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Abstract

Improving reasoning of Large Language Models for
fact checking real - world complex claims

Abstract

The growing volume of online misinformation has increased the demand for auto-
mated fact-checking systems. While large language models (LLMs) have demon-
strated potential in this domain, real-world claims are complex that challenge stan-
dard prompting techniques. These claims are multi-aspect, requiring integration of
evidence across different sources. Among these, a challenging subset are claims
with Conflicting labels, where different parts of the claim support opposing verac-
ity labels. Both cases demand nuanced, context-sensitive reasoning that LLMs
struggle to perform reliably. This thesis investigates two methods to enhance LLM
reasoning for fact-checking - claim decomposition and test-time scaling. Claim de-
composition breaks down complex claims into simpler sub-questions, promoting
more structured reasoning. While this improves performance on Conflicting claims,
it can degrade accuracy for straightforward claims, particularly those labeled as
True. To mitigate this, an adaptive decomposition strategy is proposed, selectively
applying decomposition only when beneficial. A taxonomy of reasoning failure -
termed overthinking - is identified, where the model becomes unnecessarily strict
due to noisy evidence or overly specific sub-questions. To further address this is-
sue, test-time scaling using a reward model is employed to rank candidate outputs.
This approach yields an 18.8% relative improvement in macro F1-score over the
baseline and reduces overthinking by encouraging context-aware leniency. To-
gether, these findings underscore the importance of targeted reasoning strategies
for improving the robustness and reliability of LLM-based fact-checking.
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Introduction

1.1. Background and Motivation

1.1.1. Challenges of fact-checking real-world complex claims

The proliferation of misinformation across digital platforms has made verifying factual accuracy
at scale more critical than ever [1, 2]. From public health to political discourse, false claims can
spread rapidly and influence real-world outcomes. Many real-world claims contain a numerical
or quantitative figure in them [3]. Such claims are more likely to be perceived as correct due
to their associated numerical figures - an effect termed as numeric-truth-effect [4]. This effect
can have serious real-world consequences. A prominent illustration is the U.S. opioid crisis,
where Purdue Pharma used misleading numerical claims—such as falsely asserting that the
addiction risk of OxyContin was less than 1%—to market the drug as safe [5]. These precise
figures, though inaccurate, contributed to the widespread perception of safety and ultimately
fueled large-scale overprescription and addiction.

In response to the need for scalable fact-checking, automated fact-checking has emerged as
a promising computational approach to assess the truthfulness of claims with minimal human
intervention. This process typically involves evaluating a claim against supporting evidence
to determine whether it is corroborated or contradicted, generating an explanation for the de-
cision. The stage of this process known as veracity prediction is responsible for making this
determination, outputting a decision in the form of a veracity label (e.g., Supported, Refuted)
along with a corresponding textual explanation, known as the justification [6, 7]. Recent ad-
vancements in large language models (LLMs) have enabled researchers to frame veracity
prediction as a summarization task [8, 9], allowing systems to generate both a classification
and its corresponding natural language explanation.

Despite these advances, verifying real-world claims remains a challenging task that demands
intense reasoning capabilities. A key difficulty lies in the inherent complex nature of such
claims, which are often multi-faceted and require the verification of several interrelated aspects
to determine their overall truthfulness. Furthermore, the supporting evidence for these individ-
ual aspects is frequently distributed across multiple sources, rather than contained within a
single document [10, 11, 12, 13]. Consequently, a language model must be capable of iden-
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tifying the various aspects of a claim, retrieving the appropriate pieces of evidence for each,
evaluating the alignment between the claim and the evidence, and aggregating these individ-
ual verifications to produce a final veracity label.

Figure 1.1 illustrates the complexity of real-world claims through a representative example.
The claim in question asserts that the Obama administration offered $900 million to Hamas -
a designated terrorist organization - for the reconstruction of Gaza. Upon closer examination,
the evidence reveals that while the monetary amount ($900 million) is accurate, the aid was
directed to Gaza rather than to Hamas. Additionally, a separate source confirms that Hamas
is officially recognized as a terrorist organization. Relating these pieces of evidence leads
to the correct veracity label of False for the claim. This example underscores the need for
comprehensive reasoning that considers all relevant aspects of a claim, ensuring that the final
veracity decision reflects the truthfulness of each component.

[Claim]: The Obama administration offered "$900 million to Hamas, a recognized
terrorist organization, to rebuild Gaza.”

[Evidences]:
1. .... washington the obama administration intends to provide some $900 million to
help rebuild gaza after the israeli incursion that ended last month, administration

officials said monday. by seeking to aid gazans but not hamas, the .....
2. hamas is an islamist extremist palestinian organization that calls for the eradica-

tion of the state of israel.....

[Label]: False

Figure 1.1: An example of a complex real world claim and its multi aspect evidence.

An additional challenge in veracity prediction stems from the need to reason about claims
that do not fall neatly into binary categories such as True or False. Instead, real-world fact-
checking often requires solving a multi-class classification problem. Datasets like QUANTEMP
[3] standardize annotations across sources into three labels: True, False, and Conflicting. This
setup introduces greater nuance but also increases the complexity of the classification task.

Multi-class classification inherently increases the modeling challenge, as the decision bound-
ary between classes is no longer binary and often not well-separated. This complexity is
compounded in tasks where the classes are not strictly disjoint. In case of fact-checking, the
Conflicting class exhibits significant semantic and evidential overlap with both True and False,
blurring the boundaries that would otherwise guide the model’s decisions. Unlike True or
False, which typically involve more direct correspondence or contradiction between the claim
and evidence, Conflicting comprises claims that blend accurate information with misleading
or decontextualized elements.

A concrete example is shown in Figure 1.3. The claim that “Obama shut down the government
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for 16 days to force Obamacare” contains some factual information—the government was shut
down for 16 days in 2013, and Obamacare was central to the political conflict. However, the
evidence contradicts the claim’s attribution of blame, showing instead that it was a Republican-
led Congress that attempted to defund the Affordable Care Act. This blend of partial truth and
misattribution exemplifies the semantic ambiguity inherent to Conflicting claims.

As shown in Figure 1.2, the Conflicting label in QUANTEMP is mapped from a wide range of
original annotations, including Partly True, Mixture, Missing Context, or Miscaptioned. These
diverse interpretations lead to heterogeneous supervision signals, making it difficult for models
to learn consistent decision boundaries.

Distribution of "Conflicting" labels in Quantemp dataset

1200 4

1000 A

@

o

o
L

600 -

Frequency

400 4

Original Labels Mapped to Conflicting class

Figure 1.2: Distribution of original labels mapped to Conflicting class in Quantemp [3]
dataset.

We find empirically that this class is also the hardest to predict correctly: as shown in Table 5.1,
the F1 score for Conflicting is substantially lower than for True and False when run in without
decomposition setting. This indicates that language models struggle to generalize over the
fuzzy reasoning patterns required to identify ambiguity, conflicting context, or blended actuality.
These observations highlight a key modeling bottleneck in real-world fact-checking: language
models are not inherently equipped to reason about subtle contradictions or misattributions,
especially when these are embedded in otherwise factually plausible statements.

1.1.2. Decomposition to address the multi-aspect and ambiguity challenges of
real-world claims

Owing to the multi-aspect nature and semantic ambiguity inherent in many real-world claims,

performance of language models in veracity prediction remains suboptimal [3, 13, 12]. This

issue is particularly acute for claims labeled as Conflicting, where elements of truth are inter-

woven with misleading or exaggerated content. As shown in Figure 1.3, such claims require
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[Claim]: ”"October 2013, Obama shut down the government for 16 days to force
Obamacare.

[Evidences]: .... in 2013, when the government was partially closed for 16 days after
another republican-led congress tried to use budget negotiations to defund barack

obamas signature affordable care act, widely known as obamacare ....

[Label]: Conflicting

Figure 1.3: An example of a "Conflicting” claim where certain aspect of the claim is True
while others are exaggerated.

methods to reason over subtle contradictions and contextual nuance capabilities that current
language models often lack. Additionally, these models struggle with accurately identifying
and processing numerical data [14], which further impedes their ability to assess claims in-
volving numerical figures.

To address these limitations, several researchers have proposed decomposing claims into
sub-claims or sub-questions based on various properties of the claim [13, 12, 15, 11]. Using
these sub-questions as a framework for evidence retrieval and reasoning has been shown to
enhance model performance [16]. For example, the multiple aspects of the claim depicted in
Figure 1.1 can be broken down into the following sub-questions:

1. Did the Obama administration offer $900 million to Hamas?
2. Was the money offered to rebuild Gaza?

3. Is Hamas a recognized terrorist organization?

Reasoning using these aspects enables the veracity prediction model to identify relevant evi-
dence (highlighted in red in Figure 1.1), guiding the overall veracity prediction process.

1.1.3. Shortcoming of decomposition

While decomposition strategies have been shown to enhance the reasoning capabilities of lan-
guage models, they also introduce certain limitations. A prominentissue is over-decomposition,
where decomposing claims into excessively fine-grained sub-questions can impair the perfor-
mance of veracity predictions [17]. Qualitative analyses of preliminary results suggest that this
issue is closely linked to a well-documented artifact in large language models (LLMs) known
as overthinking. This refers to a tendency of LLMs to deviate from correct reasoning paths by
overemphasizing superficial keyword cues in the input [18, 19]. As shown in Table 5.1, this
phenomenon is particularly detrimental for claims labeled as True, where decomposition re-
duces prediction accuracy. Supporting this observation, Table 5.2 highlights that overthinking
accounts for the majority of decomposition-related performance drops in True claims.



1.2. Research Questions 5

In contrast, applying decomposition selectively-specifically to claims labeled as Conflicting
yields a notable improvement in performance across all veracity classes, as illustrated in Ta-
ble 5.1. This result is grounded in the observation that Conflicting claims pose greater reason-
ing challenges due to their inherently complex and often ambiguous nature, as discussed in
Section 1.1.1. These findings underscore the limitations of uniform decomposition strategies
and motivate the design of an adaptive decomposition mechanism that tailors decomposition
decisions based on claim-specific properties. In this study, we explore principled and robust
approaches for guiding decomposition selectively, aiming to improve predictive performance.

1.1.4. Shortcoming of relying on a top 1 output sequence of LLMs

While adaptive decomposition has been shown to enhance the performance of veracity pre-
diction tasks, it does not directly address reasoning issues like overthinking and numerical
complexity that exist in the output sequence generated by the language models. Prior work
has demonstrated that the top-1 output of large language models is often unreliable for tasks
requiring complex reasoning [20, 21]. This insight has motivated the development of tech-
niques that involve sampling multiple output sequences per input and aggregating these to
arrive at a more robust final prediction [21, 22]. These approaches, which require increased
computational resources during inference, fall under the umbrella of test-time scaling [23].

