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Abstract

As modern applications become more global and
resource intensive, geo-distributed databases have
become critical for fast, reliable data storage. Eval-
uating the performance of these databases through
traditional benchmarks such as TPC-C and YCSB-
T is not sufficient to expose all characteristics of
the database’s performance. A deeper analysis of
available benchmarks is needed to determine how
to effectively asses geo-distributed databases.

In this paper, we present a modified implementa-
tion of the DeathStar hotel benchmark fit for rela-
tional databases and use it to evaluate several geo-
distributed databases, Detock, SLOG, Janus, and
Calvin. We then analyze in detail the unique char-
acteristics of the benchmark and the performance
of these databases in the context of the benchmark.

1 Introduction

As modern applications require fast, reliable, and scalable
databases, geo-distributed database systems have emerged as
a critical solution to the problem. By strategically distribut-
ing data across multiple regions, users are closer to databases,
improving latency and performance while also increasing re-
dundancy and fault tolerance[1]. Additionally, the inherently
scalable nature of these systems can meet the requirements
of ever growing modern applications[1]. As a result, geo-
distributed databases are frequently used for modern, large-
scale, global applications.

Geo-distributed database system performance is a critical
metric when deciding which system to use for a given ap-
plication. There are many methods of testing or reasoning
about the performance of a database system, but the best
is usually a benchmark[2]. A benchmark will use a set
database configuration and generate a set of actions (trans-
actions) for the database to perform and measure the result-
ing performance[2], which allows repeatable simulation of a
real workload. Throughout the past several standard bench-
marks have been developed, most notably TPC-C[3] and
YCSB-T[4]. Although these benchmarks (and several oth-
ers) have worked reasonably well, they were not designed for
geo-distributed databases and do not accurately reflect mod-
ern workloads[5], most notably lacking any form of storage
movement.

As a result, there is potential for improved benchmarks
that better reflect modern workloads to be adopted. While
this potential is investigated, there is a need for a compre-
hensive comparison between common benchmarks. While
benchmarks have been evaluated for suitability in surveys[5],
a more accurate comparison requires benchmarks to be im-
plemented using a common framework, which has not yet
been done. An accurate comparison would allow researchers
to identify flaws in each benchmark and potentially propose
new ones which could address these flaws. One of many such
benchmarks requiring implementation and evaluatation is the
DeathStar[6] hotel reservation benchmark, which emulates a
modern travel booking application. The aim of this project
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Figure 1: Original benchmark schema from [11]

is to implement the DeathStar hotel reservation benchmark
and use it to evaluate several geo-distributed databases. Ad-
ditionally, four other group members will implement their
own benchmarks, enabling an accurate comparison of all five
benchmarks as well as industry standard ones.

1.1 Research Question

How do geo-distributed database systems perform when
benchmarked using the DeathStarBench hotel reserva-
tion benchmark?

We will measure performance using latency, throughput,
byte transfers, and cost. This evaluation will take place under
different conditions which mimic real-life scenarios, which
will be discussed in more detail in Section 3.

1.2 Paper overview

In this paper, we present an implementation of the Death-
Star hotel benchmark within the Detock framework (Sec-
tion 3) and evaluate several geo-distributed databases using
this benchmark (Section 4), namely Detock[7], Calvin[8],
SLOGI9], and Janus[10]. Our analysis (Section 5) reveals
new insights about the performance characteristics of each
database and the suitability of the DeathStar hotel benchmark
as a geo-distributed database benchmark. Finally, we discuss
the ethical considerations and reproducibility of the research
(Section 6) and give our conclusions (Section 7).

2 Background

In this section, we will begin by providing a brief overview
of the DeathStar hotel benchmark in Section 2.1, followed by
a discussion of the databases under test in Section 2.2

2.1 DeathStar

The DeathStar suite of benchmarks was designed to bench-
mark datacenter hardware and networking performance. The
hotels benchmark is meant to simulate a modern travel book-
ing application which allows users to search for, be recom-
mended, and reserve hotels. It is designed using microser-
vices and tools such as nginx and memcached to mimic the
behavior of a modern cloud-based application. A diagram of
the path requests follow can be seen in Figure 1. When a
transaction reaches the frontend service, it is forwarded to its
respective service, which handles the execution. As each mi-
croservice is solely responsible for one transaction, it has a
mongoDB instance containing the necessary data.

