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Secure Control for Cyber-Physical Systems
under Malicious Attacks

Chengwei Wu, Weiran Yao, Wei Pan, Guanghui Sun, Jianxing Liu, and Ligang Wu, Fellow, IEEE

Abstract— This paper investigates the secure control
problem for cyber-physical systems when the malicious
data is injected into the cyber realm which is directly con-
necting to the actuators. Based on moving target defense
and reinforcement learning, we propose a novel proactive
and reactive defense control scheme. First, the system
(A,B) is modeled as a switching system consisting of sev-
eral controllable pairs (A,Bl) to facilitate the construction of
the moving target defense control scheme. The controllable
pairs (A,Bl) can be altered to update system dynamics
under certain unpredictable switching probabilities for each
subsystem, which can prevent the adversaries from effec-
tive attacks. Second, both attack detection and isolation
schemes are designed to accurately locate and exclude the
compromised actuators from a switching sequence. Third,
a reinforcement learning algorithm based on the zero-sum
game theory is proposed to design the defense control
scheme when there exist no controllable subsystems to
switch. To demonstrate the effectiveness of the defense
control scheme, a three-tank system under unknown cyber
attacks is illustrated.

Index Terms— Actuator attacks, Moving target defense,
Reinforcement learning, Proactive and reactive control,
Cyber-physical systems.

1.. INTRODUCTION

The cyber-physical systems (CPS) have tremendous eco-
nomic and societal impact and potential [1]. The applications
of CPS can range from the military to the civil critical
infrastructure, and more. The CPS consist of the cyber realm
and the physical layer. The cyber realm is mainly utilized to
be in charge of interactions between the cyber world and the
physical world, and the physical layer governs the physical
dynamics [2]. The quality of cyber realm can affect the
performance of the physical process and vice versa. Due to
the integration of the cyber layer, there exists a big risk that
exogenous cyber attacks can intrude the communication net-
works/computers, which can vastly degrade the performance
or even destroy the CPS. Examples of the attack cases include
the elaborately designed Stuxnet [3], attacking the Maroochy
water services in Australia [4], etc. Some other attack incidents
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can refer to [5]. It is extremely urgent to dissuade CPS from
being intruded. Effective mechanisms for CPS security need
to be designed. Some challenges for securing CPS using the
control theory have been outlined in [6]. Researchers from the
control field have paid more attention to security problems
mainly including attack detection and identification, secure
state reconstruction and defense control [7]. In the following,
a brief review concerning these three directions is given.

As to attack detection, the χ2 detector and observer-based
detection scheme can be found in existing results. In [8], a
countermeasure has been proposed to improve the performance
of χ2 attack detector in the presence of sensor replay attacks.
But either the increasing of the control cost or the detection
delay can arise. In [9], the undetectable and unidentifiable
malicious signals have been characterized based on the system-
theoretic and graph-theoretic approaches. The monitors for
attacks have been designed. Should the robustness of the
proposed schemes be guaranteed, the schemes can perform
better in practical applications. In [10], an unknown input
observer based attack identification scheme has been proposed.
Although the identification scheme is similar to our paper, our
paper solves the identification delay problem. Additionally, its
control scheme is reactive.

For the remote estimate problem, several important results
have appeared in literature [11]–[13]. In [11], a Kalman
filtering approach has been designed using intermittent mea-
surements. The critical probability of the measurements that
the filter receives has been derived, within which the filtering
approach can converge. In [12], the relationship between the
number of sensors that allows to be disrupted and the state
reconstruction was revealed. If the number of disrupted sensors
exceeds half of its total number, states cannot be exactly
reconstructed. Such a conclusion have been applied in [14],
[15].

For the secure control problem under attacks, it can refer
to schemes in [16]–[18]. In [16], novel definitions of attack
frequency and attack duration have been proposed to model
denial-of-service attacks, based on which a secure control
scheme was derived to preserve the input-to-state stability.
Using the novel DoS attack model in [16], a secure controller
using the sliding mode has been designed in [19], where a
defense scheme has been established to guarantee that the
attack model can be satisfied. In [17], an adaptive control
framework has been presented for systems under false data
injection attacks. However, the schemes are designed from the
system designer’s perspective. An adversary is not considered
in the aforementioned results. The game-theoretical approach
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can take both sides into a unified framework to analyze and
design CPS [20], [21]. Examples of results concerning game-
based CPS design are a remote state estimate scheme in [22],
a defense control scheme in [23] and a learning-based defense
controller in [24].

However, the current methods of attack detection, state
recovering and control mechanisms are reactive which limits
the broad applications. An adversary can monitor the system
for a long time and acquire the defense scheme. After having
knowledge of the defense scheme, attacks can be implemented
again. Alternatively, blended attacks are launched on the
system, which also makes the defense scheme ineffective. The
fundamental reason is that the system structure is fixed. If the
system structure is dynamical, this issue can be solved. Mov-
ing target defense (MTD), which is often applied to computer
networks, provides a novel approach to securing CPS. Such
a scheme makes the system to be a dynamical structure, that
is, the system structure is regarded a moving target and it can
be altered unpredictably. In this way, it is more difficult for
adversaries to successfully intrude the CPS. The advantages
that adversaries have are also substantially decreased. A few
related results have been appeared in literature. In [25], an
optimal multi-stage defense scheme was proposed by con-
structing a time-varying attack surface to create the moving
target diagram. In [26], the attack identification and isolation
problems for CPS were solved using the MTD scheme. In
[27], to create a moving defense diagram, an unpredictable
switching sequence was designed to activate a controllable
pair (A,Bl). Using such a switching scheme, the attacks can be
effectively mitigated. In [27], the physical process is described
as a continuous-time model yet the results can be readily
extended to the discrete-time counterpart. Nevertheless, there
still exist some limitations. First, the attack isolation scheme
is absent, which makes it impossible to determine whether
the controllable pair (A,Bl) to be altered is corrupted or
not. Second, potential adversaries cannot attack all actuators
simultaneously and there always exist available controllable
pairs (A,Bl) to alter. Once the actuators are simultaneously
attacked, or the system designer cannot timely recover attacked
actuators, the proposed scheme fails to work.

Either the absence of an attack isolation algorithm or no
available controllable pairs (A,Bl) to alter can make the CPS
undergo attacks all the time. The system performance can be
steadily deteriorated. To solve the problems, this paper pro-
poses attack detection, isolation and MTD control schemes for
CPS in a unified framework. The physical process is described
as a linear time-invariant discrete-time model [27]. False data
can be injected into the cyber layer to deteriorate the system
performance [9]. The initial linear time-invariant discrete-time
model is converted into a series of controllable sub-systems.
An unpredictable switching sequence, which creates the MTD
diagram, is given to activate the sub-system. A controller
for each activated dynamics is designed. An observer-based
attack detection scheme is designed to detect attacks. An
attack isolation algorithm is proposed to accurately locate the
attacked actuators by designing a series of parallel unknown
input observer. After the attack detector reports an alarm, the
attack isolation algorithm is invoked to locate and exclude the

attacked actuators from the controllable pairs (A,Bl). A game-
based defense controller is designed to deal with the case, in
which there exist no available controllable pairs (A,Bl) that
can be used to make the MTD control diagram work. The main
contributions of this paper can be summarized as follows

1) The considered attack case in this paper is general. It
includes the attack case in [27], in which actuators in
each activated dynamics are attacked simultaneously.
When part of used actuators are attacked, the control
scheme in [27] cannot maintain the desired performance.
For actuators in each activated dynamics, either part or
all of them are allowed to be attacked. Corresponding
defense schemes are designed.

