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Minimal Input Structural Modifications for Strongly Structural
Controllability

Geethu Joseph1, Shana Moothedath2, and Jiabin Lin2

Abstract— This paper studies the problem of modifying the
input matrix of a structured system to make the system strongly
structurally controllable. We focus on the generalized struc-
tured systems that rely on zero/nonzero/arbitrary structure, i.e.,
some entries of system matrices are zeros, some are nonzero,
and the remaining entries can be zero or nonzero (arbitrary).
We derive the feasibility conditions of the problem, and if it
is feasible, we reformulate it into another equivalent problem.
This new formulation leads to a greedy heuristic algorithm.
However, we also show that the greedy algorithm can give
arbitrarily poor solutions for some special systems. Our alter-
native approach is a randomized Markov chain Monte Carlo-
based algorithm. Unlike the greedy algorithm, this algorithm
is guaranteed to converge to an optimal solution with high
probability. Finally, we numerically evaluate the algorithms on
random graphs to show that the algorithms perform well.

Index Terms— Network controllability, pattern matrices,
structured system, zero forcing, Markov chain Monte Carlo

I. INTRODUCTION

Network controllability is a fundamental property used
to analyze the behavior of dynamical systems like social
networks [1], power systems [2], and biological systems [3].
However, complex system dynamics, like those in vast social
networks, may not be completely known due to unmea-
surable influences and unknown interconnection structures.
Such uncertainties in large systems like social, power, and
biological networks can be modeled using structured sys-
tems [2], [3]. It comprises the linear dynamical systems
whose system matrices follow a zero/nonzero/arbitrary struc-
ture (arbitrary values can be zero or nonzero). Further, struc-
tural changes occur over time due to external disturbances,
component failures, or malicious attacks. Some examples
are failed or new ties in social networks [4], [5], loss of
interconnections in power and transportation networks [6]–
[8] and alteration of cellular biochemical pathways in bio-
logical networks [9], [10]. Therefore, developing methods
to sparingly modify the interconnections between the ex-
ternal inputs and state variables while preserving control
properties is highly beneficial. Given a strongly structurally
uncontrollable system, we aim to enforce strong structural
controllability by minimally modifying the input matrix.

Several studies have investigated the strong structural con-
trollability of structured systems with various zero/nonzero

1Geethu Joseph is with the Faculty of Electrical Engineering, Mathemat-
ics and Computer Science, Delft University of Technology, 2628 CD Delft,
The Netherlands G.Joseph@tudelft.nl

2Shana Moothedath and Jiabin Lin are with the Department of Elec-
trical and Computer Engineering, Iowa State University, IA 50011, USA
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patterns. The related prior work addresses the problems
such as graph-theoretic controllability tests [11]–[13], mini-
mum input selection [14]–[17], targeted controllability [18],
[19], robustness of controllability [10], and edge augmenta-
tion [20]. To the best of our knowledge, the input structural
modification problem has not been studied in the context
of strong structural controllability for either zero/nonzero
or zero/nonzero/arbitrary systems. Nonetheless, structural
modification has been investigated for (not strong) structural
controllability of systems defined by zero/nonzero pattern
matrices [21]–[23]. This is a relaxed version of strong
structural controllability, and naturally, this formulation is
not directly extendable to our strong structural controllabil-
ity setting. Therefore, we look at the problem of making
minimal changes to the input matrix of a structured system
to guarantee its strong structural controllability.

Our specific contributions are as follows:
• In Section III, we formulate the minimal input structural

modification problem and Proposition 1 discusses its fea-
sibility conditions. Under the feasibility conditions, Theo-
rem 3 presents a more intuitive problem reformulation.

• In Section IV-A, we present and analyze a novel greedy
algorithm with a column-by-column update rule for the
input matrix. Although the greedy algorithm performs well
in general, in certain cases, the greedy solution can be
arbitrarily larger than the optimal solution (Proposition 2).

• In Section IV-B, we devise a Markov chain Monte Carlo
(MCMC)-based solution for the structural modification
problem. This approach has guarantees on solution opti-
mality (Theorem 4) and error probability (Proposition 3)
if it is run sufficiently long.