The hotel benchmark uses a workload composed of the fol-
lowing 4 transactions:



 User login with username and password.

* Search for an available hotel by date and location.

* Recommendation of a hotel based on location, price, or
rating.

* Reservation of a hotel for a given set of dates.

In the open-source implementation of the workload!, the
transaction mix is 0.5% user logins, 60% searches, 39% rec-
ommendations, an 0.5% reservations. Because the first three
transactions are read-only, this workload is very read heavy.

2.2 Databases under test

The following databases represent state-of-the-art geo-
distributed systems, all available in the same repository
and able to be benchmarked using a consistent architecture.
Each system offers distinct advantages and disadvantages,
showcasing some of the latest advancements in distributed
database technology. Below, we provide a brief overview of
each evaluated system.

Janus

Janus[10] uses a global Paxos process to schedule all trans-
actions. This means all non-conflicting transactions can be
scheduled in a single round trip of the network, and all con-
flicting transactions can be scheduled in two round trips of
the network in terms of latency. This was an improvement
over previous geo-distributed databases at the time of Janus’s
development, however better techniques have emerged over
recent years.

Calvin

Calvin[8] also uses a global scheduler for every transaction,
although one node of the database is designated as the sched-
uler rather than a Paxos process. Consequently, throughput
is very consistent when varying the type and complexity of
transactions. This makes Calvin’s relative performance very
dependent on the workload when compared to other modern
geo-distributed databases. Because the ordering process is
handled by a single node, latency is also highly dependent on
the start location of a transaction.

SLOG

SLOGI(9] is a modern geo-distributed database built upon
Calvin which uses the concept of regions to increase the
throughput of the database. Regions are “a set of servers that
are connected via a low-latency network™[9, p. 3]. Transac-
tions are categorized based on whether all the data accessed is
in the same region. If it is, the transaction is single-home and
can be forwarded to the home region for processing. SLOG
takes advantage of this by only using a global ordering pro-
cess for multi-home transactions.

Detock

Detock[7] uses the same notion of regions as SLOG and pro-
cesses single-home transactions in a similar fashion, however
instead of a global ordering process for multi-home transac-
tions uses a deterministic scheduling algorithm to allow each

"https://github.com/delimitrou/DeathStarBench/tree/master/
hotelReservation

node to independently arrive to the same schedule. The de-
terministic scheduling algorithm can significantly reduce la-
tency and increase throughput when compared to a global
consensus algorithm as less cross-region coordination is re-
quired.

3 Implementation

In this section we begin with a brief motivation of the imple-
mentation framework in Section 3.1. Design choices made in
the adaptation process are outlined in Section 3.2, followed
by more details on transaction implementation in Section 3.3.
Finally, Section 3.4 outlines the scenarios used to test the
databases.

3.1 Framework

Development of the benchmark was done using the the
Detock codebase. The Detock codebase contains several
implementations of other common geo-distributed databases
and a framework for running benchmarks on these geo-
distributed databases. These two qualities allow for accurate
comparison both between geo-distributed databases and be-
tween benchmarks. The ability for accurate comparison be-
tween benchmarks is the most important quality within the
context of this project and is a large motivation for using the
Detock codebase to implement and run the benchmark.

3.2 Adaptation of the benchmark

The adaptation process which is required to use the bench-
mark as a database benchmark can be done in several man-
ners. In a very literal adaptation, each microservice would
be given its own instance of the database under test(replacing
mongoDB), endpoints could be replicated in a similar fashion
to database partitioning and replication, and the benchmark
could be run as normal. Another approach would be to trans-
late the separate databases from each microservice to a single
relational database and adapt the requests from the original
benchmark into transactions for the new benchmark.