2) If the system dynamics to be altered include attacked ac-
tuators, attacks can continuously deteriorate the system
performance even the MTD scheme is used. This paper
shows that it is necessary to design an attack isolation
algorithm when we design a secure control scheme
in a MTD control diagram. Using an attack isolation
algorithm, we can exclude the attacked actuators from
the sequence to be altered.

3) When no available controllable pairs (A,Bl) can be used
to switch after isolating attacked actuators, the system
will be exposed to attacks all the time. The system
performance can be deteriorated even destroyed. Once
such a case happens, a solution to mitigate attacks is
provided in this paper.

The rest of the paper is organized as follows. In Section 2.,
a switching system representation of the physical process and
the problem formulation are given. In Section 3., a MTD con-
trol scheme is proposed. In Section 4., attack detection and iso-
lation schemes are provided. In Section 5., a proactive/reactive
defense control scheme including the reinforcement leaning
algorithm is proposed. In Section 6., simulations of a three-
tank system under unknown cyber attacks are illustrated.
Finally, we conclude this paper in Section 7..

Notations. The notations used throughout the paper are de-
fined as follows. The superscripts “>” and “−1” respectively
denote matrix transposition and matrix inverse; Rn denotes the
n-dimensional Euclidean space; the notation P > 0 means that
P is real symmetric and positive definite; diag{·} denotes the
matrix with diagonal structure; card(a) means the number of
the elements in the vector a and card(a) is the number of
the columns of a if a is a matrix. pinv(·) means the pseudo
inverse.
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Detector
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Fig. 1. System blueprint. Here, the “Switch” means that if the residual
signal generated by the detector is greater than the predefined thresh-
old, the alarm will be triggered.
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2.. SYSTEM FORMULATION

Fig. 1 presents the system diagram of interest consisting of
the physical plant, sensor, controller, cyber layer, actuator and
the attack detection and isolation module. This section gives
the physical system and attack models, based on which the
physical system under attacks is described. Then, the purpose
of this paper is given.

A. Physical system and attack models
The physical system is described as the following linear

time-invariant model

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k), (1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu represents
the control input. y(k) ∈ Rny denotes the measurement output.
A, B and C are compatible matrices. The pair (A,C) is
observable.

According to the description of the system (1), we hereby
define ui(k) as the i-th control signal related to the i-th actu-
ator and define B̃ as all possible combinations of the column
Bj in the matrix B. j takes values in the set {1, . . . , nu}. Bl
means each specific combination and l takes values in the set
{1, . . . , 2nu}.

To create the MTD scheme, not all actuators are used to
stabilize the physical plant. The system dynamics governed by
controllable pairs (A,Bl) will be altered following a specific
rule. To distinguish the controllable and uncontrollable pairs,
define the following two sets

B̃1 =
{
Bl ∈ B̃ : rank

([
Bl, ABl, . . . , Anx−1Bl

])
= nx

}
,

B̃2 =
{
Bl ∈ B̃ : rank

([
Bl, ABl, . . . , Anx−1Bl

])
< nx

}
,

where B̃1 denotes the actuating mode sets which can stabilize
the system and B̃2 denotes the actuating mode sets which
cannot stabilize the system.

As shown in Fig. 1, the cyber layer, which is prone to
malicious behaviors, is utilized to transmit the control signal
to the actuator. It is assumed that the adversary imposes
false data injection attacks on the occupied communication
channels. Since the system dynamics will be altered to defend
attacks, the communication channels will be also changed. For
each controllable pair (A,Bl), corresponding communication
channels will be employed to transmit the control signals.
Once the adversary successfully intrudes the cyber layer, the
physical system (1) is described as

x(k + 1) = Ax(k) +Bu(k) +BΓ(k)ua(k), (2)

where Γ(k) is a time-varying diagonal matrix, which is defined
to describe which actuators are attacked. ua(k) is the malicious
signal designed by the adversary. If the i-th actuator is
attacked, the i-th diagonal element in Γ(k) is 1, otherwise
it is 0. Define S = ind(Γ(k)) as the attacked actuator index
set.

Remark 1: As to Γ(k), its diagonal elements consist of 0
and 1. If the i-th actuator is attacked, Γll(k) = 1, otherwise

Γll(k) = 0 (l = 1, 2 . . . , nu). Additionally, there doesn’t exist
any constraints on ‖Γ(k)‖l0 in this paper. The adversary can
attack partial or all actuators, that is, 0 ≤ ‖Γ(k)‖l0 ≤ nu.

B. Physical system: a switching system representation
The MTD technique is used to design a secure control

scheme in this paper. If the system operator detects the
attack, it will isolate the attacked actuators and take them
offline. To create the MTD diagram, the system operator
alters the dynamics by switching to the controllable actuating
modes without attacks. If the remaining actuating modes are
uncontrollable, a zero-sum game based control scheme will
be adopted to defend the attacks and stabilize the system.
According to the above description, we can describe the
system (1) in the following two cases.

Case 1 Except the current actuating mode, there exist
controllable actuating modes without attacks in B̃1

x(k + 1) = Ax(k) + Blūl(k), (3)

where ūl(k) consists of control signals without at-
tacks, l ∈ {1, . . . , card(B̃1)}.

Case 2 Except the current actuating mode, the remaining
actuating modes without attacks belong to B̃2

x(k + 1) = Ax(k) + Blūl(k) + Blũa,l(k), (4)

where ũa,l(k) is the malicious signal, l ∈
{1, . . . , card(B̃1)}.

The interest of this paper is to propose a secure control
algorithm to preserve the stability under attacks. The algorithm
to be proposed includes an attack detection, isolation scheme,
proactive defense controller based on the moving target de-
fense diagram and a zero-sum game learning based on the
reactive defense control scheme. Using such an algorithm,
the attack can be utmostly mitigated and the advantages the
adversary has over the defender can be decreased.

3.. MTD CONTROLLER DESIGN AND STABILITY ANALYSIS

This section mainly focuses on how to design a controller
for each altered dynamics, design the MTD to alter system
dynamics, and analyze the stability of the overall system. As
to the controller design, a linear quadratic optimal control
strategy is derived for each altered dynamics. For the MTD
scheme, it is designed as a switching sequence, the elements
of which mean each dynamics to be altered. Then, the stability
is analyzed by employing the average dwell time approach.

