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Abstract
Globally, coastal communities face increasing risks from hazards such as flooding, shoreline erosion, and
salt intrusion due to climate change. These hazards pose threats to both people and their environment,
with extreme sea level events increasing these risks. Satellite altimetry allows for global observation of the
sea level, reaching remote regions that are not covered by unevenly distributed tide gauges, as these are
concentrated in densely populated regions of Western cultures. However, their 10- to 35-day repeat cycles
complicate the capture of extreme sea level events. Machine learning offers a promising approach to combine
direct satellite altimetry observations with ERA5 pressure and wind speed fields into a data-driven model. As
opposed to global and regional numerical models, which require substantial time and expertise to develop,
machine learning models are time efficient and require relatively low effort to develop and expand.

This study presents a shallow neural network that effectively estimates hourly non-tidal water levels in the
Dutch coastal zone, using X-TRACK retracked and reprocessed satellite altimetry observations and ERA5
hourly pressure and wind speed fields. Reprocessed satellite altimetry observations from 11 missions are used
to provide more accurate coastal observations. Tide gauge records are used as ground truth. Both tide gauge
and satellite altimetry data are corrected for harmonic tidal signals before training. A 48-hour time window
is applied, using all data from 48 hours to 1 hour prior to the estimates as input into the network. The area
of interest covers most of the North Sea, from the Strait of Dover to the northern North Sea, excluding the
Danish and Norwegian coasts. The neural network is trained and tested at three locations: Scheveningen,
Vlissingen, and the Europlatform.

Results show that the neural network can estimate hourly non-tidal water levels with mean squared errors
ranging from 0.011 to 0.018 m, mean absolute errors from 0.078 to 0.101 m and standard errors from 0.100
to 0.134 m. K-fold cross-validation with K = 4 indicates high robustness, with mean squared errors varying
by 0.004 m, mean absolute errors by 0.012 m and standard errors by 0.017 m. The model performs best
for hourly and high water levels at the Europlatform and worst for high water levels at Scheveningen. This
is partly due to the location of the Scheveningen tide gauge in a harbour with more localised disruptions
of the water level compared to the tide gauge at the Europlatform. The ERA5 longitudinal wind speed
component contributes most to the estimation of non-tidal water levels, accounting for ±18% of all weights
corresponding to the input variables. Key regions for the estimation of non-tidal water levels include the
Dutch coast and the northern North Sea.

When compared to a local numerical model, the developed neural network does not perform with the
same accuracy. However, several upsides of the model are identified, such as high computational efficiency
for single locations and easy implementation options for refinement of the model. Recommendations for
future research focus mostly on improving the model’s performance on high water levels and applicability to
different regions.
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Nomenclature

Abbreviations

Abbreviation Definition
Adam Adaptive Moment Estimation
ALES Adaptive Leading Edge Subwaveform
AT Astronomical Tide
CART Classification And Regression Trees
C3S Copernicus Climate Change Service
CDF Cumulative Density Function
CDS Climate Data Store
CMEMS Copernicus Marine Environment Monitoring Service
CNN Convolutional Neural Network
CRPS Continuous Ranked Probability Score
CTOH Centre for the Topography of Oceans and the Hydrosphere
DAC Dynamic Atmosphere Component
DAHITI Database for Hydrological Time Series over Inland Waters
DCSM-FM Dutch Continental Shelf Model - Flexible Mesh
DOY Day Of Year
ECMWF European Centre for Medium-Range Weather Forecasts
EM Electromagnetic
ERA5 Fifth generation of ECMWF atmospheric reanalysis of the global climate
ERS European Remote Sensing Satellite
ESA European Space Agency
GDR Geophysical Data Records
GESLA Global Extreme Sea Level Analysis
GFO GeoSat Follow-On
GIM GPS-derived Ionosphere Maps
GNSS Global Navigation Satellite System
GOCE Gravity field and steady-state Ocean Circulation Explorer
GPD Generalised Pareto Distribution
GPS Global Positioning System
GRACE Gravity Recovery And Climate Experiment
GTSM Global Tide and Surge Model
HF High-frequency
HY-2 Haiyang-2
IB Inverse Barometer
IGS International GNSS Service
ISG International Service for the Geoid
KNMI Royal Netherlands Meteorological Institute
LEGOS Laboratory of Space Geophysical and Oceanographic Studies
LF Low-frequency
MAD Median Absolute Deviation
MAE Mean Absolute Error
MARS Multi-Adaptive Regression Spline
ME Mean Excess
ML Machine Learning
MOG-2D Two-dimensional Gravity Waves Model
MSE Mean Squared Error
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Abbreviation Definition
MSL Mean Sea Level
MSS Mean Sea Surface
MSSH Mean Sea Surface Height from XTRACK
NASA National Aeronautics and Space Administration
NAO North Atlantic Oscillation
NAP Normal Amsterdam Level
NCEP United States National Centers for Environmental Prediction
NetCDF Network Common Data Form
NTR Non-tidal residual
OCOG Offset Centre Of Gravity retracker
POT Peak Over Threshold
PRF Pulse Repetition Frequency
PT Pole Tide
QC Quality-control
RA Radar Altimeter
ReLU Rectified Linear Unit
RWS Netherlands Ministry of Infrastructure and Water Management
S3A Sentinel-3A
SAR Synthetic Aperture Radar
SLA Sea Level Anomaly
SNR Signal-to-noise ratio
SSA Singular Spectrum Analysis
SSB Sea State Bias
SSH Sea Surface Height
ST Solid-Earth tide
SWAN Simulating WAves Nearshore
SWH Significant Wave Height
TEC Total Electron Content
TG Tide Gauge
T/P TOPEX / Poseidon
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Symbols

Symbol Definition Unit
α Learning rate -
β1 Exponential decay of the first moment of the gradient of the loss -
β2 Exponential decay of the second moment of the gradient of the loss -
γ Correction term for the 18.6-year tidal cycle -
∆h Correction term for satellite altimetry [m]
∆hdry Try tropospheric correction [m]
∆hib Inverse barometer low-frequency correction [m]
∆hiono Ionospheric correction [m]
∆hssb Sea surface bias correction [m]
∆hwet Wet tropospheric correction [m]
ϵ Numerical stability constant for the Adam optimiser -
η Scale parameter of the GPD -
λ Geographic longitude [degrees]
µ Mean of a dataset -
ξ Shape parameter of the GPD -
ρw Water vapour in the atmosphere [kg/m3]
σ Standard deviation of a dataset -
σε Standard error [m]
ϕ Geodetic latitude [degrees]
ωi Angular velocity of tidal component i [rad/hr]
Ai Amplitude of tidal component i [m]
a0 Geophysical correction parameter -
a1 Geophysical correction parameter -
a2 Geophysical correction parameter -
a3 Geophysical correction parameter -
a4 Geophysical correction parameter -
bnj , by Neural network bias term [m]
c Speed of the radar pulse [m/s]
d Haversine distance [m]
dE Longitudinal component of the distance between a TG and a satel-

lite altimetry observation
[m]

dN Lateral component of the distance between a TG and a satellite
altimetry observation

[m]

dt Time difference between the ML output and a satellite altimetry
observation

[s]

Dwf Vector that holds the normalised differences between consecutive
gates

-

f Radar frequency of the altimeter [GHz]
gi Phase of tidal component i [rad]
H Orbit height of the satellite [m]
k Constant within ionospheric correction term [mGHz2/TECU]
L(w, b) Loss function -
m Number of input features -
m1 First moment of the gradient of the loss -
m2 Second moment of the gradient of the loss -
N Number of tidal constituents -
n1, nj Neuron j = 1...32 -
P0 Sea surface pressure [hPa]
Pref Reference pressure [hPa]
Ps Total atmospheric pressure [hPa]
p ERA5 sea surface pressure [Pa]
q Constant to repeat high water levels during resampling -
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Symbol Definition Unit
R Radius of the Earth [m]
Rcorrected Corrected range [m]
Robs Observed range [m]
r The current batch -
s Batch size -
T Threshold defined by the POT method [m]
TECU Total Electron Content Unit [106 electrons/m2]
t Two-way travel time of the mid-point of the leading edge [s]
U Wind speed derived from backscatter coefficient [m/s]
U10 ERA5 longitudinal wind speed [m/s]
u Correction term for the 18.6-year tidal cycle -
V 10 ERA5 lateral wind speed [m/s]
v0 Phase of the equilibrium tide at t = 0 [rad]
wij Neural network weight term for input feature i and neuron j -
x′ Min-max normalised neural network input feature -
x̄ Sample mean of the performance metrics -
xi Neural network input feature -
ŷ Estimated water level [m]
y Ground truth water level [m]
zi Z-score normalised neural network input feature -
zs Height of the surface with respect to the geoid [m]
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1
Introduction

1.1. Research motivation
Coastal communities worldwide face severe challenges from coastal hazards, including flooding, salinisation of
groundwater, inundation of low-lying coastal regions and increased erosion, all expected to rise in the coming
decades due to climate change (Oppenheimer et al., 2019). As the coastal population grows, the risks of
economic damage and casualties increase (Nicholls & Cazenave, 2010). Even in the most optimistic of
mitigation scenarios, communities remain increasingly vulnerable to the impacts of coastal hazards (Nicholls
& Tol, 2006). Studying these coastal hazards allows us to understand and assess the susceptibility of coastal
regions to these hazards and quantify the risks in order to develop optimal strategies to increase the resilience
of coastal communities.

Many of the coastal hazards that threaten communities and ecosystems around the world are linked to
extreme sea level events (Almar et al., 2021; Dullaart et al., 2021; Hanson and Larson, 2008; Jongman et al.,
2012; Needham et al., 2015). These events cause coastal flooding, erosion, damage to infrastructure and
forced displacement of populations (Almar et al., 2021; Hallegatte et al., 2011; Nicholls, 2011; Parise et al.,
2009). This highlights the fact that good monitoring and prediction of extreme sea level events is important
for the safety of coastal populations and environmental habitats. Their importance is further emphasised
by the consequences of climate change. Sea level rise and global warming contribute significantly to the
intensification and increasing frequency of sea level extremes (Church et al., 2006; Marcos et al., 2015),
accelerating the need to have accurate prediction models for the implementation of mitigation techniques to
increase protection along vulnerable coasts. Reliable, accurate and precise estimates of extreme sea levels
are vital for understanding trends and designing adequate protection strategies.

Tide gauges (TG) accurately record water levels, making them ideal for extreme value analysis due to their
suitable measurement frequency and their long observation periods (Ji & Li, 2020). However, tide gauges
have an inhomogeneous spatial distribution over the world’s coasts (Figure 1.1), limiting their usefulness in
sparsely populated coastal regions (Adebisi et al., 2021).

It has been found that large numerical models such as the Global Tide and Surge Model (GTSM) (Muis
et al., 2020) or the Dutch Continental Shelf Model (DCSM) (Zijl, Groeneboom, et al., 2022) provide ac-
curate estimates of water levels. Nevertheless, constructing such numerical models demands a substantial
investment of time, often spanning several years, and the involvement of numerous experts who have spe-
cialised knowledge in Earth system physics and hydrodynamics. Given the global extent of satellite data
and the fast-paced development of machine learning (ML), we can explore the potential to estimate these
water levels effectively by combining these two technologies. Satellite altimetry has been used abundantly to
tackle the limitations of tide gauges as a data source for the estimation of high water levels (Andersen et al.,
2015; Izaguirre et al., 2011; Ji et al., 2019; Lobeto et al., 2018). Furthermore, ML methods have proven to
be useful in combination with satellite altimetry (Gharineiat and Deng, 2015; Passaro and Juhl, 2023) and
numerical models (Den Bieman et al., 2023; Hieronymus and Hieronymus, 2023; Xie et al., 2023). However,
ML has yet to be explored for the specific purpose of estimating coastal water levels with satellite altimetry.
Especially at locations with complicated coastal processes, such methods could improve large-scale numerical
solutions.
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Figure 1.1: Global map of tide gauge locations (Haigh et al., 2022)

1.2. Related work
1.2.1. Numerical models
GTSM provides an elaborate hindcast of water levels and a number of forecasts for different climate scenarios
(Muis et al., 2020). The numerical model is based on hydrodynamic equations, such as the shallow water
equations and the continuity equation, to simulate tides and surges. It has a flexible resolution, ranging
from 25 km in open ocean to 2.5 km along coasts, which has been improved to 1.25 km for Europe (Figure
1.2a). Based on 591 tide gauges, the root mean squared error (RMSE) for annual maxima is 0.26 m, with a
standard deviation of 0.73 m. However, since the process-based model is partly based on the shallow water
equations, the model performs poorly on coasts with a steep near-shore slope, meaning deep waters near the
coast. This induces large spatial variability in the performance of the model, as evident in the high standard
deviation.

While global models are useful for a great many applications, regional processes are often better rep-
resented in regional models. For the North Sea, the Dutch Continental Shelf Model (DCSM) has been
developed at the request of Rijkswaterstaat (RWS), the Ministry of Infrastructure and Water Management
in the Netherlands. Originally developed by Gerritsen et al. (1995), DCSM has undergone many updates to
improve the model, resulting in accurate estimates of tides and surges, as well as useful estimations for water
quality and ecology studies, oil spill modelling and boundary conditions for more detailed local models (Zijl,
Groeneboom, et al., 2022). Like GTSM, its resolution is flexible, and ranges from 4 nautical miles offshore
to 100 metres along the Dutch coast, including the Wadden Sea and the Dutch estuaries (Figure 1.2b).

The most recent versions are DCSM-FM 0.5nm, DCSM-FM 100m and 3D DCSM-FM (Zijl, Zijlker, Laan,
and Groeneboom, 2022b; Zijl, Groeneboom, et al., 2022; Zijl, Zijlker, Laan, and Groeneboom, 2022a), where
all three models have a flexible mesh with varying spatial resolution up to 0.5 nautical mile for DCSM-FM
0.5nm and 3D DCSM-FM and 100 metres for DCSM-FM 100m. The mean RMSE’s are 0.085, 0.081 and
0.078 m for DCSM-FM 0.5nm, 3D DCSM-FM and DCSM-FM 100m respectively. The performance is highest
in offshore areas with a RMSE between 0.048 and 0.055 m, and decreases only slightly in coastal areas with
a RMSE between 0.063 and 0.068 m. For the Wadden Sea and the southwestern delta, the RMSE is larger,
ranging from 0.085 to 0.115 m.

The main limitations of these kinds of numerical models are computation time and complexity. When
ensemble forecasts or additional studies are required, the computation time is large and models such as
DCSM are difficult to set up, despite their widespread use. Another important note is that most of these
models are process-based, meaning they are based on hydrodynamic equations such as the shallow water
equations. Validation is then based on tide gauge data. In some cases, tide gauge data is even used as
calibration data. These models often exclude satellite altimetry data, which is a promising alternative to the
sparse and limited spatial information tide gauges provide. Additionally, these models do not make use of
the increasing potential of ML, which offers flexibility, low computational effort once trained, and efficient
continual improvement.
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(a)

(b)

Figure 1.2: An overview of (a) the GTSM grid points (Muis et al., 2020) and (b) the DCSM grid points (Zijl, Groeneboom,
et al., 2022). In (a), red points denote ocean points and blue points denote coastal points. In (b), the colours indicate the
grid size (yellow: ±4 nautical mile (nm); light green: ±2 nm; blue: ±1 nm; red: ±0.5 nm, cyan: ±0.25 nm, dark green:

±200 m and orange ±100 m)

1.2.2. Machine learning
While numerical models such as GTSM or DCSM rely on hydrodynamic equations, ML models derive their
relationships entirely from data. These data-driven models do not contain pre-defined conditions, equations,
or assumptions to guide their predictions. Implementations of ML methods to improve sea surface height
estimates have been developed for a number of cases, from large-scale global models (Bruneau et al., 2020;
Passaro and Juhl, 2023) to regional studies (Den Bieman et al., 2023; Gharineiat and Deng, 2015; Hierony-
mus and Hieronymus, 2023; Xie et al., 2023).

Global studies
Bruneau et al. (2020) have developed a neural network method to estimate global coastal non-tidal residuals
with ERA5 assimilated data (Hersbach et al., 2018), mainly 10-metre wind speed components, mean sea
level pressure, significant wave heights, peak periods and precipitation. They have used a continuous ranked
probability score (CRPS) to assess the performance of their method, and reach a mean CRPS of ±0.1 m.

Regional studies
Passaro and Juhl (2023) have tested the potential of a Random Forest Regression method to interpolate
daily sea level anomalies (SLA) from satellite altimetry to a regional grid, which performs better than the
Copernicus Marine Environment Monitoring Service (CMEMS) Level 4 gridded SLAs derived from satellite
altimetry. They used altimetry data from Jason-1, Envisat, TOPEX/Poseidon and GeoSat Follow-On for the
North Sea in 2004 (CMEMS Level 3 SLAs) to train the Random Forest Regression model, after which it was
validated with tide gauge observations. The main results show a RMSE between 0.02 and 0.12 m.

Gharineiat and Deng (2015) have compared a multi-adaptive regression spline (MARS) model with a
multivariate regression model to predict sea levels. They have combined tide gauge observations with data
from satellite altimetry, creating a method that shows a strong correlation (±99%) between modelled and
observed sea levels. In general, the RMSE varies between ±0.03 and ±0.16 m. For sea levels during cyclones,
the RMSE varies between 0.04 and 0.21 m.

Hieronymus and Hieronymus (2023) have created a machine-learning-based bias correction to apply to
sea levels within a climate model in the Baltic Sea. They have used ERA-Interim data (Dee et al., 2011) to
train their neural network and did additional analysis on the high values within their sea level estimations.
The RMSE, which has been normalised with the standard deviation of the observed sea level, varies between
0.4 and 0.8.

Xie et al. (2023) have developed a deep learning model based on a training dataset generated by a
numerical model for the Pearl River and the East China Sea, which can estimate storm surges effectively.
The reported average RMSE is 0.16 m.

Den Bieman et al. (2023) use a ML model built with classification and regression trees (CART) to im-
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prove wave field forecasts from a wave forecasting model. SWAN model predictions are fed into the ML
model with wind and wave measurement data from 14 locations along the Dutch coast. The results show
a reduction of the RMSE by 21.7% for the energy density and 25.3% for the mean wave direction. For the
spectral wave height, the RMSE decreased from 0.21 m to 0.14 m (33.3%). For the spectral wave period,
the RMSE decreased from 0.67 to 0.41 s (38.8%).

Notably absent from these studies is the inclusion of local estimates for coastal water levels derived directly
from detailed satellite altimetry data rather than from assimilated products such as ERA5 or CMEMS.
Bruneau et al. (2020) showed promising results using wind speed and wave heights from ERA5, which stacks
all available satellite altimetry data and interpolates it onto an hourly 0.25°grid. However, it has been found
that ERA5 data tends to underestimate extreme wind speeds (Dullaart et al., 2020; Haakenstad et al., 2021).
Using satellite altimetry sea surface heights (SSH) could contribute to the current study focussing on coastal
water levels. Many of the mentioned studies incorporate satellite altimetry, which has a couple of significant
advantages over in-situ observations and complicated numerical models.

1.2.3. Satellite altimetry
The principle of satellite altimetry is to measure the travel time of emitted radar pulses to the Earth’s surface
and back. Analysing this travel time allows for accurate estimates of the SSH once corrected for atmospheric
disturbances and signal-wave interactions. Due to their large spatial coverage, satellite altimetry missions
can capture remote locations where tide gauges are sparse and consequently provide limited information on
the coastal water levels. Several studies have used this to study coastal water levels and high water level
events either regionally or globally.

Global studies
Extreme wave climates have been studied globally, focussing on monthly maxima of significant wave heights
(SWH) (Izaguirre et al., 2011). Several seasonal variability aspects have been found, the most prominent
ones being high wave heights for a 20-year return period in the boreal winter in the North Atlantic Ocean
(±17 m south of Iceland and southwest of Ireland) and the North Pacific Ocean (17.65 m south of the
Aleutians). In the austral winter, the highest wave heights are observed in the Southern Ocean between
South Africa and Australia (15.5 m).

It has been found that satellite altimetry underestimates the amplitude of the SWH (Alves and Young,
2003; Timmermans et al., 2020) and extreme water levels (Darko et al., 2023) due to undersampling of
the extreme events, although it can also overestimate extreme SSHs due to insufficient spatial interpolation
(Figure 1.3). Jiang (2020) has studied altimeter undersampling in global wind and wave estimates. A bias
of 0.491 m/s for 10-m sea surface wind speed (U10) observations and 0.126 m for SWH observations was
reported for the 90% percentile in a period with a limited number of active satellite altimetry missions (1992).
For a period with more active missions (2017), this undersampling decreased to 0.167 m/s and 0.042 m
respectively. The 99% percentile metrics report more extreme undersampling, with 1.781 m/s and 0.722 m
for U10 and SWH respectively for 1992 and 0.777 m/s and 0.339 m for 2017.

Regional studies
To battle this undersampling, scale factors were formulated by Lobeto et al. (2018) and Bij de Vaate (2023).
Along the North American East Coast, Lobeto et al. (2018) achieved a 76% reduction in the mean relative
error for return periods of up to 50 years by applying a scale factor to correct the satellite altimetry non-
tidal residuals (NTR). Before correction, the satellite altimetry NTR values ranged from 1.5 to 2.5 when
normalised against tide gauge derived return periods. After scaling, these values were reduced to between
0.8 and 1.25. Bij de Vaate (2023) applied a similar scaling on a global grid, who found that the tropics need
a larger scaling than higher latitudes, but the higher latitudes contain larger errors for these scaling factors.

Satellite altimetry in combination with tide gauges has been used to improve local storm surge forecast
models for the Danish Coast and the northeast coast of Australia (Andersen et al., 2015). They illustrated
the importance of having multiple active satellite missions for capturing storm surges in the North Sea. Ji
et al. (2019) have used satellite altimetry complementary to tide gauge data to monitor storm surges in
coastal areas of China, concluding the same for that region.

Additionally, various retracking algorithms such as the Adaptive Leading Edge Subwaveform retracker (ALES)
used in coastal processing by X-TRACK, developed by the Centre for the Topography of Oceans and the
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Hydrosphere (CTOH) (Birol et al., 2021), aim to improve SSH estimations close to the coast (5-10 km).
Schwatke et al. (2015) developed an approach to compute inland water levels from satellite altimetry data,
generating the Database for Hydrological Time Series over Inland Waters (DAHITI) using an extended outlier
rejection and a Kalman filter for the processing of satellite altimetry data. J. Guo et al. (2019) introduced a
singular spectrum analysis retracker (SSA), which combines three existing retracking methods. All of these
retracking studies have improved coastal water level observations significantly.

Figure 1.3: A time series of non-tidal residuals (NTR) from a tide gauge in Eastport, USA. The black dots represent monthly
maxima from the tide gauge and orange crosses refer to monthly maxima from satellite altimetry (Lobeto et al., 2018).

1.3. Research objectives
Exploring ML in combination with satellite altimetry will help us understand how data-driven models can
be used to study water level variations. It is required to assess the potential of ML in this context and to
obtain the main drivers that influence the quality of a ML model. This study’s main research objective is
to develop a machine learning model that produces hourly non-tidal water level estimates at the
location of a tide gauge, based on satellite altimetry observations and ERA5 pressure and wind
fields within a 48-hour time window and across an area including the North Sea and the Strait of
Dover. A window of 48 hours is defined beforehand to ensure the model captures the full extent of storms
that travel over the North Sea (Tijssen & Diermanse, 2010). The main research objective is broken up into
three sub-questions which are defined below.

1. How does the performance of the ML model compare to tide gauge observations and a
regional numerical model?
To assess the performance of the developed ML model, it will be compared with DCSM and TG data
with statistical metrics such as the mean squared error, mean absolute error and standard error. Using
examples, specific advantages and limitations will be highlighted. Matching the performance to DCSM
will be a secondary focus to illuminating the differences and similarities.

2. How well does the ML model estimate high water levels?
High water levels are defined by a peak over threshold (POT) method in this study, and will be
compared with DCSM and TG data to assess the performance of the model related to high water
levels. Several severe storms are used as case studies to define potential advantages or limitations of
the model.

3. Which factors affect the estimation of hourly non-tidal water levels estimated with the ML
method?
To gain a better understanding of the variables that contribute most to water level variations along
the Dutch coast, the weights trained within the ML model are analysed. Additionally, this study will
focus on the parts of the ML model with good or bad performance and determine which input variables
cause deviations from the overall performance.
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1.4. Thesis outline
Chapter 2 provides theoretical background information on coastal water level variations, focussing on its
main components and their corresponding physical processes. Satellite altimetry and machine learning are
also explained, with additional information given in Appendix A and B. Next, the considered study area
and datasets are presented in Chapter 3. More information on the individual satellite missions is given in
Appendix C. Chapter 4 contains the method which is used to pre-process the data, set up the ML model,
train it and compute the performance. Some pre-processing steps are further elaborated upon in Appendix
D, E and F. Next, the output of the ML model and the model performance are presented in Chapter 5.
These results consist of time-series reconstruction, performance metrics and a weight analysis. Additional
results are presented in Appendix G and H. A discussion of the results is given in Chapter 6, after which the
research questions will be answered and several recommendations will be given in Chapter 7.



2
Background

2.1. Definition of sea surface height
At every low-lying coastal location, it is important to understand the processes that cause the sea surface to
vary. These processes range from the interaction of the Earth with the Sun and the Moon to the forcings
induced by weather conditions within a certain vicinity of the location. Factors such as the orientation of the
coast and the adjacent water body also play significant roles. The interactions of these processes and factors
result in a complicated variability in sea level, with potential mutual amplification or dampening effects. This
section picks apart the largest forcings on sea level variability in the North Sea, along with the response of
the sea level to them.

