final group, it can be confidently said that Langmuir’s adsorption model is
a requirement when adjusting for the variable drag coefficient. Furthermore, though having tight criteria yet
not have the best performance, group 3 could be the clearest indication of the error heritage described earlier.
The mean βE is extremely low compared to group 1 and 2, and even though this does sometimes provided
with good propagation results, it seems that low ballistic coefficient values were estimated in iteration 2 and
propagated itself towards the other iterations. Though not a conclusive observation, additional research in
this group might have exposed new relations between error heritage and performance. Finally, group 3 also
demonstrated that unexpectedly the RAAN is a more vital element in the proximity algorithm than was ini-
tially assumed.

Upon examining the data from the re-entry group, the results are as were to be expected. In the lower
region of the atmosphere, the predicted thermospheric density values are expected to have a higher accuracy
opposed to those at the higher orbits such as in the in-orbit group. Therefore, the expectancy was that the es-
timated ballistic coefficients βE demonstrates a significant increase as opposed to the baseline, which can be
seen back in the data ; an overall 35.65% increase between βE and the baseline orbits. Though huge improve-
ments have been made in the re-entry group, let’s try to understand why this group so greatly outperformed
the in-orbit group.

Re-entry group 1, with the tightest selection criteria of the two, shows an initial improvement of in sce-
nario 2 of close to 45%. Contrary to the in-orbit groups, this value drops to 37% after which it dips up again in
scenario 4 to nearly the same value as in scenario 2, 42%. Interestingly, the approach with computing the drag
coefficient with Langmuir’s adsorption model does not work that great for lower orbits. Potentially this is due
to the fact that with Langmuir’s isotherm, the energy accommodation coefficient approaches 1.0 in the lower
regions of the atmosphere, and that this convergence to 1.0 is not the most accurate solution. Moreover, the
huge increase in performance itself could maybe also be attributed to more accurate TLE observation data
being created for objects in lower orbit (and in orbits close to the ISS), as well as that the output of NRLMSISE-
00 is generally more accurate for lower regions [38]. Still showcasing a notable increase in performance for
all scenarios, re-entry group 2 is barely demonstrating half the increase compared to group 1. Especially sce-
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Table 8.3: Propagation result summary with discarded 3σ data points.

Absolute propagation sum
Baseline Scenario 2 Scenario 3 Scenario 4

In-orbit 1 [km] 9.8823 9.2878 8.4896 9.1922
In-orbit 2 [km] 11.4715 15.1997 13.8936 14.1136
In-orbit 3 [km] 10.7206 10.3996 9.9865 10.9305
Re-entry 1 [days] 206.7210 115.2822 129.9021 117.2923
Re-entry 2 [days] 157.6978 119.2211 140.8006 135.9945

Performance increase w.r.t. baseline orbit, absolute
Baseline Scenario 2 Scenario 3 Scenario 4

In-orbit 1 [km] - 0.5945 1.3927 0.6901
In-orbit 2 [km] - -3.7282 -2.4221 -2.6421
In-orbit 3 [km] - 0.3210 0.7341 -0.2099
Re-entry 1 [days] - 91.4388 76.8189 89.4287
Re-entry 2 [days] - 38.4767 16.8972 21.7033

Performance increase w.r.t. baseline orbit, percentage
Baseline Scenario 2 Scenario 3 Scenario 4

In-orbit 1 [%] - 6.01 14.09 6.98
In-orbit 2 [%] - -32.49 -21.15 -23.03
In-orbit 3 [%] - 2.99 6.847 -1.95
Re-entry 1 [%] - 44.23 37.16 43.26
Re-entry 2 [%] - 24.39 10.71 13.76

Overall performance per category, percentage
Baseline Scenario 2 Scenario 3 Scenario 4

In-orbit [%] - -8.06 -0.92 -6.74
Re-entry [%] - 35.65 25.71 30.4957

nario 3 makes a large drop to 10%, again showing that using Langmuir’s adsorption model for lower orbits
might not be as suited as it was for the higher in-orbit groups.

Overall, the propagation results for all groups highlight some expected outcomes such as lower perfor-
mance with relaxed selection criteria. On the other hand it also highlighted unexpectedly the enormous per-
formance increase for the re-entry groups and also notably, the influence the altitude of an object has w.r.t.
whether to use Langmuir’s adsorption model or not. Initially it was also assumed that the two key selection
cirteria were epoch and altitude, yet the difference between group 1 and group 3 demonstrated the impor-
tance of the RAAN as well.
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8.2. Conclusion
The procedures described in this thesis are a promising way to establish ballistic coefficients for large groups
of objects in space, though it has been shown that the criteria on which the procedures are conducted, and
the sample size of the initial database, have a significant impact on the outcome. Though having found rela-
tions that were initially not considered and getting both expected and unexpected results, it is first required to
link back to the hypothesis stated at the beginning of this thesis, the hypothesis on which this entire research
was initiated on:

How do estimated ballistic coefficients adjusted for atmospheric density errors and the inclusion of an ambient
gas-composition dependent CD affect orbital lifetime predictions?

To answer this question, four scenarios had been established of which scenario 1 took the role of base-
line scenario and the other three were assessed based on this baseline. As discussed in the previous report, a
ballistic coefficient can be estimated by analyzing historical TLE observation data and the corresponding at-
mospheric gas composition. The estimated ballistic coefficient would normally still incorporate any density
errors associated with the used atmospheric model, in this case NRLSMISE-00. To mitigate this, Equation 4.3
showcases how an object with an accurately known βT experiencing near-similar atmospheric conditions
can be used to obtain a more accurate model-based estimated ballistic coefficient for an object.

Defining these near-similar conditions required a set of orbital element criteria and an initial database,
which has proven to be one of the first and most sensitive steps towards the final propagation. With small
sample size satellite databases, tight selection criteria could create groups that either have a low amount
of objects in it, or have a large dependency on just a few objects through which error heritage can become
an issue. Nonetheless, for both in-orbit (500 - 1000 km) and re-entering objects notable performance im-
provements have been observed w.r.t. the baseline orbits - in the most optimistic case even leading to a 44%
increase in re-entry group 1.