A particularly effective strategy within this paradigm involves training a reward model to select
the most promising output sequence from a set of candidates [24, 25, 26]. When applied to
reasoning-intensive tasks, such methods have not only demonstrated improvements in task
performance but have also enhanced the correctness of the underlying reasoning process
[26].

It is hypothesized that sampling a sufficient number of independent decoding paths from the
model, given an input comprising a claim, supporting evidence, and optional sub-questions,
yields a high likelihood of generating at least one sequence that exhibits valid reasoning and
leads to a correct verdict. Empirical analysis provides support for this hypothesis: when 10
decoding paths are sampled per claim, it is observed that a substantial proportion of claims
are correctly reasoned in at least one sequence (see upper bound results in Table 5.4). Con-
sequently, the objective is to train a reward model that can identify and select the correctly
reasoned sequence, thereby improving the performance of veracity prediction. Furthermore,
an investigation is undertaken to determine whether the reward model genuinely learns to
recognize higher-quality reasoning, rather than solely optimizing performance.

1.2. Research Questions

To address the discussed shortcomings in the reasoning capabilities of LLMs, we pose the
following research questions:

1. RQ1: How does claim decomposition affect veracity prediction in fact checking complex
claims?
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2. RQ2: Can adaptive decomposition of the claims help improve performance of veracity
prediction?

3. RQ3: How does Reward Model (RM) guided test-time scaling improve reasoning and
performance of veracity prediction?

1.3. Scientific Contribution

The contributions of this work, derived from addressing the proposed research questions, are
as follows:

1. Comprehensive evaluation of claim decomposition strategy: An in-depth study is
conducted on the effect of claim decomposition on LLM-based veracity prediction per-
formance. Furthermore, qualitative analysis identifies and categorizes the taxonomies
of errors where decomposition is not necessary.

2. A principled approach to adaptive decomposition for efficiency and robustness:
Two methods are proposed for adaptive decomposition, enabling decomposition deci-
sion to be made based on the structural complexity of the claims. This approach in-
crease veracity prediction performance while also reducing computational overhead by
avoiding decomposition for certain claims when unnecessary making it more time and
cost efficient (see Appendix A.6 for details).

3. Reward modeling for reasoning-aware sequence selection: It is shown that training
a reward model to evaluate and select from multiple candidate outputs leads to improve-
ment in veracity prediction performance. Qualitative analysis also indicate that the re-
ward model preferentially selects outputs that exhibit more coherent and logically sound
reasoning.

1.4. Thesis Outline

The report is laid out in the following way. Chapter 2 discusses current related work perti-
nent to the research objectives of this study. Chapter 3 dives into the methodology used to
perform adaptive decomposition, and training and inference of a reward model to select the
best reasoning path. Chapter 4 discusses the experiments conducted and the implementa-
tion specification used to answer the research questions. Chapter 5 discusses the results
obtained and relate them with the research questions and existing literature. Finally, Chapter
6 concludes the thesis while discussing limitations and directions for future improvements.
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Related Work

2.1. Real world claims dataset for automated fact checking

After the formal definition of automated fact checking [7], there have been many attempts to
design a dataset for training and evaluating models on this task. Among them, FEVER [27]
is a prominent dataset that consists of claims from Wikipedia rephrased by crowd workers.
Such claims are called synthetic claims which are artificially created from a well-known fact
and they do not accurately represent the real-world claims fact-checked by the journalists [11].
Following up on this, there have been several synthetic claims datasets sourced either from
Wikipedia [28, 29, 30] or from domain-specific sources [31, 32, 33].

On the contrary, real-world claims datasets are created by consolidating actual claims from
the web or fact-checking organizations. These claims are obtained from various fact-checking
websites. First attempt in creating a real-world dataset [7] collected claims from two fact-
checking websites - (i) Channel 4" and Politifact?>. The different veracity labels are aligned
into a five-point scale: TRUE, MOSTLYTRUE, HALFTRUE, MOSTLYFALSE, and FALSE. This
resulted in a dataset consisting of 221 claims and their corresponding justifications. Inspired
by this, LIAR [34] dataset was introduced with around 12,800 political claims with six veracity
labels. These claims are accompanied by claims metadata such as their identity and context.
Owing to its large sample size, it is more suitable for training and testing machine learning
models.

However, these datasets lack the evidence to predict the veracity of the claims. To address
this gap, LIAR-PLUS [35] extracted the justification documents for the claims present in the
LIAR dataset [34] and used them as evidence alongside the claim to perform the claim ve-
racity prediction task. Results indicate that using this evidence, improves veracity prediction
performance. PolitiHop [10] dataset modeled fact-checking task along the line of multi-hop
reasoning [36, 37]. It annotated multiple pieces of connected evidence required to predict the
veracity of a claim, thus acknowledging the complex nature of real-world claims. There are
several datasets with real-world claims that deal with different domains such as health [38,
8], climate [39], multi-lingual [40] and open domain [41, 42]. Recent attempts in creating a

"http://blogs.channel4.com/factcheck/
2http://www.politifact.com/ truth-o-meter/statements/
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real-world fact-checking dataset have modeled it as a decomposition task with works such as
QABriefs [12], CLAIMDECOMP [13], AVERITEC [11], and QUANTEMP [3]. These datasets
often decompose the claims into sub-claims or sub-questions which inherently assume that
they are complex in nature. These decomposition techniques are discussed in detail in section
2.2

2.2. Claim Decomposition in Fact Checking

The first attempt to decompose a fact-checking claim into sub-claims/sub-questions was the
creation of the QABriefs dataset [12] which consists of question-answer pairs pertaining to a
claim, generated by crowd workers. These questions are generated around briefs - a concept
inspired by briefing someone on a situation. A BART model [43] was fine-tuned to automati-
cally generate questions and another was trained to generate answers. The results indicate
that using QABrief increases the fact-checking accuracy while reducing the fact-checking time
thus making the task more efficient. Inspired by this, CLAIMDECOMP [13] created a human-
annotated dataset by decomposing complex political claims into a set of yes-no questions.
This set of questions should collectively cover the entire aspect of the claim and each question
is relevant in determining the veracity of the claim. Experimental results indicate that evidence
retrieved using these generated questions outperforms veracity prediction performance when
using only the claim, hence showing the effectiveness of these questions in claim-veracity
prediction.

Varifocal [44] proposed to generate questions around focal points of a claim. Focal points are
either the spans from the claims which are extracted from its syntactic parse tree or metadata
such as the source of the claim, the speaker’s name, or the date of the claim. They evaluated
the quality of the generated questions using both automatic metrics and human evaluation.
Human evaluators evaluated based on intelligibility, clarity, relevance, and informativeness.
Results indicate that their method generates better quality questions against QABriefs’ BART
model [12] and another model trained on the SQUAD dataset. However, ProgramFC [15] took
a different path and proposed to decompose a claim into simpler small sub-tasks. They used
the Codex model [45] in a few-shot setting to generate a series of sub-tasks/programs and call
an off-the-shelf executor to execute these sub-tasks independently. The function of these sub-
tasks is to verify a simpler claim, answering a question or performing simple logic reasoning.
Their method outperforms other fact-checking baselines when compared on the HOVER [36]
and FEVEROUS-S [46] datasets.

AVERITEC [11] collects real-world claims from 50 different organizations and employs human
annotators to generate multiple question-answer pairs to determine the veracity of the claims.
Unlike CLAIMDECOMP [13] which limits the questions to be yes/no type, they allow the an-
swers to be abstractive, extractive or boolean. To determine the veracity of the claim, they
fine-tune a BERT-large model [47] to label each question-answer pair as supporting, refuted
or irrelevant to the question. The final verdict is determined by aggregating each question-
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answer verdict to predict one of the four veracity labels - supported, refuted, not enough evi-
dence, or conflicting evidence/cherry picking. Results indicate general difficulty in predicting
the veracity labels of the Conflicting evidence class.

Similarly, QUANTEMP [3] collects real-world claims from various fact-checking organizations
and identifies numerical claims which include numbers, units, approximations (eg, roughly),
or trends ("increases”). This results in roughly 15,000 numerical real-world complex claims
with veracity labels - True, False or Conflicting. These claims are decomposed by prompting
gpt-3.5-turbo 3 to generate sub-questions or sub-tasks similar to methods in CLAIMDECOMP
[13] and ProgramFC [15]. These sub-questions and sub-tasks are used to fine-tune a roberta-
large model [48] to predict the veracity of the claims. Results indicate good performance over
all veracity classes with Conflicting class being relatively difficult.

2.3. Adaptive Decomposition

To the best of our knowledge, there has not been any attempt to design an explicit mechanism
to perform adaptive decomposition of queries (claim) in the context of fact-checking. How-
ever, research is done in the field of RAG-based question answering to optimize the compute
by avoiding retrieval for simpler queries which can be answered correctly from the model’s
parametric memory.

One of the early attempts at Adaptive RAG was the FLARE method [49]. In this method, the
confidence of the tokens is monitored during generation. Whenever the confidence falls below
a certain threshold, retrieval is triggered using the low-confidence sentence to formulate the
search query. Inspired by this, DRAGIN [50] extends upon the criteria to trigger retrieval be-
yond confidence by incorporating a token’s contribution to the subsequent context (computed
using attention score), and whether the current token is a stop word*. Results indicate that
DRAGIN outperforms FLARE in numerous multi-hop question answering [37, 51], common-
sense reasoning [52] and reading comprehension tasks [53]. Similarly, Self-DC [54] leverages
the confidence score of the generated token to decide either to decompose a query, retrieve
additional information or to generate the answer from parametric memory.

Self RAG [55] uses special tokens called "reflection tokens” to indicate the need to call the
retrieval model on-demand. A critique model is trained to create a dataset that learns to embed
these tokens wherever necessary. A final generator model is trained on this annotated dataset
to learn to generate these tokens wherever necessary. Adaptive RAG [56] uses queries from
single-hop [57, 58, 59] and multi-hop [60, 37, 51] datasets and annotates these queries into
three levels of complexities. A complexity classifier is trained upon this dataset to decide the
extent of retrieval (ranging from no retrieval to multiple iterations), a query requires to obtain
the correct answer. CTRLA [61] relies on the latent representation of the query to analyze
the "confidence” with which the k-th token is generated. If the confidence value falls below

3https://platform.openai.com/docs/models/gpt-3.5-turbo
*https://en.wikipedia.org/wiki/Stop_word
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a certain threshold, the retriever is triggered. The idea of extracting latent representation is
inspired by the superposition hypothesis [62, 63].

2.4. Test time scaling using a reward model

Test-Time Scaling is a technique to improve the reasoning performance of LLMs by allocating
additional inference-time compute. Early approaches primarily focused on generating multiple
outputs per query and selecting an answer via majority voting [21] or search-based methods
[22, 64, 65]. Recent developments can be broadly categorized into two lines of work: (i)
modifying the proposal distribution of the model’'s output [66, 67, 68, 69, 70, 71, 72, 73, 74,
75], and (ii) training a reward model to select the preferred answer from multiple candidates
[23, 20, 76, 25, 24, 26]. Our methodology focuses on the latter, often referred to as search
against a verifier.