The sea surface height (SSH) can be defined as the sum of the mean sea surface (MSS), the astronomical
tide (AT), the dynamic atmosphere correction (DAC) and the sea level anomaly (SLA), as defined in (2.1).
High values in the SSH are often the result of a combination of extremes of the AT, DAC and SLA, such as
spring tide and large pressure gradients. This is schematised in Figure 2.1, where AT is defined as expected
high tide and DAC is defined as storm surge, which is caused by low pressure and extreme winds. The SLA
includes the remaining factors such as wave set-up and wave run-up, though these factors are negligible
when going further offshore. Normally, the SSH is referenced to the ellipsoid, but for some applications, the
sea level referenced to the geoid is preferred. In that case, the MSS (which is referenced to the ellipsoid) is
changed into the mean sea level (MSL), which is referenced to the geoid.

SSH = MSS+ AT+ DAC+ SLA (2.1)

Figure 2.1: Forces that cause extreme coastal water levels (Mullan et al., 2005).

7
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2.1.1. Astronomical tide
The largest forcing which influences the water level in the Dutch coastal zone is the astronomical tide (AT)
(Idier et al., 2019). Tidal components can cause the water level to rise up to a few metres in this region,
which can, in combination with pressure and wind forcing, cause high water levels (Figure 2.1). The tides
are mostly regulated by the orientation of the Moon relative to the Earth and the Earth relative to the Sun.
These planetary positions and their orbits cause a variety of different tidal cycles, with the most well-known
ones the spring-neap tide and semi-diurnal tides (Eleveld et al., 2014). These tidal components represent
stationary oscillations, like the lunar and solar cycles, which are estimated by hydrodynamic, empirical or
mixed models (Stammer et al., 2014).

The propagation of these tides is dependent on friction, resonance from ocean basin shapes and depths,
and the Coriolis effect. Due to the Coriolis effect and the land masses around the North Sea, the tidal waves
propagate counter-clockwise in the Northern Hemisphere around nodes with a tidal amplitude of zero. These
nodes are also referred to as amphidromic points. The North Sea contains amphidromic points between the
Dutch and English coast, ±2 degrees west of the coast of Denmark and at the southern tip of Norway.

Figure 2.2: Propagation of the M2 tide in the North Sea with co-tidal lines radiating away from the amphidromic points and
co-range lines encircling them. The co-tidal lines show that the phase increases counter-clockwise around the amphidromic
point (typical of NH amphidromes). The co-range lines show the tidal range increasing away from the node (Bosboom &

Stive, 2021).
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2.1.2. Dynamic atmosphere correction
Forcings that correspond to atmospheric variables are represented in the dynamic atmosphere correction
(DAC). This factor includes a pressure and a wind component, which both contribute to the SSH (Harris,
1963). Firstly, low-pressure areas are meteorological forcings that can increase the coastal water level and
are described by the inverse barometer (IB) effect (Wunsch & Stammer, 1997). The difference between the
low-pressure centre of a storm and the high-pressure boundary causes a difference in water levels in the open
ocean or along the open coast. One hectopascal drop in atmospheric surface pressure causes one centimetre
rise in water level. This effect is assumed to only hold in open oceans or along open coasts where the water
is not too shallow (Harris, 1963). If this pressure disturbance is moving at a speed comparable to the wave
speed near the coast, this water level disturbance can even be greatly amplified by resonance (Gertsenshtein,
1962).

Secondly, the wind fields over the North Sea can be sufficiently strong that they alter currents in the
surface layer of the ocean (Harris, 1963). This creates a wind set-up, a phenomenon where the downwind side
of the wind field experiences a larger water level than the upwind side. This usually causes high-frequency
modulations (<20 days), while the IB effect is considered a low-frequency response (>20 days) (Carrère &
Lyard, 2003).

2.1.3. Sea level anomaly
The remaining parameters that influence the SSH are summed in the sea level anomaly (SLA). Among
these are salinity variations, temperature variations, freshwater influxes, ocean circulation conditions, local
bathymetry and topography, orientation of the coast and depth of the water body. Higher salinity increases
water density, while lower salinity results in less dense, buoyant water. Changes in salinity, due to freshwater
influxes, precipitation and evaporation, can change the salinity of the water, expanding or compressing the
water (Antonov et al., 2002; Cabanes et al., 2001; Ishii et al., 2006). Aside from changing the salinity, the
freshwater influxes can also influence the SLA, especially on regional scales (Lombard et al., 2009). Next,
thermal expansion is a source of variability within the SLA, its importance only increasing with global sea
level rise (Cabanes et al., 2001).

On a larger scale, ocean circulation patterns such as the North Atlantic Oscillation (NAO) cause sea level
variability. Positive NAO phases typically strengthen westerly winds and enhance ocean circulation, leading
to higher sea levels around a large part of the northwestern European Continental Shelf (Iglesias et al., 2017).
In addition, the region’s local bathymetry and topography play important roles (Harris, 1963). In the North
Sea, the Strait of Dover is a narrow funnel-like channel that separates the English Channel from the North
Sea. This causes the North Sea to behave like a semi-enclosed basin, allowing for water accumulation with
the right wind direction and strength (Bosboom & Stive, 2021). Furthermore, the orientation of the coastline
relative to prevailing winds and currents, as well as the depth of the adjacent water body, can amplify or
dampen wind-driven effects on the water level.

Any non-linear interactions between the tides, atmospheric forcings and other processes in the North
Sea are not accounted for in the AT or the DAC. However, these interactions induce significant sea level
variations and have been a topic of interest for many coastal and river studies over the years (L. Guo et al.,
2023; S. Hu et al., 2023; Jones and Davies, 2008; Moftakhari et al., 2024; Prandle and Wolf, 1978). These
interactions can cause temporary sea level rises that exceed the sum of their individual effects, and are left
in the SLA when decomposing the SSH from satellite altimetry observations or tide gauge measurements.

Finally, some localised effects can cause the SLA to vary, such as land-sea interactions by anthropogenic
constructions such as harbours, dams and breakwaters or effects from passing boats or reflected waves. The
wave field during a storm can create wave set-up, which is defined as the piling of water near the shore under
the direct influence of waves (Harris, 1963). This is caused by near-shore wave breaking and is highest for
open coasts with steep near-shore bathymetry slopes, since the waves will dissipate and break closer to the
shore. Wave run-up is defined as the increase in coastal water level due to the waves rolling up the slope of
the coast. However, tide gauges often do not observe wave set-up or run-up, since they are often located
further offshore or in sheltered bays or harbours.

2.2. Satellite altimetry
One way to accurately measure the SSH is from space, specifically through satellite altimetry. The objective
of satellite altimetry missions is to measure the height of the Earth’s surface, with an increased focus on
the world’s oceans and ice surfaces. Satellite altimetry observations are therefore a reliable proxy, and
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consequently useful for a reliable risk assessment of high water level events. Figure 2.3 shows an overview
of past, present and future satellite altimetry missions, with decommissioned missions shown in red, active
missions in orange, and future missions in yellow.

Figure 2.3: A timeline of modern radar altimeters from the 1990s to the next decade, including expected or announced
mission extensions beyond the nominal satellite lifespan. Past missions are in red (Aviso+, 2024).

From the missions shown in Figure 2.3, TOPEX/Poseidon, Jason-1, -2 and -3, Sentinel-6 M. Freilich, Sentinel-
6B, Sentinel-6C and Sentinel-6 NG have a repeat cycle of 10 days (ESA, 2023a). This means that the
satellites revisit the same location on Earth every 10 days. CFOSAT has a revisit time of 13 days, all HY-2
satellites of 14 days and GFO of 17 days. The SWOT mission has a repeat cycle of 21 days, and all Sentinel-3
missions of 27 days. ERS-1, ERS-2, Envisat and SARAL have repeat orbits of 35 days, and the longest repeat
orbits are for the CRISTAL-A and -B missions with 367 days and for CryoSat-2 with 369 days.

The hardware used on satellite altimetry missions is a radar altimeter (RA). This sensor emits short
pulses of microwave signals towards the Earth’s surface, and collects the reflected power of the signal. This
gives information on the radar footprint (Figure 2.4a). With the use of this reflected power and accurate
information on the orbit of the satellite, the SSH can be estimated.

The observed return signal resembles the received power over time and is called the waveform (Figure
2.4b). The power is received in bins, also often referred to as gates, which represent small windows of 3.125
nanoseconds over the range between the water level and the satellite (Passaro et al., 2014). The waveform
in open ocean can be described by the Brown model (Brown, 1977). With this, the SSH can be estimated
by taking the mid-point of the leading edge and the SWH by the slope of the leading edge. The mid-point
is defined by fitting the Brown model to the received signal and searching for the gate that contains the
mid-point of the leading edge. When the satellite altimeter travels closer to the coast (Figure 2.4a), land
signals can cause severe distortions in the signal, which is called land contamination. The waveform does
not conform to the original Brown model anymore, which means the reliability of the observations decreases
(Gommenginger et al., 2011).
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(a) (b)

Figure 2.4: The reflected power of the satellite altimeter (a) when approaching the coast and (b) over homogeneous ocean
surface. The red line in (a) shows land contamination, meaning that the signal does not conform to the Brown model

anymore (COASTALT, 2023). The named parts of the signal shown in (b) correspond to different geophysical parameters
associated with the water level (Idris et al., 2014).

2.2.1. Derivation of sea surface height
The SSH is derived from satellite altimetry by computing the distance between the satellite and the water
surface with Robs = c t

2 , where t is the observed two-way travel time of the mid-point of the leading edge
and c is the speed of the radar pulse through vacuum (Andersen & Scharroo, 2010). To obtain the SSH,
the observed range Robs needs to be corrected for several disturbance factors, as given in (2.2). The height
of the satellite with respect to the ellipsoid is given as H.

SSH = H −Rcorrected (2.2)
= H − (Robs +∆h)

The correction term ∆h is categorised into atmospheric range corrections and a geophysical correction as
shown in (2.3). Atmospheric range corrections (∆hdry, ∆hwet and ∆hiono) adjust the range to account for
any disturbances when the signal travels through the ionosphere and troposphere. The geophysical correction
(∆hSSB) focusses on adjusting the range caused by the physical properties of the ocean’s surface and how
the signal interacts with it, particularly in terms of reflection back to the satellite. This correction consists of
three main components, mainly an electromagnetic bias (EM), a skewness bias and a tracker bias. Further
information on these corrections is given in Appendix A.

∆h = ∆hdry +∆hwet +∆hiono +∆hSSB (2.3)

When all correction terms have been applied, the resulting variable equals the sea surface height with respect
to the ellipsoid. Decomposing the SSH can help make sense of the different forcings that make up the water
level (see also (2.1)). Especially the AT and the DAC have been extensively investigated and represented
by numerous models (Carrère and Lyard, 2003; Lyard et al., 2021; Stammer et al., 2014). Datasets often
provide the SLA, where the mean sea surface (MSS) and the appropriate corrections have already been
removed from the satellite observations. The non-tidal residual (NTR) is used in satellite altimetry studies
as well (Lobeto et al., 2018), and corresponds to the SLA plus the DAC.

2.3. Tidal and atmospheric components
Next to the astronomical tide (AT), two additional tidal components influence the SSH. These include the
solid-Earth tide (ST) and the pole tide (PT), and are often used to obtain the SLA from the SSH derived
from satellite altimetry observations discussed in the previous section.
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Astronomical tide
The astronomical tide consists of an ocean tide and a loading tide. The loading tide is the smaller of the
two, with an amplitude of only 4-6% of the ocean tide, and is a result of the deformation of the ocean floor
due to the weight of the water column on top of it (Andersen & Scharroo, 2010). Since the loading tide is
in phase with the ocean tide, they can simply be added together and modelled accurately according to the
lunar and solar cycle (Stammer et al., 2014).

The ocean tide is represented as the sum of a finite number of tidal harmonic constituents, of which
Table 2.1 shows the most prominent ones. The semi-diurnal components refer to harmonic tidal signals that
occur twice a day, which are numbered with a "2" in their names. Diurnal components are numbered with a
"1" and refer to tidal signals which occur once a day. Longer modulations of the tidal signal are subscripted
with individual letters, such as "f" for fortnightly, "m" for monthly and "sa" for semi-annual signals. Table
2.1 also shows the equilibrium amplitude, which is a measure of the amplitude of the harmonic tidal signal
in open ocean according to the equilibrium theory (Bosboom & Stive, 2021).

Table 2.1: Principal tidal constituents with equilibrium amplitudes from Apel (1987)

Tidal constituents Name Equilibrium
Amplitude [m] Period [h]

Semi-diurnal
Principal lunar M2 0.24 12.42
Principal solar S2 0.11 12.00
Lunar elliptical N2 0.046 12.66
Lunar-solar declinational K2 0.031 11.97

Diurnal
Lunar-solar declinational K1 0.14 23.93
Principal lunar O1 0.10 25.82
Principal solar P1 0.047 24.07
Lunar elliptical Q1 0.019 26.87

Long period
Fortnightly Mf 0.042 327.9
Monthly Mm 0.022 661.3
Semi-annual Ssa 0.019 4383

There are many more constituents, which take into account more than just the solar, lunar and earthly
cycles, but also the influence of shallow water on these signals. Shallow-water tides, also known as overtides,
arise from nonlinear effects in coastal waters (Bosboom & Stive, 2021), resulting in higher harmonics of the
primary tidal constituents such as M2 and S2 shown in Table 2.1. These higher harmonics, such as M4 (with
a period half that of M2) and M6 (one-third of M2), are generated by interactions with bottom friction,
variations in water depth and the continuity of water flow. Interaction tides such as MS4, which results from
M2 and S2 interactions, also contribute to the asymmetry of the tidal elevations. Appendix D gives more
information on which constituents are applied in this study.

Solid-Earth tide
The solid-Earth tide originates from the elastic response of the Earth’s crust due to the gravitational tide
potential, caused by the Sun and the Moon. This has been estimated by Cartwright and Tayler (1971) and
Cartwright and Edden (1973). The solid-Earth tide can reach values of ±0.2 m (Andersen & Scharroo, 2010).

Pole tide
The final tidal correction relates to the seasonal variation of the Earth’s axis of rotation. This variation is
known as the Chandler Wobble, and the pole tide is caused by the centrifugal forces, which change according
to the variation of the Earth’s axis (Andersen & Scharroo, 2010). The method developed by Desai et al.
(2015) and Ries (2017), based on the method by Wahr (1985), is used to estimate the pole tide.

Dynamic atmosphere correction
The DAC consists of two main contributors, categorised into a low-frequency (LF) and a high-frequency (HF)
part. The low-frequency contribution has a period of longer than 20 days and is also known as the inverse
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barometer (IB) effect. This is the result of pressure fields in the atmosphere that press the ocean down in
high-pressure areas and let the ocean rise in low-pressure areas. The IB effect can be directly computed from
the surface pressure by

∆hib ≈ −0.99484 (P0 − Pref ) (2.4)

where P0 is the same sea surface pressure as the one used to compute the dry tropospheric correction
∆hdry (see Appendix A) and Pref is a reference pressure value, which can be taken as a stationary value
or a variable one. Usually, the reference pressure varies between 1009 and 1013 hPa (Andersen & Scharroo,
2010). The high-frequency contribution of the DAC is caused by wind fields, creating wind set-up at the coast,
and is modelled with the MOG2D model (two-dimensional gravity waves model) (Carrère & Lyard, 2003),
which uses the shallow water continuity and momentum equations for computation. The MOG2D_IB model
combines the high- and low-frequency components and provides atmospheric corrections from approximately
-0.1 m to 0.15 m. A new version of the MOG2D model, which uses a higher FES2014 resolution mesh,
improved bathymetry fields and includes the dominant tide forcing (M2, N2, S2, K1, O1), is called TUGO
(Carrère et al., 2019).

2.4. Retracking methods
As mentioned in previous sections, land contamination causes a disturbance in the waveform of satellite
altimetry observations. Generally, the waveforms of a returned signal are captured using onboard trackers
(Gommenginger et al., 2011). These trackers predict the next signal’s likely position based on the recently
returned signals to ensure that the returned signal is kept within the altimeter analysis window. These
computations are done on-board the satellite, but since the waveforms are subject to changes in the vicinity
of land (Figure 2.6), the identification of the tracking gate, defined as the bin/gate number of the mid-point
of the leading edge, may be difficult for these trackers.

To improve the range retrieval for the waveforms, ground-based retracking can be performed, which is
defined as a reprocessing of the recorded waveforms that the altimeters send to Earth. These retracking
methods can be based on empirically fitted forms or physical models, both proven to increase the accuracy
of coastal SSH estimation (Gommenginger et al., 2011). Most retrackers are built to reconstruct waveforms
in coastal areas from the recorded noisy, land-contaminated waveforms.

Empirical retrackers are based on years of observations, such as the offset centre of gravity retracker
(OCOG) (Wingham et al., 1986), the (improved) threshold retracker (Bao et al., 2009; C. Davis, 1995;
C. Davis, 1997; Fenoglio-Marc et al., 2010; Hwang et al., 2006; Lee et al., 2008) and the β-parameter
retracker (Deng and Featherstone, 2006; Martin et al., 1983; Zwally and Brenner, 2001). Additionally, the
Brown-Hayne Theoretical Ocean Model is a physical model based on the original Brown model (Brown, 1977)
(Figure 2.5), and redefined by Hayne (1980).

Figure 2.5: Theoretical Brown ocean waveform shape and related ocean parameters (Gommenginger et al., 2011).
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Figure 2.6: A pulse-limited altimeter in a coastal region. The lower panel shows a nadir view of the pulse-limited footprint
corresponding to each waveform gate. The variable H corresponds to the range between the satellite and the ocean’s surface,
B corresponds to the bandwidth of the altimeter, and c is the speed of the radar pulse. The variables τ0, τ1 and τ2 refer to the
pulse emission time and received time delays respectively. For this altimeter, the onboard tracker has determined the altimeter
analysis window to be between gates 1 and 128 and has identified gate 44 as the tracking gate (Gommenginger et al., 2011).

2.4.1. X-TRACK/ALES post-processing software
This study makes use of data processed by the X-TRACK algorithm, which is developed by the Center
of Topography of the Ocean and Hydrosphere (CTOH) in Toulouse for the specific purpose of improving
coastal water level estimations observed by satellite altimetry (Birol et al., 2017; Roblou et al., 2011). The
Adaptive Leading-Edge Subwaveform (ALES) retracker has been applied to the satellite altimetry observations
(Passaro et al., 2014), based on the classic Brown model for open ocean. Additionally, the method provides
updated propagation and geophysical corrections. The reprocessed product (see Figure 2.7 for an example)
is distributed by the AVISO+ operational centre for twenty-seven coastal regions (AVISO+, 2022). More
information on the algorithm is given in Appendix B.
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(a)

(b)

Figure 2.7: Example of Jason 2 track 9 in the Mediterranean Sea. Shown are (a) the location of the observations and (b) the
standard deviation of the corresponding SLA time series (in metres) before (in red) and after (in blue) the X-TRACK

procedure (Birol et al., 2021).

2.5. Machine learning
Due to its global coverage, satellite altimetry could be a useful resource in addition to tide gauges to study
water levels. However, the repeat cycle of the individual missions can cause a problem when trying to capture
storm surges. To decrease the risk of missing storm surges, the observations can be stacked, meaning that
data from overlapping tracks are combined and interpolated to reference points along the altimetry reference
tracks. This consequently can improve the temporal resolution to a couple of days, and can create elaborate
global time series (Figure 3.3). A downside to this is that the spatial resolution decreases, as one needs
overlapping tracks. This trade-off between temporal and spatial resolution still poses a problem when using
the data to estimate high water levels.

Machine learning is a powerful technique that can identify relationships between datasets without being
explicitly provided or programmed. It can recognise patterns and insights which are sometimes not even
discernible by people. Within the scope of this study, machine learning is applied to solve a regression
problem. With tide gauge data being used as ground truth data, this is a supervised learning case, and will
be tackled with a neural network as inspired by Bruneau et al. (2020).

2.5.1. Neural networks
Built on the principle of biological neural networks within the body of an organism, artificial neural networks
are created with artificial neurons, which represent the biological neurons, and are interconnected, symbolising
the synapses of the biological neurons. Like a pulse of energy travels through a biological neural network,
information flows through an artificial one. They are able to identify correlated patterns within large datasets
with different parameters, such as high water levels during storm events with low-pressure fields and large
wind speeds.

Figure 2.8 shows a simple representation of a fully connected, shallow neural network, showing all major
components that need to be defined before applying any neural network to any dataset. The left-hand side
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shows the input dataset [x1 x2 · · · xm], which travels through the neural network through a hidden
layer and gives an output variable ŷ.

During the training of the neural network, weights and biases are fitted to the data. These trainable
parameters define the relationships that the input variables have with the output variables. The main goal of
training a neural network is to optimise these trainable parameters, trying to find a calibration that ensures
the output of the neural network is as close to the ground truth data as possible.

Figure 2.8: Schematic overview of the design of the shallow neural network developed in this study. The blue boxes show the
input variables, design parameters and output values, while the red boxes show the trainable parameters. [x1 x2 · · · xm]
denote the input variables, [n1 n2 · · · nj ] refer to the neurons within the hidden layer, and ŷ shows the output value.
The matrices and vectors of w and b refer to the weights and biases that are estimated during the training of the model.

The developed shallow neural network needs some manually defined variables, from here on referred to as
design parameters. These design parameters are defined as variables that are non-trainable by the model
itself. These need to be pre-defined and influence for example the complexity of the model, non-linearity,
training speed and weight change.

2.5.2. Design parameters
The parameters explained in this section are known as design parameters or hyper parameters. They cannot
be trained by the model and have to be manually defined before the training of the model starts. They
remain constant throughout the training stage.

Number of neurons
Neurons within a neural network act as nodes connecting the input data with the output. All input data are
fed into each neuron, after which a weighted sum is applied according to (2.5). The output of one neuron
equals one value, which is used as input for the next layer (in this case the output layer). The same weighted
sum, with different weights and a different bias, is applied, resulting in an estimate of the output.

Weighted Sum neuron j =
m∑
i=1

(xij ∗ wij) + bnj (2.5)

The number of neurons within the hidden layer has to be chosen with care. Too few neurons and the neural
network is not able to find the relevant correlations between the input variables and the output, which is
called underfitting (Figure 2.9a). Too many neurons and the model can overfit (Figure 2.9c). Overfitting
happens when the model fits so precisely on the training data, that it performs poorly on data it has never
seen before, which is - essentially - the goal of such a model.
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(a) (b) (c)

Figure 2.9: Examples of (a) an underfit, (b) a good fit and (c) an overfit. The dots represent the training data and the line
represents the machine learning model output (Shah, 2023).

Activation functions
After the weighted sum within a neuron is applied, an additional step is applied before the weighted sum is fed
into the output layer. The weighted sum of each neuron is fed through an activation function, which can be
linear or non-linear. The rectified linear unit (ReLU) activation function is often applied on the hidden layer
(Fukushima, 1969) due to its simplicity and ability to decrease the risk of the vanishing gradient problem
(Glorot et al., 2011). The vanishing gradient problem occurs during the training of a neural network, where
the updates to the model’s weights become too small. This slows down the training and in some cases even
stops the model from improving. The weighted sum that is passed through the function (x) will be set to
zero if it is < 0 before it is passed to the output layer. Any weighted sum > 0 will be passed to the output
layer without any changes according to (2.6) (Figure 2.10). The output layer often has a linear activation
function, since any non-linearity has been accounted for within the hidden layer.

f(x) = x+ = max(0, x) = x+ |x|
2

=

{
x if x > 0

0 otherwise
(2.6)

Figure 2.10: Visualisation of the ReLU activation function.

Loss function
The weights and biases of the neural network are changed based on a loss function. This function quantifies
how well the neural network has estimated the output. The goal of the model is to minimise this loss function
by changing its weights and biases accordingly. Examples of loss functions are the (Root) Mean Squared
Error or Mean Absolute Error as shown in (2.7), where t denotes the number of output values, ŷi is the
estimated value and yi is the ground truth value of the output.

MSE =
1

t

t∑
i=1

(yi − ŷi)
2 MAE =

1

t

t∑
i=1

|yi − ŷi| (2.7)

Number of epochs
One of the most important design parameters is the number of epochs. This parameter defines how many
training iterations are needed to let the model converge to the final set of weights and biases. This is a
trade-off between over- and underfitting (Figure 2.9).



2.5. Machine learning 18

Optimisation algorithm
An optimisation algorithm can be used to update the weights within a neural network to optimise the training
stage. One of the most widely used optimisation algorithms is the Adaptive Moment Estimation (Adam),
developed by Kingma and Ba (2014). It computes the first and second moment of the gradient of the loss
function with respect to the weights and biases for every batch in the training dataset. Given a weight w, a
bias b and a loss function L(w, b), these moments can be derived by computing ∂L/∂w and ∂L/∂b.