Table 8.4: Propagation result summary with discarded 3σ data points.

Performance gains per scenario

Group Baseline Scenario 2 Scenario 3 Scenario 4

In-orbit 1 - 6.01 14.09 6.98
In-orbit 2 - -32.49 -21.15 -23.03
In-orbit 3 - 2.99 6.847 -1.95
Re-entry 1 - 44.23 37.16 43.26
Re-entry 2 - 24.39 10.71 13.76

Continuing with the adjustment for the varying drag coefficient, two additional scenarios had been estab-
lished to which all groups (three in-orbit and two re-entry) were subjected. The difference in these scenarios
lied in the fundamental computation of CD , more specifically whether to adopt Langmuir’s adsorption model
(scenario 3) or keep a constant energy accommodation coefficient of α = 0.8 (scenario 4). Interestingly, for
the in-orbit groups the estimated ballistic coefficients from proved to become more accurate when adopting
Langmuir’s isotherm as opposed to keep a constant α. For example, the performance of group 1 increased
from 6% in scenario 2 to 14% in scenario 3. Yet for the re-entry group the opposite proved to be the case,
with scenario 3 actually worsening the gained performance from scenario 2. Also scenario 4 showcased no
increase in the performance of the re-entry groups compared to scenario 2.

Additionally, a set of sub-question had been established to provide a better understanding of the underly-
ing principles of which the hypothesis is composed of. Though having been answered throughout the report
already, the next page lists these four sub-questions and summarizes the answers to them. The conclusion
section shall be ended with a link to the real-life impact this research could have, which is followed by a fi-
nal recommendation section on the additional research that can be performed to extend the accuracy of the
methods described in this thesis.
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How can variations in CD as function of gas composition be accurately modeled for calibration spheres
and tumbling CubeSats?
Starting with subquestion 1, the methods discussed in section 4.2 demonstrated a performance increase for
the in-orbits groups. These models have been verified to confidently be exploited in scenario 3 and 4. How-
ever, the fact that positive performance has been observed does not automatically indicate that the modeled
CD variations has been done in the most accurate manner. For instance, the model does not take into ac-
count a tumbling CubeSat, only a straightforward computation of a 1U box of 10 x 10 x 10 cm dimensions
is considered. Furthermore, no exotic geometries such as deployed solar arrays or antennae are considered,
nor is the material of the CubeSat considered to be a function input to the model. The idea of including an
analytical model capable of computing an objects drag coefficient as a function of ambient gas composition
has been proven to be a good one - to what extend the accuracy of the model can be increased has not been
researched in depth in this thesis.

Is Langmuir’s adsorption model suited for thermospheric energy accommodation coefficients?
Langmuir’s adsorption model is interestingly both suited and unsuited as input to the drag coefficient mod-
els. Objects in orbits between 500 and 1000 kilometers, or the in-orbit category, demonstrated a significant
improvement in performance when using Langmuir’s isotherm. However, for the re-entry objects a worsen-
ing of the performance was observed. A potential cause could be that the objects in the re-entry group still
have atomic oxygen attached to them from when they were orbiting in higher orbits, thereby reducing the
energy accommodation coefficient to values well below the ones established through Langmuir’s model for
the altitudes of propagation.

In what regions do this method perform best, and how sensitive are the results to the initial sample size?
The greatest improvements were definitely in the re-entry regime, where on average a 35% improvement
compared to the baseline has been achieved. Two out of the three in-orbit groups saw a positive perfor-
mance increase as well, though not as significant as for the re-entry groups. The in-orbit groups did however
highlight the sensitivity of the initial sample size and the orbital element selection criteria. Suggested is to
read the sensitivity analysis for the details, but the bottom line is that a larger initial database allows for more
tightened selection criteria, which has demonstrated to have a positive effect on the quality of estimated bal-
listic coefficients.

Can this method be extended for satellites with more complex geometries?
Expected is that the methods described in this thesis should indeed be possible to extend to more satellites
as well as satellites with more complex geometries. In fact, it is recommended to start increasing the initial
database, as for the estimation of the ballistic coefficients no CD adjustment algorithm is required yet. As long
as the objects with known ballistic coefficients βT , in this research the spherical satellites, are not reduced in-
creasing the total objects of interest is expected to only be beneficial. Remember, a larger sample size allows
for tighter selection criteria and results in, overall, a better performance. Regarding the complex shape, if one
is intending to also incorporate the adjustment for the varying CD , which is recommended to do in general
anyway according to the results from this research, it is key to also update the drag coefficient computation
model for these shapes. Elongated objects tend to have a much larger drag coefficient than simple cubes,
and extruding parts such as antennae or solar arrays only increase this drag coefficient even more. Though it
would definitely be possible, it does add to the complexity.
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8.2.1. Potential impact on real-life applications
The performance accuracy potential for orbital lifetime predictions using estimated ballistic coefficients an
adjusting for the varying drag coefficient has shown to be quite significant, even though there are still lots of
kinks the in cable that needs additional research - more on this in the recommendations. Irregardless of the
required additional research, the benefits for real-life applications could be quite substantial for both space
institutions and spacecraft operators. When working in its fullest potential this method could be used to es-
timate the ballistic coefficients of thousands of objects orbiting low-Earth orbit - satellites, space debris, as
long as there is TLE observation data present it can be subjected to this method. Space debris prediction
models from for instance the Space Situational Awareness (SSA) department of ESA or the SSA department
of the EU located in Madrid could instantly update their models by assigning more accurate ballistic coef-
ficients to their debris database - most likely resulting in a better understanding of the actual rate at which
debris is decaying towards Earth. Scenario 2 described in this thesis would be most suited for this, as sce-
nario 3 and 4 would need complex CD algorithms in this case. Moreover, attitude-controlled satellites with
an accurate and well-known ballistic coefficient could be added to the βT database, which most likely results
in additional matches being found. Though being computationally extremely intensive, it would provide in-
stitutions around the world with a massive and continuously updated ballistic coefficient database.