Overall, our results provide interesting insights and devise
design algorithms to achieve strong structural controllability.
We note that while the MCMC algorithms have been used
in the strong structural controllability literature [15], our
approach is more rigorous. The proof techniques of our new
results Theorem 3 and Proposition 3 can be used to derive
similar results for [15]. Our design of the MCMC transition
probability matrix that avoids bias towards certain solutions
can also be adapted to improve the algorithm in [15].

II. NOTATION AND PRELIMINARIES

A structured system (Ā, B̄) is a class of linear dynamical
systems whose state matrix A ∈ P(Ā) and input matrix B ∈
P(B̄). Here, for any given pattern matrix M∈ {0, ∗, ?}p×q ,

P(M) =
{
M ∈ Rp×q : M ij = 0 if Mij = 0

and M ij ̸= 0 if Mij = ∗} . (1)
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We note that the entries in M ∈ P(M) corresponding to ?
entries in M can either be zero or nonzero (arbitrary). The
system (Ā, B̄) is called strongly structurally controllable if
the linear dynamical system (A,B) is controllable for any
A ∈ P(Ā) and B ∈ P(B̄). It can be tested using the rank of
pattern matrices, rank(M) = minM∈P(M) rank(M).

Theorem 1 ( [24]). The system (Ā, B̄) is strong structural
controllable if and only if the following two conditions hold:

1) The pattern matrix
[
Ā B̄

]
has full row rank.

2) The pattern matrix
[
Q(Ā) B̄

]
has full row rank, where

the pattern matrix Q(Ā) is

[Q(Ā)]ij =


Āij if i ̸= j

∗ if i = j and Āii = 0

? otherwise.
(2)

Here, a graph-theoretic algorithm, summarized in Algo-
rithm 1, can be used to test the rank condition [24].

Algorithm 1 Color change rule

Input: Pattern matrix M∈ {0, ∗, ?}p×q

1: Set E∗ = {(j, i) :Mij = ∗}; E? = {(j, i) :Mij =?}
2: Initialize the set of white vertices W ← {1, 2, . . . , p}
3: repeat
4: Set Wdel ← {i ∈W : ∃j such that (j, i) ∈ E∗

and (j, ĩ) /∈ E∗ ∪ E?,∀ĩ ∈W \ {i}
}

5: Color vertex set Wdel black, W ←W \Wdel

6: until Wdel = ∅
7: Set W (M)←W

Output: Set of white vertices W (M)

Theorem 2 ( [24]). A given pattern matrixM∈ {0, ∗, ?}p×q

is full row rank if and only if the set of white vertices W (M)
outputted by the color change rule in Algorithm 1 is empty.

Further, we define a zero forcing set of a pattern matrix.

Definition 1. For a pattern matrix M ∈ {0, ∗, ?}p×q , the
set V 0 ⊆ {1, 2, . . . , p} is called its zero forcing set if
Algorithm 1 returns an empty set W (M) when initialization
in Step 2 is changed to W ← {1, 2, . . . , p} \ V 0.

Relying on the above definitions and results, the next
section presents our problem formulation.

III. MINIMAL STRUCTURAL MODIFICATION PROBLEM

Consider a strongly structurally uncontrollable system
(Ā ∈ {0, ∗, ?}n×n, B̄ ∈ {0, ∗, ?}n×m) as given in Section II.
We address the problem of making minimum changes to the
pattern matrix B̄ to obtain B ∈ {0, ∗, ?}n×m such that the
new system (Ā,B) is strongly structurally controllable. The
change in the pattern matrix is quantified using the distance
metric, dist(B, B̄) =

∣∣{(i, j) : Bij ̸= B̄ij}∣∣. Further, using
Theorems 1 and 2, the resulting optimization problem is

argmin
B∈{0,∗,?}n×m

dist(B, B̄)

s. t. W ([Ā B]) ∪W ([Q(Ā) B]) = ∅, (3)

where W (·) is Algorithm 1’s output and Q(·) is as in (2).
We next discuss the feasibility conditions of the problem,

using the notion of zero forcing set in Definition 1.

Proposition 1. Consider a given structured system (Ā ∈
{0, ∗, ?}n×n, B̄ ∈ {0, ∗, ?}n×m) and Q(Ā) as defined in (2).
The structural modification problem (3) is feasible only if

m ≥ max{Z(Ā), Z(Q(Ā))}, (4)

where Z(·) is the zero forcing number i.e., the minimum
cardinality |V 0| over all the zero forcing sets V 0. Also, the
problem (3) is feasible if

m ≥ Zjoint = min
V⊂{1,2,...,n}

|V |

s. t. V is a zero forcing set of both Ā and Q(Ā). (5)

Proof. See Appendix I.