∂MSE
∂w

=
1

s

s∑
i=1

2 (ŷi − yi) · xi (2.8)

∂MSE
∂b

=
1

s

s∑
i=1

2 (ŷi − yi) (2.9)

In (2.8) and (2.9), xi denotes the input connected to the weight w, yi refers to the ground truth value of
the model output ŷi and s denotes the batch size. For each w and b, the first m1 and second m2 moment
is computed with

m1,r = β1 ·m1,r−1 + (1− β1) · ∇θL (2.10)
m2,r = β2 ·m2,r−1 + (1− β2) · (∇θL)

2 (2.11)

where ∇θL equals either ∂L/∂w or ∂L/∂b, depending on which weight/bias is being updated. The parame-
ters β1 and β2 refer to the exponential decay rate of the first moment and second moment respectively, and
have to be manually defined before training the model. r denotes the current batch, of which the maximum
is the number of samples in the training dataset divided by the batch size (s). The first initialisation usually
puts the weights and biases to random values and the moments m1,0 and m2,0 to zero. Next, with the first
and second moments of the gradients, they are corrected for a bias with (2.10) and (2.11) to account for
the induced bias of setting the initial moments to zero.

m̂1,r =
m1,r

1− βr
1

(2.12)

m̂2,r =
m2,r

1− βr
2

(2.13)

(2.12) and (2.13) are used to update all weights and biases according to

wr = wr−1 − α
m̂1,r√
m̂2,r + ϵ

(2.14)

br = br−1 − α
m̂1,r√
m̂2,r + ϵ

(2.15)

where α is the learning rate and ϵ is a small constant meant for numerical stability, meaning that the term
avoids any division by zero. When the weights are updated, the algorithm moves on to the next batch in
the training dataset. Upsides to this algorithm include simplicity, computational efficiency, little memory
requirements and suitability for large datasets, non-stationary target variables and noisy gradients. It also
requires little to no tuning of its parameters. Its default parameters are α = 0.001, β1 = 0.9, β2 = 0.999,
ϵ = 1 ∗ 10−8, as defined by Kingma and Ba (2014).

Learning rate and batch size
During the training process, the input data are divided into chunks, called batches, and the model’s train-
able parameters (weights and biases) are updated based on the loss computed over each batch, using the
optimisation algorithm to do so. The choice of batch size can impact training speed, memory requirements,
and the stability of the learning process. Larger batch sizes often lead to faster training but may require
more memory, while smaller batch sizes may result in slower training but can offer more accurate parameter
updates.



3
Study area and data overview

3.1. Dutch Coast and North East Atlantic Ocean
The study area of this project will encompass the North Sea as shown in Figure 3.1. This part of the world
is rich in tide gauges and has an elaborate coastal variability, which makes it suitable for developing this
pilot model. The study will mostly focus on the Dutch coastal zone. The coastal areas around Denmark
and Norway have been left out, since any information in these areas is not expected to have much effect on
the water levels along the Dutch coast. This is due to the locations of the amphidromic points in the North
Sea. They cause the tidal propagation to reach the Dutch coast before it reaches the coasts of Denmark
and Norway due to the counter-clockwise progression of the phase (Figure 2.2). This suggests that any
land-sea interactions induced by the tides and present in the non-tidal water levels around the Danish and
Norwegian coasts do not interact with the Dutch coast and therefore, would cause only noise in the data.
The large inland water body of the IJsselmeer is also excluded from the area of interest because this water
is disconnected from the North Sea by a dam and as such will not provide useful information on water levels
along the Dutch coast. Data over land is also not used.

Figure 3.1: Extent of the area of interest. The red line denotes the edge of the area of interest. Any data within the
IJsselmeer has been discarded, since this is considered inland water. The selected tide gauges on which the model will be

trained are shown in black.

19
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The data needed within this area include satellite altimetry data, ERA5 assimilated data, tide gauge records
and information on the geoid. These datasets are acquired from different sources (Table 3.1). The tide gauge
records act as ground truth datasets. Retracked and reprocessed satellite altimetry data from X-TRACK is
chosen, because the X-TRACK algorithm can conserve more satellite observations in coastal regions than
traditionally processed satellite altimetry data. ERA5 data is added to provide information on the sea level
pressure fields and wind speeds. Finally, the geoid is used to reference the satellite altimetry observations to.

Table 3.1: Data sources

Data Source Reference
Tide gauge GESLA Haigh et al., 2022
Satellite altimetry X-TRACK Birol et al., 2021
ERA5 Climate Data Store (CDS) Hersbach et al., 2018
Geoid International Service for the Geoid (ISG) Denker, 2013

3.2. Tide gauge records
For the development of a machine learning model that can produce reliable estimates of water levels, accurate
control data is needed on which the ML model can be trained. This data is taken from the GESLA version
3 database, which is a global database of high-frequency tide gauge time series (Haigh et al., 2022). Three
tide gauges in the Dutch coastal area are selected to serve as ground truth stations: Vlissingen, Scheveningen
and Europlatform (Figure 3.1). These locations are chosen intentionally for their extensive and continuous
data records, and to represent the large variability of the Dutch coastal region while simultaneously account
for any time constraints.

Vlissingen lies in a sheltered bay in the estuary of the Westerschelde, experiencing a large tidal variability
and more land-sea interactions of the water level than Scheveningen or Europlatform (Figure 3.2a). This
can increase flood probabilities during storms and induce larger risks than in other locations. Scheveningen
is facing the North Sea more openly, experiencing larger effects of wind set-up and less tidal variability than
Vlissingen (Figure 3.2b). The population density is also highest around this region, making it essential for
flood risk analysis due to its high possible damage factor. Finally, the Europlatform is surrounded by sea on
all sides, experiencing the fewest land-sea interactions and tidal variability. Including this station allows for
comparisons between the stations and assess how much the land-sea interactions matter in estimating the
non-tidal water levels. The data for the Dutch coast is collected by the Dutch Ministry of Infrastructure
and Water Management (Rijkswaterstaat, 2024). After downloading the data from GESLA (2024), some
metadata is provided for each file. The most important metadata variables are presented in Table 3.2.

(a) (b)

Figure 3.2: Locations of the (a) Vlissingen and (b) Scheveningen tide gauge, taken from Google Earth imagery.
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Table 3.2: Most important metadata variables for the tide gauges of interest. The column on the left denotes the variable
names as they are provided in the record files (Haigh et al., 2022).

SITE NAME Vlissingen Scheveningen Euro_platform
LATITUDE 51.44230800 52.09903300 51.99861100
LONGITUDE 3.59605700 4.26356300 3.27638900
START DATE/TIME 1863/09/01 07:40:00 1946/01/01 01:40:00 2001/06/30 23:00:00
END DATE/TIME 2018/09/08 00:00:00 2018/09/07 23:50:00 2018/09/07 23:50:00
DATUM INFORMATION NAP NAP NAP
NULL VALUE -99.9999 -99.9999 -99.9999

For all three locations, the datum information provided is Normal Amsterdam Level (NAP). This is nearly
equivalent to the geoid, reporting water levels in the order of a few metres. The recorded data is provided
in five columns:

1. Date yyyy/mm/dd
2. Time hh:mm:ss
3. Observed sea level (m)
4. Observed sea level QC flag

0 - no quality control
1 - correct value
2 - interpolated value
3 - doubtful value
4 - isolated spike or wrong value
5 - missing value

5. Use-in-analysis flag (1 = use, 0 = do not use)

The quality control (QC) flags for column 4 refer to a quality control applied to the data by the provider,
in this case, Rijkswaterstaat. For column 5, all instances where the QC flags indicate a 0, 1 or 2 have been
flagged with a 1.

3.3. Satellite altimetry
The altimetry data used in this study were developed, validated, and distributed by the CTOH/LEGOS,
France (Aviso+, 2023), and have been provided to Deltares for the project Earth Observation Advanced
science Tools for Sea Level Extreme Events (ESA, 2023b). The data have already been reprocessed using
the X-TRACK retracking method (Birol et al., 2021). This method has an improved derivation for coastal
observations of the sea surface height. Since we are interested in coastal water levels, this data is preferable
over traditionally processed altimetry data.

Retracked data from the satellite missions TOPEX/Poseidon, ERS-2, GeoSat Follow-On (GFO), Jason-1,
Envisat, Jason-2, Haiyang-2 (HY-2), SARAL, Jason-3 and Sentinel-3A (S3A) are provided (Figure 3.3). All
satellites carry an active radar sensor that uses ranging techniques to observe the sea surface, as explained in
further detail in Section 2.2. Operational times, repeat cycles and instruments differ per mission, consequently
also varying in data availability and accuracy (Table 3.3). For more information on the individual missions,
see Appendix C.
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Figure 3.3: Timeline of satellite altimeters since 1992 which are used in this thesis (updated from Shu et al., 2021)

Table 3.3: Overview of satellite altimeters provided (Shu et al., 2021; CEOS and ESA, 2024)

Altimetry mission Operational time Repeat
cycle

Accuracy
(RMSE) Instrument

Start End
TOPEX/Poseidon 10-08-1992 09-10-2005 10 d 2.4/2.5 cm NRA/Poseidon-1 (SSALT-1)
ERS-2 21-04-1995 05-07-2011 35 d 10 cm RA-1
GeoSat Follow-On 10-02-1998 17-09-2008 17 d 3.5 cm GFO-RA
Jason-1 07-12-2001 21-06-2013 10 d 3.9 cm Poseidon-2 (SSALT-2)
Envisat 01-03-2002 08-04-2012 35 d 4.5 cm RA-2
Jason-2 20-06-2008 01-10-2019 9.9 d 3.9 cm Poseidon-3
Haiyang-2 16-08-2011 - 14 d 4 cm RA/HY-2
SARAL 25-02-2013 - 35 d 3.4 cm AltiKa
Jason-3 17-01-2016 - 9.9 d 3.4 cm Poseidon-3B Altimeter
Sentinel-3A 16-02-2016 - 27 d 3 cm SRAL

A couple of missions are not used in this study, such as ERS-1, CryoSat, GeoSat and Sentinel-6. Either
the operational period of these missions does not coincide with the period of interest, or the data of these
missions have not been provided/reprocessed by CTOH/LEGOS.

The retracked altimetry data have been stored in NetCDF files, containing several variables. Each
track has its own filename, with mission, zone and track number included (ctoh.sla.ref.<MISSION>.
<ZONE>.<TRACK_NUMBER>.nc). The track number is based on the geographic location of repeated overpasses
as shown in Figure 3.4, where missions with the same orbit are combined to create six graphs that encompass
all tracks.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Numbered tracks of (a) GeoSat Follow-On, (b) Sentinel-3A, (c) ERS-2, Envisat and SARAL, (d)
TOPEX/Poseidon and Jason-1/-2/-3, (e) TOPEX/Poseidon and Jason-1/-2 interleaved orbit and (f) Haiyang-2. Taken from

Aviso+ (2023).

The variables taken from the XTRACK reprocessed data are summarised in Table 3.4. The time of each
observation is given in days, referenced to 1950-01-01. Both the latitude and the longitude are given in
degrees and refer to the nominal track (Figure 3.5). The DAC has been produced by the TUGO HF model
forced with ERA5 pressure and wind fields and the IB LF contribution from (2.4) for the altimetry data
before 02/2016 (Aviso+, 2022). After 02/2016, the DAC has been estimated with MOG2D HF forced with
ECMWF pressure and wind. The SLA has been provided in the data, which has been computed with

SLA =H −Robs −∆hiono −∆hdry −∆hwet −∆hSSB (3.1)
− ST− AT− PT− DAC−MSSH− bMSSH

where all components have been discussed in Section 2.1 and 2.2 except for the global mean sea level
bias (bMSSH). This bias is applied to account for the interpolation that happens when the observations
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are resampled onto reference points along a nominal track (Figure 3.5). The MSSH is computed as the
arithmetic mean of all observations in their respective cell within a reference period (Birol et al., 2017),
where the bMSSH accounts for the differences in the MSSH between the actual observation and the closest
reference point, essentially correcting for any geoid variation (Birol & Passaro, 2020). The reference periods
are defined below Figure 3.5.

Figure 3.5: Illustration of a nominal track (red line and black stars), with their reference cycles (one colour for each cycle).
For each shown cell, the nominal track is defined by the mean of the coordinates/MSSH of the reference cycles (Birol &

Passaro, 2020).

• 1993-03-09 - 2021-03-05 for TOPEX/Poseidon and Jason-1/-2/-3
• 1995-06-18 - 2016-03-11 for ERS-2, Envisat and SARAL
• 2000-01-28 - 2008-01-22 for GFO
• 2002-09-25 - 2011-09-25 for TOPEX/Poseidon and Jason-1/-2 interleaved orbit
• 2014-04-19 - 2016-03-19 for HY-2
• 2016-03-12 - 2022-03-08 for S3A

The FES2014b model has been used to compute the astronomical tide (Lyard et al., 2021). The 34 con-
stituents included in this model are K1, M2, N2, O1, P1, Q1, S1, S2, K2, 2N2, EPS2, J1, L2, T2, La2,
Mu2, Nu2, R2, M3, M4, M6, M8, MkS2, MN4, MS4, N4, S4, MSF, Mf, Mm, MSqm, Mtm, Sa and Ssa.
The remaining corrections and coefficients are computed as explained in Appendix A and B, and in further
detail in Aviso+ (2022). The variables that are taken from each file are presented in Table 3.4, along with
their units and dimensions.

Table 3.4: Parameters provided in X-TRACK NetCDF files (Aviso+, 2022)

Parameter Description Units Dimensions
Time Time of observation Days since 1950-01-01 [Cycle, Lat, Lon]
Lat Latitude of observation Degrees North [Lat]
Lon Longitude of observation Degrees East [Lon]
MSSH XTRACK MSS Metres [Lat, Lon]
SLA Sea Level Anomaly Metres [Cycle, Lat, Lon]
DAC Dynamic Atmosphere Correction Metres [Cycle, Lat, Lon]

3.4. ERA5
Additional information to teach the developed ML model is given as ERA5 hourly grids (Hersbach et al.,
2018). From the Copernicus Climate Data Service (C3S), hourly fields for mean sea level pressure, wind
speed and a land-sea mask are downloaded in NetCDF format. Within these files, the wind speed is split
into a longitudinal component (U10) and a lateral component (V10), and given in metres per second (Table
3.5). The mean sea level pressure (p) is given in Pascal. The land-sea mask is provided as a value between
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0 and 1. Pixels with a land-sea mask value of 0.5 and below are defined to be consisting of water (Hersbach
et al., 2018). The spatial resolution of this data is ±31 km, and the area downloaded is from 48◦N to 60◦N
and 4◦W to 9◦E.

Table 3.5: Parameters provided in ERA5 NetCDF files (Hersbach et al., 2018)

Parameter Description Units Dimensions
Time Time of data field Hours since 1900-01-01 [Time]
Lat Latitude Degrees North [Lat]
Lon Longitude Degrees East [Lon]
p Mean sea level pressure Pascal [Time, Lat, Lon]
U10 Longitudinal wind speed component at 10

metres above the Earth’s surface
Metres/second [Time, Lat, Lon]

V10 Lateral wind speed component at 10 me-
tres above the Earth’s surface

Metres/second [Time, Lat, Lon]

lsm Land-sea mask - [Lat, Lon]

3.5. Geoid
Since the datum for the tide gauge records is given in NAP, it is preferred to work with satellite altimetry
data referenced to the geoid. Referencing satellite altimetry data to the geoid adds high-frequency spectral
content due to the complex variations of the geoid surface. This can introduce additional properties to the
signals that would be missed by the ML model if the SSH referenced to the ellipsoid was used. The geoid used
in this study is the EGG2015 gravimetric model developed by Denker (2013). The model represents geoid
heights referenced to the GRS80 ellipsoid in metres (Figure 3.6). It spans Europe from 25◦N to 85◦N and
from 50◦W to 70◦E. The grid spacing in lateral and longitudinal direction is 0.1667◦ and 0.25◦ respectively.

Figure 3.6: Representation of the EGG2015 geoid (Denker, 2013)



4
Method

To explore the potential of machine learning within the boundaries of this study, a simple neural network
has been created that searches for the relationship between the coastal water level and the forcings that
influence this water level. This chapter elaborates on the developed neural network with a bottom-up
approach, focussing on the processing of the inputs and outputs, the design of the neural network, and a
performance analysis to assess the robustness and efficiency of the final model. The chapter starts with a
general outline of the method used in this study, after which the individual steps are further elaborated upon.

4.1. General approach
The first step is to pre-process the available datasets that are used to represent the forcings that influence the
variability of the water level, namely satellite altimetry observations and ERA5 assimilated hourly datasets.
Tide gauge records are considered as the ground truth data within this study, which also need pre-processing
before they can be used to train the neural network. When all datasets are pre-processed, they are shaped
into features to fit the requirements for the input into the ML model. Next, the neural network is designed
to be simple yet complicated enough that it can identify different (non-linear) correlations between the input
features and the ground truth data. The robustness of the model is assessed with a K-fold cross-validation,
and the performance with tide gauge data. Finally, an additional analysis involving the trained parameters
of the model is presented.

This method has been developed in Python 3.11.7, with the following packages and their versions as
shown in Table 4.1.

Table 4.1: Python packages and their version used in this methodology

Package name Version Package name Version
cartopy 0.22.0 pandas 2.2.0
hatyan 2.7.0 pyextremes 2.3.2
keras 2.15.0 scikit-learn 1.4.1

matplotlib 3.8.3 scipy 1.12.0
netCDF4 1.6.5 tensorflow 2.15.0

numpy 1.26.4

4.2. Data pre-processing
The satellite altimetry observations are stored in NetCDF files grouped by mission and track. The ERA5
hourly gridded datasets are stored in NetCDF files grouped by year. The tide gauge records are stored in
a file format including five columns, representing the date, time, the observed water level and two quality
flags. For the data to be easier to work with, these files are pre-processed into one file for each data source.
The preprocessing is done with the Python packages netCDF, numpy, pandas and hatyan (Veenstra &
Kerkhoven, 2020).

26
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4.2.1. Satellite altimetry
Within each NetCDF file of each mission, geographic coordinates of its nominal track are given. The tracks
only span the North-East Atlantic coastal zone (Figure 3.4). The pre-processing steps of this dataset include
selecting and masking the tracks so all observations fall within the area of interest and referencing the ob-
servations to include or exclude the desired signals within the observations.

Step 1: selection and masking
The first step is to select the files of which the track crosses the area of interest. The geographic locations
of each track are retrieved, after which only the ones that cross the area of interest are selected (Figure 4.1).
These files, along with a mask that defines which indices within the array of track locations fall within the
area of interest, are saved for further processing. Note that the IJsselmeer is marked as being outside of the
area of interest, since it is assumed that this inland water does not add important information to indicate
the water level at the coast. It is expected to only cause noise since the lake is cut off from the sea.

Figure 4.1: The tracks available within the area of interest. The outer red shape marks the edge of the area in which all data
is gathered, with the exception of the IJselmeer. The black lines visualise all tracks available within the area of interest. Each

track has its own file.

Step 2: referencing
From an altimetry file, the timestamp, mean sea surface (MSS), sea level anomaly (SLA), dynamic atmo-
sphere correction (DAC), latitude and longitude of each observation are retrieved (Table 3.4). The timestamp
is a decimal number that returns the days since 1950-01-01, with an accuracy of less than one second. This
is converted to the correct date and stored with the remaining five variables.

The hourly non-tidal water level that is stated in the objective is best represented by the water level
referenced to the geoid and not corrected for any atmospheric effects, defined as the non-tidal residual
(NTR). Since the SLA retrieved from the satellite altimetry files includes both the MSSH and the DAC, and
not the geoid, the retrieved variables are processed to represent the NTR with (4.1), using the provided data
and the geoid given by Denker (2013).

NTR = SLA+MSS− Geoid+ DAC (4.1)

For each altimetry observation, the closest geoid pixel is taken to reference the observations to the geoid.
The closest geoid pixel is found by using the Haversine distance method, where d denotes the distance
between the altimetry observation and the centre of a geoid pixel in metres.
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(4.2)

In (4.2), R refers to the radius of the Earth, which is assumed to be constant at 6.371 ∗ 103 metres. The
variables φ and λ refer to the latitude and longitude of the satellite altimetry observation, expressed in
radians. The distance d is then computed in metres. Next to the NTR, two more variables are added in this
step, namely the distance between each observation to the tide gauge of interest in lateral and longitudinal
direction, computed by (4.3) and (4.4) respectively. Like the computation of the Haversine distance, it is
assumed that the Earth is a perfect sphere, and both directional distances are computed with the assumed
constant radius of the Earth of 6.371 ∗ 103 metres. It is assumed that this approach is sufficiently accurate
when working with distances of this magnitude. Since the satellite altimetry files provide the latitudes and
longitudes in degrees, these are first converted to radians before applying any of the functions (4.2), (4.3)
or (4.4).

dN = R ∗ (λ2 − λ1) (4.3)
dE = R ∗ (φ2 − φ1) (4.4)

The final variables which are suited for machine learning are saved in a binary numpy file (.npy) (Table 4.2).

Table 4.2: Final satellite altimetry variables suited for machine learning.

Variable
name

Description Units

Time Time stamp yyyy-mm-dd hh:mm:ss
NTR Non-tidal residual referenced to the geoid Metres
dN Distance satellite observation to TG in lateral direction Metres
dE Distance satellite observation to TG in longitudinal direction Metres

4.2.2. ERA5
The assimilated datasets of ERA5 provide hourly gridded datasets of sea level pressure and wind speed, along
with a yearly land-sea mask. These variables are downloaded from the Copernicus Climate Data Service (C3S)
Climate Data Store (CDS) (Hersbach et al., 2018), after which they are clipped to the area of interest and
masked for any pixels containing land (Figure 4.2).

The raw timestamps provided by the hourly datasets are given in integers, returning the number of hours
since a reference date of 1900-01-01 at 00:00:00. Table 4.3 shows the variables that are saved in a binary
numpy file (.npy). Every clipped hourly dataset contains 1498 pixels, and all pixels are compressed to form
single arrays per hour.

(a) (b) (c)

Figure 4.2: Examples of an ERA5 dataset on 2018-01-01 00:00:00, for (a) sea level pressure, (b) longitudinal 10-m wind
speed component and (c) lateral 10-m wind speed component. The data is clipped to the area of interest and masked with a
land-sea mask that masks all pixels which have a mask larger than 0.5. The outer red shape marks the edge of the area in

which all gridded data is gathered, with the exception of the IJsselmeer.
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Table 4.3: Final ERA5 variables suited for machine learning.

Variable name Description Units
Time Time stamp referenced to 1900/01/01 Hours
p Sea level pressure Pascal
U10 10-m wind speed in longitudinal direction Metres / second
V10 10-m wind speed in lateral direction Metres / second

4.2.3. Tide gauge
Three tide gauges are considered to train and test the neural network developed in this study: Vlissingen,
Scheveningen and Europlatform (Figure 3.1). The steps taken to pre-process the tide gauge records include
the selection of hourly measurements and the tidal correction to account for harmonic tidal signals.

Step 1: selecting hourly measurements
The hourly values within the provided time series are selected by creating a separate time column and deleting
all measurements before 1992-01-01. This time column has a frequency of ten minutes for Scheveningen
and Europlatform and a frequency of one minute for Vlissingen. Next, the measurements taken on each
full hour are selected to act as ground truth for the machine learning model (Figure 4.3). If there is no
measurement available on the full hour, the method uses a nearest neighbour approach to find the next
available measurement within the considered hour.

Figure 4.3: Water level measurements from tide gauges at Vlissingen, Scheveningen and Europlatform from 2017/01/01 to
2017/01/15. The dots represent the hourly values which are used as ground truth data in the machine learning model.

Step 2: tidal correction
To correct for the harmonic signals of the tides, the Hatyan method is applied (Veenstra & Kerkhoven,
2020). This method computes 95 harmonic components (see Appendix D), based on periods of one year.
The original hourly measurements are corrected for the harmonic tidal signals by reconstructing a harmonic
signal using the computed 95 components (Figure 4.4), and the resulting time series are saved as .csv files.

After pre-processing, the satellite altimetry observations and the tide gauge observations refer to the
same vertical datum, namely the geoid, which is desirable when feeding the data into a machine learning
model. Additionally, the satellite altimetry data is corrected for unwanted signals and clipped to the area of
interest. The ERA5 datasets are also clipped and flattened into 1D arrays to allow easier shaping of input
data for the developed neural network.
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Figure 4.4: Water level measurements from tide gauges at Vlissingen, Scheveningen and Europlatform from 2017/01/01 to
2017/01/15, after applying the Hatyan method to correct for harmonic tidal signals. The values are hourly.

4.3. Input preparation
The desired input variables for the neural network include the non-tidal residuals (NTR), the distance com-
ponents of the satellite observations to the tide gauge of interest (dN and dE), the time difference of the
satellite observations to the time stamp of interest (dt), the sea level pressure (p), wind speeds in the lon-
gitudinal and lateral direction (U10 and V10), and the day of year (DOY) (Table 4.4). The DOY has been
added to account for seasonal variability of the water level, for example the larger possibility of storm surges
in winter months compared to summer months. The input preparation can be subdivided into five steps
(Figure 4.5). The input preparation is done with the Python packages pandas, numpy, tensorflow and
scipy.

Table 4.4: Input variables needed for machine learning.

Variable name Description Units Source
NTR Non-tidal residual Metres Satellite altimetry
dN Distance between satellite observation and

tide gauge in lateral direction
Metres Satellite altimetry

dE Distance between satellite observation and
tide gauge in longitudinal direction

Metres Satellite altimetry

dt Time difference between satellite observa-
tion and desired time stamp

Seconds Satellite altimetry

p Sea level pressure Pascal ERA5
U10 Longitudinal 10-m wind speed component Metres / second ERA5
V10 Lateral 10-m wind speed component Metres / second ERA5
DOY Day of the year Days -

Figure 4.5: Step-wise overview of the method used to prepare the input data for developed machine learning model.
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4.3.1. Clipping time series
Clipping all data to a preferable time series is the first step in creating the input data for the developed
machine learning model. This is done by setting a start and end date, and then selecting all data within
those two dates. For the pre-processed satellite altimetry dataset and ERA5 dataset, the start date is shifted
with 48 hours, while the end date remains equal to the original. This is a crucial step, since the objective
is to estimate hourly water levels based on data from the previous 48 hours. To make sure that the models
for all three locations of interest can be compared, the start and end dates for all models must be the same.
Additionally, for the best performance, it is important to have as much data as possible. These conditions
result in a start date of 2001-07-01 at 00:00:00 and an end date of 2018-09-07 at 23:00:00.