Extending the application discussed above, spacecraft operators could wish to add custom CD algorithms
and upgrade the accuracy of the ballistic coefficients found for their satellite. A more individual approach, it
would allow for operators around the world to get better estimates of their predicted time left in-orbit. Po-
tentially it could indicate that a mission is actually estimated to be in-orbit for 5 years instead of the initially
assumed 4 years - in that case the operator could already start planning additional finances for that extra year,
as well as plan extra science missions or commercial operations for their spacecraft. The other way around
holds true too, if an estimation indicates only 3 years instead of the assumed 4, the operator may want to
re-prioritize the planned science missions, or re-evaluate the costing they want to associate with their com-
mercial services.

A highly ideal image is being described here, yet the results from this thesis does allow for such ideas to
be created. In the recommendation section a set of research areas identified to be needed for this image to
become reality has been listed. There would still be a long way to go before a global ballistic coefficient esti-
mation model can become reality, though investing in working towards this goal could reap great benefits for
both space institutions and spacecraft operators.
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8.3. Recommendations
Throughout the 9-month thesis work a continuous stream of new information appeared, most of which were
the results of unexpected intermediate results that could be quickly added into the experiment. Though some
questions remained unanswered, and upon analyzing the results a couple of ideas arose that could prove to
be beneficial for the accuracy of this experiment. This final section shall discuss recommendations that could
open pathways to a better understanding of the science discussed in this thesis. Though the results in this
research are definitely useful, it is not a conclusive research - in fact, it might even have opened doors to more
follow-up research on this topic. If given the chance and resources, the author would like to recommended
the following:

• In-depth orbital element sensitivity analysis - the performance has been shown to be highly depen-
dent on the proximity algorithm and the accompanying orbital element selection criteria. The four
criteria used in this research have not seen a parameterization optimization, an aspect that is highly
recommended though. When this research would be conducted, advised is to also include the effect of
the initial satellite database size.

• Accuracy of βT for the (non-)spherical satellites - the βT in this research have been defined with a
simple equation based on open-source information. An investigation in the actual accuracy of these
initial values is recommended, as well as a research into the addition of attitude-controlled objects into
that database, provided their ballistic coefficient is well-known.

• Energy accommodation coefficient for lower orbits - higher orbits proved to follow Langmuir’s model,
yet for re-entry this model was unsuited. It is suspected that atomic oxygen adhered to the objects at
higher orbits and was still present during re-entry, thereby lowering the energy accommodation coef-
ficient. Whether this assumption is correct would have to be clarified, and potentially a hybrid energy
accommodation coefficient model can be established following both Langmuir’s adsorption model for
higher orbits yet also considers the orbital history of an object when assessing lower orbits.

• Extension on drag coefficient model - the CD model for this research was advanced in the way that it
computed CD as a function of a simple geometry, the freestream velocity, and the ambient gas com-
position. However, the model did not account for more complex geometries, nor did it account for a
tumbling object. The creation of a model that is still computationally realistic yet does allow for more
complex geometries is considered to be one of the first steps towards a large global ballistic coefficient
estimation model.

• Filtering criteria and assessment of local matches - even with tightened selection criteria, objects
have been identified that did not had an increase in performance. How these objects got their ballistic
coefficient estimated poorly is unknown, and answers to this could allow for filtering criteria for certain
matches. For instance, when a match occurs during a geomagnetic storm, is the accuracy of this model
dropping significantly or not? Or are there certain time- or altitude range in which NRLMSISE-00 might
not have been a suitable candidate? Answers to these questions could allow for certain matches to be
discarded and not have their under-performing ballistic coefficient affect the generations after it.

• Investigate merits reducing error heritage - when considering a global model, it would be inevitable
that somewhere in the model an object will have a poorly estimated ballistic coefficient. To prevent
this ’bad apple’ from infecting too many other objects, special care will have to be taken for not allow-
ing large groups of objects to be dependent of just a handful of parent objects. Perhaps an object can
only be allowed to enter into a model when either the parent has a confirmed healthy βE or that the
object has at least a certain amount of parents - multiple parents would level-out the negative effect of
a single parent and thereby reduce the error propagation throughout the model. Investigating exactly
how and when a decision is made to either include or exclude an object based on the quality of and
number of parents could reduce the effect of error propagation throughout a global model.
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• Accuracy assessment of TLE - all the input objects have had their TLE observation data inserted into
the model. However, TLE datasets are not always as accurate - some objects were found to have lots
of TLE epochs within the 30 day βE period, and with many TLE epochs assessments can be run to
determine of a TLE is inappropriate for usage and be discarded. Other objects however had few TLE
epochs, which made it harder to detect whether or not to incorporate all TLE epochs for the βE period.
Potentially in combination with recommendation item 5 and 6 this could lead to an advanced filtering
system where objects are assessed on their available TLE data, the number and healthiness of their
parents, and the epoch and altitude of the matches.

The above seven items could be a good step towards a global and accurate ballistic coefficient estimation
model, and together with an early investment in getting computationally efficient software the creation of a
preliminary global ballistic coefficient estimation model could be achieved in the near future. In parallel with
the operation of that model upgrades can be created that for instance integrate advanced filtering algorithms
and incorporates CD computations for complex geometries. Though it has not been mentioned too often in
this report, it shall be stressed here one more time - even for the small database in this experiment the com-
putation was quite intensive. The choice of a combination between Matlab and C++ was a justified one for
the prototyping phase, yet this would not suffice for larger operations. Script rewritting and usage of servers
should be able to mitigate this and is therefore advised to be done as early as possible when work towards a
global model is started.
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A.1. Propagation results in-orbit group 1

Iteration 1 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

DTUSAT (27842) 0.154 0.114 0.103 0.014 0.040 0.051 0.140
CUTE-1 (27844) 0.196 0.239 0.219 0.072 -0.043 -0.023 0.124

AAU CubeSat (27846) 0.153 0.174 0.100 -0.019 -0.022 0.052 0.134
CANX-1 (27847) 0.117 0.110 0.171 -0.011 0.007 -0.054 0.105

