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Abstract

Catalysts play an essential role in the daily lives of humans. These catalysts are used in many industries to
make processes more energetically favourable. Climate change is pushing humanity towards the usage of
more green energy and catalysts play an important role in this transition. For example, in the hydrogenation
reaction used for the storage of H2, where the catalyst is involved in the storage and removal of H2 on a storage
medium like CO2. The properties of the catalyst involved in this (de)hydrogenation reaction can affect the
selectivity and yield of the reaction. Designing a catalyst that maximizes the property (yield for example) that
we are interested in for a specific reaction, is an essential asset to tune catalyzed processes.

Computational screening of many catalysts has attracted the attention of academia and industry due to
constant developments in the field of computational chemistry. In these computational methods, predictive
models together with DFT and/or DFTB methods can be used to correlate a set of reaction descriptors with
catalyst properties. The model has a higher probability to find novel molecules with a high activity when more
(reliable) training data is used and when the search space of the model is confined to a local chemical space.
This means that newly added molecules for screening should be structurally closely related to the molecule
that was used to build the model. Unfortunately, large data sets are not readily available for transition-metal
containing complexes although these complexes are widely applied in the field of homogeneous catalysis.

In this research a Python-based workflow, ChemSpaX, that is aimed at automating local chemical space
exploration for any type of molecule is introduced. This workflow enables the user to place fragments on
molecules based on 3D information, while staying close to the quality of the initial structure. This enables
data-driven property calculations and prediction models, which could eventually be extended towards the
automated design of new catalysts. Various representative applications of ChemSpaX are presented in which
data-driven xTB and DFT property calculations are done. The found correlations between catalyst properties
are shown and it is shown that ChemSpaX generates structures that have a reasonable quality for usage in
data-driven prediction models for high-throughput screening.
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1
Introduction

Modern civilization would not exist without the invention of catalysts, as catalysis is involved in the process-
ing of over 80% of all manufactured products [1]. Finding or creating a catalyst with the right catalytical prop-
erties is thus of great importance. A catalyst is defined as: "A substance which increases the rate at which a
chemical reaction approaches equilibrium without becoming itself permanently involved" [2]. Catalysts can
change the mechanism of a reaction which causes new barriers along the reaction coordinate to be lower [3].
Since the activation energy is lowered, the reaction can have a higher rate constant compared to the uncat-
alyzed reaction [3]. Although this may sound simple, the reaction mechanisms for catalyzed reactions can
get really complex. Generally, two types of chemical catalysts are identified.

Heterogeneous catalysts are in a different phase than the reaction mixture, typically these catalysts are
solids that are added in liquid or gas reactions mixtures. The reactant needs to bind onto the surface sites of
the catalyst in order for the reaction to take place and the availability of these surface sites is also the limiting
factor. Heterogeneous catalysts are mostly used in the processing of petrochemicals and fine chemicals [2].
In general, heterogeneous catalysts are preferred due to their easier recovery/separation from the products
which reduces the operational costs [4].

Homogeneous catalysts are in the same phase as the the reaction mixture, these catalysts are molecular
complexes. Organometallics are an example of homogeneous catalysts. The field of homogeneous catalysts
has seen a lot of progress. In literature, a large number of chiral ligands and modifiers are recorded which
achieve high enantioselectivity [5]. Additionally, the technology is now getting a better-defined scope and
limitations for selectivity, activity and productivity [5, 6].

Catalysis research has been focused on noble-metal-based pincer complexes such as those of ruthenium,
iridium or palladium [7–12]. Alternatives like manganese-based complexes are also being researched because
manganese represents a cheap and earth-abundant alternative to precious-metal catalysts [13]. Society is
shifting towards the usage of more green energy and these catalysts will play an important role in the success
of this transition. This can be shown by an example from the field of energy storage where renewable energy
is stored for later usage [14]. An example of such a storage process is the utilization of CO2. This has been
of particular interest in academia and industry, due to the renewable energy applications and the usage of
CO2 as a C1 carbon building block [15]. Efforts have been directed towards researching CO2 neutral fuels like
formic acid, where the same amount of CO2 that was used to create the fuel is emitted. Apart from being used
as a fuel in a fuel cell, formic acid can be used as a medium for hydrogen storage. The formic acid would be
decomposed in CO2 and H2 at the desired location after which the CO2 can be reused and the hydrogen can be
used in an hydrogen oxygen fuel cell [16]. This cycle would make handling and transport of hydrogen easier
[16, 17]. This cycle is shown graphically in Figure 1.1 [16]. This idea would be usable due to the simplicity of
the cycle, since the homogeneous hydrogenation of carbon dioxide has long been studied which lead to the
development of efficient procedures [17, 18].