The necessary condition is not always sufficient, and vice
versa. For example, consider the following pattern matrices,

Ā(1) =

0 ? ?
0 ∗ ?
0 ? ?

, Ā(2) =

0 0 0
0 ∗ 0
0 0 ∗

 and B∗ =

∗ 0
∗ 0
0 ∗

.
(6)

For (Ā(1), B̄) with m = 2 = max{Z(Ā), Z(Q(Ā))}, the
problem (3) is infeasible, despite satisfying the necessary
condition. For (Ā(2), B̄) with m < 3 = Zjoint, the problem
is feasible even though the sufficient condition fails. Thus,
determining the feasibility set is difficult. The following
theorem reformulates (3) into an equivalent feasible one.

Theorem 3. For a structured system (Ā ∈ {0, ∗, ?}n×n, B̄ ∈
{0, ∗, ?}n×m), the the structural modification problem in (3),
if feasible, is equivalent to following optimization problem,

argmin
B∈B

c(B). (7)

Here, the feasible set B and the cost function c(·) are

B =
{
B ∈ {0, ∗, ?}n×m : Bij ̸=? ∀(i, j) with B̄ij ̸=?

}
(8)

c(B) = dist(B, B̄) + ϵ
(∣∣W ([Ā B])

∣∣+ ∣∣W ([Q(Ā) B])
∣∣) ,

(9)

where the set W (·) is the output of Algorithm 1, Q(·) is
defined in (2), and the constant ϵ > nm.

Proof. See Appendix II.

The feasibility assumption in Theorem 3 holds only if
the number of columns m of the input matrix is large
enough as given in Proposition 1. Therefore, one can add
all additional columns n −m with all entries as ? to B̄ to
ensure feasibility, and consequently, equivalence between (3)
and (7). So, feasibility is not a strong assumption. Further,
the cost function ensures that all feasible solutions satisfy
c(B) < ϵ (see details in Appendix I), i.e., the solution to (7)
ensures structural controllability only if the corresponding
cost c(B) < ϵ. Also, from Proposition 1, the optimal solution
changes at most Zjoint columns, implying c∗ ≤ nZjoint < ϵ.
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Moreover, the feasibility set B in Theorem 3 offers an
interesting insight. If B̄ does not have any arbitrary entries
(i.e.,? entries), then B = {0, ∗}n×m and the optimal solution
also does not have any ? entries. Hence, our formulation and
algorithms directly apply to zero/nonzero structural systems.

IV. STRUCTURAL MODIFICATION ALGORITHMS

We present two algorithms to solve the minimal structural
modification, starting with a greedy approach.

A. Greedy Algorithm

To design the greedy algorithm, we note that every itera-
tion of Algorithm 1 considers the sub-pattern matrixMW of
the input pattern matrixM restricted to the rows indexed by
the set of white nodes W . The algorithm removes an element
i from the set W only if the sub-pattern matrix MW has a
column j with one ∗ entry and zeros elsewhere. Then, the ith
row of B corresponding to the ∗ entry in the jth column of
MW is removed from W . Therefore, in the next iteration, the
jth column of MW has all zeros and can not induce more
color changes. Consequently, once a column of the input
pattern matrix induces a color change, it can not induce any
other color change in the subsequent iterations. Based on
these observations, our greedy algorithm iteratively changes
one column of the current iterate B that is locally optimal
in each iteration. Also, once a column of B is changed, it is
kept fixed in the subsequent iterations. So, in every iteration
of the greedy algorithm, we first compute the set of the white
nodes in [Ā B] and [Q(Ā) B] using Algorithm 1 and the
previous iterate B, i.e.,

I = W ([Ā B]) ∪W ([Q(Ā) B]). (10)

Then, the greedy algorithm solves for the optimal column of
B restricted to rows indexed by I ,

(i∗, j∗)=argmin
i∈I,j∈J

c(B̃) s. t. B̃ĩj̃ =


∗ if (̃i, j̃) = (i, j)

0 if j̃ = j, ĩ ∈ I\{i}
Bĩj̃ otherwise,

(11)
where J is the index of columns of B that are identical
to the corresponding columns of B̄, i.e., unchanged in the
previous iterations. Here, j∗ is the column changed in the
current iteration, and i∗ denotes the location of ∗ entry in
the jth column of B. The greedy algorithm stops when the
feasibility set of (11) is empty, i.e., I = ∅ or J = ∅. The
overall greedy algorithm is summarized in Algorithm 2.

