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Summary

The Internet of Things (IoT) represents the concept of cognitive networked devices
that measure their environment and act on it intelligently. For instance, health
sensors monitor vital human signs and inform their owner; smart meters measure the
energy consumption and relay the information in real time to energy providers and
consumers; and smart thermostats optimize heating while reducing costs. Though
most IoT devices are designed to work alone, collective operation advances their
capabilities. In a smart building application, for instance, several devices from
temperature and presence sensors to heating and lighting appliances, cooperate to
maximize energy efficiency and comfort. From the application perspective, presence
sensors feed lighting and heating appliances with information; from the networking
perspective, all these sensors and actuators relay each other’s traffic for connectivity
(if the medium is wireless). Without cooperation context awareness fails and wireless
multi-hop networks collapse.

Unfortunately, when the altruistic act of cooperation is costly, devices become
selfish. For a battery-powered device, forwarding a neighbor’s packet increases its
energy consumption and consequently, decreases its lifetime. Therefore, that device
does not cooperate and refrains from forwarding foreign packets. When all nodes in
a wireless network follow the same reasoning, none of the packets are relayed, and
consequently the network gets disconnected. In this thesis, first, we investigate the
mechanisms and incentives for cooperation and reveal that social relations such as
family and friendship are crucial. Then, we automate cooperation mechanism for
devices based on social relations.

Advancing “smart” IoT devices by making them “social” is becoming a hot
topic in IoT research. It is argued that social devices can share their data and
assist each other without requiring human intervention and consequently, improve
their management. But, what is the meaning of a social device? Being a social
device does not necessarily mean assisting all others by sharing data and forwarding
packets. A social device has its own identity and social profile such that it is aware
of its owner. The criterion of assisting others is its owner’s preferences, which are
embedded in social relations. As we prove in the thesis, consumers desire to know to
whom they assist, suggesting that peers should be inside the circle of trusted social
relations.

ix



x Summary

Social relations are crucial for cooperation, now the question is: how can we
automate cooperation decisions based on social relations? Without automation,
consumers cannot manage all their devices’ interactions. The reason is that IoT
imposes the challenge of scaling up to billions of devices such that each person will
be equipped with tens of devices. Our solution is a decentralized architecture where
every device is identified by a URI that points to the social profile of that device.
Ownership relations are declared in this social profile. When a resource server
(e.g., light bulb, temperature sensor) receives a request from a client device (e.g.,
smartphone), the resource server crawls the client’s and its owner’s social profile.
If the resource server discovers a social relation that grants access, it responds
positively to the client’s request.

Unlike centralized approaches, our decentralized proposal protects privacy, pro-
vides end-to-end security, and can operate without an Internet connection. The
drawback of our approach is the complexity of searching decentralized social pro-
files especially for indirect relations such as friend-of-a-friend. For unconstrained
devices, we limit the search space based on proximity. In an access point (AP)
scenario, the AP overhears WiFi beaconing messages from clients to discover their
existence. For constrained devices, the whole search operation is delegated to a
more resourceful cloud service.

Our solutions for social network integration depend on secured identity infor-
mation. Unfortunately, highly constrained devices that have less than 20 KBs of
memory cannot be protected from identity-related attacks. These constrained de-
vices can neither punish their defector neighbors nor reward only cooperators. They
either cooperate always and are exploited by free-riders or defect always and dis-
rupt network traffic. In this thesis, we offer adaptability to these devices via meta-
strategies that only require local information. Devices overhear the traffic in their
neighborhood and practice the best local strategy (defection or cooperation). We
show that even if free-riders change their identities, meta-strategies protect them
against exploitation while still promoting cooperation throughout the network.

All in all, in this thesis we make a few stepts towards the goal of autonomous
cooperation in IoT; and in particular we show that

• social relations are crucial in cooperation decisions,

• decentralized social-device networks (proposed in this thesis) can automate
cooperation and provide secure-by-default IoT systems,

• constrained devices that are vulnerable to identity-change attacks can protect
themselves by observing the traffic in their neighborhood.



Samenvatting

Het Internet of Things (IoT) symboliseert het concept van cognitieve netwerken
waarin apparaten hun omgeving waarnemen en daarop slim reageren. Bijvoorbeeld,
medische sensoren die vitale lichaamsfuncties monitoren en daarover aan hun drager
rapporteren; slimme energiemeters die het verbruik in real-time doorgeven aan ge-
bruikers en energieleveranciers; en slimme thermostaten die het comfort verhogen en
de kosten reduceren. Alhoewel de meeste IoT apparaten zelfstandig opereren, kun-
nen ze door samen te werken hun toepassingsmogelijkheden aanzienlijk verruimen.
In intelligente kantoor- of huissystemen, bijvoorbeeld, werken temperatuursensoren,
aanwezigheidsmelders, verwarmingselementen en lichtbronnen samen om een opti-
maal comfort te creëren tegen minimale kosten. Vanuit het toepassingsperspectief
gezien sturen aanwezigheidssensoren de verwarming en verlichting aan. Vanuit het
netwerkperspectief bezien, werken alle apparaten samen middels het doorsturen van
elkaars (draadloze) berichten om zo tot de benodigde informatie-uitwisseling te ko-
men. Zonder zulke samenwerking vervalt de mogelijkheid om context informatie te
gebruiken en wordt multi-hop communicatie onmogelijk.

Helaas, wordt het altruïstische model van samenwerking ernstig op de proef ge-
steld als er hoge kosten mee gemoeid zijn, apparaten gaan dan egoïstisch gedrag
vertonen (net als mensen). Mocht een apparaat door een batterij gevoed worden,
dan zal deze (veel) eerder leeg raken als er ook berichten voor anderen doorgestuurd
moeten worden. Daarom zal er dan niet meegewerkt worden en zullen berichten
niet doorgestuurd worden. Als elk apparaat deze afweging maakt dan wordt er geen
enkel bericht meer doorgestuurd en valt het hele communicatienetwerk in duigen. In
dit proefschrift onderzoeken we allereerst welke mechanismen ten grondslag liggen
aan samenwerking, en hoe dit gestimuleerd kan worden. We tonen aan dat soci-
ale verbanden, zoals familie en vriendschappen, cruciaal zijn in deze. Vervolgens
gebruiken we deze kennis om ook apparaten autonoom te laten samenwerken.

Het “socialiseren” van intelligente apparaten, om ze beter te laten functione-
ren, is een trending topic aan het worden in de IoT onderzoeksgemeenschap. Het
idee is dat sociale apparaten hun data en informatie delen en elkaar kunnen helpen
zonder tussenkomst van de mens, en zo het beheer aanzienlijk vereenvoudigd kan
worden. De vraag rijst dan wel “wat is een sociaal apparaat?”. Het betekent niet
noodzakelijkerwijs dat een apparaat met elk willekeurig ander apparaat zal moeten

xi



xii Samenvatting

samenwerken. Nee, een apparaat zal een eigen identiteit hebben en weten wie de
eigenaar is, om zo op basis van diens voorkeuren en sociaal netwerk te kunnen beslis-
sen of er wel/niet samen gewerkt moet worden. Een belangrijk element, aangetoond
in dit proefschrift, is dat gebruikers willen weten met wie ze te doen hebben alvo-
rens tot samenwerking over te gaan. Dit impliceert dat partners (c.q. apparaten)
uit vertrouwde sociale kringen dienen te komen.

Nu we weten dat sociale verbanden essentieel zijn voor onderlinge samenwerking
rijst de vraag “hoe kunnen we apparaten automatisch laten samenwerken?”. Zonder
automatisering wordt het praktisch gezien onmogelijk een groot aantal apparaten en
hun interacties te hanteren, en dat terwijl in de IoT visie er in de nabije toekomst
miljarden apparation zijn, zodat ieder mens binnenkort van tientallen apparaten
voorzien zal zijn. Ons voorstel is gedecentraliseerde architectuur waarin elk apparaat
voorzien is van een uniek label (URI - Uniform Resource Identifier) dat wijst naar een
sociaal profiel op het Web. Dit profiel zal informatie bevatten over de eigenaar(s).
Als een dienstverlener, bijv. een lamp of temperatuursensor, een verzoek ontvangt
van een client device, zeg een smartphone, dan kan er gezocht worden m.b.v. deze
profielen naar een relatie tussen de twee apparaten en vastgesteld worden of de
gevraagde actie gerechtigd is of niet.

In tegenstelling tot een gecentraliseerd systeem, kan onze gedecentraliseerde ar-
chitectuur de privacy en veiligheid waarborgen, en werken zelfs als er (tijdelijk) geen
Internet toegang aanwezig is. Een keerzijde is wel dat het zoeken naar sociale ver-
banden een tijdrovende bezigheid kan zijn, i.h.b. voor indirecte relaties zoals “een
vriend van een vriend”. Dit nadeel kan ondervangen worden door het zoeken te be-
perken tot alleen de apparaten (vrienden) in de directe omgeving. In geval van een
draadloos access point bijvoorbeeld, kunnen de apparaten in de omgeving eenvoudig
geïdentificeerd worden door de WiFi beaconing berichten af te luisteren. Voor heel
kleine apparaten met minimale (reken-) capaciteiten, zogeheten constrained devices,
kan de zoekactie compleet gedelegeerd worden naar een service op het web.

Een fundamentele pilaar onder onze “gesocialiseerde netwerken” is de aanname
dat elk apparaat een vaste, geverifieerde identiteit heeft. Helaas vereist dit crypto-
grafische rekenkracht die niet op constrained devices met minder dan 20 kB aanwezig
is. Deze apparaten kunnen hun misbruikers niet bestraffen, noch hun samenwer-
kingspartners belonen; ofwel ze werken altijd mee wat wordt misbruikt, of ze zien af
van elke samenwerking waardoor het netwerk van goedwillende apparaten geschaad
wordt. Als laatste bijdrage in dit proefschrift laten we zien dat er toch een uitweg
is door de acties in de directe omgeving in ogenschouw te nemen. Als de (meeste)
berichten doorgestuurd worden, dan kan men besluiten dit ook te doen, zo niet dan
ziet men af van samenwerking. We presenteren twee zulke meta strategieën, en laten
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zien dat zelfs als misbruikers frequent van identiteit wisselen ze niet de constrained
devices kunnen uitbuiten en dat samenwerking door het hele netwerk mogelijk blijft.

Concluderend kunnen we stellen dat het onderzoek beschreven in dit proefschrift
enkele wezenlijke stappen gezet heeft om automatische samenwerking door IoT ap-
paraten mogelijk te maken. De belangrijkste constateringen zijn dat

• sociale verbanden beslissend zijn in de overweging om al dan niet samen te
werken

• de voorgestelde architectuur van sociale apparaten inderdaad samenwerking
laat automatiseren op een veilige manier (secure by default)

• constrained devices zichzelf kunnen beschermen tegen uitbuiting door free-
riders door ze niet op hun woord (identiteit) te geloven, maar hun daden
(traffic forwarding) te beoordelen





1
Introduction

The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it.

Mark Weiser

I nternet-connected devices exist for decades, while recently these devices have
permeated into our lives and are popularly conceptualized as the Internet of

Things (IoT). IoT is composed of physical objects equipped with “mostly” con-
strained hardware providing some computing and networking support. The very
first Internet-connected device was deployed in 1982 at Carnegie Mellon University1,
even before the creation of the world wide web. The device was a coke machine that
could be queried for its inventory–you could even locate the coldest coke. Then, it
took a decade to name it. Mark Weiser’s seminal 1991 paper, “The computer for
the 21st century”, described the technology as ubiquitous computing [97], which has
evolved into IoT over time. Weiser envisioned that computation would be perva-
sive; devices would surround us and operate seamlessly. Up to now, 2015, we have
witnessed the proliferation of ubiquitous technologies, from cellular phones to smart
phones, from desktop PCs to laptops, and to tablets, from wired sensors to wireless
sensors, and to wearables. Presently, we have devices such as remotely-controlled
1https://www.cs.cmu.edu/∼coke/history_long.txt

1
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Figure 1.1: Gartner’s hype curve as of 2014 [33]. Gartner suggests that IoT is at its peak of inflated
expectations.

door locks, intelligent lights and smart thermostats, health status trackers, and
wearable location trackers.

Why it took two decades after Weiser’s vision to realize IoT? Moreover, Gartner’s
hype index for 2014 [33], depicted in Figure 1.1, proclaims that IoT is at its peak of
inflated expectations. That is, IoT has not reached its productive age, yet. Then,
what makes IoT challenging? The most significant reason may be the fact that the
challenges are spread over many research fields. Among many, we have determined
four main technical challenges to realize the initial products as well as one socio-
technical challenge to emphasize human factor. We advocate that the biggest gap is
in socio-technical one while the solutions for technical challenges have reached some
maturity.

The four main technical challenges and their example solutions are as follows: (i)
Low-cost hardware: Adding computational power to all devices require affordable
and tiny hardware with adequate resources to run a networking stack. Popular do-it-
yourself micro-controllers like Arduino and micro-PC Raspberry-PI are the outcomes
of related efforts. (ii) Communication: As its name suggests, IoT devices should
be remotely reachable and connected to Internet. Wireless communication is espe-
cially preferred since wiring is mostly inconvenient–even infeasible–such as mobile



1

3

communication. Researchers have advanced many communication technologies such
as 802.11, 802.15.4, Bluetooth, RFID, NFC, and recently visible light. (iii) Cogni-
tion: As Weiser also pointed out, inferring the context and surrounding events are
the key values of IoT. Data science, originated from artificial intelligence, paved the
way for information processing. (iv) Lifetime: Energy is a scarce resource in IoT
since most devices are battery powered. In a deployment with hundreds of devices
whose batteries last in days or weeks, maintenance becomes a frequent and conse-
quently, a demanding task. As a solution, many micro-controllers include low-power
modes where both the computation and communication units are duty cycled (i.e.,
operate periodically).

The socio-technical challenge is cooperation, which is defined as “the process
of groups of organisms working or acting together for their common/mutual benefit,
as opposed to working in competition for selfish benefit” 2. What makes it really
different from other challenges is that cooperation is not only a technical one, but
also a social challenge. After all, humans, the owners of devices, are the ones who
cooperate, devices only leverage the decisions of their owners.

Cooperation is fundamental in enhancing the potential of IoT. For instance,
wireless communication with battery-powered devices cannot reach long distances
(km) while with cooperation multi-hopping techniques can increase the coverage.
Another example is context inference. With only one temperature sensor a smart
thermostat can provide target temperature only in the room that it is installed
while other rooms may be cooler, warmer or heated redundantly even if no one is
inside. On the other hand, heating costs can be lowered and a better user experience
can be achieved if room level and human presence based heating were offered. It is
possible when several sensors cooperate such as room level temperature and activity
recognition sensors. These examples show that cooperation enhances the capabilities
of individual devices and increases the value of applications. Unfortunately, we still
observe standalone products in the market, which do not interact with other devices.
One challenge has been the interoperability and some third party products, like The
Thing System3, are now available to fulfill the gap. However, the main challenge,
which remains to be solved, is incentivizing cooperation among devices whose goals,
concerns and especially owners differ.

Throughout this thesis, we focus on the cooperation of devices and reveal the
incentives of humans for cooperation. Our main research area is wireless networks,
particularly constrained-node networks. Packet forwarding and network access con-
trol are the examples of the aspects that we concentrate on. Our approach is unique

2https://en.wikipedia.org/wiki/Cooperation
3http://thethingsystem.com/
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in the sense that we have carried out social studies to comprehend human perspective
in cooperation. After we have identified the key social mechanisms of cooperation,
we have proposed technologies that enable devices taking cooperation decisions on
behalf of their owners. In Section 1.3, we explain our vision and in Section 1.4 we
summarize the challenges that we address. Before that, first we investigate why
cooperation has to be incentivized or enforced.

1.1. Selfishness and Rationality in Nature

Natural selection is a competition for scarce resources and only the fittest, who
acquires the largest portion, survives. To obtain the largest portion an agent should
behave selfishly that it should only be concerned by itself regardless of others [61].
Moreover, selfish behavior is also a rational choice that agents act to maximize their
utility.

Game Theory, which John Nash introduced in 1951 [65], explains the outcome
of rationality and selfishness in a famous game, called the Prisoner’s Dilemma. In
the simplest two-player game, two criminals, A and B, have been arrested by the
authorities and are being questioned separately without knowing the action of the
other. They have two choices either cooperate and deny that they have been involved
in the crime or defect and blame their peer. If both of them defect and blame the
other they share the outcome, 5 years of jail for each as shown in the lower right
corner of the punishment matrix shown in Table 1.1. If only one cooperates, for
instance A cooperates, and B defects, then A is sentenced to 10 years, while B is
released immediately. On the other hand, for both of them there is a safe resort
which is cooperation. If they both cooperate, due to the lack of evidence, they are
both charged for only 1 year. Cooperation of both sides thus leads to the best overall
outcome, 2 man-years of jail, but Nash proved that the equilibrium of this system
is defection, leading to a total of 5+5 man-years of imprisonment. The reason is
that cooperate-cooperate state is not stable. Rationality dictates that individually
each criminal can do better than cooperating by defecting, reducing the jail time
from 1 year to zero. However, in the defect-defect state, none of the criminals
alone can opt to a better outcome. As a consequence, rationality leads criminals
to defection. We can claim that the outcome is good for society since we capture
criminals, whereas the same dilemma keeps countries from taking action against the
climate change [28].
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Table 1.1: The punishment matrix for the prisoner’s dilemma. Punishments for criminals A and
B are given in PA, PB format–also black and gray–, respectively.

A
Cooperate Defect

B
Cooperate 1, 1 0, 10

Defect 10, 0 5, 5

1.2. Why Cooperate?
Selfishness is a rational choice that is promoted by natural selection and it con-
tradicts cooperation. Nevertheless, selfishness has not prevented cooperation in
nature. Individual cells cooperate to build multicellular organisms, insects build so-
cieties such as ant colonies and bee hives, humans build towns, cities, and states. By
cooperating, all these agents unite to build something greater than their own. Then
the question is: how do we still observe cooperation in nature? Nowak suggests five
mechanisms [70]:

• Kin-Selection: Individuals cooperate if they are genetic relatives of each other.
Note that in this thesis we expand kin-selection to include friends as well to
cover all interpersonal relations.

• Direct Reciprocity: Cooperation may emerge among unrelated individuals if
there is a possibility of future interaction, that is a game such as prisoner’s
dilemma is played repeatedly. Then, due to expected punishments in the
future, defectors switch to cooperation.

• Indirect Reciprocity: Punishments do not necessarily arise from the directly
interacting individuals. Identity of defectors can be distributed inside a society,
then every individual of that society isolates defectors. In this case, defectors
have to switch to cooperation to benefit from the indirectly related individuals.

• Network Reciprocity: In a network, the members of a cooperative cluster may
have higher average fitness than that of a defective cluster. After all, there
is no altruism inside a defective cluster. Then, a defector may switch to
cooperation when it detects the advantage of cooperative clusters by its local
observations. Under certain conditions (See Chapter 5), these cooperative
clusters may gradually enlarge and spread out the whole network.

• Group Selection: Competition also exists beyond individuals, such that the
groups that they establish compete for resources. Group selection is concerned
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Figure 1.2: Simple relaying scenario where direct link depicted as a dashed arrow may not exist
or leads to higher energy consumption. If the nodes cooperate they can use each other as a hop,
whereas if they defect they have to use the direct links.

with this multi-level cooperation scheme. Groups with higher benefits, which
are cooperator ones, have higher rate of growing. On the other hand, inside
a group defectors have more advantage and they may easily invade the whole
group.

The prisoner’s dilemma of wireless networks is the Forwarder’s Dilemma, where
nodes are selfish and do not relay each other’s packets. That is, without coopera-
tion no packet can reach to its destination that is multiple hops away as shown in
Figure 1.2. Among the above mechanisms, direct and indirect reciprocity have been
investigated extensively to deal with the forwarder’s dilemma [7, 11, 30, 59, 62]. If
there is a possibility of future interaction, direct reciprocity is employed, otherwise
indirect reciprocity is performed. In this thesis, we advance the research on coop-
eration by focusing on kin-selection (social relations) (See Chapter 4) and network
reciprocity (See Chapter 5).

The motivation for kin-selection is our survey on consumer preferences where
social relations have been the most influential cooperation mechanism (See Chap-
ter 2). In the literature, kin-selection is mostly restricted to only genetically related
individuals, whereas we generalize it for all types of familiarities such as family, co-
work, and friendship due to the outcome of our survey. Among the five mechanisms
of Nowak, we believe that kin-selection fits better for social relations. The reason is
that social relations certainly covers kin-selection while they are partially correlated
to (in)direct reciprocity. Reciprocity mechanisms are active among strangers who
are not in the same social network, while kin-selection necessitates social network
relation. Moreover, we should note that other researchers also extend kin-selection
beyond biological similarities by involving social bondings such as attachment and
nurture kinship [44].

For network reciprocity, the motivation have been its identity oblivious nature.
Kin selection and (in)direct reciprocity mechanisms have a common drawback, iden-
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Figure 1.3: Devices share their resources based on their social relation to each other. Devices are
identified by URIs.

tities of devices and their owners must be known. Otherwise, punishments and bad
reputation can be avoided by changing identity. Unfortunately, in wireless networks
spoofing an identity is as easy as changing Media Access Control (MAC) or In-
ternet Protocol (IP) addresses. Encryption techniques are required to ensure the
identity. However, the IETF-CoRE (Constrained RESTful Environments) working
group aims to provide a secure network “only” for Class-1 and above devices [55].
Many IoT devices, however, are Class-0 devices, which have less than 10KBs of mem-
ory, cannot employ security protocols. Due to the lack of true identity information,
these computationally constrained devices cannot be sure of which neighbors to
punish or reward. Therefore, they are hardwired to either cooperate always and
consequently get exploited or defect always and lead to a collapse in the network.
With network reciprocity, we have made devices adaptive to their environment with-
out relying on identities.

Before proceeding, we do acknowledge that rationality and selfishness assump-
tions are also debatable. Many researchers have indicated irrational and non-selfish
(i.e., altruistic) behavior in society [14, 18]. Irrational behavior is suggested to hap-
pen in case of confusion and error, while selfish behavior is claimed to be influenced
by social preferences. For instance, some people are concerned more about inequal-
ity and social efficiency [6]. However, in wireless networks research we assume that
devices are programmed by professionals who eliminate irrational behavior [19, 88].
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1.3. Vision: Cooperation without Human
Intervention

Cooperation is crucial for enhancing the capabilities of IoT devices. For collective
operation, each device should discover its neighbors with their capabilities and share
its resources, regardless of their owners. Moreover, according to Mark Weiser’s
vision, in all these interactions humans must be kept out of the loop. For instance,
when a consumer buys a product, the only action to install it should be powering
on. The product should attach itself to available network interfaces and advertise
its existence. When other devices need assistance, such as forwarding a packet in a
multi-hop network, the product should make decisions by itself.

Human intervention should also be minimized while securing a device such that
default settings should be secure enough. A study on the security of IoT devices by
HP in 2014 revealed that 80% of IoT devices fail to require passwords of sufficient
complexity and length [45]. Consumers choose weak passwords, reuse existing ones
or even keep the defaults because strong passwords are hard to remember and one
password is not enough, there are too many IoT devices per person. Instead of
blaming consumers for using weak passwords, we need a new perspective on securing
IoT devices, where companies take over the responsibility. Without any complicated
setup and strong password requirement, even with default settings, a system should
be secure enough.

In this thesis, we claim that when a device knows its owner(s) with her social
network, firstly, cooperation can be promoted autonomously without any human
intervention, and secondly, we can create systems that are secure-by-default. In-
spired by the web of things, we assign a uniform resource identifier (URI) to each
device. A URI points to the social profile of a device. In these social profiles, the
ownership relations are defined. When devices interact, they securely share these
identifiers and infer the social relations between their owners, such as same-owner,
same-family, direct-friend or friend-of-a-friend. Combined with access control rules,
a device can decide with whom to cooperate. For instance, in Figure 1.3, a smart-
phone joins the home network by using the same-owner relation. The access point
does not require a password, instead it checks the social relation. Thus, a user does
not have to determine a strong password for the access point, joining the network
occurs seamlessly.
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1.4. Challenges
Sustaining cooperation in IoT requires a social analysis as well as addressing several
technical challenges. The social analysis is to comprehend human involvement in
cooperation. The technical challenges derive from the need to get humans out of the
loop with minimal computational tools, which is due to two main characteristics of
IoT: abundance of devices per person and constrained computational resources. In
the next subsections we further explain our social analysis and based on its outcome,
we detail technical challenges.

Analysis of cooperation mechanisms. Among the five mechanisms of cooper-
ation, researchers are not aware of which one is the most significant for a consumer.
Most of the literature in wireless networks have concentrated on direct and indirect
reciprocity without involving human perspective. Our analysis reveals that familiar-
ity has the utmost importance in cooperation. The rest of the challenges are shaped
according to this preliminary analysis.

Social network integration. Based on the outcome of our analysis: if we can
integrate social networks with IoT, devices can leverage the social relations for
cooperation amongst each other. This integration is not straightforward since it
cannot be accomplished via centralized solutions. The scale of IoT, intermittent
Internet communication and privacy demand a decentralized approach.

Autonomy and security. IoT increases the number of devices per person that
a user cannot handle due to lack of expertise and time. Dealing with periodic
maintenance and control is cumbersome and devalues a product. Moreover, users
may not secure their devices properly. Therefore, all the operations of cooperation
including securing the network and access control should be autonomous. Devices
should be aware of their owners’ preferences and make decisions on behalf of them.

Discovery. We expect that IoT devices will spread into the fabric of daily life such
that humans will not even recognize their existence. In that case manual search and
discovery for available services will not be feasible. Moreover, current discovery
methods are not flexible to accommodate new services and they are not capable
of searching for devices of a specific person. Therefore, we need new discovery
technologies that are more expressive and able to evolve over time.

Computational Constraints. IoT is composed of constrained nodes, for in-
stance a Class-0 device has less than 10 KBs of RAM, which is five orders of magni-
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tude lower than an ordinary desktop computer with 1 GB RAM. Therefore, all the
solutions to previous challenges must be devised explicitly for constrained devices. If
computationally demanding operations cannot be avoided, they must be delegated
to unconstrained devices.

1.5. Contributions of the Thesis
In the following sections, we present each chapter with the contributions thereof.

Consumer Perspective on Cooperation — Chapter 2. In this chapter, we
identify the priority of cooperation mechanisms according to consumers. As an ex-
ample application, we have chosen mobile tethering that enables sharing the cellular
data connection of a smartphone with other devices over WiFi, Bluetooth or USB.
For instance, roaming subscribers may connect to other tethering capable devices for
Internet connectivity. Firstly, we have presented a complete picture of data connec-
tion sharing with real world tests on energy and bandwidth consumption. Secondly,
with a conjoint analysis questionnaire, we have investigated why and in what condi-
tions people are willing to share their mobile data connection? Social familiarity has
surfaced as the most significant criterion for cooperation, while security has been
flagged as the biggest concern.

• Constantinescu, M.; Durmus, Y.; Onur, E.; Nikou, S.; Reuver, M.; Bouwman, H.; Djurica,
M.; Glatz, P.M. Mobile tethering: overview, perspectives and challenges, info 2014, Vol. 16
Iss: 3, pp.40 - 53

• Constantinescu, M. M.; Durmus, Y.; Onur, E.; Bouwman, H.; Djurica, M.; Reuver, M.
Cooperative networks: the mobile tethering game, In Proceedings of the seventh ACM in-
ternational workshop on Mobility in the evolving internet architecture, MobiArch ’12, Pages
41-43, Istanbul, 2012

Service Knowledge Discovery in Smart Machine Networks — Chapter 3.
In this chapter, we address resource discovery with the aim of improved interop-
erability and enabling owner-based resource search. Today’s operational service
discovery protocols carry simple text-based uniform resource identifiers that are
not expressive enough. Machines cannot comprehend the meaning of a new service
that is not in their knowledge base or cannot request services based on its owner.
In this chapter, we propose the Smart Discovery Protocol (SDP) that extends the
operational service discovery protocols with three main features: (i) more expres-
sive semantic representation of the services–including identity, (ii) operating in the
network layer to deal with diversity, and (iii) unifying existing service discovery
protocols. SDP represents services with ontologies and further enhances the success



1.5. Contributions of the Thesis

1

11

of semantic representations by creating a unified platform that can carry legacy
discovery services.

• Durmus, Y. and Onur, E. Service Knowledge Discovery in Smart Machine Networks, Wire-
less Personal Communications, Springer US, Volume 81, Issue 4, pp 1455-1480, April 2015.

Secure-by-default IoT via a Decentralized Social Device Network— Chap-
ter 4. In this chapter, we propose an autonomous and decentralized kin-selection
mechanism for devices. We introduce decentralized social networks to IoT authen-
tication and authorization. A certificate-based The WebID standard, using X509v3
certificates, is the main building block for credential distribution. Devices have their
own social profiles where they define their properties and owners. An authenticator
crawls those distributed profiles on the web to discover social relationships. This
discovery has a quadratic complexity for indirect friend relationships (i.e., friend of
a friend). To decrease the search complexity, we have incorporated context informa-
tion. The pool of direct friends who bridge the authenticator to indirect friends are
sorted and even bounded by their existence in the vicinity. As an example applica-
tion, we have created a social access point, which captures WiFi probe requests to
sense the direct friends. Real-world experiments indicate that the search duration
for indirect relationships can be reduced by 82% in a social network of neighbor
degree four.

Moreover, we enhance our architecture of decentralized social device networks
for constrained devices. The lack of computational resources of constrained IoT
devices necessitates an external help for social network search. Therefore, we have
employed a delegation-based architecture by modifying existing security standards
such as Datagram Transport Layer Security. We have evaluated the delegation-
based system on real sensor nodes and presented the computational requirements. A
constrained device should have at least 20 KBs of RAM, of which 10% is contributed
by our modifications. Moreover, acceleration hardware for public key operations is
crucial for decreasing the duration of cryptographic operations.

• Durmus, Y.; Langendoen, K., WiFi authentication through social networks — A decentral-
ized and context-aware approach, Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2014 IEEE International Conference on, pp.532-538, March 2014.

• Durmus, Y.; Erkin, Z.; Onur, E.; Langendoen, K. Secure-by-default IoT via a Decentral-
ized Social Device Network, Elsevier Computer Communications SI:IoT Challenges, under
Review.