A. Controller and MTD design
When the system dynamics are altered based on the control-

lable combination set B̃1, design the following performance
index for system (3)

Vl (x(k)) = min
ūl(i)

[ ∞∑
i=k

x> (i)Qlx (i) + ū>l (i)Rlūl (i)

]
,(5)

where Ql ≥ 0, Rl > 0 and l ∈ {1, . . . , card(B̃1)}.
Based on the results [28], the following lemma is given to

design the optimal control signal ūl (k).
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Lemma 1: [28] For the system (3), the optimal control
gain ūl (k) can be designed as ūl (k) = Klx(k), where
Kl = −

(
Rl + B>l PlBl

)−1 B>l PlA and Pl is the solution of
the following Riccati equation

Pl = A>PlA+Ql −A>PlBl
(
Rl + B>l PlBl

)−1 B>l PlA.
Remark 2: Although the dynamic programming is used to

derive linear quadratic optimal controller for each altered
dynamics, the controller given in Lemma 1 is only optimal
for the current activated dynamics.

In contrast to results reviewed in previous sections, the
communication pattern in this paper is dynamical. When the
controller is altered, the communication pattern is changed.
Thus, the core of MTD is to devise a stochastic switching
rule to unpredictably switch the controller. In this way, attacks
can be mitigated. Next, a lemma is given to determine the
probabilities of activating the controller Kl.

Lemma 2: [27] For the candidate controller
Kl, the probability pl to activate Kl satisfies

pl = exp
−V
∗
l
δ −1+log

(
exp

∑card(B̃1)

l=1 exp
V ∗l
δ

)
, where

V ∗l = x>(0)Plx(0) with Pl solved from the Riccati
equation in Lemma 1 and δ > 0 is a weighting coefficient.

B. Stability analysis
Based on the probability given in Lemma 2, each candidate

controller can be activated. The closed-loop system can be
regarded as a switched system. To facilitate the stability
analysis, each activated system dynamics will run satisfying
the least period. Next, the average dwell time definition is
introduced to derive the conditions to preserve stability.

Definition 1: [29] For switching signal αk and any ki >
kj > k0, define Nαk (kj , ki) as the switching numbers of αk
over the interval [kj , ki]. If for any given N0 ≥ 0 and τ > 0,
we have Nαk (kj , ki) ≤ N0 +(ki − kj) /τ , then τ and N0 are
called average dwell time and the chatter bound, respectively.

Based on Definition 1, the following theorem is proposed
to show that the stability of the system can be preserved under
the specific condition.

Theorem 1: The overall system can be stabilized provided
that the average dwell time τ satisfies the inequality τ >

ceil
(
− lnµ

ln(1−β)

)
, where

β = min
l∈{1,2,...,card(B̃1)}

λmin(Q̃l)

λmax (Pl)
,

µ = max
l,q∈{1,2,...,card(B̃1)}

λmax (Pl)

λmin (Pq)
.

Proof: The proof is given in Section 8.-A of Appendix.

4.. ATTACK DETECTION AND ISOLATION

To utmost mitigate the attack, both detection and isolation
of attacks are designed to exclude the controllable system
dynamics (A,Bl) under attacks from the MTD sequence.
When attacks are detected, the isolation scheme is activated
to accurately locate the attacked actuators. Next, we start with
designing an attack detection scheme, following which an
attack isolation algorithm is provided.

A. Attack detection observer design

First, an attack detection observer is designed to determine
whether the actuators are attacked or not. The following attack
detection observer is designed

x̂(k + 1) = Ax̂(k) + Blūl(k) + L̃l (y(k)− ŷ(k)) ,

ŷ(k) = Cx̂(k), (6)

where x̂(k) is the estimate of x(k) and ŷ(k) is the estimated
measurement. L̃l denotes the observer gain to be designed. It
is designed to ensure limk→∞ (x(k)− x̂(k)) = 0 under the
attack-free case.

Define ex(k) = x(k)−x̂(k) as the estimate error. According
to the system (3) and the observer (6), the following error
system can be obtained

ex(k + 1) =
(
A− L̃lC

)
ex(k) + Blũa,l(k), (7)

The observer gain L̃l can be given such that all the eigen-
values of A − L̃lC locate in the unit circle, which in turn
shows that limk→∞ (x(k)− x̂(k)) = 0 holds without attacks.

To determine whether attacks happen or not, define ey(k) =
Cex(k) as the residual signal. Then the residual evaluation
function Rresi is designed as Rresi =

∑t2
k=t1
‖e>y (k)ey(k)‖2.

Based on the designed residual evaluation function Rresi,
the following attack detection decision can be made{

Rresi ≤ V, no attacks,
Rresi > V, alarm,

where V is a threshold to be designed.
According to the error system in (7), we know that the

system state x(k) can be effectively estimated under attack-
free case. Once attacks are implemented, the estimates x̂(k)
will deviate the real state x(k). Accordingly, the threshold V
is defined as V = sup

ũa,l=0
ex(k).

B. Attack isolation scheme

Once the detection scheme reports an alarm, it is vital
to determine which actuators are attacked and switch to the
healthy actuators. In this subsection, an attack isolation scheme
is proposed to locate the attacked actuators, which provides
access to taking the attacked actuators offline.

For the controllable pair (A,Bl) under malicious behaviors,
the system dynamics are described as

x(k + 1) = Ax(k) + Blūl(k) + Blũa,l(k). (8)

To remove the effect resulting from the attacks, we treat
the signal ũa,l(k) as an unknown input. Then, the following
unknown input observer is designed

zl(k + 1) = Elzr(k) + FlBlūl(k) + Lly(k),

ˆ̄xl(k) = zl(k) + Gly(k), (9)

where ˆ̄xl(k) is the state estimate of the l-th unknown input
observer. The matrices El, Fl, Ll and Gl are given to make
limk→∞

(
x(k)− ˆ̄xl(k)

)
= 0 and all eigenvalues of the matri-

ces El should locate in the unit circle.
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Define ēl(k) = x(k) − ˆ̄xl(k) as the estimate error. The
matrices El, Fl, Ll and Gl should satisfy the following
equations

(I − GlC)A+ El (GlC − I)− LlC = 0,

(Fl − (I − GlC))Bl = 0, (I − GlC)Bl = 0.

The following lemma is given to guarantee that the unknown
input observer exists

Lemma 3: [30] The unknown input observer in (9) exists
provided that the condition rank(CBl) = rank(Bl) = card(Bl)
holds and the pair (A− GlCA,C) is detectable.

For the estimate error dynamics ēl(k), it is derived as

ēl(k + 1) = (A− GlCA− LlC + ElGlC)x(k)

+ (Bl −FlBl − GlCBl) ūl(k)

+ (Bl − GlCBl) ũa,l(k)− El ˆ̄xl(k)

= Elēl(k). (10)

As can be seen from (10), the estimate error ēl(k) can
exponentially converge. After obtaining the estimates ˆ̄xl(k),
we can use them to exponentially reconstruct the attack
signal. Then which actuators are attacked can be identified
by observing the reconstructed attack signals.