While the first approach more accurately resembles the
original benchmark, it has several flaws which make it im-
practical for this experiment. Firstly, there are scenarios
where the database performance is not the limiting factor
which makes comparison between databases in these scenar-
ios challenging. Secondly, the first approach would make it
difficult to accurately compare to the other benchmarks which
are being implemented in parallel to this one as it would not
be in the same style. Finally, the first approach adds addi-
tional complexity and overhead by requiring coordination and
communication between multiple database instances. As a re-
sult, we will use a modified version of the benchmark which
translates the original queries to transactions and the original
set of databases to a relational schema (Figure 2).

The adaptation process was not straightforward as the mi-
croservice architecture of the original benchmark meant lots
of data duplication occurred. As such, some databases from
Figure 1 were combined or modified. Specifically the Recom-
mendMongoDB, the ProfileMongoDB, the RateMongoDB,
the GeoMongoDB, and the capacity collection from the Re-
serveMongoDB were combined to the make the hotels table.
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users reservations
PK  username PK reservation_id
password PK+FK hotel_id
customer_name
hotels in_date
PK  hotel_id out_date
: num_rooms
latitude -
longitude }
rating reservation_cnt
price PK in_date
capacity PK+FK  hotel_id

reserved_rooms

Figure 2: Adapted database schema

The UserMongoDB and ReserveMongoDB were both trans-
lated one-to-one into the user and reservations tables respec-
tively. Finally, the adaptation required the addition of the
reservation_cnt table to avoid querying all records from the
reservations table during the reservation transaction.

3.3 Transaction implementation

Due to the adaptation of the original queries to stricter trans-
actions, there were also some modifications made to the be-
havior of the transactions. The search and recommendation
transactions would originally query all hotel records to find
the optimal result. This has the consequence of not allowing
single home or single partition queries. Because Detock only
allows for queries on primary keys and the added complex-
ity of partitioning and homing based on special keys such as
latitude/longitude pairs, we decided each transaction would
search through a tuneable k hotels to find the appropriate re-
sults. This also allows for skewed data access in all transac-
tions which is important for the skewed testing scenario.

As mentioned before, the reservation transaction must
check if a hotel is fully booked during the desired dates. The
original implementation would query all previously made
reservations and calculate the capacity on dates which over-
lapped with the desired dates. While this may be appropri-
ate for a datacenter benchmark where heavy computation is
expected, this is not efficient compared to adding another ta-
ble which stores the information and updates it upon each
completed reservation, and transactions should not be access-
ing the entire database for the purpose of a database bench-
mark. The user login transaction was left unchanged. These
modifications create a more interesting and realistic workload
for database benchmarking than the original queries of the
DeathStar hotel benchmark.

For the search and reservation transaction, a random date
range is needed to book the hotel. This was generated by
choosing a random date within a range, and choosing a ran-
dom length d for the range to be.

3.4 Scenarios

The databases were tested under different conditions, each
emulating different real-world scenarios. These scenarios are
the following:

1. Baseline scenario: Increasing number of multi-home
transactions.

2. Skewed scenario: Increasing access frequency for spe-
cific items.

3. Sunflower scenario: Transaction region follows distri-
bution based on elapsed time.

4. Network latency scenario: Increasing network latency.
Packet loss scenario: Increasing chances of packet loss.

6. Scalability scenario: Increasing number of clients mak-
ing requests.

e

For the first three scenarios, it is relevant to discuss the
record sampling process in more detail. When creating a
transaction, the system randomly determines if it will be
single-home or multi-home and whether it will be single-
partition or multi-partition. Based on these decisions, the fol-
lowing can be said about the read-write set of the transaction:

* Single-home: the read-write set will contain records
from the local region (except during the sunflower sce-
nario).

* Multi-home: the read-write set will contain either a sin-
gle record from a foreign region or records from at least
two regions, with each records’ home being randomly
chosen.

* Single-partition: the read-write set will contain records
from a single randomly chosen partition.

* Multi-partition: the read-write set will contain records
from at least two partitions, with each records’ partition
being randomly chosen.