An Identity-Oblivious Evolutionary Approach to the Forwarder’s Dilemma
— Chapter 5. Constrained devices with at least 20 KBs of RAM are capable of
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maintaining secure identities. However, there are even more constrained devices,
that cannot support cryptographic operations. Without a secured identity, incen-
tives and punishments for (in)direct reciprocity and kin selection cannot be em-
ployed. As a consequence, it is easy to trick such highly constrained devices and
exploit their resources. In this chapter, we have provided identity-agnostic meta-
strategies to discover the locally best strategy in the neighborhood and prevent
the exploitation of cooperators. We have modified two meta-strategies from evo-
lutionary game theory, Win-Stay Lose-Shift (WSLS) and Stochastic Imitate Best
Strategy (SIBS), for wireless ad hoc networks. Simulations and real-life experiments
have proved that both WSLS and SIBS are able to discover the locally best strategy,
while they are robust to fake identities. Moreover, we have analyzed and experi-
mented the effects of local decisions on the evolution of the network. While WSLS
promotes cooperation up to half of the network, SIBS achieves full network cooper-
ation. To summarize, in the absence of identity information, these meta-strategies
protect the nodes against exploitation by free-riders and still favor the spread of
cooperation.

• Durmus Y.; Loukas A.; Langendoen K.G. and Onur E. Sybil-Resistant Meta Strategies for
the Forwarder’s Dilemma. In 8th IEEE Int. Conf. on Self-Adaptive and Self-Organizing
Systems, pp. 90–99, London, UK. SASO 2014

• Durmus Y.; Loukas A.; Langendoen K.G. and Onur E. An Identity-Oblivious Evolutionary
Approach to the Forwarder’s Dilemma, Elsevier Ad Hoc Networks, in Preparation.

Finally, Table 1.2 presents a summary of addressed challenges in each chapter.

Table 1.2: Contributions of the chapters to each challenge

Ch. 2 Ch. 3 Ch. 4 Ch. 5

Analysis of cooperation mecha-
nisms

•

Social Network Integration • •

Autonomy and Security • •

Discovery •

Computational Constraints • •



2
The Consumer Perspective

on Cooperation
Case Study: Mobile

Tethering

In this chapter we analyse the consumer’s perspective on cooperation over the case
study of mobile tethering. Mobile tethering represents an interesting feature that
enables sharing the cellular data connection of a smartphone with other devices over
WiFi, Bluetooth or USB. For instance, roaming subscribers may connect to other
tethering-capable devices for Internet connectivity. In this way, the coverage of mo-
bile operators enlarges. However, users should cooperate and share their connection
with others, maybe even with total strangers. With a conjoint analysis question-
naire, we investigate why and in what conditions people are willing to share their
mobile data connection. We complete the picture of data connection sharing with
real-world tests on energy and bandwidth consumption.

Our results reveal that although energy, bandwidth and security are important
technical challenges, users are mainly concerned about social aspects, such as with
whom the connection will be shared, rather than monetary issues. In general, mobile
tethering is a viable cooperative service, only when users are familiar with the person
with whom the data connection is being shared.

13
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Network
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Network
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Figure 2.1: Mobile tethering converts smartphones in "mobile hotspots", a gateway for the packets
forwarded by other devices through its interfaces.

2.1. Introduction
Mobile devices are rapidly becoming part of peoples’ daily routines and ways of
interacting in society. Connectivity to the Internet is becoming a basic need for
consumers to interact with others, receive information and conduct transactions.
The concept of mobile tethering enables devices without a mobile broadband con-
nection to access the Internet through nearby devices. The nearby device creates
a wireless local area network and relays the packets via its mobile broadband con-
nection. Mobile tethering can be attractive for users without a mobile broadband
connection, in regions with underdeveloped or missing infrastructure, in crisis sit-
uations or to simply avoid high expenses in the case of roaming. For operators,
mobile tethering might reduce network congestion and allow offloading traffic from
an overburdened access route. Operators can also apply mobile tethering to trans-
form mobile devices into femtocells, in order to enhance the performance of the
network, indoor coverage and capacity.

Despite these advantages, mobile tethering is still largely unknown by the generic
public and involves several technological and social challenges. Regarding techno-
logical challenges, the person sharing the mobile device for tethering may experience
increased power consumption and reduced quality of service due to sharing band-
width. The person receiving the connectivity faces privacy threats as the person
sharing the connectivity has access to the traffic of the user, which are security and
trust-related issues. Regarding social challenges, there should be incentives to share
a data connection with others, which could be monetary compensations, reputation
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mechanisms or other means to ensure that sharing will be reciprocated in the fu-
ture. How users make decisions regarding mobile tethering may also depend on who
they share a data connection with. These technological and social challenges may
interact, for instance the severity of privacy, trust and security issues depends on
the familiarity of the person with whom a connection is being shared [94].

This chapter analyses the potential of mobile tethering (See Figure 2.1) from
both the technological and social perspective. We do so by exploring technologi-
cal issues through experimenting a mobile tethering application on a test-bed and
by evaluating the importance of technological and social issues through a conjoint
analysis among consumers. On a theoretical level, we contribute by developing
a model for acceptance and use of mobile technologies that take techno-economic
as well as social aspects into account. On a practical level, we contribute to un-
derstanding the issues regarding mobile cloud computing applications, which is an
emerging field that deals with how users can share and pool resources of local mobile
devices [25, 31].

In Section 2.2, we describe mobile tethering in more detail. Section 2.3 deals
with technological challenges, including the test of a mobile tethering application
in practice. Section 2.4 discusses social issues regarding mobile tethering, which are
analyzed in conjoint analysis. Discussion and conclusion is provided in Section 2.5.

2.2. Mobile Tethering Applications and Gaps
Tethering refers to connecting devices together using available interfaces. In the
context of mobile technologies, tethering is the only available option to allow shar-
ing the data connection with others. Tethering involves forwarding of the traffic
from one network interface to another, bridging the 3G/4G interface with the WiFi,
Bluetooth or USB (See Figure 2.1). Most modern smartphones and tablets provide
tethering capabilities in their firmware. For other devices, specific applications al-
low to tether the data connection. These applications might need root access to
bypass software or hardware limitations and security mechanisms in order to allow
privileged access to the operating system. Obtaining root access requires a com-
plex procedure that might discourage inexperienced users and, even though legal, it
might void the warranty of the device.

The most common, currently used, tethering mechanism involves an Internet
Protocol (IP) gateway solution, smartphones act as an IP router and gateway for
the Local Area Network (LAN), forwarding IP packets between LAN and Wide Area
Network (WAN). Some other existing tethering techniques, like modem gateways,
application layer proxies or port forwarding provide only limited connectivity and do
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Table 2.1: Existing mobile tethering applications and their characteristics (advantages, disadvan-
tages)

Characteristic/Application Portable WiFi Hot Spot WiFi Tether Open Garden

Availability Android Firmware Google Market Google Market
Rooting No Yes Yes
Mode Infrastructure Ad-Hoc (Infrastructure k̃ernel) Mesh

Interfaces WiFi, BT WiFi, BT WiFi, BT
Connectivity WiFi Authentication WiFi Authentication BT Authentication

Security WPA2 WEP WPA2
Multi-Hops No No Yes
Path Choice No No Automatic

not allow simultaneous use of voice and data services [83]. Technically, IP gateways
for tethering are implemented using Network Address Translation (NAT), so in this
way the mobile device acts as an IP router with NAT for LAN clients, forwarding
their IP packets through the provider’s network (e.g., GPRS tunnel). Deployment
of NAT has some technical implications. Transforming forwarded IP traffic from
private LAN to public IP, results in a modified traffic pattern. A consumer cannot
be directly reached from the wireless network and since the NAT is designed to be
transparent payloads are transmitted unmodified.

Several applications enable tethering next to standard Android Tethering and
Portable WiFi Hotspots. Applications like Android WiFi-Tether, Wireless Tether
for Root Users or Open Garden WiFi Tethering [2][3] can be found on Google Market
(Play). These applications enable tethering through the WiFi, Bluetooth or USB
interfaces for rooted handsets running Android, providing a standard IP gateway
with Domain Host Configuration Protocol (DHCP) and NAT. Clients can connect
using the WiFi interface (ad-hoc mode) and get access to the data connection using
the 4G, 3G, or 2G mobile connection which is established by the handset.

Android engineers prefer WiFi Direct and ad-hoc has slipped in priority in favor
of other solutions keeping power constraints and security in mind. WiFi Direct
might be a better solution in the future, even though ad-hoc mode is a well known
technology supported by many devices and used for a couple of years. Moreover,
WiFi Direct is not yet available on all devices. WiFi Direct is a layer that auto
configures one of the devices as a soft application and it brings important security
features, ease of setup, and higher performance that is not currently available in ad
hoc mode. Table 2.1 presents an overview of the most used tethering applications
with both their advantages and disadvantages.

All in all, a framework that enables tethering across different hardware platforms
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Figure 2.2: Battery lifetime of two different devices under test, WiFi Tethering various types of
traffic.

and operating systems, with the ability to leverage different radios depending on
availability is needed. It should manage the device discovery, connectivity and
security requirements for authenticated and encrypted communications per service.
Work in this direction has been started by projects like AllJoyn [80], an open source
peer-to-peer software development framework that enables ad-hoc, proximity-based
and device-to-device communication.

Even though applications that enable tethering do exist, they only allow a dyadic
relationship rather than a network of cooperating users. The existing applications
assume tethering is used for simple purposes and do not take into consideration the
complex interaction processes among people. The technical part of current research
is focusing on enhancing capabilities of devices and enabling cooperation, i.e., data
connection sharing, among users, by discussing the technical challenges.

2.3. Technical Challenges
In this section, we explore technological challenges of mobile tethering regarding
energy consumption, handling of bandwidth requirements, and protecting privacy
of providers and users. We test how severe these challenges are through testing
a self-developed personal tethering application based on existing open source code
and on the android stack. The application enables a cooperative network of users to
tether data connection with own devices, but also with friends, family, co-workers
and total strangers. The application was tested on two Samsung devices: Samsung
Nexus S and Samsung Galaxy Nexus.
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2.3.1. Energy Consumption
Energy consumption is one of the challenges to prolong battery lifetime. Although
the battery lifetime varies depending on the usage patterns, smartphones drain
more power than the legacy cell phones. To reduce energy consumption, users can
close the Internet connection when the device is idle. However, tethering keeps
the smartphone connection always-on and both the WiFi and mobile broadband
interfaces consume energy at the same time.

To observe the effect of tethering on the energy consumption of the smartphones,
we ran various scenarios with a connection provider and two consuming devices
(Nexus S, Galaxy Nexus). First, the depletion time of the phones has been inves-
tigated to give a rough estimate of energy consumption, see Figure 2.2. We tested
different types of traffic, i.e. being idly connected to the tethering device with no
traffic; video streaming; email synchronization; and radio streaming.

Next, voltage probes were connected to the battery. A mobile measurement setup
has been used based upon the National Instruments USB-6009 data acquisition
card (DAQ) [1]. The setup employing the DAQ and a very low-ohmic high-side
shunt has been applied to a smartphone as is with no modification regarding its
power supply or possible mode of operation. Hence, the setup allows for deducing
general statements on power dissipation and energy consumption at an accuracy
of what could possibly be achieved with other published measurement approaches
for smartphones or built-in measurement capabilities of a smartphone. Using the
setup and previous scenario of two consumers (i.e., client) and provider (i.e., server
that shares its cellular Internet connection over WiFi) devices, we have analyzed
the following test cases:

• Case 1: Provider not tethering

• Case 2: Provider tethering but no other device connected

• Case 3: Consumer 1 connected but no traffic generated

• Case 4: Consumer 1 connected and radio streaming

• Case 5: Consumer 2 connected but no traffic generated

• Case 6: Both consumers connected and streaming

Figure 2.3 shows the increase in the power consumption. From case 1 to 6 there
is a 46% increase in power consumption that is considerably high. The reason for
this high energy consumption is that WiFi hotspots are designed to be connected
to an electric supply. There are power saving modes in the 802.11 standard [98]
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Figure 2.3: Average power per test case.
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Figure 2.4: Bandwidth (download) comparison of the two devices under test while tethering.
Comparison of different types of traffic (no traffic, radio streaming and video streaming) taking
in consideration multiple devices connect to the provider (one or two devices connected). Values
represent the average of the measured download bandwidth (20 samples) with 95% confidence
interval.

for the client devices. Unfortunately, the hotspot is supposed to be always on. In
the ad hoc mode of 802.11 standard, the beacon generation task is divided among
the devices to save energy. WiFi tethering depends heavily on the tethering device,
which cannot go into sleep mode. There is some promising work [41] on sleep interval
adaptation algorithms for WiFi tethering. The sleep intervals can be adapted to
the ongoing traffic patterns of various applications without changing the 802.11
protocol. However, at this point we can only state that the energy impact is major
only in the case of continuous usage for a longer period of time and with certain
type and amount of traffic.
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2.3.2. Bandwidth
It is important to analyze whether sharing data connection is indeed feasible con-
trary to the general belief that simultaneous usage restricts the bandwidth and
degrades the performance of the device. Available bandwidth on both the provider
(tethering device) and consumer devices was analysed. Both provider and consumer
bandwidth performance were closely inspected with different types of background
traffic. Figure 2.4 shows the maximum available bandwidth of provider devices with
different number of consumers and types of background traffic originating from con-
sumers. The tests confirm that the number of connected consumers and the amount
of background traffic has a significant effect on the available bandwidth. However,
perceived performance and bandwidth still satisfy the requirements of many appli-
cations.

To improve the provider’s performance, further traffic shaping software can be
employed in order to limit the consumer’s traffic. Figure 2.5 illustrates the perfor-
mance of the consumer devices. In general, the devices perform on a similar level
when connected to the same network operator.

The android technical sheets state that depending on the device type, up to eight
devices might be connected. However, our tests show that connecting more than
four or five devices has major implications on the data connection. Connectivity is
still possible, but insurmountable limitations and delays are to be expected.

A device can supply its Internet connection to clients, depending on the teth-
ering device model and some other parameters, such as network type, coverage or
congestion. The performance varies with different scenarios (e.g., urban, indoor or
outdoor). Using standard models related to the WiFi signal strength is required for
an in-depth analysis. The signal strength and the data rate decline when moving fur-
ther away from the hotspot. Important challenges related to network performance
and acceptable WiFi coverage might impose limitations on the quality and distance
of mobile tethering. Nevertheless, based on performed tests, it can be stated that
tethering is a feasible service.

2.3.3. Security and Privacy
Both the consumers and the providers are concerned about security and privacy if
strangers are involved. If certain security mechanism are not enforced, there is a
risk that unauthorized third parties may "borrow" the bandwidth, using the wire-
less connection to access the Internet. Packets might get intercepted or, even worse,
someone might gain unauthorized access to the device, which can get involved in
illegal actions. Problems may arise for rooted mobile devices, which might not have
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Figure 2.5: Bandwidth statistics (download and upload) of the consumer devices (Samsung Galaxy
tablets 10.1). The tablets are sharing the data connection of a provider that uses the built in feature
to tether. The tethering devices (Nexus S, Galaxy Nexus) provide data access to multiple devices
(one or two). The tablets are just connected without producing any relevant traffic.

the same levels of encryption as regular devices. Some available technologies can
meet security concerns as shown in Figure 2.6. WiFi protected access (WPA) and
WPA2-Personal ensure confidentiality between providers and consumers. Adver-
saries cannot eavesdrop communication, attack with replay messages or achieve man-
in- the- middle attacks. However, the provider and the consumer must establish a
security association before communication that requires exchanging a shared key.
Even if the key distribution is handled, a provider can be an adversary. Providers
should not be able to eavesdrop the traffic of consumers. In order to ensure privacy
of the consumer against a malicious provider, end to end security mechanisms are
required. Transport layer security or IPsec prevents the malicious provider to tap
into the traffic of the consumer. Although a provider cannot tap into the traffic
with SSL, the provider can still identify the end point of the communication. IPsec
offers better security however it degrades the performance and the consumer has to
find or establish an IPsec end point prior to the communication.

The above solutions can protect the consumer. However, the provider may also
be concerned about possible illegal activities of the consumer. The provider does
not have control over the traffic of the consumer. If required, the provider should
point out the real source of the illegal traffic.



2

22 2. The Consumer Perspective on Cooperation

3G/4G
Wi-Fi Tethering

WPA/WPA2

Server/Client

User Provider

Internet

3G/4G
Wi-Fi Tethering

SSL

Server/Client

User Provider

Internet

3G/4G
Wi-Fi Tethering

IPSec

Server
Client

User Provider

Internet
IPSec
Server

Wi-Fi Tethering

NAT

Internet
User Provider

Private IP

BSC - SGSN

Network Operator

Figure 2.6: Security protocols that ensure the confidentiality of the consumer.

2.4. Social Perspective
To better understand the user’s perspective on tethering and motivations for shar-
ing, a conjoint analysis was executed, focusing on the rules of and conditions for
cooperation (provider or consumer) mentioned in Chapter 1.

2.4.1. Conjoint Method
Conjoint analysis is a method to determine, measure, and predict consumers’ prefer-
ences with regard to different features that define a product or a service [38, 68, 87].
Conjoint analysis identifies trade-offs consumers make for selecting different features
of products or services [12, 37], by estimating the importance and utility values that
consumer assign to features of a service or product. Conjoint analysis assumes that
these features significantly influence the decision process simultaneously. In order to
obtain and calculate the importance and utility values ordinary least squares regres-
sion or logit analysis are normally used. In conjoint analysis, unlike conventional
survey approach in which respondents are asked to estimate how much value they
assign to each attribute, the objective is to capture the preferences in a series of
choices or ratings. Respondents’ choices or ratings make it possible to compute the
relative importance of each attribute under investigation. In other words, instead
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of "stated importance", conjoint analysis uses "derived importance" values for each
attribute or feature [34].

Design of the Conjoint Instrument: Attributes and levels
There are several basic steps in designing a conjoint study. First, the data collection
approach (online survey or pen-and-paper questionnaire) needs to be identified.
Second, the most important attributes (features) and the levels of attributes (level
can be defined as the set of values the attribute can take) should be identified. In
conjoint analysis the levels of attributes describing a service or product are combined
together to form a description of hypothetical attribute bundles [57]. In the current
study, several attributes and levels with regard to the mobile tethering from both
consumer and provider perspectives (see Table 2.2 and 2.3).

Table 2.2: Conjoint attributes and levels (Consumer)

Attributes Levels

Costs Higher No connection

Quality of Ser-
vice

Lower Normal

Battery Life-
time

Longer Shorter

Person to
Share with

Familiar (Family,
Friend, Co-worker)

Not Familiar (Un-
known Person, Public)

Subscription
Type

Limited Unlimited

The third step is to select an appropriate conjoint analysis approach [54, 67, 75,
84, 94]. Full-profile conjoint analysis or full-concept approach was selected. In a full-
profile conjoint analysis, each conjoint or card shows a complete product or service
consisting of a different combination of levels of all attributes. The advantage of
this approach over the other methods is threefold. First, in full profile conjoint, all
attributes are assumed to be independent. Second, it enables researchers to obtain
information on users’ preferences and what they value most with regard to a product
or a service (each attribute level and the corresponding utilities). And third, full
profile conjoint is applicable when the number of attributes is not very large (usually
up to 8 attributes). In full profile approach, respondents are requested to rate, rank,
or score a set of profiles (cards discussing the bundled attributes) presented to them.
In the current study, respondents were asked to rate their preferences. In this study
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Table 2.3: Conjoint attributes and levels (Provider)

Attributes Levels

Costs Normal Higher

Quality of Ser-
vice

Lower Normal

Battery Life-
time

Longer Shorter

Person to
Share with

Familiar (Family,
Friend, Co-worker)

Not Familiar (Un-
known Person, Public)

Subscription
Type

Limited Unlimited

we will make use of an orthogonal design to reduce the number of the cards (also
labeled as conjoint). We design two sets of conjoint attributes: one for the consumer
(Table 2.2) and one for the provider perspective (Table 2.3).

The Cost attribute implies whether actual subscription costs will increase due
to the use of tethering. The attributes related to costs are (1) higher costs than
normal and (2) normal costs or no connection.

Next, Quality of Service due to bandwidth reduction can be minimized while
tethering (sharing bandwidth), and tethering can be perceived as a degradation of
the device’s data performance and quality of services. Bandwidth is perceived by
users as the average rate of successful data transfer through the communication
channel (transmission speed). This attribute can have two levels, (1) “normal”, i.e.
there will be no differences in quality of service or (2) “lower”, i.e. lower bandwidth
than normally.

Mobile tethering and sharing the Internet connection with others might have a
significant impact on energy consumption as discussed in Section 2.3.1 (i.e., bat-
tery lifetime). When the connection is shared, there will be continuous impact on
the tethering device battery lifetime, depending on different traffic classes. In the
current study two attribute levels are discussed, i.e. “longer” which means there
is a minor impact on the battery and its lifetime, battery will not deplete soon, or
“shorter” which means there is a high impact on the battery, depletion with a high
rate, shorter lifetime and battery will deplete soon.

One of the major concerns with tethering is the Person to Share with. Today,
consumers typically provide mobile tethering to own devices or devices that belong
to close friends. However, an important question is why a user should allow total
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strangers to exploit their private connection. Are people willing to share their
connection for incentives (money or virtual currency) or are they just expecting
to receive reciprocal treatment in future interaction? The familiarity and level
of acquaintance with different people might be important for sharing from both
perspectives user and the person with the tethering device [94]. In the current
study, two groups of people are identified. The first level (Family, Friend, and Co-
worker) refers to people who are known and sharing can be less problematic. The
trust issue may play less significant role in this scenario. The second level (Unknown
Person, Public) concerns people who are not familiar and in this scenario sharing
data access might be a risk and the level of trust is of utmost important.

Subscription type with the data provider in this study is considered to be either
unlimited or limited. If the subscription is unlimited then there will be no impact
on the data usage and a person who is sharing his/her data access with someone
else does not have to worry about data usage. In contrast, if the subscription
has a limited data usage (per month/ Per Mb) then sharing the connection may
potentially lead to problems.

When full profile conjoint approach is used all combinations of the attributes
and levels are considered. In the current study the combination of all the attributes
and levels creates 32 (25) possible service profiles/conjoints for each perspective
(consumer or provider). Johnson et al. [51] and Pignone et al. [77], argued that it
would be a difficult task for respondents to answer all the questions when the number
of profiles is too high and therefore the number of profiles should be reduced. An
orthogonal design takes only the main effect of each attribute level into account.
When orthogonal design is used, interaction effects between attributes will not be
analysed. Statistical Package for the Social Sciences (SPSS) software version 18
was used in the current study to generate the orthogonal design. The result of
orthogonal design created eight unique conjoints out of the 32 possible attribute
bundles. This number of conjoints is small enough to be included in a survey
and large enough to compute the relative importance of each attributes and their
levels. The utility scores for each attribute level are called a part-worth. The
computed utility scores for each level of attribute provide a quantitative measure of
the preference for separate parts of the product (assigned to the multiple attributes).
The larger values indicate greater preference.

Design of the Conjoint Instrument: Dependent variables
As dependent variable, we measure the likelihood that a person would share the data
connection or utilize a shared connection in exchange for different types of incentives.
As we discussed in Chapter 1, a series of rules for the evolution of cooperation in
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nature have been presented in [70]. For instance, individuals cooperate if they are
genetic relatives to each other (kin selection). Cooperation may emerge among
unrelated individuals if future interactions are probable (direct reciprocity), when
altruistic behaviour may be required in reverse direction. Furthermore, individuals
help other peers if they have enough reputation (indirect reciprocity).

Whether skills, resources or goods are concerned, people do cooperate [16]. As-
sets and resources can be shared for free or in exchange for services or money. Some
popular examples of collaborative consumption include car sharing or couch surfing.
These services, where people interact with total strangers involve credit exchange
or reputation. With regard to mobile tethering, this means that the user can either
pay money for the connection or the provider can earn reputation or virtual cur-
rency that can be used to get connection when needed. People might be willing to
share their connection for an incentive (not necessarily real money) or they are just
expecting to receive the same treatment (service) in another situation, at another
time (e.g. roaming). Specifically, we contrast the intention to share or receive a
tethered connection in exchange for financial compensation, virtual currency or no
compensation.

Next to the questions regarding compensation, we explore the effect of privacy
concerns by asking the users to rate the extent to which they would be concerned
over their privacy in a given situation.

Questionnaire

The questionnaire was pre-tested by a number of experts and smart-phone users who
were well acquainted with the conjoint analysis as well as mobile communication
services to verify the accuracy of the questionnaire and to check for ambiguous
expressions. An adjusted questionnaire was distributed among the 83 respondents.

An example case and its question (i.e., snapshot of the questionnaire tool) for a
provider are as follows:
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You are in a situation in which you are willing to share your mobile data
connection with somebody else, so you are the connection provider:
Case 1

• Normal network costs: sharing does not incur extra costs

• Sharing your connection reduces the performance of your device and
data connection

• Minor impact on the battery and its lifetime, battery will not deplete
soon

• Share the connection with familiar persons (family, friends or col-
leagues)

• You offer unlimited amount of Mbs to the person(s) using the connec-
tion

Sampling
Data were collected making use of a web questionnaire (online survey) distributed
from July 7th until July 20th, 2012. The respondents have become aware of the ob-
jective of the study by a short description explaining the mobile tethering distributed
within a university setting. As Compeau et al. [21], argue this is not problematic
seen the fact that in conjoint analysis, like in experimental research the interest is
not in generalization to a specific population but in understanding the way certain
attributes relate to decision making of consumers. The interest is more in under-
standing the role of relevant concepts (internal validity), than the external validity
of the results. In total, 74 complete questionnaires were obtained (see Table 2.4 for
more information on respondents).
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Table 2.4: Respondents’ background information

Operator Vodafone:28 Orange:9 Lebara:7 T-
Mobile:4

KPN:2 Others:24

Phone
Brand

HTC:9 Nokia:23 Samsung:21 iPhone:6 LG:3 Others:13

Occupation Student:45 Non-Student (Academics):29

Gender Female:24 Male:50

Average
Age

26.81

2.4.2. Results
Conjoint analysis creates utility functions that indicate the perceived value of a
feature and how sensitive consumer perceptions and preferences are to changes in
that feature. We also present the importance of each attribute in percentage. The
validity of the conjoint models is indicated by Pearson’s r and Kendall’s τ [85],
which are the indicators of correlation between the estimated and observed values.
They should exceed the recommended benchmark values, respectively .80 for Pear-
son’s r and .70 for Kendall’s τ . The conjoint models’ values in the current study
were above the recommended values for both perspectives (consumer and provider).
This indicates that there is a strong relationship between the rating and the utili-
ties. However Kendall’s τ for the rating of financial compensation and for concern of
privacy (Question 2 and 4) seen from a tethering consumer perspective were slightly
lower than the recommended threshold value. These utility functions indicate the
perceived value of the feature and how sensitive consumer perceptions and prefer-
ences are to changes in product features. To evaluate the utility of the attributes
(i.e., sensitivity of consumer/provider perceptions on an attribute), simple dummy
variable regression analysis was used. From the tethering consumer perspective,
when asked for the intention to share for free, the familiarity of the other person
is most important with 44% (See Table 2.5). The utility value is .338 for sharing
with known people. It is noteworthy that battery lifetime has the lowest impor-
tance rate (1%) and presumably this attribute is the least important criterion for
the respondents while using tethering technology. A similar pattern can be found
for other dependent variable (questions 2-4). Again the person to share with has
received the highest importance rate, between 40% and 45%. Subscription costs to
the operator have a moderate level of importance. It seems that for the majority
of the respondents, tethering with people that are familiar is of utmost importance
and bears the lowest privacy risks. Moreover, the results show that technological
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issues such as battery lifetime, subscription type and impact on quality of service
while sharing the connection are less important.

The results for the provider of tethering view mirror the results for tethering
consumer (See Table 2.6). In other words, sharing with other people (known vs.
unknown) receives the highest importance values. Strikingly, with regard to the
question “how concerned would you be regarding your privacy” when using teth-
ering technology, familiarity of the person to share with has received the highest
importance rate (89%). Next, the conjoint results show that quality of service is
the least important criterion for respondents when taking a tethering provider view.
Quality of service has received the lowest importance rate for question 1, 3 and 4
with similar values. Only in question two, “sharing in exchange of financial compen-
sation” the results are different and respondents indicated that subscription type is
the least important criterion and the importance rate is 7%.

In conclusion, from both the tethering provider as well as consumer of tethering
capabilities perspective, it is utmost important that people cooperate with persons
with whom they are familiar (family, friend and co-worker). Mobile tethering be-
comes more acceptable when the other party is acquainted. Next to that, costs also
represent a critical issue, while technological challenges appear to be not that rele-
vant. Tethering capability providers are willing to share with strangers only if there
is a form of payment. Moreover, if the provider decides to share the connection
for money energy consumption seems to have a higher influence relative to other
technical aspects.

Consumers would prefer of course a free connection. However, they are still
willing to pay in certain scenarios like roaming. As a consequence of paying for the
tethered data connection they require a certain level of Quality of Service (QoS)
and guaranteed bandwidth.

All in all, our survey indicates that a cooperative hub of familiar people using the
mobile tethering features of their devices can be achieved. Using proposed schemes
that involve financial or reputation compensation can extend present usage.
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Table 2.5: The conjoint results for the dependent variable questions (Consumers’ Perspective). Utility values and importance indicate the given
value to an attribute by the respondents. We highlight the overall most significant attribute in yellow while the highest valued in blue and the
lowest in red for each question. The cases where statistical significance lacks are highlighted with green.

Attributes Levels
Q1: Sharing for free Q2: In exchange of

financial compensa-
tion

Q3: In exchange of
virtual currency or
reputation

Q4: How concerned
would you be regard-
ing your privacy?

Utility Importance Utility Importance Utility Importance Utility Importance

Costs
No connection 0.276

36%
0.046

12%
0.108

19%
0.186

13%
Higher -0.276 -0.046 -0.108 -0.186

Quality of
Service

Normal 0.022
3%

-0.038
10%

-0.004 0.203
14%

Lower -0.022 0.038 0.004
1%

-0.203
Battery
Lifetime

Longer -0.004 0.029 0.050
9%

0.225
16%

Shorter 0.004
1%

-0.029
8%

-0.050 -0.225
Familiar (Fam-
ily, Friend,
Co-worker)

0.338 0.154 0.246 -0.647

Persons
involved Not-Familiar

(Unknown Per-
son, Public)

-0.338
44%

-0.154
40%

-0.246
44%

0.647
45%

Subscription
Type

Unlimited 0.123
16%

0.117
30%

0.154
27%

-0.175
Limited -0.123 -0.117 -0.154 0.175

12%

Pearson’s r .904p < .001 .916p < .001 .952p < .000 .927p < .000
Kendall’s τ .764p < .004 .643p < .015 .857p < .001 .593p < .022
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Table 2.6: The conjoint results for the dependent variable questions (Providers’ Perspective). Utility values and importance indicate the given value
to an attribute by the respondents. We highlight the overall most significant attribute in yellow while the highest valued in blue and the lowest in
red for each question.