4.3.2. Padding satellite altimetry
To be able to estimate water levels based on 48 hours of data, the input datasets are grouped into subsets of
48 hours. For satellite altimetry, an additional step is needed before the data can be grouped, because the
neural network needs input data of a fixed length. This causes a complication for satellite altimetry, since
not every subset of 48 hours contains the same number of satellite observations. This is caused by the fact
that there are multiple satellite missions involved, which do not have the same repeat cycle and orbit. Some
subsets have no observations, while others have over a thousand (Figure 4.6). This is dealt with by padding
the satellite altimetry data with zeros (Figure 4.7). Consequently, the machine learning model must have
a masking layer as the first layer, since these zeros cannot be taken into account when training the model.
The largest number of observations within one hour is 514, meaning all hours are padded until they contain
514 values.

Figure 4.6: Data availability for the full period of interest. The upper graph shows the number of observations within the
48-hour subsets. The lower graph shows the period at which altimetry data from different missions is available. HY-2 refers to
Haiyang-2, S3A to Sentinel-3A, GFO to GeoSat Follow-On, TPN to Topex/Poseidon and Jason-1/-2 on an interleaved track,
ERS to ERS-1/-2, Envisat and SARAL and TP to Topex/Poseidon and Jason-1/-2/-3. The black dashed lines refer to the
start/end of missions and the red dotted lines refer to the four validation datasets for K-fold cross-validation and the testing

dataset.

Figure 4.7: Example of padding satellite altimetry, where stars (*) refer to satellite observations and one row corresponds to
one hour. The hour with the largest number of observations is taken (fourth row), after which all other hours are padded with
zeros until every hour has the same shape, including hours which have no observations (second row). In reality, this matrix is

much larger for each 48-hour subset (48 rows and 514 columns).
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4.3.3. Grouping
To create the 48-hour subsets the neural network needs to estimate hourly water levels, the three datasets
(satellite altimetry, ERA5 and tide gauge time series) are grouped. The group size depends on the task the
data is to perform within the neural network. Since the tide gauge time series will be used as ground truth
data, they need to be grouped with a group size of one hour, while the satellite altimetry dataset and ERA5
dataset need to be grouped with a group size of 48 hours. This results in one ground truth value for each 48
hours of input data. One exception is the DOY. For each ground truth value, the machine learning model
has to know on which day of the year this value occurs to be able to link the 48 hours of input data to the
correct physical processes (either winter or summer months). This means that of all the input datasets, only
the DOY has a group size of one hour.

Table 4.5: Group size per data source.

Data source Group size Input shape
Satellite altimetry 48 hours (4 * 48 * 514)
ERA5 48 hours (3 * 48 * 1498)
TG time series 1 hour (1)
Day of year 1 hour (1)

4.3.4. Splitting into training and validation sets
Now that the datasets have been grouped into the correct subsets, they can be combined into one large input
dataset. To enable K-fold cross-validation, the training, testing and validation data is created by splitting
this dataset into five folds (Figure 4.8). Each fold has a size equal to 20% of the full input dataset.

Figure 4.8: Overview of how the input data is split into testing, validation and training data for training and K-fold
cross-validation. The folds are shown as orange boxes (validation data) or grey boxes (testing data).

The last fold will be used as a testing dataset, and will only be used to test the performance of the machine
learning model in the final stage of this study. This means it will not be used for the K-fold cross-validation.
The remaining data is split into 25% validation and 75% training data. Four different validation subsets can
now be used for the K-fold cross-validation, resulting in four different training datasets, and ultimately, four
different models. The time spans of the different validation subsets are presented in Table 4.6.

Table 4.6: Validation subsets used for the K-fold cross-validation.

Start date End date
Validation set 1 2001-07-01 00:00:00 2004-12-07 13:00:00
Validation set 2 2004-12-07 14:00:00 2008-05-16 03:00:00
Validation set 3 2008-05-16 04:00:00 2011-10-23 17:00:00
Validation set 4 2011-10-23 18:00:00 2015-04-01 09:00:00
Testing dataset 2015-04-01 10:00:00 2018-09-07 23:00:00

4.3.5. Normalising data
The next step in preparing the subsets for their use as input is to normalise the data. This helps the neural
network to learn about the correlations between the input and the desired output, without having to worry
about large differences in the magnitude of the different input parameters. A Z-Score normalisation method
is applied for all ERA5 variables (p, U10, V10), as well as for three out of four satellite altimetry variables
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(NTR, dN , dE), since they are assumed to be Gaussian distributed. This assumption is based on an analysis
of the input variables (Appendix E), where the distribution of each variable is shown. The variables p, U10,
V10 and NTR follow the Gaussian form better than dE and dN do. Some discussion on this is given in
Section 6.6. The variables DOY and dt have been normalised with a min-max normalisation since they are
assumed to be uniformly distributed.

Z-Score normalisation
A Z-Score normalisation is defined as a scaling of the dataset to change its distribution to one with a mean
of zero and a standard deviation of one (Kreyszig, 1979). For each configuration of the data shown in Figure
4.8, the training data is taken to compute the mean and standard deviation of each variable. The Z-Score
(zi) is then computed by subtracting the mean (µ) from the input value and dividing it by the standard
deviation (σ) as shown in (4.5). The training dataset as well as the validation dataset are normalised with
the mean and standard deviation computed from the training dataset.

µ =
1

m

(
m∑
i=1

xi

)
=

x1 + x2 + · · ·+ xm

m
, σ =

√√√√ 1

m

m∑
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xi − µ

σ
(4.5)

Min-max normalisation
The final two variables (DOY and dt) are being normalised with the min-max normalisation. It takes the
minimum and maximum values of the dataset, scaling the data according to (4.6).

x′
i =

xi − min(x)
max(x)− min(x) (4.6)

For the DOY and dt, the maximum value is set on 365 days and 48*3600 seconds respectively, while the
minimum value is set on 1 day and 0 seconds. This means the training and validation data will be scaled to
a value between 0 and 1.

4.3.6. Resampling
The ground truth dataset used in this study is imbalanced, meaning that the distribution is skewed towards
the mean of the dataset. Very high water levels or very low water levels are therefore underrepresented in the
data, causing the neural network to focus more on the mean output values than on the high or low values,
simply because they are more abundant in the data. To battle this, the training data is resampled to include
more high non-tidal water levels.

Resampling of the training data happens based on the Cumulative Distribution Function (CDF) of the
absolute ground truth data. A threshold of 0.8 has been used to determine which water levels should be
sampled more often. The ratio between the water levels below the threshold and above the threshold is
then set at 0.05. With this ratio and the true ratio found by dividing the number of water levels above the
threshold by the number of water levels below the threshold, a constant is found according to (4.7). This
constant is then used to repeat the selected high water levels.

q =
0.05

(Number of observations with CDF > 0.8) / (Total number of observations) (4.7)

Finally, sample weights are applied to assign different levels of importance to individual samples during the
training process. Each water level in the ground truth dataset is associated with a weight based on the
CDF, reflecting its significance in the learning task. This means that higher water levels get higher weights.
This weight is fed to the model alongside the input data and ground truth value associated with it. Higher
weights indicate that a particular sample should contribute more to the models updates during training.

When the training dataset has been resampled, it is fed into the neural network. For each ground
truth group containing one water level observation from the desired tide gauge, an input group of 48 hours
containing three ERA5 variables, four satellite altimetry variables, and one additional variable is fed. Every
single value within these input groups is referred to as an input feature, while the output values associated
with them are called sample values.
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4.4. Neural network design
The design for this neural network has been kept purposely shallow, meaning it has only one hidden layer, to
minimise the level of complexity within the model. A second layer does not improve the results significantly
based on intermediate results which are not included in this report. The design parameters that are non-
trainable by the model itself are given in Table 4.7.

Table 4.7: Design parameters for the shallow neural network

Variable Value Variable Value
Number of neurons 32 Batch size 32
Activation function hidden layer ReLU Loss function MSE
Activation function output layer Linear Sample weights CDF
Optimisation algorithm Adam Number of epochs 30
Learning rate 0.0001

A number of 32 neurons is chosen, because it has been found that this number causes the model not to
underfit or overfit on the data. The same holds for the number of epochs. After 30 epochs, the model
has sufficiently converged without an increase in the validation loss. The only parameter of the Adam
optimisation algorithm which is changed is the learning rate (α). It is set to 0.0001 to account for the large
variability within the model. It has been found that the default of 0.001 results in less accurate results. The
batch size for this method is a trade-off between fast training and accurate parameter updates and is chosen
to be 32. These choices have been based on intermediate results during the development phase of this model
which are not included in this report, because these results have not been saved. The neural network is built
and trained with the Python package tensorflow and defined as shown in the code snippet below.

Model initialisation and training

Model architecture

model = tf.keras.Sequential([
tf.keras.layers.Masking(mask_value=0.0, input_shape=input_shape),
tf.keras.layers.Dense(32, activation="relu", dtype="float32"),
tf.keras.layers.Dense(1, dtype="float32")

])

Set optimiser and learning rate

optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001)

Compile the model with the right loss function

model.compile(optimizer=optimizer, loss="mean_squared_error",
metrics=["MeanAbsoluteError"])

Batch the training dataset

train_batch = train_dataset.batch(32)

Fit the model

history = model.fit(train_batch, validation_data = val_dataset, epochs=30)

4.5. Performance analysis
After training the neural network on Scheveningen, Vlissingen and Europlatform, the performance is assessed
by applying the model to the testing data. First, the general performance is assessed by looking at the mean
squared error (MSE), the signal-to-noise ratio (SNR), the mean absolute error (MAE) and the standard
deviation of the error (σe). The same metrics are used to assess the performance of DCSM for a similar
period to allow for comparisons between the neural network and DCSM.
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• Mean Squared Error
The MSE is a popular metric for regression models. It penalises larger errors and since it has been used
as the loss function in the neural network, gives a direct measure of the performance of the model.

• Signal-to-noise ratio
The SNR is a measure of how the MSE of the model relates to the variability of the original signal. A
higher SNR indicates that the model errors are small compared to the variance of the water level, while
a lower SNR indicates that the model errors are too high for the output to be applicable. Therefore,
it can be used to determine the physical applicability of the model.

• Mean Absolute Error
The MAE computes how far off an estimation of the model is expected to be from the ground truth
data.

• Standard deviation of the error
The final metric σe is also known as the standard error and represents the spread of the error, which
can be used to compute 95% or 99% confidence intervals.

The robustness and model variability are tested with a K-fold cross-validation with K = 4 for Scheveningen.
The neural network has been trained on four different training subsets, and tested on four different validation
subsets (Table 4.6). The same metrics have been computed for the four different models, creating an upper
limit for the performance and model variability.

4.5.1. Performance on high water levels
In addition to the overall performance that has been computed with the metrics described above, the same
performance is assessed during high water level events. The high water level events are selected with a peak-
over-threshold (POT) method, for which the thresholds differ per location (Table 4.8). The POT method is
applied to the observed water levels, after which the associated ML estimates and the corresponding DCSM
values are obtained. The selection of high water levels is done using the Python package pyextremes
(Bocharov, 2023). For more information on the threshold selection, see Appendix F.

Table 4.8: Selected thresholds for each location. The thresholds are selected with a POT method to assess the model
performance on high water levels.

Scheveningen Vlissingen Europlatform
Threshold [m] 1.70 2.70 1.50

To ensure that the performance metrics are valid, the high water level events need to be independent and
identically distributed. This is achieved by applying a declustering window of 48 hours when selecting these
events. For every observed event that exceeds the threshold, the method makes sure that this event is
represented by its peak value within the time window (Figure 4.9).

(a) (b)

Figure 4.9: Observed water level with (a) no declustering and (b) declustering with a time window of 48 hours. On the y-axis,
the water level observed by the tide gauge is shown, referenced to NAP. The dotted line refers to the threshold and the red

dots to the selected peaks that exceed the threshold.
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4.5.2. Weight analysis
Next to performance metrics, an additional analysis is done to assess the importance of different input
variables of the neural network. The second-layer weights [wn1, wn2 · · · wnj ] with j = 32 (Figure 2.8)
are used to look into the importance for each neuron. If a weight approaches zero (wnj ⇒ 0), it means
that any input into that neuron is negligible, meaning that their corresponding first-layer weights are also
negligible. These first-layer weights (w11 to wmj) in turn can be assessed by summing over either the 48
hours within the subsets, or over the 32 neurons. For ERA5, heat maps are created to show the importance of
every input feature within each variable. For satellite altimetry, the weights are visualised as graphs and heat
maps. This analysis gives a shallow approximation of feature importance for each input variable. Secondly,
it enables linking poor performance parts to a possible lack of information given by the input variables.



5
Results

The results of the developed neural network are presented in this chapter. Starting at the objective of
this study, which is estimating hourly non-tidal water levels, reconstructed time series for Scheveningen,
Europlatform and Vlissingen are presented. Six months are extracted to visualise the differences between
the ML estimates and the TG observations, which allows for the identification of high- and low-performance
parts within the model. Next, the performance of each model and the results of the K-fold cross-validation
are presented, giving an approximation for the robustness and spread of the error of the ML model. The
following section presents the high water level estimates for each location, comparing them to the Dutch
Continental Shelf Model, followed by the results of the K-fold cross-validation. Finally, the results of the
weight analysis are presented to assess which features are most important when estimating non-tidal water
levels.

5.1. Time series reconstruction
The developed neural network has been trained and tested for each location of interest, which is Scheveningen,
Vlissingen and the Europlatform. Parts of the reconstructed time series are shown in Figures 5.1, 5.2 and 5.3.
This reconstruction is based on the testing dataset, input data which the model has not seen before (see
also Section 4.3.4), and therefore considered independent and a good measure of the model performance.
The harmonic tidal signals are not included in this section, but will be added later on when the model
performance is presented. This testing dataset applies to the period from 2015-04-01 at 10:00:00 to 2018-
09-07 at 23:00:00. When zoomed into six months containing high-interest periods, such as periods with
documented severe storms (Table 5.1), several important properties are discerned.

Table 5.1: Severe storms as registered by the Koninklijk Nederlands Meteorologisch Instituut (KNMI), flagged as a storm if
one of the KNMI weather stations spread throughout the Netherlands records a wind speed higher than 24.5 m/s (KNMI,

2024). Shaded in grey are the storms that occurred during the ML model testing period. The highest wind speed recorded is
averaged over one hour. The highest wind gust is instantaneous. The location refers to where these wind speeds and gusts

were recorded. The last column indicates where the storm was coming from.

Date Highest wind speed
recorded [m/s]

Highest wind gust
recorded [m/s] Location Coming from

2002-02-26 25 34 Vlieland/Vlissingen England
2002-03-09 25 33 IJmuiden Southern North Sea
2002-10-27 28 41 IJmuiden/Vlissingen Ireland
2007-01-18 25 35 IJmuiden/Vlissingen Southern North Sea
2013-10-28 29 42 Vlieland England
2013-12-05 25 63 Vlieland Scotland
2015-07-25 25 34 IJmuiden English Channel
2016-11-20 26 37 IJmuiden English Channel
2017-09-13 26 35 Vlieland Scotland
2018-01-03 26 34 Vlieland Scotland
2018-01-18 30 40 Hoek van Holland Scotland

37



5.1. Time series reconstruction 38

5.1.1. Scheveningen
Figure 5.1 shows the time series reconstruction for the testing dataset. The shaded areas correspond to the
zoomed-in graphs below the full time series, showing the reconstruction in higher detail to analyse high- and
low-variability periods.

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 5.1: Time series reconstruction for the Scheveningen model. The shaded areas in (a) correspond to the months shown
in (b), (c), (d), (e), (f) and (g). The green lines represent the TG observations, the blue lines refer to the ML model output.
The shaded areas in the sub-graphs show severe storms catalogued by the KNMI (KNMI, 2024). The y-axis unit is in metres

and depicts the non-tidal water level referenced to NAP.

The first observation is that the neural network provides a rather smoothed version of the non-tidal water
level. High-frequency variations in the water level are not fully captured by the model, as opposed to most
low-frequency variations that last over multiple hours. When these low-frequency variations are of small
magnitude, the model quickly conforms to a constant value close to zero. Several high water level events
are considered within the testing period that occurred on 2015-07-25, 2016-11-20, 2017-09-13, 2018-01-03
and 2018-01-18. Generally, the model underestimates the peaks in the non-tidal water levels during these
storms (Table 5.2). However, one important characteristic of the model becomes apparent when analysing
the sub-figures of Figure 5.1, 5.2 and 5.3. For storms coming from the south, meaning from the English
Channel or southern North Sea, the model underestimates the high water level event with values between
0.243 m (Figure 5.3d) and 0.693 m (Figure 5.1b) and in some cases even misses the high water level event
(Figure 5.2d). Conversely, storms with a longer duration that originate from Scotland or northern England



5.1. Time series reconstruction 39

are generally estimated better (Table 5.2). Some additional details and examples for Scheveningen are
highlighted below.

Table 5.2: Error between machine learning estimates and tide gauge non-tidal water levels for severe storms as registered by
the KNMI (KNMI, 2024) for the testing period. The last column indicates where the storm was coming from. Errors are given

in metres and show the TG observations minus the ML estimates.

Date Error
Scheveningen [m]

Error
Vlissingen [m]

Error
Europlatform [m] Coming from

2015-07-25 0.693 0.477 0.305 English Channel
2016-11-20 0.571 0.460 0.243 English Channel
2017-09-13 0.293 0.243 -0.087 Scotland
2018-01-03 0.496 0.287 -0.126 Scotland
2018-01-18 0.269 0.862 0.056 Scotland

• Figure 5.1b: July 2015 is presented, displaying how the model describes relatively high non-tidal water
levels during summer storms. The storm on 2015-07-25 arrived from the south, travelling north along
the Dutch coast in approximately eleven hours (InfoNu, 2016). The sharp peak this storm induced in
the coastal non-tidal water levels in Scheveningen is underestimated by 0.693 m. Longer and lower
peaks, such as the higher water levels between 2015-07-08 and 2015-07-10, are followed by the model
with an underestimation of 0.124 m. When the observed non-tidal water levels are close to zero,
meaning -0.192 < non-tidal water level < 0.235 m, the model quickly converges to give a constant
output of -0.001 m.

• Figure 5.1c: The autumn and winter months such as November and December 2015 have much
more variation in the non-tidal water level, which decreases the possibility of the model converging to
a constant value. The peaks and troughs are followed, in some cases better than others, as can be
viewed by comparing the peak on 2015-11-28 with an error of 0.174 m with the peak on 2015-11-30
with an error of 0.616 m.

• Figure 5.1d: 2016-11-20 contains another storm, caused by a depression that entered the North Sea
through the English Channel, travelling north along the Dutch coast (KNMI, 2016). These south-
westerly storms are severe, but short, causing a sharp peak in the non-tidal water level records such as
the storm on 2015-07-25. This sharp peak is underestimated by 0.571 m.

• Figure 5.1e: December 2016 and January 2017 give examples of both the convergence to a constant
value and the estimation of larger peaks. On days with little non-tidal water level variation, such as
the period between 2016-12-16 and 2016-12-20 or between 2016-12-29 and 2017-01-01, the model
output is constant. The large variations, such as the signals between 2016-12-26 and 2016-12-28 or
the peak on 2017-01-04, are followed by the model, but underestimated systematically by a value of
0.395 and 0.348 m respectively. Sharper peaks are underestimated more than wider peaks, such as
the peak on 2017-01-14 with an error of 0.791 m compared to the peak on 2017-01-04. The sharp
peaks on 2017-01-12 with an error of 0.502 m and 2017-01-14 can be explained by a small depression
that travelled from the English Channel northward, causing a lot of precipitation (KNMI, 2017b). The
winds that accompanied this depression were not severe enough to be considered a storm, hence it is
not shaded. Furthermore, higher winds were observed in the north of the Netherlands near the holidays
of 2016, explaining the higher non-tidal water levels from 2016-12-24 to 2016-12-28 (KNMI, 2017a).

• Figure 5.1f: On 2017-09-13, a severe storm travelled over the North Sea towards Denmark, coming
from Scotland (KNMI, 2017c), with the largest wind speeds recorded in the north of the Netherlands
(Table 5.1). The model tracks these high non-tidal water levels better than those from the shorter,
sharper peaks caused by storms coming from the south, underestimating this one with 0.293 m.

• Figure 5.1g: Two severe storms are recorded on 2018-01-03 and 2018-01-18, the first one longer and
causing higher non-tidal water levels and the second one shorter, but stronger regarding wind speeds
(Table 5.1). Both travelled from the coast of Scotland over the North Sea to the Dutch coast (KNMI,
2018a; KNMI, 2018b), and are captured by the model with errors of 0.496 m and 0.269 m respectively,
and the higher non-tidal water levels between 2018-01-16 and 2018-01-18 are underestimated with an
error of 0.429 m.
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5.1.2. Vlissingen
As was mentioned in Section 3.2, Vlissingen lies enclosed in an estuary, experiencing large tidal amplitudes
and land-sea interactions such as reflections. Figure 5.2 shows the full reconstruction of the non-tidal water
level record, zoomed in to the same months as Figure 5.1 to discern the differences between this model and
the model from Scheveningen.

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 5.2: Time series reconstruction for the Vlissingen model. The shaded areas in (a) correspond to the months shown in
(b), (c), (d), (e), (f) and (g). The green lines represent the TG observations, the blue lines refer to the ML model output.
The shaded areas in the sub-graphs show storms catalogued by the KNMI (KNMI, 2024). The y-axis unit is in metres and

depicts the non-tidal water level referenced to NAP.

The same characteristics that have been found for Scheveningen are also valid for Vlissingen, such as
the smooth behaviour of the modelled non-tidal water level compared to the TG record and the general
underestimation of high non-tidal water level events. Still, there are a few distinct differences, one of which
relates to the convergence to a constant in e.g. Figure 5.2e compared to Figure 5.1e. Table 5.3 reports the
values of the constants for each model, along with the total duration in hours where the models estimate this
constant and in which 95% interval of non-tidal water levels this happens. The models do not consistently
estimate this constant when the TG observation falls within this 95% interval, but they do so in 39.5%
of cases for Scheveningen, 28.3% for Vlissingen, and 43.8% for Europlatform, while outside this range it
only happens in 5.4% of cases for Scheveningen, 3.9% for Vlissingen and 4.6% for Europlatform. The total
durations indicate that Scheveningen estimates a constant most frequently, followed by Europlatform, and



5.1. Time series reconstruction 41

then Vlissingen. This statistic correlates with the number of inactive neurons presented in Section 5.4.
Furthermore, the underestimation of 0.477 m of the summer storm on 2015-07-25 is smaller (Figure

5.2b) than for the Scheveningen model (Figure 5.1b) by 0.216 m. The Vlissingen model provides a similar
water level (0.539 m) as the Scheveningen model (0.512 m), only differencing by 0.027 m, even though the
Vlissingen TG recorded a lower peak (1.016 m) than the Scheveningen TG (1.205 m), which differs with
0.189 m. The storm on 2016-11-20 is skipped in its entirety (Figure 5.2d), while the Scheveningen model
still captures some of it (Figure 5.1d). The severe storm on 2018-01-03 is followed by the Vlissingen model
(Figure 5.2g), but the sharp peak on 2018-01-18 is underestimated by 0.862 m. This event is present in
Scheveningen as well, though the peak is much smaller (Figure 5.1g).

5.1.3. Europlatform
Since the Europlatform tide gauge is located further offshore than Scheveningen or Vlissingen, the non-tidal
water level is expected to be smoother, meaning less disrupted by land-sea interactions such as reflections
from the coast. Figure 5.3 shows the reconstruction of the Europlatform model, zoomed in to the same
months as the Scheveningen and Vlissingen model to enable comparisons between the three models.

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 5.3: Time series reconstruction for the Europlatform model. The shaded areas in (a) correspond to the months shown
in (b), (c), (d), (e), (f) and (g). The green lines represent the TG observations, the blue lines refer to the ML model output.
The shaded areas in the sub-graphs show storms catalogued by the KNMI (KNMI, 2024). The y-axis unit is in metres and

depicts the non-tidal water level referenced to NAP.
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Table 5.3: Statistics on the constants that each model converges towards for the testing dataset. Given are the constants in
metres, the total duration where the model output is equal to the constant in hours, the interval of the TG observations in

which 95% of the constant output appears in metres and the percentage of constant outputs within this interval.

Constant [m] Total duration
[hr]

95% interval
[m]

Percentage of
95% interval

Scheveningen -0.001 9021 [-0.192, 0.235] 39.5
Vlissingen 0.020 6463 [-0.160, 0.270] 28.3
Europlatform -0.018 8952 [-0.195, 0.126] 43.8

The model for Europlatform follows high non-tidal water levels better than for Scheveningen or Vlissingen,
overestimating high non-tidal water levels during the storms on 2017-09-13 (Figure 5.3f) and 2018-01-
03 (Figure 5.3g) by 0.087 and 0.126 m respectively (Table 5.2). Additionally, the observed water level
at Europlatform is smoother than at Scheveningen or Vlissingen, and the reconstruction at Europlatform
conforms to the observations better. Still, large peaks such as those on 2015-07-25 and 2017-01-14 are
underestimated (Figure 5.1b and 5.3e) by 0.305 m and 0.554 m respectively.

5.1.4. Scenario examples
Specific examples of the input that is fed into the model for three scenarios are given in Figure 5.4 and
5.5, for the ERA5 variables and satellite altimetry variables respectively. These scenarios occur on 2015-
07-25 at 12:00, where all three models underestimate a summer storm, on 2016-12-31 at 00:00, where the
Scheveningen and Europlatform model estimate a constant value, and on 2018-01-03 at 17:00, where all three
models estimate a winter storm with better accuracy than the summer storm in 2015. The input variables
are shown as histograms before they are normalised to give a better interpretation of the characteristics that
cause good or bad performance of the model.