Combining the dynamics in (8) and the definition of ēl(k)
yields

ˆ̄xl(k + 1) = A
(
ˆ̄xl(k) + ēl(k)

)
+ Blūl(k)

+Blũa,l(k)− ēl(k + 1),

which implies

ũa,l(k) = pinv(Bl)
(
ˆ̄xl(k + 1)−Aˆ̄xl(k)

)
+pinv(Bl) (ēl(k + 1)−Aēl(k))− ūl(k).

Therefore, we can reconstruct the attack signal as

ˆ̃ua,l(k) = pinv(Bl)
(
ˆ̄xl(k + 1)−Aˆ̄xl(k)

)
− ūl(k),

where ˆ̃ua,l(k) means the estimate of ũa,l(k).
For a sufficient large time window, i.e., k is sufficiently

large, we can obtain ũa,l(k − 1) → ˆ̃ua,l(k). Then we can
identify which actuators are attacked using the sparsity of the
vector ˆ̃ua,l(k). Then, l̂, the index set of the attacked actuators
can be derived as

l̂ = {l̂ = j|ˆ̃ua,l,j(k) 6= 0}, (11)

where ˆ̃ua,l,j(k) means the j-th element of ˆ̃ua,l(k).
Although we can use (11) to isolate the attacked actuators,

the estimate of the attack at time k needs the data at time
k + 1, and Bl should be column full rank. To remove such
restrictions, the following attack isolation scheme with a
family of parallel unknown input observers is proposed.

To clearly describe how to design the attack isolation
mechanism, define the set l̄1,η ⊂ {1, 2, . . . , card(Bl)} and l̄2,η
as the complementary set of l̄1,η in {1, 2, . . . , card(Bl)}. η
takes value from 1 to 2card(Bl) − 11.

1Since the isolation scheme is activated after the attack detection mecha-
nism reports an alarm, l̄1,η = ∅ is excluded.

First, rewrite the dynamics in (8) as follows

x(k + 1) = Ax(k) + Blūl(k)

+Bl̄1,η ũa,l̄1,η (k) + Bl̄2,η ũa,l̄2,η (k), (12)

where Bl̄1,η consists of column vectors in the matrices Bl
indexed by the set l̄1,η , Bl̄2,η mean the matrices which remove
column vectors from the matrices Bl indexed by the set l̄1,η ,
ũa,l̄1,η (k) consists of rows in ũa,l indexed by the set l̄1,η and
ũa,l̄2,η (k) mean the actuator signals which remove the rows
from ũa,l indexed by the set l̄1,η .

Regard the item ũa,l̄1,η (k) as the unknown input and define
ēl,l̄1,η (k) = x(k) − ˆ̄xl,l̄1,η (k) as the estimate error. If the
following conditions are satisfied(

I − Gl,l̄1,ηC
)
A+ El,l̄1,η

(
Gl,l̄1,ηC − I

)
− Ll,l̄1,ηC = 0,(

Fl,l̄1,η −
(
I − Gl,l̄1,ηC

))
Bl = 0,

(
I − Gl,l̄1,ηC

)
Bl,l̄1,η = 0,

we can construct a series of unknown input observers for (12)
as

zl,l̄1,η (k + 1) = El,l̄1,ηzl,l̄1,η (k) + Fl,l̄1,ηBlūl(k)

+Ll,l̄1,ηy(k),

ˆ̄xl,l̄1,η (k) = zl,l̄1,η (k) + Gl,l̄1,ηy(k), (13)

where ˆ̄xl,l̄1,η (k) is the state estimate. The matrices
El,l̄1,η , Fl,l̄1,η , Ll,l̄1,η and Gl,l̄1,η are designed to ensure

limk→∞

(
x(k)− ˆ̄xl,l̄1,η (k)

)
= 0 when all the attacked ac-

tuators can be included in the matrices Bl,l̄1,η .
For such a bank of unknown input observers, the error

dynamics can be described as

ēl,l̄1,η (k + 1) = El,l̄1,η ēl,l̄1,η (k) +
(
Bl,l̄2,η − Gl,l̄2,ηCBl,l̄2,η

)
×ũa,l,l̄2,η (k). (14)

A series of designed unknown input observers in (13) can
guarantee the errors ēl,l̄1,η (k) exponentially converge if all
indices of attacked actuators are included in the set l̄1,η . Using
such a conclusion, the attack isolation scheme can be designed.

For the activated model l, there may exist several models
Bl,l̄1,η which include all attacked actuators. To accurately
locate the attacked actuators, define the set

l̃m = {l̃m = l̄1,η|l̄1,η : ēl,l̄1,η (k) ≤ ēl,min(k),

l̄1,η ⊂ {1, 2, . . . , card(Bl)}},

where ēl,min(k) is regarded as a threshold, which is calculated
without attacks.

Then, l̂, the index set of attacked actuators can be obtained
as l̂ = l̃1 ∩ l̃2 ∩ . . . ∩ l̃m. To show the effectiveness of
the designed parallel unknown input observer based isolation
scheme, a numerical example is provided.

Example 1: For the altered dynamics, the system parame-
ters are assumed to be

A =

 0.9 0.4 −0.8
0.2 −1 −0.5
−0.9 −0.9 −0.2

 , B =

 0.1 0.2 0.8
1.5 1 1.3
1 0.5 0.7

 ,
C = diag {1, 1, 1} .
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It is assumed that the adversary implements attacks from
k = 30 and the target nodes are the actuators 1 and 3.
Accordingly, based on the theoretical analysis, only when
l̄1,4 = {1, 3} and l̄1,7 = {1, 2, 3}, can the estimate error
ēl,l̄1,η (k) be zero. Fig. 2 depicts the isolation results, with
which we can see that the estimate errors can converge to
be zero when l̄1,4 = {1, 3} and l̄1,7 = {1, 2, 3}. That is, the
attacked actuator is l̂ = l̄1,η

⋂
l̄1,η = {1, 3}.

0 30 100
0

0.5

1

¯l1,3 = {3}

0 30 100
0

0.05

0.1

¯l1,4 = {1, 2}

0 30 100
0

0.05
¯l1,5 = {1, 3}

0 30 100
0

0.2

0.4
¯l1,6 = {2, 3}

0 30 100
0

0.05

¯l1,1 = {1}

0 30 100
0

0.2

0.4

¯l1,2 = {2}

0 30 60 90 100
0

0.05
¯l1,7 = {1, 2, 3}

time (k)

Fig. 2. Attack isolation using the parallel unknown input observers.

5.. SECURE CONTROL ALGORITHM DESIGN

Combining the previous schemes, the proactive reactive
defense control algorithm is designed in this section. It is noted
that the MTD scheme is feasible with the premise that the
remaining sub-models are controllable. Therefore, it is full of
importance to find a solution when the premise is not satisfied.
To this end, a reactive defense controller is proposed to provide
access to mitigating the attack and guaranteeing the stability
of the system before giving the secure control algorithm.