Attributes Levels
Q1: Sharing for free Q2: In exchange of

financial compensa-
tion

Q3: In exchange of
virtual currency or
reputation

Q4: How concerned
would you be regard-
ing your privacy?

Utility Importance Utility Importance Utility Importance Utility Importance

Costs
Higher -0.608

37%
-0.043

9%
-0.416

36%
0.019

3%
Normal 0.608 0.043 0.416 -0.019

Quality of
Service

Normal 0.040 0.059
12%

0.029 -0.019
Lower -0.040

2%
-0.059 -0.029

2%
0.019

2%

Battery
Lifetime

Longer 0.176 0.158 0.213
19%

0.019
3%

Shorter -0.176
11%

-0.158
33%

-0.213 -0.019
Familiar (Fam-
ily, Friend,
Co-worker)

0.763 0.186 0.416 -0.625

Persons
involved Not-Familiar

(Unknown Per-
son, Public)

-0.763
47%

-0.186
39%

-0.416
37%

0.625
89%

Subscription
Type

Limited -0.047
3%

-0.035 -0.072
6%

-0.019
Unlimited 0.047 0.035

7%
0.072 0.019

3%

Pearson’s r .981p < .000 .974p < .000 .966p < .000 .999p < .000
Kendall’s τ 1.00p < .000 .929p < .001 .786p < .003 .964p < .001
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2.5. Conclusions
Mobile tethering can be a new market opportunity, not only for customers, but
also for network operators. This is why we analyzed not only the technical perfor-
mances of tethering, but also the users’ motivation. Regardless of the opportunities,
many mobile tethering ideas only exist as a concept, and a number of technological
improvements need to be made, for instance in WiFi energy consumption. In the fu-
ture, mobile interactions will be driven by network technologies that enable sharing
and pooling of resources on a scale never possible before, maximizing the potential of
presently available applications and exploiting wireless resources on mobile devices.

The energy consumption and bandwidth measurements in this chapter show
promising results for the future of tethering. Energy consumption is still high, but
ongoing research tries to address the problem. Also, the availability of bandwidth
is affected by tethering specifically if the user moves away form the core hot-spot.
Dealing with security and privacy is a problem. Although security might be solved
via network protocols, privacy is directly related to access of resources on the devices
used during tethering. In order to solve the privacy problems operators can be
involved as a trusted third party and apply network security protocols.

Currently, tethering is mainly employed to connect devices that are owned by
the same person. Cooperative services, i.e. cooperative web browsing for mobile
devices and mobile cloud computing can take advantage of further applicability.
The conjoint analysis in this chapter shows that familiarity of the persons that a
connection is shared with is a key issue. Respondents only wish to share a connection
with somebody who is known or familiar. Similarly, respondents are only willing
to use a shared connection from a familiar person. Costs are the second important
decision criterion. Credit exchange or the use of a virtual currency can support
tethering with unknown persons. All in all, social and costs related issues are
much more important to users in their decision to adopt mobile tethering than
technological issues like battery lifetime and bandwidth limitations.

A limitation of our study is that the technological tests were based on an ap-
plication that only works on Android, which was only used on Samsung devices.
Other operating systems and other devices may perform differently. Furthermore
we are aware that tethering is available and developing rapidly, making research in
this domain like shooting on a moving target. Nevertheless we hold the opinion that
doing techno-economic research in combination with user research in a service de-
sign process is valuable. Insights based on research with a small number of concepts
helps to develop a more generic model that moves away from existing acceptance
and user research.
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With regard to tethering, we may conclude that tethering represents a viable
technology. Tethering can bring added value not only to the users, but also to the
mobile telecommunications industry. Even though tethering is dependent on the
performances of the telecommunication infrastructure and on the network operators
per ensemble, the perceived quality of tethering supports an increased usage, will
support further development.

With regard to cooperation, we may conclude that though costs are still a con-
cern, social relations are crucial in sharing resources. In Chapter 4, we will create a
decentralized social-device network to automate the familiarity based cooperation.
Before that, we will investigate a prior step in cooperation in the next chapter,
which is the discovery of resources. Our discovery protocol includes semantic rep-
resentations of resources as well as their owner information.





3
Service Knowledge Discovery
in Smart Machine Networks

In Chapter 1, we described our vision of “devices that know their owners” in accor-
dance with the outcome of Chapter 2 that social relations are crucial in cooperation.
Before further elaboration of our vision and explaining its core design, in this chapter
we investigate the problem of discovery of surrounding devices with their capabil-
ities. We consider discovery of resources and capabilities of devices as one of the
initial steps towards achieving a cooperative platform of smart devices.

Today’s operational service-discovery protocols carry simple text-based uniform
resource identifiers that are not expressive enough. Machines cannot comprehend
the meaning of a new service that is not in their knowledge base. In addition to
being more expressive, service-discovery protocols must compensate for the diversity
to improve cooperation between the devices that use different application protocols
and operate on different communication interfaces.

In this chapter, we propose the Smart Discovery Protocol (SDP) that outper-
forms the traditional service-discovery protocols with three main features: (i) a more
expressive semantic representation of services, (ii) operating at the network layer to
deal with diversity, and (iii) unifying existing service-discovery protocols. SDP rep-
resents services with ontologies as some recently proposed semantic service-discovery
protocols. It further enhances the success of semantic representations by creating a
unified platform that can carry legacy discovery services. The underlying transport
mechanism of SDP is designed as an add-on to the Neighbor Discovery Protocol

35
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(NDP) of the IPv6 standard. The metadata is carried in the payload of ICMPv6
packets. Simple text-based representations of other service discovery protocols are
embedded in type-length-value options of NDP. Authenticity of the devices is en-
sured by the IPv6 Secure Neighbor Discovery protocol. Unlike previous semantic
approaches on service discovery, we have implemented our protocol on real hard-
ware. The results demonstrate the feasibility of carrying semantic representations
of the services and integration of other service discovery protocols.

3.1. Introduction
The computational power of networked devices enhances every day and these de-
vices can accomplish very complex tasks. For instance, a smartphone can observe
our daily travel patterns and suggest improvements. However, these smart devices
are not swiss army knives: they cannot encompass all kinds of capabilities and they
have limitations that cannot be surmounted by simply boosting their processing
power. Take a portable smartphone as an example, it cannot have a 50 inch display
or wash our clothes. Often smart devices have to utilize the resources and capa-
bilities of other devices and complement each other for accommodating the needs
of their owners. Moreover, as we mentioned in Chapter 1, cooperation must be
accomplished without human intervention because the configuration requirements
may be unmanageable as the number of devices increases rapidly.

One of the significant challenges in establishing a cooperative network of smart
devices that complement each other is the lack of an expressive and autonomous
service knowledge discovery system. In the scenario illustrated in Figure 3.1, a device
searches for a piece of missing context information. Alice’s camera does not have
any capabilities for discovering its geographic position. To determine its location, it
queries the devices in the vicinity as to whether or not they are capable of providing
the location information. Instead of asking for specific services that give GPS, 3G
triangulation or cell id information, simply any service that can extract location
information is queried. Nearby devices that know they have hardware for location
information advertise their specifications with the properties of the equipment such
as the precision of the location information. After identifying the devices that
have the required capability, the camera requests the location information from
one of them. This scenario clearly depicts that devices have to be smart and infer
on collected pieces of information. We refer to this process of making machines
understand the semantics of service descriptions as service knowledge discovery.

Semantic Web researchers achieve a similar goal of making machines capable of
understanding the content in a web page without human intervention. Machines
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Figure 3.1: Missing location information is queried from neighbor nodes. The device owners and
network interfaces are also shown.

collect the information scattered in several web pages through the logical relation-
ships among them. The power of machine-understandable web pages originates from
the representation of knowledge in ontologies. In an autonomous network of smart
devices, we need a service knowledge discovery protocol that can evolve and adapt
to future requirements just as in the Semantic Web. The ontologies comprising the
information about the services should be distributed among the devices. With on-
tologies, the discovery system builds a knowledge base that evolves and comprises
new systems and services. Fortunately, the tools for handling ontologies are avail-
able, and the scientific challenge for us is to propose a distribution system for the
information. Some of the recent proposals for service discovery (e.g., mRDP [95])
also promote the use of ontologies as knowledge representation. However, they are
not able to deal with heterogeneity of both the networks and applications. Com-
patibility with legacy systems in these architectures is also missing.

There are many operational and even recently proposed service discovery proto-
cols that are being used today in many systems. However, there is still no widely
deployed autonomous service discovery protocol that exists in every device. The rea-
sons are as follows: firstly, although some of them improve expressiveness by using
ontologies, still many of them prefers simple representations that do not evolve for
future requirements of the services. Secondly, there are various application protocols
for services and existing service discovery protocols add new application protocols
to the list instead of decreasing the heterogeneity. While deploying a service, a sepa-
rate application layer protocol for discovery has to be installed. Thirdly, companies
push vendor locking. Each service discovery protocol has its own island of connected
devices where there is no interaction with an outsider.
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In this chapter, we propose the Smart Discovery Protocol (SDP) as an add-on
to the Neighbor Discovery Protocol (NDP, IETF RFC 4861) of IPv6, which is po-
sitioned in the kernel and comes as pre-installed in the operating systems. SDP
is independent of the application layer and can exist in heterogeneous networks by
the convergence to IP. It operates on ICMPv6 packets that carry semi-structured
(ontological) service representations and queries. Not only the knowledge about the
resources and capabilities that form a service, but also the details about the service
owner and the context are included in the representations. In the type-length-value
(TLV) options of NDP, the ICMPv6 packets carry the Uniform Resource Identi-
fiers (URI) that define legacy services. Semantic data is carried in the payload of
these packets. Multicast advertisement and solicitation messages are employed to
maintain scalability. Secure Neighbor Discovery (SEND, RFC-3971) is used for au-
thenticating the collaborating devices. For confidentiality, multicast group security
proposals can be employed. The contributions of SDP are the following:

• SDP is a semantic service knowledge discovery protocol that decreases human
intervention in service discovery for devices complementing each other and
enables cooperation among the machines.

• SDP can operate in all IPv6-based networks independent of the lower and
upper layers.

– Devices that operate on the network layer like routers can collect more
information about the structure of the network by looking at ICMPv6
packets and improve the QoS.

• Legacy systems are unified in one message type.

• Low-power devices are also involved in discovery by using URI identifiers of
existing service discovery architectures.

In the next section, we propose and describe SDP. First, the challenges and
requirements of a service discovery protocol are given, then the design of SDP is
matched with the requirements. We present the performance of SDP in Section 3.4.
A thorough comparison to existing service discovery architectures are given in Sec-
tion 3.5. Finally, we conclude and discuss future work.

3.2. Smart Discovery Requirements
In this section, we present the Smart Discovery Protocol (SDP) that paves the way
for an autonomous cooperative network of smart devices. We present the chal-
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lenges of service knowledge discovery in smart machine networks using the scenario
illustrated in Figure 3.1.

In the light of these challenges, we will explain service representation format and
ontologies for readers who are not familiar to semantic technologies in Section 3.2.2.
Then the SDP protocol will be described starting with Section 3.3. We will elaborate
the packet format, message types, legacy support features, protocol operation, and
security.

3.2.1. Challenges and Requirements of Knowledge Discov-
ery

The challenges of service discovery have been identified in [64] and they are still
valid with an increasing importance. We summarize and elaborate some of those
challenges that are still open research questions and introduce new challenges (last
two) to indicate the need for a new knowledge discovery protocol.

Nodes in a network need to employ a service knowledge discovery system to
obtain extensive information about the other collaborating devices and establish
their own knowledge base. The combination of resources and capabilities can be
referred to as services as defined in the Information Technology Infrastructure Li-
brary1. Resources are the hardware components and the capability is the software
running on the hardware that makes it usable. The knowledge discovery involves
not only the resources and the capabilities of devices, but also the context and the
user-specific information including the social network profiles of the users. When a
new service appears in a network, devices should be able to infer its functionalities
and start using it autonomously. The information and inferred knowledge of the
services should also involve the context of the physical and social environments that
can be a distinctive factor in service selection. The discovery protocol should ab-
stract the heterogeneity both in terms of networking and semantics. While satisfying
all these requirements, the protocol should accommodate the legacy (operational)
service discovery systems.

Knowledge Representation
Service identification is a serious problem that cannot be addressed by just stan-
dardization of the list of services in the market. Firstly, there is a diverse set of
services. It is rather difficult to keep an up-to-date list of the services and distribute
it. Even if such a standardization is accomplished by the vendors, each vendor re-
flects its own categorization. Secondly, users cannot remember all the keywords for
an exact naming of the services or user may want to query a service with different
1http://www.itil-officialsite.com
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categorizations such as purpose. In the scenario presented in Figure 3.1, camera
asks for “location” and the peers reply if they have any capabilities for providing
location information, such as GPS position, cell id or 3G triangulation. Instead of
the exact name match, the purpose of the resources are matched. Lastly, services
can alter their inputs, outputs or procedures, knowledge representation should be
capable of evolving to adapt such future demands of the services.

Personalization for Authorization
Services do not live in a closed world environment where they only interact with
trusted parties. There are untrusted peers that access management should elim-
inate by requiring a trust relationship between the services. Since resources like
smartphones have one-to-one relation with their owner, trust between the resources
is indeed the trust relation between their owners. In the scenario presented in Fig-
ure 3.1, camera and cell phone belongs to Alice while smart phone and navigation
device belongs to Bob. The trust between the devices indeed the trust between the
owners of the devices. When camera asks for a service which can provide location
information, others check the owner of the camera. If a trust relation does not
exist between the owners in the social network then service query is not replied.
Authorization can be easily addressed by using trust relationships of the owners’
themselves, incorporating the personal information in the service representation.

Context Dependency
Context information determines the value of the service. Depending on the context,
service may become useless or crucial. In the scenario presented in Figure 3.1 for
instance, if all the devices were in an indoor environment, the GPS information
would be useless since GPS satellite signals do not penetrate indoors. Most reliable
information in that case would be the 3G triangulation. Therefore, navigation device
and smart phone should not offer their GPS services or the node which uses the GPS
service should infer that the information is not reliable. If the service representation
involves a piece of information about the constraints of the GPS, machines take
better decisions by combining the information with the context.

Ontologies are more expressive data representations than URI like description
of the services that are being used in operational service discovery protocols. The
above issues can be addressed by the ontologies. In Section 3.2.2, the ontologies will
be explained in detail.

Network Intrinsic Approach
The smart machine networks are full of heterogeneity of the devices in terms of
hardware and software. Differently from [64], today we can claim that network
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diversity is being unified in IP based networks. Several researchers call the IP layer
as the narrow waist of the hourglass model which is a bridge between the lower
and the upper layer. Even if devices operate in different networks or use different
application layer protocols, IP layer is the common interface. Therefore, a discovery
protocol in the network layer can be supported by many devices. Machines do
not have to implement separate application layer protocols which are not used by
the service itself. In the scenario, GPS, 3G triangulation services can be provided
by different application layer protocols. Devices like camera may use WiFi while
phones may use the cellular network. To overcome the heterogeneity in network
architectures and to avoid gateways, the discovery protocol should operate at the
IP layer.

Unified Service Discovery
Currently many systems deploy various service discovery protocols which depend
on simple text based matching of the service identifiers. These protocols are not
compatible with each other. As a consequence, there are disjoint islands in which
only compatible devices exist. And the islands are closed to foreign standards. To
enhance the adoption of new service discovery protocols, they should be designed to
be compatible with the legacy discovery protocols. In Section 3.5, existing service
discovery protocols are reviewed. Most of the protocols transport URI like identifiers
and have distributed architectures that do not require a central broker. Unification
can be achieved by carrying the URI like identifiers of each standard along with the
semantic descriptions.

Responsive Discovery
The delay of discovering a service should not disturb the related applications. We
expect that mostly the discovery of services happen in the background. A discovery
is initiated when a device joins to a network regardless of being required. Such a
service discovery does not have time constraints, whereas still some services may
be searched on demand. For instance, due to the lack of a local service such as
a location service, discovery may start following a user request. In that case, we
demand that the discovery process should finish in the order of seconds.

3.2.2. Knowledge Representation
In this section, we represent knowledge representation for readers who are not fa-
miliar to Semantic Web. Knowledgeable reader may skip this section and proceed
to Section 3.3 for the details of SDP.

Semantic Web was introduced in 2001 [90] aiming at making the web machine-
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@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ns1: <http://en.wikipedia.org/wiki/> .
@prefix ns2: <http://live.dbpedia.org/resource/> .
@prefix ns3: <http://live.dbpedia.org/property/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ns6: <http://live.dbpedia.org/ontology/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix ns13: <http://dbpedia.org/datatype/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
ns1:Samsung_Galaxy_S_II foaf:primaryTopic ns2:Samsung_Galaxy_S_II .
ns2:Samsung_Galaxy_S_II rdf:type owl:Thing .
ns2:Samsung_Galaxy_S_II rdf:type ns6:Device .
ns2:Samsung_Galaxy_S_II rdfs:label "Samsung Galaxy S II"@en.
ns2:Samsung_Galaxy_S_II ns3:imagesize "200"^^xsd:int;

ns3:predecessor ns2:Samsung_Galaxy_S ;
ns3:successor ns2:Samsung_Galaxy_S_III ;
ns6:weight 130 ,130.41 ;
ns3:display "AMOLED with 480\u00D7800 pixels"@en, "800"^^xsd:int ;
ns3:cpu "2"^^xsd:int ;
ns3:memory "1"^^xsd:int ;
ns3:input "Multi-touch screen, headset controls,

proximity and ambient light sensors,
3-axis gyroscope, magnetometer, accelerometer,
aGPS, and stereo FM-radio"@en ;

ns3:storage "16"^^xsd:int .
ns2:Samsung_Galaxy_S_II ns3:connectivity "210.0"^^ns13:second ;

ns3:gpu "Adreno 220"@en , "PowerVR SGX540"@en , "ARM Mali-400 MP"@en ;
ns3:battery "120000.0"^^ns13:second ;
ns3:memoryCard "microSD"@en ;
ns3:networks "802"^^xsd:int , "Dual band CDMA2000/EV-DO Rev."@en ,

"HSPA+: 21/42 Mbit/s, HSUPA: 5.76 Mbit/s LTE 700/1700 Rogers Only"@en ,
"WiMAX 2.5 to 2.7 GHz;"@en , "UMTS: 850, 900, 1700 , 1900, and 2100 MHz"@en ;

ns3:soc "Samsung Exynos 4 Dual 45nm"@en ;
ns3:rearCamera "8"^^xsd:int ;
ns3:frontCamera "2"^^xsd:int .

<http://example.com/foaf#me> a foaf:Person ;
foaf:mbox_sha1sum "50a842005e63853ab00d2d46dab152d2e16e92e3" .

Figure 3.2: Sample OWL instance document gathered partially from DBpedia. It advertises the
device as a smart phone, gives details about the properties of the device with the owner information.

understandable. At present, humans are the only contributors to the Web, we
create the web pages and understand the content. Machines are just dealing with
the distribution of the content. However, when they become aware of the content,
they may adapt to human behavior and needs.

It is crucial to create a vocabulary which machines can comprehend. As a first
attempt, the Resource Description Format (RDF) was proposed to represent the
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PREFIX prop: <http://live.dbpedia.org/property/>
PREFIX ont: <http://live.dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

select ?phone ?who ?os ?weight
where
{

?phone prop:input ?gps;
FILTER regex(?gps, ".*a?GPS.*")

prop:battery ?battery ;
ont:operatingSystem ?os ;
ont:weight ?weight .

?who a foaf:Person ;
foaf:mbox_sha1sum

"50a842005e63853ab00d2d46dab152d2e16e92e3".
}

Figure 3.3: Sample service query message written in SPARQL vocabulary. GPS property is filtered
with a regular expression.

resources in triples: subject-predicate-object. To be able to define domain specific
vocabularies, RDF Schema (RDFS) was designed and it became possible to describe
classes, sub-classes and properties of RDF resources. However, still there was a
requirement for defining complex relationships between the objects modeled with
RDFS. Therefore, the Web Ontology Language (OWL) was created. As it is seen the
abbreviation OWL is not consistent with Web Ontology Language. The reason is
that OWL sounds better and it honors the One World Language artificial intelligence
project at MIT around mid-70s.

With OWL it is possible to construct new classes by simple set operations such
as union and intersection. Existential quantifiers for all (∀), there exists (∃) and
even cardinality constraints (such as max or min) become available to describe inter
dependence of the classes. After the success of OWL1, OWL2 was accepted in 2009
as a W3C standard which promoted researchers to implement tools for manipulating
it. To query data sets, SPARQL query language is used. SPARQL is similar to SQL
that is used to fetch data from an RDF data content. Therefore, it is a perfect fit for
resource and capability solicitation. Since OWL and SPARQL are widely accepted
by the community, we also favor the use of them as the metadata format. However,
SDP does not restrict itself in one format, it can carry any semi-structured data
format. It is an evolutionary system which adapts to unforeseen future requirements
and services.
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OWL and SPARQL
Semantic Web makes the web machine-understandable. Similarly, SDP in smart
machine networks makes the resources and capabilities machine-understandable.
Advertisement and solicitation messages employ the Semantic Web standards. For
instance, the device definition is presented with OWL ontology language in the
advertisement messages and solicitation (query) messages are composed of queries
expressed in SPARQL.

An example smart advertisement message from a smart phone is depicted in Fig-
ure 3.2. The specification is an OWL instance document serialized with Notation3
[13]. The device details are taken from DBpedia but shortened to fit in one column.
The owner identifier (digest of the email address) is also given in Friend of a Friend
(FOAF) social network language.

In Figure 3.1, the location capability is requested from the neighboring devices.
A solicitation message that contains SPARQL query like the one in Figure 3.3 can be
sent to discover a device with GPS service. In the query, GPS service that belongs
to a specific person is requested by appending the digest of the email address. Since
the GPS can be in different formats, a regular expression is used to increase the
possibility of a match.

First three challenges mentioned in Section 3.2.1, knowledge representation, per-
sonalization and context dependency can be addressed with the use of the ontologies
which are described above. With ontologies instead of exact name match, services
can be queried with different categorizations. Ontologies can adapt to changes in
the definition of the services since they are more expressive than the URIs. Semantic
definitions of the services do not require an acceptance from a standards associa-
tion which can slow down the adoption of a new service or an update in a service.
FOAF ontology clearly shows the ability of personalizing the services. The owner
information can be embedded into the service definition. Context and hardware
information can also be used in ontologies.

3.3. The Service Knowledge Distribution Proto-
col

In Section 3.2.1, we mentioned that SDP is implemented in the network (IP) layer
to abstract the heterogeneity. Furthermore, SDP has to work in ad hoc fashion in
opportunistic networks.

There are different candidates for a messaging protocol namely HTTPU, SOAP
and DNS. In Section 3.5, protocols that use these messaging protocols will be sum-
marized. Key features of the protocols related to service discovery are compared
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Table 3.1: Comparison of different carrier protocols for semi-structured data.

HTTPU
& HTTP

SOAP DNS ICMPv6

Transport Layer UDP&
TCP

UDP UDP R

Reliability With TCP R R R

Serialization Any text XML Structured
without
payload

Structured
with
payload

Header over-
head and pars-
ing complexity

Medium High Medium Low

Operating Layer Application
Layer

Transport
layer

Application
Layer

Network
Layer

Multicast With
UDP

X X X

Security (Au-
thentication
and Integrity)

With SSL SSL or
WS-Sec

DNSSEC SEND

in Table 3.1. All the protocols have multicast support without reliability. Secu-
rity covers only authentication and integrity. Though SSL is mentioned for some
protocols, in fact it is not available with UDP and multicasting. ICMPv6 is a bet-
ter choice in terms of complexity and network intrinsic feature that is required for
heterogeneity. Moreover, serialization is flexible with both structured and payload
fields. Structured parts (TLV options) are used for security and representing the
legacy services, whereas payload is used to carry semi-structured data.

SDP has two types of packets. The Smart Advertisement (SA) and the Smart
Solicitation (SS) messages are similar to the Neighbor Advertisement (NA) and the
Neighbor Solicitation (NS) messages of the ICMPv6 Neighbor Discovery Protocol
(RFC-4861). The NA and NS messages are used to discover the MAC-IP address
association of the neighboring devices in a network. SA and SS messages are also
ICMPv6 messages which differ from NA and NS in terms of the functionality. Since
SA and SS messages operate at the network layer, they are independent from the
application layer protocols. They work on any data link layer protocol.

3.3.1. Packet Format
The packet format is presented in Figure 3.4, type, code and checksum are the com-
mon ICMPv6 fields. Total field stores the number of packets that semi-structured
data is divided into and sequence is used to re-assemble the payload. Security op-
tions are defined in Secure Neighbor Discovery (RFC 3971), used for authentication



3

46 3. Service Knowledge Discovery in Smart Machine Networks

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Total | Sequence |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Security Options: |
+ Cryptographically Generated Address +
| RSA Signature |
+ Timestamp and Nonce +
| |

....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Backward Compatibility: |
+ URI like service descriptions +
| of existing discovery protocols |
+ in TLV format +
| |

....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | |
+ Payload/Semi Structured Data: +
| Ontologies |

....

Figure 3.4: Packet format for the Smart Advertisement and the Smart Solicitation messages.

and integrity. The Backward compatibility part includes the URI representations
of services expressed as in the existing architectures. Lastly, payload field involves
the ontologies, semantic definition of the services and the device. While parsing the
packet to distinguish the payload field from the TLV options, payload starts with a
predefined type value but does not have length and value fields.

3.3.2. Protocol Operation
The Smart Discovery Protocol operates in ad hoc mode and no central entity is
required to distribute the service definitions. Devices send the SA message to declare
their existence in the network. The SS message on the other hand aim to query a
required service inside the network. Both the SA and SS are multicast messages
however, the SA message which is sent as a reply to the SS, is a unicast message.

All the device details, service descriptions and owner profile are placed in a data
store, it can be a database or the file system. When a service is added or updated,
the data store is also refreshed. A reasoning engine like FaCT++ [92] runs and
infers new properties about the services. For instance, a device has GPS hardware
and GPS is classified as a location supplier, then the device is considered as it can
supply location information. Later on when the device gets a query, it does not have
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Figure 3.5: The process of the Smart Discovery Protocol

to run the reasoning engine again, therefore it can be concluded that reasoning is an
offline procedure. Some devices may lack support or do not have enough computing
power to run reasoning software. In such cases the reasoning step can be eliminated.
A detailed service description may eliminate the need of inference.

In Figure 3.5, we present the protocol operation. The dashed boxes represent
the semantic operations like inferences which do not exist in operational service
discovery protocols. An SA message declares the existence of a device and its services
in the network. The semantic data describing the resources, capabilities and even
the owner details as presented in Figure 3.2 encapsulated in SA are sent when
the node joins the network, in case of a change in the information or periodically
(presented as the cases 1 and 2 in Figure 3.5). The message is published to a pre-
determined multicast group address. Peer devices can overhear the SA messages
inside the network and create a local database of services for future use (case 3 in
Figure 3.5). In need of a service, the local database may be queried first. However,
local cache does not guarantee the existence of the service.

To query a functionality, a multicast SS message is published to the group, shown
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as the fourth case in Figure 3.5. The payload involves a semantic query in SPARQL
vocabulary (such as Figure 3.3). When the devices get the SS message, they run the
query in their local semantic data store. Then they reply with unicast SA messages
that give the details of the service. The size of the reply message depends on the
query, if the details of just one service is required one packet may be enough. It is
best practice to prepare a query whose result fits into just one packet.

3.3.3. Unified Service Discovery for Legacy and Low Power
Devices

In Section 3.2.1, the diversity of the service discovery protocols is mentioned. De-
vices that use the same service discovery protocol implicitly establish clusters that
are disjoint from the devices which adopt another standard. Therefore new service
discovery protocols should embrace the legacy standards.

Converting messages of different service discovery protocols to each other is not
an easy task. Protocols have diverse set of functionalities which may not have a
counterpart in the corresponding protocol. INDISS [17] is an interoperability system
for service discovery protocols. In the prototype of the INDISS system, the messages
in Simple Service Discovery Protocol (SSDP) and Service Location Protocol (SLP)
are converted to each other. The messages are first converted to a intermediary
scheme where the messages semantically matched to each other. It is stated that
there are still some functionalities that do not match. For instance, SSDP does not
have a central entity, whereas SLP employs a directory agent to store all the service
definitions inside the network.

Table 3.2: SDP messages and corresponding counterparts of other protocols.

SDP SLP SSDP DNS-SD

Multicast SA SAAdvert ssdp:alive R

Multicast SS SrvRqst ssdp:discover Query

Unicast SA SrvRply HTTP/1.1
200 OK

Response

INDISS divides the service discovery events into three: “Registration Events”,
“Discovery Events” and “Advertisement Events”. As seen in Table 3.2, SDP covers
only discovery (solicitation) and advertisement events. There are also registration
related events such as SrvReg, SrvDeReg in SLP which are not covered in SDP.
Therefore, SDP cannot be matched exactly with other protocols. However, matched
messages can satisfy a distributed service discovery protocol. For instance in SLP
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protocol the matched messages are the ones that are used in distributed discovery.
Uncovered messages are mainly required for the communication with a central server
that is responsible for collecting all the service details and dispatching them from
one source.

INDISS like interoperability systems aim to convert the messages to each other
without any change in the services. Since semantically matching the standards is
not easy and requires excessive effort, in SDP a different approach is taken. As
shown in Figure 3.6 simple text representations (sometimes in URI format, eg.
SLP, DNS-SD) of the services in different discovery protocols are carried along with
ontologies in single SDP message. Devices which prefer using the parsing and service
matching APIs of legacy protocols instead of ontology precessing, keep consuming
these simple representations. Both sides again supports SDP messages in the their
operating system. The initiator embeds the URI representation inside the packet
with semantic representation. The receiver omits the semantic representation and
only fetches the URI representation that it supports. The URI services are matched
by using existing APIs. By combining all the protocols in one message, less packets
are transmitted in total. Legacy devices are supported with a small software update
which only parses the SDP message and dispatches the messages to corresponding
protocols. Moreover, INDISS like systems can incorporate SDP in their design to
decrease the message traffic in the network.

One question still remains open is how we will embed the different messages
into one SDP message which can be parsed easily. Most of the service discovery
protocols summarized in Section 3.5 such as SSDP, SLP and DNS-SD, distinguish
the services by URI like texts and mainly text based matching is performed. The
URIs are mostly short texts, for instance DNS-SD TXT records are intended to be
around 200 bytes or less. In order to embed the legacy service messages, type-length-
value (TLV) options of the ICMPv6 are used. New TLV options are created for each
text based service discovery protocol. The size of these options are determined by
the length field which is an 8-bit unsigned integer in units of 8 octets and results in
28 × 64 = 16Kb = 2KB. After parsing the TLV options they are passed to their
protocol’s daemon.