Search against verifiers involves sampling multiple outputs and using a trained reward model
(or verifier) to select the best final output or the reasoning path that led to it. The earliest
attempts to use verifier models focused on generating better-quality stories [76], where candi-
date generations were ranked based on human feedback signals. Recently, there has been
growing interest in applying verifier models to mathematical reasoning tasks. Generate and
Rerank [77] jointly trained an encoder-decoder model [43] to generate multiple candidate solu-
tions to math problems and rank them with a classifier head attached on top of the decoder unit.
Their solution outperforms contemporary state-of-the-art methods on numerous math problem
benchmarks [78, 79]. Inspired by this, the GSM8K dataset [25] was introduced which consists
of 8,000 high-quality math word problems. A verifier model was trained which outperformed
fine-tuned counterparts on this benchmark.

This class of verifier models, which rank entire output sequences based on outcome qual-
ity, are generally referred to as Outcome-based Reward Models (ORMs). An alternative ap-
proach, known as Process-based Reward Models (PRMs), involves training a reward model
to score the quality of individual reasoning steps leading to the final answer. By providing finer-
grained feedback, PRMs encourage the model to generate more accurate and reliable interme-
diate steps [24]. A subsequent study [26] conducted a detailed comparison and showed that
PRMs outperform ORMs when using best-of-N sampling on the MATH dataset [80]. MATH-
SHEPHERD [20] trained both the outcome reward model and the process reward model for the
mathematical reasoning. Their novel contribution came with an automatic process to annotate
the ground-truth of the reasoning steps for training the PRM, which is inspired by Monte-Carlo
Tree Search [81, 82, 83, 84]. This involves unrolling a reasoning step till completion numerous
times and assigning a score to it corresponding to the number of times it reaches the correct
answer. Another study [23] expanded the decoding strategy over Best-of-N by incorporating
two additional strategies - (i) beam search which apply best-of-N over N final answers obtained
via beam search [85, 22] and (ii) lookahead search which incorporate unrolled PRM scores of
each step to perform beam search.
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2.5. Related work relevancy

This section discusses relevant prior work, with a focus on how existing methods relate to and
motivate the approaches adopted in this thesis. Section 2.1 briefly discusses the history of
automated fact checking, their datasets and motivates the complex nature of the claims fact-
checked in real life. Section 2.2 discusses the concept of claim decomposition and various
ways of performing decomposition. The claim decomposition method used for this study is in-
spired by the CLAIMDECOMP[13] paper. Then, state-of-the-art methods to perform adaptive
querying in the RAG setting is discussed (section 2.3). Though not previously explored, we
hypothesize that this literature can be adopted in the fact-checking domain to perform adap-
tive decomposition of claims. The notion of claim complexity and one method of adaptive
decomposition is inspired by the adaptive RAG [56] paper and the other is inspired by CTRLA
[61].

In section 2.4, developments in test-time scaling of LLMs to improve their reasoning capabil-
ities are discussed. To the best of our knowledge, there has been no attempt to incorporate
test-time scaling to improve reasoning in fact-checking, but our work is inspired by the search
against verifier literature. For this study, the reward model is neither trained on the final output
(outcome-based reward model) nor on each reasoning step independently (process-based re-
ward model). Instead, the whole output sequence is fed to the reward model and a score is
assigned toit. To avoid confusion, the terminology reward model is used throughout the report
to refer to the verifier/freward model.
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Methodology

3.1. Veracity prediction pipeline

The veracity prediction pipeline with adaptive decomposition is presented in Figure 3.1. Given
a claim, ¢, the first step is to determine whether it requires decomposition and up to what extent.
Accordingly, the claim is decomposed into a set of sub-questions, @ =< ¢1, ¢2, .., gn >, which
along with the claim is used as a query to retrieve and re-rank the top-k evidence, E. The sub-
question set can be empty if the adaptive decomposer decides that the claim does not require
decomposition. In that case, only the claim is used to retrieve and re-rank the evidence. Finally,
the claim, sub-questions, and the evidence are fed to the inference model, M to predict the
veracity label, y and generate justification, J. The inference model is a pre-trained language
model that exhibits language understanding, generation, and reasoning capabilities. Formally,
the fact-checking pipeline can be represented as:

(9,J) = M(c,Q, E) (3.1)

Adaptive Decomposition stage

R

Claim, ¢ Adaptive Decomposition Sub-questions set,
Decision machine Q=<q1,q1,..qgn>

Claim Decomposer

Veracity Prediction stage
Retrleye and rerank /=
evidence, E —
o E—

A Veracity Label, §
Sub-questions set, L 5 — »<¢,QE> —> —
Q=<q1,q1,.qgn> )
A Y

Veracity Prediction

= Model a
CLAIM
Claim, ¢ L= Justification, J
Ty ustification,
Bt ——
)

Evidence corpus

Figure 3.1: The fact-checking pipeline with adaptive decomposition.
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3.2. Adaptive Decomposition

For adaptive decomposition experiments, an abstract concept called complexity is used to de-
termine the extent of decomposition a claim requires. Two adaptive decomposition decision
algorithms are proposed that predict the complexity of a claim. Both methods learn this con-
cept from a supervised dataset. At test time, a claim is decomposed into the corresponding
number of sub-questions depending on the complexity class the adaptive decomposer assigns
to it.

3.2.1. Complexity dataset to train adaptive decomposition decision machines

To train the adaptive decomposition algorithms, the training dataset is designed by setting the
minimum number of sub-questions a claim requires to correctly classify its veracity label as a
proxy for its complexity. The language model used for veracity prediction of this annotation
process is called the feedback model. The claims are assigned three increasing levels of
complexity. Complexity level 0 corresponds to those claims which do not require any sub-
questions to correctly classify them, level 1 corresponds to those claims which require one
sub-question, and level 2 corresponds to those which require more than one. The claims
that are still not classified correctly, even after generating all possible sub-questions are also
assigned complexity level 2. The detailed algorithm is provided in Algorithm 1.

3.2.2. Adaptive Decomposition using latent representation of the claims

The first adaptive decomposition decision algorithm is inspired by the CTRLA paper [61], which
hypothesizes that the latent representations of LLMs encode meaningful semantic properties.
In order to extract the complexity property, a training corpus of claims Sy = {s1,s2,..., 80}
belonging to complexity level k is collected. These sentences are fed into an LLM to extract
their token-level representations from each layer, which are hypothesized to capture semantic
attributes like complexity [86, 87]. Let F_ y denote a pretrained large language model with
L layers and hidden size h. For an input sequence s; consisting of ¢ tokens, the token-level
hidden representations across all layers are defined as:

Fumls) = {xl, e R 1< <t 1211}, (32)

where rli’j denotes the hidden representation of the ;™ token in sequence s; at layer 1.

Since the final token in a sequence attends to all preceding tokens [88], a pooling operation
is applied whereby the hidden representation of the last token is selected to summarize the
sequence at each layer. Let P denote this pooling function. For sequence s;, the pooled
representations across layers are defined as:

z; = P({ré,j}é‘zl) = ré,t forl <I<L, (3.3)
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Algorithm 1 Generate Complexity Training Data

Require: Claims set [c; ... c,,], Veracity labels [y; ... y,,], Verifier model M
Ensure: Complexity labels set Complexity_set with values [k ... k]

1: Complexity_set < |]

2: for ¢;inclaimset [c; ...c¢y,] do

3: Retrieve and rerank evidence FE; using ¢;
4 Predict label §; = M(c;, E;)
5 if §; = y; then
6: k; <0
7 Complexity_set < Complexity_set U {k;}
8: continue
9: end if
10: solved «+ False
1: while questions are generated do
12: Retrive g;; given ¢; and previous questions (g1 - . . gij—1)
13: Retrieve and rerank evidence E; using ¢; and sub-questions (g;; . .
14: Predict label ¢; = M(Ci, E;, <Qi1 ce Qij>)
15: if §; = y; then
16: k; < min(2, j)
17: solved «+ True
18: break
19: end if
20: j—j+1
21: end while
22: if solved = False then
23: k; < 2
24: end if
25: Complexity_set < Complexity_set U {k;}
26: end for

- ij)

and the resulting set of pooled sequence-level representations is:

Zi:{zﬁeRh‘lglgL}.

(3.4)

After processing all statements in complexity set Sy, Principal Component Analysis (PCA) is
applied to the pooled representations {z! € R" |1 < i < n} for each layer I. The first principal

component for layer [ of complexity level k is extracted as:

o =pon (2]

resulting in a set of complexity representation vectors:

Ui = {UZ}IL:{

(3.5)

(3.6)
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This process is repeated for each complexity class, resulting in training representations &/ =
{Z/{k}u(| = {{ul}f, gi'l, where | K| is the total number of complexity classes (three in this
case).

For a given test claim ¢, its latent representation is extracted from the same LLM and pooled
at each layer to obtain:
C:{cleRh‘lglgL}. (3.7)

To determine its corresponding complexity level, cosine similarity (Section A.3.1) is computed
between the test claim’s representation and each complexity’s representations across all lay-
ers. This yields a similarity matrix:

S:{sleRlKl‘sizcos(cl,ui), 1<k <|K|, 1§l§L}, (3.8)

where s§€ denotes the cosine similarity between the test claim and complexity class k at layer
l.

For each layer, the complexity class with the highest similarity is selected:

k' = arg max sgﬁ, (3.9)

and majority voting across all k! determines the final predicted complexity class. Figure 3.2
illustrates the flow of latent representation extraction and complexity assignment.

Extracting representation of each
complexity class (Training)

110 Do this for all
E— 000 complexity
101 class

Training data of LLm  Latent representations Latent representations pooled  PCA across n samples to get Latent representation for each
complexity k Lnth) across last layer complexity representation B e S
(n, 1) (L, n, h) (L. h) (L. h, K])

Assigning complexity to a

Majority voting

test claim (Test/Inference)
Cosine similarity across layers Final
+ argmax for each complexity

— O
D layer Single vector containing nearest class, k

Tk G Latent representations Latent representations pooled coppextyifbyeachiavey
0.y LLM 1,4 h) across last layer “n
(L.1,h)

Figure 3.2: Training and inference of complexity assignment pipeline using latent
representation-based method for adaptive decomposition.

3.2.3. Adaptive Decomposition using setfit

The second adaptive decomposition method involves finetuning a sentence transformer model
[89] to learn the semantic difference between contrastive examples [90]. The sentence trans-
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former backbone is paired with a classifier to assign a complexity class to the input claims. To
fine-tune the model, positive and negative pairs of claims are created with similar complexity
claims consisting of positive labels and different complexity claim pairs for negative labels. Co-
sine similarity Loss' is used to update the parameters of the sentence transformer backbone.
After training the backbone, the classifier is trained to classify complexity classes which is a
simple logistic regression algorithm. Figure 3.3 illustrates the training workflow.