The ERA5 input variables corresponding to the bad performance scenario (2015-07-25 at 12:00) show a
low-pressure field for a few hours before the high non-tidal water level occurs, though the spread is small
compared to the good performance scenario (2018-01-03 at 17:00) shown at the right-hand side of Figure
5.4. The reported pressures are lower for this winter storm, pushing the output of the model up more.
The sea surface pressure for the constant output scenario (2016-12-31 at 00:00) is high with little temporal
variability.

The longitudinal and lateral wind speeds (U10 and V10) for the constant output scenario also show little
temporal variation, suggesting stable, calm weather with wind speeds centred around 0 m/s. For the good
performance scenario, U10 is centred around 9 m/s one hour before the timestamp of the output value, and
centred around 5 m/s forty-eight hours before. This implies that the wind speeds are increasing within the
time window considered for the input data. The bad performance scenario U10 contains a similar structure,
but the wind speed itself is lower, centred around 5 m/s one hour before the timestamp of the output value
and around 2 m/s forty-eight hour before.

The lateral wind speeds show less distinct patterns for both the bad and the good performance scenarios.
Both are centred around 0 m/s and show a similar spread. For the bad performance scenario, V10 increases
when going from -48 hours to -1 hour before the timestamp of the output value, visible as the histogram
flattening and spreading. For the good performance scenario, V10 increases too, but then goes back to being
centred around 0. This suggests that V10 does not play as large a role in the performance of the model for
different scenarios as p and U10 do.

Finally, the number of satellite altimetry observations differs per scenario (Figure 5.5). The bad perfor-
mance scenario contains 10 overpasses within the area of interest, the constant output scenario contains 9
and the good performance scenario contains 3. All overpasses have varying non-tidal residuals, ranging from
-3 to 3 m. For the bad performance scenario, the NTR increases when going from -45 to -4 hours before the
timestamp of the output value (Figure 5.5). The NTR for the constant output scenario stays centred around
0. From the good performance scenario, no time variability can be discerned due to the limited number of
overpasses. No particularly clear patterns can be discerned otherwise from the observation that the model
does not necessarily require a large amount of satellite altimetry data to make accurate estimations when
looking at the good performance scenario.
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(a)

(b)

(c)

Figure 5.4: Histograms of (a) sea level pressure, (b) longitudinal wind speed and (c) lateral wind speed for (left) a good
performance sample on 2015-07-25 at 12:00, (middle) a constant output sample on 2016-12-31 at 00:00 and (right) a good

performance sample on 2018-01-03 at 17:00. The y-axis corresponds with the density of each bin.
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(a)

(b)

(c)

Figure 5.5: Histograms of (a) non-tidal residual, (b) longitudinal distance and (c) lateral distance for (left) a good
performance sample on 2015-07-25 at 12:00, (middle) a constant output sample on 2016-12-31 at 00:00 and (right) a good

performance sample on 2018-01-03 at 17:00. The y-axis corresponds with the number of observations in each bin.

5.2. Model performance
The performance of the three developed models is assessed with four performance metrics (see Section 4.5),
computed with the observed water levels of the TG records and the ML model estimates. For these metrics,
the harmonic tidal signal has been added to both the TG water levels and the ML model estimates. Only
the signal-to-noise (SNR) metric is impacted by this step, since the mean squared error (MSE), the mean
absolute error (MAE) and the standard error (σε) rely on residuals in which the harmonic tidal signal cancels
out. The SNR, however, is used to assess whether the model is useful for physical applications because it
compares the variability of the errors to the variability of the water level itself. Including the harmonic tidal
signals is essential here since this component induces the largest variability in the water level. These four
metrics are compared to Dutch Continental Shelf Model (DCSM) estimates, of which the hourly water levels
range from 2015-04-01 until 2018-01-01. The metrics for both the ML models and DCSM are presented in
Table 5.4.

The ML models for Scheveningen and Vlissingen perform similarly, varying only in their MAE by a
maximum of 0.002 m. The ML model for Europlatform performs slightly better, with an MSE of 0.011
m. Scheveningen, Vlissingen and Europlatform have an MAE of 0.101, 0.099 and 0.078 m respectively.
The standard deviation of the error (σε) is 0.134 m for Scheveningen and 0.135 m for Vlissingen, while
Europlatform has a σε of 0.100 m.

When looking at DCSM, the performance metrics appear to be approximately a factor two better than
the ML models, with the exception of the signal-to-noise ratios (SNR). This metric differs greatly over the
ML models and DCSM due to the large variability in tidal amplitudes over the three locations (see also Figure
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4.3). The Scheveningen ML model has an SNR of 22.7, meaning that the MSE of the Scheveningen model
is 22.7 times smaller than the variance of the TG water levels (including the tidal signal). This is considered
sufficient for physical applications. Vlissingen has an SNR of 101.04 due to the large tidal variability and
Europlatform of 37.4 due to the smaller MSE compared to Scheveningen. For DSCM, the SNR reports 106.1
for Scheveningen, 398.3 for Vlissingen and 135.6 for Europlatform, these differences having the same cause
as the differences for the ML models.

In addition to the overall performance, a K-fold cross-validation (with K = 4) has been applied to the
Scheveningen model. A rough estimate of the robustness and spread of the developed neural network is
obtained by training and testing the model on different datasets. The period for each validation dataset is
approximately 3.5 years, ranging from 2001-01-01 to 2015-04-01 (Table 4.6). The testing dataset has not
been used for this validation.

Figure G.1, G.2, G.3 and G.4 show the time series reconstruction for all K-fold validation sets, each with
four zoomed-in months to show the performance of the model in different conditions, especially during the
severe storms mentioned in Table 5.1. For each validation dataset, the performance metrics are computed
and presented in Table 5.4.

Table 5.4: Model performance metrics for each location. All metrics are based on data that the model has not used in the
training stage. Shown are the mean squared error (MSE), the signal-to-noise ratio (SNR), the mean absolute error (MAE) and
the standard error (σε), also known as the standard deviation of the error. Units of MSE, MAE and σε are in metres. The ML

model metrics are shown above the DCSM metrics, followed by the K-fold cross-validation metrics.

ML model MSE [m] SNR [-] MAE [m] σε [m]
Scheveningen 0.018 22.7 0.101 0.134
Vlissingen 0.018 101.0 0.099 0.135
Europlatform 0.011 37.4 0.078 0.100
DCSM MSE [m] SNR [-] MAE [m] σε [m]
Scheveningen 0.004 106.1 0.049 0.062
Vlissingen 0.005 398.3 0.054 0.068
Europlatform 0.004 135.6 0.049 0.052
K-fold MSE [m] SNR [-] MAE [m] σε [m]
Validation set 1 0.019 23.1 0.102 0.137
Validation set 2 0.016 27.8 0.097 0.126
Validation set 3 0.018 24.9 0.101 0.129
Validation set 4 0.015 30.1 0.090 0.120

The MSE for all K-fold validation sets is in the order of 0.015 to 0.019 m, with a σε between 0.120 and
0.137 m. The MAE ranges between 0.090 and 0.102 m. The SNR of each validation set ranges between
23.1 and 30.1. Table 5.5 presents the sample means and the corresponding range of the K-fold validation
metrics. The sample means show an expected MSE of 0.017 m, an SNR of 26.5, an MAE of 0.097 m and a
σε of 0.128 m when this model is trained. The largest difference between the K-fold validation sets is given
as the range, reporting a range of 0.004 m for the MSE, 7.1 for the SNR, 0.012 m for the MAE and 0.017
m for the σε. The corresponding metrics for the Scheveningen model differ from the sample means by 0.001
m for the MSE, 3.8 for the SNR, 0.004 m for the MAE and 0.006 m for the σε. From these metrics, a high
robustness is verified.

Table 5.5: Sample mean (x̄) and range of the performance metrics for the Scheveningen model.

MSE [m] SNR [-] MAE [m] σε [m]
x̄ 0.017 26.5 0.097 0.128
Range 0.004 7.1 0.012 0.017

5.3. Estimation of high water levels
Since high water level events are used for making risk assessments and computing return periods, the
performance of the model for high water levels is important to report. To assess these high water levels,
a peak-over-threshold (POT) method is applied to find the relevant high water level events (Appendix F).
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These results are based on the full water level signals and their reconstruction, meaning that the harmonic
tidal signal has been added to the signals to account for high and low tidal periods.

The high water level events for each location are shown in Figure 5.6, where the red line refers to the
threshold of the POT method and the red dots to the selected high water levels. Declustering of the events
is applied with a window size of 48 hours (see Section 4.5). For each location, the corresponding ML output
and the DCSM output have been collected, after which the performance metrics are again computed (Table
5.6). The number of high water levels found for Scheveningen, Vlissingen and the Europlatform is 69, 68
and 70 respectively.

Similar to the overall performance analysis, the performance on the high water levels is also assessed
with a K-fold cross-validation. The model of Scheveningen has been trained and validated for K = 4, the
selected high water levels for each validation set presented in Figure 5.7. The performance metrics for each
validation set are given in Table 5.6. The number of high water levels for each validation set is 70, 74, 57
and 66 respectively.

(a)

(b)

(c)

Figure 5.6: Selected high water levels from tide gauge data for (a) Scheveningen, (b) Vlissingen and (c) Europlatform.
Thresholds are shown as red dashed lines and high water levels as red dots. A declustering window of 48 hours is used.
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(a)

(b)

(c)

(d)

Figure 5.7: Selected high water levels from tide gauge data for (a) validation dataset 1, (b) validation dataset 2, (c)
validation dataset 3 and (d) validation dataset 4. The threshold is shown as a red dashed line and high water levels as red

dots. A declustering window of 48 hours is used.



5.3. Estimation of high water levels 48

Table 5.6: Model performance metrics for each location for high water levels, including the harmonic tidal signals. Shown are
the mean squared error (MSE), the signal-to-noise ratio (SNR), the mean absolute error (MAE) and σε. Units of MSE, MAE
and σε are in metres. The ML model metrics are shown above the DCSM metrics, followed by the K-fold cross-validation

metrics.

ML model MSE [m] SNR [-] MAE [m] σε [m]
Scheveningen 0.054 15.3 0.184 0.164
Vlissingen 0.016 133.8 0.099 0.117
Europlatform 0.013 29 0.090 0.113
DCSM MSE [m] SNR [-] MAE [m] σε [m]
Scheveningen 0.019 42.3 0.103 0.098
Vlissingen 0.013 397.6 0.099 0.068
Europlatform 0.006 141.3 0.066 0.051
K-fold MSE [m] SNR [-] MAE [m] σε [m]
Validation set 1 0.034 14.8 0.139 0.171
Validation set 2 0.044 13.2 0.148 0.183
Validation set 3 0.039 14.2 0.150 0.171
Validation set 4 0.034 15.6 0.142 0.166

From Table 5.6, it is concluded that the Europlatform model performs best when considering the performance
metrics, for both the ML model and DCSM. The models for Vlissingen and Europlatform perform similarly
on high water levels as they do for hourly water levels, with an MSE of 0.016 and 0.013 m respectively. Their
MAE are 0.099 and 0.090 m and their σε 0.117 and 0.113 m respectively, only differencing with a maximum
of 0.002 m for the MSE, 0.012 for the MAE and 0.018 m for the σε.

The model for Scheveningen performs significantly worse for high water levels with an MSE of 0.054
m, an MAE of 0.184 m and a σε of 0.164 m. When looking at Figure 5.8, high water levels are being
underestimated more for Scheveningen than for Vlissingen or Europlatform. This agrees with the earlier
founding presented in Table 5.2, where Scheveningen underestimates four out of five storms more extremely
than Vlissingen or Europlatform. Additionally, the SNR of 13.5 and 29 for Scheveningen and Europlatform
respectively has decreased when compared to the performance on the hourly water levels. The Vlissingen
model has an increased SNR of 133.8. These differences are caused by a difference in MSE compared to the
model performance on high water levels.

For DCSM, the MSE and MAE for all locations have increased. The σε for Scheveningen has increased,
for Vlissingen has remained the same and for Europlatform decreased with 0.001 m. The MSE has most
significantly increased, and consequently, the SNR has decreased. This is most noticeable in Scheveningen.

The K-fold cross-validation results show little variation in the different validation sets. Looking at Figure
5.7, it can be concluded that validation set 3 contains the smallest number of high water level events and
the lowest maximum water level. Also, most high water level events occur in the winter months, as evident
in Figure 5.7d. The mean value for each metric along with the range within the four values for each metric
are given in Table 5.7.

Table 5.7: Sample mean (x̄) and range of the performance metrics for the Scheveningen model for high water levels.

MSE [m] SNR [-] MAE [m] σε [m]
x̄ 0.038 14.4 0.145 0.173
Range 0.010 2.4 0.011 0.017

The sample means show 0.038 m for the MSE, 14.4 for the SNR, 0.145 m for the MAE and 0.173 m for the
σε. The range for these metrics is 0.010 m for the MSE, 2.4 for the SNR, 0.011 for the MAE and 0.017 for
the σε. These ranges are sufficiently small to be able to consider this model robust, and the SNR is large
enough to consider the ML model useful for practical application, though DCSM still outperforms the ML
model in terms of accuracy.

The largest difference between the K-fold validation sets is given as the range, reporting a range of 0.004
m for the MSE, 7.1 for the SNR, 0.012 m for the MAE and 0.017 m for the σε. The corresponding metrics
for the Scheveningen model differ from the sample means by 0.001 m for the MSE, 3.8 for the SNR, 0.004
m for the MAE and 0.006 m for the σε. From these metrics, a high robustness is verified.
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Figure 5.8 shows the selected high water level events for all three ML models, where the dots represent the
high water level events and the red line refers to the 1:1 line. Most high water level events are underestimated
by all models, with higher events being underestimated more than lower ones. This effect is largest for
Scheveningen, and smallest for Europlatform. The placement of the points, with Vlissingen positioned more
to the top right than Scheveningen and Europlatform, is caused by the larger tidal signal in Vlissingen.

(a) (b)

Figure 5.8: Observed high water levels (x-axis) vs their corresponding estimated water levels (y-axis) for (a) the machine
learning model and (b) DCSM. The blue dots refer to the Vlissingen model, the orange dots to the Scheveningen model and

the green dots to the Europlatform model.

5.4. Weight analysis
For further analysis of the results, the parameters trained by the model are presented. These parameters
are defined as weights [w11 ww12 · · · wmj ] and [wn1 wn2 · · · wnj ] and biases [bn1 bn2 · · ·
bnj ] and [bŷ] (see Figure 2.8). For ERA5, the weights are shown as heat maps. For satellite altimetry, the
weights are shown as graphs and heat maps, since the input corresponding to satellite altimetry is not linked
to specific locations and/or time stamps.

The weights and biases that are not directly linked to input variables ([wn1 wn2 · · · wnj ] and
[bn1 bn2 · · · bnj ]) are presented in Figure 5.9. The bias of the output layer ([bŷ]) is -1.11*10−3 m
for Scheveningen, 1.97*10−2 m for Vlissingen and -1.78*10−2 m for Europlatform, equal to the constant
values the three models converge to when the observed non-tidal water level is close to zero (Table 5.3).
This means that all neurons return a value of zero after the weighted sum of input data has been passed
through the activation function. Regarding the shape of the activation function as described in Section 2.5,
the weighted sums of all input features is < 0 for every neuron, which returns a 0 according to the ReLU
function (Figure 2.10).

Figure 5.9 shows that the three models have different weight and bias configurations. All weights reside
within a range of -0.4 to 0.4, but the Scheveningen model contains more "dead" neurons than Vlissingen
or Europlatform. A dead neuron refers to a neuron with a corresponding weight close to zero. Any input
into the neuron is nullified by this small weight, essentially rendering the neuron inactive. In Figure 5.9,
these dead neurons and their corresponding biases are shown as red dots. Like the input features, the bias
corresponding to a dead neuron is also nullified.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Second-layer weight [wn1 wn2 · · · wn32] and first-layer bias [bn1 bn2 · · · bn32] graphs for the (a, b)
Scheveningen, (c, d) Vlissingen and (e, f) Europlatform model. Blue dots refer to the weights and orange dots to the biases.

The red dots show the ones where the weight is so close to zero that their inputs are nullified.

For Scheveningen, neurons 4, 5, 8, 10, 11, 13, 17, 18, 22, 24, 26 and 27 are considered inactive. For
Vlissingen, these neurons are 1, 19 and 29 and for Europlatform, these are 6, 7, 10, 16, 20, 24 and 32. From
the corresponding biases, it can be concluded that the model stops training when these neurons are killed
to speed up the training process.

The large number of dead neurons in the Scheveningen model agrees with the more frequent appearance
of a constant value in the time series reconstruction compared to Vlissingen or Europlatform (Table 5.3).
However, this does not necessarily imply that the performance of the model decreases if the number of dead
neurons increases. While the Vlissingen model contains the smallest number of dead neurons, Europlatform
performs better on all metrics (Table 5.4 and 5.6), even though the duration of a constant output for
Europlatform is larger than for Vlissingen (Table 5.3).

5.4.1. Satellite altimetry features
The second-layer weights and biases that are considered to be non-significant (the red dots in Figure 5.9)
have been excluded from the results for the first-layer weights ([w11 ww12 · · · wmj ]) corresponding to
satellite altimetry. During the input preparation (Section 4.3), the satellite observations have been processed
to form part of the input dataset. This is done by padding the data to consist of 48 one-hour arrays for
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every 48-hour subset. These arrays, counting 514 observations, are padded with zeros if they contain fewer
satellite observations than 514.

The sum of the first-layer weights over the 48-hour time window for the Scheveningen model is presented
in Figure 5.10, where the individual lines correspond to the individual neurons. The grey lines refer to the
neurons whose weighted sum is nullified by the corresponding weight for the second layer.

The sea level observations from satellite altimetry and the longitudinal component of the distance between
the tide gauge and the observations (dE) vary between -2.5 and 2.5. The lateral component of the distance
(dN ) varies between -1.5 and 1.5. The time difference between the observations and the time stamp of the
desired output value (dt) is mostly negative, ranging between -4.2 and 0.5. For all variables, the weights
converge to zero when the number of observations increases. For all neurons, the weights are in the same
order of magnitude for each corresponding observation, meaning that all lines within the sub-graphs follow
a similar pattern. The same graphs for the Vlissingen and Europlatform models are shown in Appendix H.

(a) (b)

(c) (d)

Figure 5.10: First-layer weights summed over the 48-hour time window for the Scheveningen model for (a) the non-tidal
water level, (b) the longitudinal component of the distance dE , (c) the lateral component of the distance dN and (d) the time
difference between observation and tide gauge dt. Each coloured line corresponds to a neuron. The black lines show the mean

of all 32 lines.

The convergence phenomenon causes many satellite observations to be less important than earlier ones.
Adding more observations does not provide additional information to the model because their weight is
considered negligible. This phenomenon stems from the processing method and availability of the satel-
lite altimetry data, where the padding method renders many observations redundant. The lateral distance
component (dN ) also has smaller weights compared to the other variables, making it less important. Fur-
thermore, weights associated with dead neurons (grey lines) differ significantly from other weights. This
happens because the model stops training these neurons once they are killed, preventing their weights from
converging. Lastly, the largest differences between neurons are found in the time difference component (dt)
within the first 200 observations, ranging from -4.2 to 0.5, while other variables show smaller variations.

Instead of presenting the weights as graphs, the same weights can be presented as heat maps. These
maps are created by taking the latitudes and longitudes of the satellite altimetry observations, and computing
the mean weight per location over the active neurons for the different variables. Figure 5.11 shows the mean
weight per location for the NTR observed by the satellites, Figure 5.12 shows the mean weight for dE , Figure
5.13 shows the mean weight for dN . The weights corresponding to the dead neurons (see Figure 5.9) have
been excluded to prevent adding noise (see the grey lines in Figure 5.10).
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: First-layer mean weights of the non-tidal water level observations from satellite altimetry. The first and last hour
of the 48-hour time window is shown for (a, d) Scheveningen, (b, e) Vlissingen and (c, f) Europlatform. High positive weights

are shown in red, high negative values in blue and weights close to zero in yellow.

(a) (b) (c)

(d) (e) (f)

Figure 5.12: First-layer mean weights of the longitudinal distance between the satellite altimetry observations and the tide
gauge. Only the first and last hour of the 48-hour time window is shown for (a, d) Scheveningen, (b, e) Vlissingen and (c, f)

Europlatform. High positive weights are shown in red, high negative values in blue and weights close to zero in yellow.
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: First-layer mean weights of the lateral distance between the satellite altimetry observations and the tide gauge.
The first and last hour of the 48-hour time window is shown for (a, d) Scheveningen, (b, e) Vlissingen and (c, f) Europlatform.

High positive weights are shown in red, high negative values in blue and weights close to zero in yellow.

Notably, the largest positive weights corresponding to the observed non-tidal water level are found along the
Dutch coast and the northern North Sea (Figure 5.11). The middle of the North Sea reports the highest
negative weights. This general pattern is valid for all three models. The differences between the first and
last hour of the 48-hour time window show that the features 1 hour before the time stamp of the output
value have larger weights than 48 hours before for the middle of the North Sea, and smaller ones near the
borders of the area of interest (see Appendix H).

The large importance at the borders of the area of interest is caused by the padding of satellite altimetry
data in the processing method. As concluded from Figure 5.10, the weights gradually converge to zero when
the number of observations increases within an hour. Processing is done by storing all available satellite
observations within each hour as arrays in chronological order. This means that, in most cases, the start of
every array contains observations at the border of the area of interest. Due to the padding, the remaining
observations quickly become redundant.

Additionally, dE shows a similar but inverse pattern, with high positive weights in the middle of the North
Sea and negative weights along the border of the area of interest (Figure 5.12). The high negative weights
east of the tide gauges are caused by dE being negative in this area. The differences between the first and
last hour of the 48-hour time window are mostly negative for Scheveningen and Europlatform in the middle
of the North Sea (Appendix H), except the region east of the tide gauges. This means that dE is considered
more important 48 hours before the time stamp of the output value than 1 hour before. For Vlissingen, most
differences are positive, meaning that dE is considered more important 1 hour before the time stamp of the
output value than 48 hours before.

Figure 5.13 shows weights close to zero, with faint patterns showing positive weights over the North Sea
and negative ones at the borders of the area of interest and from the Strait of Dover southwards for all
locations. These negative weights are caused by dN being negative there. The differences between the first
and last hour of the 48-hour time window are mostly positive for Scheveningen and Vlissingen (Appendix
H), meaning that 1 hour before the time stamp of the output value is more important than 48 hours before.
Europlatform shows slightly negative differences, suggesting that 48 hours before the time stamp of the
output value is more important than 1 hour before.
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5.4.2. ERA5 features
The first-layer mean weights corresponding to ERA5 variables are shown in Figure 5.14, 5.15 and 5.16, where
dark blue or red refers to higher weights, either positive or negative, and yellow refers to weights closer to
zero. Figure 5.14 visualises the first and last hour of the input features for sea level pressure (p), meaning
the 48th hour and the 1st hour before the time stamp of the output value. For all models, the area with
the largest weights is to be found at the Dutch coast, reaching as high as 1.9*10−2 in some locations. The
northern North Sea is also of importance, though the weights are inversely proportional to the weights along
the Dutch coast. Furthermore, the weights 48 hours before the time stamp of the output value are higher
at the Dutch coast than the weights 1 hour before the time stamp of the output value (see also Appendix
H). The opposite is true in the northern North Sea, where the weights 1 hour before the time stamp of the
output value are higher.

For the longitudinal wind speed component (U10) (Figure 5.15), the area along and below the Dutch
coast contains the highest weights, with some negative weights in two areas across the middle of the North
Sea. For the Dutch coast, these weights are higher 48 hours before the time stamp of the output value
compared to 1 hour before. The northern North Sea contains two line-shaped areas that contain high
weights, negative as well as positive. These are also higher 48 hours before the time stamp of the output
value compared to 1 hour before. The middle of the North Sea also contains an area with higher weights
48 hours before the time stamp of the output value, but their surroundings experience the opposite, having
larger weights 1 hour before the time stamp of the output value.

Those line-shaped areas are more distinguishable when looking at the lateral wind speed component
(V10) (Figure 5.16), where they are noticeable from both 48 hours to 1 hour before the time stamp of the
output value, and for all three models. In addition, those weights are mostly negative. The area around
and below the Dutch coast contains the highest weights, which are increasingly positive for 1 hour before
the time stamp of the output value in comparison to 48 hours before. The opposite is true for the two
line-shaped areas in the northern North Sea. Their importance has decreased for 1 hour before the time
stamp of the output value in comparison to 48 hours before. In general, the weights for the lateral wind
speed component over the entire North Sea grow more positive when for hours closer to the time stamp of
the output value.

(a) (b) (c)

(d) (e) (f)

Figure 5.14: First-layer mean weights of ERA5 sea surface pressure. The first and last hours of the 48-hour time window is
shown for (a, d) Scheveningen, (b, e) Vlissingen and (c, f) Europlatform. High positive weights are shown in red, high

negative values in blue and weights close to zero in yellow.
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(a) (b) (c)

(d) (e) (f)

Figure 5.15: First-layer mean weights of ERA5 longitudinal wind speed. The first and last hours of the 48-hour time window
is shown for (a, d) Scheveningen, (b, e) Vlissingen and (c, f) Europlatform. High positive weights are shown in red, high

negative values in blue and weights close to zero in yellow.