Formic acid can be formed by the catalytic hydrogenation of CO2 where the CO2 is obtained from ambient
air and the H2 is obtained by electrolysis using green sources of electricity. For this process, a catalytic system
consisting of a transition metal (TM) complex, solvent and base are needed. The catalyst is needed to harness
the two electrons and two protons of the hydrogen and transfer it to CO2. This is only one of the examples
where the catalyst is indispensable to the process. As said before, many more catalytic processes are essential
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2

Figure 1.1: Graphical overview of a catalytical cycle for storing hydrogen in formic acid [16].

to humanity. Being able to fine-tune these catalysts, which directly affects the processes, is an important
asset.

These catalysts can be broken into building blocks: the metal center(s) and its ligands. This is shown
in Figure 1.2 for a pincer complex. Finding the optimal metal-ligand complex from nearly infinite possible

Figure 1.2: Example of a metal with 4 ligands coordinated to it. Each ligand has a distinct color. The pincer ligand backbone (dark blue)
consists of an equatorial tridentate formed by posphorous, nitrogen and another phosphorous, hence the name PNP.

combinations is experimentally impossible and time-consuming. Machine learning (ML), genetic algorithms
(GA) and other computational methods are utilized in tackling the combinatorial problem of catalyst design
[19].

Using computational methods to design or select highly selective catalysts has been described as a holy
grail of chemistry [20]. Thanks to molecular modeling tools that balance cost and accuracy, computational
methods have taken a prominent role in the design of catalysts [21–30].

Analyzing a reaction’s potential energy surface (PES) and an analysis using transition state theory (TST)
are not sufficient to design the reactivity and selectivity of catalysts in most cases, dynamic effects need to be
taken into consideration [20, 31]. Catalytic processes occur at a finite temperature, pressure and possibly with
additives and solvents in the reaction mixture. The reaction conditions can affect the catalyst, for example,
higher thermal energy induces vibrational motion which can be observed in the IR spectrum of the catalyst.
Another example is the coordination to solvent molecules upon addition of a solvent. To take these dynamic
effects into account a more extensive computational method is required, which increases the computational
cost [32]. Thus, for screening thousands of catalysts a rational design strategy with low computational cost
and high accuracy (by taking dynamic effects into account) is needed. Generally, 3 predictive strategies for
catalyst design are described [25].

The first and the most primitive method is manual or interactive trial-and-error. Computational chem-
istry tools are becoming more accessible and are used by all sorts of chemists to test ideas and chemical
intuitions [25]. There are a large number of potential interactions between reactants, catalysts and other in-
termediates. Additionally, the possible combinations of metals and ligands to create catalytic complexes are
endless. Designing catalysts and determining the catalytic mechanism by trial-and-error, would require the
chemist to set up and analyze at least the same amount of calculations as possible interactions [20]. This will
be a time-consuming task if done manually.

Secondly, research is being done in the use of prediction models for catalyst design [33–36]. High-through
put screening (HTS) techniques, allow hundreds of tests and can be expanded using predictive models. Pre-
dictive models seek to correlate a set of descriptors with catalyst properties. Quantitative structure–activity
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/ -property relationships (QSAR/QSPR) are methods that predict chemical properties when only molecular
structural information is available [37]. Macroscopic and microscopic properties of matter can be related
through a set of mathematical equations. These properties can be physical, chemical, biological and tech-
nological [37]. Using these descriptors and correlations, new compounds can be designed. However, the
chemical search space can be enriched if the molecular structures of newly researched compounds are simi-
lar to the structure of the compound that was used to build the model. QSAR/QSPR studies have shown that
the chemical space of active compounds could be local, so the enriched local chemical space may correspond
to a higher probability of discovering novel active molecules [38]. This means that this design strategy can
be confined to a local chemical space, that strategy is known as local chemical space exploration [20, 39–43].
Finding the descriptors that represent structural properties is the major hurdle in making these models, some
descriptors that are used in QSPR analysis can be found in literature [44–48].

Lastly, the most dedicated strategy is the automated design of catalysts, which can involve the use of gen-
erative models. To maximize their predictive power, the predictive models described above can be utilized
in an automated manner. This also requires automated generation of candidate molecules, since predictive
models get more reliable when more data is available. Therefore, the chemist would either have to automat-
ically generate candidate molecules or rely on the existence of a large database of the specific catalyst the
chemist is interested in. For complexes like TM based complexes, such a database does not exist yet and
the computational chemist would need to generate one. The database would need to be non-biased and
based on fundamental research, since difficult or unusual reaction pathways would require very customized
catalysts [20]. In a systematic and objective automation workflow the predictive power can be maximized.

The goal of this research was to lay the foundations for a workflow which enables catalyst design using
prediction models and could eventually be extended towards usage in automated catalyst design. The project
was focused on homogeneous catalysts.