%30 @ o

Claim Generate claims Fine tune pretrained Latent embeddings Train classifier head to
belonging to contrastive sentence transformer of the claims classify complexity
complexities using contrastive using embeddings as
learning input

Figure 3.3: Training of seftfit-based complexity assignment pipeline for adaptive
decomposition.

3.3. Best of N sampling using a reward model

To train the reward model for selecting the best among N candidate output sequences, we
draw inspiration from search against verifier methods. This approach is part of a test-time
scaling strategy, where the reward model is trained to identify the most appropriate output
from multiple independently generated sequences for the same input prompt. For this task,
a claim (c) and its evidence (F) - with true veracity label y - is fed to a generator model®> M
to get its output sequence consisting of predicted verdict ¢ and the corresponding justification
J, governed by equation 3.1. The sub-question set is empty in these experiments, as they
are run without decomposition. This setup allows the reward model to learn a preference for
justifications that address all relevant aspects of the claim without relying on external sub-
questions.

For the same (claim, evidence) pair, multiple independent output sequences are sampled, giv-
ing a set of independent (verdict, justification) sequences - {(3*, 1), (92, J?), ..., (7, JV)}.
Each of these sequences are given a score by a reward model. The reward model is a
pre-trained language model with a classifier head that is fine-tuned to output a logit score
RM e, g™, J™) for the nth output sequence. The objective of the fine-tuning is to assign a
higher score to a more appropriate output sequence. To do so, the reward model is fine-tuned
with a binary cross-entropy loss function:

Lra = ~[r" -log RM(e,§", J") + (1 — ") -log(1 — RM(e,g". J")]  (3.10)

"https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
2The inference model used to generate veracity label and justification is referred to as a generator model in this
experiment to align with the literature and avoid confusion with the reward model



3.3. Best of N sampling using a reward model 17

where r™ is 1 if " = y and 0 otherwise. In other words, the reward model learns to give higher
scores to the output sequence (y™, J™) pair if it leads to the correct veracity label y for that
claim. The final verdict and justification (3*, J*) is the output sequence that maximizes the
reward model score:

n* = argmaz,eqr, yRM(c,§", J") (3.11)
(5", J%) = (™), J") (3.12)

This approach of choosing the highest-scoring candidate from a set is referred to as Best-of-N
sampling [26]. The workflow is illustrated with an example in Figure 3.4.

Verdict: True
Verdict: True Justification: Since Joe
ification: Since Joe Biden said ...
Biden said ...
Verdict: False
Verdict: False Justification: The given claim
i ion: The given claim 0.27 is misleading ...
is misleading ... )' o 0'02 —_—
o] ') .
Claim: "Joe Biden said ..." B2 _/O \(7—)— ", 3.28 ——
Evidence: ['On sunday evening ..."] O -— ° 0.45 Verdict: Conflicting
o Verdict: Conflicting Reward Model/ y Justification: Given the
ification: Given the : conflicting ...
Verifier Scores for the 9
Input claim, evidence Generator/Inference conflicting ...
P Model output sequence
Verdict: True
Verdict: True Justification: The followsg
i i The following claim ...
claim ...
Choose the verdict and
Sample Independent justification with the

Output sequences

highest score

Figure 3.4: Workflow diagram highlighting search against verifier with an example.
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Implementation Details and
Experiments

41. Dataset

The experiments are run on the QUANTEMP [3] dataset which consists of numerical claims
prepared by scraping real-world claims from fact-checking websites. These claims are in-
herently complex as they are considered claim-worthy by human fact-checkers. The original
labels assigned by human fact checkers are mapped to three distinct labels - True, False and
Conflicting through qualitative analysis of the context in which those labels were assigned.
The dataset contains 9935 training samples, 3084 validation samples and 2495 test samples.
Veracity class distribution of the samples is presented in Table 4.1

Dataset split True False Conflicting

Training 1824 5770 2341
Validation 617 1795 672
Test 474 1423 598

Table 4.1: Distribution of Veracity Classes of the Quantemp dataset

4.2. Evidence retrieval and re-ranking

The evidence corpus is constructed following the retrieval pipeline outlined in the QUANTEMP
framework [3]. Documents are collected from web search engine results using the claim as
the primary query. For claim decomposition experiments, the generated questions are also
used as queries alongside the claim. From this initial collection, the top 300 documents are
retrieved using BM25 [91]. For claim decomposition run, the top 100 documents for each
claim/sub-question are retrieved. To eliminate redundancy, these retrieved documents are de-
duplicated based on Levenshtein distance [92], implemented by fuzzywuzzy library [93, 94].
Pairs of documents exhibiting a similarity score above 80% are considered to be duplicates.
Finally, this evidence is re-ranked using the claim to select the top 10 evidence for inference.
The re-ranking is based on cosine similarity A.3.1 of their latent representations embedded by
paraphrase-MiniLM-L6 sentence transformer [89]. For claim decomposition experiments, the

18
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final selection of evidence ensures an equal allocation of top-k documents per query (i.e., claim
and sub-questions), such that the total number of re-ranked evidence per instance remains
consistent at 10.

4.3. Claim Decomposition

For each claim, sub-questions are generated similar to the methodology described in CLAIMDE-
COMP [13] by prompting the gpt-3.5-turbo model'. A key constraint imposed upon these
sub-questions is that they must be answerable in yes/no format. This choice is supported by
empirical findings which demonstrate the effectiveness of this format in improving accuracy
[13, 3]. Moreover, this format enables the inference model to perform implicit verification of
individual sub-questions and facilitate implicit aggregation of their answers to derive a final
verdict. In addition to being answerable in a binary format, the generated sub-questions are
required to satisfy several quality criteria - they must exhibit comprehensive coverage of the
original claim, avoid redundancy, maintain clear grammatical and semantic coherence, and re-
main directly relevant to the claim. The exact system prompt used to elicit these sub-questions
from the language model is presented in Figure 4.1.

You are tasked with generating a set of questions to break down and evaluate the ve-
racity of a given fact-checking claim. Follow these strict guidelines when creating the
subquestions:

1. Comprehensive Coverage: The subquestions should comprehensively address

all relevant aspects of the claim to enable a thorough fact-check.
2. Non-redundancy: Ensure there is no overlap between the subquestions. Each

question should be unique in meaning and not semantically repetitive.
3. Relevance: Every question must be relevant in determining the veracity of the

claim. Avoid irrelevant or tangential questions.
4. Clarity and Grammar: Write questions that are clean, concise, and grammatically

correct to maintain clarity.
5. Yes/No Format: Each question must be strictly answerable with a simple "Yes”

or "No” response.

Figure 4.1: System prompt to generate sub-questions given a claim, adhering to the
standards defined in the CLAIMDECOMP paper.

4.4. Hardware configuration

The experiments were conducted on a dedicated workstation running Arch Linux x86_64 with
kernel version 6.13.7-arch1-1. The system featured an AMD EPYC 7302P processor with 32
physical cores operating at a base frequency of 3.0 GHz. For GPU-accelerated tasks, the
workstation was equipped with two NVIDIA GeForce RTX 3090 graphics cards, each offering
substantial parallel processing capabilities optimized for compute-intensive workloads. The
machine had 256 GiB of system memory. A total of 654 packages were managed via the

"https://platform.openai.com/docs/models/gpt-3.5-turbo
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pacman package manager, and the shell environment was configured using zsh version 5.9.
The graphical output was configured at a resolution of 1024 x768, although experiments were
primarily conducted in terminal-based sessions.

The 11ama-3.2-3B for decomposition experiments was fine-tuned on google colab? which is
hosted on Google Compute Engine, running Ubuntu 22.04.4 LTS x86_64 with kernel version
6.1.123+. The system was provisioned with an Intel Xeon processor featuring 12 virtual cores
operating at a base frequency of 2.2 GHz. The instance utilized an NVIDIA A100 SXM4 with 40
GiB of dedicated GPU memory. The machine was equipped with approximately 85 GiB of sys-
tem memory. All software dependencies were managed within a containerized environment
and code execution was carried out through a Jupyter notebook interface [95].

4.5. Implementation Details

This section presents implementation details of the methods studied in the thesis. Sub-section
4.5.1 outlines the two adaptive decomposition approaches, including the models and tools
used, training procedure (if any), and the baseline methods used for comparison. Sub-section
4.5.2 describes the construction of reward model training data, the reward model’s architecture
and training details, and the baseline methods against which it is evaluated.

4.5.1. Adaptive Decomposition

Llama-3.1-8b-Instruct [96] is employed as the inference model across both the claim decom-
position and adaptive decomposition experiments. In addition to these methods, a baseline
experiment without decomposition is conducted to enable direct comparison of these meth-
ods. All inference is performed in a few-shot setting, where the two most semantically similar
example claims are retrieved from the validation split of the QUANTEMP dataset to serve
as prompts. Similarity is computed using cosine similarity over the latent embeddings of the
claims. The inference model is configured with a temperature of 0.3 and nucleus sampling
using a top-p value of 0.95. The maximum number of output tokens is limited to 512. The
framework for these experiments is implemented in Python with Huggingface’s transformer
library [97]. The system prompt used for both without decomposition and with decomposition
inference settings, and the structure of the user prompt are illustrated in figure A.1, figure A.2
and figure A.3 respectively.

To train the complexity classification for the adaptive decomposition framework, a total of 1500
samples were annotated. These samples were stratified from the training set to ensure bal-
anced distribution over the veracity labels. Complexity class annotations were generated using
two separate large language models as feedback sources: (i) LLaMA-3.1-8B-Instruct and
(i) GPT-3.5-Turbo. In the results section, we refer to these two annotation strategies as llama
feedback and gpt feedback, respectively. The distribution of complexity classes produced by
each feedback model is summarized in Table 4.2.

2https://colab.research.google.com/
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Feedback Method Class0 Class1 Class 2

llama Feedback 807 135 558
gpt Feedback 878 102 520

Table 4.2: Distribution of samples across complexity classes for different feedback methods.

For latent representation-based adaptive decomposition approach, we utilize Mistral-7B-
Instruct [98] to extract the latent embeddings for both training and the test claims. Principal
Component Analysis algorithm is implemented using scikit-learn [99] library with n_components
set to 1. The resulting principal component is interpreted as the primary complexity direction,
which serves to differentiate between complexity classes. In the SetFit-based adaptive de-
composition method, we employ the all-mpnet-base-v2 model [89] as the embedding back-
bone, combined with a logistic regression classifier to predict complexity classes. The classi-
fier is trained for 500 steps with a batch size of 45. An oversampling strategy is used during
training to balance positive and negative samples at each step, thereby addressing class im-
balance within the training data.