Algorithm 2 Greedy structural modification

Input: System (Ā ∈ {0, ∗, ?}n×n, B̄ ∈ {0, ∗, ?}n×m)
1: Initialize B = B̄ and J = {1, 2, . . . ,m}
2: Compute I using (10)
3: while I ̸= ∅ and J ̸= ∅ do
4: Bi∗j∗ ← ∗ and Bĩj∗ ← 0 for ĩ ̸= I \ {i∗} using (11)
5: Update I using (10) and J ← J \ {j∗}
6: end while

Output: Modified input pattern matrix B ∈ {0, ∗, ?}n×m

The greedy algorithm is simple to implement, but it
does not guarantee the solution’s optimality. The following
proposition presents a case where the cost returned by the
greedy solution can be arbitrarily larger than the optimal cost.

Proposition 2. For any given γ > 0, there exists integers
n,m > 0 and a structured system (Ā ∈ {0, ∗, ?}n×n, B̄ ∈
{0, ∗, ?}n×m) such that the solution Bgreedy returned by the
greedy algorithm in Algorithm 2 satisfies

c(Bgreedy) > γ

[
min

B∈{0,∗,?}n×m
c(B)

]
. (12)

Proof. See Appendix III.

Since the worst-case performance of the greedy algorithm
is not bounded, we propose another algorithm for structural
modification that relies on MCMC.

B. Monte Carlo Markov Chain Algorithm
MCMC is a powerful stochastic optimization technique

used to solve discrete optimization problems. The underlying
principle of this approach is to randomly generate pattern
matrices from B using a probability distribution and return
the sample with the lowest cost. A common technique to
define the probability distribution is to use the softmax
function to favor the pattern matrices with smaller c(B),

pT (B) = e−c(B)/T /G, (13)

where G =
∑

B′∈B e
−c(B′)/T is the normalization constant

of the distribution. As T gets smaller, for B /∈ argmin
B∈B

c(B),

lim
T→0

pT (B)= lim
T→0

e−c(B)/T∑
B′∈B e

−c(B′)/T
= 0. (14)

Therefore, we arrive at the optimal solution when T is
small. Nonetheless, computing the distribution is cumber-
some because the number of candidate solutions increases
exponentially with nm. To solve this problem, we build a
discrete-time Markov chain (DTMC), which converges to its
stationary distribution equal to the desired distribution pT in
(13). If we simulate the DTMC for a sufficiently long period
for a small value of T , its state arrives at an optimal solution.

In the following, we construct a DTMC {B(t) ∈ B}t>0

whose stationary distribution is pT (B). Since the state space
is of size |B| from Theorem 3, the DTMC is defined by
the one-step probability transition matrix P T ∈ [0, 1]|B|×|B|.
Let B be the current state. We allow only transitions to the
neighboring states that differ from the current state B by at
most one entry, i.e., the set of next states is S(B)∪{B} where

S(B) = {B′ ∈ B : dist(B,B′) = 1}. (15)

Therefore, we arrive at

P T (B,B′) = 0, ∀ B′ /∈ S(B) ∪ {B}. (16)

We define the matrix P T such that any neighboring state
in S(B) is equally probable. First, we choose (i, j) from
{1, 2, . . . , n}×{1, 2, . . . ,m} obeying the distribution d(i, j),

d(i, j) =

{
1/|S(B)| if B̄ij ̸=?

2/|S(B)| if B̄ij =?,
(17)
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where S(B) is defined in (15) and its size is |S(B)| = nm+
|{(i, j) : B̄ij =?}| < 2nm. Then, we replace the (i, j)th
entry Bij of B with a sample uniformly randomly chosen
from {0, ∗} ∪ {B̄ij} \ {Bij}, to get the next state B′. We
note that if B̄ij =?, the entry B′ij has two choices, and when
B̄ij ̸=?, the entry B′ij has only one choice. So the above
process chooses B′ uniformly at random from S(B(t)) ⊂ B.