XI-4 (27848) 0.072 0.059 0.127 0.073 0.014 -0.055 -0.001
SDS-1 (33497) 0.053 0.062 0.056 0.013 -0.009 -0.003 0.040

SwissCube (35932) 0.175 0.086 0.016 -0.019 0.089 0.160 0.156
BeeSat (35933) 0.064 -0.014 0.024 0.032 0.050 0.040 0.032
Uwe-2 (35934) 0.194 0.104 0.172 0.145 0.090 0.022 0.049

ITUPSAT-1 (35935) 0.065 -0.005 0.014 -0.009 0.060 0.051 0.056
AAUSat-3 (39087) 0.202 0.172 0.181 0.189 0.030 0.021 0.013

Brite-PL (39431) -0.006 0.080 0.098 0.178 -0.074 -0.091 -0.171

ABS. SUM 1.451 1.219 1.280 0.775 0.232 0.171 0.676

Iteration 2 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

Dice-1 (37851) -1.397 -1.242 -0.957 -1.198 0.155 0.440 0.199
Dice-2 (37852) -1.046 -1.162 -1.010 -1.178 -0.116 0.036 -0.132

WNISAT-1 (39423) -0.137 -0.072 -0.149 -0.276 0.065 -0.012 -0.139

ABS. SUM 2.580 2.476 2.116 2.652 0.104 0.464 -0.072

Iteration 3 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

EgyptSat-1 (31117) -0.173 -0.134 -0.130 -0.057 0.039 0.043 0.1152
Compass-1 (32787) 0.113 0.087 0.073 0.024 0.026 0.039 0.0887

AAUSAT-2 (32788) 0.054 -0.077 -0.163 -0.147 -0.023 -0.109 -0.0933
SEEDS (32791) 0.001 -0.069 -0.084 -0.167 -0.068 -0.083 -0.1659

AubieSat-1 (37854) -1.130 -0.905 -0.726 -0.756 0.225 0.404 0.3742
M-Cubed (37855) -1.173 -0.903 -0.671 -1.047 0.270 0.502 0.1261

ZaCube (39417) 0.132 0.148 0.196 -0.061 -0.016 -0.064 0.0713
ICube-1 (39432) 0.026 -0.131 -0.154 -0.359 -0.105 -0.129 -0.3334

HumSat-D (39433) -0.066 -0.518 -0.488 -0.650 -0.452 -0.422 -0.5841
PUCP-Sat-1 (39442) -0.097 -0.376 -0.311 -0.496 -0.279 -0.214 -0.3992
FunCube-1 (39444) -0.062 -0.027 -0.029 0.036 0.035 0.033 0.0260

HinCube (39445) -0.089 -0.037 -0.072 -0.095 0.052 0.017 -0.0064
DuchiFat-1 (40021) 0.046 -0.031 -0.091 -0.196 0.014 -0.046 -0.1499

C-BR1 (40024) -0.025 -0.081 -0.126 -0.186 -0.056 -0.101 -0.1607
DTUSat-2 (40030) -0.188 -0.206 -0.065 -0.079 -0.018 0.124 0.1092

UFTI-1 (41458) -0.859 -0.770 -0.579 -0.560 0.089 0.280 0.2998
E-Star-1 (41459) -0.966 -0.826 -0.657 -0.690 0.141 0.309 0.2759

AAUSat-4 (41460) -0.444 -0.983 -0.542 -0.739 -0.539 -0.097 -0.2949

ABS. SUM 5.644 6.309 5.158 6.345 -0.665 0.486 -0.701

Iteration 4 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

Pegasus-1 (39151) 0.027 -0.040 -0.139 -0.226 -0.013 -0.112 -0.198
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CubeBug-1 (39153) 0.076 0.093 0.046 -0.009 -0.017 0.030 0.067
EstCube-1 (39161) -0.098 -0.086 -0.092 -0.021 0.012 0.005 0.077
Velox-P-2 (39438) 0.140 0.000 0.023 -0.040 0.139 0.116 0.100

First-Move (39439) 0.072 -0.281 -0.284 -0.305 -0.209 -0.212 -0.233
KRYSAOR (39441) 0.130 0.017 0.122 -0.042 0.113 0.008 0.088

Uwe-3 (39446) 0.067 -0.070 -0.026 -0.063 -0.003 0.041 0.004
CANX-4 (40055) -0.006 0.138 0.125 0.059 -0.131 -0.119 -0.053
CANX-5 (40056) 0.102 0.061 0.107 0.045 0.041 -0.005 0.057

ABS. SUM 0.718 0.785 0.966 0.810 -0.067 -0.248 -0.092
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A.2. Propagation results in-orbit group 2

Iteration 1 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

DTUSAT (27842) 0.154 0.066 0.154 -0.067 0.088 0.001 0.087
CUTE-1 (27844) 0.196 0.251 0.234 0.073 -0.055 -0.038 0.122

AAU CubeSat (27846) 0.153 0.189 0.164 0.004 -0.036 -0.011 0.149
CANX-1 (27847) 0.117 0.196 0.126 -0.022 -0.079 -0.010 0.095

XI-4 (27848) 0.072 0.112 0.094 0.050 -0.040 -0.021 0.022
Uwe-1 (28892) -0.237 -0.253 -0.225 0.030 -0.016 0.012 0.206

XI-5 (28895) -0.198 -0.145 -0.125 0.028 0.052 0.072 0.170
SDS-1 (33497) 0.053 0.253 0.194 0.113 -0.200 -0.141 -0.059

SwissCube (35932) 0.175 0.271 0.299 0.124 -0.096 -0.123 0.052
BeeSat (35933) 0.064 0.161 0.104 0.189 -0.097 -0.040 -0.125
Uwe-2 (35934) 0.194 0.293 0.304 0.248 -0.099 -0.110 -0.054

ITUPSAT-1 (35935) 0.065 0.020 0.086 0.137 0.046 -0.021 -0.072
Dice-1 (37851) -1.397 -1.817 -1.605 -1.761 -0.420 -0.208 -0.364
Dice-2 (37852) -1.046 -0.836 -0.665 -0.856 0.210 0.381 0.189

AubieSat-1 (37854) -1.130 -1.504 -1.168 -1.191 -0.374 -0.038 -0.060
M-Cubed (37855) -1.173 -1.667 -1.284 -1.612 -0.493 -0.111 -0.439