This process is not as straightforward when evaluating
the databases under the sunflower scenario. When selecting
records for a multi-home transaction each record’s home is
chosen according to the sunflower distribution. Additionally,
single-home transactions in the sunflower scenario access re-
gions according to the region distribution rather than the local
region.

In the skewed scenario, each time a record is chosen the
system randomly decides if the record will come from the hot
set or the cold set. The size of the hot record set is decided be-
forehand but is dynamically increased for transactions which
require more records than the size of the hot set. This ensures
all transactions can access their required number of records
without becoming undersampled.

4 Results

In this section we first document the experimental parameters
in Section 4.1. Then, in Sections 4.2, 4.3, 4.4, 4.5, 4.6, and
4.7 we present the results of the baseline, skew, sunflower,
network latency, packet loss, and scalability scenarios respec-
tively. We then present a latency breakdown for each database
in Section 4.8. Finally, we have small variations on the base-
line scenario and latency breakdown for a smaller value of k
in Section 4.9.

4.1 Experimental parameters

Experiments were run on the TU Delft compute cluster us-
ing four machines. Each machine used a dual-socket AMD
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Figure 4: Skewed scenario performance

EPYC 7H12 CPUs with 64 cores per CPU (for a total of 128
physical cores and 256 logical processors per machine) and
approximately 515 GB of ram. Latency between machines
can be seen in Table 1, as calculated using ping with 100
packets and an interval of 200ms between each packet. All
experiments had 2 partitions and 2 regions. Machines st1 and
st2 comprised one region, while st3 and st5 comprised the
other, each machine responsible for one partition. Requests
were generated for region 1 by st5, and for region 2 by st2.

Table 1: Network Latency Matrix (Average RTT in milliseconds)

Source / Dest stl st2 st3 stS
stl - 0.125 0.131 0.084
st2 0.118 - 0.124 0.073
st3 0.137 0.137 - 0.073
stS 0.089 0.095 0.064 -

Unless otherwise specified, experiments were run with
25% chance of a transaction being multi-partition, a 25%
chance of a transaction being multi-home, and with 3000
clients generating requests. In the database configuration,
there were 500 users and 200 hotels and dates were gener-
ated from a range of 6 months with a maximum stay length
of d = 14. Search and recommendation transactions accessed
k = 10 hotels each.

Data is collected in the form of throughput in transactions
per second, median latency, total bytes transferred, and the
simulated cost of running the benchmark on AWS (factoring
in rental costs and bytes transferred).

4.2 Baseline scenario

The results for the baseline scenario can be seen in Figure
3. The percent of transactions which are multi-home is var-
ied from 0% to 100%. The user transaction becomes a for-
eign single-home transaction because it only touches a single
record.

From figure 3, both Janus and Calvin have relatively con-
stant throughput as the amount of multi-home transactions in-
creases, as these databases use a global ordering procedure to
avoid conflicts between transactions. Detock and SLOG both
avoid this global ordering process for single-home transac-
tions, and as a result have high throughput when the amount
of multi-home transactions is low, though this drops signifi-
cantly as more multi-home transactions are introduced. Bytes
transferred and cost follow similar trends to throughput for
each individual database, though it should be noted Calvin
and to a lesser extend Janus are much more efficient than
Detock and SLOG for these metrics.

4.3 Skewed scenario

The chance of a record being taken from the hot record set
was 90% during this experiment. The independent variable
was the size of the hot record. The number of hot records
per partition and region was calculated using the skew factor
0 times the total number of records for that partition and re-
gion. This means as # approaches the chance of a hot record
being selected, the behavior should be same as the baseline
scenario. As a result, the graph goes from high skew where
the hot record set is 1 record per region-partition at = 0.025
to an unskewed scenario at § = 0.9.

The size of the hot record set did not significantly impact
the performance of any of the databases.
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4.4 Sunflower scenario

Table 2: Sunflower scenario transaction region weights

Elapsed txn count Region one Region two
0-20% 5 5
20-40% x 1—x
40-60% S .5
60-80% 1—=x x

80-100% S 5

This experiment changes the home region of single-home
transactions based on the elapsed of the experiment. In
this implementation, transactions’ home region followed a
distribution based on the total number of sent transactions.
While ideally the home region would be based exactly on the
elapsed time, transactions are pre-generated which makes this
infeasible. As a result, elapsed time is approximated using the
number of sent transactions. In this experiment, the transac-
tions generated are homed using a distribution according to
Table 2, where x is the sunflower skew.