A. Reinforcement learning based reactive control
scheme

This subsection mainly utilizes the zero-sum game approach
and reinforcement learning to design the reactive defense
control scheme. Specifically, in such a game, both the ad-
versary and the defender are regarded as two players. The
defender’s objective is to stabilize the overall system yet the
adversary intends to deteriorate the system performance. After
deriving the relative closed-form solution of the controller,
reinforcement learning is employed to obtain the control gain.
In the following, the detailed derivations are provided.

Using the designed attack isolation scheme, the attacked
actuators can be located. Thus, the system under actuator
attacks can be described as

x(k + 1) = Ax(k) + Blūl(k) + Bl,l̂ũa,l,l̂, (15)

where Bl,l̂ is the attack distribution matrix and ũa,l,l̂ represents
the attack signal.

According to the objectives of both sides, the control
problem can be described as a zero-sum game and the value
function is given as

Vl (x(k)) = min
ũl(i)

max
ũa,l(i)

[ ∞∑
i=k

ϕ(i)

]
, (16)

where ϕ(i) = x> (i)Qlx (i) + ũ>l (i)R1,lũl (i) −
γ2ũ>

a,l,l̂
(i)R2,lũa,l,l̂ (i). γ > 0 can be regarded as an

attack rejection index.
Then, the Bellman equation can be written as

Vl (x(k)) = ϕ(k) + Vl (x(k + 1)) . (17)

For such a zero-sum game problem, the objective is to find
an optimal control scheme and an optimal attack strategy, with
which the game can achieve a saddle-point equilibrium and the
optimal value function is V optl (x(k)) = x>(0)Plx(0). Then,
the following lemma is provided to show how to design the
optimal schemes for the defender and attacker.

Lemma 4: [31] The system (15) can be stabilized with the
following schemes and both players can achieve the saddle-
point equilibrium

ūl(k) = Klx (k) , (18)
ũa,l,l̂(k) = Ll,l̂x (k) , (19)

where

Kl =

(
R1,l + B>l PlBl − B>l PlBl,l̂

(
B>
l,l̂
PlBl,l̂ − γ

2R2,l

)−1

× B>
l,l̂
PlBl

)−1
(
B>l PlBl,l̂

(
B>
l,l̂
PlBl,l̂ − γ

2R2,l

)−1

× B>
l,l̂
PlA− B>l PlA

)
,

Ll,l̂ =
(
B>
l,l̂
PlBl,l̂ − γ

2R2,l − B>l,l̂PlBl
(
R1,l + B>l PlBl

)−1

× B>l PlBl,l̂
)−1 (

B>
l,l̂
PlBl

(
R1,l + B>l PlBl

)−1

× B>l PlA− B>l,l̂PlA
)
,

and Pl is the solution of the following Riccati equation

Pl = A>PlA+Ql −
[
A>PlBl A>PlBl

]
×
[
R1,l + B>l PlBl B>l PlBl
B>l PlBl B>l PlBl − γ2R2,l

]−1

×
[
B>l PlA
B>l PlA

]
. (20)

To ensure the existence of the saddle point, the inequalities
γ2R2,l − B>l PlBl > 0 and R1,l + B>l PlBl > 0 should hold.

According to the above discussion, the reinforcement learn-
ing based control scheme is designed in the following content.
First, rewrite the system in (15) as

x(k + 1) = Ãix(k) + Bl
(
ūl(k)−Ki

lx(k)
)

+Bl,l̂
(
ũa,l,l̂(k)− Li

l,l̂
x(k)

)
, (21)

where Ãi = A + BlKi
l + Bl,l̂L

i
l,l̂

and i means each learning
step.

In (21), ūil(k) = Ki
lx(k) and ũi

a,l,l̂
(k) = Li

l,l̂
x(k) are

target policies to be learned and updated. ūl(k) and ũa,l,l̂(k)
are behavior policies, which are applied to the system (21)
to generate data to learn and update the policies ūil(k) and
ũi
a,l,l̂

(k). Then, based on the learned policies ūil(k) and
ũi
a,l,l̂

(k), the Bellman equation in (17) can be described as

V i+1
l (x(k))− V i+1

l (x(k + 1)) = ϕi(k), (22)
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where ϕi(k) = x> (k)Qlx (k) + ũi
>

l (k)R1,lũ
i
l (k) −

γ2ũi
>

a,l,l̂
(k)R2,lũa,l,l̂ (k).

Using Taylor’s theorem to expand Vl (x(k)) at the point
x(k + 1) yields

Vl (x(k)) = Vl (x(k + 1)) + 2x>(k + 1)Pl (x(k)− x(k + 1))

+ (x(k)− x(k + 1))
>
Pl (x(k)− x(k + 1)) ,

which implies

V i+1
l (x(k))− V i+1

l (x(k + 1))

= 2x>(k + 1)P i+1
l (x(k)− x(k + 1))

+ (x(k)− x(k + 1))
>
P i+1
l (x(k)− x(k + 1))

= −x>(k)Ã>i P
i+1
l Ãix(k) + x>(k)P i+1

l x(k)

−
(
ūl(k)−Ki

lx(k)
)> B>l P i+1

l x(k + 1)

−
(
ūl(k)−Ki

lx(k)
)> B>l P i+1

l Ãix(k)

−
(
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
B>
l,l̂
P i+1
l x(k + 1)

−
(
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
B>
l,l̂
P i+1
l Ãix(k). (23)

Based on the equation in (22), we can obtain

Q− P i+1
l +Ki>

l R1,lK
i
l − γ2Li

>

l,l̂
R2,lL

i
l,l̂

+ Ã>i P
i+1
l Ãi = 0,

combining which and (23) yields

V i+1
l (x(k))− V i+1

l (x(k + 1))

= x>(k)Qx(k) + x>(k)Ki>

l R1,lK
i
lx(k)

−γ2x>(k)Li
>

l R2,lL
i
lx(k)

−
(
ūl(k)−Ki

lx(k)
)> B>l P i+1

l x(k + 1)

−
(
ūl(k)−Ki

lx(k)
)> B>l P i+1

l Ãix(k)

−
(
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
B>
l,l̂
P i+1
l x(k + 1)

−
(
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
B>
l,l̂
P i+1
l Ãix(k). (24)

Performing some mathematical operations to (24) yields

x>(k)P i+1
l x(k)− x>(k + 1)P i+1

l x(k + 1)

+2
(
ūl(k)−Ki

lx(k)
)> B>l P i+1

l Ax(k)

+2
(
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
B>
l,l̂
P i+1
l Ax(k)

+
(
ūl(k)−Ki

lx(k)
)> B>l P i+1

l Bl

×
(
ūl(k) +Ki

lx(k)
)

+
(
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
×B>

l,l̂
P i+1
l Bl,l̂

(
ũa,l,l̂(k) + Li

l,l̂
x(k)