In addition to 11ama-3.1-8B-Instruct, adaptive decomposition experiments are conducted
using three additional language models, each representing a distinct model category. The
firstis gpt-3.5-turbo [100], a proprietary model with significantly stronger performance. The
second is deepseek-r1-7B [66], a model specifically designed for step-by-step reasoning and
multi-hop inference tasks. The third is a fine-tuned version of 11ama-3.2-3B [96], trained under
both with decomposition and without decomposition configurations using the training split of
the QUANTEMP dataset. For both training and inference in these experiments, the top five
re-ranked evidence documents are used as input to the model.

The model is fine-tuned using the Parameter-Efficient Fine-Tuning (PEFT) framework [101],
specifically by integrating Low-Rank Adaptation (LoRA) adapters into each attention block of
the base model. The LoRA adapters are configured with a rank of 64 and a scaling factor («)
of 16. Fine-tuning is performed for 1,241 steps with a batch size of 8. Optimization is carried
out using the paged_adamw_32bit optimizer, with a learning rate of 2 x 104, following a cosine
learning rate decay schedule with a warmup ratio of 3%. To manage GPU memory constraints,
gradient checkpointing is enabled throughout training. Additionally, gradient clipping is applied
with a maximum norm of 0.3 to ensure stable optimization. Mixed-precision training (FP16)
is employed to improve memory efficiency and training speed. No dropout is applied to the
LoRA adapter layers during fine-tuning.

4.5.2. Test time scaling using Reward model

Due to resource constraints, we employ mixed-precision inference using 11ama-3.1-8B-Instruct
to generate 10 output sequences per claim. This variant of the model is provided by ollama®
library. The same model is also used for the majority voting baseline and the top-1 decod-

*https://ollama.com/
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ing baseline. These output sequences are generated with a temperature value of 0.45 and
nucleus sampling with the top-p value of 0.95. To train the reward model, a total of 3,500
claims from the QUANTEMP training set are sampled. For each claim and retrieved evidence
pair, 10 output sequences are generated. Duplicate reasoning paths are removed to prevent
overfitting. A binary label is assigned to each unique reasoning path: a label of 1 is given to
paths that yield a correct veracity prediction, while a label of 0 is assigned to incorrect or hal-
lucinated reasoning paths. In some cases, sequences containing plausible but hallucinated
reasoning are explicitly retained and labeled as 0 to help the model learn fine-grained distinc-
tions in reasoning quality. This annotation process resulted in 12,975 training samples and
3,244 validation samples. The distribution of target labels in both the training and validation
sets is presented in Table 4.3.

Distribution Class 0 Class 1

Training 8885 4090
Validation 2221 1023

Table 4.3: Distribution of samples across reward labels for training and validation set of
reward models.

The reward model architecture is based on the 11ama-3.2-3B model, extended with a classifi-
cation head. Leveraging a decoder-based architecture enables the model to better capture lin-
guistic nuances and contextual dependencies. Fine-tuning is performed using the Parameter-
Efficient Fine-Tuning (PEFT) framework [101], with LoORA adapters configured using a rank of
8 and a scaling factor (o) of 16. The model is fine-tuned for 3 epochs with a batch size of 32,
using the AdamW optimizer with ¢ = 1 x 10~8 and an initial learning rate of 1 x 1073. A linear
learning rate scheduler without warm-up steps is applied, gradually decreasing the learning
rate throughout the training process.

4.6. Evaluation metrics

4.6.1. Quantitative metrics

The performance of claim veracity prediction is evaluated using the F1-score (section A.3.2).
In addition to the overall F1-score, per-class F1-scores are computed for each veracity label
to assess the impact of different methods and models across specific classes. The F1-score
is chosen as the primary evaluation metric because it accounts for both false positives and
false negatives, and is particularly suitable in the presence of class imbalance, as observed in
the QUANTEMP dataset (Table 4.1). To provide a comprehensive view of model performance,
both macro and weighted F1-scores are reported. While the macro F1-score treats all classes
equally, the weighted F1-score incorporates class frequencies, offering a more balanced per-
spective on the overall predictive capability of the models.
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4.6.2. Grounded theory-based qualitative analysis to identify error taxonomies

To better understand the outcomes of our experiments, we conduct a qualitative analysis of
the outputs generated by the language models. This analysis is informed by principles from
grounded theory [102], which offers a structured approach to qualitative data interpretation. In
particular, we employ the constant comparison method [103], which involves iterative compar-
ison of individual instances to identify patterns and organize them into coherent categories.

In our study, each instance refers to an output sequence from the language models, comprising
a predicted claim verdict § and its corresponding justification J. The resulting categories serve
to reveal overarching patterns that explain the behavior of the models. These categories
may capture common error types, qualitative improvements achieved by specific methods, or
emergent reasoning strategies.

While inspired by established methodologies, our approach is adapted to the specifics of the
claim verification task and does not strictly adhere to the original procedures outlined in the
literature. A high-level overview of our taxonomy generation process is illustrated in Figure 4.2,
and the detailed algorithm is presented in Section A .4.
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Sample initial taxonomy on additional LLM new samples and adjust Does the new samples fit Output finalized
LLM outputs each samples outputs taxonomy accordingly into existing taxonomy? taxonomy

Figure 4.2: Flowchart of our qualitative analysis process to understand the output
sequences produced by our inference models.
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Results

5.1. Impact of Claim decomposition on veracity prediction

The results of the without decomposition and with decomposition configurations for verac-
ity prediction performance are presented in Table 5.1. 11ama-3.1-8b-Instruct [96] is used
as the inference model for this experiment. While the False class performance remains rela-
tively stable, claim decomposition significantly affects the True and Conflicting classes. Specif-
ically, decomposition improves Conflicting class performance by 26.8% relative to the without-
decomposition baseline, while True class performance drops by 23%.

Per Class F1 Overall F1
True False Conflicting Macro Weighted

Method

Vanilla inferencing

without Decomposition 41.2 66.7 30.6 46.2 53.2
with Decomposition 31.7 (-23.0%) 64.8 (-2.9%) 38.8 (+26.8%) 45.1(-2.4%) 52.3 (-1.7%)

Adaptive Decomposition - Latent representation based classifier

Llama feedback 35.9(-12.9%) 67.8 (+1.7%) 39.4 (+28.8%) 47.7 (+3.3%) 54.6 (+2.6%)
gpt feedback 41.5 67.6 32.0 47.0 541
Adaptive Decomposition - setfit classifier

Llama feedback 38.0 66.4 354 46.7 53.6

gpt feedback 34.9 67.8 38.3 47.0 54.5
Adaptive Decomposition - upper bound

Decompose Conflicting 43.6 69.0 46.2 52.9 58.7

Table 5.1: Performance of llama inference model with various decomposition settings. The llama
feedback and gpt feedback refer to the corresponding adaptive decomposition methods trained on a
complexity dataset annotated by respective models. The relative gains are computed w.r.t the without

decomposition baseline.

Qualitative analysis on the results indicates that the presence of sub-questions helps guide in
correctly reasoning the various ambiguous aspects of Conflicting claims. Figure 5.1 demon-
strates this with an example. With claim-decomposition, the sub-question detailing the aspect
of “double offshoring jobs” allows the inference model to be more precise in its reason-
ing against the evidence along that aspect. This helps the model to acknowledge that the

24
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evidence shows a high number of offshore contracts but doesn’t directly support this double
aspect, thus correctly predicts the veracity as Conflicting. When inferred without decomposi-
tion, the model misses this part, as it is embedded in a larger claim and only reasons along
the general sentiment of the claim, misclassifying the claim as True.

[Claim]: Says Donald Trump “let federal contractors double offshoring jobs in his first 18
months in office.”

[Subquestions]:

1. Did the number of offshoring jobs increase during Donald Trump’s first 18 months in office?
2. Did Donald Trump allow federal contractors to double offshoring jobs?

[Label]: Conflicting

Without Claim Decomposition Inference

[Prediction]: True

[Reasoning]:

The evidence provided supports the claim that Donald Trump ... The evidence from Politifact ...
engaged in offshoring, with 28% of the top 50 federal contractors and 25% of the top 100 having
offshored American jobs during his term. Additionally, ... one-in-four taxpayer dollars spent on
federal procurement contracts went to firms offshoring jobs during his presidency, which is at
least $425.6 billion. This suggests ... even increase.

With Claim Decomposition Inference

[Prediction]: Conflicting

[Reasoning]:

The evidence provided does not directly support the claim that Donald Trump ... While it is true
that a significant number of federal contractors engaged in offshoring during Trump’s presidency,
with 28% of the top 50 federal contractors and 25% of the top 100 federal contractors being
certified ... the evidence does not provide a clear indication of whether the number of offshoring
jobs doubled during Trump’s first 18 months in office.

Moreover, ... Trump ”let federal contractors double offshoring jobs” is an assertion that is not
supported by the provided evidence. The evidence ... 18 months of his term.

Figure 5.1: Reasoning of a Conflicting claim without claim decomposition and with claim
decomposition, highlighting how decomposition enable the model to reason along various aspects of
the claim precisely.

On the other hand, the presence of sub-questions due to decomposition causes the model to
overthink which leads several True class claims to be mislabeled to either False or Conflicting.
We term this phenomenon as decomposition induced overthinking which is a part of a larger
taxonomy of artifacts commonly found in language models [18, 19]. Another related taxonomy
is contextual overthinking which is discussed in section 5.5. To demonstrate decomposition
induced overthinking, we present an example in Figure 5.2. The model’s reasoning, under
the decomposition setting, reasons about aspects of whether the budget cut proposed by
Sen. Rand Paul was implemented. This can be attributed to the second sub-question, which
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elaborates on the aspect of "whether there was indeed a reduction”. The claim did not
require verifying this aspect as it only needed to fact-check whether there was a cut included
in the proposal made by Sen. Rand Paul. The without decomposition setting avoids such
overthinking and only reasons along the relevant aspects of the claim.

[Claim]: Says Sen. Rand Paul's 2011 budget "included a big cut in the CDC.”

[Subquestions]:

1. Did sen. Rand Paul’s budget proposal in 2011 include a cut in the cdc’s funding?

2. Was there a significant reduction in the cdc’s funding in sen. Rand Paul’s proposed budget
in 20117

3. Did sen. rand paul propose a budget in 20117

[Label]: True

Without Claim Decomposition Inference

[Prediction]: True

[Reasoning]:

The evidence provided shows that Sen. Rand Paul’'s 2011 budget did include a significant cut
in the CDC ... FY2012 and FY2013 budgets called for a 20 percent cut for the CDC ... While
the evidence does not provide a specific dollar amount for the CDC cut in the 2011 budget, it is
clear that Sen. Paul’s budget did include a cut to the CDC.