Another motivation for these TLV options is that they are easier to parse for
low power devices. Other semantic oriented service discovery protocols exclude such
devices from their design. Low power devices like sensor nodes can easily parse TLV
options and fetch the URI identifiers of the services expressed in different discovery
protocols. In a single message both computationally high and low powerful devices
are addressed which enhances the adoption of the protocol, and makes the transition
to semantic technologies smoother and easier.
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Figure 3.6: SDP messages are given in the sequence diagram. If there is a TLV that carries a
legacy service identifier, the legacy service API is called.

3.3.4. Reliability
SDP is a distribution protocol for the ontologies and operates at the IP layer where
end-to-end reliability is not guaranteed. For scalability multicast messages are pre-
ferred in all the discovery protocols. However, reliability in multicast messages
requires huge overhead on the transport layer, basically reliability is traded for
scalability. There are experimental protocols like the Pragmatic General Multicast
reliable transport protocol (RFC 3208), which try to maintain reliability with neg-
ative acknowledgement (NACK) packets. NACK packets can reduce the traffic but
still the loss of the NACK packet is a problem.

In SDP, like other service discovery protocols, periodic retransmissions are em-
ployed to enhance the reception rate but still reception is not guaranteed. Both the
SA and the SS messages are retransmitted with increasing intervals in the order of
two and after some number of retransmission process ends. The duration of the
interval and the number of retransmissions depend on the medium and background
traffic. In a medium with low bit error rate small number of retransmissions are
enough.
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Another issue is the replies to the SS messages. Since the nodes in the network
get the SS message at the same time, their replies may collide. Although the data
link layer and MAC protocols avoid collisions, it is still preferred to send the replies
after a random back-off time.

Fragmentation and Traffic Shaping
In Figure 3.4, it is seen that there are “total” and “sequence” fields which are used
to reassemble the fragmented message. For fragmentation another option is IPv6
fragmentation header. However, if IPv6 fragmentation were used, every retransmis-
sion message would be considered as a different message by the stack. When one of
the packets of a message drops, IPv6 fragmentation removes the whole message and
partial message is not passed to the SDP. By depending on our own fragmentation
method, in retransmissions the peer can reassemble a message by gathering packets
from different transmissions.

Additionally, SDP employs traffic shaping to decrease the congestion. Especially
in wireless networks like 802.11x, multicast messages can easily incur congestion due
to limited bandwidth reserved for them. Therefore, SDP puts time delays between
the consequent packets to decrease the congestion. The performance increase em-
ploying the traffic shaping is presented in Section 3.4.

3.3.5. Authentication and Integrity
In service discovery, adversaries can inject fake services or alter the definitions of
the existing services. Therefore, depending on the requirements of the network,
authentication and integrity checks should be devised. As summarized in Table
3.1, all the carrier protocols aim to maintain the authentication and integrity to
establish trust and prevent the denial of service attacks which can easily be done by
advertising non-existing services. SDP also ensures the authentication and integrity
with Secure Neighbor Discovery (SEND, RFC 3971). Since SDP is an add-on to
NDP and SEND is designed to secure NDP, SDP is also covered with SEND.

SEND introduces four new options to neighbor discovery protocol:

• Cryptographically Generated Address: Used to guarantee that address-
owner association is valid with the asymmetric key encryption.

• RSA Signature: The digest of the packet is signed by the private key of
the source. The signed digest authenticates the source and guarantee that no
other node can alter the packet, any change on the packet data is detected by
the peers.

• Timestamp: Timestamp option is employed to prevent the replay attacks.
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• Nonce: In the solicitation-advertisement message pairs, randomly generated
nonce values are used for association.

3.3.6. Confidentiality
Though authentication and integrity is offered by many service discovery protocols,
confidentiality is not considered in protocols that employ multicast messages. Any
node inside a network can analyze and trace each device with its offered services.
In a trusted network such as office and home environment, the risk may be low.
However, in an open network malicious nodes can overhear the discovery packets
and easily build an inventory of network.

In open networks, it is advised to depend on a secure overlay network such as
virtual private networks (IPSec). With IPSec all the traffic is secured. However, it
is a complex protocol which requires detailed pre-configuration and has bootstrap-
ping problems. Service discovery protocols are designed to be simple and have less
overhead, therefore security should also be addressed without heavy protocols. All
in all, we also omit confidentiality like other protocols and consider service discovery
as a case study for the researchers working on multicast group security.

3.4. Performance Evaluation of SDP
The multicast nature of the all the discovery protocols trades off the reliability of
the messages. SDP also operates on unreliable multicast ICMPv6 packets, which
incur drops due to congestion and noise in the wireless medium. Compared to other
service discovery protocols that operate at higher layers, obviously SDP imposes
lesser load in terms of packet headers. However, the metadata payload carried
over SDP significantly increases the load. We deal with increased load and its
consequence, packet drops by the traffic shaping method defined in Section 3.3.4.
The web service based systems like DPWS are expected to carry XML metadata
which is close to the size of the metadata of SDP. On the other hand protocols that
carry just the URI definitions of the services like DNS-SD and SLP, have lesser load.

Despite of the high load incurred by the SDP on the network with respect to
simpler service discovery protocols, the traffic is still less than the load of a web
page. For instance, the size of the HTML page in the URI google.com is around
11 KB whereas the metadata in Figure 3.2 is 1.8 KB.

SDP differs from the other protocols with its design in dealing with heterogeneity
and unified discovery. However, still the performance and especially reliability of
the protocol should be assessed.
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3.4.1. Experiments on Real Hardware
In order to assess the performance of the protocol and especially to observe the relia-
bility, the protocol is implemented in Ruby programming language which is served as
an open-source project2. The ICMPv6 structure described in Section 3.2 is created
with type value assigned to 200/201 which are reserved for private experimentation
in the ICMPv6 standard. Different metadata sizes are used in the experiments. For
the experiment environment “Eduroam”, the largest WiFi network of TUDELFT is
used. The network represents a crowded office environment and the experiments are
carried out between 13:00 and 17:00 while the network is active. The signal levels of
the devices that we experimented vary between -80 dBm and -40 dBm; the bit-rates
vary between 18 Mb/s and 54 Mb/s depending on the location. The structure of the
experiments is as follows: There are one sender and four receiver laptops. Sender
and receivers are being served by different access points. Three of the receivers
operate in 802.11a network and the rest is in 802.11g network. The sender laptop
either announces its service details or queries for a service and waits for the reply.
The latency of the announcement and query-response packets are given as a metric
for performance.

We start with experiments on the latency of advertisement and solicitation mes-
sages with their responses. Then, we compare SDP against SLP and show that SDP
does not lead to extra latency while unifying legacy discovery protocols. Lastly, we
demonstrate the performance of the traffic shaping.

Results on Message Latencies
First, we experimented the latency of the advertisement messages. The metadata
of the services with different sizes are fragmented into SA packets and sent as a
batch 100 times to different number of machines. At the receiver side the duration
from the first message till the last one is presented in Figure 3.7. As the metadata
size increases, more packets are transmitted leading to an increase in the duration.
Multicasting the traffic provides scalability as the receivers incur similar latencies.

Second, we experimented the round trip delay of solicitation messages and their
reply including the semantic data parsing. The solicitation message in Figure 3.3
is sent to the peers. The peers run the query and the result is sent back with
unicast messages. Both the solicitation and its reply fit into one ICMPv6 packet.
In Figure 3.8, the time from the start of the solicitation message till the reception
of the reply is presented. Even with the semantic data parsing the round trip time
is lower than a half second. Unfortunately, there exists variance which is due to the
channel conditions.
2github.com/yunus/SDP
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Figure 3.7: The durations between the reception of the first message till the last one with different
metadata sizes are presented. The MTU is 1500 bytes.

Comparison of SDP to SLP
One of the novel features of SDP is that it is capable of carrying legacy service
messages. The initiator inserts the URI identifier of the legacy protocol in a TLV
field of SDP. As shown in Figure 3.6, the receiver parses the TLV, uses the APIs of
an existing library of the legacy protocol to parse the identifier. If the message is
a solicitation, legacy API checks whether the request matches the service or not. If
the service is matched in the reply whole service definition is embedded in another
TLV field of SDP.

In order to validate our design, we compared our implementation with SLP. The
jSLP3 library is used to send SLP service request and service reply messages. In
SDP for parsing and matching the service identifier again the jSLP API is used. In
both protocols a service is queried with the identifier “service:test” and the reply
contains “service:test:myService://my.host.com”. Figure 3.9 shows the duration in
solicitation messages similar to Figure 3.8. In this test differently from the previous
one, SDP makes an additional API call to the jSLP while also performing a semantic
query. When Figure 3.9 and Figure 3.8 are compared, we observe that calling
an external library does not lead to an increase in the duration. Moreover, both
protocols, SLP and SDP perform similarly. The SDP protocol does not impose
higher latencies than SLP, which can lead to timing issues on the legacy services.

3http://jslp.sourceforge.net/
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Figure 3.8: Duration from the start of a solicitation message until its reply arriving to the initiator.
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Figure 3.9: Comparison of SLP solicitation messages to SLP URIs carried in SDP.

Results on the traffic shaping feature
To observe the effect of message size on the packet reception rate, 2000 messages
are transmitted and their reception rates are presented. Half of the messages are
composed of just one packet and the other half is composed of four packets. As
seen in Figure 3.10, the increase in the number of packets decreases the rate of the
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Figure 3.10: Successful arrival ratio of the advertisement messages in different machines with
different metadata sizes.

successful message reception. It is also observed that the second machine has higher
drop rate with respect to others. This shows that the retransmission threshold
should be determined by considering different devices and the noise levels that they
encounter.

Until now traffic shaping is not employed in the experiments. As mentioned
in Section 3.3.4, traffic shaping is used to avoid congestion. Fragmented parts of
a message are transmitted by inserting sleep intervals among them. Figure 3.11
presents the effect of the traffic shaping on the dropped messages. Among the
partially arrived messages, packets are grouped according to their sequence ids.
Without traffic shaping, as the id increases the reception rate decreases. When
traffic shaping is employed the reception rate becomes the same for all. Moreover,
the overall successful transmission rate increases from 0.4 to 0.5. Exceptionally, in
this example the reception rate for the last packet is larger than the others even
if the traffic shaping is enabled. The reason is that last packet is smaller than the
others. Other packets use the whole MTU (1500 bytes). However, the last packet
carries the rest of the message which is 800 bytes and small packet effected from the
noise less than the longer ones.
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Figure 3.11: A message is composed of four packets. Among the dropped messages, the number
of received packets with respect to their ids are given. The last packet has smaller size and hence
its success rate is higher.

3.5. Existing Architectures
Service discovery is an active research area started in 1990s. There are many pro-
posals up to now. In this section, we present some of the well-known and widely-
supported service discovery protocols and compare them with SDP.

3.5.1. Service Location Protocol
Service Location Protocol (SLP) is a standard defined in RFC 2608 and RFC 3224.
The main communication protocol is UDP multicasting. Unicast TCP messages
are also used for long messages to improve the reliability. The messages are in
URI formats like “service:printer-detector.1234://example.com:8080” which requires
exact matching. Three different roles exist:

• User Agent (UA): looks for the services,

• Service Agent (SA): provides the service and announce it,

• Directory Agent (DA): stores the list of services to solve scalability issues. It
is optional.

In the absence of the DA, the system works in a distributed fashion. Otherwise,
the service announcements are cached by DA and again the search queries are replied
by DA.
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3.5.2. Universal Plug and Play
Universal Plug and Play4 (UPnP) is a set of network protocols which aims at seam-
less discovery and control of devices without human intervention. Leading com-
panies in the electronics industry support the research on UPnP and some end
products have already been commercialized. The devices such as computers, net-
work printers, smart phones, televisions discover each other when they are attached
to the same network. Then, they can exchange data and configuration parameters.
It should be also noted that UPnP is more than just a service discovery protocol, it
is an architecture in which pervasive devices control and exchange data among each
other in a peer-to-peer way.

Simple Service Discovery Protocol (SSDP) [48] is an outdated IETF Draft but
adopted by UPnP community as the service discovery protocol. Similar to SLP, it is
based on multicast search messages. However, the protocol used for transportation
is HTTPU (HTTP over UDP). UDP is preferred for HTTP transmission to reduce
the overhead of TCP signaling and to use multicast instead of unicast. SSDP client
multicasts an HTTPU discovery message to a predefined multicast channel. The
services which listen to the channel replies with unicast HTTPU messages when the
queried service matches. Apart from this request-response scheme, services can also
announce their presence when they first join into the network.

Unique Service Names (USN) are URIs which uniquely define the services. USNs
are used to handle the change of the point of attachment of the services in the net-
work. An example of request and response message from [48] is given in Figure 3.12.
As it is seen, it is an HTTP message whose payload involves some predefined key,
value pairs like “Host”.

3.5.3. Device Profiles for Web Services
Device Profiles for Web Services (DPWS) [71], proposed by Microsoft, is similar
to UPnP, designed as a plug-and-play architecture which involves discovery, con-
trol, and eventing of the services. Differently from UPnP, every service is con-
sidered as a web service and therefore all the standards depends on web services
[71]: WSDL 1.1, XML Schema, SOAP 1.2, WS-Addressing, and further comprises
WS-MetadataExchange, WS-Transfer, WS-Policy, WS-Security, WS-Discovery and
WS-Eventing.

WS-discovery [72] is the service discovery protocol used in DPWS. SOAP over
UDP is chosen as the transport protocol and messages are multicast to enable ad
hoc mode of operation. Besides the ad hoc mode of operation, there is a managed

4http://www.upnp.org/
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M-SEARCH * HTTP/1.1
S: uuid:ijklmnop-7dec-11d0-a765-00a0c91e6bf6
Host: 239.255.255.250:reservedSSDPport
Man: "ssdp:discover"
ST: ge:fridge
MX: 3

----------------

HTTP/1.1 200 OK
S: uuid:ijklmnop-7dec-11d0-a765-00a0c91e6bf6
Ext:
Cache-Control: no-cache="Ext", max-age = 5000
ST: ge:fridge
USN: uuid:abcdefgh-7dec-11d0-a765-00a0c91e6bf6
AL: <blender:ixl><http://foo/bar>

Figure 3.12: Example of SSDP request and reply messages.

mode in which a centralized proxy exists to coordinate the traffic. There is also
a dynamic mode which combines both ad hoc and managed schemes. Centralized
mode is mainly proposed to reduce the multicast traffic load in the network.

3.5.4. Zero-Configuration Networking
Zero-Configuration Networking5 (Zeroconf) uses Multicast DNS/DNS-SD (IETF
Draft standard) for service discovery. Multicast DNS enables well-known Domain
Name System (DNS) application without the existence of a central server. Devices
can query the services using the multicast messages. Similar to the other service
discovery protocols, a standardized set of URIs are used to identify the services.
Mainly, it is being supported by Apple Inc. in the name of Bonjour6 with Apache
2.0 License and as another open source implementation for Linux and BSD machines
in the name of Avahi7.

DSN-SD (DNS-Service Discovery) uses different record schemes for identifying
and configuring the services. The Service (SRV) (RFC-2782) records are in the
form of “Instance.Service.Domain” and defines the target host-port pair of the ser-
vice address. The DNS Text (TXT) records are “key=value” pairs and are used
to provide additional information about the service such as the queue name of a
printing machine. DNS Pointer (PTR) (RFC 1035) records are used in the form of
“Service.Domain” to discover available instances of a service.

5http://www.zeroconf.org/
6https://developer.apple.com/opensource/
7http://avahi.org/
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3.5.5. Semantic Service Discovery
All of the above protocols employ text-based matching which can be considered as
a problem. As mentioned in Section 3.2.1 and in Section 3.2.2, ontologies are better
options for representation. Multicast Resource Discovery Protocol (mRDP) [95] is
a semantic service discovery protocol. OWL is used as the message format. Only
solicitation messages are allowed, advertisement is not considered. The solicitation
messages are over multicast HTTPU packets for scalability and the responses are in
unicast HTTP packets to guarantee the delivery. Although semantic data is carried
as in SDP, the choice of the transport protocol differs significantly. In SDP, instead
of heavy protocols like HTTP, ICMPv6 is used that operates on the network layer
and low power devices are addressed with legacy support. SDP offers authentication,
integrity via SEND. Advertisement messages are supported which helps caching the
services and decrease the response time.

UPnP architecture may also be mixed with the semantic languages [91]. UPnP
messages can be converted to ontologies on which other devices may infer. The
ontology created in [91] may be used in the SDP since SDP does not restrict itself
in one language.

INDISS [17] interoperability system and in general the Amigo8 project uses
OWL-S9 (Semantic markup for web services). In another example, home device
interoperability is improved by using ontologies on top of SOA based service discov-
ery protocols such as UPnP and DPWS [29].

There are some works in pervasive and sensor network environments. The pro-
posed service discovery scheme in [100] tries to convert the natural language queries
to machine understandable ones for the sensor like small devices. In [81], service
discovery algorithms for pervasive environments are proposed which aim to guide
service discovery with the context information or personal preferences of the users.

When we move to the web domain, there are many works that concentrate
on semantic web services. Researchers try to develop new algorithms for better
matching of the services for the requirements of the users. In [76], an ontology
framework which categorizes the services according to their functions is proposed.
S-MatchMaker [58] improves service discovery by involving quality of the services in
the selection process. Semantic web services research supports our research with the
tools that are used in the matching of the web services. Most of these algorithms
can be incorporated in our work as a back-end system for service matching.

8www.amigo-project.org
9http://www.w3.org/Submission/OWL-S/
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Table 3.3: Comparison of different service discovery protocols.

SLP SSDP DNS-SD WS-
Discovery

mRDP SDP

Carrier Protocol UDP & TCP HTTPU DNS SOAP& UDP HTTPU&
HTTP

ICMPv6

Operating in Heteroge-
neous Networks

R R R R R X

Ad hoc mode X X X X X X

Service Description Text Based
(URI)

Text Based
(USN)

Text Based
(DNS-SRV)

Structured Text
(XML)

Ontology
(OWL)

Ontology
(OWL) & Text
Based (ALL)

Evolves for future
requirements

R R R R X X

Unified Discovery R R R R R X

Inference R R R R X X

Advertisement
Message

SAAdvert ssdp:alive R Hello R Multicast SA

Resource Information R R R R R X

Context Information R R R R R X

Personalized R R R R R X

Reliability Long messages
in TCP

Retransmission Retransmission Retransmission Reply with
HTTP (TCP)

Retransmission

Authentication and
Integrity

R R DNSSEC SSL or WS-Sec Partial SSL SEND (IPv6)

Confidentiality R R R R R R
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3.5.6. Comparison with SDP
Many organizations have proposed state-of-the-art protocols like UPnP, DPWS and
Bonjour which target service discovery satisfying specific sets of requirements mak-
ing those protocols better than others in one way or another. Due to the prominent
and distinctive features of these protocols and with the competitive support of the
companies behind them, there is still no dominant service discovery mechanism.
As a result there are disconnected islands of devices that can only interact with
compatible ones belonging to the same vendor. Another main incompetency of the
present protocols is their inability to infer beyond the shared pieces of service def-
initions. The operational service discovery architectures are based on simple text
matching of the service descriptions. Generally, a URI ( e.g., service:printer-de-
tector.1234://example.com:8080 ) is published in a network. Other devices that can
look up and match the text are able to recognize and consume the service (the
printer in this example). When a new type of service is developed, the standard-
ization bodies must come up with a new URI that define the service, and all the
machines should upgrade their data stores. While existing services evolve; new
services appear everyday. That is why the devices should embrace the change by
inferring the meaning of a service by themselves.

Our proposal, SDP, is a service discovery protocol that carry semantic repre-
sentations of the resources and the capabilities of the devices which also include
the owner information. We compare SDP with other service discovery platforms in
Table 3.3, but we should note that UPnP and DPWS like protocols involve many
other features apart from discovery. Therefore, we do not claim that SDP outper-
forms all other protocols, it can only provide ideas about the incompetencies of
other protocols.

As shown in the table, firstly, all the protocols support ad hoc mode operation
and use multicast messages for scalability. Ad hoc mode is crucial for the networks
without a central authority. Secondly, recent proposals on service discovery have
a tendency on employing more expressive representations of the services like XML
in WS-Discovery and ontologies in mRDP. Many researchers agree on the expres-
sive capabilities of ontologies and the importance of such intelligent architectures
that will minimize human intervention. SDP also motivates the use of semantics.
However, main contribution of SDP is the distribution protocol which operates on
the network layer to eliminate heterogeneity. SDP can crawl in different network
architectures provided that they use IP as the network layer. Fortunately, IP is
becoming a convergence point for many different network architectures.

Finally, another contribution of SDP is that it combines different service dis-
covery protocols by carrying their service identifiers together. The TLV fields of
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ICMPv6 packets can store the identifiers, and when the peer network stack gets the
identifier it pushes the identifier to the original handler of the standard. However, in
the long run with the involvement of vendors, service representations can converge
to ontologies.

3.6. Conclusions
Devices are not swiss army knives that incorporate all the required functionality
in one item. They need to cooperate and share their functionalities with others.
As a first step towards the cooperative networks of devices, devices should discover
each others’ services. Operational service discovery protocols that we use today do
not adapt to future requirements. They use simple text-based representations of
the services instead of more expressive ontologies that allow inferencing on gathered
information. Moreover, existing service discovery protocols create their own islands
where only devices from the same vendor can participate in communication.

The Smart Discovery Protocol proposed in this chapter is a semantic service
knowledge discovery protocol that operates at the network layer. Being embedded in
the operating system, SDP is independent of the application layer protocols and the
communication interfaces. Inspired by the Neighbor Discovery Protocol, ICMPv6
messages carry service definitions and service queries. The resources and capabilities
are carried together with context and owner information. The underlying protocol
does not provide reliability, but we showed that rate limitation can be incorporated
improve reliability.

Semantic Web tools and vocabularies like OWL and SPARQL are used to de-
scribe the services. The URIs used in existing service discovery protocols like SLP
are embedded in TLV options of the ICMPv6 packets. In this way, several discov-
ery messages are unified in one message. Moreover, while other service discovery
protocols do not include owner information, SDP can include URIs that points to
social profiles of devices with owner information. In this way it is possible to create
a cooperative network of social devices that discover each other’s services without
human intervention.

SDP still requires extensive testing in heterogeneous networks to determine the
parameters like traffic shaping and number of retransmissions. SDP works in ad
hoc mode. However, many other discovery protocols employ optional centralized
servers that store all the service details, to decrease the number of messages sent
in the network. Although we do not expect any issues in home networks, in en-
terprise networks a storage server may be required for scalability. In such a case a
central scheme should be developed. Fortunately, ICMPv6 packets are parsed by
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the routers. Therefore, routers can act as storage servers.



4
Secure-by-Default IoT via

Decentralized Social-Device
Networks

In this chapter, we elaborate our vision of “devices that know their owners”, which
is described in Chapter 1 and create decentralized social-device networks (DSDN).
A social-device cooperates with other devices that exist inside the trusted social
network of its owner(s). By automating cooperation and access control over so-
cial devices, we create cooperative as well as secure-by-default IoT systems. Af-
ter describing DSDN, we identify its core challenge of decentralized social network
search, whose complexity is quadratic for indirect relations. We solve this search
problem in both computationally unconstrained and constrained environments. In
unconstrained environments, we limit the search space by incorporating proxim-
ity information. As an example application we deploy DSDN on an access point
by modifying the open-source Hostapd project and EAP-TLS standard where the
access point captures WiFi beacons for proximity detection. For constrained envi-
ronments, we propose a delegation-based architecture, in which a server with more
computational power searches social networks instead of a constrained device. We
modify the Datagram Transport Layer Security (DTLS) standard, which is designed
for constrained devices, to incorporate delegation.
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4.1. Introduction
In the next decade, humans will be outnumbered by pervasive devices, ranging from
highly capable smartphones to constrained sensors and actuators [4]. Due to the
abundance of devices and also the hardware constraints (e.g., lack of a display and
I/O interfaces), consumers skip complicated deployment procedures. They tend to
employ default security and privacy settings, which eventually leads to security and
privacy vulnerabilities. Research by HP indicates that 80% of the most common
IoT devices fail to require strong passwords and account enumeration reveals 70%
of the accounts [45]. Moreover, exploitations have already started as demonstrated
by the 2014 incident of the public streaming of many residential webcams by adver-
saries [35].

The use of insecure or default passwords may be eliminated via educating the
users. Nevertheless, scale (i.e., abundance of devices) will remain a significant chal-
lenge for the industry as well as for the consumer market. Scalability may be sus-
tained to some extent by creating tools that keep track of passwords or introducing
authorization servers like the standardization efforts of the IETF-ACE (Authen-
tication and Authorization for Constrained Environments) group. However, for a
complete solution, we should focus on the behavior of users. Consumers share their
resources, such as Internet connection, with their real-life social networks (e.g., one’s
family or friends) while in industry, device access is restricted based on role infor-
mation.

In this chapter, we address the abundance of devices that lead to management
problems by introducing autonomy and we eliminate the complicated procedures
by creating a secure-by-default system, that is a secure system by default set-
tings. We argue that an autonomous and secure-by-default system is possible if
devices are social in the sense that they recognize their owners and owners’ social
networks. Then, devices can take access control decisions on behalf of their owners.
For instance, HVAC sensors spread in a house could share their readings with the
Nest thermostat in the living room by inferring that both of them are owned by the
same family.

We envision that the only step that the owner of a resource server (e.g., NEST
thermostat) should do is declaring her ownership–even with the devices that have
no user interface. That is, unlike other imprinting techniques where a symmetric
key is installed into a resource server either via physical contact or wirelessly in a
faraday cage [56], the owner does not interact with the resource server. Instead, the
ownership is declared in the Internet. An example scenario for a smooth human-
computer interaction is as follows: The resource owner will declare the ownership
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Figure 4.1: The resource owner declares the ownership just by scanning a QR code or RFID/NFC
tag that contains the security credentials to update the social profiles of the devices. No other
action is required by the resource owner for securing the deployment.

just by scanning a QR code or RFID/NFC tag on the resource server, which
contains a link to the social profile of that server with its security credentials. As
shown in Figure 4.1, a smartphone will do the scanning. The app will access the
server’s social profile and embed the ownership relation. No other action is required
by the owner, the rest is automated. The access point of the residential network
will recognize the resource server with its owner and grant network access. Later,
the server will authenticate and authorize resource requests based on its owner’s
social network (i.e., the relation between the resource owner and clients).

Several researches have claimed that all such authentication and authorization
can be automated by IoT devices if they had the notion of a social network that
involves role information as well [9, 40, 96]. Being centralized, where a server acts as
a proxy, leads to drawbacks such as scalability, single point of failure, offline (with-
out Internet connection) operation and especially privacy in these architectures. We
argue that decentralized architectures are better in avoiding these drawbacks. With-
out end-to-end security, proxy-like entities can eavesdrop the communication and
violate privacy. Moreover, compared to today’s centralized social network platforms
like Google+, Facebook and Twitter, a social network of devices will have a similar
scale–may be even more since each person can have multiple devices. Therefore, a
centralized approach demands huge investments for its infrastructure. On the other
hand, decentralization distributes the cost. Finally, centralized architectures inhibit
interoperability and lead to vendor lock-in, which we should avoid to improve the
utilization of constrained devices by increasing their interactions.

In this chapter, we advance the state-of-the-art by abandoning the centralized
solution, we propose decentralized social-device networks (DSDN) to auto-



4

68 4. Decentralized Social-Device Networks

mate device accesses. As shown in Figure 4.2, each device is represented by a URI
that points to a social profile of that device. The ownership information is embed-
ded into the social profile. Authentication and authorization are achieved via the
WebID-TLS standard [86], which grants access based on social relations between the
owners of devices. The drawback of our decentralized approach is its computational
overhead, especially while discovering the social relations that are distributed in the
Internet. After we identify the problem, we solve it with a context-aware approach
in unconstrained environments (i.e., networks of computationally powerful devices
such as smartphones, access points, and laptops) and by employing a delegation-
based architecture in the constrained case (i.e., networks of computationally weak
devices such as embedded systems, see Section 4.6 for more detail).

DSDN in unconstrained environments. As a case study for unconstrained
devices, we have created a social access point (Social-AP) that grants network ac-
cess over DSDN. Social-AP discovers the owner of an authenticating device, such
as a smartphone, by checking its social profile. Social-AP has its own social pro-
file, and hence, knows its owner as well. If both owners are socially connected and
access control rules permit, the smartphone is allowed to join the network. Here
the challenge is that, when the smartphone and Social-AP are not related directly,
for instance their owners have a common friend, the search complexity becomes
quadratic and the whole process lasts minutes. We show that the simple heuristic
of limiting the search to friends and devices in physical proximity makes for a scal-
able solution. After all, it is highly unusual for people to grant access to random
acquaintances if not accompanied by a “known” mutual friend. This intuition is cor-
roborated in [5], where it is shown that the likelihood of having a social connection
to a person is inversely proportional to the actual distance to that person. We track
regular WiFi probe requests to determine which devices are in the vicinity, and sort
them according to time of arrival, checking the most recent ones first. This strategy
was experimentally verified to greatly reduce the search time; for a social network
of neighbor degree 4, the worst case performance of an indirect friend search was
decreased from 1 minute to a mere 11 seconds.

DSDN in constrained environments. IoT also includes constrained devices
that cannot perform the social profile search at all (See Section 4.6). Therefore, we
enhance our DSDN proposal to constrained devices and constrained-device networks
as well. Constrained devices delegate the search to an authorization server. To
realize the architecture, we have modified the Datagram Transport Layer Security
(DTLS) standard, which replaces TLS in constrained environments, for DSDN and
delegation. Our real-life experiments indicate that the communication overhead of
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Figure 4.2: All devices have a WebID pointing to their social profiles, which store ownership
information. Devices allow access to each other based on the ownership information.

the delegation process is as low as 7%, while the amortized cost of added latency is
less than a second.

The rest of the chapter starts with a background information. Section 4.3 de-
scribes DSDN and identifies the complexity of social network search. Section 4.4 and
4.6 present our solutions for social network search, which are followed by sections
for real-life evaluations in unconstrained and constrained environments, respectively.
Section 4.8 analyses the security threads. Section 4.9 investigates the state of the
art and positions DSDN. Finally, Section 4.10 concludes the chapter.

4.2. Background
Before describing DSDN and our improvements for constrained and unconstrained
environments, we would like to explain the Datagram-TLS (DTLS) and WebID-
TLS protocols since they are at the core of our proposal. Moreover, we give some
information about WiFi probe requests, which we employ for context-aware search
optimization.