Further, we also assign a non-zero probability to continue
in the current state. If c(B) > c(B′), the DTMC jumps to the
neighboring state B′ with a lower cost with probability one.
Also, if c(B) < c(B′), the DTMC jumps to the neighboring
state B′ with a higher cost with probability e[c(B)−c(B′)]/T .
The resulting DTMC transition probabilities are as follows.

P T (B,B′) =
1

|S(B)|
min{1, e[c(B)−c(B′)]/T } ∀ B′ ∈ S(B).

(18)
Since

∑
B′∈B P T (B,B′) = 1, we deduce

P T (B,B)=1− 1

|S(B)|
∑

B′∈S(B)

min{1, e[c(B)−c(B′)]/T },

(19)
from (16) and (18). The resulting algorithm is summarized
in Algorithm 3. We note that the MCMC algorithm uses
an entry-by-entry update rule, unlike the column-by-column
update of the greedy algorithm. Here, we decrease T in every
Rmax iteration. The initial large T value allows the MCMC
to jump between the states quickly for a flexible random
search. Later, we use small T values to converge to the
unique steady state distribution, as guaranteed by Theorem 4.

Algorithm 3 MCMC-based structural modification

Input: System (Ā ∈ {0, ∗, ?}n×n, B̄ ∈ {0, ∗, ?}n×m)
1: Initialize the parameters Rmax, Tstop, α < 1
2: Set ϵ = nm+ 1, T > Tstop, and B = B̄
3: while Tstop ≤ T do
4: for r = 1, 2, . . . , Rmax do
5: Set B′ ← B
6: Generate (i, j) from the distribution d in (17)
7: Choose B′ij from {0, ∗}∪{B̄ij}\{Bij} uniformly

at random
8: B ← B′ with probability min{1, e[c(B)−c(B′)]/T }
9: end for

10: T ← Tα
11: end while

Output: Input pattern matrix B

Theorem 4. For any fixed T > 0, the DTMC with states from
B in (8) and transition probabilities given by (16), (18), and
(19) admits a unique steady state distribution given by (13).

Proof. The proof is similar to the proof of [15, Lemma 2
and Theorem 3], and hence, omitted.

The above theorem establishes that when T approaches
0 and Rmax goes to ∞, the pattern matrix returned by
Algorithm 3 is a solution to (3) almost surely due to (14).

However, in practice, T ̸= 0, leading to a suboptimal
solution, as characterized by the following result.

Proposition 3. For any T <∞, the DTMC with states from
B in (8) and transition probabilities given by (16), (18), and
(19) converges to an optimal solution of (7) with probability
exceeding B∗

|B| , where we define

B∗ =

∣∣∣∣argmin
B∈B

c(B)
∣∣∣∣ < |B| . (20)

Further, for any B∗

|B| < δ < 1, the DTMC arrives at an
optimal solution with probability δ if

T <
1

log(δ/(1− δ)) + log(|B| /B∗ − 1)
. (21)

Proof. See Appendix IV.

Proposition 3 depends on B∗, the number of optimal
solutions of (7), which is hard to compute. So, we choose
the lower bound of B∗ ≥ 1 to compute Tstop for a desired
error probability δ, as follows:

Tstop ≤
1

log(1/δ − 1) + log(|B| − 1)
. (22)

V. NUMERICAL RESULTS

For numerical evaluation, we choose the MCMC param-
eters Rmax = 50000, TStop = 10−10, α = 10−1, and
T = 1 as the starting value. In Figure 1, the cost is always
less than nm < ϵ, indicating that the resulting system is
strongly structurally controllable. So, the cost is the number
of changes required to make the system controllable.

For the example discussed in the proof of Proposition 2,
Figure 1a shows that the greedy solution’s cost is n − 2,
whereas the MCMC algorithm returns the optimal solution
in most cases. Next, we look at the average performance of
the algorithms (over 100 trials) when the adjacency matrix
of Erdős Rényi graphs is used to generate both Ā and B̄.
Figure 1b shows the algorithms’ performances with p =
0.1, 0.45, and 0.8, where p is the probability of having an
edge between any two graph nodes (∗ entry). Also, the
existence of an edge in the graph is unknown (? entry)
with probability 0.1. Figure 1b indicates that the greedy
and MCMC algorithms return similar solutions (mostly,
the difference is less than 1), illustrating that the greedy
algorithm performs well generally.

