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Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

E-mail: J.W.vanWingerden@tudelft.nl

Abstract. With the trend of increasing wind turbine rotor diameters, the mitigation of blade
fatigue loadings is of special interest to extend the turbine lifetime. Fatigue load reductions
can be partly accomplished using individual pitch control (IPC), and is commonly facilitated
by the so-called multiblade coordinate (MBC) transformation. This operation transforms and
decouples the blade load signals in a non-rotating yaw-axis and tilt-axis. However, in practical
scenarios, the resulting transformed system still shows coupling between the axes. To cope with
this phenomenon, earlier research has shown that the introduction of an additional MBC tuning
variable – the azimuth offset – decouples the multivariable system. However, the introduction
of this extra variable complicates the controller design process, and requires expert knowledge
and specialized analysis software. To provide an efficient method for the optimization of fixed-
structure IPC controllers, based on black box and computationally costly objective functions,
this paper considers a Bayesian optimization controller tuning framework. Results show the
efficiency of the framework to tune a combined 1P + 2P IPC implementation, without prior
knowledge, and based on high-fidelity simulation results using a computationally expensive
objective function.

1. Introduction
Wind turbine rotors are getting ever larger, which supports the sustained demand of increased
wind turbine power ratings. For a turbine with such a large rotor, the wind varies spatially
and temporally over the rotor surface because of the combined effects of turbulence, wind shear,
yaw-misalignment and tower shadow [1]. These effects give rise to periodic blade loads, and the
individual blades mainly experience a once-per-revolution (1P) cyclic load.

As a result of the increasing sizes, the blades are getting more flexible, which poses a need for
sophisticated fatigue load reducing control methods [2]. One such control method is individual
pitch control (IPC). This technique is applicable to more recent wind turbines, with their
ability to pitch the blades to distinct angles, and to measure the blade root bending moments.
The control method is commonly used to reduce harmonic out-of-plane blade loads, which are
predominantly present at multiples (nP) of the turbine rotational speed. The individual pitch
contributions are generally formed using the azimuth-dependent multiblade coordinate (MBC)
transformation, acting on out-of-plane blade root bending moment measurements [3]. The
MBC transformation, transforms the blade loads from a rotating into a non-rotating frame,
and decouples the load signals into fixed yaw and tilt axes. The transformation allows for
convenient load analysis and IPC controller implementations.
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IPC for wind turbine fatigue load reductions using the MBC transformation is widely
discussed in the literature, and an overview is given in [4]. In research, the transformation
is often combined with more advanced controller techniques, such as linear-quadratic-Gaussian
(LQG) control [5], H∞ techniques [6], repetitive control (RC) [7], and model predictive control
(MPC) using short-term wind field predictions [8]. Recent work has shown that the MBC
transformed system shows multivariable coupling [9]. By decoupling the system with the so-
called azimuth offset [10], the application of multiple single-input single-output (SISO) loops with
traditional controller elements is justified. The offset is shown to be especially important for
higher load harmonics, n > 1. The performance benefits of optimal azimuth offset incorporation
in a combined 1P + 2P implementation are outlined in [11]. By configuring the azimuth offset
correctly, perfect load attenuation and minimal actuator effort is attained, using a simple
controller structure.

An IPC implementation based on the MBC transformation and traditional proportional-
integral-derivative (PID) control techniques often has a fixed parameterized controller structure.
With the introduction of the azimuth offset, an extra tuning variable is added to the parameter
set. The work in [10] shows that determination of the optimal offset value requires expert control
knowledge and analysis software. For this reason, an automated controller tuning framework,
by minimization of an optimization objective, forms an interesting opportunity for efficient
parameter tuning. To this end, often grid search approaches are employed. However, for
higher dimensional parameter spaces, the amount of required iterations becomes computationally
intractable. Therefore, this work considers Bayesian optimization (BO) for fixed-structure
controller tuning. Bayesian optimization is an efficient algorithm for the optimization of black
box functions or systems, of which the evaluation is (computationally) expensive [12].
The main contributions of this paper are:

• providing the results of a time-domain MBC framework including the azimuth offset, applied
to a combined 1P + 2P IPC implementation;

• giving an overview and theoretical summary of the Gaussian process and Bayesian
optimization;

• identifying the crucial controller parameters in the presented IPC implementation, for
efficient tuning with Bayesian optimization;

• proposing a convenient and easily implementable framework, for the optimization of
nonconvex, multimodal and/or computationally costly problems;

• concluding on the benefits of implementing a Bayesian optimization framework for fixed-
structure controller tuning, based on the obtained results.