4.2.1. DTLS for End-to-End Secure Channel in Constrained
Environments

Datagram Transport Layer Security (DTLS) protocol secures the channel between
two end points regardless of the number of intermediate connections. Both peers
determine a common secret key to encrypt the application layer traffic by exchanging
plain-text messages over an insecure channel. All this message traffic is called a
DTLS handshake. We present a DTLS handshake with certificate exchanges in
Figure 4.3. Messages are grouped, which are called flights. In case of a message
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CLIENT (e.g., Smartphone) RESOURCE SERVER (e.g., NEST)
------------------------- -----------------------------

ClientHello --------> Flight 1

<------- HelloVerifyRequest Flight 2

ClientHello --------> Flight 3

ServerHello \
Certificate \ Flight 4

ServerKeyExchange /
CertificateRequest /

<-------- ServerHelloDone /

Certificate \
ClientKeyExchange \ Flight 5
CertificateVerify /
[ ChangeCipherSpec ] /
Finished --------> /

[ ChangeCipherSpec ] \ Flight 6
<-------- Finished /

Application Data <-------> Application Data

Figure 4.3: A DTLS handshake with certificate exchanges. At the end of flight 6, both parties
share a secret symmetric key to encrypt the application layer traffic. In DTLS-PSK (Pre-shared
key) mode, certificate related messages are omitted.

lost, the whole flight of that message is retransmitted. The handshake is initiated
by the client via the ClientHello message. At the end of the Flight 5, both peers
possess the same secret key to encrypt the application traffic. ChangeCipherSpec
packet signals the start of the encrypted traffic.

The given handshake example is certificate based and requires more messages
than DTLS-PSK (Pre-shared Key) mode. In addition to extra messages of certifi-
cates, cryptographic operations are also heavier such that they take seconds in a
constrained node (See Section 4.7). On the other hand, despite of its drawbacks,
certificates alleviate the key distribution problem of the PSK mode. In constrained
nodes, Elliptic Curve Cryptography (ECC) is preferred over Rivest-Shamir-Adelman
(RSA) based cryptography due to shorter key lengths, 160 vs 1024 bits. Fortunately,
to further shorten a handshake and avoid expensive certificate operations, session
resumption feature has been added to the standard. The symmetric key that has
been created in a previous handshake is re-used to generate a new one. Hence,
peers do not have to repeat the whole handshake and they avoid certificate related
operations.
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<?xml version="1.0" encoding="utf-8" ?>

<rdf:RDF xmlns:rdf=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:pingback="http://purl.org/net/pingback/"

xmlns:cert="http://www.w3.org/ns/auth/cert#">

<foaf:Person rdf:about= "https://wonderland/alice/card#me">

<foaf:name>alice </foaf:name>

<foaf:givenName>alice</foaf:givenName>

<foaf:img rdf:resource="https://wonderland/alice.png"/>

<foaf:nick>alice</foaf:nick>

<foaf:mbox rdf:resource="mailto:alice@wonderland.com"/>

<foaf:knows rdf:resource="https://wonderland/BOB/card#me"/>

<foaf:knows rdf:resource="https://wonderland/CHARLIE/card#me"/>

<cert:key>

<cert:RSAPublicKey>

<cert:modulus rdf:datatype=

"http://www.w3.org/2001/XMLSchema#hexBinary">

c2e98ceadf831ab308735c8b30e54a76fe76a9d6...

</cert:modulus>

<cert:exponent rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">

65537</cert:exponent>

</cert:RSAPublicKey>

</cert:key>

</foaf:Person>

</rdf:RDF>

Figure 4.4: Example public profile of Alice. The profile declares the public key information via
“cert:key” and the social network via “foaf:knows” keywords.

4.2.2. The WebID Protocol for Decentralized Authentica-
tion & Authorization

WebID is a single-sign-on and distributed authentication standard [86]. It is de-
signed as an authentication and authorization protocol for distributed online so-
cial networks (DOSNs). Distributed social profiles written in Friend-of-a-Friend
(FOAF) [24] vocabulary establish DOSNs as an alternative to the centralized social
networks. FOAF is a vocabulary with which a person can publish his social network
in a profile document on the web. An example is shown in Figure 4.4. In this exam-
ple, Alice declares her friendship to Bob and Charlie using “foaf:knows” statements.
Note that URIs are used to clearly identify people instead of their plane names. In
WebID protocol a person, company, organization or any other thing are defined by
a URI and the URI is placed in a X509v3 certificate. With this certificate and a
public social profile, a user can login to a server with WebID protocol.

The protocol is embedded in the Transport Layer Security (TLS) protocol. We-
bID simply replaces the certificate authority (CA) based verification step of TLS



4

72 4. Decentralized Social-Device Networks

with a social network based one. Instead of a CA, social profiles and trust between
the people verify a certificate. It resembles the Web of Trust (WoT), where cer-
tificate owners sign each other’s certificate to indicate a social relation and trust.
The difference is that in WebID, social networks are incorporated to establish trust
instead of certificate chains.

When a client requests authentication by handing a certificate to the server, the
TLS protocol starts off by verifying whether the client holds the private key that
corresponds to the public key in the certificate. Then the WebID protocol takes over
control for performing two essential steps: identity verification and trust establish-
ment. In the identity verification step, which is the authentication step, certificate
verification is done with social web profiles. A certificate contains the URI address
of the personal profile document of the client in the optional Subject Alternative
Name (SAN) field. When the authenticating server receives the certificate, it follows
the URI link in the SAN field and fetches the profile document such as the example
shown in Figure 4.4. SPARQL, the semantic web query language [79], is used to
query the profiles. The server checks the equality of the public key provided in
the certificate and the personal profile document. If the public keys are the same,
it concludes that the client is the owner of both the certificate and the personal
profile document. In case of a compromise of a private key (e.g., through theft),
the certificate can be revoked by simply removing its public key from the profile.
The URI serves as the identity of the authentication requester; the name, surname
or email address fields are not taken into account. Although the identity of the
client is verified as the URI, the server still cannot grant access without a social
tie between the client and the server. An authorization (trust) step is required. In
this authorization step, the authenticating server crawls the profiles on the web to
discover a social tie between the client and the server. The social network ties are
declared by the “foaf:knows” statements. As presented in Figure 4.4, Alice declares
that she knows Bob by using the “foaf:knows” statement. The time consuming part
of the WebID protocol is this trust and authorization step where a social tie from the
server to the client is discovered. After the identity verification and trust steps, TLS
takes control back and proceeds further to encrypt the channel with a symmetric
key.

4.2.3. WiFi Probe Requests for Proximity Detection
Detecting which devices are present in the vicinity of a device is key to bounding
the search for indirect trust relations and WiFi probe requests indicate the presence
of a wireless device in an access point scenario. There is no need for developing
custom solutions as we can simply leverage the normal WiFi registration process.
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Wireless client devices detect the APs by scanning the WiFi channels. There are
two modes of scanning: passive and active. Passive scanning sniffs every channel
for AP beacons, whereas active scanning sends probe requests to APs to check
their presence. Active scanning is preferred over passive since it decreases the AP
detection time, hence the duration for AP association. In the 802.11 standard the
frequency and burst size of the probe requests is left to the vendor. The standard
states that on every WiFi channel the supplicant sends one or more probe request
and waits for the replies from APs for some time before moving to the next channel.
In Section 4.4.1 we will show that most devices probe the channels at least once
every 200 s providing an accurate view on the presence of the individual devices
(and their owners).

We should also note that with iOS 8 a MAC address randomization feature was
introduced for protecting privacy which unfortunately, disrupts beacon tracking.
However, there are many restrictions on randomization such that mostly it is inac-
tive. It is claimed that randomization only works when cellular data and location
tracking is off [63], and the phone is in locked state.

4.3. Decentralized social-device Networks
In this section we explain our proposal of decentralized social-device networks (DSDN)
for a secure-by-default IoT. Moreover, we introduce the challenge of crawling social
profiles in our decentralized architecture. In Sections 4.4 and 4.6, we address the
high complexity of DSDN itself and social network search for unconstrained and
constrained environments.

In the rest of the chapter, we follow IETF terminology given in Table 4.1 about
the entities involved. Resource server (RS) is the device that holds a resource such
as a light bulb or a smart thermostat and owned by resource owner (RO). Client (C)
is the device that accesses an RS such as a smartphone and owned by client owner
(CO). Profile servers (PSs) are distributed and they hold social profiles of both
devices (i.e., RS, C) and humans (i.e., RO, CO) in a machine readable format (e.g.,
FOAF). The PS of a resource server (RS) is pre-provisioned while manufacturing,
hence the PS of an RS belongs to the manufacturer. Assigning a new PS is only
possible after getting control of the RS.

The WebID-TLS standard (See Section 4.2.2) is the basis for DSDN. Not just
humans but also devices have a URI and a social profile that identifies them. A
client sends a certificate to an RS and the RS employs the WebID protocol for the
certificate verification and the authorization of the client. The client is authorized
by trust relations embedded in social profiles distributed in the Internet.
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Table 4.1: Role definitions partially adopted from IETF ACE working group

Resource A sensory information or an actuator (e.g., heat sensor,
door lock).

Resource Server
(RS)

A (constrained) device which hosts a resource only to
authorized entities (e.g., thermostat, access point).

Resource Tag a QR code or NFC/RFID tag that contains credentials
to access PS for ownership imprinting.

Client (C) An entity which attempts to access a resource on an
RS (e.g., smartphone, laptop).

Resource Owner
(RO)

Owner of the constrained RS (e.g., Bob).

Client Owner
(CO)

Owner of the client (C) device (e.g., Alice). CO and
RO are socially connected with relations such as same
person, direct friend or friend of a friend.

Profile Server(s)
(PS)

Cloud services that publish the social profiles of all the
above entities; also acts as the authorization server for
RS with constrained devices (See Section 4.6). PSs are
decentralized since each entity can have its own PS.

Smartphone App
(SApp)

Used by RO to scan a tag attached to RS and embeds
the ownership relation into PS.

Social profiles of devices. A device like an access point (AP) or a tablet can have
multiple owners. If we placed the certificate of a person directly into a device, only
one owner can be served. Therefore, we create a new <certificate, public profile>
pair for the device. In the public profile, the device can present all its owners. An
added benefit is that with individual profiles for devices we can create device-based
access control rules.

Proof of ownership. To avoid complicated ownership setup, we consider that
every RS is tagged with a QR code or RFID/NFC that includes necessary credentials
such as a cookie to access the social profile of the RS. The only action required by
the owner is reading the tag via a smartphone application. The application reads
the tag, accesses to the social profile and embeds the ownership information.

The first person who scans the tag takes over the ownership of RS. There is no
message exchange with RS, rather RS’s social profile in PS is altered. However,
we should note that the tags should be secured to prevent ownership override by



4.3. Decentralized social-device Networks

4

75

(a) Direct Trust (b) Indirect Trust

(c) Same Owner

Figure 4.5: Different types of trust. Oval shapes represent the owners of the devices. Smartphone
sends a certificate to an access point for authentication and authorization.

adversaries. The ownership transfer can be done in two ways: (i) the tag is scanned
by another entity, (ii) the current owner imprints the new owner to RS’s social
profile while removing her own information. Both of these transfer mechanisms are
accomplished autonomously via a smartphone application (SApp). Social-profile can
also clear the ownership information based on a timer, if only temporary ownership
were allowed.

Access control process and relation types. Now we will show how autho-
rization based on profiles works in a WiFi AP scenario. Assume that client is a
smartphone owned by Alice and it tries to access the AP of Bob. When the AP
gets the certificate of the smartphone, first it verifies the certificate by following the
embedded profile URI and checking if the keys “match”. After verification, the AP
learns the owner of the smartphone, Alice, by checking the social web profile of the
smartphone. As the AP knows its owner, Bob, a trust (friendship) relation should
be discovered now. There are three possibilities:

• Direct Friends: Alice and Bob are direct friends. In their social web pro-
files, they declare that they know each other by “foaf:knows” statements (Fig-
ure 4.5(a)),

• Indirect Friends: Alice and Bob are not direct friends, but they have a
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common friend called Charlie (Figure 4.5(b)). The AP should search the
social profiles of Bob and Alice for Charlie or any other mutual friend,

• Same Owner: Bob owns both the smartphone and the AP and he tries to
access to his own AP (Figure 4.5(c)).

For the sake of simplicity, we assume that having a social connection to a person
is enough for trust. However, in real life, we may not want to grant WLAN access
to our complete social network. Therefore a chain of access control rules should
be involved in the process. The role of the client’s owner may become crucial in
authorization. We leave access control as future work.

4.3.1. Social Network Search and Its Analysis
In DSDN authentication and authorization, messages between the devices (RS-
Client), and between resource and social profiles determine the latency. Among
two, the latter is the main contributor of the latency. Crawling social profiles is
both time consuming and varying part of whole process. Therefore, we present an
analysis of the search in this section, and in the upcoming sections we elaborate our
solutions for both constrained and unconstrained environments.

The algorithm of the search is given in Algorithm 1. Implicit HTTPS calls of the
functions to social profiles are highlighted by comments. k and n are the number
of owners and common friends, respectively. After certificate verification, first the
same owner relation is checked. Since a resource server (RS) may have more than
one owner (e.g. a family access point), same (common) owners can be multiple as
well. For each same owner, the possession of client is checked in line 6 (possession
is declared by “foaf:knows” statements). At the first verified possession of client,
the search completes successfully. The possession check is required to verify the
client owner. For instance, in case of a stolen client, if possession is not checked,
the “new” owner can access all the APs that the previous owner can. When there
is no successful same owner relationship, the friends of each RO are fetched and
compared to the client owners to find a direct friend. In case of a match, the direct
friend is checked for possession of client. From the nested loops in Algorithm 1, the
direct friend relation seems to have O(k2) complexity. However, the complexity is
actually “2k → O(k)”, since each direct friend is a client owner and we do only 1
possession check per owner by removing it from client owners list (see line 17). In the
absence of a trusted direct friend, the indirect friend relationship is checked. All the
friends of client owner(s) are fetched and compared to the friend list of ROs. Then
each common friend (direct friend) is verified if it knows the RO. The complexity
of indirect search is “k + 2nk → O(nk)”.
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Algorithm 1: Certificate verification and social tie searching. k and n are
the number of owners and common friends, respectively.

/* All the owners and friends are expressed as URIs */
/* Client_URI: URI of the client */
/* RS_URI: URI of the resource server */

1 if not VerifyCertificate( Client_URI) then // HTTPS
2 return FAIL

3 clientOwners = FetchOwnersOf( Client_URI) // HTTPS
4 resourceOwners = FetchOwnersOf( RS_URI) // HTTPS

/* SAME OWNER RELATION with complexity: k */
5 foreach co of Intersect(clientOwners, resourceOwners) do // +k
6 if co isOwnerOf( Client_URI) then // HTTPS
7 return SUCCESS
8 else
9 remove co from clientOwners

/* DIRECT FRIEND RELATION with complexity: 2k */
10 RO_Friends = []
11 foreach ro of resourceOwners do // +k
12 friends = FetchFriends( ro) // HTTPS
13 foreach df of Intersect( friends, clientOwners) do // +k
14 if df isOwnerOf( Client_URI) then // HTTPS
15 return SUCCESS
16 else
17 remove df from clientOwners

18 push friends into RO_Friends

/* INDIRECT FRIEND RELATION with complexity: k+2nk */
19 foreach co of clientOwners do // +k
20 friends = FetchFriends( co) // HTTPS
21 foreach idf of Intersect( RO_Friends, friends) do // +n
22 if idf isFriendWith( co) then // HTTPS
23 if co isOwnerOf( Client_URI) then // HTTPS
24 return SUCCESS

/* No connection was found. */
25 return FAIL

Each one of the friend fetches, certificate verification and possession checks ne-
cessitates a separate HTTPS connection. To decrease the number of HTTPS con-
nections, the RS can cache the URIs of its owner(s), and the URIs of the friends of
the owner(s) with their public keys. The friends list of an owner also involves the
devices he possesses since both the friendship and the ownership are declared with
the same “foaf:knows” statements1. It is, however, unfeasible to cache all the indi-
1The relation between the device and its user is not friendship, it is ownership. This lack of
discrimination has a consequence in the effectiveness of the search for trust relations through
(in)direct friends; our protocol also iterates over an owner’s devices instead of just considering its
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Table 4.2: The number of HTTPS connections required for authentication and authorization where
k is the number of owners per client and resource server, n is the number of common friends (See
Algorithm 1).

Number of HTTPS connections

Without Cache With Cache

Same Owner 3 + k 0

Direct Friend 3 + 2k 2 + k

Indirect Friend 3 + k + k + 2nk 2 + k + 2nk

rect friends due to their abundance (see Section 4.5.1). The worst case performances
are detailed in Algorithm 1 and summarized in Table 4.2. In worst case scenarios
all the owners and friends have to be queried for possession and friend relations.

An indirect friendship search has quadratic O(nk) complexity and as a conse-
quence it can easily lead to huge numbers of HTTPS calls. Assume that a tablet
and an AP both have k = 4 owners (a small family) and each of them has around
200 friends. If the number of common friends n = 100, according to Table 4.2,
3 + k + k + 2 × k × n = 811 HTTPS connections are required in the worst case.
In Section 4.5.1, we show that making such a large number of HTTPS connections
requires tens of minutes. In the next sections we solve this search problem.

4.4. DSDN in Unconstrained Environments: So-
cial Access Point

In this section, we propose a solution for search space problem defined in the previous
section for unconstrained environments. In an unconstrained environment, devices
have memories of hundreds of MBs and capable of working on HTTP protocol with
structured text parsing (e.g., FOAF in XML). We exploit the presence information
of the clients in the vicinity to limit the search space.

As an example scenario, we chose an access point (AP) as RS and a smartphone
as client. AP employs DSDN for access control, that is it becomes social (Social-
AP). Social-AP allows network access to the social network of its owner(s) without
requiring any passwords from clients. Though Social-AP is capable of searching
distributed social profiles, as we have shown in the previous section, indirect relations

trusted peers in the social network. As a future work, we plan to propose an ontology to include
the concept of ownership, and we consider refining that to the level of principal owner, second
tier owner relationships to enhance search efficiency to the maximum possible.
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pose a big challenge. In the next section, we address the quadratic complexity of
indirect search by incorporating proximity information.

4.4.1. Collecting Presence Information
Intuitively, in WiFi authentication, direct friends who bridge the indirect friends
to the AP, are probably in close proximity at the time of association. We can
bound the number of common direct friends by sensing the ones who are currently
in the vicinity of the AP. Moreover, by including the time of arrival, we can sort the
common direct friends according to their temporal distance to the indirect friend.
The code for bounding and sorting can be added to line 21 of Algorithm 1.

We use WiFi probe requests (see Section 4.2.3) to determine the direct friends
in the vicinity of the AP. From previous authentications the AP stores the URIs of
direct friends with their devices’ MAC addresses in its local cache. When the AP
catches a probe request for the first time from a device or the device was absent
for a while, the time of arrival of the device is updated. When an indirect friend
initiates the authentication, the time of arrival and the presence of direct friends are
used to improve search performance. The crucial part in this context-aware system
is the detection time of the devices in the vicinity. It is of no use, if detection
takes hours. As explained in Section 4.2.3, there is no standard for interval and
burst size of probe requests. In [23], it is stated that an expected interval is around
50-60 seconds. To verify that assumption we collected WiFi probe requests in an
office environment for two hours. Figure 4.6 shows the inter-arrival time distribution
from 35 different devices. Overall 87 devices had been recognized. However to have
enough data to present statistical results, only the devices with more than 20 probe
request readings are displayed. The firmware of the WiFi card and also the channel
noise determine the inter-arrival times. While some devices have almost constant
intervals like the first device, some have extremely variable intervals like device #9.
The results do not indicate a common inter-arrival range as in [23]. Nevertheless,
we can still conclude that inter-arrival times have a median of 56 seconds and 95
percentile of 179 seconds. With the presence detection in minutes, proximity based
common-friend sorting and bounding can work effectively.

4.5. Evaluation of The Social-AP
To validate our design of decentralized social WiFi AP and to determine the gain
of sniffing probe requests, we implemented a prototype version and tested it on
real hardware. We altered the Extensible Authentication Protocol-TLS (EAP-
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Figure 4.6: Inter-arrival times of the 802.11 probe requests from 35 devices in 2.4 GHz frequency
band over two hours.

TLS) standard, and renamed our version as EAP-SocTLS 2. EAP-TLS is part of
Hostapd 3, an opensource access point software implemented purely in C. In the
certificate verification part of the Hostapd code, we compare the public key to the
one in the social web profile. After verification, we call an external Python library 4

for the authorization part (i.e., searching for trust relations). Although all the
extensions can be embedded directly inside Hostapd, Python was selected for its
ease-of-use. The lines of code required to complete EAP-SocTLS are about 450 for
the Python library and 400 for Hostapd. An SQLite3 database stores the probe
requests. Note that our modification is completely transparent to the client side,
who follows the normal EAP-TLS process when requesting service from the AP.
The only requirement for the client device is to have a certificate with a link to the
corresponding social-profile page.

The integration of the WebID protocol into Hostapd was non-trivial due to
Hostapd being large and complicated project in terms of lines of code and features.
We embedded the WebID process in the OpenSSL tls_verify_cb callback function,
which is invoked when an error is detected such as (in our case) an unfamiliar cer-
tificate failing the built-in CA-based verification. Our heuristic for speeding up the
search process for indirect friends relies on presence information that is collected
in the background (separate thread); All sniffed probe requests with the MAC ad-
dresses and timestamps are pushed to an SQLite3 database. This information is
used to filter the common-friends by their temporal distance to the current suppli-
2https://github.com/yunus/Hostapd-with-WebID
3http://w1.fi/hostapd/
4https://github.com/yunus/python-webid

https://github.com/yunus/Hostapd-with-WebID
http://w1.fi/hostapd/
https://github.com/yunus/python-webid
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cant being authorized. One challenge in the filtering is that OpenSSL does not pass
the MAC address of the supplicant to the tls_verify_cb call. Fortunately, we are
still able to access the MAC addresses of all the devices that are currently being au-
thorized by Hostapd. Therefore, we use a pool of MAC addresses for the filtering in
a round-robin fashion. Once we are done verifying a (in)direct trust relationship we
give control back to Hostapd by returning from the tls_verify_cb function with the
authorization result, and the protocol continues further with the original EAP-TLS
sequence.

4.5.1. Results
Our experimental setup consists of a Samsung Galaxy S2 smartphone (client) con-
necting to a Dell Ultrabook with an Intel Centrino Advanced-N 6230 network card
(802.11g) serving as the AP. For the tests, we created a synthetic social network
with uniform structure at the https://rww.io website, which is designed for se-
mantic web applications and supports WebID. Although that web site has SPARQL
support, for convenience our EAP-SocTLS implementation fetches complete profiles
and processes them locally at the AP.

In the following experiments we show the performance of EAP-SocTLS, in par-
ticular with respect to the size of the social network (scalability). We study the
three different trust types (same owner, direct/indirect friend), and vary the neigh-
bor degree (number of friends/owners) from 1 to 4. In all scenarios we report worst
case performance where all possible links (relations) are crawled. The number of
common owners increases from 1 to 4 in the same owner case. In the direct
friend case the number of owners on both sides increase with each of the AP own-
ers knowing all client owners and vice-versa. In the indirect friend case the device
owners and common friends increase together. Note that while the number of own-
ers is increased for all types of trust, the effective number of common friends in the
indirect friend case increases quadratically (from 1 to 16).

The duration required for legacy EAP messaging for certificate and symmetric
key exchange depends on the quality of a wireless channel (inducing packet loss and
retransmits) and was found to typically take less than one second. With respect
to the duration of searching for trust relations (Figure 4.7) as implemented in the
external Python library, EAP messages do not contribute much to the results. This
prompted us to focus on the search part.

The duration of the search with different trust types and with increasing neighbor
(friend) degree is given in Figure 4.7(a), Following the analysis in Section 4.3.1, the
normal case indicates a linear increase in number of (same) owners and direct friends,

https://rww.io
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(b) Indirect friend search with context Information.

Figure 4.7: Durations for social relation discovery with different relations. Neighbor degree in-
creases from 1 to 4 in Figure 4.7(a) for each relation type. Neighbor degree is 4 in Figure 4.7(b)
while the number of common friends increases.

and a quadratic trend for the indirect friend relation. We also present results for
the case of an AP with a cache large enough to store the details of AP’s owners and
their respective friend lists. Usage of the cache for the same owner case reduces
the search time to zero as a simple lookup suffices; we do not plot these results for
clarity. For the other trust types, the performance improves a little, but caching
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Table 4.3: Predictions for search duration of higher neighbor degrees. Indirect Friend relation is
assumed to be quadratic and the rest as linear.

Worst Case Search
Duration (Seconds)

Neighbor Degree 10 100

Same Owner 9 82

Same Owner Cached ∼ 0 ∼ 0

Direct Friend 23 224

Direct Friend Cached 10 96

Indirect Friend 537 5279

*Indirect Friend Bounded
& Cached

12 88

*: Based on neighbor degree: 4; only the num-
ber of common friends changes.

does not change the fundamental linear and quadratic behavior. One might argue
that friends-of-friends information can also be cached, which would bring down the
search time to near zero, but the amount of storage requirement would then become
prohibitive. In [93], for example, it is shown that in Facebook, friends-of-friends
grow even faster than quadratic. For a person with 100 friends in Facebook, the
number of unique friends-of-friends averages to 27,500.

Observe that, even with caching enabled, the search time for indirect friends
grows to over one minute for a neighbor degree of 4. In order to bound the indirect
friend search, the AP collects and exploits presence information as explained in
Section 4.4.1. To show the effect, we placed one direct friend in the vicinity and
then add more direct friends linearly up-to 4. Figure 4.7(b) shows that the use of
context information reduces the complexity for an indirect friend search to a linear
process.

Creating a large social network is costly. Therefore, we resorted to extrapolating
the linear/quadratic search times to study the effects of scalability. In Table 4.3, the
estimated time required for searches with a neighbor degree of 10 and 100 are given.
The naive Indirect Friend search becomes infeasible; even with degree of just 10,
already 537 seconds are required. However, when applying presence information only
12 seconds are needed. In the real life we expect to obtain even better performance
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CLIENT (e.g., Smartphone) RESOURCE SERVER (e.g., NEST)
...

ServerHello \
WebIDURI \
Certificate \ Flight 4

ServerKeyExchange /
CertificateRequest /

<-------- ServerHelloDone /

WebIDURI \
Certificate \
ClientKeyExchange \ Flight 5
CertificateVerify /
[ ChangeCipherSpec ] /
Finished --------> /
....

Figure 4.8: Modified DTLS with WebID messages carry WebID URIs in flights 4 and 5.

as we only reported worst case results. Moreover, search performance can be further
improved by using better caching algorithms and parallel processing.

4.6. DSDN in Constrained Environments: Dele-
gation

In this section, we explain our improvements for DSDN on how to socialize con-
strained devices as well. We evaluate DSDN in constrained environments and pro-
pose a delegation based architecture for handling social profile search. More specif-
ically, we have altered Datagram-TLS (DTLS) protocol (See Section 4.2.1) where
devices delegate the social network search to an authorization server. Before that,
we want to explain the challenge in constrained environments.

Unlike an unconstrained server (e.g., Social-AP), which can operate on multiple
parallel connections to search for a social connection path, a constrained server
has limited memory, bandwidth, and computational power. In a duty cycled and
multihop network, each TLS connection may require seconds [47] and the whole
process may end in minutes, which is not acceptable for user experience. Moreover,
assuming that each social connection has hundreds of friends identified by URIs of
∼100 bytes in length, tens of KBs should be fetched and stored in the constrained
devices. The capabilities of constrained devices hardly cope with these requirements
since according to the IETF classification (RFC-7228), a class 1 device has ∼10 KB
RAM, which is five order of magnitude lower than an ordinary server with 1 GB
RAM. Therefore, we need a lightweight approach.
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Figure 4.9: The steps of the delegation process. The resource server (Nest) delegates the authen-
tication and authorization of the client to the profile server. All the communication occurs over
CoAP-DTLS.

4.6.1. Modified DTLS for URI Exchange
In DSDN, all devices and as well as humans are identified by URIs that point to
their social profiles. In WebID-TLS protocol (See Section 4.2.2), X509v3 certificates
carry these URIs in their subject alternative name fields. Unfortunately, these
certificates are too big and difficult to parse for constrained devices. Therefore,
IETF recommends the use of Raw public keys (RFC-7250) that only carry public
keys, nothing else. Since we need URIs for authentication and authorization over
DSDN, we propose new messages for DTLS handshake, called WebIDURI, to carry
them.

As shown in Figure 4.8, the new messages are added to flights 4 and 5. To keep
these messages shorter and thus decrease the overhead, URIs should be kept as short
as possible. In our evaluations we show that WebIDURI messages with 50 bytes of
URIs contribute as low as 7% of the whole DTLS handshake.

4.6.2. Delegation of Social Network Search
We follow a delegation-based approach to perform DSDN on constrained devices.
The social profile server (PS) of a resource server, whose address has been pre-
provisioned in the device, also acts as a delegation server. As shown in Figure 4.9, RS
asks PS for authentication and authorization of client. In step 1, RS delays the flight
6 of the DTLS handshake (See Figure 4.3) while consulting PS. In step 3, RS sends
the URI and public key of client to PS by using a GET query over Constrained object
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Access Protocol (CoAP)5 protocol that is secured by a second DTLS connection in
parallel the first. The format of the query is x=..&y=..&uri=.. where x and y
represents Elliptic Curve Cryptography (ECC) public key parameters. PS replies
with a short message composed of a 1/0 boolean and client’s URI to distinguish
parallel requests. If the reply from PS is positive, RS continues the DTLS handshake
from flight 6 and shares the resource at step 4. Otherwise, RS sends an access denied
DTLS alert to the client.

Bootstrapping. The address and public key of profile server, which also acts as
an authorization server, are pre-provisioned in RS during manufacturing. There-
fore, resource server does not need to discover PS. Moreover, the complete DTLS
handshake is only performed in the beginning, later either the connection is kept
alive or session resumption is employed. Thus, delegation overhead is minimized
after the initial handshake.

Offline operation. After the initial delegation process, new requests from the
same client can be handled offline without consulting PS. RS stores the public key
of client and marks it as authorized, while occasionally refreshing the authorization
by a delegation process. On the other hand, as we further discuss in Section 4.9.1,
OAuth2 provides temporary access tokens. In our case, DSDN can provide the same
functionality via access control lists (ACL), which are passed in JSON format (e.g.,
JSON web tokens [52]) from PS to RS. However, it is also possible to employ the
bearer tokens of OAuth2 since they are well-defined and employed in the industry.
The adoption of these options is as simple as switching from a boolean value of au-
thorization decision in step 3 to a bearer token or JSON-based ACL if a constrained
device has enough resources to operate on them.