With Claim Decomposition Inference

[Prediction]: Conflicting

[Reasoning]:

1. The evidence confirms that Sen. Rand Paul did propose a budget in 2011. The evidence
states ... in 2011.”

2. The evidence also confirms that Sen. Rand Paul’s budget proposal in 2011 included a sig-
nificant reduction in the CDC’s funding. The ... for a 20 percent cut for the centers for disease
control and prevention.”

3. The evidence does not provide a clear answer to whether the CDC’s funding was actually
reduced as a result of Sen. Rand Paul’s budget proposal in 2011. While the proposal called for
a 20 percent cut, it is unclear whether this cut was implemented.

Therefore, the claim that Sen. Rand Paul’s 2011 budget "included a big cut in the CDC” is
conflicting, as ... CDC'’s funding is unclear.

Figure 5.2: Reasoning of a True claim without claim decomposition and with claim decomposition,
highlighting the model's decomposition induced overthinking.

Analyzing the error taxonomies of misclassifications in True class (under decomposition set-
ting) indicates that decomposition-induced overthinking is the leading cause of the perfor-
mance hit (Table 5.2) taken when inferred with decomposition. Another key error is the pres-
ence of noise in the re-ranked evidence, which can be solved by a better retrieval algorithm.
Detailed descriptions of the two errors mentioned in Table 5.2 - decomposition induced over-
thinking and noisy re-ranked evidence, are elaborated in Table A.1.
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5.2. Adaptive decomposition helps mitigate issues introduced by
decomposition while preserving its benefits

Table 5.1 also shows the result of the two adaptive decomposition methods trained on the two
variations of feedback models. Results indicate that the adaptive decomposition methods pre-
serve the advantage of guided reasoning (for Conflicting claims) while balancing the issues in-
troduced for True claims that came with decomposition. This is achieved by selectively decom-
posing certain claims considered worthy of decomposition. Importantly, this selective strategy
does not disrupt the performance of the False class, which remains relatively stable across
all settings. The performance is reflected in the respective True and Conflicting F1 scores
values for adaptive decomposition settings, which lie between the values obtained when in-
ferred with and without decomposition settings. This shows that decomposing based on the
complexity of a claim is an effective strategy to correctly decide the claims that require de-
composition. Among these methods, the latent representation-based classifier trained on the
samples annotated by 1lama-3.1-Instruct-8B model (called llama feedback) outperforms
the rest, achieving the macro and weighted F1 scores of 47.7 and 54.6 respectively.

However, it fails to achieve the theoretical upper bound of macro F1 score of 52.9 and weighted
F1 score of 58.7, which is obtained by decomposing only claims with Conflicting labels. This
highlights the inability of the notion of Complexity to directly capture nuances present in the
theoretical upper-bound. On the other hand, it is not ideal for our notion of complexity to
directly align with the upper-bound as it is directly based on the veracity labels. In other words,
using the veracity label signal directly to design a decision machine for decomposition is not
ideal as it will overfit to the problem (we might as well directly fine-tune a veracity prediction
model). Better nuances might be captured with an alternative definition of Complexity (apart
from the one used in algorithm 1), a larger training dataset, or a stronger decision model.

Error Taxonomy Frequency
Decomposition induced overthinking 24 (60%)
Noisy re-ranked Evidence 12 (30%)
Others 4 (10%)

Table 5.2: Taxonomy of errors found in the True class while inference with Decomposition. This result
is obtained by qualitatively analyzing 40 random samples, providing insights into common mistakes
made by the model in a decomposition setting.

5.3. Impact of decomposition and adaptive decomposition on dif-
ferent models

To investigate whether the impact decomposition has on the per-class performances trans-
lates to diverse language models, additional adaptive decomposition experiments are run on
a stronger proprietary model - gpt-3.5-turbo!, a thinking model - deepseek r1 [66], and a

"https://platform.openai.com/docs/models/gpt-3.5-turbo
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model fine-tuned for the task - 11ama-3.2-3B2. Table 5.3 highlights the effect decomposition
and adaptive decomposition has on these models. The best-performing adaptive decomposi-
tion method from Table 5.1 (latent representation based on llama feedback) is used for these
experiments.

Per Class F1 Overall F1

Method

True False Conflicting Macro Weighted
llama-3.1-8b
without Decomposition 41.2 66.7 30.6 46.2 53.2
with Decomposition 31.7 64.8 38.8 451 52.3
Adaptive decomposition 35.9 67.8 394 47.7 54.6
gpt-3.5-turbo
without Decomposition 41.3 72.6 3.2 39.1 50.0
with Decomposition 41.9 (+1.5%) 71.9(-1.0%) 25.4(+693.8%) 46.4 55.1
Adaptive decomposition  41.4 (+0.2%) 71.7 (-1.2%) 19.6 (+512.5%) 44.2 53.5
deepseek r1 7b
without Decomposition 39.4 58.8 28.8 42.3 47.9
with Decomposition 40.4 (+2.5%) 60.2 (+2.4%) 29.3 (+1.7%) 43.3 49.0
Adaptive decomposition  38.7 (—1.8%) 59.3 (+0.8%)  31.0 (+7.6%) 43.0 48.6
llama 3b fine tuned
without Decomposition 43.3 79.2 31.4 51.3 60.9
with Decomposition 37.0 (—14.5%) T79.7 (+0.6%) 40.0 (+27.4%) 52.3 62.1
Adaptive Decomposition  41.7 (-3.7%) 79.6 (+0.5%) 39.9 (+27.1%) 53.7 62.9

Table 5.3: Comparison of different state-of-the-art models in different decomposition settings.
Adaptive decomposition corresponds to using representation learning, which is the best-performing
method in Table 5.1. The relative gains and hits are computed w.r.t the without decomposition
baselines of the respective methods.

For gpt-3.5-turbo, performance is stable for True and False classes, but decomposition
helps for Confilicting class. Due to this stable performance, adaptive decomposition is not of
much help over full decomposition. This is in alignment with the findings in the decomposition
dilemma paper [17], which states that decomposition is not helpful for stronger models. On
the other hand, Conflicting labels are artificially mapped while creating the Quantemp dataset
[3], and they encompass various cases such as insufficient evidence, misleading evidence,
exaggerated claims, etc. Since itis not explicitly defined anywhere on the internet, it is unlikely
for the model to learn this notion from its pre-training or post-training data. Hence, the presence
of sub-questions guides the reasoning in these cases thus leading to its improved per-class
F1 score.

For deepseek-r1, decomposition leads to a slight improvement in performance across all
classes. However, the observed gains are not substantial enough to draw any strong con-
clusions. Adaptive decomposition shows a modest improvement for Conflicting class, with a

2https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
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relative gain of 7.6% compared to the without decomposition configuration, and 5.9%? relative
to the with decomposition configuration. It is noteworthy that the task of fact-checking remains
a challenging problem, even for state-of-the-art reasoning models such as deepseek-r1, which
have demonstrated competitive performance across a variety of tasks [66].

The motivation for fine-tuning the model is to investigate whether the performance trends ob-
served with decomposition and adaptive decomposition generalize to a fine-tuned model. The
results follow a similar pattern to those observed with the 11ama-3.1-8B-Instruct model, with
decomposition yielding improvements in the performance of the Conflicting class, while slightly
reducing performance in the True class. Adaptive decomposition, however, effectively bal-
ances this trade-off by strategically decomposing certain claims, leading to improved overall
performance.

Key Insight (RQ1 and RQ2)

1. Claim decomposition improves performance on the Conflicting class by guiding
the model’s reasoning, while the True class takes a hit due to decomposition-

induced overthinking and Noisy re-ranked evidence.
2. Adaptive decomposition helps balance the issue of overthinking in smaller general-

purpose models and fine-tuned models. However, this gain is not translated into
a stronger proprietary model and thinking model.

5.4. Selecting the best solution using a reward model improves ve-
racity prediction performance.

The performance of majority voting and Best of N samples using a reward model along with
top 1 decoding as the baseline method is presented in Table 5.4. The results are obtained
by sampling 10 independent output sequences for a given input from the generator model.
For these experiments, the generator model is fixed to 11ama-3.1-8b-Instruct as it gives
competitive and reliable results in the previous experiments. However, a mixed precision
variant is employed for these experiments owing to resource constraints. Though not explicitly
discussed in our results due to resource constraints, we hypothesize that other generator
models will also give similar performance gains (over the different methods).

Out of all the methods, the best of N sampling runs achieves the best performance across all
the veracity classes. This shows that the reward model is capable of choosing the reasoning
sequence that leads to the correct verdict, despite the generator model not favoring those
sequences from its solution space. This is in alignment with other studies that observed an
improved performance when performing solution path selection with a reward model [20, 23].
The findings from a detailed qualitative investigation (section 5.5) further solidified our intuition
that the reward model learns to favor output sequences that has better reasoning during its
training. The reward model helps navigate the possible solution paths and ranks them aiding

3This computation is not shown in the table.
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Method Per Class F1 Score Overall F1 Score
True False Conflicting Macro Weighted
Top 1 Decoding 33.5 66.4 34.7 44.8 52.5
Majority Voting 34.9 68.6 35.1 46.2 54.2
Best of N sampling with RM  44.2 (+31.9%) 75.3 (+13.4%) 40.3 (+16.1%) 53.2(+18.8%) 61.0 (+16.2%)
Theoretical upper bound 63.9 85.1 69.6 72.9 77.4

Table 5.4: Reasoning performance of the models. Here, the number of samples for majority voting
and best of N sampling is set to 10. The generator model is llama-3.1-Instruct-8b, and the reward
model is fine-tuned llama-3.2-3b. The gains method is computed w.r.t the fop 7 Decoding baseline.

in selecting the best path suited for the claim.

However, the reward model's performance is unable to reach the theoretical upper-bound
which is created by assigning a claim to be correctly predicted if at least one of its output se-
quences leads to the correct label. We hypothesize that this gap could be further narrowed by
employing a stronger reward model and incorporating additional annotated training samples.

Another interesting observation is that the maijority voting inference achieves better perfor-
mance over sampling the generator LLM only once (top 1 decoding). This observation is in
alignment with the literature that concluded that sampling only one output sequence often
produces unreliable results [20, 21]. This indicates that we can improve the performance of
fact-checking using LLM with a tradeoff of increasing test time compute.

5.5. Reward model chooses output sequence with better reasoning
and lenient evaluations

To further investigate how the Best of N sampling combined with the reward model leads
to improved performance, we conducted a qualitative analysis on samples where Best of N
sampling succeeds while majority voting fails. Since majority voting involves multiple output
sequences, we selected a reasoning trace from an output sequence that results in the majority
verdict for comparison. Following the methodology outlined in Section 4.6.2, we analyzed 40
samples to define a taxonomy of improvements in the output sequences selected by the reward
model.