From Figure 5, it is clear the performance is not signifi-
cantly impacted by skewing the home region of transactions.

4.5 Network latency

This experiment artificially increased latency between all ma-
chines on the network. This means the latency is felt both
between regions and between partitions in a region, which
should normally be very low latency. The results are visible
in Figure 6.

As a result of the increased latency between nodes, the
throughput of all databases drops steeply and latency quickly

increases beyond reasonable levels. Steep drops in bytes
transferred and cost as latency increases are also present.
Even Detock which does not rely on a global consensus algo-
rithm for transaction ordering, must communicate all trans-
actions to involved regions which causes the drop in through-
put. Calvin suffers the least from the increased latency, likely
because it requires the least cross-region/cross-partition com-
munication (in terms of raw bytes transferred).

4.6 Packet loss

This experiment artificially stops some packets sent between
machines. For the same reasons as the increased latency ex-
periment, the coordination between machines causes a steep
decrease in throughput and increase in latency which can be
seeing in Figure 7.

All databases suffer large throughput drops and latency in-
creases as packet loss increases. Bytes transferred and cost
decrease similarly to throughput. Similarly to the network
latency scenario, Calvin performs the best as packet loss in-
creases, likely for the same reason.

4.7 Scalability

This experiment increases the number of clients making re-
quests to the database system. The reuslts are visible in Fig-
ure 8. Throughput increases when there are more clients mak-
ing transactions until a point where the database gets over-
loaded. At this point the throughput remains relatively consis-
tent, though the latency increases significantly. Even though
the throughput remains relatively consistent, the bytes trans-
ferred and consequently the cost increased as the number of
clients increased.
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8 5 4.8 Latency breakdown
= S 3 . . . .
g El ji o This experiment provides more detailed breakdown of how
() L7} [ £ . . . .
o o o ° latencies are comprised for each database in the baseline sce-
- - nario. The four main latency categories are:
Janus - 0.013 % 0.0 % %
* Server: Responsible for transaction forwarding and op-
sioc A T erations (reading/writing).
* Sequencer: Handles multi-home ordering and log man-
* Scheduler: Handles transaction scheduling (including
petock R -~ N o 109 deadlock resolution in Detock’s case) and lock manage-
ment.
* Other: All remaining latency sources.
Janus 273 % 0.0 % 71.2 % 1.46 % . .
The exact details of what happens in each latency compo-
- -2 . . .
10 nent varies slightly for each database, and is beyond the scope
SLOG - % 4.13% 0.006 % 93.9 % .
of this paper.
The first four rows of Figure 9 show the latency compo-
Calvin - SRS S 961 % nents of a single-home, single-partition transaction for each
L 10—4
database. The second four rows show the latency components
Detock 222% 48.8% 0.002 % 28.9% of a single-home, multi-partition transaction. With the excep-
tion of Janus which waits nearly exclusively on the scheduler,
Janus - 1076 and Detock which spends some time on the sequencer, the
majority of the latency is coming from the Other category.
The last two rows show the latency components of a multi-
SLOG - 1.7 % 4.6 % 23% 4 % . . . .
: home transaction, however since Calvin and Janus do not in-
1078 clude the idea of homes they are not included. Here, again,
Calvin -

Detock 26.2 % 4.4 % 10.9 % 58.5 %

Figure 9: Latency breakdown

the majority of the latency is in the Other category.

4.9 Transaction variations

When evaluating the results of the baseline and the latency
breakdown, we were curious about the cause of differences
in these results and typical benchmark results (e.g. TPC-C or
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Janus - 0.01 % 0.0 % 91.5 % 41 %

l Scheduler

0o
b Other

SLOG - 0.34 % 4.64 % 0.007 % 95.0 %
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Figure 11: Latency breakdown with smaller transactions

the other benchmarks being implemented in parallel). As a
result, we provide a small test of these scenarios with modi-
fied parameters, namely a smaller read size of £ = 3. This
should be a better test of the databases’ coordination abilities
as less time will be spent reading each transaction, and there
will be considerably more transactions.