ABS. SUM 6.423 8.031 6.831 6.503 -1.608 -0.408 -0.080

Iteration 2 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

EgyptSat-1 (31117) -0.173 -0.174 -0.105 -0.085 -0.001 0.068 0.088
Compass-1 (32787) 0.113 0.189 0.236 0.122 -0.076 -0.123 -0.009

AAUSAT-2 (32788) 0.054 -0.170 -0.343 -0.354 -0.116 -0.289 -0.300
SEEDS (32791) 0.001 -0.106 -0.038 -0.180 -0.105 -0.037 -0.179

Pegasus-1 (39151) 0.027 0.054 -0.009 0.014 -0.027 0.018 0.013
CubeBug-1 (39153) 0.076 0.014 0.096 -0.114 0.062 -0.020 -0.038
EstCube-1 (39161) -0.098 0.119 0.011 0.147 -0.022 0.087 -0.049

ZaCube (39417) 0.132 0.060 0.040 -0.076 0.072 0.092 0.056
ICube-1 (39432) 0.026 -0.026 -0.161 -0.318 -0.001 -0.135 -0.292

HumSat-D (39433) -0.066 -0.426 -0.446 -0.682 -0.360 -0.381 -0.616
Velox-P-2 (39438) 0.140 0.005 -0.001 -0.059 0.134 0.138 0.080

First-Move (39439) 0.072 -0.465 -0.491 -0.393 -0.393 -0.419 -0.321
PUCP-Sat-1 (39442) -0.097 -0.275 -0.275 -0.425 -0.177 -0.178 -0.328
FunCube-1 (39444) -0.062 -0.253 -0.245 0.005 -0.191 -0.183 0.057

HinCube (39445) -0.089 -0.211 -0.131 -0.176 -0.123 -0.042 -0.088
Uwe-3 (39446) 0.067 -0.012 -0.016 -0.117 0.055 0.051 -0.050

DuchiFat-1 (40021) 0.046 -0.082 -0.198 -0.412 -0.036 -0.152 -0.367
C-BR1 (40024) -0.025 -0.208 -0.233 -0.249 -0.183 -0.208 -0.224

DTUSat-2 (40030) -0.188 -0.236 -0.289 -0.235 -0.048 -0.100 -0.047
UFTI-1 (41458) -0.859 -1.161 -0.932 -1.000 -0.302 -0.072 -0.141

E-Star-1 (41459) -0.966 -1.096 -0.889 -0.956 -0.130 0.078 0.011
AAUSat-4 (41460) -0.444 -1.633 -1.374 -1.323 -1.189 -0.929 -0.879

ABS. SUM 3.820 6.977 6.557 7.443 -3.157 -2.737 -3.623

Iteration 3 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

CSTB-1 (31122) 0.129 0.190 0.179 0.119 -0.061 -0.049 0.011
CP-4 (31132) 0.003 0.021 -0.033 -0.010 -0.019 -0.030 -0.007
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AeroCube-2 (31133) 0.127 0.142 0.115 0.243 -0.015 0.012 -0.115
KRYSAOR (39441) 0.130 0.133 0.136 -0.139 -0.003 -0.006 -0.008

CANX-4 (40055) -0.006 0.081 0.065 0.060 -0.075 -0.059 -0.054
CANX-5 (40056) 0.102 -0.075 -0.064 -0.144 0.027 0.038 -0.042

ABS. SUM 0.498 0.643 0.593 0.714 -0.146 -0.095 -0.217

Iteration 4 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

Libertad-1 (31128) 0.105 0.130 0.172 0.093 -0.024 -0.066 0.013
CP-3 (31129) 0.156 0.163 0.169 0.099 -0.007 -0.013 0.057

Cape-1 (31130) 0.361 0.349 0.315 0.017 0.012 0.046 0.344
SDS-4 (38339) -0.409 -0.332 -0.327 -0.260 0.078 0.082 0.150

Brite-PL (39431) -0.006 0.119 0.152 0.165 -0.113 -0.146 -0.159

ABS. SUM 1.038 1.092 1.136 0.634 -0.054 -0.098 0.403

Iteration 5 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

WNISAT-1 (39423) -0.137 -0.090 -0.150 -0.142 0.047 -0.013 -0.005

ABS. SUM 0.137 0.090 0.150 0.142 0.047 -0.013 -0.0049



116 A. Propagation Results

A.3. Propagation results in-orbit group 3

Iteration 1 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

DTUSAT (27842) 0.154 0.144 0.201 0.186 0.010 -0.047 -0.032
CUTE-1 (27844) 0.196 0.216 0.153 0.204 -0.020 0.043 -0.008

AAU CubeSat (27846) 0.153 0.109 0.145 0.061 0.043 0.008 0.092
CANX-1 (27847) 0.117 0.099 0.101 0.168 0.017 0.016 -0.051

XI-4 (27848) 0.072 0.131 0.114 0.178 -0.059 -0.042 -0.106
Uwe-1 (28892) -0.237 -0.253 -0.200 -0.179 -0.016 0.036 0.058

XI-5 (28895) -0.198 -0.145 -0.136 -0.134 0.052 0.061 0.064
SDS-1 (33497) 0.053 0.227 0.208 0.256 -0.173 -0.155 -0.202

SwissCube (35932) 0.175 0.129 0.186 0.180 0.047 -0.010 -0.005
BeeSat (35933) 0.064 0.234 0.101 0.181 -0.170 -0.037 -0.117
Uwe-2 (35934) 0.194 0.202 0.247 0.240 -0.008 -0.053 -0.046

AAUSAT-3 (39087) 0.202 0.135 0.147 0.162 0.067 0.054 0.040

ABS. SUM 1.814 2.024 1.939 2.129 -0.211 -0.125 -0.315

Iteration 2 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

EgyptSat-1 (31117) -0.173 -0.094 -0.113 -0.057 0.079 0.060 0.116
ItupSat-1 (35935) 0.065 0.081 0.114 0.102 -0.016 -0.049 -0.037