One of the major improvements is in the quality of the reasoning in the output sequence chosen
by the reward models. It covers 52.5 % of the improvement observed (Table 5.5). Though it
is a broad category, it covers a series of related patterns such as a better understanding of
numerical figures and their implications, being robust to noisy evidence in giving a verdict,
and assigning a verdict that aligns with the reasoning. One such example is given in Figure
5.3, in which the reward model chooses an output sequence that has better comprehension
of the numerical figures present in the evidence. In the example, the claim states that the
remittance figures are over 400 billion Kenyan shillings in 2021. In the evidence, there
are two figures - one mentioning the exact figure while another mentions a figure of USD
3,718 million. With majority voting, the verdict(s) are assigned to Conflicting due to these two
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[Claim]: Diaspora remittances “now stand at an all-time high of over KSh400 billion in 2021”.

[Evidence]:

1. as a consequence, diaspora remittances have increased tenfold over the last decade;
and they now stand at an all-time-high at over ksh. 400 billion per annum as of 2021,
surpassing some of our traditional exports as foreign exchange earner.

2. diaspora remittances were robust in 2021, with total remittances in 2021 reaching a record
usd3,718 million. of daily users

[Label]: True

Reasoning without Reward Model

[Prediction]: Conflicting

[Reasoning]:
The evidence provides conflicting information about the exact amount of diaspora remittances
in 2021, and some sources mention figures that are not directly comparable to KSh400 billion.

Reasoning with Reward Model

[Prediction]: True

[Reasoning]:

The evidence supports the claim that diaspora remittances reached an all-time high of over
KSh400 billion in 2021. However, there are minor variations in the wording and units used
across different sources.

Figure 5.3: An example highlighting improved reasoning with output sequence chosen by the
Reward model. It picks up the sequence that comprehend and correctly reason against nuanced
numerical figures leading to the correct verdict.

differing units. However, if the exchange rate of Kenyan shillings to US Dollars in 20214 is to
be considered, the two values are almost similar with USD 3,718 million roughly converting
to about 408 billion Ksh. Since the claim states that the values are over 400 billion Ksh,
the evidence supports the claim despite the differing units of representing the amount. This
nuance in the numerical figure is picked up in the reasoning chosen by the reward model, and
even acknowledges the minor variations in the units across the different sources.

Taxonomy of Improvements Frequency
Improved Reasoning 21 (52.5%)
Mitigation of contextual overthinking 10 (25%)
Others 9 (22.5%)

Table 5.5: Taxonomy of improvements observed while decoding using selecting the best output
sequence using a reward model over majority voting.

Another noteworthy category in the taxonomy of improvements is the mitigation of contextual
overthinking in the reasoning selected by the model, which was observed in 25% of the an-

*http://exchangerates.org.uk/KES-USD-spot-exchange-rates-history-2021.html
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[Claim]: Says the 1956 Republican Party platform supported equal pay, the minimum wage,
asylum for refugees, protections for unions and more.

[Evidence]:

1. in 1928 the gop platform read: the party favors freedom in wage we support an equitable
minimum wage for american workers one providing fair wages

2. in case youre not up on what the gop stood for in eisenhowers day, the 1956 republican
platform pledged to provide federal assistance to low-income communities; protect social
security; provide asylum for refugees; extend the minimum wage; improve the unemploy-
ment benefit system so it covers more people; strengthen labor laws so workers can more
easily join a union; assure equal pay for equal work regardless of sex.

[Label]: True

Reasoning without Reward Model

[Prediction]: Conflicting

[Reasoning]:

The evidence provided supports many of the claims made in the original statement, but some
quotes are from earlier years or mention specific policies, and not all points are explicitly stated
in the 1956 platform.

Reasoning with Reward Model

[Prediction]: True

[Reasoning]:

The claim is supported by multiple quotes from the 1956 Republican Party platform, which men-
tion equal pay, the minimum wage, asylum for refugees, protections for unions, and other issues.
While there are some minor discrepancies and nuances, the overall evidence suggests that the
claim is accurate.

Figure 5.4: An example highlighting leniency in contextual overthinking with the output sequence
chosen by the Reward model.

alyzed cases (see Table 5.5). In these instances, the reasoning is evaluated with a degree
of contextual leniency, allowing the model to arrive at the correct verdict despite subtle mis-
matches in the evidence. An illustrative example is shown in Figure 5.4, where the claim
asserts that the 1956 Republican party supported several issues. The retrieved evidence
does not explicitly state this support; instead, it references support for certain policies that
correspond to those issues.

This discrepancy leads many output sequences to classify the claim as Conflicting. The
majority-voted reasoning also highlights a mismatch in dates, noting that similar support ex-
isted in 1928 for one of the issues, which ideally should be disregarded. In this context, fact-
checking may benefit from a more lenient interpretation, acknowledging that the Republican
party did support all the mentioned issues in 1956, albeit through various policy endorsements.
The output selected by the reward model captures this nuance: it acknowledges the lack of
explicit support but opts for a contextually lenient interpretation that ultimately leads to the
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correct classification.

Unlike decomposition-induced overthinking, which requires mitigation (as discussed in Sec-
tion 5.1), contextual leniency is a subjective concept. Its appropriateness depends heavily on
the evaluative perspective. For example, an opposing political party might reasonably inter-
pret such a claim as False, while a sympathetic organization might offer a more charitable
interpretation. Our support for contextual leniency in this case is grounded in its ability to yield
the correct veracity label for the task. Nevertheless, it is important to recognize that even
these “correct” labels may be subject to biases introduced by the human fact-checkers who
constructed the dataset [104, 105, 106].

Given the nuanced and potentially contentious nature of contextual leniency, we encourage
future work to more thoroughly investigate its role, appropriateness, and broader implications
in automated fact-checking. A detailed overview of the identified improvement categories is
provided in Table A.2.

Key Insight (RQ3)

Using a Reward Model to select the best output sequence improves veracity prediction
performance by selecting sequences with better (numerical) reasoning and exhibiting
leniency over contextual-overthinking.
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Conclusion

6.1. Conclusion

In this study, two widely adopted strategies for enhancing the reasoning capabilities of large
language models (LLMs) were investigated within the context of fact-checking complex claims.
The first approach examined is claim decomposition, which involves breaking down complex
claims into simpler sub-claims or sub-questions to guide the reasoning process of the LLM.
Experimental results indicate that this method is particularly effective for claims categorized as
Conflicting, where the decomposition aids in clarifying ambiguous or contradictory elements.
However, the use of decomposition introduces two significant challenges, especially in the
case of claims labeled as True. The first issue, termed decomposition-induced overthinking,
arises when the generated sub-questions lead the model to apply excessively strict evaluative
criteria, ultimately resulting in incorrect veracity predictions. The second challenge pertains
to the re-ranking of outputs based on sub-questions, which can introduce extraneous or noisy
evidence. This, in turn, may divert the model’s focus from the most relevant aspects of the
original claim, thereby affecting overall fact-checking performance.

To address the limitations associated with claim decomposition, the concept of adaptive de-
composition is introduced, wherein claims are selectively decomposed based on their esti-
mated complexity. In this context, complexity is treated as an abstract attribute of each claim
and is realized using a proxy measure: the minimum number of sub-questions required to
correctly predict the claim’s veracity label. This proxy enables a practical approximation of
complexity in experimental settings.

Empirical findings indicate that adaptive decomposition effectively mitigates the adverse ef-
fects associated with full decomposition in True claims, while preserving the performance gains
observed in Conflicting claims. These improvements are consistently observed in smaller
open-source and fine-tuned models. However, the benefits do not generalize to larger pro-
prietary or thinking models. Nonetheless, decomposition continues to offer advantages for
the Conflicting class even in stronger proprietary models, suggesting that it remains a viable
strategy for enhancing reasoning in language models.

Finally, the concept of test-time scaling was investigated to enhance reasoning capabilities

34
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by employing a reward model trained to select the most appropriate output sequence from a
set of candidate outputs generated by the fact-checking model. The application of the reward
model not only improves veracity prediction performance but also enhances the overall quality
of the reasoning sequences. Notably, the reward model helps select better reasoning traces
and mitigate a phenomenon termed contextual overthinking. Contextual overthinking is miti-
gated by applying a more context-sensitive and lenient evaluation criterion. Interestingly, both
instances of overthinking identified in this study appear to stem from the inherent tendency of
language models to align their outputs with user prompts. This observation suggests the po-
tential existence of a broader taxonomy of errors, with implications extending to other natural
language processing tasks. This experiment highlights the potential of training a reward model
to increase the reasoning capabilities of language models and identifies a common taxonomy
of improvements that future researchers can focus on.

6.2. Limitations and Assumptions

This section discusses current limitations and assumptions made while designing the experi-
ments.

Noisy evidence

The retrieved evidence is re-ranked based on cosine similarity with the claim using sentence
transformer embeddings. These evidence documents are noisy and contain confounding fig-
ures and information completely unrelated to the claim. This plays a vital role in the veracity
prediction performance. In this study, this is treated as a feature that comes with retrieving
evidence from the real world and incorporates this while assessing the reasoning capabilities
of the models. To do so, an assumption is made that all the language models used do not
exhibit any model-specific bias to certain noise.

Faithful explanation

Another assumption made in these experiments is that the justification produced by the lan-
guage models to reason decision is faithful to their actual reasoning process. The reasoning
is considered valid as long as key evidence pairs pertaining to determine the veracity of the
claim is present in the justification document.

Choice of hyperparameter values

Due to resource constraints, experiments were conducted with only one set of hyperparameter
values. For adaptive decomposition, the temperature value was set to 0.3 while it is set to 0.45
for test time scaling experiments. This choice allows the model to have some variations in the
candidate output sequences generated for training and evaluating the reward models. These
values are design choices and are not grounded in literature justifying those choices. No
ablation studies were conducted to study the impact of the hyperparameter values.
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6.3. Future works

Performance gap with respect to upper-bound

A key observation made is that the proposed methods failed to reach their respective theoreti-
cal upper-bound in both the experiments. While it is desirable for the methods to not reach the
upper-bound (we do not want our methods to overfit to the dataset), there is a considerable
gap in the performance.

For adaptive decomposition, this gap can be bridged with an alternative proxy definition for
Complexity that aligns better with the nuances of the upper-bound decision. Stronger models
to extract latent embedding or a stronger base model for the setfit decision machine can be
explored that will be able to capture the training distribution better [107].

In test-time scaling, a stronger reward model and better quality training data can be explored
to bridge the performance gap. Better quality training data can be annotated by using human
preferences to select better reasoning paths in the output sequences [26].