The organization of this paper is as follows. In Section 2, the combined 1P + 2P time-
domain MBC-IPC implementation, with the option for azimuth offsets is discussed. The IPC
implementation has a fixed structure and is tuned by a predefined set of parameters. In
Section 3, relevant theory is given on the Gaussian process and Bayesian optimization. The
former mentioned concept is used to model the unknown objective function in a data-driven
manner, whereas the latter leverages the surrogate model to efficiently select the consecutive and
promising sampling points. Section 4 explains the methodology and practical implementation
of the Bayesian framework, minimizing the computationally expensive damage equivalent load
(DEL) objective function. Section 5 presents the optimization results for a range of operating
conditions (wind speeds). Finally, Section 6 concludes on the effectiveness of the proposed
framework for fixed-structure controller tuning, using realistic, computationally expensive, and
high-fidelity simulation results.
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Figure 1: Implementation of IPC using the azimuth-dependent forward and reverse
transformations, T n(ψ) and T−1n (ψ+ψn

o ), respectively. The transformations are used to form two
feedback loops at the 1P and 2P rotational frequencies, transforming the blade load harmonics
to a fixed reference frame. For both 1P and 2P loops in the fixed frame, the tilt- and yaw-
axis loads signals are subject to integral action using equal gains for both axes. After the
reverse transformation – including separate azimuth offsets ψn

o – the 1P and 2P contributions
are summed to form the implementable IPC signals θi for attenuation of the respective blade
out-of-plane harmonic loads. A pitch actuator model Ga is included. The collective pitch and
generator torque control signals, θ0 and τg, are generated by turbine controllers, which are
omitted in this figure.

2. Theory on IPC, MBC transformation, and the azimuth offset
The MBC transformation is generally employed for the implementation of IPC. This section
briefly introduces the considered IPC setup that consists out of distinct MBC transformations
for the reduction of 1P and 2P blade load harmonics. A schematic visualization of this scheme
is given in Fig. 1. In addition to the general formulation, the azimuth offset is incorporated
in the reverse transformation. This additional tuning parameter is used for decoupling of the
multivariable system. An elaborate frequency-domain analysis on the azimuth offset is performed
in [10], and the reader is referred to that work for further details.

The IPC configuration is implemented on the three-bladed DTU 10-MW reference wind
turbine model [13]. The system is commanded with the respective torque and pitch signals, τg
and θ0, originating from eponymous controllers. As the wind turbine model does not include
pitch actuator dynamics, the system is augmented with unity-gain first-order actuator models

Ga(s) =
1

τas+ 1
, (1)

in which τa ∈ R+ is the actuator time constant.
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The out-of-plane blade bending moments M(t) ∈ RB are supplied to the forward MBC
transformation [

Mt,n(t)
My,n(t)

]
= Tn(ψ)

 M1(t)
M2(t)
M3(t)


︸ ︷︷ ︸

M(t)

, (2)

with

Tn =
2

B

[
cos (nψ1) cos (nψ2) cos (nψ3)
sin (nψ1) sin (nψ2) sin (nψ3)

]
,

in which n ⊂ Z+ is the harmonic number, B the total amount of blades, and ψb ⊂ R the
azimuth angle for blade b, where ψ = 0 indicates the vertical upright position. The forward
transformation transforms the rotating blade moments into a non-rotating reference frame. The
fixed-frame and azimuth-independent tilt- and yaw-moments are represented by Mt and My,
respectively.

Subsequently, the fixed-frame tilt and yaw pitch angles are formed by the IPC controller,
implemented in this paper as two decoupled SISO control loops. The SISO controllers take the
form of two pure integrators cnI /s with equal gains on both axes, but different gains for the
harmonics n = {1, 2}. The variable s represents the Laplace operator. The non-rotating signals
are converted to implementable IPC pitch contributions in the rotating frame by the reverse
MBC transformation  θ1,n(t)

θ2,n(t)
θ3,n(t)

 = T−1n (ψ + ψn
o )

[
θt,n(t)
θy,n(t)

]
, (3)

with

T−1n =

 cos [n (ψ1 + ψn
o )] sin [n (ψ1 + ψn

o )]
cos [n (ψ2 + ψn

o )] sin [n (ψ2 + ψn
o )]

cos [n (ψ3 + ψn
o )] sin [n (ψ3 + ψn

o )]

 ,
where θt and θy are respectively the fixed-frame tilt and yaw pitch signals, and ψn

o is the azimuth
offset for each harmonic. The offset is used in this paper for further decoupling of the tilt and
yaw axes enabling the implementation of SISO IPC control loops. The 1P and 2P IPC pitch
signals are summed into θi, with i = {1, 2, 3}.