Pegasus-1 (39151) 0.027 0.209 0.266 0.272 -0.182 -0.239 -0.245
CubeBug-1 (39153) 0.076 0.273 0.153 0.331 -0.198 -0.077 -0.256
EstCube-1 (39161) -0.098 0.100 0.051 0.010 -0.002 0.047 0.088

ZaCube (39417) 0.132 0.294 0.331 0.327 -0.162 -0.199 -0.195
WNISAT-1 (39423) -0.137 -0.069 -0.035 -0.024 0.068 0.102 0.113
Velox-P-2 (39438) 0.140 0.149 0.205 0.153 -0.010 -0.065 -0.014

First-Move (39439) 0.072 0.300 0.319 0.287 -0.228 -0.247 -0.215
KRYSAOR (39441) 0.130 0.359 0.290 0.345 -0.229 -0.160 -0.215

FunCube-1 (39444) -0.062 0.138 0.108 0.163 -0.076 -0.046 -0.101
HinCube (39445) -0.089 0.145 0.177 0.113 -0.056 -0.088 -0.024

Uwe-3 (39446) 0.067 0.218 0.147 0.120 -0.150 -0.080 -0.053
CANX-4 (40055) -0.006 0.269 0.242 0.263 -0.263 -0.236 -0.256
CANX-5 (40056) 0.102 0.246 0.165 0.231 -0.144 -0.062 -0.129

ABS. SUM 1.375 2.945 2.715 2.798 -1.569 -1.340 -1.423

Iteration 3 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

CSTB-1 (31122) 0.129 0.147 0.230 0.244 -0.018 -0.100 -0.115
SEEDS (32791) 0.001 0.208 0.148 0.113 -0.207 -0.147 -0.112
SDS-4 (38339) -0.409 -0.238 -0.156 -0.229 0.172 0.253 0.181

Brite-PL (39431) -0.006 0.181 0.185 0.107 -0.174 -0.178 -0.101
ICube-1 (39432) 0.026 0.219 0.161 0.203 -0.193 -0.135 -0.177

HumSat-D (39433) -0.066 0.169 0.136 0.122 -0.103 -0.071 -0.056
PUCP-Sat-1 (39442) -0.097 0.114 0.077 0.189 -0.016 0.020 -0.092

ABS. SUM 0.734 1.275 1.092 1.207 -0.541 -0.358 -0.473

Iteration 4 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8
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Libertad-1 (31128) 0.105 0.160 0.202 0.196 -0.054 -0.096 -0.091
CP-3 (31129) 0.156 0.154 0.132 0.215 0.002 0.024 -0.059

Cape-1 (31130) 0.361 0.436 0.484 0.391 -0.075 -0.123 -0.030
CP-4 (31132) 0.003 0.137 0.083 0.174 -0.135 -0.081 -0.171

AeroCube-2 (31133) 0.127 0.186 0.129 0.270 -0.059 -0.002 -0.143
Compass-1 (32787) 0.113 0.413 0.321 0.422 -0.301 -0.208 -0.309

AAUSAT-2 (32788) 0.054 0.264 0.174 0.232 -0.210 -0.120 -0.178
Dice-1 (37851) -1.397 0.229 0.261 0.395 1.168 1.136 1.002
Dice-2 (37852) -1.046 0.254 0.317 0.398 0.792 0.729 0.648

AubieSat-1 (37854) -1.130 0.382 0.413 0.414 0.748 0.717 0.717
M-Cubed (37855) -1.173 0.342 0.448 0.388 0.831 0.725 0.786

ABS. SUM 5.665 2.958 2.965 3.493 2.707 2.700 2.172

Iteration 5 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

DuchiFat-1 (40021) 0.046 0.325 0.283 0.351 -0.280 -0.238 -0.306
UFTI-1 (41458) -0.859 0.211 0.213 0.236 0.649 0.647 0.624

E-Star-1 (41459) -0.966 0.230 0.206 0.324 0.736 0.761 0.642
AAUSat-4 (41460) -0.44437 0.4377363 0.516023 0.549486 0.007 -0.072 -0.105

ABS. SUM 2.316 1.204 1.218 1.461 1.112 1.098 0.855

Iteration 6 Difference [km] with verification orbit Difference [km] with initial orbit
NORAD initial estimated adjusted a = 0.8 estimated adjusted a = 0.8

C-BR1 (40024) -0.025 0.148 0.223 0.144 -0.123 -0.198 -0.119
DTUSat-2 (40030) -0.188 0.075 0.095 0.093 0.113 0.093 0.095

ABS. SUM 0.213 0.223 0.319 0.238 -0.009 -0.105 -0.024
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B.1. Parent-Child in-orbit group 1

Child # of Parents Parent(s)
DTUSAT (27842) 3 5398, 25398, 35871
CUTE-1 (27844) 3 5398, 25398, 35871
AAU CubeSat (27846) 3 5398, 25398, 35871
CANX-1 (27847) 3 5398, 25398, 35871
XI-4 (27848) 3 5398, 25398, 35871
EgyptSat-1 (31117) 2 37851, 37852
Compass-1 (32787) 2 37851, 37852
AAUSAT-2 (32788) 2 37851, 37852
SEEDS (32791) 2 37851, 37852
SDS-1 (33497) 1 27944
SwissCube (35932) 1 27944
BeeSat (35933) 1 27944
Uwe-2 (35934) 1 27944
ITUPSAT-1 (35935) 1 27944
Dice-1 (37851) 1 33497
Dice-2 (37852) 1 33497
AubieSat-1 (37854) 2 37851, 37852
M-Cubed (37855) 2 37851, 37852
AAUSat-3 (39087) 1 5398
Pegasus-1 (39151) 10 31117, 32787, 32788, 32791, 39417, 39432, 39433, 39442,

39444, 39445
CubeBug-1 (39153) 10 31117, 32787, 32788, 32791, 39417, 39432, 39433, 39442,