In-depth study on Overthinking

This study identifies two types of overthinking that contribute to overly strict evaluations and
reasoning by the language model. It emphasizes the importance of mitigating decomposition-
induced overthinking and highlights the need for a subjective assessment of contextual over-
thinking before any mitigation efforts, as discussed in Sections 5.1 and 5.5. Notably, the issue
of overthinking is not confined to fact-checking tasks but extends to a broader range of nat-
ural language processing applications [19, 18]. Future research should aim to formalize the
definitions of these phenomena and develop task-specific strategies for effective mitigation.
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A

Appendix

A.l. Definition of the taxonomy of errors of True class when run
with decomposition.

Error Taxonomy

Description

Decomposition induced
overthinking

Reasoning over details in evidence not pertinent to predict-
ing the veracity of the claim

Being overly strict with details and figures that could be
lenient

Explicitly verifying individual subquestions and poorly ag-
gregating their verdicts to form a final verdict

Noisy Reranked Evidence

Reranking evidences that contain similar values from sim-
ilar stories (concerning the subject - person, place, event,
etc).

Reranking enitrely noisy evidences, not pertinent to the
claim

Certain evidences important for an aspect of the claim not
reranked.

Table A.1: Definition of the error taxonomies mentioned in Table 5.2. These definitions are
obtained by observing qualitative results following the method described in section 4.6.2
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A.2. Definition of the taxonomy of improvements made using Re-
ward Model over majority voting.

Description
Taxonomy of Improvement

Improved reasonin
P 9 + Effectively aggregates multiple contextual elements to con-

struct coherent and thorough reasoning.

» Comprehend and correctly reason against nuanced numer-
ical, temporal and quantitative values.

* Inferring to the correct verdict over the evidence.

 Successfully filters out confounding details in the evidence
and maintains focused reasoning on claim-relevant con-
tent.

* Robustly ignores irrelevant or noisy evidence, focusing
only on information pertinent to claim verification.

Mitigation of contextual

overthinking * Focusing the analysis on claim-relevant portions of the ev-

idence while ignoring unrelated details present in the evi-
dence.

» Reasoning strictly based on the stated claim, without di-
verging into irrelevant implications or hypothetical exten-
sions.

Table A.2: Definition of taxonomies of improvements made by selecting a reasoning path
using a reward model over majority voting. These definitions are obtained by observing
qualitative results following the method described in section 4.6.2
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A.3. Mathematical formulae required for methodology

A.3.1. Cosine similarity

Cosine similarity is a commonly used metric to measure the similarity between two non-zero
vectors based on the angle between them, rather than their magnitude. Given two vectors x
and y, the cosine similarity is defined as:

. Xy
00s_SIMG%.¥) = iy

where x - y denotes the dot product of the vectors, and ||x|| and ||y|| represent their Euclidean
norms.

Cosine similarity ranges from —1 to 1, where:

1 indicates that the vectors point in the same direction (maximum similarity),
* 0 means the vectors are orthogonal (no similarity),

* —1 means the vectors are diametrically opposed.

In the context of this work, cosine similarity is used to compare the latent representations
of tokens, layers, or classes in the embedding space, providing an interpretable metric of
semantic similarity.

A.3.2. F1 Score and Averaging Methods

The F1 score is a commonly used evaluation metric in classification tasks, particularly in sce-
narios where the class distribution is imbalanced. It is defined as the harmonic mean of pre-
cision and recall, and it provides a single measure that balances the trade-off between these
two quantities.

F1 Score Definition

Given a classification task, let TP be the number of true positives, F' P the number of false
positives, and F'N the number of false negatives. Then, precision and recall are defined as
follows:

. TP
Precision = TP+ FP (A.1)
TP
Recall = ———— A2
eca TP+ FN (A-2)

The F1 score is calculated as the harmonic mean of precision and recall:

Precision x Recall
X —
Precision + Recall

F1=2 (A.3)
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The F1 score ranges from 0 to 1, with higher values indicating better performance. It is es-
pecially useful in situations where both false positives and false negatives carry significant
consequences, and where class imbalance may render accuracy an unreliable metric.

Macro and Weighted Averaging
For multi-class classification problems, F1 scores are often averaged across classes to provide
a summary measure. Two common strategies are macro averaging and weighted averaging.

Macro-Averaged F1 Score

Macro averaging computes the F1 score independently for each class and then takes the
unweighted mean. This treats all classes equally, regardless of their support (i.e., the number
of true instances per class).

C
1
l:']macro = 6 E F1i (A-4)
=1

where C is the total number of classes and F1; is the F1 score for class «.
Weighted-Averaged F1 Score

Weighted averaging also computes the F1 score for each class, but takes the mean weighted
by the number of true instances in each class. This ensures that the metric reflects the perfor-
mance on more frequent classes proportionally.

C
Fdlweighted = Z (% : F1i) (A-S)

i=1
where n; is the number of true instances of class i, N = >, n, is the total number of in-

stances, and F1; is the F1 score for class :.

These averaging strategies are essential for understanding classifier performance in imbal-
anced datasets and help provide a more comprehensive evaluation beyond simple accuracy.
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A.4. Detailed algorithm to assign taxonomy of errors/improvements
using qualitative analysis.

Algorithm 2 Iterative Construction of an Error Taxonomy

Require: Initial LLM outputs D,
Ensure: Final taxonomy of error categories C
1: Initialize pattern set, code set, and category set
2: D <+ Dy
3: while taxonomy is not theoretically saturated do
for each output d; € D do
Identify reasoning patterns in d;
Compare patterns across and within samples
Write memos capturing analytical insights
Assign descriptive codes to distinct patterns > Open coding
end for
10: Group codes into higher-level categories > Axial coding
1: Refine category definitions based on relationships between codes
12: Collect additional LLM outputs Dnew and append to D
13: for each new pattern p € Dpey do

© o N g

14: if p contradicts an existing category then

15: Redefine or split the category using steps 3 - 12

16: else if p expands an existing category then

17: Update the category to include new dimension using steps 3 - 12
18: else

19: Mark the category as supported

20: end if

21: end for

22: Check if all categories are supported > Exit condition for while loop
23: if all categories are supported then

24: Set taxonomy to be theoretically saturated

25: end if

26: end while
27: Return the final set of error categories C
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A.5. System prompt and user prompt for veracity prediction infer-
ence model

You are a fact-checking assistant tasked with evaluating claims based on provided evi-
dence. Your task:
1. Carefully analyze the important details from both the claim and the evidence
provided.

2. Reason through the evidence step-by-step, synthesizing relevant information to
assess the overall veracity of the claim.

3. Finally Classify the claim’s veracity into one of the following categories:

(a) True: The evidence fully supports the claim.
(b) False: The evidence directly contradicts the claim.
(c) Conflicting: The evidence contains contradictory elements or is inconclusive.

**Response Format™*:
- [Label]: (True, False, or Conflicting)
- [Justification]: The reasoning steps used that led to your classification of the claim.

Figure A.1: System prompt to veracity prediction inference model for without decomposition
inference.
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You are a fact-checking assistant tasked with evaluating claims based on provided ev-
idence and guiding subquestions. Each claim is accompanied by subquestions, which
are designed to help you focus on key aspects of the claim in relation to the evidence
provided. Use these subquestions as a guide to structure your analysis but **do not
independently classify the subquestions**. Instead, use the insights gained from ad-
dressing each subquestion to assess the overall veracity of the main claim. Your task:

1. Carefully analyze the important details from both the claim and the evidence

provided, guided by the sub-questions.

2. Reason through the evidence step-by-step, synthesizing relevant information to
assess the overall veracity of the claim.

3. Finally Classify the claim’s veracity into one of the following categories:

(a) True: The evidence fully supports the claim.
(b) False: The evidence directly contradicts the claim.
(c) Conflicting: The evidence contains contradictory elements or is inconclusive.

**Response Format™**:
- [Label]: (True, False, or Conflicting)
- [Justification]: The reasoning steps used that led to your classification of the claim.

Figure A.2: System prompt to veracity prediction inference model for with decomposition
inference.
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Here are the examples of fact-checking:

1. [Claim]: <Example claim 1>
[Sub-questions]: <Example sub-questions 1>
[Evidences]: <Example evidence 1>

[Label]: Conflicting

2. [Claim]: <Example claim 2>
[Sub-questions]: <Example sub-questions 2>
[Evidences]: <Example evidence 2>

[Label]: False

Similar to the given examples, fact check the following claim using the evidence. Pay
additional attention to numerical spans in claim and evidence and fact check by thinking
step by step and output the label by performing entailment. Classify the entire claim
strictly into one of the following categories: TRUE, FALSE or CONFLICTING.

[Claim]: <Inference Claim>
[Sub-questions]: <Inference sub-questions>
[Evidences]: <Inference Evidence>

Give the reply in the following format:
[Label]: (SUPPORTS, REFUTES or CONFLICTING).
[Justification]:

Figure A.3: User prompt to veracity prediction inference model. The sub-questions are
removed from the inference sample and the examples when run in without decomposition
setting.
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A.6. Additional results - Latency and Compute costs of adaptive de-
composition experiments

To provide a comprehensive assessment of the computational efficiency and cost associated
with the adaptive decomposition experiments, both latency and cost per claim were evaluated.
Latency is reported as the mean and standard deviation across all claims in the test set of
Quantemp [3], reflecting the average time required to process a single claim under each exper-
imental setting. As inference was conducted on a local server, cost estimation is presented in
terms of GPU runtime expenditure rather than cloud compute billing.

Following the approach adopted in the MiniCheck paper [108], the total cost is estimated using
the formula:
Cost = Total runtime (in hours) x GPU rate per hour (A.6)

In this context, the total runtime denotes the time taken to process the entire Quantemp test
set, measured in hours. The GPU rate per hour for the NVIDIA GeForce RTX 3090 used
in our local setup is calculated to be $0.154. This rate is derived by multiplying the device’s
power consumption in kilowatt-hours' by the average electricity cost in Germany, where the
workstation is hosted [109].

The results are summarized in Table A.3. Among all configurations, the claim decomposi-
tion setting incurs the highest latency and per-claim cost, whereas the baseline setting with-
out decomposition demonstrates the lowest computational demand. Adaptive decomposition
achieves a balance, reducing both latency and cost compared to full decomposition by selec-
tively applying decomposition and avoiding unnecessary overhead from sub-question genera-
tion and re-ranking. These results indicate that adaptive decomposition not only enhances pre-
diction performance but also offers improved cost-effectiveness and computational efficiency.

Latency (ms)

Method Costs ($)
Mean Std dev

Vanilla inferencing

without Decomposition 7398 2200 0.796

with Decomposition 10335 2386 1.415

Adaptive Decomposition - Latent representation based classifier

Llama feedback 7980 2283 0.874

gpt feedback 8015 2712 0.882

Adaptive Decomposition - setfit classifier

Llama feedback 8624 2779 0.981

gpt feedback 8713 2873 1.05

Table A.3: Latency and per claim cost for running decomposition and adaptive decomposition
experiments with 11ama-3.1-8b-Instruct model.

"https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3090-3090ti/


https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3090-3090ti/
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