4.7. Evaluation of Delegation
We have introduced the delegation process to minimize the communication, mem-
ory and computational overheads of the WebID protocol. However, delegation still
demands some resources. In this section we describe our implementation and eval-
uate the protocol on the OpenMote6 platform. OpenMote is based on CC2538SF53
which is a 32-bit Cortex-M3 microcontroller with 32 KB RAM and 512 KB ROM.
Its CC2520 like radio operates in 2.4 GHz and implements 802.15.4 standard.

5CoAP is lightweight version of HTTP, designed for constrained node networks with multicast
support.

6openmote.com
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Figure 4.10: Size of memory sections in KBytes for the OpenMote platform. The BASE case is
composed of Contiki OS+CoAP+DTLS-PSK. Stack is allocated inside the bss section.

We have modified Contiki OS 3.x7, TinyDTLS8 and Scandium9 to integrate
WebID and delegation support. The constrained RS runs Contiki OS and TinyDTLS
while the rest, client and PS, operate on an Ubuntu PC and use Scandium for DTLS.
In Contiki OS, we have altered the CoAP implementation for our modified DTLS
integration. Scandium and especially TinyDTLS have been heavily modified to
allow the new WebIDURI handshake messages. Moreover, in TinyDTLS, we have
added delegation process as described in Section 4.6.2. Our modified versions of
these software are also publicly shared10.

In the deployment, we have setup a one-hop 6LowPAN network where a Tmote Sky
node acts as a slip-radio interface to a border router11. We did not employ any radio
duty cycling below the CSMA based MAC layer.

4.7.1. Memory Overhead
We have analyzed the amount of ROM and RAM requirements by using arm-none-
eabi-size tool. Though our delegation based system demands more memory, it still
fits into available memory. In Figure 4.10, we present the RAM (i.e., data and
bss sections) and ROM (i.e., text section) values incrementally. In CC2538 based
environments, the stack is also served from the bss section, hence these results
involve the stack usage as well. The base case, which contributes around 90 KB
memory (refer to total column), contains Contiki, CoAP and DTLS-PSK. DTLS-
ECC feature increases the memory for ∼ 9% and finally DTLS-WebID adds ∼ 4.7%

7github.com/contiki-os/contiki
8tinydtls.sourceforge.net/
9github.com/eclipse/californium.scandium
10github.com/yunus
11https://github.com/cetic/6lbr
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over DTLS-ECC. The main contributer to the extra memory of DTLS-WebID is the
number of concurrent handshakes. To save memory in DTLS-PSK and DTLS-ECC,
concurrent connections are not allowed, hence only one client can be in handshake.
Whereas DTLS-WebID requires one additional peer for the profile server in parallel
to client connection. However, we should note that even if the client connections are
increased, still just one profile server connection is enough. In overall, according to
RFC-7228 terminology, we can conclude that high end class 1 constrained devices
handle delegated WebID protocol with ECC.

4.7.2. Latency
In addition to low memory footprint, delegation operation should have low latency
as well for a smooth user experience. In this section, we present the latency of our
one-hop 6LowPAN network. We’ve only focused on the time spent in the resource
server since we do not aim to assess the network performance. Moreover, we assume
that profile server immediately responds without checking trust connections. We
have considered latency of social network crawl in Section 4.5. It is known that
public key operations are computationally demanding and takes time. Therefore,
new microprocessors like CC2538 have built in hardware acceleration components.
Unfortunately, there was no driver for those features while we were experimenting
with our setup. We should also note that algorithms used for cryptographic opera-
tions perform differently. Here we stick to the algorithms provided by TinyDTLS.

We divide the latency measurements first based on client-RS and RS-PS, then
based on handshake flights. In Figure 4.11(a), the latencies of flights for client-RS
connection is given. Cryptographic operations dominate the whole process. How-
ever, we should note that with software improvements durations for ECC operations
can be dropped to less than 5 seconds [47]. Moreover, RSA based hardware acceler-
ators were shown to achieve performances in millisecond scale [46] and we expect to
get similar performance for ECC as well. Finally, session resumption feature avoids
public key cryptography by employing symmetric keys and hence further requests
from the same client would have lower latencies [47].

Between the flights 5 and 6 RS switches its server role and acts as a client
for authorization. The latencies of flights for RS-PS communication are given in
Figure 4.11(b). Again we observe high latencies. A noticeable difference from RS-
client connection is in the application traffic. Application data latency includes
the whole round-trip to the profile server and it is higher with respect to client’s
application data. The reason is that the carried data are more in the case of PS traffic
since the data include raw public key and the WebID URI while client data traffic is
just a few bytes of sensory information. On the other hand, the main latency is still
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(a) Initial handshake with a client. For upcoming re-
quests from the same client, session resumption feature
is used to circumvent heavy cryptographic operations.
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(b) Resource server acts as a client to fetch authoriza-
tion information from the profile server. Though the
overhead is high, it is a one time operation. Forthcom-
ing clients are authorized by only the application data
traffic.

Figure 4.11: Time spent in the resource server. Cryptographic operations are presented separately
to indicate the main contributor of the latency. Except the application data traffic, end-to-end
latency is not included, which is pretty low with respect to cryptographic operations.

due to public key operations. However, we should note that these time consuming
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flights are done once for all the resource requests. In the subsequent requests, there
is no need to repeat the whole process to create yet another symmetric key for
encrypting the traffic. Only the application traffic is repeated, which is around 0.2
seconds. As a result, the amortized cost of authorization delegation is less than a
second.

4.7.3. Communication Overhead

In constrained node networks, the communication overhead should be kept to min-
imum to save energy. Moreover, the retransmissions due to the nature of wireless
medium and multihop communication exacerbate the overhead. In our analysis, to
focus on the basis of the overhead, we did not account multihop and retransmission
delays. In the handshake messages, both RS and client exchange their social profile
URIs via the new WebIDURI message. In our implementation we set the maximum
length of a URI to 50 bytes, however, we advise to keep them as small as possible to
avoid message fragmentation. Regardless of the MAC layer, IPv6, UDP, and DTLS
headers account for 40, 8 and 27 bytes of overhead, respectively. With a URI of 50
bytes, 125 bytes would be transmitted in addition to MAC overhead. Considering
the 127 bytes MTU of 802.15.4, a 50 byte URI is on the edge.

When we consider the overall bytes transferred in our setup, we observe that
WebIDURI’s contribution is low. To calculate the overhead, we tapped the con-
nection between border router and PS via Wireshark tool. In the messages sent
from the RS, 139 out of 2178 bytes of all messages are contributed by WebIDURI
with maximum URI length. The overall bytes sent from client are fewer since the
client software (Scandium) is capable of bundling the messages. From client 77 out
of 941 bytes account for the WebIDURI. As a consequence, WebIDURI messages
contribute as low as 7% of all traffic.

Additionally, RS also contacts to PS again over a DTLS connection. RS asks for
authorization via the lightweight CoAP protocol. At first, delegation sounds like
doubling the communication overhead. However, as we mentioned in the previous
section, full handshake happens only in the very first delegation. In the subsequent
requests, only application layer data is transmitted. Moreover, compared to other
security proposals from ACE working group, which are summarized in Section 4.9.1,
all the proposals depend on an external authorization server. Hence, we expect
similar overhead in other proposals as well.
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4.8. Security and Privacy Considerations
In this section, we provide a high level security sketch of DSDN and discuss a number
of issues in terms of security and privacy.

4.8.1. Security
Notice that DSDN relies on actual standards of DTLS, EAP-TLS andWebID. There-
fore, the security of the overall protocol depends on the security of the underlying
building blocks. We assume that resource server is populated with profile server’s
public key in manufacturing, and the implementation of cryptographic primitives
are correct. Given these, DSDN is secure as the communication takes place in the
encrypted form, end-to-end encryption, using public key cryptosystems. However,
with delegation, we introduce a change in the DTLS where WebIDURI is transferred
in clear text in flights 4 and 5. This modification creates a risk for an attacker to
eavesdrop the communication. The information acquired by the attacker will be the
URI of both peers in the communication. This information can be used to track
the behaviors of the entities but the attacker cannot access to the content of the
communication due to the end to end encryption. The risk of an attacker changing
the content of the plain text WebIDURI, as well as other plain text information
in the protocol up to the flight 6, is eliminated in the standard by using message
digests added to Finished messages. To prevent the eavesdropping of WebIDURIs,
WebIDURI messages can be placed after flight 6 when the keys are exchanged for
secure communication. Being more secure, this approach fundamentally changes the
DTLS standard by adding two new flights. Due to the extra flights, the standard
gets complicated while latency and energy consumption both increases.

Furthermore, the DTLS standard is designed to guard the nodes to several well-
known attacks such as DOS, replay, and man-in-the-middle (Section 5 of [82]). In
the following sections, we discuss three scenarios each of which summarizes a case
where an involved party is compromised.

Compromised resource server. If an adversary takes control of RS and hence
acquires the public-private key pair, the information delivered from RS cannot be
trusted anymore. In that case clients should omit RS in information collection. The
detection of compromise is out of our scope. However, after detecting the misbe-
having RS, resource owners remove the social links to RS from their own profiles.
Thus, effectively ownership relation is revoked. Clients detect the compromise by
searching the profile of RS and inferring that the owner does not have a social con-
nection anymore. Compared to revocation list approach of revoking the key-chain
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based certificates and web-of-trust based on PGP certificates, DSDN offers a faster
response to compromises.

Compromised client. If a client’s public-private key pair such as the smartphone
in the Social-AP application, were compromised, the attacker can access to Social-
AP by using the keys. Fortunately, recovery is as easy as revoking the ownership
relation. The owner of the smartphone removes the ownership relation from her
social profile. Then, RS does not allow access since WebID protocol does not autho-
rize the smartphone. However, in offline operation the compromised public keys will
remain in RS until the next synchronization with PS. This is a typical stale-cache
problem. With frequent RS or PS originated updates, the compromised keys can
be detected and prevented from collecting the data.

Compromised social profile server. The trust between RS and PS is estab-
lished in manufacturing by imprinting PS’s public key and URI into RS. If the
private key of PS were compromised, a new public-private key should be installed
into RS. To accomplish this, a physical access to RS would be required if there were
no redundant trusted public keys installed as backup. Due to the physical access,
we consider PS compromise as the more disruptive one. However, since PSs are dis-
tributed, the effect of such a compromise remains local with respect to centralized
architectures where single point of failure is a concern.

4.8.2. Privacy
We have identified two different privacy concerns: privacy of social profiles and pri-
vacy of interactions. The former one is the problem of revealing social relations
while the latter is the problem of revealing the actual social interactions with the
social network. With respect to the former, unfortunately decentralized social re-
lation search requires the social profiles to be kept in plain text. Therefore, the
social relations among people and their devices are publicly available. One solution
for better privacy is obfuscating the profile by populating fake device ownerships
and friendships. Moreover, complete privacy is achieved by restricting profile access
to only close relations such as the same-owner and direct friend because, indirect
relations cannot be discovered when profiles are restricted.

With respect to device interactions, in DSDN, an attacker can only detect inter-
actions by eavesdropping the communication as explained in the previous section.
If the attacker is not in the same network, DSDN successfully conceals the inter-
actions, because resource servers carry out the social relation search by themselves
without revealing the client’s identity. However, note that in delegation, profile
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server obtains the peer’s identity. Consequently, if the profile server belongs to a
third party, then the interactions are revealed.

To conclude, DSDN violates the profile privacy–though there are some precautions–
while it protects the interaction privacy. We argue that interaction privacy comprises
more information than the other. The reason is that, social relations do not necessar-
ily indicate a close bond among peers. As observed in online social networks, people
do not interact with all of their friends. On the other hand, interactions of devices
are certainly real projections of ongoing and possibly close relationships among the
peers. In the next section, we show that only DSDN can protect interaction privacy
with respect to the state of the art.

4.9. Related work
The significance of social networks in cooperation was mentioned by Mihai et al. [22].
It has been shown that with respect to classical reputation and direct reciprocity
(e.g., tit-for-tat), cooperating with relatives/acquaintances is more prominent in co-
operation decisions. Atzori et al. [9, 10] and Guinard et al. [40] are leading groups
who initiated the idea of integrating social networks in IoT or web of things. The
social-IoT (SIoT) architecture, proposed by Atzori et al., mentions not just owner-
ship relation but also co-work, co-location, social-object and parental-object rela-
tionships. Among these our DSDN provides primarily social object and ownership
relations while using role information potentially offers the rest of the relationships.
However, both SIoT and the social access controller (SAC) proposed by Guinard et
al. [40] are centralized architectures. SAC, for instance, acts as a proxy between
the RS and client, hence it is capable of eavesdropping on the transferred data (i.e.,
violates end-to-end security).

Motivated by the above studies, we have proposed DSDN as a decentralized
alternative. In the next section, we position and compare DSDN to the currently
draft recommendations of IETF Authentication and Authorization for Constrained
Environments (ACE) working group.

4.9.1. Comparison to IETF-ACE proposals
There is an ongoing effort in the IETF ACE working group to standardize IoT
security. Various scenarios, models and technologies are being discussed. In this
section we position and compare DSDN to these draft proposals of the working
group.
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Figure 4.12: IETF ACE working group authorization models (a-c) in relation to DSDN (d). DSDN
with delegation resembles the pull model. DSDN in unconstrained environments is fully decentral-
ized, all the decisions are made by the resource server.

Architectures. Among five, here we mention the three that have minimal com-
munication overhead. That are pull, push and agent models (for a detailed com-
parison of all models please refer to [39]). All the models with DSDN are depicted
in Figure 4.12. The pull model is the same as our delegation model, where the RS
asks an authorization server (AS), PS in our case, for the access control decision.
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Table 4.4: Comparison of authentication and authorization models

End-
to-end
Security

Profile
Privacy

Interaction
Privacy

Robustness* Offline Op-
eration†

Agent – – – – –

Push • – – – ◦

Pull/Delegation • – – – ◦

DSDN • – • • ◦

•, ◦, and – represent full, partial, and zero support, respectively.
*: Robust to single point of failure.
†: Without Internet connection.

In the push model, first the client obtains a security token (e.g., bearer token for
OAuth2) from the AS and passes it to the RS to access the resource. If the RS
cannot decipher the token, it may need to consult to AS as an additional step. In
the agent model, similar to SAC described in the previous section, there is a proxy
between the client and the RS.

The comparison of all these models are summarized in Table 4.4. Though the
IETF does not mention social network integration, for a fair comparison, we assume
that all the architectures can be adapted to social network based access control.
Among all the architectures, the agent based model is the weakest since it violates
end-to-end security, privacy and it is vulnerable to single point of failure. Pull
and push models have similar properties as shown in the table. Both architectures
provides end-to-end security since authorization server is out of the traffic route.

Offline support (lack of Internet connection). In the push model, clients can
re-use old tokens, hence each client should reach the AS at least once. In the pull
model a resource server can store the credentials of client as trusted after the first
authorization server access. However, in the delegation model, a resource server
uses the locally replicated social profile, hence an RS does not have to communicate
with the AS all the time. Moreover, even without any Internet connection if the
social profile is replicated over the local area network, then the RS does not need the
Internet at all. This ability comes from the fact that the decision maker can be the
RS not just the AS. Note that replicating social profiles locally introduces the stale
cache problem and should be taken into consideration in system design.

Robustness. All the architectures except DSDN are vulnerable to a single point
of failure since in DSDN the decision maker is the resource server. Malfunctioning
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of resource servers or profile servers do not disrupt the whole system.

Privacy. As explained in the previous section, in DSDN social profiles have to
be kept as public. The ultimate solution for profile privacy is storing all the social
relations in “only” one authorization server (e.g., only Facebook, the rest Google+,
Twitter or others should not exist), then that authorization server discovers the
relations inside its protected network without revealing to outside. Another option
is trading off interoperability by allowing interactions of devices that belong to the
same social network provider. However, such centralized approaches violates inter-
action privacy, which we believe more important than profile privacy as discussed
in previous section. Fortunately, DSDN still protects interaction privacy.

4.9.2. Delegation-based Systems
Beyond pushing the authentication and authorization to a separate entity, crypto-
graphic operations can be delegated as well. In gateway like architectures [15, 36],
the cryptographic keys of the RS are shared with the gateway. Though effective,
such approaches do not provide end-to-end security and raise concerns about the
privacy. In a recent work from Hummen et al. [47], the session resumption feature
of the DTLS protocol has been exploited to offload the computation. The delega-
tion server handles the public key related computation and shares required session
resumption keys with both the RS and the client. With this delegation the commu-
nication and computational overheads are avoided in the constrained RS. We do not
see any issue in adopting this technique to DSDN or other delegation-based systems.
However, we should note that discovery of the delegation server, and the use of IP
addresses may limit the adoption. Since the delegation server simply spoofs the IP
address of the client to hand over session resumption keys, the network layer should
be capable of handling IP-conflicts and adapt its routing table.

4.10. Conclusions and Future Work
Our goal has been to create an autonomous and secure-by-default IoT system and
our proposal, decentralized social-device networks (DSDN), supports both of these
features. Devices and their owners are identified by URIs that point to their social
profiles. In these social profiles ownership and friendship relations are declared
for cooperation (i.e., authentication and authorization). DSDN is autonomous
since devices take decisions instead of their owners. In the interaction of devices,
authentication and authorization are carried out via a decentralized social network,
which is queried by the devices themselves. The only operation required by a human
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Figure 4.13: Future of DSDN, where trusted devices assist each other. That is, a constrained device
delegates authorization to an unconstrained trusted device of the same owner. Thus, the delegation
architecture becomes more robust and preserves interaction privacy. Moreover, in general Internet
dependency is fully relieved.

is declaring the ownership, which is just a tag/code scan. Moreover, our approach
is secure-by-default such that there is no additional security via complicated
procedures. From the beginning we employ public key encryption and hence, avoid
weak passwords. The system itself takes the responsibility for security; the user is
not burdened with complicated setups.

Compared to centralized architectures for social network integration, DSDN is
robust to single-point-of-failure, protects interaction privacy and can operate with-
out Internet connection. Unfortunately, decentralization has high computational
complexity of searching for social relations such that it increases latency in uncon-
strained devices (i.e., social access point) while it is not possible to implement in
constrained devices at all. For the unconstrained case, we have implemented DSDN
on an access point. We assume that for indirect relations, common friends are also
in the vicinity. Therefore, our “social” access point uses proximity information to
limit the search space via determining the common friend. Proximity detection is
achieved by overhearing WiFi beacons. For the constrained case, we have proposed
a delegation architecture where social network search is carried out by the profile
server. We have modified the Datagram-TLS standard and tested our solution on
real hardware. Experiments demonstrate that delegation contributes to as low as
7% of all traffic with added latency of less than a second.

The future of DSDN is trusted device networks where unconstrained devices act
as authorization servers for constrained ones. As shown in Figure 4.13, a smart
light may contact a trusted access point instead of reaching to the Internet. Thus,
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dependency for Internet connectivity is minimized while latency is decreased.



5
An Identity-Oblivious

Evolutionary Approach to
the Forwarder’s Dilemma

In the previous chapter, we proposed decentralized social-device networks (DSDN)
for cooperation. We pointed out the complexity of social network search and pro-
posed solutions for both constrained and unconstrained environments. We set the
minimal requirements for employing DSDN, which unfortunately exclude highly
constrained devices. These highly constrained devices cannot employ cryptographic
operations that ensure identity. Therefore, they cannot be involved effectively in
DSDN. These devices can either cooperate always and hence, are exploited by free
riders or they defect always and hence, are punished as well as isolated by more
intelligent devices.

In this chapter, our goal is to provide identity-oblivious meta strategies for highly
constrained devices to discover the locally-best strategy in a neighborhood. We
choose the forwarder’s dilemma as our application scenario since cooperation of de-
vices is fundamental in wireless multihop networks. We modify two meta strategies
from evolutionary game theory, Win-Stay Lose-Shift (WSLS) and Stochastic Im-
itate Best Strategy (SIBS), for wireless ad hoc networks. We redefine fitness by
means of packet traffic and propose the two-hop overhearing method to measure the
fitness. Simulations and real-life experiments show that both WSLS and SIBS are
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able to discover the locally-best strategy while they are robust to fake identities.
Moreover, we study the effects of local decisions on the evolution of the network.
While WSLS promotes cooperation up to half of the network, SIBS achieves full
network cooperation. However, unlike WSLS, which is robust against the variation
of many network parameters, SIBS is subject to neighbor degree, routing, and mo-
bility. Thus, in the absence of identity information, these meta strategies protect
devices against exploitation by free riders and still favor the spread of cooperation.

5.1. Introduction
In Chapter 1, we explained forwarder’s dilemma [30], which is a strategic situation
where devices are unwilling to relay packets of other nodes, yet require the help
of other nodes to send their own packets. To save their precious energy resources,
devices defect and drop packets rather than cooperate and relay them. As a conse-
quence, multi-hop communication in an ad hoc network becomes impossible.

In the last decade, researchers have aimed at incentivizing or enforcing coop-
eration with methods that incorporate rewards and punishments, such as credit
exchange, direct- and indirect-reciprocity. Nevertheless, these methods share a
common Achilles’ heel: they depend on identity information. Hence, these meth-
ods are susceptible to Sybil and slandering attacks, where free riders fabricate and
spawn identities at will [26]. Adopting a new identity allows attackers to, for exam-
ple, whitewash (clear) their reputation as a free rider by pretending to freshly join
the network. Unfortunately, there is no complete protection against Sybil attacks
without some form of centralized control [26]. Existing proposals use prior trust
relationships and even location information [78, 101]. Consequently, a node with
enough computational resources can ensure the identities of its neighbors (e. g., by
public key cryptography, or pre-shared keys) and employ a cooperation enforcement
mechanism. On the other hand, a real-life wireless network may be composed of de-
vices with diverse resources (computation, memory etc. ), which raises the question:
how should an identity-oblivious device act in a (potentially) selfish network?

In this chapter, we present a novel approach based on evolutionary game theory
(eGT). eGT argues that the imitation of locally fittest strategies (cooperation/defec-
tion), called network reciprocity, can help cooperation prevail in the network. Taking
actions based on the observed “spatial” trends prevents exploitation and promotes
cooperation [89]. First, cooperators establish clusters with higher fitnesses than
defectors. Then, these clusters expand over time by converting defectors to cooper-
ators with the higher fitness offered by cooperation. Nevertheless, though current
results on network reciprocity also seem promising for the wireless setting, we can-
not apply them directly. While in eGT the fitness is defined in terms of the number
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of neighbors and the identity is assumed to be known, in wireless networks the mea-
sure of success is based on packets and identities are easily forged. By re-examining
network reciprocity from a wireless perspective, in this chapter we bridge the gap
between theory and practice.

5.1.1. Contributions
We ask: “how can we devise meta strategies suitable for identity-oblivious devices
that (i) are able to adapt to locally-best pure strategies (cooperation/defection), (ii)
allow the spread of cooperators, and (iii) are resistant to Sybil attacks?” Within
this context, we provide three main contributions:

Contribution 1. Packet-based fitness measure. Though significant work has
been done in a theoretical setting, known meta strategies are not suited for wireless
networks. That is due to a simple -yet critical- assumption: the action of cooperation
does not matter; only the number of cooperator/defector neighbors determines the
fitness of a node. Though this assumption is reasonable for abstract theoretical
work, it does not capture the reality of wireless networks, where nodes cooperate or
defect by injecting their own packets and forwarding the packets of their neighbors.
To this end, our first contribution entails the definition of a fitness measure that
captures the behavior of nodes as a function of packet traffic (See Section 5.3).

Contribution 2. Sybil-resistant meta strategies for wireless networks. We
identified two promising meta strategies for their ability to resist Sybil attacks: the
Stochastic Imitate Best Strategy (SIBS) and the Win-Stay Lose-Shift (WSLS) meta
strategies. Both SIBS and WSLS identify the locally fittest strategy by adapting to
the observed neighborhood trends. To render WSLS and SIBS Sybil-resistant, we
propose that nodes should not compute their fitness directly by asking and hence
trusting their neighbors, but indirectly by overhearing the neighborhood packet
traffic (See Section 5.4). Extensive simulations and experiments on a real wireless
testbed demonstrate that, with overhearing, both meta strategies adapt to avoid
exploitation (See Section 5.5). Furthermore, our comparison shows that, in the
presence of Sybil attacks, SIBS and WSLS outperform the celebrated Tit-For-Tat
(TFT) and Generous-TFT (GTFT) meta strategies [88] (See Section 5.6).

Contribution 3. The evolution of cooperation. A central question in evolu-
tionary game theory is which strategy, cooperation or defection, spreads and dom-
inates the network. In their seminal paper, Ohtsuki et al. [73], showed that, coop-
eration does spread globally in the theoretical setting of the game when the benefit
to cost ratio is larger than the node degree. The question that we pose is whether
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the same holds in wireless networks. Our analysis and experiments draw forth novel
insights: While WSLS keeps at most half of the network as cooperator, SIBS can
lead to the invasion of cooperators throughout the network. Additionally the per-
formance of SIBS in wireless networks does not only depend on the neighbor degree
(as was in previous studies), but also on the routing protocol and the mobility of
the nodes (See Sections 5.7-to-5.8).

The chapter concludes with a detailed discussion of related work (See Section 5.9)
and a brief comparison of the proposed meta strategies (See Section 5.10).

5.2. Motivation and Preliminaries
Standard model. We classify the nodes in a forwarder’s game into three types: co-
operators, defectors (free riders) and smarts. Smart nodes recognizes the strategies
of their neighbors and cooperate only with other cooperators. Consider the case of a
node u. We will use set Vu to refer to u’s neighbors, while set Cu,Du and Su repre-
sent cooperator, defector and smart neighbors, respectively. Hence, Cu ∪Du ∪ Su =
Vu and the sets are disjoint. If node u decides to cooperate, then its fitness will be

fu = b (|Cu|+ |Su|)− c |Vu| , (5.1)

where b is the benefit obtained from each cooperative or smart neighbor, and c is
the cost of u’s altruistic behavior payed for every neighbor (b, c ∈ R+). On the other
hand, a defector does not pay any cost and its fitness is simply

gu = b |Cu| , (5.2)

since only cooperators help a defector. Smart neighbors detect defection and do not
help a defector. Notice that, in the standard model when there are no smart neigh-
bors, the fitness of defection is always higher than that of cooperation (i. e., Su =
∅ ⇒ fu ≤ gu). This is the reason why, according to classical game theory, defection
is the best strategy. Therefore, many researchers proposed mechanisms for building
smart nodes.

Motivation. To promote cooperation, smart nodes employ mechanisms such as
rewards and punishments, which inherently depend on identity. Therefore, these
methods are not an option for a constrained node that is identity oblivious. Conse-
quently, defection seems to remain the only viable strategy for the constrained node.
On the other hand, defection only pays off if there are unconditional cooperators
around. Among smart neighbors that can detect defection to punish as well as coop-
eration to reward, the constrained node still benefits more by practicing cooperation.
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To conclude, we define the problem for a constrained node as discovering which
strategy is the best in a neighborhood.

Evolutionary game theory for ad hoc networks. Evolutionary game theory
(eGT) aims to explain the decisions of agents (nodes) where complete or perfect
information may not be available. Nodes use meta strategies to determine whether
they should cooperate or defect based on the actions of their neighbors. Many
meta strategies have been studied in the literature, including (stochastic) imitate
best neighbor (SIBN), (stochastic) imitate best strategy (SIBS), and win-stay lose-
shift (WSLS) [43]. Typically, candidate meta strategies assume that the identity of
neighboring nodes is known, which makes them susceptible to Sybil attacks. Before
explaining how we were able to free SIBS and WSLS (but not SIBN) from using
identity information, we describe the original SIBS and WSLS meta strategies for
reference.

Win Stay Lose Shift. WSLS is a reactive strategy that depends on trial and
error. If a node wins the strategic game, it keeps playing the same strategy. If the
node loses, it switches strategy. It is noteworthy that, in WSLS, the network can be
neither fully cooperator nor fully defector. In a fully defector network, each node
infers that it is not winning against its neighbors and switches to cooperation. When
a few nodes switch together, they help each other and consequently their fitnesses
become better than full defection. Since a node benefits more by breaking symmetry,
the network evolves in a time-varying and stochastic way. In Section 5.3.2, we will
discuss how WSLS can be made to operate without any identity information and
in Section 5.4 we will explain how a node estimates the cooperation level of its
neighborhood by overhearing the packet traffic.

Stochastic Imitate Best Strategy. In SIBS, each node u decides whether to coop-
erate or defect by imitating the aggregate neighborhood behavior with a probability
computed locally as

P (card)
u =


F (card)

u

F
(card)
u +G(card)

u

, F
(card)
u > 0

0 , F
(card)
u ≤ 0

, (5.3)

where

F (card)
u =

∑
v∈(Cu∪Su)

fv and G(card)
u =

∑
v∈Du

gv

are the aggregate fitnesses of cooperator (involves smart nodes) and defector neigh-
bors, respectively. fu and gu are defined in (5.1) and (5.2). The superscript card
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emphasizes the use of the cardinality of the set of neighbors (which in turn implies
knowledge of their identities). By analyzing SIBS in different graph families, such
as lattices, small-world networks and random graphs, Ohtsuki et al. showed that
the invasion of cooperators is possible when b/c > |V|, that is when the benefit-
to-cost ratio exceeds the node degree [73]. We have shown that this result also
holds for graph families representative of ad hoc networks, such as random geomet-
ric graphs [27]. In Section 5.3.1, we will re-define SIBS-based on packet traffic and
explain its robustness to identity changes.

Assumptions and limitations. The main assumptions posed in this work are as
follows:
(i) In this work, we do not prevent all identity related attacks. When there is no
trusted identity provider, spoofing identities can be employed for denial-of-service,
buffer-overflow, data aggregation, voting, distributed storage or routing attacks [66].
Most of these attacks have malicious intents, which have the aim of collapsing a
network or corrupting the collected data. Instead, we target Sybil-attackers who do
not forward a packet while still desire to exploit their neighbors. We classify them
as free-riders to highlight that they do not aim collapsing a network. Their intention
is to be regarded as cooperators to raise the chance that genuine nodes are lured
into cooperation. Being malicious and disrupting the network would deceive the
purpose for the free riders: none of the packets of a free rider are routed. However,
as we will mention in Section 5.4.2, if an attacker steals existing identities instead
of fabricating new ones, routing protocols can get disrupted. Though the meta-
strategies cannot recover the routing protocol, they still avoid exploitation.
(ii) We have applied our algorithms in two different routing schemes that are kept
as simple as possible to only shed light on the meta strategies. Both of the routing
schemes determine the next hop randomly, which is known as random walk. The
difference between the two lies in the set of candidates. In the simpler one all the
neighbors are included in the candidate set, while only cooperators are included in
the second. The second routing scheme is called selective routing. We have proposed
selective routing to represent more intelligent routing schemes that affect the cost of
cooperators and consequently the network evolution. meta strategies with selective
routing are abbreviated with an ’S-’ prefix such as S-SIBS and S-WSLS.