From Figure 1, the number of changes increases with
the state dimension n, as expected. Further, if the system
(Ā,B′) is controllable for a submatrix B′ of a matrix B, the
system (Ā,B) is also controllable. So, the algorithm needs to
change only a submatrix of B̄, making the required number of
changes insensitive to the control dimension m (Figure 1b).
We also infer that the number of changes increases with p,
the probability of an ∗ entry. It is intuitive as a triangular
structure of B favors strong structural controllability. So we
need to make fewer changes if B̄ has a lot of zeros.

Also, the greedy algorithm runs much faster than the
MCMC algorithm (details omitted due to lack of space).
Nonetheless, we highlight that simplistic greedy approaches
can yield arbitrarily poor solutions, as shown in Figure 1a.
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Fig. 1: Variation of the number of changes required by the greedy and MCMC algorithms with the state and control input
dimensions. For the special case discussed in the proof of Proposition 2, the greedy algorithm performed poorly, while the
MCMC algorithm returned the optimal cost in most cases. However, for Erdős Rényi graphs, the greedy algorithm performs
comparably to that of the MCMC algorithm.

VI. CONCLUSION

We addressed the problem of making minimal changes
to the input pattern matrix of a structured system to ensure
strong structural controllability. We offered a greedy algo-
rithm and an MCMC-based solution with provable guaran-
tees. Our results open new interesting directions for future
work, such as strong structural controllability under restricted
structural modifications, analysis of the computational com-
plexity, and extensions to time-varying systems.

APPENDIX I
PROOF OF PROPOSITION 1

To prove the necessary conditions, consider Algorithm 1
with M = [Ā B] as the input, for some B ∈ {0, ∗, ?}n×m.
In every iteration, Algorithm 1 removes an entry i from
the set W if there exists a column j such that Mij = ∗
and Mĩj = 0 for all ĩ ∈ W \{i}. Therefore, in the next
iteration, the jth column of M has all zeros corresponding
to rows indexed by W and can not induce any more color
changes. Thus, a column of the input matrix induces at most
one color change. Further, by the definition of zero forcing
number, Algorithm 1 does not return an empty set unless
Z(Ā) columns of B induces a color change. Hence, if there
is a feasible solution, the number of columns m of B satisfy
m ≥ Z(Ā). Using similar arguments with M = [Q(Ā) B],
we deduce that m ≥ Z(Q(Ā). Hence, the minimal structural
modification problem (3) is feasible only if (4) holds.

Next, to establish the sufficient condition in (5), it is
enough to construct a matrix B∗ ∈ {0, ∗, ?}n×Zjoint

such that
W ([Ā B∗])∪W ([Q(Ā) B∗]) = ∅. Let V be a minimal zero
forcing set of both Ā and Q(Ā) and B∗ be a submatrix of
the n×n diagonal matrix with ∗ along the diagonal, formed
by Zjoint columns indexed by V . Then, the first iteration
of Algorithm 1 with [Ā B∗] as input removes V from
W . So we deduce that W ([Ā B∗]) is the same as W (Ā)
when initialization in Step 2 of Algorithm 1 is changed to
W ← {1, 2, . . . , p} \ V . Further, from Definition 1, we
conclude that W ([Ā B∗]) = ∅. Similarly, we can show
that W ([Q(Ā) B∗]) = ∅. Therefore, if m ≥ Zjoint, (3) is
feasible for any system (Ā, B̄).

APPENDIX II
PROOF OF THEOREM 3

We prove the equivalence of (3) and (7) in two steps under
the assumption that (3) is feasible. Using (9), we first show
that the following optimization is equivalent to (3),

argmin
B∈{0,∗,?}n×m

c(B). (23)

In the second step, we show that, if B /∈ B, then B is not
an optimal solution of (23). This step establishes that (23) is
equivalent to (7), and the proof is complete.

We start with the first step. Let w(B) = |W ([Ā B])| +
|W ([Q(Ā) B])|, for any B ∈ {0, ∗, ?}n×m. Then, c(B) =
dist(B, B̄) + ϵw(B). Since w(B) ≥ 1 when w(B) ̸= 0 and
ϵ > nm, we have

min
B:w(B)̸=0

c(B) > min
B:w(B) ̸=0

dist(B, B̄) + nm (24)

≥ nm ≥ min
B:w(B)=0

dist(B, B̄) (25)

≥ min
B:w(B)=0

c(B), (26)

where (25) follows because 0 ≤ dist(B, B̄) ≤ nm, for any
B, B̄ ∈ {0, ∗, ?}. Therefore, we obtain

argmin
B∈{0,∗,?}n×m

c(B) = argmin
B:w(B)=0

c(B) = argmin
B:w(B)=0

dist(B, B̄).