3. Theory on Gaussian processes and Bayesian optimization
The optimal tuning of controller parameters can lead to significant gains in terms of system
performance. System performance is often quantified by an (unknown) objective function f .
To find the minimizer or maximizer parameter set x∗ for f(x), generally, inefficient grid search
approaches are employed. Explorations are commonly limited to a parameter space x ∈ X ,
where X is a compact d-dimensional subset of R [12].

Bayesian optimization (BO) has gained a lot of traction in the last decade, by its ability
to data-efficiently optimize systems, of which evaluations are (computationally) costly. BO
generally relies on a nonparametric probabilistic surrogate model, which is commonly a Gaussian
process (GP). This model is consecutively updated and refined as new measurements or function
evaluations become available. The data-driven model represents the believes on the objective
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function at hand, and the described model-updating mechanism is often referred to as Bayesian
posterior updating.

The following two sections provide the reader with the fundamental theory: the Gaussian
process is discussed in Section 3.1, and the Bayesian optimization procedure is outlined in
Section 3.2. The theory is summarized based on the work or Shahriari et al. [12], and the reader
is referred to this work for further information.

3.1. The Gaussian process
The Gaussian process is a nonparametric model, and commonly acts as a surrogate model for
the unknown objective function f . A GP is fully defined by two ingredients: the mean function
µ0(x) : X → R, and covariance function k(x,x) : X ×X → R, the latter of which is also referred
to as the positive-definite kernel. The prior mean is in practice often assumed to be a constant
offset for all x ∈ X , such that µ0(x) ≡ µ0.

A representation of the objective function f is formed based upon the set of l observations
Ol = {(xi, yi)}li=1, where x represents an arbitrary test point, and y the (possibly noisy) output
of f . As a result, f(x) is – like the observations – normally distributed, and described by the
mean and variance functions:

µn(x) = µ0(x) + k(x)T(K + σ2I)−1(y −m), (4)

σ2n(x) = k(x,x)− k(x)T(K + σ2I)−1k(x), (5)

in which the covariance matrix K if formed by evaluating all covariance function pairs
Ki,j = k(xi,xj), the mean vector m consists out of elements mi = µ0(xi), and k(x) is a one-
dimensional covariance vector between x and the elements in x1:l = {x1, . . . , xl}. The mean
and variance evaluations of f at x respectively represent the model prediction and corresponding
uncertainty.

The covariance function k has a fixed structure, and should be chosen to match the response
function characteristics. The most common choice for kernel functions are Matérn and squared
exponential kernels. These kernels are respectively characterized by the smoothness parameters
ν = 1/2 and ν →∞. The squared exponential kernel is used in this work, and has the form:

ksq−exp(x,x′) = θ20 exp(−1

2
r2), (6)

in which r2 = (x− x′)TΛ(x− x′) and the (·)′-notation indicates the current test point, Λ is
a diagonal matrix with squared hyperparameters θ =

{
θ20, . . . , θ

2
d

}
∈ Rd+1, where the first and

remainder elements respectively represent the amplitude and length scale parameters. The
statistical information from the GP framework, is leveraged by the Bayesian optimization routine
to select the next evaluation point xn+1, and is outlined in the next section.

3.2. Bayesian optimization
The previous section described the GP working principles as a way to statistically model the
unknown objective function f . This section describes the mechanism to intelligently choose
subsequent query points xn+1, based on information contained in the posterior model. The
enabling ingredient in guiding this search is the acquisition function, commonly indicated by α.
Acquisition functions are subject to optimization for trading off search-space exploration and
fruitful region exploitation. Commonly applied acquisition functions are Thompson sampling
(TS), probability of improvement (PI), expected improvement (EI), upper confidence bounds
(UCB), and entropy search (ES). As this work uses EI, only improvement-based policies are
briefly described; for an explanation of the other acquisition function types, the reader is referred
to [12].
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The PI and EI strategies are both part of improvement-based acquisition functions, and
optimize for new point evaluations that have a likely probability of improvement. Because PI
considers all improvements to be equal, the strategy might behave rather aggressively [14]. EI
is seen as an evolution of PI, as it also takes into account the amount of improvement, which
results in less greedy searches.