The results of the baseline scenario are shown in Figure 10.
Compared to the results of the baseline scenario with k = 10
(Figure 3), we can see similar trends: Janus and Calvin re-
main relatively constant, while SLOG an Detock’s throughput
decline as more multi-home transactions are present. How-
ever, SLOG and Detock perform notably better under these

conditions, as their decline in performance is far less severe.
The median latencies for all databases are also significantly
lower, though this is expected. Despite Calvin outperforming
the other databases in terms of throughput and latency, it also
has the lowest bytes transferred and lowest cost, highlighting
it’s efficient communication.

The latency breakdown reveals additional information
about the difference between these conditions. Visible in Fig-
ure 11, the single-home single-partition latency components
are very similar to those from the £ = 10 breakdown (Fig-
ure 9), with the exception of Detock which spends less time
on the Sequencer. This is not the case for multi-partition
and multi-home transactions where the majority of the la-
tency is now caused by the Server. This points to increased
cross-region and cross-partition communication requirements
as more throughput occurs.

5 Discussion

This section will begin by mentioning some unusual qualities
of the DeathStar hotels benchmark (Section 5.1), focusing on
the read and processing intensive transactions. Following, we
discuss the results in more depth with potential justification
for some of the more unusual results this benchmark presents
(Section 5.2).

5.1 Nature of the benchmark

The read heavy nature of the benchmark must be considered
when using the DeathStar hotel reservation benchmark. Fur-
thermore, writes occur to a database with relatively many
records (number of hotels times number of available dates).
These features of the benchmark means most transactions
will not conflict with each other and the scheduling efficiency
or deadlock avoidance of a system is not thoroughly tested.
For some modern workloads, this is not relevant as read per-
formance is critical, though for others this may provide a crit-
ical feature of database performance which the DeathStar ho-
tel reservation benchmark misses. As a result, this scenario
could only be an appropriate benchmark if the eventual work-
load is known to be very read heavy and with few write con-
flicts.

The benchmark also contains transactions which are rather
processing intensive. The recommendation query will select
at least k (recommendation read size) records, and the search
query will select at least k + d records where d is the length



of the stay in days (random between 1 and 14) and at most
k * d records.

5.2 Database performance

As a result of the read-heavy nature discussion of database
performance can only happen in a limited scope. This limita-
tion is clearly visible in the baseline scenario. As discussed in
section 2, Janus requires 2 network round trips to resolve con-
flicting transaction orders. This will rarely happen in the hotel
benchmark as conflicting transactions are exceptionally rare.
As a result, the performance compared to other databases is
significantly better than demonstrated in relevant literature [7;
8]. The advantage of SLOG and Detock is also visible in the
baseline scenario when there is a low percentage of multi-
home transactions. This advantage is likely less pronounced
under the DeathStar hotel benchmark than others due to the
processing intensive nature of the transactions. This type of
transaction would favor raw read speeds rather than advanced
coordination techniques.

This is further evidenced by the results from the baseline
scenario with £ = 3, where Detock and SLOG perform con-
siderably better compared to Janus and Calvin than in the
scenario with £ = 10. Furthermore, when comparing the
latency breakdown for £ = 10 and k£ = 3, considerably
more time is spent in the Server and Scheduler for multi-home
and multi-partition transactions. As Detock and SLOG have
more advanced techniques for managing conflicting transac-
tions, when the majority of the latency is spent forwarding,
scheduling, and sequencing transactions it makes sense that
they perform better.

The skew scenario presents more slightly unusual results as
skew has little effect on performance, however this can also
likely be explained by the read-heavy nature of the bench-
mark and a lack of conflicting transactions. None of the reads
will conflict with each other, and higher skew will therefore
have little impact on creating more conflicts. The relative per-
formance of databases should not be drawn from this graph
as the most significant factor affecting this is the transaction’s
25% multi-home and 25% multi-partition chance.