Methodology. We will base our conclusions about the proposed meta-strategies
on mostly simulations and real-world testbed experiments. First, we identify key
factors and give the intuition about their effects based on mathematical analysis
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that does not take into account network evolution, then we experiment on these
factors and highlight the outcomes.
Unfortunately, standard mathematical tools cannot be used to analyse the evolution
of cooperation without relying on oversimplifying assumptions. There are two well
known methodologies for studing the evolution of game theoretic strategies over
networks. First, one can model the system using stochastic difference equations
that evolve over graphs. As is most often the case, even if studied in expectation,
the resulting state-space equations are non-linear, and yield few insights. Second,
mean field theory can be used in order to understand the state evolution using a
simpler model. This in fact was the approach adopted by Ohtsuki et al. to show
that (under some simpler/specfic conditions) cooperation can prevail in a network.
This technique however assumes that the population is well mixed and does not
take into account the graph structure, thus may only be a rough approximation. To
conclude, we follow an experimentation based approach to unveil the performance
of the above meta-strategies against identity changes.

5.3. Sybil-Resistant Meta Strategies
In this section we argue that the original definition (cardinality based) of fitness
is not suitable for wireless networks. In the wireless setting, it is not the number
of cooperator and defector neighbors that matters, but the number of successfully
transmitted packets. Therefore, we modify SIBS and WSLS to employ packet traffic
as the fitness measure. We also show that identities become less significant as a side
effect of using packet traffic.

We begin by noting that in wireless networks the benefits and costs of nodes are
a function of packet traffic. Consider a resource constrained node u. The benefit of
u is proportional to the number of packets it injects into the network. On the other
hand, u’s cost is proportional to the amount of resources consumed for forwarding
the packets of other nodes (e. g., the energy consumed for packet transmission). This
motivates us to modify the definition of fitness to incorporate the number of packets
injected and relayed by each node. In our definition, the fitness of a node u (either
defector, gu or cooperator, fu) is

fu = gu = b |Iu| − c |Ru| , (5.4)

where Iu and Ru are the sets of packets (successfully) injected and relayed by u.
It is important to note that the above is a local definition. An alternative, global
definition would count the benefit based on the number of packets delivered to the
destination, as well as on the routing path length. The global definition captures
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more precisely the total effort incurred by the network in delivering u’s packet, but
introduces higher complexity: it necessitates a global view and depends highly on
the routing mechanism in use. The number of successfully injected packets –packets
received and relayed by cooperative neighbors– presents a simpler alternative.

5.3.1. Sybil-Resistant SIBS
As discussed in Section 5.2, in SIBS each node periodically identifies and imitates
the best strategy in its neighborhood. The only difference between the standard
SIBS meta strategy and the one we propose here is the definition of fitness, which
instead of cardinality-based becomes packet-based.

The implementation of SIBS is given in Algorithm 2. The algorithm is run
periodically by each node in the network. Consider a representative node u. For a
fixed time period, u overhears the injected and relayed packets in its neighborhood
(See Section 5.4). Node u then computes F (pkt)

u and G(pkt)
u by grouping its neighbors

into cooperators and defectors based on whether the ratio of injected and relayed
packets exceeds an optimism threshold (lines 1 to 7). Finally, u cooperates with a
probability P (pkt)

u and defects with probability 1 − P (pkt)
u (lines 7 to 11). We use

superscript “pkt” to highlight the use of packet traffic (as opposed to cardinality)
in the formula. The proposed implementation is very lightweight: the algorithm
exhibits a complexity of O(|Vu|), in terms of both space and time.

Optimism threshold. How many packets should a node relay to be considered
cooperative? The optimism threshold plays an integral part in distinguishing coop-
erators and defectors (see line 4 in Algorithm 2). Although, we set optimism to 2 in
the experiments, in general, the value should be set according to the requirements
of the nodes and the characteristics of the environment. With a high optimism,
everyone will be classified as a cooperator to the benefit of the free riders. Using a
low optimism, however, can easily lead to misconceptions as corrupted or dropped
packets directly influence the sets of injected and relayed packets. Note that the free
riders may want to maintain the reputation of a cooperator with minimum effort.
They may relay just enough packets as the threshold demands. We consider this as
an incentive for the free riders as in [60].

The effect of grouping. But if cooperators and defectors are grouped separately
based on their identifier and fitness, how can the algorithm be Sybil resistant?
The crucial operation against Sybil attacks is the sum operation in lines 5 and 7.
Though cooperators and defectors are grouped based on their identity, the aggre-
gated fitnesses matter for strategy selection. As a result, packet traffic becomes the
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Algorithm 2: Sybil-resistant SIBS.
Data: Iu: the number of injected packets in previous round.

Ru: the number of relayed packets in previous round.
b: benefit acquired by injecting a packet.
c: cost of relaying a packet.
OPTIMISM: user defined threshold.

Result: The forwarding strategy of node u.

/* Compute fitness of cooperation and defection */

1 F (pkt)
u = G(pkt)

u = 0
2 foreach v ∈ Vu do
3 fv = b |Iv| − c |Rv|

4 if (|Rv| > 0) ∧
(
|Iv|
|Rv|

< OPTIMISM
)

then

5 F (pkt)
u += fv // Cooperator neighbor

6 else
7 G(pkt)

u += fv // Defector neighbor

/* Imitate fittest strategy */

8 if
F (pkt)

u

F (pkt)
u + G(pkt)

u

> rand() then

9 Cooperate
10 else
11 Defect

significant factor rather than the nodes themselves, effectively limiting the effect of
changing identity. The effect of grouping is better illustrated by an example: Sup-
pose that node v is a defector which, for some small period, changes its identity to
w and cooperates. All the packet traffic of nodes v and w will be added to G(pkt)

u

and F (pkt)
u , respectively. Since in truth v is a defector who does not intend to stay

in cooperative state, any benefit gained by changing its identity is small. For more
influence on P (pkt)

u , node v may stay in cooperative state longer (as w). However,
node v is indeed a defector, hence a dilemma.

We have to note that grouping nodes into cooperators and defectors is not the
only viable solution. Instead of counting the packet traffic of each node individually,
the aggregated traffic can also be used to observe the trend in the neighborhood.
For instance, a node may decide to cooperate if the ratio of overall injected and
relayed packets in its neighborhood is larger than an optimism threshold. Unfortu-
nately, focusing solely on aggregated traffic brings forth an undesirable consequence;
it promotes exploitation. Consider, for example, a defector neighborhood, in which
a single cooperator relays all packets. If a node in this neighborhood employs the
aggregated packet count as a decision metric, it can infer that the environment is
cooperative since many packets are being relayed. However, by choosing cooperation
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the node allows adjacent defectors to exploit its resources.

Algorithm 3: Sybil-resistant WSLS.
Data: Iu: the number of injected packets in previous round.

Ru: the number of relayed packets in previous round.
b: benefit acquired by injecting a packet.
c: cost of relaying a packet.
MUTATION: user defined threshold.

Result: The forwarding strategy of node u.

1 fu = b |Iu| − c |Ru|

/* Initialization */

2 if f ′u == NULL then

3 Cooperate

/* Win Stay, lose shift */

4 else if
(

rand() <
f ′u − fu

f ′u

)
∨ (rand() < MUTATION) then

5 switchStrategy()

6 f ′u = fu

5.3.2. Sybil-Resistant WSLS
WSLS is a simple meta strategy used in iterated prisoner’s dilemma games [69]. In
every iteration of standard WSLS, if a node wins the game against an opponent, it
keeps playing the same strategy. If not, it switches to the other strategy. Because
it depends on a direct fitness comparison between nodes, the standard WSLS is
sensitive to Sybil attacks. To make WSLS Sybil resistant we employ a different
version where each node compares its fitness to its own in a previous time [43].

The logic of the proposed meta strategy is given in Algorithm 3. Initially, nodes
do not have any knowledge about their environment, and they can choose their
strategy in an arbitrary way. In our implementation, nodes always begin by coop-
erating (line 3). Every time the algorithm is executed, nodes switch their strategy
probabilistically based on the normalized difference between the fitness of their pre-
vious and current strategies (line 4). Due to this short term memory, the algorithm
exhibits O(1) space and computational complexity.

WSLS is an innovative meta strategy in that it can choose a non-existing strategy
in a neighborhood. For instance, unlike SIBS, which favors cooperation when all
the neighborhood is cooperative, WSLS may switch to defection. Two phenomena,
fluctuations of fitness and mutation probability, are the sources of the innovation.
(i) Fluctuations: Even if all the neighbors are cooperators, fitness may fluctuate in
two consecutive rounds due to varying packet rate and routes. In these fluctuations,
if the fitness drops, the node may switch to the other strategy. (ii) Mutation: On the
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(a) Node B injects a packet,
and node C relays it.

(b) Both nodes, B and C relay, but
only C is rewarded with a relay.

Figure 5.1: Two examples of the two-hop overhearing method. Arrows indicate the path taken by
a packet, while in parenthesis we give the transmission sequence. Node A recognizes whether a
packet from B to C was injected or relayed. Packets from E to B cannot be recognized.

other hand, in our simulations, we observed that fitness values stuck at zero without
fluctuations when all the neighborhood follow defection. Hence, WSLS could not
innovate and switch to cooperation. Therefore, we introduced a small mutation
(line 4) to maintain the innovative behavior and break reciprocal defection. In the
literature, mostly the mutation is not mentioned [43]. However, in one of the initial
works, Nowak et al. [69] introduced a probability of 0.001 as noise. Although, we
also used 0.001 as our mutation value to be consistent with the literature, we should
note that especially in adaptation (See Section 5.5), a higher mutation value of 0.05
offered slightly better results. In a real-life deployment, the mutation threshold can
be set to a higher value depending on the possibility of a full defection state.

5.4. Estimating Fitness by Overhearing
In ad hoc networks, asking neighbors about their strategy and fitness necessitates
trust. That presents a problem; by lying about their strategy and identity (as simple
as altering their MAC or IP address), free riders can bias fitness computation, and
exploit the network. Instead, we propose that each node independently estimates
the fitness of its neighbors and itself by overhearing the packet traffic.

WSLS. A WSLS node counts only the packets that pass through itself. For relayed
traffic, overhearing is not needed. However, to assure the successful injection of a
packet, the receiving node should be monitored to check if it forwards the packet to
the next hop (success) or drops the packet (failure). Fortunately, all forwarding can
be overheard, since the next hop of an injected packet is always sent from within the
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radio range of the injecting node (assuming symmetric links).

SIBS. A SIBS node has to overhear all the packet traffic in its neighborhood to
compute the fitnesses. Unlike WSLS, for which one-hop overhearing is enough, SIBS
needs two-hop overhearing. The two-hop overhearing method, which we propose,
is based on a simple observation: a node can recognize whether one of its neighbors
injected or relayed a packet if it knows the packet’s previous location. After all,
packets that are injected cannot exist prior to the time of their injection. Therefore
using overhearing we can correctly label packets that are overheard over two hops.
Consider for example node A in Figure 5.1(a). Node A recognizes that C relayed
a packet since it has overheard the same packet being previously sent by B. On
the other hand, when a packet’s previous transmission is not overheard, there is no
reliable way to recognize if the packet was injected or relayed. In Figure 5.1(b), for
instance, node A cannot discern that B relayed E’s packet due to the fact that E is
not in A’s radio vicinity. As a consequence, some portion of the traffic may not be
labeled. Nevertheless, the percentage of labeled traffic is sufficient to estimate the
P (pkt) with an accuracy of more than 96% (See Section 5.4.1).

The code for labeling injected and relayed packets is given in Algorithm 4. The
algorithm is designed for the Contiki OS and is composed of two callback func-
tions. Nodes operate in monitor mode overhearing all packets transmitted in their
frequency band and channel. Address fields inside the packets are used to create
the neighbor lists. The input_sniffer (line 1) function is called for every received
packet, while the output_sniffer (line 12) is called for every transmitted packet. In
the initial reception of a packet, it is only pushed to a set data structure. On the
second reception, the relayed and injected counts for neighbors or the node itself
are increased. Packets are distinguished by the use of source address, packet id, and
–more importantly– the hash of the packet’s payload.

5.4.1. Two-hop Overhearing Accuracy
In the following we ask: (i) what is the percentage of packet traffic labeled by two-
hop overhearing and (ii) how accurately can we estimate fitness based on overheard
packets?

Analysis. Using two-hop overhearing, a node can only label packets that move for
at least two hops within its transmission range. We can characterize the likelihood
that a packet is labeled by computing the probability that the overhearing node and
the transmitting node share a common neighbor. Assuming a random geometric
graph deployed in a torus1 and that the deployment area is larger than the tx

1In a random geometric graph, nodes are deployed randomly within a given area. The torus
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Algorithm 4: Packet overhearing algorithm.
Data:
storedPktList: stores the overheard packets including the node’s own packets.
sender: the previous hop address of the packet.
source: the address of the packet creator.

/* INPUT SNIFFER: callback function. Called when a packet is overheard. */
1 def input_sniffer(sniffedPkt):
2 storedPktCopy = findPkt (sniffedPkt, storedPktList)
3 if storedPktCopy is NULL then
4 push sniffedPkt to storedPktList
5 else
6 n = findNeigh(sniffedPkt.sender)
7 n.relayed++
8 if storedPktCopy.source == storedPktCopy.sender then

// Previously, packet was heard from source.
9 m = findNeigh(storedPktCopy.source)

10 m.injected++

// Update stored copy not to count as injected again.
11 storedPktCopy.sender = sniffedPkt.sender

/* OUTPUT SNIFFER: callback function. Called when a packet is transmitted. */
12 def output_sniffer(sniffedPkt):
13 if sniffedPkt.source == myAddr then
14 push sniffedPkt to storedPktList
15 else
16 storedPktCopy = findPkt (sniffedPkt, storedPktList)

/* Below is same as line 6 to 11 */
17 n = findNeigh(sniffedPkt.sender)
18 n.relayed++
19 if storedPktCopy.source == storedPktCopy.sender then
20 m = findNeigh(storedPktCopy.source)
21 m.injected++

22 storedPktCopy.sender = sniffedPkt.sender

range, the expected ratio of two neighboring nodes u, v sharing a common neighbor
is E[Area(u,v)

Area(u) ] ≈ 0.59, under the unit-disk model [53]. Hence, in expectation u will
be able to label 59% of v’s packets.

Experiments on packet labeling. Next, we study two-hop overhearing in a
real-life testbed. In our experiment, nodes inject packets periodically and forward
them via random-walk routing. The testbed, which is located in our department at
TUDELFT, consists of 108 SOWNet G301 nodes with CC1101 radios operating at
868 MHz. The deployment area is almost rectangular with dimensions 14.65 by 81
meters. For more detail please refer to [99]. We experimented with different trans-
mission power levels. As previously shown, at −34 dBm transmission (tx) power

simplifies analysis by allowing us to ignore the effect of the boundary.
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Table 5.1: Average percentage of labeled packets for two-hop overhearing in a real-life testbed with
different transmission (tx) powers, as compared to random geometric graphs (analysis).

tx power
(dBm)

E[V] Pinjected Prelayed

−34 4, 43 51% 45%
−15 26.33 59% 51%
−6 41.01 71% 64%
0 42.28 76% 73%

analysis independent 59% 59%

the network becomes partially connected and at all values above it, the network gets
connected [99].

Table 5.1 summarizes, for each transmission radius, the percentage of labeled
injected and relayed packets, Pinjected and Prelayed, respectively. We have two main
observations: First, the percentage of labeled traffic exhibits a dependence on the
tx power, but is still similar to the analysis. As the tx power increases two-hop
overhearing becomes more efficient. Nodes close to the boundary are more likely to
share neighbors. This boundary effect is amplified by increasing the tx power, in
which cases most of the packet traffic occurs in the overhearing range of the nodes.
Second, the percentage of labeled relayed packets is less than the injected for all tx
powers. The explanation for this effect can be seen from Node B’s traffic as overheard
by A in Figure 5.1. Despite the same route from B onwards, the injected packet sent
to C (Figure 5.1(a)) can be labeled, while the relayed packet received from E and
sent to C (Figure 5.1(b)) can not. To prevent free riding the two-hop overhearing
method counts relaying only if the packet was heard previously. Therefore, there is
a bias towards the injected count.

Accuracy of P (pkt) estimation. P (pkt) is a weighted ratio of injected and relayed
packets. Since the two-hop overhearing captures a similar fraction (6% difference)
of both the injected and relayed packets, the P (pkt) ratio is not affected. Hence,
we expect almost zero P (pkt) estimation error. We simulated a network composed
of cooperators and defectors where all follow the (S-)SIBS meta strategy. More de-
tails on the simulation environment and parameters are in Section 5.5. Figure 5.2
presents the mean absolute error of P (pkt) estimation to ground truth with over-
hearing windows of different lengths. When the windows are long enough, the error
reduces to as low as 0.03, which is enough for discovering the spatial trend. Selective
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routing is more restricted as the set of forwarding candidates is smaller, so smaller
window sizes suffice to average out the randomness.

5.4.2. Resistance to Address Spoofing
With two-hop overhearing, we are certain that a cooperator node has indeed relayed
a packet. However, a free rider may still alter the source address and pretend as
if the packet is being relayed. We address this by not labeling a packet as relayed
without having overheard it before. Other attacks by spoofing source address are
as follows:

Spoofed relayed packet. A free rider can only invite its neighbors to cooperation
by relaying some packets itself such that is regarded as a cooperator. Therefore,
altering the source address to its own (i. e., hiding cooperative behavior) has no gain
for a free rider.

Spoofed injected packet. We distinguish three types of attacks, depending on
the spoofed source address:

(i) Changing the source address to that of an existing cooperator. This is a mali-
cious attack that damages the routing protocol of the network. As mentioned in
Section 5.2, a free-rider node does not employ this attack. Otherwise, the network
collapses and the attacker itself also cannot be served. Nevertheless, meta-strategies
still avoid exploitation. If too many packets are labeled as being injected from a
cooperator, then said cooperator will be classified as a defector.

(ii) Changing the source address to that of an existing defector. A free rider blames
another free rider. Since there is no individual punishment in both SIBS and WSLS,
this attack does not affect the strategy decision.
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Figure 5.2: Mean absolute error of P (pkt) estimation with increasing overhearing window.
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(iii) Changing the source address to that of a non-existent node (invisibility attack).
A free rider alters the source address of its packets to a non-existent value. Hence, it
will be considered as if it does not inject any packet and operates with zero fitness.
However, the overall relayed packets by cooperators keep climbing, which lead to
lesser fitness of the cooperators. Therefore, SIBS eventually switches to defection.

We should note that the above attacks are threats only to the SIBS meta strategy.
In WSLS, nodes are impervious to address spoofing; each node considers solely its
own fitness and actions (relaying or injecting a packet).

Table 5.2: Simulation parameters for experiments on meta strategies

Operating System Contiki

Setup 100 nodes in 50× 50 m2

Neighbor Degree µ = 9.9, σ = 3.5*, tx, rx = 10 m

MAC Layer CSMA

Path length Random(1− 4) hops

Packet generation rate 4 +Random(1− 3) sec

Packet Size 100 bytes

* µ and σ denotes mean and standard deviation.

5.5. The Local Adaptation of Meta Strategies
Punishments and rewards are possible only when identity is known. Yet not every
device has the computational resources required for validating the identities of its
neighbors. This section evaluates how well an identity-oblivious node performs when
using the adopted SIBS and WSLS meta strategies. In our experiments, we place
a resource constrained node within a heterogeneous network composed of defectors,
cooperators, and smarts. We then test the node’s ability to discover the locally
best strategy. Our results indicate that when there are smart nodes in the network,
defectors are punished, whereas nodes with meta strategies discover that cooperation
pays off.

5.5.1. Experiments on Local Adaptation
In our experiments we traced the behavior of an oblivious node in two scenarios:
mixture of defectors first, with unconditional cooperators (scenario C) and second,
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(a) Scenario C, Defection is better.
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(b) Scenario S, Cooperation is better.

Figure 5.3: Average fitnesses (top) and ratio of cooperative rounds (bottom) of meta strategies in
two different scenarios. The legends of the pure strategies, Defect and Cooperate, are embedded in
the figures as they are reference points for comparing the meta strategies. The difference of pure
strategies is low in scenario C due to the high b/c ratio. In both scenarios SIBS and WSLS perform
close to the fittest pure strategy. S-SIBS and S-WSLS have selective routing; hence, their fitness
values are higher than the rest.

with smart nodes (scenario S). While in the former scenario a node always gains
more by defecting, in the latter it is often more rational to cooperate (when sur-
rounded by smarts). In each round, after the convergence of P (pkt) estimation (See
Section 5.5.2), the traced node reconsiders its strategy according to the overheard
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packets in the previous round. We compare the node’s fitness under (S-)SIBS and
(S-)WSLS to the one obtained by a pure strategy (i. e., always cooperating or de-
fecting). For each scenario, we repeated the experiment 20 times, each lasting for
20 rounds. We set b/c = 20 to fulfill the condition of b/c > |V| (see Section 5.2).
The rest of the simulation parameters are given in Table 5.2. All simulations were
performed with the Cooja simulator [74].

Fitness. The achieved fitness values of the meta strategies with respect to pure
strategies are given in the top sub-figures of Figure 5.3. As postulated, in scenario
C, there is no smart node to punish defectors and hence, defection is always fitter.
On the other hand, when smart nodes punish defectors as in scenario S, nodes are
better of cooperating. Observe that, in both scenarios, the fitness of WSLS and
SIBS is comparable to the best pure strategy. This supports our claim that both
meta strategies are able to adapt locally, even without the knowledge of identity.
Moreover, when SIBS and WSLS are compared to each other, we do not observe a
significant difference.

Cooperative rounds. The bottom sub-figures of Figure 5.3 presents the ratio
of rounds that the oblivious node was a cooperator. First consider SIBS. In both
scenarios, SIBS favors cooperation when there are fewer defectors around (i. e., to
the right). The trends are similar in both scenarios, since SIBS does not distin-
guish cooperators and smarts. However, in scenario S (Figure 5.3(b)), SIBS is more
inclined towards cooperation, since defectors have zero fitness. Secondly consider
WSLS. In scenario C (Figure 5.3(a)), WSLS recognizes the absence of punishments,
and hence, does not follow cooperation. On the other hand, in scenario S (Fig-
ure 5.3(b)), WSLS favors cooperation similar to SIBS, since whenever WSLS tries
defection it is punished by the smart nodes. Finally, when we compare the two,
especially in scenario C, they differ a lot. With lower percentage of cooperators,
WSLS favors cooperation more than SIBS. The reason is that, WSLS is an innova-
tive meta strategy; a node with WSLS tries cooperation to consider other options
when surrounded with defectors and has zero fitness. Similarly, when surrounded
with cooperators, it may switch to defection. Later, we will see similar trends in
network evolution (Section 5.7.1 & 5.7.2).

Selective routing. We also evaluated the two meta strategies in a selective rout-
ing scheme that forwards messages solely to cooperator neighbors (S-SIBS and S-
WSLS). We can see that, by being selective, the traced node achieves a much higher
fitness. Since packets are more likely to be relayed when sent specifically to cooper-
ators (rather than at random), a node employing selective routing achieves higher
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fitness. When both meta strategies are compared, especially in scenario C, S-SIBS
performs better than S-WSLS. We observed that by increasing the mutation value
from 0.001 to 0.05, S-WSLS performs almost the same as S-SIBS. With lower muta-
tion values, nodes are stuck in reciprocal defection state longer. However, again in
the first scenario, with higher mutation, the performance of WSLS degrades slightly.
This shows the significance of the mutation value on the (S-)WSLS performance.

Are meta strategies exploitative? To test if meta strategies exploit pure co-
operators, we deployed a network composed of only unconditional cooperators, and
placed one adaptive node amidst them. We found that SIBS immediately chooses
cooperation. However, the WSLS-enabled node chooses cooperation on average
48% of the experiments. Due to its innovative behavior, WSLS discovers that it is
surrounded by pure cooperators and observes that defection has better payoff.

5.5.2. The duration of rounds
Nodes overhear their neighborhood traffic to estimate P (pkt), but for how long? The
duration should be as short as possible to conserve energy and to be responsive, yet
long enough for accurate P (pkt) estimation. The minimum period should involve
at least 1 packet transmission to each neighbor to assess its strategy. Having no
prior knowledge of the traffic pattern, and assuming plain random walk routing, the
duration is computed as follows: According to the Coupon Collector’s problem [49],
to be able to send at least one packet to every neighbor, a node needs |V| log |V|+
γ|V| + 0.5 trials, where γ ≈ 0.577 is the Euler-Mascheroni constant. In our case,
the average packet inter-arrival time is 6.5 sec/pkt, |V| ≈ 10. As a lower bound, the
node should keep overhearing at least 6.5 × [10 log 10 + (0.577)10 + 0.5] ≈ 190 sec.
Nevertheless, as simulations indicate, even shorter durations are enough with SIBS
due to overhearing the injected packets from several sources in parallel.

WSLS estimates the probability of switching its strategy by comparing the fit-
nesses of two consecutive rounds. If the environment remains unchanged, we expect
that the overheard traffic also remains the same keeping the probability close to
zero. However, the overhearing duration should be long enough to capture similar
amount of traffic. We collected the fitnesses of nodes in 10 consecutive rounds in a
full cooperator network with b/c = 20 (see Table 5.2 for other parameters). Nodes do
not change their strategies to guarantee a stable neighborhood, otherwise we cannot
observe a convergence to a value. We plot the normalized error between consecu-
tive fitness values ( f

t−1−ft

ft−1 ) in Figure 5.4. The elbow point for mean is around 200
seconds which is similar to the above analysis. Longer intervals reduce the variance
and consequently improve the decision accuracy. However, the response time of
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Figure 5.4: Relative error of consecutive fitness values ( ft−1−ft

ft−1 ) with different overhearing inter-
vals. Shaded area represents our operating interval.

the nodes to variations in the neighborhood also diminishes. In our experiments,
we chose the interval of [200, 300], which is enough for overhearing, to maintain
asynchrony in strategy updates.

For SIBS, Figure 5.2 shows that the P (pkt) estimation error drops exponentially
with longer overhearing periods. The elbow point of the curve is around 75 seconds
with the given network parameters. The reason for faster convergence than WSLS
is that the node overhears all the neighboring traffic. As a result the packet rate is
much higher.

5.6. Sybil Attack Resilience
To test the Sybil-resilience of our meta strategies, we placed an identity-oblivious
node in a network composed of 80% free riders (i. e., defectors that employ Sybil
attack) and 20% cooperators. Since the network is dominated by selfish non-
cooperative nodes, the rational choice is to defect. However, by fabricating identi-
ties, free riders attempt to hide their behavior, and hence, confuse oblivious nodes
into relaying their packets. In this setting, the more Sybil-resilient a meta strat-
egy is, the fewer free-rider packets it relays. We compared SIBS and WSLS to two
direct-reciprocity meta strategies known for their good performance (when identity
is known): the Tit-For-Tat (TFT) and Generous-Tit-For-Tat (GTFT) [88] strate-
gies. A node using the TFT or GTFT meta strategy starts by relaying the packets
of a neighbor and follows the neighbor’s strategy as observed in the previous round.
The difference between the two is that GTFT becomes sporadically generous and
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(a) Average number of free-rider neighbors’ packets that the traced node
relays per round as a function of Sybil attack frequency (i. e., identity change
per round).
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(b) A representative run: after the 20th round, free riders repeatedly fabri-
cate identities with a frequency (i. e., identity change per round) of 2.

Figure 5.5: The effect of Sybil attack on the number of relayed packets from free riders. WSLS
and SIBS are resilient to Sybil attack since they relay the same or fewer number of packets with
increased frequency of the attack.

gives a new chance to defector nodes.

Figure 5.5(a) presents the average number of relayed packets from free riders
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for SIBS, WSLS, TFT, and GTFT, over 20 runs, each lasting for 50 rounds. To
illustrate the effect of the attack, we varied the frequency with which free riders
fabricate new identities in each round. Observe that, both SIBS and WSLS curves
mostly remain constant and even drop when Sybil attacks become more frequent.
Moreover, SIBS performs better than TFT in higher frequencies, while better than
GTFT for all frequencies. TFT and GTFT were tricked into relaying more packets
when free riders fabricated identities more aggressively. In both meta strategies, the
first time that a node encounters a neighbor it always starts by being cooperative.
Though this ‘grace period’ is essential in promoting cooperation (otherwise any
nodes using TFT will end up defecting), it becomes a vulnerability when free riders
change their identity. Note that in the high frequencies –over 1 identity per round–
both SIBS and WSLS start to relay fewer packets. This phenomenon is not the
success of SIBS or WSLS; it is a problem of routing. After an identity change, the
old identity stays in the routing table for some time leading to an invalid route.
Hence, fewer number of packets are addressed to our adaptive node.

Figure 5.5(b) takes a closer look into the meta strategy behavior by depicting
the number of relayed packets from free riders for each strategy in a representative
simulation run. In this experiment, free riders start to fabricate new identities after
the 20th round, (highlighted with a vertical line) with a frequency of 2 identities
per round. We can see that SIBS and WSLS are not affected by Sybil attacks. Both
meta strategies quickly realize that defection is the fittest strategy (the network is
dominated by defectors). SIBS is more stable and keeps defecting, while WSLS
sporadically tries cooperation. GTFT and TFT exhibit a very different behavior.
In the first 20 rounds, TFT punishes all the defectors successfully. However, as soon
as the defectors start fabricating fake identities, TFT starts relaying again. Lastly,
we should also mention that when SIBS and WSLS are cooperative, they relay more
packets than GTFT and TFT. The reason is that TFT and GTFT still punishes
a free rider until it fabricates a new identity while SIBS and WSLS relays blindly.
However, under more aggressive attacks, TFT and GTFT will relay as blind as SIBS
and WSLS.

5.7. Evolution of Networks
In the previous sections, we demonstrated the adaptation to the fittest strategy and
the Sybil attack resilience of both meta strategies. Nodes avoid being exploited by
others while not depending on the identities. Next, we focus on the questions such
as what would be the emergent behavior when all the nodes follow the same meta
strategy? Will cooperation suppress defection throughout the network? Which
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Figure 5.6: Evolution of network under WSLS and S-WSLS. On the Left, the ratio of cooperators
over time is presented with Rinit

c = {0.1, 0.5, 0.9} and b/c = 20. On the right, ratio of cooperators
is presented for only WSLS with different b/c ratios and Rinit

c = 0.5. (S-)WSLS keep at most half
of the network as cooperator.

factors supervise the evolutionary process?