3.3. Illustrating the Bayesian working principles on a simple non-convex problem
This section briefly illustrates the working principles of Bayesian optimization by an illustrative
example. For this purpose, the Forrester function is employed [15], which is commonly used for
the evaluation of optimization algorithms. The Forrester function is given by:

f(x) = (6x− 2)2 sin (12x− 4), (7)

(a) Iteration 1 (b) Iteration 3

(c) Iteration 9 (d) Iteration 20

Figure 2: Bayesian optimization progress of the Forrester function (green dashed line). Function
evaluations are used to learn the unknown objective by a Gaussian process in a data-driven way
(black solid line). The statistical uncertainty is illustrated by the blue-shaded bounds. A total
of 20 function evaluations (red dots) are performed to learn the function. Exploration and
exploitation is driven by the acquisition function (red solid line): The maximum acquisition
value, and the next evaluation point, is indicated by the red solid vertical line.
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and is shown in Figure 2 (green dashed line). The function is multimodal in the sense that is
has a global minimum, a local minimum, and a zero-gradient inflection point. The same figure
shows the Bayesian optimization progress: in each evaluation the Gaussian process is refined by
means of posterior updating. The acquisition function (red) explores regions with high statistical
uncertainty (blue-shaded bounds), and exploits the areas to find the global minimizer. It is shown
that the algorithm is effective in representing the true function by a nonparametric probabilistic
surrogate model, and to find the function minimizer in a limited amount of iterations.

4. Methodology and implementation of the framework
This section combines the knowledge of the two previous sections, and describes the IPC
optimization framework using Bayesian optimization. First, the methodology is formally
described in Section 4.1, after which the practical implementation is outlined in Section 4.2.

4.1. Methodology for IPC optimization
The proposed framework in this paper is to minimize the damage equivalent load (DEL) of
the out-of-plane (OoP) blade root bending moments My. The DEL is taken as a quantitative
measure for blade fatigue loading, which leverages the rainflow counting method for fatigue
analysis. The DEL measure quantifies the amplitude of a certain harmonic load variation
that would cause the same damage level when repeated for a given amount of cycles [16, 17].
Since the analysis is based on single load cases, the short-term DELs are calculated using the
1 Hz equivalent load [18]. The computation is executed offline using time series of high-fidelity
simulation data. Because of the offline character, the DEL is considered to be a computationally
intensive measure for optimization. Because Bayesian optimization is mostly employed for
problems where evaluation of the objective function is expensive, the algorithm is seen as a
good fit for the considered problem.

Before any simulation or optimization has been performed, the shape of the DEL objective
function is unknown, and the optimal set of controller tuning parameters is yet to be found.
To this end, a Gaussian process is employed for modeling the DEL objective function. This
data-driven surrogate model is subsequently leveraged by the Bayesian optimization routine to
find the optimal set of controller parameters in a minimum amount of iterations. The Bayesian
approach utilizes the GP mean and variance information to effectively select and explore the
promising locations, to efficiently find the global/local optimizer.

The parameter set is defined as Γ =
{
c1I , ψ

1
o, c

2
I , ψ

2
o

}
and are considered as the decision

variables of the DEL minimization cost function:

Γ∗ = arg min
Γ

DEL(My) (8)

subject to Operational conditions: U(Ū, TI), τ̄g, θ̄0

in which U the spatially and temporally distributed wind field with turbulence intensity TI and
mean wind speed Ū , τ̄g is the applied mean rated generator torque, and θ̄0 is the collective mean
pitch angle. The considered DEL is calculated from high-fidelity time-series simulation data
with a realistic turbulent input disturbance [19].

4.2. Implementation of the optimization framework
A collection of tools is employed to implement the outlined framework for fixed-structure
controller parameter optimization. The optimization framework has been implemented on the
high-performance cluster of the Delft University of Technology, the Netherlands. The Bayesian
optimization framework is implemented using the GPyOpt Python library [20], which is based on
the GPy [21] library from the Sheffield machine learning group. The DTU 10-MW reference wind
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turbine [13] is used in NREL’s high-fidelity wind turbine simulation software OpenFAST [22].
The Delft Research Controller (DRC) [23] – an open-source baseline wind turbine controller – is
employed in the automatic sequential simulation and evaluation framework to evaluate the IPC
controller gain suggestions by the Bayesian routine.