Similar to the skew scenario, the sunflower scenario also
has little effect on database performance, likely for similar
reasons.

The packet loss and latency scenarios show the advantage
of Calvin’s more efficient cross-region and cross-partition
communication, as network issues do not affect performance
as significantly as the other databases. The performance
degradation in these experiments aligns with expectations.

The latency breakdown reveals some more information
about the parameters of the benchmark. As mentioned be-
fore, the majority of the latency for the £ = 10 condition
is in the ‘Other’ category. This category includes idle time,
which when combined with the information from the scalabil-
ity scenario where databases seem to reach full (or near full
throughput) as low as 100 clients, it is possible the databases
are already overloaded when the benchmark is run with 3000
clients. The k¥ = 3 condition does give more readily inter-
pretable results. Clearly, multi-home and multi-region trans-
actions require more coordination and this is demonstrable
with higher latency components in the Server, which includes

forwarding transaction information to relevant regions and
partitions. As the throughput is considerably higher than in
the £ = 10 condition, the databases can additionally handle
more clients making requests. The combination of these fac-
tors makes this a distinct possibility, although more investiga-
tion is necessary to determine the root cause of the different
latency components.

6 Responsible Research

Ensuring responsible research practices is critical to the en-
sure credibility, validity, and the ethical integrity of this study.
Given performance evaluation can influence the adoption or
improvement of systems, any methodological flaws or ethi-
cal issues may cause misleading conclusions to be drawn, di-
rectly harming academia or industry. We will first discuss the
reproducibility of the study in Section 6.1 and then discuss
the ethics in Section 6.2.

6.1 Reproducibility

Reproducibility of an experiment is very important for the
validity of the research. Clear documentation of database
system configurations, hardware specifications, experimen-
tal parameters, and major design decisions are essential as
these can have large impacts on the outcomes of an exper-
iment. The documentation discussed above will allow for
reproducibility of the experiment as the required steps are
clearly articulated. Additionally, the source code will be
available at the delftdata Detock repository?. Detailed infor-
mation about how DeathStar hotels experiments were run and
corresponding scripts will also be available in this repository.
Using these tools, experiment results should be reproducible.

6.2 Ethics

Within the context of the project, it is important to divulge all
choices made which could influence the outcome of the ex-
periments. Also important is avoiding selective result report-
ing, data manipulation, or other parameter manipulation to
achieve desired results. These two factors could cause incor-
rect or incomplete conclusions to be drawn, meaning database
performance is not accurately reflected. As discussed earlier,
this could influence the adoption or improvement of some
systems, potentially harming academia or industry. Through
the documentation detailed in Section 6.1, these two prob-
lems should be mitigated.

7 Conclusions and Future Work

This study evaluated the performance of distributed databases
under varying workloads, revealing key trade-offs in their de-
sign choices. In scenarios with a majority of single-home
transactions, Detock and SLOG perform well, while Calvin
and Janus outperform others when there are many multi-home
transactions due to their global ordering procedures, which
give them fairly consistent performance. All databases per-
form reasonably during high skew and in the sunflower sce-
nario, likely because the read-heavy nature of the benchmark
reduces contention. In environments prone to network issues,

*https://github.com/delftdata/Detock/tree/DeathStarHotels


https://github.com/delftdata/Detock/tree/DeathStarHotels

Calvin emerges as the optimal choice. Additionally, Calvin’s
efficient communication leads to low operating costs without
sacrificing too much performance.

Future work could expand this analysis in several direc-
tions. First, adding more databases to the comparison, such
as Mencius[12] or Caerus[13] would broaden the evaluation.
Additionally, experiments varying the multi-partition nature
of the benchmark could give deeper insight into the behav-
ior of these geo-distributed databases. Finally, a more de-
tailed investigation of the latency breakdown, especially the
remaining ‘Other’ category, could bring additional insights
into database bottlenecks or the DeathStar hotel benchmark.
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