5.7.1. Evolution of Networks under WSLS
How does a network of WSLS nodes evolve over time? For non-zero mutation
probability, WSLS possesses no equilibrium2. This means that the network never
reaches a steady state; nodes continuously change their strategy. Nevertheless, as we
show in the following, when considered from a probabilistic standpoint, WSLS does
converge, in the sense that the percentage of cooperators in the network stabilizes.

To examine the evolution of (S-)WSLS, we conducted simulations, using the
same network setup and simulation parameters as in Section 5.5.1 (see Table 5.2).
First, we examined the sensitivity of the evolutionary process to initial conditions.
The left part of Figure 5.6 presents the change in the ratio of cooperators over time.
We initialized the network by letting a given ratio of nodes to start as cooperators
(though their strategy is ultimately controlled by WSLS). Observe that for both
WSLS and S-WSLS the ratio of cooperators in the network soon converged between
0.38 and 0.45. Second, we examined the impact of the b/c ratio presented at the
right part of Figure 5.6. Since both WSLS and S-WSLS perform similarly, we only
focus on WSLS. Observe that WSLS does stimulate cooperation, but only to a limited

2We can see this if we express WSLS as a Markov chain. Even though the state space has size
exponential to the number of nodes, it can be easily shown that there is always a non-zero
probability of changing state. Hence, the chain has no absorbing state.
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extent. Even with high a b/c, the ratio of cooperators has an upper limit of 0.5. Other
researchers [43] also made the same observation about this upper-limit. However,
they missed the effect of the b/c ratio on this upper limit. We conclude that although
(S-)WSLS does not offer a fully cooperator network, it still keeps a fraction of the
network as cooperator. The cooperator fraction reaches at most 0.5 and the b/c ratio
is the most significant parameter, while the initial fraction of cooperators does not
make any difference.

5.7.2. Evolution of Networks under SIBS
As discussed in Section 5.2, with SIBS, spatial structures promote the survival and
spread of cooperators. While the network evolves, each strategy group, cooperators
and defectors, gradually establishes clusters. As evolution proceeds, while defector
clusters drop to zero fitness, since none of the cluster members help each other,
cooperator clusters increase their fitness. Consequently, defectors also switch to
cooperation to improve their fitness. To guarantee the invasion of cooperators,
Ohtsuki et al. [73] proved that the benefit-to-cost ratio should be higher than the
neighbor degree (b/c > |V|), and that the strategy updates should be asynchronous.

In the following we show that, when we use packet-based fitness, the b, c and |V|
parameters are not the only key factors. Network and traffic parameters such as the
path length, routing scheme (See Section 5.7.2), and mobility (See Section 5.8) also
influence the evolution process.

The effect of the routing
Altering the definition of fitness from cardinality- to packet-based introduces a de-
pendency between the meta strategy’s behavior and the routing protocol. Below,
we examine this dependency for random walk and selective random walk routing.
Our analysis suggests that, with a packet-based fitness, the cost of cooperation be-
comes a function of the path length and routing type. This result has an important
consequence: to ensure that evolution leads to the invasion of cooperators, we need
to take into account the characteristics of the routing protocol used.

SIBS. Consider the random walk routing scheme, where all the neighbors of a node
u are candidates as a next hop without any restriction and suppose that each node
generates packets with a fixed rate λ. While a defector pays no cost (as before),
cooperators are burdened with relaying not only the packets injected by their neigh-
bors, but also packets relayed over multiple hops. According to Proposition 1 this
phenomenon increases the cost of cooperation.

Proposition 1. (Random Walk) Consider a network in which nodes generate
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packets with rate λ and forward them (using random walk routing) for η hops. Fur-
thermore, let r be the expected ratio of cooperator neighbors of any node u. Assuming
that there is no packet loss due to congestion or collisions, the expected fitness f and
g of a cooperator and defector node, respectively, are

max{λ
(
br −c(η−1)

)
, 0} ≤ f ≤ max{λ

(
br −c1− rη−2

1− r
)
, 0} (5.5)

g = λbr. (5.6)

proof. Consider a node u. To compute bounds on u’s fitness, we will count the
packets that u relays when it is a cooperator. To begin with, u relays the packets
of its neighbors. If each of its neighbors generates and forwards randomly λ packets
per round, on average u receives λ|Vu|/|Vu| = λ packets to relay. In addition to the
packets injected by its neighbors, u also receives the packets relayed by its cooper-
ator neighbors. Let Ru = |Cu|/|Vu| a random variable. describing the ratio between
u’s cooperators and defector neighbors (here |Cu| and |Vu| are also random vari-
ables). The expected number of relayed packets of each cooperator node resembles
a geometric series:

E[Ru] = E[λ(1 +Ru +R2
u + . . .+Rη−2

u )] = λ

η−2∑
k=0

E[Rku]
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Since Ru > 0 and h(x) = xk is a convex function for x ≥ 0, Jensen’s inequality gives

E[Ru]k = h(E[Ru]) ≤ E[h(Ru)] = E[Rku] , (5.7)

and therefore

E[Ru] ≥ λ
η−2∑
k=0

E[Ru]k = λ
1− rη−2

1− r , (5.8)

where r = E[Ru] < 1. We can also obtain a trivial upper bound by assuming that
all the η hops traffic passes over a cooperator:

E[Ru] ≤ λ(η − 1) . (5.9)

Substituting the above bounds in (5.4) we obtain the desired result.

We can see that both the path length η and the packet generation rate λ can
increase the overall packet traffic. However, only the path length incurs a higher
cooperation cost: whereas λ affects both f and g linearly, η only affects cooperators.

S-SIBS: In addition to path length, the next hop selection procedure also affects
the cost of cooperation.

Proposition 2. (Selective Routing) Consider a network in which nodes generate
packets with rate λ and forward them (using selective random walk routing) for η
hops. Furthermore, let r be the expected ratio of cooperator neighbors of any node u.
Assuming that there is no packet loss due to congestion or collisions, the expected
fitness f and g of a cooperator and defector node, respectively, is

0 ≤ f ≤
{

0 , r = 0
max{λb−c(η−1)λ/r, 0} , otherwise

(5.10)

g =
{

0 , r = 0
λb , otherwise.

(5.11)

Proof. Follows in a similar manner as the proof of Proposition 1, with the difference
that, because the λ|Vu| packets generated in a neighborhood are sent uniformly only
to cooperator nodes, a cooperator node receives λ|Vu|/|Cu| = λ/r packets (instead of
λ).

Similar to path length, selective routing also rises the cost of being a cooperator and
even with a higher rate.
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We visualize the analysis in Figure 5.7 by providing figures of P (pkt) and P (card)

with different path lengths and routing schemes. First, notice that all packet-based
fitness plots (P (pkt)

u ) indicate a lower probability of choosing cooperation than that
of cardinality-based (P (card)

u ) (See Figure 5.7(a)). Second, observe the difference of
selective and plain random walk routing. Selective routing significantly increases the
cost of being a cooperator. To see the effect of b/c ratio and the tendency towards
defection, we depict P (card)

u −P (pkt)
u with Rinitc = 0.5 in Figure 5.7(b). Fortunately,

high b/c ratios decrease the tendency to defect.
Though the analysis does not consider many wireless network challenges, such as

packet drops due to collision and congestion, it reveals a main obstacle to the spread
of cooperators. Packet-traffic based fitness calculation leads to higher cooperation
costs. Cooperators pay more cost when the routing favors cooperators and the
increase in path length augments the relayed traffic. We conclude that in addition
to the neighbor degree constraint given in the b/c > |V| requirement, the routing
and the path length are also crucial.

Experimental evaluation
In this section we demonstrate that while b/c > |V| holds, the increased burden on
the cooperators due to packet traffic slows down the spread of cooperators. Selec-
tive routing demands higher b/c ratios for the spread, whereas an unexpected (but
fortunate) effect is observed in the case of path length. Though the cost of cooper-
ation does increase with the path length, it does not necessarily suppress the spread
of cooperators.

We simulated the SIBS and S-SIBS meta strategies to validate the b/c > |V|
rule, and to observe the effects of different b/c ratios and path lengths. We use the
same setup in Section 5.5.1. Each simulation is composed of 20 repetitions and lasts
150minutes. To resemble real life, the rounds are randomized in [200, 300] seconds
intervals, which also provides asynchrony.

The b/c > |V| rule. Our first objective is to validate the b/c > |V| rule. Figure 5.8(a)
presents the change of the network over time with a fixed path length η = 4. A
initial ratio of cooperators Rinitc = 20%. A final ratio of cooperators (Rendc ) that is
below the Rinitc indicates the spread of defectors. The first significant outcome is
that b/c > |V| holds even with packet-traffic based fitness. The b/c ratio of 6, which
is lower than E[V] ≈ 10, leads to a defector network while higher ratios encourage
cooperation. The second outcome is that the convergence to a fully cooperative
network is faster with higher b/c ratios.

The path length. But what is the effect of the path length? Analysis has shown
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that the path length increases the costs of cooperators. Thus, it is possible to observe
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a suppression of cooperation spread. To indicate the effect of the path length, we
plot Figure 5.8(b). First consider only SIBS (bar graphs). Fortunately, we do not
observe a suppression with longer path lengths in the experiments. With b/c = 10,
the path length even promotes the spread. For other b/c ratios (12, 14 etc. ), it is
hard to claim a similar effect.

The reason for this counter-intuitive effect (i. e., path length increases the costs of
cooperators, but does not limit the spread) is the asynchronous update mechanism.
Suppose that a neighbor alters its strategy from cooperation to defection. When
the neighbor was cooperator, even for a short duration, it might relay quite a few
packets. Consequently, it is still recognized as a cooperator after switching to de-
fection. This misconception is exacerbated by longer path lengths, since there exist
more packets to relay than to inject. As a result, we do not observe any suppression
effect from the path length.

Selective routing. To show the effect of routing, we depict the evolution of the
network under the S-SIBS meta strategy as a separate line graph in Figure 5.8(b).
Notice that the b/c ratios in the x-axis has a different scale and the evolution starts
at almost twice of |V|. The reason for higher b/c ratios is that the cooperators are
punished more with selective routing. Therefore, only an increase in the b/c ratio
compensates the increased cost.

The optimism threshold. The last parameter that has significant effect is the
optimism value. We consider the optimism value as a parameter to control the
tendency towards cooperation. We have repeated the simulations with a more pes-
simistic value of |Iu|/|Ru| < 1 (default was 2). We observed a decrease in the spread
of cooperators. For instance, the ratio of successful invasions that reached 0.4 / 0.8
with b/c = 10 / 16 respectively (Figure 5.8(b)), stayed at 0 / 0.4 for the pessimistic
threshold. Therefore, the optimism threshold should be high for having a cooperator
network. However, there is a trade off; when nodes are too optimistic, free riders
can easily be recognized as cooperators if they relay just a few packets.

A testbed experiment. To validate our simulations in a real topology with re-
alistic wireless channel, we deployed all the meta strategies to our real-life testbed
with tx = −20dbm (see Section 5.4.1). All the experiments start with a 20 percent
cooperator ratio and continue for 2 hours. Figure 5.9 presents the average Rendc of
the cooperators. Similar to our simulations, both SIBS and S-SIBS promote coop-
eration when b/c ratio is close to and higher than the neighbor degree. WSLS and
S-WSLS, on the other hand, are not influenced by the b/c ratio and keep the network
with ≈ 50% cooperators. A notable difference from simulations is the existence of
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Figure 5.9: Real testbed experiment on the evolution of meta strategies. We present the end ratio
of cooperators after 2 hours of experiment with different b/c ratios. Results are the average of five
repetitions. Rinit

c = 20, η = 4.

cooperators even with b/c ratios lower than E[V] = 17.9. The reason is the high
variance of the neighbor degree due to the rectangular shape of the testbed (see the
probability density function in Figure 5.9).

5.8. Mobility
In this section we investigate the effect of mobility on both the adaptation and
evolution of meta strategies. To observe the effect of mobility, we added the Random
Waypoint mobility model from BonnMotion [8] to our simulations with node speeds
0.5 to 5m/s (radio range is 50m). Since in this new setup the average link duration
drops exponentially from 133 to 20 seconds, we decreased the overhearing period
to 30 − 60 seconds (from 200 − 300 seconds used previously) to ensure a timely
response. With 30 − 60 seconds, the relative error of fitness in WSLS gets as high
as 0.2, while the estimation error of SIBS is still lower than 0.04 (see Figure 5.2).

Adaptation. Similar to Section 5.5.1, we evaluate the adaptation of SIBS and
WSLS by deploying and tracing the fitness of an oblivious node in an environment
with diverse defector ratios. By comparing the ratio of cooperative rounds for the
static and mobile cases, we can see that both SIBS and WSLS still detect the fittest
strategy (Figure 5.10). Nevertheless, while the ratio of cooperative rounds is close
to the stationary case under WSLS, nodes tend to follow defection in SIBS at higher
speeds.

Comparison of TFT, GTFT, SIBS and WSLS under mobility. Mobile
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Table 5.3: Comparison of TFT, GTFT, WSLS and SIBS in a defector mobile network. The metric
is average number of relayed packets –of only free riders– per round.

speed (m/s) WSLS SIBS TFT GTFT

0.5 2.06 0.68 1.81 3.74

2.5 0.59 0.23 1.26 1.49

5 0.37 0.09 0.94 1.11

environments are similar to Sybil attacks such that nodes frequently encounter new
nodes. For instance, if a TFT-based node’s neighbor list cannot store all the past
neighbors, a free rider can whitewash itself by disappearing for some time. With
different speeds, we deployed a network of 80% defectors and 20% cooperators with
one oblivious node (where there are 100 nodes, but neighbor lists can hold up to
50). The average number of relayed packets of defectors per round is presented in
Table 5.3. Firstly, note that the number of relayed packets decreases with higher
speeds, since neighbor lists store more invalid neighbors which destroys the routes.
Second, observe that in all scenarios, SIBS relay fewer packets of defectors than
the rest. Since higher speeds resemble Sybil attacks, (G)TFT performs worse than
SIBS and even WSLS over 2.5 m/s. We conclude that, though SIBS does not
promote cooperation in a mobile environment, still its performance is better than
direct-reciprocity methods, TFT and GTFT.

Evolution. When we consider network evolution, our simulation experiments
showed that WSLS maintains the network with a 40 − 45% cooperator ratio as
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in the stationary case. On the other hand, apart from the slowest speed of 0.5m/s,
SIBS leads to a fully defector network under mobility. The first factor promoting
defection is the tendency to defect as described in the previous paragraph. The
second and the most significant effect is the destruction of the cooperator clusters.
Without the clusters, cooperation cannot be sustained. Defectors penetrate into a
cooperator cluster and show their neighbors that defection offers better fitness.

To conclude; we should admit that in mobile scenarios SIBS cannot promote
cooperation. However, both SIBS and WSLS still detect the fittest strategy in their
neighborhood and even perform better than TFT and GTFT. Moreover, WSLS
sustains cooperation in the network similar to the stationary scenarios.

5.9. Related Work
Though classical game theory identifies defection as the equilibrium under the for-
warder’s dilemma, there are several mechanisms, with which we observe the survival
of cooperation. As explained in Chapter 1, these mechanisms are: Kin Selection,
Direct Reciprocity, Indirect Reciprocity, Network Reciprocity and Group Selection.
Among these, Direct Reciprocity and Indirect Reciprocity are famous in the wireless
networks research community. However, they mainly depend on identity informa-
tion.

Direct reciprocity depends on the repeated interaction of nodes and follows the
“You scratch my back and I’ll scratch yours” principle. However, in a public wireless
network, random encounters may not suggest a future interaction [30]. Additionally,
identity information is strictly required. In order to punish identity changes, as a
bootstrapping phase, every node should “pay their dues” before injecting packets.
However, a node may need immediate operation or it may employ fake identities to
protect its privacy. On the other hand, our meta strategies tolerate fake identities
and do not require a bootstrapping phase.

Indirect reciprocity employs reputations to reward cooperation. The reputa-
tion gained by cooperative behavior is later spent for getting help from any node.
Contrary to direct reciprocity, indirect reciprocity can prevail even in the case of ran-
dom encounters. However, the distribution of reputation in a decentralized system
is quite challenging. There is an abundance of different proposals like CORE [62],
SORI [42] and others [50, 59]. Indirect reciprocity requires true identity informa-
tion. Therefore, slandering attacks like good/bad mouthing and whitewashing are
hard to avoid. Free-rider nodes retaliate against other nodes that report the node
as defector by announcing those nodes as defectors too. In our work, we do not de-
pend on reports from neighbors and hence, our meta strategies are not susceptible
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to slandering attacks. Moreover, accumulating reputation and distributing it takes
time and leads to energy consumption in a bootstrapping phase [32], whereas our
scheme does not need extra message exchange for any kind of information.

Yu et al. [101] present a thorough survey on counter measures against Sybil at-
tacks in different platforms. Adding visual contact among the peers [20] for identity
is one of the many proposals. A rather interesting work [78], which is totally de-
centralized, uses mobility to discover attackers. In sparse networks, by overhearing
the messages and using machine learning, a node discovers groups of identities that
always move together. Those identities are considered as one attacker spawning
several identities. Though promising, this only works in sparse networks and the
attacker should use several identities at the same time. If the attacker never uses
the same identity again, it cannot be detected. In our work, similar techniques
can be used to improve the cooperator/defector classification, which currently only
depends on the optimism threshold.

5.10. Conclusions
Cooperation enforcement for the forwarder’s dilemma depends on identity informa-
tion, which is easy to obfuscate in ad hoc wireless networks. Computationally power-
ful smart nodes can guarantee the identity of their neighbors. However, nodes with
low computational power have to stay identity oblivious. Since identity-oblivious
nodes cannot choose which node to retaliate, they follow pure defection to avoid ex-
ploitation. Unfortunately, pure defection may bring isolation since it is recognized
by the smart nodes. Therefore, an identity-oblivious node surrounded by smart
nodes should discover that cooperation is more rewarding in that case.

In this chapter, we have modified and adapted two meta strategies, SIBS and
WSLS, from multi-agent systems so that identity-oblivious nodes still discover the
best strategy in their neighborhood. In SIBS, collective fitnesses of cooperator and
defector neighbors are compared for the strategy decision. On the other hand, in
WSLS, a node switches its current strategy if its own fitness degrades with respect
to the previous one. For a better fit to wireless networks, we have changed the
definition of fitness measure from neighbor cardinality to packet traffic. For counting
the packet traffic, we proposed a novel two-hop overhearing method, which has an
accuracy of 96% in P (pkt) estimation.

SIBS or WSLS? Our experiments have demonstrated that SIBS and WSLS are
able to adopt the locally-fittest strategy. They are both resilient to Sybil attacks.
Moreover, SIBS relays fewer packets of free riders than TFT and GTFT under Sybil
attacks and mobility. With respect to SIBS, WSLS is rather easy to implement and
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Figure 5.11: The number of packets that reach to a certain hop are presented. b/c = 50 and the
network starts with 50% defector, 50% cooperator ratio. Packets reach further away with SIBS
since (i) it promotes cooperation, (ii) it has better strategy stability.
Table 5.4: Comparison of WSLS and SIBS

WSLS SIBS
b/c ratio Higher is better Higher is a “must”

Other constraints None |V|, optimism, routing, mobility

Overhearing cost Only its traffic All traffic

Innovative 4 2

Evolution At most half Full network

Space/Time Com-
plexity

O(1) O(|Vu|)

Strategy stability ≈ 5 consecutive rounds ≈ 19 consecutive rounds

more responsive to attacks. Moreover WSLS is innovative, such that it can switch
to a non-existent strategy in a neighborhood. For instance, even if all neighbors
are cooperative, a WSLS node can switch to defection, whereas SIBS is stuck with
the cooperation. Thus, a network with WSLS nodes converge to neither a full
defection nor full cooperation state. As a result, while WSLS can transform a
network to at most 50% cooperation, SIBS can transform the whole network to
full cooperation. Moreover, the strategy stability of nodes, which indicates the
persistence of a node following the same strategy consecutively, is higher for SIBS
(See Table 5.4). Strategy stability of nodes is crucial for packet networks since
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switching strategies frequently destroys the packet routes. With b/c ratios of 20
and 30, the average number of rounds that a node stays in cooperation state is
16.17 and 19.14 for SIBS whereas 5.01 and 5.66 for WSLS, respectively. When we
consider the actual path lengths that a packet can travel, SIBS is more promising.
As shown in Figure 5.11, packets get more help with SIBS. Unfortunately, mobility
has a detrimental effect on the traffic as it inhibits the spread of cooperation, but
still SIBS can discover the fittest strategy.

To conclude, SIBS offers a fully cooperative network and hence, improves the
network performance more than WSLS. However, SIBS is exposed to more con-
straints and spends more energy in packet overhearing. Nevertheless, both meta
strategies protect the identity-oblivious nodes against exploitation by discovering
the locally-best strategy.





6
Conclusions

Bir elin nesi var, iki elin sesi var.
One finger cannot lift a pebble.

When devices cooperate, they can form large systems for the benefit of their users,
which they cannot accomplish by themselves. Unfortunately, if altruistic acts in-
crease costs or deplete resources such as a scarce one like energy, devices tend to
defect. To enhance cooperation among devices, first, we investigated the incentives
of device owners for cooperation. Then, we proposed autonomous systems where
devices cooperate without human intervention. Briefly, the three main outcomes of
the thesis are as follows:

• Social relations are the most significant criterion for cooperation,

• Decentralized social-device networks, which we proposed, can automate access
control and provide secure-by-default IoT systems,

• In the forwarder’s dilemma, when identity cannot be secured, constrained de-
vices can avoid exploitation and promote cooperation by observing the traffic
in their locality.

In more detail, the contributions of each chapter are given in the next subsections.
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Chapter 2. Although cooperation mechanisms had already been identified, pref-
erences of people were not investigated. With a questionnaire based on a mobile
tethering application, we revealed that consumers mostly care about social rela-
tions while they are concerned with security in cooperation. That is, consumers
want to share their cellular connection with familiar people (e.g., family, friends,
and co-workers) and be sure that they are not vulnerable to any security attacks.
Moreover, our technical analysis on mobile tethering in different platforms indicated
the high power consumption. Due to the lack of power-saving features in the con-
nection provider, energy costs of sharing cellular connection is high. For the wide
adoption of mobile tethering, energy consumption of connection providers should
be decreased.

Chapter 3. Today’s operational service discovery protocols carry simple text-based
uniform resource identifiers that are not expressive enough. Machines cannot com-
prehend the meaning of a new service that is not in their knowledge base or cannot
request services based on its owner. In this chapter, we proposed a new service dis-
covery protocol that is (i) more expressive via the use of ontologies, (ii) application
layer independent since designed as an extension to the neighbor discovery protocol
and (iii) capable of carrying existing discovery protocols. We demonstrated that
interoperability with legacy protocols is easy to achieve such that existing libraries
can be employed without any modification. We also indicated the importance of
limiting the rate of discovery messages because the packets of the carrier protocol,
ICMPv6 multicast, are dropped by the routers when the rate is high.

Chapters 4. The main contribution of this chapter is the creation of a decen-
tralized social-device network (DSDN) for automated cooperation. Social networks
were involved in access control, for instance, an access point learns the owner of a
client device and allows access to network if their owners trust each other. More-
over, complicated security setups are replaced with a simple ownership declaration
without passwords, which is scanning a QR code or NFC/RFID tag. Additionally,
we addressed the social network search problem, whose worst case time complexity
is quadratic for indirect relations. For an unconstrained device such as an access
point, we demonstrated that WiFi beacons can be incorporated to discover proxim-
ity and limit the search space. Moreover, for constrained devices, we proposed an
architecture and modified security standards to delegate the social network search.
Real-life experiments showed that delegation works with as low as 7% communica-
tion overhead and a typical latency of less than a second.

Chapter 5. Without guaranteed identity information neither DSDN nor (in)direct
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reciprocity mechanisms work since punishments and rewards depend on identities.
Unfortunately, highly constrained devices do not have enough resources for crypto-
graphic operations in securing identities. A constrained device can either cooperate
always and consequently may be exploited by free riders or defect always and may be
punished by unconstrained devices. In this chapter, we analyzed and experimented
with two local-observation based cooperation meta-strategies that can be employed
by constrained devices, which are Stochastic Imitate Best Strategy (SIBS) and Win
Stay Lose Shift (WSLS). These two meta-strategies discover the best local strategy
(cooperation or defection) by observing neighborhood traffic without any help from
neighboring nodes. We proved that even in the absence of identity information these
two methods protect a constrained device from exploitations and punishments while
they still promote cooperation. Real-life experiments on over hundred devices and
simulations show that WSLS operates with less information than SIBS as well as
consuming less energy. Nevertheless, with SIBS cooperation prevails throughout
the network while with WSLS only half of the network becomes cooperative. As a
result, with SIBS, packets can travel over more hops than WSLS.

6.1. Discussion and Future Work
To position our access control architecture, which is based on a decentralized social-
device network (DSDN), and highlight the differences from current practices. Before
discussing the pros and cons of each architecture, we should indicate a common
trend, which is addressing devices via URIs. Instead of assigning local addresses,
for global access every device is given a URI. Secondly, we assume that each of these
architectures has the capability of social network integration. A brief evaluation of
each architecture is as follows:

Authorization 
Server

Figure 6.1: Current

The current architecture is fully centralized where
a cloud service acts as a proxy or man-in-the-
middle. A centralized architecture is convenient
since all the information is collected at and served
from one place. However, it raises concerns about
the security, there is neither end-to-end confidential-
ity nor privacy. Central services can view all sen-
sory information as well as social network interac-
tions.



6

138 6. Conclusions

OAuth2

Figure 6.2: Expected

The expected architecture is derived from ongo-
ing standardization efforts of the IETF Authentication
and Authorization for Constrained Environments (ACE)
working group. When this thesis was compiled, the stan-
dard had not been ready yet and there were many other
candidates. Here, we chose the most probable one due to the use of OAuth2, which
is currently the most practiced single-sign-on standard. This architecture allows
end-to-end confidentiality, whereas it does not scale well, and violates privacy by
observing real-life social network interactions. The client device (smartphone) ob-
tains a token from an OAuth2 provider and passes it to the resource server (light
bulb) for access. Thus, the OAuth2 provider cannot eavesdrop IoT traffic, it only
authenticates and authorizes the client. However, in this architecture, the OAuth2
provider obtains the information of device-to-device and hence, human-to-human
interactions since the provider grants the access instead of the bulb. With such
information, physical contacts of people are revealed, which is much more informa-
tive than current online social networks (OSN). The reason is that OSNs do not
necessarily reflect real-life interactions. Finally, Internet connectivity is a must in
OAuth2-based architectures; when disconnected a resource server cannot make a
decision. (We discuss scalability problems in the next item).

Figure 6.3: Our approach:
DSDN

In our approach of DSDN-based access control,
all the control is pulled down to the devices. Thus, in
addition to providing end-to-end confidentiality, all the
device interactions are kept hidden. The resource server
(light bulb) receives the URI of the client (smartphone)
and crawls the social profiles for authentication and au-
thorization. Social profile services on the Internet do not
know who interacts with whom. Moreover, offline opera-
tion (disconnected to Internet) is also possible since a resource server can memorize
its owner’s social network beforehand.
With respect to scalability, unlike the OAuth2 architecture where there are only a
few providers, our architecture does not have any restriction on social profile servers.
Any web server can act as a social profile by simply providing social network infor-
mation in a machine-readable format such as JSON and XML. In OAuth2, trust for
a provider is a manual task, that is a consumer has to explicitly declare its trust for
every new OAuth2 provider. Therefore, only a few OAuth2 providers like Google+,
Facebook and Twitter exist.
Finally, the drawback of our approach is the demand for more resources; not all con-
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strained devices are capable of crawling social networks. In Chapter 4, we demon-
strated that social network search can be delegated to the cloud. However, it in-
creases the dependency on the Internet connection. As a future work, we argue that
trusted devices should be able to exchange social network information in a local
area network.
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Internet Local

Figure 6.4: Future of DSDN

The future of our approach is even more decentral-
ized in that social network information will be searched
without Internet connection. Trusted devices, such as an
access point and a light bulb of the same person in the
same local network, will assist each other in authentica-
tion and authorization of clients. Thus, authentication
and authorization will be faster, and more robust to in-
termittent Internet connection.

In addition to enhancing DSDN by distributing social profiles among trusted
neighboring devices, there is still room for improvement in several aspects. Firstly,
the complexity of decentralized social network crawling should be decreased. In
Chapter 4, we proposed the use of WiFi beacons for proximity detection and lim-
iting the search space. For different deployments, we need similar approaches for
limiting the search space. Moreover, as a new feature, replicating social networks in
constrained devices should be added. We should note that simply copying a whole
social network of a person is not a solution since constrained devices cannot hold
all the relations.

Secondly, we consider that anomaly detection for revealing compromised re-
sources also requires attention. We mentioned several times that IoT carries sensitive
information and hence, confidentiality is of paramount importance. Our proposals
avoid many attacks and easily recover from compromised devices by simply remov-
ing the ownership relation. However, the detection of a compromised device is still
an open question. We need anomaly detection systems for revealing attacks and fix
breaches.

Finally, serving social networks in clear text may be considered as a privacy issue
for some consumers. In DSDN social profiles are published in clear text for crawlers
such that everyone can see each other’s social network. The solution is keeping
social networks partially in clear text and protecting access via access-control-lists
(ACL). When two direct friend’s devices interact, both parties may exchange tokens
for giving a peer access permissions to their own social profiles. Unfortunately, this
restriction does not work for indirect relations since none of the peers can generate
a token for the third person’s social profile. Nevertheless, we should note that
currently online social networks also keep friendship information public. Moreover,
regardless of architecture when two devices from different social networks interact,
discovering a relation is only possible if these social networks cooperate–they reveal
their member’s network. Either all IoT devices will be served from the same central
service or social networks will (have to) be partially public.

To conclude, in this thesis we start from analyzing cooperation to comprehend
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the motivations of people and continue with applying our findings to automate
cooperation in IoT. Our proposal, DSDN, promotes cooperation over social relations
as well as decreases the burden of consumers in securing their devices. Moreover,
we are not silent about highly constrained devices that cannot employ DSDN or any
other (in)direct reciprocity mechanisms due to the lack of identity information. We
proposed two meta-strategies that constrained devices can employ and discover the
best strategy (cooperation or defection) in their locality.
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