)
+
(
ūl(k)−Ki

lx(k)
)> B>l P i+1

l Bl,l̂
×
(
ũa,l,l̂(k) + Li

l,l̂
x(k)

)
+
(
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
B>
l,l̂
P i+1
l Bl

×
(
ūl(k) +Ki

lx(k)
)

= x>(k)Qx(k) + x>(k)Ki>

l R1,lK
i
lx(k)

−γ2x>(k)Li
>

l,l̂
R2,lL

i
l,l̂
x(k). (25)

Using the Kronecker product, (25) is rewritten as(
x>(k)⊗ x>(k)− x>(k + 1)⊗ x>(k + 1)

)
vec(P i+1

l )

+2
((
ūl(k)−Ki

lx(k)
)> ⊗ x>(k)

)
vec(B>l P i+1

l A)

+2

((
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
⊗ x>(k)

)
vec(B>

l,l̂
P i+1
l A)

+
((
ūl(k)−Ki

lx(k)
)> ⊗ (ūl(k) +Ki

lx(k)
)>)

×vec(B>l P i+1
l Bl)

+

((
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
⊗
(
ũa,l,l̂(k) + Li

l,l̂
x(k)

)>)
×vec(B>

l,l̂
P i+1
l Bl,l̂)

+

((
ūl(k)−Ki

lx(k)
)> ⊗ (ũa,l,l̂(k) + Li

l,l̂
x(k)

)>)
×vec(B>l P i+1

l Bl,l̂)

+

((
ũa,l,l̂(k)− Li

l,l̂
x(k)

)>
⊗
(
ūl(k) +Ki

lx(k)
)>)

×vec(B>
l,l̂
P i+1
l Bl)

= x>(k)Qx(k) + x>(k)Ki>

l R1,lK
i
lx(k)

−γ2x>(k)Li
>

l,l̂
R2,lL

i
l,l̂
x(k). (26)

According to (26), we can simultaneously obtain the pair
(P i+1
l ,Ki+1

l , Li+1

l,l̂
) by using the least square approach. Obvi-

ously, there exist ζ (ζ = n2
x+card(l)2+card(l̂)2+nxcard(l)+

nxcard(l̂) + 2card(l̂)card(l)) unknown elements to be solved
in (26). Accordingly, we at least need to collect ζ data to solve
(26). To utilize the least square approach, define the following
variables

Wi
l,o =

[
Wi

1,l,o Wi
2,l,o Wi

3,l,o Wi
4,l,o Wi

5,l,o

Wi
6,l,o Wi

7,l,o

]
,

Wi
1,l,o = x>(k + o)⊗ x>(k + o)

−x>(k + o+ 1)⊗ x>(k + o+ 1),

Wi
2,l,o = 2

(
ūl(k + o)−Ki

lx(k + o)
)> ⊗ x>(k + o),

Wi
3,l,o = 2

(
ũa,l,l̂(k + o)− Li

l,l̂
x(k + o)

)>
⊗ x>(k + o),

Wi
4,l,o =

(
ūl(k + o)−Ki

lx(k + o)
)>

⊗
(
ūl(k + o) +Ki

lx(k + o)
)>
,

Wi
5,l,o =

(
ũa,l,l̂(k + o)− Li

l,l̂
x(k + o)

)>
⊗
(
ũa,l,l̂(k + o) + Li

l,l̂
x(k + o)

)>
,

Wi
6,l,o =

(
ūl(k + o)−Ki

lx(k + o)
)>

⊗
(
ũa,l,l̂(k + o) + Li

l,l̂
x(k + o)

)>
,

Wi
7,l,o =

(
ũa,l,l̂(k + o)− Li

l,l̂
x(k + o)

)>
⊗
(
ūl(k + o) +Ki

lx(k + o)
)>
,

Ψi+1
l =

[
Ψi+1T

1,l Ψi+1T

2,l Ψi+1T

3,l Ψi+1T

4,l Ψi+1T

5,l

Ψi+1T

6,l Ψi+1T

7,l

]>
,
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Ψi+1
1,l = vec(P i+1

l ), Ψi+1
2,l = vec(B>l P i+1

l A),

Ψi+1
3,l = vec(B>

l,l̂
P i+1
l A), Ψi+1

4,l = vec(B>l P i+1
l Bl),

Ψi+1
5,l = vec(B>

l,l̂
P i+1
l Bl,l̂), Ψi+1

6,l = vec(B>l P i+1
l Bl,l̂),

Ψi+1
7,l = vec(B>

l,l̂
P i+1
l Bl),

Φil,o = x>(k + o)Qx(k + o) + x>(k + o)Ki>

l R1,lK
i
l

×x(k + o)− γ2x>(k + o)Li
>

l,l̂
R2,lL

i
l,l̂
x(k + o),

where o = 0, 1, . . . , ζ.
After collecting ζ data, (26) can be solved as

Ψi+1
l =

(
W̃iT

l,oW̃i
l,o

)−1

W̃i>

l,o Φ̃il,o, (27)

where W̃i
l,o =

[
Wi>

l,0 Wi>

l,1 . . . Wi>

l,ζ−1

]>
, Φ̃il,o =[

Φil,0 Φil,1 . . . Φil,ζ−1

]>
.

Then, the control scheme and the attack strategy using the
zero-sum game approach can be designed as

Ki+1
l =

(
R1,l + Ψi+1

4,l −Ψi+1
6,l

(
Ψi+1

5,l − γ
2R2,l

)−1

Ψi+1
7,l

)−1

×
(

Ψi+1
6,l

(
Ψi+1

5,l − γ
2R2,l

)−1

Ψi+1
3,l −Ψi+1

2,l

)
, (28)

Li+1

l,l̂
=

(
Ψi+1

5,l − γ
2R2,l −Ψi+1

7,l

(
R1,l + Ψi+1

4,l

)−1

Ψi+1
6,l

)−1

×
(

Ψi+1
7,l

(
R1,l + Ψi+1

4,l

)−1

Ψi+1
2,l −Ψi+1

3,l

)
. (29)

According to the least square approach in (27), the control
scheme (28) and the attack policy (29) can be learned and
updated. The detailed process is provided in Algorithm 1.

Algorithm 1 Learning based control scheme
1: Set the initial learning step i = 0 and the learning error
ε, which is a small positive scalar

2: Give a control gain Kl and ūl(k) = Kl(k) + e(k) with
the probing noise e(k) 6= 0

3: Collect ζ data and solve (27) to obtain Ψi+1
l

4: Update Ki+1
l and Li+1

l,l̂
using (28) and (29)

5: if ‖Ki+1
l −Ki

l ‖ < ε & ‖Li+1

l,l̂
− Li

l,l̂
‖ < ε then

6: Output Ki+1
l and Li+1

l,l̂
7: else
8: i = i+ 1
9: Return to Step 3

10: end if

For the convergence of Algorithm 1, it is concluded in
Theorem 2, the proof of which is omitted for want of space,
see [32].