39444, 39445
EstCube-1 (39161) 5 31117, 32787, 39417, 39444, 39445
ZaCube (39417) 2 37851, 37852
WNISAT-1 (39423) 1 39431
Brite-PL (39431) 1 5398
ICube-1 (39432) 1 37851
HumSat-D (39433) 2 37851
Velox-P-2 (39438) 9 32787, 32788, 32791, 39417, 39432, 39433, 39442, 39444, 39445
First-Move (39439) 9 32787, 32788, 32791, 39417, 39432, 39433, 39442, 39444, 39445
KRYSAOR (39441) 7 31117, 39417, 39432, 39433, 39442, 39444, 39445
PUCP-Sat-1 (39442) 2 37851, 37852
FunCube-1 (39444) 2 37851, 37852
HinCube (39445) 2 37851, 37852
Uwe-3 (39446) 9 32787, 32788, 32791, 39417, 39432, 39433, 39442, 39444, 39445
DuchiFat-1 (40021) 2 37851,3 7852
C-BR1 (40024) 2 37851, 37852
DTUSat-2 (40030) 2 37851, 37852
PolyItan-1 (40042) 2 37851, 37852
CANX-4 (40055) 5 31117, 39417, 39432, 39444, 39445
CANX-5 (40056) 6 31117, 39417, 39432, 39442, 39444, 39445
UFTI-1 (41458) 2 37851, 37852
E-Star-1 (41459) 2 37851, 37852
AAUSat-4 (41460) 2 37851, 37852
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B.2. Parent-Child in-orbit group 2

Child # of Parents Parent(s)
DTUSAT (27842) 2 25398,35871
CUTE-1 (27844) 2 25398,35871
AAU CubeSat (27846) 2 25398,35871
CANX-1 (27847) 2 25398,35871
XI-4 (27848) 2 25398,35871
Uwe-1 (28892) 1 27944
XI-5 (28895) 1 27944
EgyptSat-1 (31117) 4 37851,37852,37854,37855
CSTB-1 (31122) 1 31117
Libertad-1 (31128) 3 31122,31132,31133
CP-3 (31129) 3 31122,31132,31133
Cape-1 (31130) 3 31122,31132,31133
CP-4 (31132) 1 31117
AeroCube-2 (31133) 1 31117
Compass-1 (32787) 4 37851,37852,37854,37855
AAUSAT-2 (32788) 4 37851,37852,37854,37855
SEEDS (32791) 4 37851,37852,37854,37855
SDS-1 (33497) 1 27944
SwissCube (35932) 1 27944
BeeSat (35933) 1 27944
Uwe-2 (35934) 1 27944
ITUPSAT-1 (35935) 1 27944
Dice-1 (37851) 1 27944
Dice-2 (37852) 1 27944
AubieSat-1 (37854) 1 27944
M-Cubed (37855) 1 27944
SDS-4 (38339) 3 31122,31132,31133
Pegasus-1 (39151) 4 37851,37852,37854,37855
CubeBug-1 (39153) 4 37851,37852,37854,37855
EstCube-1 (39161) 1 35934
ZaCube (39417) 4 37851,37852,37854,37855
WNISAT-1 (39423) 1 39431
Brite-PL (39431) 1 31122
ICube-1 (39432) 4 37851,37852,37854,37855
HumSat-D (39433) 4 37851,37852,37854,37855
Velox-P-2 (39438) 3 37851,37852,37855
First-Move (39439) 3 37851,37852,37855
KRYSAOR (39441) 16 31117,32787,32788,32791,39151,39153,39161,39417,39432,

39433,39438,39439,39442,39444,39445,39446
PUCP-Sat-1 (39442) 4 37851,37852,37854,37855
FunCube-1 (39444) 4 37851,37852,37854,37855
HinCube (39445) 4 37851,37852,37854,37855
Uwe-3 (39446) 3 37851,37852,37855
DuchiFat-1 (40021) 4 37851,37852,37854,37855
C-BR1 (40024) 4 37851,37852,37854,37855
DTUSat-2 (40030) 4 37851,37852,37854,37855
PolyItan-1 (40042) 4 37851,37852,37854,37855
CANX-4 (40055) 16 31117,32787,32788,32791,39151,39153,39161,39417,39432,

39433,39438,39439,39442,39444,39445,39446
CANX-5 (40056) 16 31117,32787,32788,32791,39151,39153,39161,39417,39432,

39433,39438,39439,39442,39444,39445,39446
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UFTI-1 (41458) 4 37851,37852,37854,37855
E-Star-1 (41459) 4 37851,37852,37854,37855
AAUSat-4 (41460) 4 37851,37852,37854,37855
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B.3. Parent-Child in-orbit group 3

Child # of Parents Parent(s)
DTUSAT (27842) 3 5398,25398,35871
CUTE-1 (27844) 3 5398,25398,35871
AAU CubeSat (27846) 3 5398,25398,35871
CANX-1 (27847) 3 5398,25398,35871
XI-4 (27848) 3 5398,25398,35871
Uwe-1 (28892) 1 27944
XI-5 (28895) 1 27944
EgyptSat-1 (31117) 1 33497
CSTB-1 (31122) 1 39423
Libertad-1 (31128) 1 31122
CP-3 (31129) 1 31122
Cape-1 (31130) 1 31122
CP-4 (31132) 2 31122,38339
AeroCube-2 (31133) 2 31122,38339
Compass-1 (32787) 5 32791,39432,39433,39435,39442
AAUSAT-2 (32788) 5 32791,39432,39433,39435,39442
SEEDS (32791) 1 39417
SDS-1 (33497) 1 27944
SwissCube (35932) 1 27944
BeeSat (35933) 1 27944
Uwe-2 (35934) 1 27944
ItupSat-1 (35935) 4 33497,35932,35933,35934
Dice-1 (37851) 4 32791,39432,39433,39442
Dice-2 (37852) 4 32791,39432,39433,39442
AubieSat-1 (37854) 4 32791,39432,39433,39442
M-Cubed (37855) 4 32791,39432,39433,39442
SDS-4 (38339) 1 31117
AAUSAT-3 (39087) 1 5398
Pegasus-1 (39151) 1 33497
CubeBug-1 (39153) 1 33497
EstCube-1 (39161) 1 33497
ZaCube (39417) 1 33497
WNISAT-1 (39423) 3 35932,35933,35934
Brite-PL (39431) 1 39423
ICube-1 (39432) 6 31117,39151,39153,39417,39444,39445
HumSat-D (39433) 6 31117,39151,39153,39417,39444,39445
Velox-P-2 (39438) 1 33497
First-Move (39439) 1 33497
KRYSAOR (39441) 1 33497
PUCP-Sat-1 (39442) 6 31117,39151,39153,39417,39444,39445
FunCube-1 (39444) 1 33497
HinCube (39445) 1 33497
Uwe-3 (39446) 1 33497
DuchiFat-1 (40021) 1 37851
C-BR1 (40024) 1 40021
DTUSat-2 (40030) 1 40021
PolyItan-1 (40042) 1 40021
CANX-4 (40055) 1 33497
CANX-5 (40056) 1 33497
UFTI-1 (41458) 5 32788,37851,37852,37854,37855
E-Star-1 (41459) 5 32788,37851,37852,37854,37855
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AAUSat-4 (41460) 5 32788,37851,37852,37854,37855
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B.4. Parent-Child re-entry group 1 and group 2