(a) (b) (c)

(d) (e) (f)

Figure 5.16: First-layer mean weights of ERA5 lateral wind speed. The first and last hours of the 48-hour time window is
shown for (a, d) Scheveningen, (b, e) Vlissingen and (c, f) Europlatform. High positive weights are shown in red, high

negative values in blue and weights close to zero in yellow.
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In Figure 5.14, 5.15 and 5.16, the mean of all active neurons is computed to get the weight per hour for
every variable. The maps to show the differences between 1 hour and 48 hours before the time stamp of the
output value are shown in Appendix H.

5.4.3. Weight importance
To assess which variables contribute most to the estimation of non-tidal water levels, the corresponding
first-layer weights are summed over the full 48-hour time window and over all active neurons. Table 5.8
presents the percentages of how much each variable contributes, defined as the sum of the absolute first-layer
weights for the corresponding variable divided by the sum of all absolute first-layer weights.

Table 5.8: Weight contributions of input variables in percentages. The weights are summed over the 48-hour time window
and all active neurons for every model.

Scheveningen [%] Vlissingen [%] Europlatform [%]

ER
A5

p 17.37 16.38 16.49
U10 18.28 18.18 17.95
V10 15.71 16.31 15.99

Sa
te
lli
te

al
tim

et
ry NTR 9.36 9.54 9.76

dN 7.62 8.27 8.28
dE 10.75 10.72 11.23
dt 20.93 20.60 20.29

DOY 2.54*10−3 2.43*10−3 2.02*10−3

The variable with the largest weights is dt, which gives the time difference between the satellite altimetry
observations and the time stamp of the output value. This variable accounts for ±20% of the weights for all
models. The next most important variables are the three ERA5 variables, U10 being the most crucial one.
dE accounts for ±11% of the weights, NTR for ±9.5% and dN for ±8%. DOY, which is only a single value
in an input dataset of 314401 features, has such a small weight that it only accounts for ±0.002% of the
weights.

Overall, the variables corresponding to satellite altimetry observations, meaning NTR, dN , dE and dt,
account for 48.66% of the total weights for Scheveningen, 49.13% for Vlissingen and 49.56% for Europlatform.
Consequently, ERA5 variables, which consist of p, U10 and V10, make up 51.33% of the total weights for
Scheveningen, 50.87% for Vlissingen and 50.43% for Europlatform.

5.5. Computation time
One of the advantages of using machine learning over elaborate numerical models is the efficient compu-
tational cost. Table 5.9 presents the computation times for the estimation of one year of coastal water
levels compared to DCSM. For DCSM, the 2022 release of DCSM-FM 100m (flexible mesh with a highest
resolution of 100 metres) (Zijl, Groeneboom, et al., 2022) has been used to compare the ML model to,
but DCSM-FM 0.5nm (flexible mesh with a highest resolution of 0.5 nautical miles) (Zijl, Zijlker, Laan, &
Groenenboom, 2022) is also presented to highlight the differences between the different DCSM models.

Table 5.9: Computation time for one year for the ML model developed in this study vs DCSM-FM 100m and DCSM-FM
0.5nm. Computation times are shown in seconds. Computational power is shown in the number of available cores. The time

step refers to the time step of the estimates.

Computation
time [hours]

Available
computational power
[number of cores]

Time step
[seconds]

Computation time
per time step [sec-
onds]

ML model 0.06 4 3600 0.09
DCSM-FM 100m 52.8 20 35.4 4.27
DCSM-FM 0.5nm 8.3 20 118.7 2.25
DCSM-FM 0.5nm 66 1 118.7 0.89

For DCSM, the computation times are extracted from the documentation and are based on runs on a
computational cluster with different computational power settings. For DCSM-FM 100m, one year of model



5.5. Computation time 57

output with a time step of 35.4 seconds is generated with 20 computational cores. For DCSM-FM 0.5nm,
two runs are reported, both with a times step of 118.7 seconds. One run is done with 20 computational
cores and one with 1 core. When a model is run on more cores, the computations are done more in parallel,
speeding up the process. To relate the computational efficiency to that of the ML model, Table 5.9 reports
the computation time in seconds per time step by multiplying the original computation time by the number
of cores and dividing it by the number of estimates in the reference period of one year. According to this
metric, the ML model takes 0.09 seconds to estimate one output value, while DCSM-FM 100m takes 46
times as long with 4.27 seconds.



6
Discussion

This chapter highlights the possibilities and challenges of the model developed in this study. The potential of
the model to estimate coastal water levels is discussed, as well as the results of this study within the context
of environmental monitoring of high water levels. Additionally, the discussion addresses the assumptions and
decisions that have been made in this study.

6.1. Potential of machine learning
The model developed in this study shows that machine learning is a powerful tool in coastal non-tidal water
level estimation. It creates opportunities to use globally available data in a simple neural network, and
integrates multiple data sources into one data-driven model. An analysis of the trained weights of the model
is possible, which can be used to explain the main drivers of high water level events.

The neural network developed in this study is one of the simplest machine learning models available, yet
it is still able to estimate coastal non-tidal water levels with an MSE between 0.011 and 0.018 m, an MAE
between 0.078 and 0.101 m and a σε between 0.100 and 0.134 m. In comparison, the same metrics for
DCSM are between 0.004 and 0.005 m for the MSE, between 0.049 and 0.054 m for the MAE and between
0.052 and 0.068 m for the σε. While the ML model does not reach the same performance, the SNR that lies
between 22.7 and 101.0 suggests that the model is still applicable in practice, since the variability of the water
level itself is 22.7 to 101.0 times larger than the MSE of the ML model. Despite the better performance of
DCSM, the neural network possesses several advantages relevant to the development of coastal water level
research.

Firstly, the computation time for the ML model is much smaller than for a local numerical model such as
DCSM (Table 5.9). The neural network takes 3 minutes and 26 seconds to estimate one year of coastal water
levels, where DCSM-FM 0.5 nm takes 8.3 hours (Zijl, Zijlker, Laan, & Groenenboom, 2022) and DCSM-FM
100m even takes 52.8 hours (Zijl, Groeneboom, et al., 2022). Furthermore, the neural network is applied on
a computer with a computational power of 4 cores, while DCSM is executed on a computational cluster with
a power of 20 cores, divided over 5 nodes. When using only a single core, DCSM-FM 0.5 nm takes 66 hours
to estimate one year. One should take into account, however, that DCSM produces a grid of estimates, as
well as other variables aside from water level. Additionally, DCSM computes water level estimates with a
time step of 35 seconds to 2 minutes, while the ML model computes water levels with an interval of 1 hour.
To truly be able to compare the two models, DCSM has to be calibrated for 1-hour estimates and applied
on a computer with 4 cores. Unfortunately, this was not possible. Therefore, the computation time per time
step has been reported as well. These results show that the ML model is able to compute a single output
value in 0.09 seconds, while DCSM takes 0.89 to 4.27 seconds. So, for the specific application of estimating
coastal water levels at one location, the ML model is still assumed to be much faster. This difference is
partly due to the simplicity of the neural network, even though it takes a dataset of 314401 input features
to estimate one non-tidal water level.

Another advantage of this ML model is its adaptability. Traditional numerical models such as DCSM
rely on predefined parameters and equations, whereas a ML approach allows for continuous refinement
and adaptation. Naturally, DCSM also undergoes many updates as the knowledge about the physics and
hydrodynamics on the North Sea and Waddensea increases, which hopefully in the future will also contain
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ML or satellite data, but for the ML model, this property is more flexible and fast-paced. Adapting the
model can be done by e.g. adding neurons or hidden layers, changing the activation function, the optimising
algorithm or the other design parameters mentioned in Section 4.4. This allows for a more comprehensive
understanding of seasonal variations, long-term trends, and episodic events by the model, contributing to a
more robust and possibly more accurate predictive method.

Ultimately, the goal of this study is to effectively apply a machine learning model such as a neural network
in regions lacking observational ground stations and local models, especially when global models perform
only marginally. The main limitation of this developed neural network is its dependence on ground-truth
data. This means that a tide gauge is needed for training the model. Subsequently, its applicability is
confined to regions which have the same physical and hydrodynamic properties, meaning that the patterns
and correlations between the data and the coastal water levels should align with those of the training region.
Moreover, the input data needs to have the same shape, which is challenging when the area of interest is
different. Despite these constraints, this study proves that machine learning methods like a neural network
have potential, because of their flexibility, computational efficiency and room for refinement.

6.2. Assumptions and uncertainties
Within this study, a couple of uncertainties have to be highlighted. These consist of choices and assumptions
that have been made throughout the development of the neural network, either based on visual inspection
of intermediate results or associated literature.

Firstly, the harmonic tidal analysis of the tide gauge time series is done with the Hatyan method, which
implements 95 harmonic components (Veenstra & Kerkhoven, 2020). The satellite altimetry reprocessing
algorithm X-TRACK uses FES2014b to compute the ocean tide, which implements 34 harmonic components
(Birol et al., 2021). This means that there are harmonic components, however small, still present in the
satellite altimetry data that are not present in the tide gauge time series. The components with the largest
amplitudes within the TG record (M2, M4, S2, MS4, N2, MU2, NU2, O1, SA, K1 and MN4, see also
Appendix D) are applied in both tidal analyses, reducing the differences between the two harmonic corrections
significantly. Additionally, the uncertainties in FES2014b differ from those in Hatyan due to differences in
the harmonic analysis. This can cause discrepancies between the satellite altimetry observations and the TG
record. While the ML model can theoretically recognise and manage these differences, it is recommended to
look into them or apply the same harmonic tidal analysis on both data sources to reduce discrepancies and
thus simplify things for the ML model.

Secondly, these tidal models only include harmonic tidal signals. However, non-linear interactions between
tides and other processes such as wind speed and atmospheric pressure are still present in both the TG
time series and the satellite altimetry observations. These signals add noise to the non-tidal water levels,
which means that the ML model is expected to estimate them as well. To improve these estimates, it is
recommended to include the tidal signals in the model.

When comparing the performance of the ML model with DCSM, they are both evaluated against tide
gauge time series, which serve as the ground truth. However, DCSM relies on tide gauge data from 211
stations for the calibration of bottom roughness, including those used in this study (Zijl, Groeneboom, et al.,
2022). This calibration used data from 2017, a year included in the validation period of the ML model.
However, once the bottom friction is determined, the model no longer uses any tide gauge data for the
estimation of water levels. Moreover, DCSM itself is validated against tide gauges, which is considered valid.
Therefore, this dependency is not considered significant.

During the performance analysis of the ML model on high water levels, the thresholds based on the POT
are chosen carefully (see Appendix F). Since POT is generally considered a sensitive method, one has to take
into account that the performance metrics on high water levels are sensitive as well and prone to changes
when the threshold is adjusted.

Within the developed neural network, assumptions about the number of neurons, the choice of activation
function and the resampling method have been made. The number of neurons is set to 32, based on visual
inspection of results after trying a number of 8, 16, 32, 64 and 128 neurons. A number of 32 was found
that converged the model without overtraining it. The choice of the activation function has been based on
literature and was chosen to be the ReLU function. A ReLU function accounts for any non-linearities in the
data while simultaneously decreasing the risk of a vanishing gradient problem (Glorot et al., 2011; Tan and
Lim, 2019). Many variations of the ReLU function are tested nowadays to find the best suitable version
(Z. Hu et al., 2021; Javid et al., 2021; Mirzadeh et al., 2023; Oh et al., 2023). Finally, the constant which
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states how many times the high water level events should be repeated within the training data is based on
an empirically defined number, namely a CDF > 0.8 and a ratio of 0.05. These values are chosen based
on visual inspection of intermediate results, where a ratio of 0.02, 0.05 and 0.1 have been tested. It has
been found that a ratio of 0.05 results in a better performance than the other ratios. A ratio of 0.1 resulted
in a degraded general performance and a ratio of 0.02 did not improve the model’s performance on high
water level events significantly. The threshold of 0.8 has not been tested but should be when continuing this
research.

6.3. Estimation of coastal water levels
Several details about the developed ML model are worth interpreting in further detail. Firstly, the performance
metrics of the ML model were computed after the harmonic tidal signals were restored. The MSE, MAE and
σε remain unaffected by this step. However, the SNR is impacted, which is crucial for assessing the model’s
applicability as it compares the water level variability to the variability of the model’s error. Since tidal
signals account for the majority of the water level variations, it is essential to understand how the model’s
error relates to this.

Comparing the three models developed in this study, the model for Europlatform performs best on all
metrics (Table 5.4), even though the input into the model is exactly the same. Vlissingen and Scheveningen
perform similarly, though Vlissingen performs a little better when looking at the high water levels (Table 5.6).
These performances align with the differences in environmental factors between the locations. Europlatform,
located offshore, experiences minimal coastal interference such as reflection, refraction or wind set-up. On
the other hand, both Vlissingen and Scheveningen are located within harbours (Figure 3.2a and 3.2b), where
the presence of passing ships, refraction and/or reflection of water, potential wind set-up and other factors
induce strong coastal interference. Given that Scheveningen is located deeper within a harbour with shallower
water, the model’s poorer performance is expected.

In general, the produced time series of the coastal water levels appears smoothed compared to the ground
truth data (Figure 5.1, 5.2 and 5.3). This differs from findings reported in the literature (Bruneau et al.,
2020; Passaro and Juhl, 2023; Xie et al., 2023). However, Bruneau et al. (2020) use tide gauge time series
to train their global neural network, which contain high-frequency temporal variability. Passaro and Juhl
(2023) use satellite altimetry observations to estimate daily SLAs, looking at a circular area around the
location of interest with a radius of 300 km and a time window of 15 days. They reach an MSE between
4*10−4 and 1.4*10−2 m. Though the Random Forest Regression method appears promising, it has not been
tested on hourly SLAs, nor does it include sea surface variability caused by atmospheric disturbances. The
storm surge forecasting model developed by Xie et al. (2023) uses a convolutional neural network with a
varying time window to predict storm surges up to 24 hours beforehand, also using tide gauge time series
as input into the model. The model reaches an MSE of 2.89*10−2 m. The neural network developed in
this study uses a time window of 48 hours and ERA5 gridded data of 31 km spatial resolution, without any
high-frequency information from tide gauge time series. To minimise the MSE, the neural network trains the
weights and biases to fit most situations. Due to the lack of high-frequency information, this possibly causes
the smoothing. Still, an MSE of 0.017 m is considered satisfactory in line with the literature, with a SNR
between 22.7 and 101.0 sufficient for practical applications such as extracting trends and return periods.

In addition to the lack of high-frequency temporal variability in the input data, the tide gauge non-
tidal water levels show significant non-linear interactions. The ML model misses these signals, despite their
presence in both tide gauge and satellite altimetry data. These interactions, influenced by local environmental
factors like wind speed and atmospheric pressure, are too complex for the model to estimate accurately,
possibly because they occur on a local scale not captured by satellite data. As a result, the output of the
ML model looks smoothed compared to the tide gauge non-tidal water levels.

6.4. Estimation of high water levels
Since this study aims to estimate high water level events, it is worth noting that these events are generally
underestimated by the ML model. Similar results have been found by Bruneau et al. (2020), Gharineiat
and Deng (2015) and Xie et al. (2023), who all underestimate high water level events with their respective
ML models. This can occur due to several factors, such as the underestimation of extreme winds by ERA5
(Haakenstad et al., 2021) and the underestimation of extreme water levels by satellite altimetry due to
undersampling (Darko et al., 2023). The ML model assumes stationary relationships between input variables
and output, but when both ERA5 and satellite altimetry underestimate extreme conditions, these relationships
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change. As a result, high water level events are underestimated more compared to regular water levels (see
also Figure 5.8).

Another reason for the underestimation of high water level events is the imbalanced training data. High
water levels are underrepresented, and the events that are included are skewed towards storms from the
northwest. This bias is due to the area of interest, which includes almost the entire North Sea but only
the Strait of Dover and part of the English Channel to the south. Consequently, the model can anticipate
storms from the northwest up to 48 hours in advance, whereas storms from the south appear more suddenly.
Additionally, northwest storms, typically occurring in winter, last longer, while southern storms, often in
summer, are shorter. This imbalance explains why summer storms from the south are more frequently
underestimated than those from the north.

To battle this imbalance, a resampling of the training data is applied to include more high non-tidal water
level events during training, which improves the performance. Additionally, sample weights are added to the
training samples, linking each sample to a weight that increases proportionally to the increase in non-tidal
water level. This enables the ML model to estimate high water level events coming from the west or north
better (Figure 5.1g, 5.2g and 5.3g), though events that originate from the south are still captured marginally
(Figure 5.1a, 5.2a and 5.3a).

6.5. K-fold cross-validation results
Regardless of the different performances at different locations, the K-fold cross-validation proves that the
model is robust. Training and validating the model on different datasets confirms that the performance
metrics will not differ much from the sample mean. To elaborate, the range of the error metrics MSE, MAE
and σε are all between 0.004 and 0.017 m (Table 5.5). In addition, the metrics of the Scheveningen model
(Table 5.4) are all within this range. Lastly, the K-fold cross-validation is applied to Scheveningen, which
performs poorest. This suggests that the models for Vlissingen and Europlatform are equally or more robust,
though this has not been verified.

For high water level events, the performance of the K-fold models is better than the full Scheveningen
model. The sample means for MSE and MAE and are all smaller than those of the full model (Table 5.6).
Contrarily, the σε’s of the K-fold models are larger than the one of the full model. Still, the range of the error
metrics for high water level events ranges between 0.010 and 0.017 (Table 5.7), which means the model is
only slightly less robust when looking at the MSE, but equally robust when looking at the MAE or σε. The
sample mean for the SNR is decreased from 26.5 to 14.4, the range decreased as well from 7.1 to 2.4, also
indicating a lesser robustness. Improving the SNR, and thus the MSE, would be beneficial here.

6.6. Weight analysis
Since the ML model developed in this study is relatively simple compared to many other machine learning
methods, it is possible to distinguish several characteristics of the trained model. Firstly, the second-layer
weights (Figure 5.9) for all three models fall within the range of -0.4 to 0.4, but some of these weights are
sufficiently close to zero, that they become ineffective, meaning that they do not transmit any signal to the
output layer. These inactive neurons, commonly referred to as "dead neurons", produce values that are close
to zero.

For the ML models developed for the three locations, the Scheveningen model has the highest number
of dead neurons, while the Vlissingen model has the least. There are a couple of explanations for this dis-
crepancy. Firstly, the high complexity of the Scheveningen area means the model struggles to find significant
relationships between input and output when non-tidal water levels are small (between -0.192 and 0.235 m).
In these cases, the Scheveningen model estimates 39.5% of the cases as a constant value, indicating that the
input provides insufficient information under nearly stationary conditions (Table 5.3). However, this is not
necessarily decreasing performance, as the Europlatform model performs better than the Vlissingen model
despite having more dead neurons and more frequently giving a constant output.

The range in which constant outputs are estimated is smallest for Europlatform, with 95% of the constants
falling between -0.195 and 0.126 meters, a range of 0.321 meters (Table 5.3). In contrast, this range is 0.430
meters for Vlissingen and 0.517 meters for Scheveningen. Additionally, Europlatform’s constants are more
concentrated within this range, with 43.8% of outputs being constant compared to 28.3% for Vlissingen.
This can be an explanation as to why Europlatform, despite having more dead neurons, performs better than
Vlissingen. This indicates that the number of dead neurons is not directly proportional to the performance.

Furthermore, data redundancy is a factor. The ML model may deactivate neurons deemed redundant, as
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they do not contribute significant information to the output. Vlissingen may have less redundant data due
to slightly greater complexity, possibly resulting from increased land-sea interactions.

6.6.1. Satellite altimetry
The first-layer weights for the input features corresponding to satellite altimetry observations (WL, dE , dN ,
and dt) account for about 49% of the first-layer weights of the active neurons, indicating equal importance of
satellite altimetry and ERA5 in estimating non-tidal water levels. Among these, the weights for dt contribute
the most with approximately 20%. However, since dt is min-max normalised, it always ranges between 0
and 1. The other variables (WL, dE and dN ) are Z-score normalised, meaning that they often exceed an
absolute value of 1. Therefore, these variables require a smaller weight to have the same impact as dt. This
indicates that dt has a smaller contribution to the estimation of non-tidal water levels than implicated in
Table 5.8, and the other three variables have more.

The results show that dE has a larger contribution than dN , as shown by their weight contributions
(Table 5.8) and spatial distributions (Figures 5.12 and 5.13). Both are individually normalised with a Z-score
normalisation because they have different distributions (see Appendix E). However, both variables convey
the same kind of information, which is distances between the satellite observations and the tide gauge.
Furthermore, the distribution of dN (Figure E.5) does not look as normally distributed as the distribution of
dE does (Figure E.4). This indicates that Table 5.8 might report a larger contribution of dE than preferable
for the model. Z-score normalisation might thus reduce the usefulness of dE and dN , especially when
normalised separately. It is recommended to normalise both variables with the same parameters or use a
different normalisation method. This can change the configurations of the weights during the training stage
to allow more contribution from dN and possibly a better estimation.

Weights associated with inactive neurons are excluded from the analysis to avoid noise, as these weights
are nullified once their corresponding neurons become inactive. These weights have an anomalous shape
compared to the first-layer weights connected to active neurons, as shown in Figure 5.10 as grey lines,
implying that the model does not spend its resources training first-layer weights once their corresponding
neurons are killed.

Figure 5.10 also shows that the first-layer weights seem to converge to zero when the number of obser-
vations increases. As mentioned in Section 5.4, this phenomenon is caused by the processing method and
availability of satellite altimetry data. The processing method applies a padding to deal with the inhomoge-
neous nature of the satellite altimetry data due to their availability (Figure 4.7). Consequently, many input
datasets of 48 hours contain many zeros at the end of their one-hour arrays. To get the best performance,
the model trains a certain configuration of weights that minimises the overall loss, which results in less
weights on these observations, as they become redundant.

Another key observation is the high weights at the edges of the area of interest for observed non-tidal
water levels. This is likely due to the processing method as well, but it is unclear if these observations are
genuinely the most important or just prioritised because they are fed to the model first. Restructuring the
processing method could help, such as feeding observations closest to the output timestamp into the model
first or prioritising the observations closest to the tide gauge.

6.6.2. ERA5
The first-layer weights connected to the ERA5 input variables are presented as heat maps shown in Figure
5.14, 5.15 and 5.16, their differences shown in Appendix H. Their weight contributions are shown in Table
5.8, which shows that the longitudinal wind speed (U10) is the most important variable for estimating non-
tidal water levels, accounting for about 18% of the total weights. The lateral wind speed (V10) and sea level
pressure (p) follow closely with around 16% and 17% respectively. Since the Dutch coast is perpendicular to
the direction of U10, this causes a larger wind set-up compared to V10. The model has effectively recognised
this correlation, giving U10 larger weights.

As mentioned in Section 5.4, a large and prominent characteristic of all three ERA5 variables is that
the most important features are located along the Dutch coastal region and decrease in importance when
travelling north. When the northern North Sea is reached, this importance becomes inversely proportional
to the ones at the Dutch coast. This is most evident in the sea level pressure heat maps (Figure 5.14), but
also in the lateral wind speed maps (Figure 5.16). It implies that active pressure systems have the most
influence on the estimates of the non-tidal water level at the Dutch coast and in the northern North Sea.
Similarly, large lateral wind speeds along the southern Dutch coast and in the northern North Sea signal
important characteristics for the estimation of coastal non-tidal water levels. When looking at the lateral
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wind speed component, the overall importance increases as time progresses from -48 hours to -1 hour before
the estimated water level.

6.6.3. Regular events over high water level events
The ML model adjusts its parameters (weights and biases) to minimise the overall loss across all samples,
ensuring good average performance. However, this generalisation means the model might not be optimised
for extreme situations like high water level events, where a different configuration of parameters could be
more effective. For example, since we know U10 and V10 are underestimated in extreme conditions, the
current parameters might not be optimal for the performance on high water level events. Solving this problem
within the current model by changing the parameters will decrease the performance on regular conditions.

Differences between bad and good performance parts are explained using three examples in Figures 5.4
and 5.5. These confirm that poor performance during high water level events is attributed to the short
duration of storms and their direction, characterised by brief periods of high U10 and p. Conversely, good
performance is linked to higher wind speeds and longer storm durations. Here, the model shows improved
water level estimation even without satellite altimetry compared to the poor performance during the short
southern storm. Interestingly, V10 does not show significant differences between poor and good performance
scenarios, indicating that it is less crucial. This is also proven by Table 5.8.

Identifying which features matter most in specific conditions is challenging, as the trained parameters only
provide a general view, and some characteristics or examples might be coincidental. This characteristic of
ML is both a risk and an advantage. The model can uncover patterns and correlations that might otherwise
go unnoticed, yet these patterns can be hard to explain. Though, in a way, this makes working with machine
learning methods all the more fun.



7
Conclusion and outlook

The model developed in this study presents a method to estimate hourly coastal non-tidal water levels at
a location of a tide gauge, combining machine learning with satellite altimetry and assimilated ERA5 data.
This chapter presents the key findings of the sub-questions listed in Chapter 1 and determines if the research
objective has been reached. The outlook shares some suggestions for improvements and further research,
either short- or long-term.

7.1. Conclusion
The main research objective is to develop a machine learning model that produces hourly non-tidal
water level estimates at the location of a tide gauge, based on satellite altimetry observations and
ERA5 pressure and wind fields within a 48-hour time window and across an area including the
North Sea and the Strait of Dover. Three locations have been chosen in this study to train and test
the developed neural network on, to assess whether this neural network is able to estimate non-tidal water
levels in locations with different physical and hydrodynamical processes. This study has proven that it is
possible to build a neural network that estimates hourly coastal non-tidal water levels with a mean squared
error between 0.011 and 0.018 m and a standard deviation between 0.100 and 0.134 m.