Theorem 2: The gains Ki+1
l in (28) and Li+1

l,l̂
in (29) can

converge to Kl in (18) and Ll,l̂ in (19), respectively. Moreover,
the system in (15) can be stabilized.

B. Proactive and reactive defense control algorithm
design

Combining the above MTD proactive control scheme and
the zero-sum game based reactive controller, the proactive and
reactive defense control algorithm is proposed in Algorithm 2.

Algorithm 2 Proactive and reactive defense control algorithm
1: Set k = 0 as the initial time and give the initial state value
x(k)

2: Find the combination set B̃1, that is, all possible control-
lable pairs (A,Bl)

3: for l = 1 : card(B̃1) do
4: For each controllable pair (A,Bl), solve the solution
Pl of the Riccati equation in Lemma 1

5: Compute the controller gains Kl in Lemma 1
6: Compute the value function V ∗l = x>(0)Plx(0)
7: Set the weighting coefficient δ and solve the probabil-

ity pl using Lemma 2
8: end for
9: Active the pair (A,Bl) in accordance with l =

arg min
l=1,2...,card(B̃1)

x>(0)Plx(0)

10: σ = 0
11: while k + σ < k + τ do
12: Run the system in (3)
13: Run the attack detector in (6)
14: σ = σ + 1
15: end while
16: if Rresi ≤ V then
17: Return to Step 9
18: else
19: Active the designed attack isolator and find the index

set of attacked actuators l̂
20: Define ˆ̃B1 as a subset of B̃1 and all pairs (A,Bl) in

ˆ̃B1 relate to l̂
21: if B̃1 ∩ ˆ̃B1 6= B̃1 then
22: Alter the system dynamics based on l =

arg min
l=1,2...,card(B̃1)−card( ˆ̃B1)

x>(0)Plx(0) with Pl being

solved using B̃1 ∩ ˆ̃B1

23: Return to Step 10
24: else
25: Active the reactive defense control scheme using

Algorithm 1
26: Run the system (4) at least τ time constants, and

then return to Step 9
27: end if
28: end if

Remark 3: From Algorithm 2, we can find that more
available dynamics in B̃1 (i.e., more actuators are equipped)
can result in a higher performance of the MTD scheme.
Accordingly, some redundant actuators can be equipped with
the physical system. Another effective approach to improving
the performance of the MTD scheme is to timely recover the
attacked channels after they are isolated.

Next, a theorem is provided to show that Algorithm 2 can
stabilize the physical system (1) under attacks.
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Theorem 3: If the moving target scheme is designed in
Lemma 2, the active defense controller is designed using
Lemma 1 and the reactive defense controller is given in
Algorithm 1, Algorithm 2 can guarantee that the physical
process (1) under attacks is stable.

Proof. The proof can be readily completed by using the
results in Theorems 1 and 2, thus omitted here. �

6.. SIMULATION RESULTS

This section provides simulation results to show the ef-
fectiveness and advantages of the proposed secure control
scheme. A three-tank system used in [33] is regarded as the
target physical system in this example. As described in [33],
from left to right, three tanks in the system are respectively
labeled as tank 1, tank 3 and tank 2 and the corresponding
levels of tanks 1, 2, 3 are defined as h1, h2 and h3. When the
system is stabilized, h1 > h3 > h2 holds. In this example,
the objective is to maintain the levels of the three tanks under
malicious behaviors. The modeling process and meaning of
the system parameters can refer to [33]. With the sampling
period being 1 s, the system matrices in (1) are given as

A =

 0.9889 0.0001 0.0110
0.0001 0.9774 0.0119
0.0110 0.0119 0.9770

 ,
B =

 64.5993 0.0015
0.0015 64.2236
0.3604 0.3910

 , C = diag{1, 1, 1}.

By direct calculation, the controllable set B̃1 is obtained as
B̃1 = {B1,B2,B3}, where

B1 =

 64.5993
0.0015
0.3604

 , B2 =

 0.0015
64.2236
0.3910

 , B3 = B.

Based on Lemma 1, the corresponding controller gains
are solved as K1 =

[
−0.0153 −0.0023 −0.0047

]
,

K2 =
[
−0.0054 −0.0153 −0.0061

]
, K3 =[

−0.0153 0.0000 −0.0034
0.0000 −0.0152 −0.0037

]
.

Setting x(0) = [0.3182 0.1517 0.2314]> as the initial con-
dition, the switching probabilities to activate each dynamics
can be calculated as p1 = 0.3843, p2 = 0.1470, p3 = 0.4687,
based on which we can see that the system operator preferably
chooses K3 as the controller. The reason is that K3 is the
optimal control scheme for the system. Fig. 3 depicts the
switching signal under the probabilities pl, which is also
consistent with the previous theoretical analysis. First of all,
the simulation is conducted without attacks. Fig. 4 shows the
levels of tanks 1, 2 and 3 without attacks using the optimal
control gain K3. The levels of tanks 1, 2 and 3 without attacks
using the MTD scheme are given in Fig. 5. Fig. 6 provides
the comparisons of control cost between the optimal control
gain K3 and the MTD control scheme, which also indicates
that it is unavoidable to sacrifice the cost when the MTD
control scheme is implemented. It is noted that we can tune the
weighting coefficient δ in Lemma 2 to change the switching
probabilities, and then change the control cost. Next, we will

provide two cases to show the effectiveness and advantages of
the proposed secure control scheme.
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Fig. 3. The moving tar-
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Fig. 4. The levels of tank 1, tank 2
and tank 3 without attacks using the
optimal control gain K3.
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Fig. 5. The levels of
tank 1, tank 2 and tank 3
without attacks using the
MTD control scheme.
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Fig. 6. Control costs respectively
under the optimal control gain K3

and MTD control scheme.

Case 1. Both actuators are attacked at once
The main purpose of this case is to show the importance of

designing the learning based reactive secure control scheme.
After having access to intruding the cyber layer, the adversary
hijacks both actuators. In this case, the MTD control scheme
fails to work because no available dynamics can be altered. To
show the simulation results, we assume that the adversary in-
trudes the cyber layer when the 9-th switching happens and the
attack signal is defined as 0.01[| cos(x1(k))| | cos(x2(k))|]>.
Along with the running of the designed attack detector, the
detector can report an alarm timely. Fig. 7 shows that the
residual signal is greater than the predefined threshold at
the 55-th min. Then, the isolation scheme is activated. The
estimates of attack signals are provided in Fig. 8, with which
we can determine that both actuators are successfully intruded.
There exist no available dynamics without attacks that can
be altered. The MTD control scheme fails to work. Fig. 9
gives the responses of the system states, which is still in the
framework of MTD control scheme. As can be seen from Fig.
9, the performance of the three-tank system is deteriorated
under malicious behaviors. To cope with such a scenario, the
zero-sum game based reactive control scheme is proposed
in this paper. According to Algorithm 2, Algorithm 1 is
invoked. Fig. 10 shows the error evolutions of ‖Ki

l − K∗l ‖
and ‖Lil−L∗l ‖. Using the reactive secure control scheme, Fig.
11 provides the levels of tanks 1, 2 and 3. It can be found
that the reactive secure control scheme can recover the system
performance.