(27)
Here, w(B) = 0 if and only if W ([Ā B])∪W ([Q(Ā) B]) is
an empty set. Hence, problems (3) and (23) are equivalent.

Now, we present the second step using a proof by negation.
Suppose there exists B̃ /∈ B such that B̃ is a solution to (23),
i.e., there exists (i, j) for which B̃ij =? and B̄ij ̸=?. Due to
the equivalence of (3) and (23), B̃ also belongs to the solution
set of (3). Therefore, (Ā, B̃) is strongly structurally control-
lable. Further, let pattern matrices B̃(0), B̃(∗) ∈ {0, ∗, ?}n×m

be such that they are identical to B̃ except that B̃(0)ij = 0 and
B̃(∗)ij = ∗. However, from (1) we note that

P(B̃) = P(B̃(0)) ∪ P(B̃(∗)). (28)
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Hence, we see that (Ā, B̃(0)) and (Ā, B̃(∗)) are strongly
structurally controllable. However, since either B̃(0)ij or B̃(∗)ij

is the same as B̄ij ̸=? and B̃ij ̸= B̄ij , we arrive at

c(B̃) = dist(B̃, B̄) > min
{
c(B̃(0)), c(B̃(∗))

}
. (29)

Thus, the assumption that B̃ minimizes the cost c does not
hold, and the proof is complete.

APPENDIX III
PROOF OF PROPOSITION 2

Consider a system (Ā, B̄) where B̄ = 0 ∈ {0, ∗, ?}n×n

with n ≥ 6 and Ā ∈ {0, ∗, ?}n×n is defined as follows:

Āij =


? if i = j

0 if 1 ≤ i, j ≤ n− 3 and |i− j| > 1

0 if n− 3 ≤ i, j ≤ n and |i− j| > 1

∗ otherwise.

(30)

Here, Q(Ā) = Ā, and c(B) = dist(B, B̄) + 2ϵ
∣∣W ([Ā B])

∣∣.
Let B∗ be a submatrix of the diagonal matrix with ∗ along the
diagonal, formed by columns indexed by {1, n−2, n−1, n}.
Then,

∣∣W ([Ā B∗])
∣∣ = 0, making B∗ feasible, and we get

min
B∈{0,∗,?}n×m

c(B) ≤ c(B∗) = 4. (31)

Further, if we apply a greedy algorithm, in the first iteration,
changing any entry of B to ∗ returns the cost 1+ 2ϵ(n− 1).
Let the algorithm changes B11 to ∗. In the next iteration,
changing any entry of B, except from the first row and first
column to ∗, reduces the cost to c(B) = 2 + 2ϵ(n − 2).
Assume that the algorithm changes B22 to ∗. Similarly, after
n− 2 iterations, the algorithm terminates with Bgreedy such
that [Bgreedy]ii = ∗ for i = 1, 2, . . . , n − 2 and zeros
elsewhere. Thus, the greedy solution’s cost is

c(Bgreedy) = n− 2 ≥ n− 2

4

[
min

B∈{0,∗,?}n×m
c(B)

]
, (32)

where we use (31). So, for any γ > 0, if we choose n >
4γ + 2, the lower bound (12) holds.

APPENDIX IV
PROOF OF PROPOSITION 3

Let the optimal cost of the minimal structural modification
problem in (7) be c∗ = min

B∈B
c(B). Then, for any T > 0,

from the DTMC distribution in (13), the probability of the
DTMC converging to an optimal solution is B∗e−c∗/T /G.
Since c(B′) ≥ c∗ + 1 for all B′ /∈ argmin

B∈B
c(B), we have

B∗e−c∗/T /G ≥ B∗e−c∗/T

B∗e−c∗/T + (|B| −B∗)e−(c∗+1)/T
(33)

=
B∗

B∗ + (|B| −B∗)e−1/T
>

B∗

|B|
. (34)

Therefore, we prove the first part of the result. Furthermore,
the error probability exceeds 1 − δ if B∗

B∗+(|B|−B∗)e−1/T >

1− δ. Rearranging this relation, we arrive at (21).
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