How does the performance of the ML model compare to tide gauge observations and a regional
numerical model?
The developed neural network has been trained and tested on tide gauge time series from Scheveningen,
Vlissingen and Europlatform. The performance of the model has been determined with four metrics, namely
MSE, SNR, MAE and σε, which have been applied to the ML model outputs as well as DCSM outputs for
similar time intervals. Furthermore, the robustness of the model has been tested with a K-fold cross-validation
with K = 4.

With an MSE of 0.011 m, an MAE of 0.078 m and a σε of 0.100 m, Europlatform outperforms Vlissingen
and Scheveningen, which both have an MSE of 0.018 m, an MAE close to 0.100 m and a σε of 0.134 m.
The robustness of the neural network is high according to the K-fold cross-validation. The SNR differs per
location, depending on the amplitude of the tidal signals, ranging from 22.7 for Scheveningen to 101.0 for
Vlissingen, with Europlatform in between with 37.4. These high SNR values mean that the variability of the
original signal is larger than the error spread of the model, which suggests that the models are physically
applicable, though this depends on the application. When comparing these metrics to DCSM, the local
numerical model outperforms the neural network for all locations. This agrees with the expectation related
to the performance, though several advantageous characteristics are highlighted.

The computation time for the trained neural network is much faster than for DCSM. Where the neural
network takes 0.06 hours to compute one year of coastal non-tidal water levels, DCSM-FM 100m takes 52.8
hours, even with a computational power that is five times what the neural network has used. This corresponds
to 0.09 seconds per time step for the neural network and 4.27 seconds for DCSM. Furthermore, the neural
network is adaptable, allowing for continuous refinement and fast updates compared to traditional numerical
models such as DCSM. However, the neural network’s main limitation is its reliance on ground-truth data,
restricting its applicability to regions without tide gauges. Despite these constraints, the study demonstrates
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the potential of ML models in coastal non-tidal water level estimation due to their flexibility, computational
efficiency, and capacity for refinement.

How well does the ML model estimate high water levels?
Next to testing the model on hourly water levels, an analysis of high water levels is conducted through a
POT method. As expected, the Europlatform performs best, followed by Vlissingen and Scheveningen. The
neural network at Europlatform has an MSE of 0.013 m, a MAE of 0.090 m and a σε of 0.113 m. At
Vlissingen, the MSE equals 0.016 m, the MAE is 0.099 m and the σε is 0.117 m. For Scheveningen, the
model performs worst, with an MSE of 0.054 m, an MAE of 0.184 m and a σε of 0.164 m.

The high water levels are consistently underestimated in the neural network, and some events are missed
when storms enter the North Sea from the south. Explanations for this include the underestimation of
extreme winds and water levels by ERA5 or satellite altimetry and the imbalanced training data that is
skewed towards general conditions. The neural network is equally robust for high water levels as it is for
hourly non-tidal water levels, with an equal range for σε, a smaller range for SNR, a similar range for the
MAE and a larger range for the MSE.

Improving the model for high water levels is challenging, yet rewarding, because that is why these kinds
of models essentially exist. Recommendations include revising the data processing, extending the area of
interest to the south, adjusting the loss function or adding layers and/or neurons to the network.

Which factors affect the estimation of non-tidal water levels estimated with the ML method?
Next to general performance metrics, it is also analysed which variables or environmental factors affect the
estimation of water levels. This is done by reconstructing time series and zooming into a few bad or good
performance parts to analyse the input data that the model receives. A weight analysis is also done to
determine which features contribute more to the estimations.

From the reconstructed time series, one can conclude that short high water level events coming from the
south are hard to estimate by the model. This can be explained by the area of interest not spanning the
English Channel and the time window of 48 hours that is used as input data. Short storms are harder to
capture in this sense, and the model does not see them coming when they originate from the south.

The availability of satellite observations influences the model’s ability to estimate water levels due to the
way the satellite observations are structured within the training data. The weights given to the observations
decrease as the number of observations increases. Still, the model can perform well without much satellite
data if the ERA5 data provides enough information.

Finally, the importance of the ERA5 variables is subject to some spatial variation. In general, the data
close to the Dutch coast are most important, which aligns with the expectation. The importance of data
originating from the northern North Sea is inversely proportional to the importance of the data from the
Dutch coast, meaning that the northern North Sea is also significant in the estimation of coastal water levels
at the locations of interest.

7.2. Outlook
The key areas for improvement in this study are the estimation of high water levels and the ML models
applicability to different regions. The ML model currently underestimates high water level events due to
several factors, which are discussed in Chapter 6. However, accurate estimation of high water level events is
crucial, as they can lead to coastal hazards such as floods and erosion, which can cause damage to important
infrastructure and population displacement (Almar et al., 2021; Hallegatte et al., 2011; Nicholls, 2011; Parise
et al., 2009). Recommendations to improve high water level estimation are divided into two categories: input
data and model design.

The second important issue is the applicability of the model to different regions. Currently, the ML model
is only applicable within the area of interest, and only for locations with similar physical and hydrodynamical
processes as the three locations on which the model has been trained. For the Dutch coastal zone, many
tide gauges already exist, making the ML model superfluous. It would be beneficial to know if this method
can be used to create models in more remote locations where tide gauges are sparse and where there is no
access to elaborate, accurate numerical models.
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7.2.1. Estimation of high water levels
To improve the performance of the ML model during high water level events, the input data can be refined.
Firstly, it is known that ERA5 underestimates strong wind speeds and satellite altimetry undersamples ex-
treme water levels. Therefore, creating a separate model that has been trained specifically on high water
level events can be beneficial here. This can be done by applying the POT method to the TG data, taking
only the high water level events with a time window of 48 hours for training. Comparing this model to the
original ML model for hourly non-tidal water levels will help to identify which input features in which regions
are more crucial for the estimation of high water levels compared to regular water levels.

Input data
Another recommendation is to extend the area of interest, particularly towards the English Channel. Figures
5.14, 5.15 and 5.16 show a clear pattern of high weights near the Strait of Dover for all three models,
suggesting that this area is important for estimating coastal water levels at the locations of interest. The
same holds for the northern border of the area of interest. This will be a trade-off between computational
cost and desired performance, as the number of input features will increase rapidly. Another addition would
be to include more satellite altimetry missions, such as Cryosat-2, Sentinel-3B, Sentinel-6, SWOT and future
missions HY-2E/-2F/-2G/-2H and CRISTAL (Figure 2.3). These have to be reprocessed by XTRACK first
before they can be included.

Including the tidal harmonics in the training data also gives the model a better overview of the processes
that happen inside the area of interest, especially on the non-linear interactions that are prominent in the
ground-truth data, but not in the ML model estimates. This has already been applied by multiple studies
that predict storm surges with ML models (Jia and Taflanidis, 2013; Sahoo and Bhaskaran, 2019; Xie et al.,
2023). Moreover, using the same tidal model (FES2014b) as XTRACK, or the same tidal harmonics, reduces
any discrepancies between the ground-truth data and the satellite altimetry data. Additional information on
sea surface temperatures (Hersbach et al., 2018), wave climates Jia and Taflanidis, 2013, salinity (Antonov
et al., 2002) and freshwater influxes (Lombard et al., 2009) would also help.

Another recommendation is to look into the redundancy that the variable satellite data availability and
processing method causes in the ML model. This includes looking into whether this redundancy is an issue,
for example by looking if low-availability periods have a different accuracy than high-availability periods, or
finding a way to get rid of the padding that adds many zeroes to the input data from satellite altimetry.

Continuing on the processing method, the normalisation of dN and dE should be improved. Currently,
they are normalised individually based on a Z-score normalisation, which assumes a Gaussian distribution.
However, the distribution of dN and dE differ from the Gaussian (see Appendix E). Moreover, dN contributes
less to the estimates than dE does according to the weight analysis presented in Section 5.4. A more in-depth
feature analysis is recommended here, where different distributions such as the Gaussian, uniform, Poisson
or exponential distributions can be fitted to determine which one fits best on the input variables. Then, the
variables can be normalised accordingly.

This analysis will also address dataset imbalances, which cause the model to estimate general conditions
well but high water events poorly. Applying stratified sampling and performing a sensitivity analysis on re-
sampling parameters can further improve high water level estimates. This analysis will also address the issue
of data imbalances. Imbalances are induced by the underrepresentation of high water level events, which
causes the ML model to skew towards estimating general conditions well and extreme conditions poorly. A
resampling method has been applied in this study, which results in some improvements, but the high events
are still underestimated. To improve them, stratified sampling is recommended, which means binning the
ground-truth non-tidal water levels and selecting an equal number of non-tidal water levels from each bin.
Another recommendation is to perform a sensitivity analysis on the resampling parameters (threshold and
ratio) to determine which values result in the most accurate high water level estimates.

Model design
Next to improvements on the data and their processing method, several recommendations for the model
design are also identified. Firstly, the choices on the design parameters, such as the number of neurons and
layers, the activation function, the loss function, the number of epochs and the batch size, can be changed
one by one to find the most optimal combination of design parameters. Adjusting the loss function could help
to focus more on the estimates that underestimate high water levels rather than overestimate them. One
possible improvement could be to use the "Pinball Loss" function which is used in ML as a replacement for
the MSE as a loss function, for example in forecasting energy usage of households (Wang et al., 2019). The
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choice of activation function could help in reducing the probability of a vanishing gradient problem (Glorot
et al., 2011). The number of neurons, hidden layers, epochs and the batch size are determined empirically,
and can be optimised by trying different configurations.

Testing different ML methods would provide a better understanding of the potential of using ML in the
estimation of coastal water levels. Popular methods for estimating storm surges include Kriging models
(Kyprioti et al., 2021), Support Vector Regression (Awad et al., 2015) and Recurrent Neural Networks (Qin
et al., 2023). One recommendation to build further on the current model is to combine the shallow neural
network with a convolutional neural network (CNN) which is suitable for spatial data. This has been proven
to be effective by Park et al. (2022) and Vincent et al. (2022). The ERA5 data can be passed through a CNN
before feeding the output into the neural network (see Figure 4 from Vincent et al., 2022). Finally, ensemble
learning could be a powerful tool to improve the model (Mohammed & Kora, 2023). The easiest example
to achieve this would be to let all K-fold models estimate hourly non-tidal water levels and take the mean
of all four estimates. Alternatively, a sequence of neural networks could be considered, each one focussing
on the largest errors made by the previous network. Note that this approach will significantly increase the
computational cost.

7.2.2. Applicability to different regions
Section 6.1 mentions that the largest limitation of the current model is its applicability to different regions.
Passaro and Juhl (2023) suggests an approach that takes all data within a range of 300 km around the tide
gauge as input, making it independent of the shape of the region. Combining this with the shallow neural
network and the input variables considered in this study will increase the ML models general applicability
and reduce the dependence on a pre-defined area of interest.

Another recommendation is to apply one of the three trained models to a different location containing
a TG, for example IJmuiden or Den Helder, and assess the performance at those locations. Seeing how the
performance of the model changes when travelling further from the ground-truth location is useful to know,
especially if the model will be applied to locations without a TG.

Given the desire to apply this ML model in regions with few or no tide gauges, the final recommendation
of this study is to train the model in a different region and evaluate its performance there. The XTRACK
algorithm has processed coastal satellite altimetry data from 27 geographical zones, spanning most of the
world’s coasts (Aviso+, 2023), and with the global coverage of ERA5, the model can be trained on virtually
any coast. This approach will test the methods general applicability across various regions. However, two
challenges remain: initial training still requires a tide gauge, and design parameters must be re-optimized
for each new location. Overcoming these obstacles will pave the way for robust, globally applicable coastal
water level estimations.
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A
Satellite altimetry corrections

Atmospheric range corrections
The atmosphere causes the satellite altimetry radar signal to refract due to the presence of water vapour, dry
gases and free electrons in the atmosphere. The atmospheric range corrections ∆hdry, ∆hwet and ∆hiono

correspond to the dry tropospheric correction for dry gases, wet tropospheric correction for water vapour
and ionospheric correction for free electrons in the atmosphere respectively.

Dry tropospheric correction
The dry tropospheric correction is considered to be the largest range correction in the order of two metres
(Fernandes et al., 2014), accounting for about 90% of the total path delay caused by the troposphere
(Andersen & Scharroo, 2010), and can be computed with an accuracy of a few millimetres according to the
Saastamoinen model (J. Davis et al., 1985). The model depends on the sea surface pressure, the geodetic
latitude and the surface height zs with respect to the geoid. The correction ∆hdry can be described by

∆hdry = − 0.0022768Ps

1− 0.00266 cos 2φ− 0.28 · 10−6zs
(A.1)

where Ps is the total atmospheric pressure in hPa and φ is the geodetic latitude. For ocean points, Ps = P0

and zs = 0, meaning that only the sea surface pressure (P0) and the geodetic latitude are needed to compute
the correction (Fernandes et al., 2021). The most frequently used method to compute ∆hdry is to apply
(A.1) with the sea level pressure provided by sea level pressure grids. Often these grids are provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF) or the United States National Centers
for Environmental Prediction (NCEP) (Birol et al., 2017). For coastal applications of satellite altimetry,
the accuracy of this method is not expected to decrease, since the spatial and temporal variability of the
surface pressure do not significantly change on the land-sea transition border, therefore not making land
contamination an issue (Andersen & Scharroo, 2010).

Wet tropospheric correction
Besides the dry tropospheric correction (also often referred to as hydrostatic troposphere correction or zenith
hydrostatic delay), the water vapour present in the troposphere also introduces a significant delay in the
altimetric signal. This delay does not have the same magnitude as the dry tropospheric correction (less than
fifty centimetres), but due to the large spatial and temporal variability in water vapour concentration, the
estimation of this wet tropospheric correction is harder to compute (Fernandes et al., 2015). One way to
compute the water vapour correction in centimetres is given by

∆hwet = −0.64

∫ zsat

zs

ρw(z)dz (A.2)

where
∫ zsat
zs

ρw(z)dz is the total mass of water vapour in the atmospheric column from the satellite to
the water surface with a cross-section of 1 m2, given in millimetres (Fernandes et al., 2021). This mass of
water can accurately be computed with measurements from onboard microwave radiometers. The microwave
bands in which the radiometers operate are used to observe the brightness temperature of the ocean and
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to monitor the water vapour absorption line, which is centred at 22.235 GHz (Andersen & Scharroo, 2010).
The correction typically ranges from a few millimetres in cold, dry air to more than thirty centimetres in
hot, humid air. In coastal areas, the microwave signal can be contaminated by land, because the algorithms
to retrieve the water vapour density assume a constant surface ocean emissivity, and the emissivity of land
is higher than that of ocean. Moreover, the footprint of a radiometer typically ranges between 20 and 30
kilometres (Figure A.1). This, coupled with the typically warmer nature of land, causes a degradation in the
method used to measure humidity. As a result, this affects the range correction for water vapour.

Figure A.1: An example of a Jason-1 track crossing the western Mediterranean Sea. Blue dots indicate the footprint of the
altimeter and green circles show the extent of the main beam of the radiometer. The figure illustrates where the radiometer

observations are contaminated by land (Andersen & Scharroo, 2010).

Ionospheric correction
The number of free electrons in the atmosphere increases when one travels further from the Earth’s surface.
The speed of the altimetric signal slows down due to the relation between electromagnetic waves and the
ions in the ionosphere (Andersen & Scharroo, 2010), which can be quantified as a range correction with an
expression dependent on the electron density in the ionosphere.

∆hiono = −kTEC/f2 (A.3)

In (A.3), TEC equals the Total Electron Content, which is defined as the number of electrons per unit area
in a column extending from the Earth’s surface to the satellite (Andersen & Scharroo, 2010), and one unit
(referred to as TECU) equals 1016 electrons/m2. The factor k is a constant of 0.40250 m GHz2/TECU and
f is the radar frequency of the altimeter. The TEC can be approximated using a dual-frequency altimeter.
The travel time of both signals will differ according to (A.3), and this difference can be used as a measure
for the TEC. The variability of the ionospheric path delay depends primarily on the season of the year, the
time of day and the solar activity. As an alternative to using dual-frequency altimeters, it is possible to use
observational models that produce global GPS-derived ionosphere maps (GIM), which can be interpolated
to the location of the satellite tracks. These maps are derived from observations of more than one hundred
GPS stations within the IGS network (Komjathy and Born, 1999; Komjathy et al., 2005; Scharroo and Smith,
2010). Noticeably, the ionosphere is not affected by land, and the dual-frequency altimeters or the global
models can be applied to coastal areas as well as open ocean (Andersen & Scharroo, 2010).

Geophysical corrections
To correct for the physical behaviour of the ocean’s surface, a sea state bias (SSB) correction has been
applied to the observed range. This correction is a sum of different components, representing different
physical characteristics of the ocean’s surface that influence the signal reflection.

∆hssb = SWH
(
a1 + a2U + a3U

2 + a4SWH
)

(A.4)
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In (A.4), U refers to the wind speed derived from the backscatter coefficient (see Figure 2.5), which can be
computed from the waveform (Figure 2.4b) by taking the amplitude of the received signal. The parameter
SWH refers to the significant wave height, which is derived from the slope of the leading edge of the
waveform. The other four parameters a1, a2, a3 and a4 differ per altimeter, representing an electromagnetic
bias (EM), a skewness bias and an instrument tracker bias. The EM bias is a result of the mean sea
surface being underestimated due to the smaller reflectivity of the wave troughs compared to the wave crests
(Ghavidel et al., 2015). The skewness bias corrects for the non-linear dynamics of ocean waves (Badulin et al.,
2021), since the skewness of the sea surface distribution causes the altimeters to make use of a sea surface
tracker that estimates the median, not the mean sea surface (Andersen & Scharroo, 2010). Finally, the
tracker bias is a sum of smaller errors linked to the method of how the altimeter tracks the returning signals.
Often this is estimated empirically (Passaro et al., 2018). The parameters for eight different altimeters are
shown in Table A.1.

Table A.1: The four parameters for the BM4 model for eight different altimeters. The a0 parameter is added to ensure that
∆hssb = 0 when SWH = 0 (Scharroo & Lillibridge, 2005)

Altimeter a0 a1 a2 a3 a4
ERS-1 (OPRv6) 0.054265 -0.075043 0.001413 -0.001790 0.000098
ERS-2 0.107618 -0.068219 0.001465 -0.001701 0.000082
GFO 0.092034 -0.055742 0.002743 -0.003756 0.000153
Poseidon 0.015731 -0.062778 0.001894 -0.001194 0.000057
TOPEX (Side A) 0.012450 -0.030578 0.002776 -0.002962 0.000127
TOPEX (Side B) 0.028889 -0.032113 0.002992 -0.002780 0.000101
Jason-1 0.110106 -0.034376 0.001145 -0.001969 0.000083
Envisat 0.026530 -0.052849 0.001746 -0.001713 0.000068



B
Adaptive Leading-Edge Subwaveform

retracker

Retracking algorithm
The ALES retracking algorithm is subdivided into two phases that fit waveforms to the original Brown model
(Figure B.1). First, the leading edge of the incoming waveform is detected, which is referred to as the
subwaveform. The gate at which the subwaveform starts is referred to as the startgate, and is defined for
each mission, depending on the onboard processing of the waveforms. The subwaveform is then fitted to the
Brown model with an unweighted least-square estimator, after which the stopgate is updated to include a
wider part of the original waveform into the final subwaveform. This is a trade-off between including as much
information from the original waveform as possible and the noise that the trailing edge often induces in the
waveform due to artefacts such as ships or other bright target responses. Fitting the second subwaveform to
the Brown model then gives the final estimates for the tracking gate, SWH and backscatter coefficient.

Figure B.1: Flow diagram of ALES retracking algorithm for each waveform (Passaro et al., 2014).
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Phase one
The first step in detecting the leading edge is to remove the thermal noise (see Figure 2.5). This is done by
computing the average of the first few gates and removing this from the signal. For Envisat, this is done with
gates 5 to 10, as the first few gates are subject to aliasing. For Jason-1 and Jason-2, gates 1 to 5 are used.
After removing the thermal noise, the difference between consecutive gates is computed, starting at the
startgate, which differs per mission (5 for Envisat and 1 for Jason). The start of the leading edge is detected
where the difference between two consecutive gates is positive and larger than 1% of the normalisation factor
(see also (B.1)). The vector that holds the differences between consecutive gates is referred to as Dwf , and
is expressed in normalised power units.

Dwf > 0.01 Dwf < 0 (B.1)

The end of the leading edge is found where the first following gate has a negative difference (see also (B.1)).
Due to some remaining noise, one gate is added to the stopgate. The selected leading edge is now fitted
to the Brown model with an unweighted least-square estimator, converged with the Nelder-Mead algorithm
(Nelder & Mead, 1965). When convergence is not reached within Nmax iterations, with Nmax = 600 for
ALES, one more gate is added to the stopgate. Convergence in this case refers to an unweighted least-square
estimator smaller than 1 ∗ 10−10. When the final leading edge is fitted, referred to as the subwaveform, the
tracking gate and SWH are found.

Phase two
Using the SWH and the tracking gate from the first phase, the width of the final subwaveform is estimated.
The relationship between the stopgate and the SWH and the tracking gate is determined through Monte
Carlo simulations. For Envisat and the Jason missions, the following relationship was found:

Stopgate = Ceiling (Tracking point+ 2.4263 + 4.1759 ∗ SWH) for Envisat (B.2)
Stopgate = Ceiling (Tracking point+ 1.3737 + 4.5098 ∗ SWH) for Jason-1 and Jason-2 (B.3)

where Ceiling refers to the rounded-up integer. The final estimations for the tracking point, SWH and
backscatter coefficient are derived from this final subwaveform (Figure B.2).

Figure B.2: Examples of real recorded waveforms with their ALES retracked waveforms for (left) open ocean with SWH =
0.75 m, (middle) coastal ocean with corrupted trailing edge and SWH = 1.65 m and (right) open ocean with SWH = 9.448

m (Passaro et al., 2014).

Reprocessing algorithm
In addition to the retracked SSH that is computed using the ALES retracker, the X-TRACK algorithm also
improves coastal water level estimates by providing refined atmospheric and geophysical corrections and
applying editing and filtering methods for the correction terms (Birol et al., 2017). These filtering methods
prevent a lot of data from being lost due to land contamination by interpolating the flagged corrections.

X-TRACK uses the Geophysical Data Records (GDR) to assess the corrective terms, where abrupt changes
in geophysical corrections are associated with erroneous data based on thresholds (Table B.1), and conse-
quently flagged.
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Table B.1: X-TRACK thresholds for detecting erroneous data in corrective terms (Roblou et al., 2011).

Parameter Min. threshold Max. threshold
Backscatter coefficient (Ku band) 1.0 dB 30.0 dB
Backscatter coefficient (C, S band) 7.0 dB 30.0 dB
Wet tropospheric path delay -0.5 m 0.0 m
Sea state bias N/A 0.0 m
Ionospheric path delay N/A 0.0 m

The dry tropospheric correction is not considered here, since only few values are discarded by the editing
method. After the outliers are flagged, a second filter is applied to the corrective terms, flagging them when
they exceed a threshold of 3σ or 4σ, with σ being the standard deviation of the along-track record. All the
flagged corrections are then interpolated from a Bezier curve created from the edited data. This method
results in a better coastal estimate for the corrective terms, as can be seen in Figure B.3.

Figure B.3: Wet tropospheric correction for TOPEX/Poseidon pass 137, cycle 200. Black represents the raw correction from
the GDR. Red represents the valid correction points after the second filter. Purple represents the data after interpolation. The
x-axis represents the time on 1998-02-22. The y-axis corresponds to the wet tropospheric correction in metres (Roblou et al.,

2011).

Besides the editing and filtering process, the wet tropospheric correction, sea state bias and ionospheric
path correction are also updated in the X-TRACK software. For the wet tropospheric correction, a Global
Navigation Satellite System (GNSS) derived Path Delay algorithm was used (Fernandes et al., 2015). This
method improves the estimates for coastal observations of the wet troposphere correction by combining
estimates from three sources: Zenith wet delay from nearby GNSS ground/offshore stations, water vapour
from atmospheric models, and microwave radiometer measurements.

X-TRACK uses an improved estimation of the sea state bias in coastal areas with methods developed in
Gaspar et al. (1994), Mertz et al. (2005), Tran et al. (2010) and Tran et al. (2012). They are combined in
the ALES retracking method described in Passaro et al. (2018) and Aviso+ (2022).

The ionospheric correction is improved with a median absolute deviation (MAD) threshold filter, with
MAD = 1

l

∑l
i |xi − Rmed(X)i|, where l is the number of data points in the record and Rmed(X) is the

respective running median value. The ionospheric correction (Figure B.4a) and wet tropospheric correction
(Figure B.4b) are provided as additional data to the SSH within the X-TRACK product.
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(a) (b)

Figure B.4: Examples of (a) ionospheric correction for Jason-1, track 222, cycle 10 and (b) wet tropospheric correction for
cycle 8 in the Mediterranean Sea. The yellow circles indicate the corrections before and the red line indicates the corrections

after X-TRACK processing (Birol et al., 2017).



C
Additional information on satellite

altimetry missions

ERS-2
Both ERS-1 and ERS-2 missions have the same active microwave Radar Altimetry (RA-1) instrument on
board meant to observe the surface in one of two modes: ocean or ice. The instrument contains a Ku-band
(13.8 GHz) nadir-pointing sensor that operates in bandwidths of 330 MHz for ocean surfaces and 82.5 MHz
for ice surfaces. ERS-1 was launched in 1991 and ended in 2000. ERS-2 was launched in 1995 and ended in
2011. Both missions shared the same orbit, with an orbit height between 782 to 785 km and an inclination
angle of 98.52 degrees, covering the Earth from a latitude of 82°N and S. The pulse repetition frequency is
1020 Hz and chirp pulse length is 20 µs.