With the simulation results in Case 1, we can conclude
that Algorithm 2 is still effective when all actuator signals are
compromised. Since the results in [27] impose an assumption
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Fig. 7. The attack alarm.
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Fig. 8. The estimates of attacks.
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Fig. 9. Levels of tanks
1, 2, 3 when all actuator
signals are compromised
using the scheme in [27].
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on the number of attacked actuators, its scheme cannot be
applied here, demonstrating the advantages of the Algorithm
2. Next, a general case is considered.

Case 2. Only one actuator is compromised
This case mainly focuses on showing the necessity of

designing the attack isolation scheme. It is assumed that only
one actuator in the three-tank system is intruded. According
to the moving target switching signal in Fig. 3, the first
actuator is chosen as an example to run Algorithm 2. First, the
simulation without using the isolation scheme is conducted.
Figs. 12-14 provide the simulation results, where Fig. 12
shows that the attack detection scheme works well and an
alarm can be reported timely. Without the isolation scheme,
the system operator cannot exactly locate the attacked actuator.
Even the current attacked dynamics are excluded from the
switching sequence, the remaining dynamics can still include
compromised actuators. Therefore, once the available dynam-
ics which include the compromised actuators are altered, the
MTD scheme cannot work well. Fig. 13 gives the evolution of
the moving target switching signal. Obviously, after receiving
the attack alarm, target 1 is excluded from the sequence. But
target 1 is a part of target 3. Accordingly, as can be seen
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Fig. 11. Levels of tanks
1, 2, 3 when all actuator
signals are compromised
using Algorithm 2.
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Fig. 12. The attack alarm in Case
2.

from Fig. 14, the performance of the three-tank system is
not recovered. Also, when target 2 is activated, the system
performance tends to be recovered. Due to the limited dwell
time, the desired performance is not obtained.

Next, invoking the attack isolation scheme, Fig. 15 depicts
the estimates of attacks, with which we can exactly determine
that the first actuator is attacked. Using the isolation scheme,
targets 1 and 3 are excluded from the switching sequence. Only
target 2 can be available though it sacrifices more optimality.
Fig. 16 presents the levels of tanks 1, 2 and 3. It can be
found that the levels can be recovered and maintained and
that the final levels are the same as those in Figs. 4 and 5.
Additionally, since the target 2 is the only one that the system
operator can be altered, the attack detector will not report an
alarm and the estimates of attack signals are zero. Figs. 17
and 18 provide the corresponding simulation results, which
validates the previous analysis. Based on the simulation results
and sufficient discussions, we can conclude that the proposed
secure control scheme is effective.
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Fig. 13. Moving target
switching signal in Case
2.
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Fig. 14. Levels of tanks 1, 2 and 3
in Case 2.
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Fig. 15. Estimates of
attack signals in Case 2.
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Fig. 16. Levels of tanks 1, 2 and 3
using Algorithm 2.
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Fig. 17. The attack
alarm using Algorithm 2.
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Fig. 18. Estimates of attack signals
using Algorithm 2.

7.. CONCLUSION

The problem of secure defense control for CPS under
actuator false data injection attacks has been studied in this
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paper. By introducing a well-designed switching sequence, the
system dynamics have been altered by unpredictably switching
controllable pair (A,Bl). For each activated model, the linear
quadratic optimal approach has been adopted to derive the
corresponding controller, and the stability has been proven
based on the definition of the average dwell time. By designing
an attack detection observer, an attack detector has been
proposed to report an attack alarm. Using the unknown input
observer, an attack isolator has been derived to accurately
determine which actuators were corrupted by false data. With
the zero-sum game theory and reinforce learning technique,
a learning-based reactive defense control scheme has been
proposed to solve the problem existing in the scenario that no
controllable pairs (A,Bl) can be chosen for the MTD design.
Integrating all the above designs, a secure control algorithm
has been proposed for the CPS. Finally, the proposed algorithm
has been applied to the system, and the simulation results show
the effectiveness and the advantages. In the future, we will
investigate how to integrate the event-triggered scheme [34]
into the secure algorithm of this paper for multi-agent systems
[35].
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8.. APPENDIX

A. Proof for Theorem 1
Proof: For each activated model, define the Lyapunov

function as Vl(k) = x>(k)Plx(k).
Then, we can obtain

∆Vl(k) = x>(k) (A+BKl)
>
Pl (A+BKl)x(k)

= −x>(k)Q̃lx(k),

where Q̃l = Ql +K>l RlKl.
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Considering the fact that Ql ≥ 0 and Rl > 0, we can
obtain ∆Vl(k) ≤ 0. Furthermore, the inequality ∆Vl(k) ≤
−λmin(Q̃l)‖x(k)‖2 holds. Using the inequality Vl(k) ≤
λmax (Pl) ‖x(k)‖2 yields ‖x(k)‖2 ≥ 1

λmax(Pl)
Vl(k), which

further implies ∆Vl(k) ≤ −λmin(Q̃l)
λmax(Pl)

Vl(k) ≤ −βVl(k).
Then, we can obtain

Vl(k) ≤ (1− β)Vl(k − 1). (30)

For the activated l-th sub-model over the interval [ki, ki+1),
the inequality Vl(k) ≤ (1− β)

(k−ki) Vl(ki) holds.
According to Vl(k) ≤ λmax (Pl) ‖x(k)‖2 and Vq(k) ≥

λmin (Pq) ‖x(k)‖2, the following inequality holds

Vl(k) ≤ λmax (Pl)

λmin (Pq)
Vq(k) ≤ µVq(k). (31)

To facilitate describing the proof, define α(k) as the switch-
ing signal and α(k) is equivalent to subscript l. Over the
overall time window, combining the inequalities in (30) and
(31) yields

Vα(k)(k) ≤ (1− β)
(k−ki) µVα(ki−1)(ki−1)

≤ . . .

≤ (1− β)
(k−k0) µ

k−k0
τ Vα(k0)(k0)

=
(

(1− β)µ
1
τ

)(k−k0)
Vα(k0)(k0), (32)

Notice that Vα(k)(k) ≥ λ(Pα(k))‖x(k)‖2 and Vα(k0)(k0) ≤
λ̄(Pα(k0))‖x(k0)‖2. Then, (32) can be rewritten as

‖x(k)‖2 ≤
λ̄(Pα(k0))

λ(Pα(k))

(
(1− β)µ

1
τ

)(k−k0)
‖x(k0)‖2.

Accordingly, if 0 < (1 − β)µ
1
τ < 1, that is, τ >

ceil
(
− lnµ

ln(1−β)

)
holds, the overall system can be exponentially

stabilized. The proof is completed.
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