Table B.4: Parent - Child table for re-entry group 1

Child # of Parents Parent(s)
CP-6 (35003) 1 35005
HawkSat-1 (35004) 1 35005
FitSat-1 (38853) 1 38855
TechEdSat (38854) 1 38855
We-Wish (38856) 1 38855
ArduSat-1 (39412) 1 39571
ArduSat-X (39414) 1 39571
SkyCube (39567) 1 39571
ArduSat-2 (39571) 1 39573
OpuSat (39575) 1 39573

Table B.5: Parent - Child table for re-entry group 2

Child # of Parents Parent(s)
CP-6 (35003) 1 35005
HawkSat-1 (35004) 1 35005
Robusta (38084) 1 40314
UniCubeSat (38085) 1 40314
FitSat-1 (38853) 1 38855
TechEdSat (38854) 1 38855
We-Wish (38856) 1 38855
ArduSat-1 (39412) 2 39567,39571
ArduSat-X (39414) 2 39567,39571
SkyCube (39567) 1 39573
ArduSat-2 (39571) 1 39573
OpuSat (39575) 1 39573
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Table C.1: Input parameters for the Matlab function of NRLMSISE-00.

Input Description

H An array of M altitude in meters.
LAT An array of M geodetic latitude in degrees
LON An array of M geodetic longitude in degrees.
YEAR An array of M year.
DOY An array of M day of year. Day of year ranges from 1 to 365 (or,366).
SEC An array of M seconds in day in universal time (UT)
LST An array of M local apparent solar time (hours). To obtain a physically realistic value, LST is set

to (SEC/3600 + LON/15) by default.
F107A An array of M 81 day average of F10.7 flux (centred on doy). If F107A is input, F107 and APH

must also be input. The effects of F107A are neither large nor well established below 80,000 me-
ters, therefore the default value is set to 150.

F107 An array of M daily F10.7 flux for previous day. If F107 is input, F107A and APH must also be
input. The effects of F107 are neither large nor well established below 80,000 meters, therefore
the default value is set to 150.

APH An array of M-by-7 of magnetic index information. If APH is input, F107A and F107 must also
be input. This information consists of daily magnetic index (AP), 3 hour AP for current time, 3
hour AP for 3 hours before current time, 3 hour AP for 6 hours before current time, 3 hour AP
for 9 hours before current time, average of eight 3 hour AP indices from 12 to 33 hours prior to
current time, and average of eight 3 hour AP indices from 36 to 57 hours prior to current time.
The effects of daily magnetic index are neither large nor well established below 80,000 meters,
therefore the default value is set to 4.

FLAGS A numerical array of 23 values for setting particular variations in calculation the output. Set-
ting a value to 0.0 removes that value’s effect on the output. Setting a value to 1.0 applies the
main and the cross term effects of that value on the output. Setting a value to 2.0 applies only
the cross term effect of that value on the output.

OTYPE A string specifying if the total mass density output will include anomalous oxygen (’Oxygen’) or
not (’NoOxygen’). The default is ’NoOxygen’.

ACTION A string to determine action for out of range input. Specify if out of range input invokes a ’Warn-
ing’, ’Error’, or no action,(’None’). The default is ’Warning’.

Table C.2: Output parameters for the Matlab function of NRLMSISE-00.

Output Description

T An array of M-by-2 values of temperatures. These values are exospheric temperature in Kelvin
and temperature at altitude in Kelvin.

RHO An array of M-by-9 values of densities. These values are HE number density in meters^-3, O
number density in meters^-3, N2 number density in meters^-3, O2 number density in meters^-
3, AR number density in meters^-3, total mass density in kilogram per meters cubed, H number
density in meters^-3, N number density in meters^-3, and Anomalous oxygen number density
in meters^-3.
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Table C.3: Flag settings for Matlab NRLMSISE function atmosnrlmsise

FLAG Description

FLAGS(1) F10.7 effect on mean
FLAGS(2) Time independent
FLAGS(3) Symmetrical annual
FLAGS(4) Symmetrical semi-annual
FLAGS(5) Asymmetrical annual
FLAGS(6) Asymmetrical semi-annual
FLAGS(7) Diurnal
FLAGS(8) Semi-diurnal
FLAGS(9) Daily AP
FLAGS(10) All UT, longitudinal effects
FLAGS(11) Longitudinal
FLAGS(12) UT and mixed UT, longitudinal
FLAGS(13) Mixed AP, UT, longitudinal
FLAGS(14) Ter-diurnal
FLAGS(15) Departures from diffusive equilibrium
FLAGS(16) All exospheric temperature variations
FLAGS(17) All variations from 120,000 meter temperature (TLB)
FLAGS(18) All lower thermosphere (TN1) temperature variations
FLAGS(19) All 120,000 meter gradient (S) variations
FLAGS(20) All upper stratosphere (TN2) temperature variations
FLAGS(21) All variations from 120,000 meter values (ZLB)
FLAGS(22) All lower mesosphere temperature (TN3) variations
FLAGS(23) Turbopausescale height variations
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