Table C.1: Technical Details of ERS-1 and ERS-2 Radar Altimeters (RA-1) (ESA, 2023a)

Parameter Value
Orbit Height 782 - 785 km
Inclination Angle 98.52°
Radar Frequency 13.8 GHz (Ku-band)
Pulse Length 20 µs
Bandwidth 330 MHz
Pulse Repetition Frequency 1020 Hz

Envisat
The European Earth Observation satellite Envisat, which was in orbit from 2002 to 2012, carried ten in-
struments for Earth Observation, of which this research uses data from the Radar Altimeter 2 (RA-2). The
instrument had a dual-frequency, nadir-pointing, pulse-limited radar sensor. It operated at Ku-band (13.575
GHz) and S-band (3.2 GHz) and was the successor of the Radar Altimeter (RA-1) used on the ERS-1 and
ERS-2 missions. Its orbit height ranged between 764 and 825 km, with a similar inclination angle as the
ERS-1 and ERS-2 missions. The instrument uses three different bandwidths so the sensor can be adapted
for different scenarios (ocean, coastal zones, ice, ice sheet, sea ice and land), namely 320 MHz, 80 MHz and
20 MHz. The chirp pulse length of 20 µs is also similar to RA-1 from ERS-1 and ERS-2.
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Table C.2: Technical Details of Envisat Radar Altimeter 2 (RA-2) (Resti et al., 1999)

Parameter Value
Orbit Height 764 - 825 km
Inclination Angle 98.55°
Radar Frequency 13.575 GHz (Ku-band) - 3.2 GHz (S-band)
Pulse Length 20 µs
Bandwidth 320 MHz - 80 MHz - 20 MHz
Pulse Repetition Frequency 1795.33 Hz (Ku-band) - 448.83 Hz (S-band)

SARAL
The SARAL satellite was specifically launched in 2013 for altimetric purposes meant to bridge the gap
between the missions Envisat and Sentinel-3. Therefore, it has the same orbit specifications as Envisat. It
is the first satellite that uses a frequency of 35.75 GHz (Ka-band) for its active radar altimetry sensor, and
utilises additional passive bands to correct for the errors caused by the wet troposphere. Several advantages
of Ka-band over Ku-band can be identified. Ka-band can travel through the ionosphere mainly unaffected,
which nullifies the need for a dual-frequency altimeter. Additionally, the footprint size decreases from 15
km on Envisat to 8 km on SARAL, creating a finer horizontal resolution. The same holds for the vertical
resolution, since Ka-band can use a larger bandwidth than Ku-band altimeters. Ka-band also permits a
higher PRF (Pulse Repetition Frequency) than Ku-band, allowing for better along-track sampling. Finally,
the wavelength of Ka-band is better suited to observe small signals from the ocean’s surface (e.g. capillary
waves), which gives an improved estimate of the sea surface roughness. Drawbacks of using Ka-band include
the low radar penetration of snow and ice compared to Ku-band, and the theoretical attenuation due to
water in the troposphere during increased rainfall conditions.

Table C.3: Technical Details of SARAL radar altimeter (AltiKa) (ESA, 2023a)

Parameter Value
Orbit Height 800 km
Inclination Angle 98.538°
Radar Frequency 35.75 GHz (Ka-band)
Pulse Length 110 µs
Bandwidth 480 MHz
Pulse Repetition Frequency 3800 Hz

GFO
The GeoSat Follow-On mission was launched in 1998 and ended its life cycle in 2008. Its radar altimeter
(GFO-RA) used a Ku-band sensor with a centre frequency of 13.5 GHz and a bandwidth of 320 MHz. It
orbits the Earth in a non-sun-synchronous polar orbit with an inclination of 108.04°and an orbit height of
784 km. This mission is the first of its kind where a microwave radiometer and a radar sensor share the same
antenna.

Table C.4: Technical Details of GeoSat Follow-On radar altimeter (GFO-RA) (Walker et al., 1993)

Parameter Value
Orbit Height 784 km
Inclination Angle 108.04°
Radar Frequency 13.5 GHz (Ku-band)
Pulse Length 102.4 µs
Bandwidth 320 MHz
Pulse Repetition Frequency 1020.4 Hz

HY2
The Haiyang-2 satellite series consists of eight satellites, of which four are currently in orbit (HY-2A, HY-
2B, HY-2C, HY-2D) and four are planned to be launched by 2025 (HY-2E, HY-2F, HY-2G, HY-2H). The
satellites contain a Radar Altimeter (RA/HY-2) operating on a dual frequency signal of 13.58 GHz (Ku-band)
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and 5.25 GHz (C-band) (Dong et al., 2004). The C-band has a bandwidth of 160 MHz. The Ku-band has
bandwidths of 320 MHz over open ocean, 80 MHz on coastal oceans and 20 MHz on land or ice. The pulse
length is 102.4 µs, the PRF ranges between 1 and 4 kHz, and the footprint size is 16 km. HY-2A has a
near sun-synchronous frozen orbit with an inclination of 99.3°and an orbit altitude of 971 km (ESA, 2023a).
HY-2B and HY-2D both are in sun-synchronous orbits at 963 km altitude and an inclination of 66°. HY-2C
has a non-sun-synchronous orbit with the same inclination (66°) and an altitude of 957 km. The planned
satellites (HY-2E, HY-2F, HY-2G and HY-2H) are planned to be in a sun-synchronous orbit with an altitude
of 963 km and an inclination of 99.3°.

Table C.5: Technical Details of HY-2 Radar Altimeters (RA/HY-2) in orbit (Dong et al., 2004)

Parameter Value
Orbit Height 971 km (HY-2A) - 963 km (HY-2B/HY-2D) - 957 km (HY-2C)
Inclination Angle 99.3°(HY-2A) - 66°(HY-2B/HY-2C/HY-2D)
Radar Frequency 13.58 GHz (Ku-band) - 5.25 GHz (C-band)
Pulse Length 102.4 µs
Bandwidth 320 MHz - 80 MHz - 20 MHz (Ku-band) - 160 MHz (C-band)
Pulse Repetition Frequency 1-4 kHz

Sentinel-3A
Copernicus Sentinel-3A contains a nadir-looking altimeter instrument (SRAL) which operates in Ku-band
and C-band. The Ku-band has a centre frequency of 13.575 GHz with a bandwidth of 350 MHz. The
C-band has 5.41 GHz as the centre frequency and a bandwidth of 320 MHz and is used for ionospheric
corrections. The pulse length is 50 µs. It has two measurement modes: LRM and SARM, corresponding to
Low Resolution Mode with a PRF of 1.92 kHz and SAR Mode with a PRF of 17.8 kHz respectively. The
LRM is similar to a conventional altimeter pulse-limited mode, which has a pulse pattern of 3 Ku / 1 C / 3
Ku. The SARM has a high along-track resolution, with a pulse pattern of 64 Ku-band pulses surrounded by
two C-band pulses.

Table C.6: Technical Details of Sentinel-3A Radar Altimeter (SRAL) (ESA, 2023a)

Parameter Value
Orbit Height 814.5 km
Inclination Angle 98.65°
Radar Frequency 13.575 GHz (Ku-band) - 5.41 GHz (C-band)
Pulse Length 50 µs
Bandwidth 350 MHz (Ku-band) - 320 MHz (C-band)
Pulse Repetition Frequency 1.92 kHz (LRM) - 17.8 kHz (SARM)

TOPEX/Poseidon
The TOPEX/Poseidon mission is a successor of the GEOS-3, SeaSat and GeoSat missions launched by
the US, launched in 1992 and ending in 2006. Its orbit has an altitude of 1336 km with an inclination of
66.039°and a repeat orbit of 10 days. It contains a dual-frequency NASA Radar Altimeter (NRA) using Ku-
band and C-band to observe the sea surface height and estimate the ionospheric correction. The bandwidth
for the Ku-band is 320 MHz, and for the C-band 100 MHz. The PRF for Ku-band is 2400 Hz, and for
C-band 1220 Hz. The pulse duration is 102.4 µs for Ku-band and 102.4 or 32 µs for C-band. Next to NRA,
the satellite also carries a single-frequency altimeter (SSALT), with a frequency of 13.65 GHz (Ku-band). It
was installed as an experiment to demonstrate a low-cost, low-power, low-mass and low-data rate solution
for future altimetry missions. Successfully, the altimeter proved to be able to estimate sea surface heights
with an accuracy of 2.5 cm. The experimental altimeter was 4 times as light and consumed 5 times less
power than the NRA.
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Table C.7: Technical Details of TOPEX/Poseidon Radar Altimeter (NRA) (Fu et al., 1994)

Parameter Value
Orbit Height 1336 km
Inclination Angle 66.039°
Radar Frequency 13.575 GHz (Ku-band) - 5.3 GHz (C-band) - 13.65 GHz (SSALT,

Ku-band)
Pulse Length 102.4 µs (Ku-band) - 102.4 or 32 (C-band) - 105.6 µs (SSALT)
Bandwidth 320 MHz (Ku-band) - 100 MHz (C-band) - 300 MHz (SSALT)
Pulse Repetition Frequency 2400 Hz (Ku-band) - 1220 Hz (C-band) - 900 MHz (SSALT)

Jason-1, Jason-2 and Jason-3
The Jason series is a mission collection to continue the successful work of TOPEX/Poseidon. Jason-1,
Jason-2 and Jason-3 were launched in 2001, 2008 and 2016 respectively. All of them share the same orbit,
similar to the TOPEX/Poseidon orbit. All of them are or have been in an orbit with an altitude of 1336 km
and an inclination angle of 66°. The development of the SSALT instrument on TOPEX/Poseidon has been
implemented in all satellites, resulting in an improved version of the instrument in Jason-1 (Poseidon-2),
Jason-2 (Poseidon-3) and Jason-3 (Poseidon-3B). All of them operate in dual-band frequency, with Ku-band
and C-band, and have the same pulse length. The bandwidth for Poseidon-2 is 320 MHz for Ku-band and
320 or 100 MHz for C-band. For Poseidon-3 and Poseidon-3B, the bandwidth for both Ku-band and C-band
is 320 MHz. The PRF for Poseidon-2 is 1800 Hz for Ku-band and 300 Hz for C-band. The Poseidon-3 and
Poseidon-3B altimeters have an interlaced PRF of 2060 Hz, which equals 3Ku-1C-3Ku-band signals.

Table C.8: Technical Details of Jason Radar Altimeters (Poseidon-2/-3/-3B)

Parameter Value
Orbit Height 1336 km
Inclination Angle 66°
Radar Frequency 13.575 GHz (Ku-band) - 5.3 GHz (C-band)
Pulse Length 105.6 µs
Bandwidth 320 MHz (Ku-band) - 320/100 MHz (C-band)
Pulse Repetition Frequency 1800 Hz (Ku-band) - 300 Hz (C-band) / 2060 Hz interlaced (3Ku-

1C-3Ku)



D
Hatyan tidal analysis

This appendix presents the tidal analysis used to correct the TG data for any harmonic tidal signals. The
Python package Hatyan is used to compute 95 tidal constituents (Veenstra & Kerkhoven, 2020), which
are summed and subtracted from the TG time series to compute the non-tidal residuals used in the neural
network as ground truth data. The main expression used for this tidal analysis is

h(t) = A0 +

N∑
i=1

γiAi cos {ωit+ (v0 + u)i − gi} (D.1)

where

• h(t) = water level at time t

• A0 = the mean of the time series
• N = the number of constituents
• γi = a correction term for the amplitude of the 18.6-year cycle
• Ai = the amplitude of component i
• ωi = the angular velocity of component i
• v0 + u = the phase of the equilibrium tide at t = 0, with correction term u for the 18.6-year cycle
• gi = improved kappa-number (phase) of component i

The corrections for the 18.6-year cycle (γi and u) are needed here because the tidal analysis is based on
time series of one year, which means it is otherwise impossible for the algorithm to obtain estimates for an
18.6-year cycle. The equilibrium tide in this context refers to the tidal variation that would occur if the Earth
was completely covered in deep ocean. The phase difference between the equilibrium tide and the actual
tide is given with gi. For this study, a number of N = 94 components is used, which are listed in Table D.1.

A0 SA SM Q1 O1 M1C P1 S1 K1
3MKS2 3MS2 OQ2 MNS2 2ML2S2 NLK2 MU2 N2 NU2
MSK2 MPS2 M2 MSP2 MKS2 LABDA2 2MN2 T2 S2
K2 MSN2 2SM2 SKM2 NO3 2MK3 2MP3 SO3 MK3
SK3 4MS4 2MNS4 3MS4 MN4 2MLS4 2MSK4 M4 3MN4
MS4 MK4 2MSN4 S4 MNO5 3MK5 2MP5 3MO5 MSK5
3KM5 3MNS6 2NM6 4MS6 2MN6 2MNU6 3MSK6 M6 MSN6
MKNU6 2MS6 2MK6 3MSN6 2SM6 MSK6 2MNO7 M7 2MSO7
2(MN)8 3MN8 M8 2MSN8 2MNK8 3MS8 3MK8 2(MS)8 2MSK8
3MNK9 4MK9 3MSK9 4MN10 M10 3MSN10 4MS10 2(MS)N10 3M2S10
4MSK11 M12 4MSN12 5MS12 4M2S12

Table D.1: Constituents used in the tidal analysis. A0 is not a tidal constituent, but the mean of the time series (Veenstra &
Kerkhoven, 2020).
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The Hatyan algorithm estimates the amplitude (Ai) and phase (gi) for every tidal component along with
the mean (A0) mentioned in Table D.1 with a least-squares adjustment. The nodal factors (γi and u) are
estimated for all time steps, and v0 is computed for the start of the time series. The angular velocity (ωi) is
pre-defined for every component. The amplitudes and phases for the Scheveningen TG are shown in Figure
D.1.

Figure D.1: Amplitude and phase of all considered tidal constituents for Scheveningen. Amplitude is given in metres and
phase in degrees.

The largest component, which has a period of 12.4206 hours, is M2. The components M4 and S2 follow
with much smaller amplitudes, and have a period of 6.2103 and 12 hours respectively. Other significant
components are, MS4, N2, MU2, NU2, O1, SA, K1, 2MN2 and MN4, of which their respective period and
angular velocity are shown in Table D.2.

Component Period [hours] ωi [rad/hr]
M2 12.4206 0.5059
M4 6.2103 1.0117
S2 12.0000 0.5236
MS4 6.1033 1.0295
N2 12.6583 0.4964
MU2 12.8718 0.4881
NU2 12.6260 0.4976
O1 25.8193 0.2434
SA 8765.8128 0.0007
K1 23.9345 0.2625
2MN2 12.1916 0.5154
MN4 6.2692 1.0022

Table D.2: Components with significant amplitudes according to Hatyan with their respective period in hours and angular
velocity in radians per hour (Veenstra & Kerkhoven, 2020). The components with the largest amplitudes are shown in grey.

Summing all tidal components according to (D.1) results in a non-tidal residual as shown in Figure 4.4,
which is then used as ground truth data to train the neural network.



E
Input variables

This appendix shows the distribution of the datasets used in this study. Tide gauge non-tidal residuals are
presented, which act as ground truth data, along with the input variables of the neural network. The input
variables from satellite altimetry (NTR, dt, dN and dE) are shown, as well as the ERA5 input variables
(p, U10 and V 10) and the DOY . For interpretability, ERA5 p is divided by 100 to convert pascals to
hectopascals and satellite altimetry dt is divided by 3600 to present the data in hours instead of seconds.

Figure E.1: Distribution of the day of the year
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Tide gauge non-tidal residuals

(a) (b)

(c)

Figure E.2: Distribution of the non-tidal residuals for (a) Scheveningen, (b) Vlissingen and (c) Europlatform.
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Satellite altimetry features

(a) (b)

Figure E.3: Distribution of (a) non-tidal residuals for satellite altimetry observations (b) the time difference between each
satellite altimetry observation and the time stamp of interest. Note that each satellite altimetry observation appears 48 times

in 48 successive input datasets.
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(a) (b)

(c)

Figure E.4: Distribution of the distance between satellite altimetry observations and the tide gauge of interest in longitudinal
direction for (a) Scheveningen, (b) Vlissingen and (c) Europlatform. While the distribution is the same, the three histograms

are slightly shifted with respect to one another, depending on the longitude of the tide gauge.
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(a) (b)

(c)

Figure E.5: Distribution of distance between satellite altimetry observations and the tide gauge of interest in lateral direction
for (a) Scheveningen, (b) Vlissingen and (c) Europlatform. While the distribution is the same, the three histograms are

slightly shifted with respect to one another, depending on the latitude of the tide gauge.
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ERA5 features

(a) (b)

(c)

Figure E.6: Distribution of ERA5 sea surface pressure, wind speed in longitudinal direction and wind speed in lateral direction.



F
POT threshold selection

The peak-over-threshold method requires a manual selection of a threshold, with the requirement that a
generalised Pareto distribution (GPD) has to be valid over the thresholded data (Leadbetter, 1991). The
GPD can be fitted on the data according to Equation F.1, where T represents the threshold, ξ and η are the
shape and scale parameters of the GPD, and x the data (Castillo & Hadi, 1997).

GPDξ,T,η(x) =

1−
[
1 + ξ

(
x−T
η

)]− 1
ξ if ξ ̸= 0

1− exp
[
−x−T

η

]
if ξ = 0

(F.1)

When ξ ≥ 0, η > 0 and x − T ≥ 0. If ξ < 0, then 0 ≤ x − T ≤ −η/ξ. To find suitable thresholds T
for every location, mean excess plots are used that can give an approximation for the threshold by visual
inspection of the graphs (Ghosh & Resnick, 2010). The mean excess (ME) of a dataset is computed with
Equation F.2, where M̂(T ) refers to the empirical ME function, with Xi the data values, T the threshold,
and I[Xi>u] an indicator function that equals 1 if Xi > T and 0 otherwise. The ME plot is then given as a
function of T , and shows the average excess of the data in metres for all data points above the threshold
(Figure F.1). When the ME plot is linear within a certain range of thresholds, a GPD is considered to be
valid for the thresholded data.

M̂(T ) =

∑n
i=1 (Xi − T ) I[Xi>T ]∑n

i=1 I[Xi>T ]

, T ≥ 0 (F.2)

Figure F.1 shows the mean excess plots for Scheveningen, Vlissingen and Europlatform, based on a threshold
range of 100 values between the 90th percentile and the 10th highest value of the water levels, including the
harmonic tidal signals.
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(a) (b)

(c)

Figure F.1: Mean excess plots for (a) Scheveningen, (b) Vlissingen and (c) Europlatform. The black lines indicate where the
mean excess plot is approximately linear. The shaded area refers to the 95% confidence interval.

From Figure F.1, the valid threshold range is [1.47 to 2.15] metres for Scheveningen, [2.50 to 3.18] metres
for Vlissingen, and [1.27 to 2.05] metres for Europlatform. To validate the right threshold range, the shape
(ξ) and scale (η) parameters of the GPD (Equation F.3 and F.4) are plotted against the selected threshold
range. If these parameters are seemingly stable within the selected range, the selected range is assumed to
be valid (Bocharov, 2023).

ξ̂ =
1

2

[
1− (µ̂− T )2

s2

]
(F.3)

η̂ =

[
µ̂− T

2

] [
(µ̂− T )2

s2
+ 1

]
(F.4)

In Equations F.3 and F.4, µ̂ refers to the empirical mean of the values above the threshold T , and s2 to
the empirical variance. Figure F.2 shows the parameter stability as a function of the threshold T , for the
same range of thresholds as the ME plots in Figure F.1. The grey shaded areas indicate the threshold range
defined by the ME plots, and are adjusted for every location based on the stability. For Scheveningen, the
range is modified to [1.47 to 2.00] metres. Vlissingen is adjusted to [2.50 to 3.15] metres, and Europlatform
to [1.27 to 1.90] metres.
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(a) (b)

(c)

Figure F.2: Parameter stability plots of the shape ξ and scale η parameters of the GPD for (a) Scheveningen, (b) Vlissingen
and (c) Europlatform. The blue shaded area refers to the 95% confidence interval and the grey shaded area to the threshold

range defined with the ME plots. The black line refers to the selected thresholds for each location.

Based on Figure F.1 and F.2, appropriate thresholds are chosen for each location, presented as black lines
in Figure F.2. These thresholds are used in the POT method to select high water levels within the water
level observations from the tide gauges and their reconstruction from the machine learning models. They
are chosen to be as low as possible for the GPD to still be valid, since the testing period of the ML model
is only 3.5 years, which means a high threshold might result in not finding enough high water levels to test
the model performance on.



G
K-fold reconstructions

The Figures presented in this appendix cover all results from the K-fold cross-validation not shown in Section
5.2. The full time series reconstructions are shown, with zoomed-in months of interest that include severe
storms as catalogued by the KNMI (KNMI, 2024). These storms are recorded on the 2002-02-02 (Deutscher
Wetterdienst, 2002), 2002-03-09 (u0192, 2002), 2002-10-27 (KNMI, 2002), 2007-01-17 (KNMI, 2007),
2013-10-28 (KNMI, 2013b) and 2013-12-05 (KNMI, 2013a).

(a)

(b) (c)

(d) (e)

Figure G.1: Time-series reconstruction for validation set 1 of the Scheveningen model. The shaded areas in (a) correspond to
the months shown in (b), (c), (d) and (e). The green lines represent the tide gauge observations, the blue lines refer the
machine learning model output. The shaded areas in the sub-graphs show storms catalogued by the KNMI (KNMI, 2024).

The unit of the y-axis is in metres and depicts the non-tidal water level referenced to NAP.
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(a)

(b) (c)

(d) (e)

Figure G.2: Time-series reconstruction for validation set 2 of the Scheveningen model. The shaded areas in (a) correspond to
the months shown in (b), (c), (d) and (e). The green lines represent the tide gauge observations, the blue lines refer the
machine learning model output. The shaded areas in the sub-graphs show storms catalogued by the KNMI (KNMI, 2024).

The unit of the y-axis is in metres and depicts the non-tidal water level referenced to NAP.
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(a)

(b) (c)

(d) (e)

Figure G.3: Time-series reconstruction for validation set 3 of the Scheveningen model. The shaded areas in (a) correspond to
the months shown in (b), (c), (d) and (e). The green lines represent the tide gauge observations, the blue lines refer the
machine learning model output. The shaded areas in the sub-graphs show storms catalogued by the KNMI (KNMI, 2024).

The unit of the y-axis is in metres and depicts the non-tidal water level referenced to NAP.
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(a)

(b) (c)

(d) (e)

Figure G.4: Time-series reconstruction for validation set 4 of the Scheveningen model. The shaded areas in (a) correspond to
the months shown in (b), (c), (d) and (e). The green lines represent the tide gauge observations, the blue lines refer the
machine learning model output. The shaded areas in the sub-graphs show storms catalogued by the KNMI (KNMI, 2024).

The unit of the y-axis is in metres and depicts the non-tidal water level referenced to NAP.
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Weight analysis

For every model, the model weights have been visualised. Section 4.4 explains the inner workings of the
neural network applied in this study, of which the trained parameters (weights and biases) are presented here.
The weights for the first layer are linked directly to the input features. This enables the p, U10 and V10
from ERA5 as well as the NTR, dE and dN from satellite altimetry to be shown as individual maps. Each
map shows the difference between the first and the last hour within the 48-hour time window used as input
for the model, which ranges from 48 to 1 hour prior to the time stamp of the target value. Presented in this
appendix are the first-layer weight differences of the satellite altimetry variables and the ERA5 variables for
each model. If the weight increases between hour -48 and hour -1 within the input dataset, the differences
are shown in red. If the weights decrease, the differences are shown in blue. Additionally, the first-layer
weights of the satellite altimetry features are shown for Europlatform and Vlissingen, since the weights for
Scheveningen have already been presented in Chapter 5.

H.1. Satellite altimetry

(a) (b)

(c) (d)

Figure H.1: First-layer weights summed over the 48-hour time window for the Vlissingen model for (a) the NTR, (b) the
longitudinal component of the distance dE , (c) the lateral component of the distance dN and (d) the time difference between

observation and tide gauge dt.
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(a) (b)

(c) (d)

Figure H.2: First-layer weights summed over the 48-hour time window for the Europlatform model for (a) the NTR, (b) the
longitudinal component of the distance dE , (c) the lateral component of the distance dN and (d) the time difference between

observation and tide gauge dt.

(a) (b) (c)

Figure H.3: Difference between hour -48 and -1 of satellite altimetry first-layer weights corresponding to (a) non-tidal water
level, (b) longitudinal distance and (c) lateral distance for Scheveningen.

(a) (b) (c)

Figure H.4: Difference between hour -48 and -1 of satellite altimetry first-layer weights corresponding to (a) non-tidal water
level, (b) longitudinal distance and (c) lateral distance for Vlissingen.
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(a) (b) (c)

Figure H.5: Difference between hour -48 and -1 of satellite altimetry first-layer weights corresponding to (a) non-tidal water
level, (b) longitudinal distance and (c) lateral distance for Europlatform.

H.2. ERA5

(a) (b) (c)

Figure H.6: Difference between hour -48 and -1 of ERA5 first-layer weights corresponding to (a) sea surface pressure, (b)
longitudinal wind speed and (c) lateral wind speed for Scheveningen.

(a) (b) (c)

Figure H.7: Difference between hour -48 and -1 of ERA5 first-layer weights corresponding to (a) sea surface pressure, (b)
longitudinal wind speed and (c) lateral wind speed for Vlissingen.
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(a) (b) (c)

Figure H.8: Difference between hour -48 and -1 of ERA5 first-layer weights corresponding to (a) sea surface pressure, (b)
longitudinal wind speed and (c) lateral wind speed for Europlatform.
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