For each Bayesian iteration, 6 high-fidelity OpenFAST simulations are run simultaneously.
These simulations are subject to the same controller parameters Γi, but with different turbulent
wind seeds. Each simulation has a length of 660 seconds, of which the first 60 seconds are
discarded to exclude transient effects from the results. The pitch actuator model time constants
are set to τa = 0.4 s. The simulation data is subsequently post-processed with MLife [24] for
DEL calculation. The above described automated tuning framework has been made publicly
available in an online repository [25].

9.5 9.0 8.5 8.0 7.5
Integrator gain c1

I , in 10x

0

10

20

30

40

50

A
zi

m
ut

h 
of

fs
et

 
1 o 

[d
eg

]

1P | Wind speed = 7 m/s

9.5 9.0 8.5 8.0 7.5
Integrator gain c2

I , in 10x

0

10

20

30

40

50
A

zi
m

ut
h 

of
fs

et
 

2 o 
[d

eg
]

2P | Wind speed = 7 m/s

4700

4725

4750

4775

4800

4825

4850

9.5 9.0 8.5 8.0 7.5
Integrator gain c1

I , in 10x

0

10

20

30

40

50

A
zi

m
ut

h 
of

fs
et

 
1 o 

[d
eg

]

1P | Wind speed = 25 m/s

9.5 9.0 8.5 8.0 7.5
Integrator gain c2

I , in 10x

0

10

20

30

40

50

A
zi

m
ut

h 
of

fs
et

 
2 o 

[d
eg

]

2P | Wind speed = 25 m/s

8000

8100

8200

8300

8400

8500

Figure 3: Bayesian optimization results for the combined optimization of the 4-DOF fixed-
structure 1P + 2P IPC controller. The Bayesian routine clearly shows exploration and
exploitation behavior: it explores the entire search domain, but exploits the posterior knowledge
to search in promising areas (lighter colored dots). Each row shows the optimization at different
wind speeds, and the left and right columns show the optimization progress for 1P and 2P IPC,
respectively. The colorbar represents the DEL magnitude: values higher than the maximum
colorbar level are saturated at that number.
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Figure 4: Bayesian optimization progress of the below- and above-rated wind speed cases.
The left plot shows the raw objective function evaluations, whereas the right figure shows the
progression of the minimum found cost so far, also in a chronological fashion. For both cases,
the Bayesian routine finds a satisfactory minimum in approximately 80 iterations.

5. IPC optimization results using the Bayesian framework
The Bayesian optimization framework described in Section 4 has been employed for high-fidelity
simulation cases at a wide range of wind speeds. The results of two wind speed cases of 7 and
25 m/s are presented in Figure 3. The results are split into 1P and 2P optimization for each
case. All subfigures clearly show the ability of the Bayesian optimization framework to search
the domain intelligently: it explores to reduce uncertainty in certain regions, while it exploits
the posterior knowledge in promising areas.

The minimization progress of the objective function is presented in Figure 4. The objective
function values are normalized according to the colorbar extrema in Figure 3, to allow for clear
presentation of the different cases. The left plot shows the chronological search sequence, while
the right plot gives a sense of the optimization convergence rate. The left plot keeps track of the
found minimum DEL value so far, and shows that the objective function minimum is found very
rapidly. For both feedback loops, a clear optimum is present and found in an efficient number
of 75-100 iterations, without the need for any prior knowledge or parameter initialization. After
finding this minimum, the algorithm performs additional exploration to search in uncertain
regions, but also keeps exploiting the fruitful minimal area.

6. Conclusions
The presented Bayesian optimization tuning framework provides a convenient implementation
for fixed-structure controller optimization, based on computationally costly objective functions.
In this work, the framework is applied to a combined 1P + 2P IPC implementation, to efficiently
find the optimal set of integrator gains and azimuth offsets. The latter mentioned variable
is especially important for larger rotors with more flexible blades, as omittance of the offset
results in multivariable coupling and adverse performance consequences. The objective is the
minimization of the computationally expensive DEL of the OoP blade root bending moments.
The DEL is computed offline from high-fidelity simulation data, and thereby results in a realistic
controller tuning. The optimal set of controller parameters are efficiently found without the need
for parameter initialization, and after a minimal amount of iterations. The implementation
circumvents the need for expert control knowledge and specialized analysis software.
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