For past research, most of the exploration of the local chemical space of catalysts was done manually.
This meant that the scientists had to open each structure’s xyz coordinates, place the desired substituents
and optimize the geometry afterwards. This process could be accelerated by automating the placement of
substituents on an optimized structure, while staying close to the quality of a DFT optimized structure. This
would mean that the manual labor and usage of computational resources are reduced, working towards a
more efficient predictive model or an automated design workflow. For this purpose a workflow, ChemSpaX,
which can place substituents on molecules in a high-throughput workflow was designed in this project. Al-
though this project was mainly focused on the screening of catalysts, it is important to note that ChemSpaX
can be applied to many geometries and thus could be utilized for other material discovery purposes like drug
screening.

A simplified version of a data-driven catalyst design cycle is shown in Figure 1.3. This highlights how
the designed computational workflow, ChemSpaX, could aid in the discovery of active catalysts. The topics
highlighted in green show the parts of this cycle that were covered in this project. In this thesis the theoretical

Figure 1.3: Simplified version of a data-driven catalyst design cycle. The green boxes are topics that were covered in this project.

background necessary to understand and use the chemical space explorer ChemSpaX is given. Afterwards,
representative use cases are presented in which ChemSpaX was applied to generate structures. In these use
cases, data-driven methods are used to extract and correlate relevant descriptors of the generated structures.
Finally, a summary of the project and an outlook for future research is given.



2
Theory

In this chapter an introduction into the used DFT and DFTB methods is given. Afterwards, the chemical prop-
erties that were studied in more detail are explained. Then, an explanation of the used force-field optimiza-
tion methods and an explanation of the used methods to determine the quality of an optimized molecular
geometry is given. Finally, the workflow of the chemical space explorer ChemSpaX is explained in more detail
together with examples from the source code.

2.1. Density functional theory
The schrödinger equation is one of the fundamental equations in the field of quantum chemistry [49]. In its
nonrelativistic, time-independent form the schrödinger equation is given by Equation 2.1.

HΨi (~x1,~x2, ...,~xN , ~R1,~R2, ...,~RN ) = EiΨi (~x1,~x2, ...,~xN , ~R1,~R2, ...,~RN ) (2.1)

Ψi (~x1,~x2, ...,~xN , ~R1,~R2, ...,~RN ) is called the wavefunction, in itself it is not a physical observable. However, the
wavefunction can be squared to find the probability density:

|Ψ(~x1,~x2, ...,~xN )|2d~x1d~x2...d~xN (2.2)

Which represents the probability that electrons 1,2,...,N are located in the volume d~x1d~x2...d~xN with
∫

...
∫

|Ψ(~x1,~x2, ...,~xN )|2d~x1d~x2...d~xN = 1.
H is the Hamiltonian operator for a system consisting of N electrons and M nuclei. The Hamiltonian

operator for a system corresponds to its total energy (kinetic + potential), which is shown in Figure 2.1 [50–
52]. In this equation, index i iterates over the electrons, while index A or A’ iterate over the nuclei. ZA is the

Figure 2.1: The Hamiltonian operator in the non-relativistic, time-independent Schrödinger equation [50–52]

charge of nucleus A and rij is the inter-electronic distance between the ith and jth electron. riA is the distance
between electron i and nucleus A while RAA′ is the inter-nuclear distance between nucleus A and A’.

The schrödinger equation can be solved analytically for small molecular systems. However, approxima-
tions are needed when expanding the equation to a many-body system. For example, Hartree-Fock methods
provide an approximate solution to the schrödinger equation and make determination of the ground-state
energy possible [53]. According to this method, the exact many-body wave function can be approximated by
a single Slater determinant. A set of equations can be derived for the N spin orbitals and by solving these

4



2.1. Density functional theory 5

equations, the Hartree-Fock wave function and energy of the system is found. The Hartree-Fock method is
often referred to as the self-consistent field (SCF) method, since the final field computed from the charge dis-
tribution needs to be consistent with the initial field. The non-linear Hartree-Fock equations are solved using
iterative methods.

Density functional theory (DFT) is a popular Quantum Chemistry (QC) method to calculate properties of
atoms and molecules using the electron density of the system as variable. DFT originates from the Hohenberg-
Kohn theorems. These two theorems formally establish the electron density ρ(~r) as the central quantity de-
scribing electron interactions. The first theorem states that the external potential, and hence the total energy
is a unique functional of the electron density [54]. The second theorem states that the ground state energy
can be obtained variationally: the density that minimises the total energy is the exact ground state density
[54]. DFT uses various assumptions to approximate a solution to the schroödinger equation.

In the Born-Oppenheimer approximation it is assumed that nuclei have a kinetic energy of zero. This
assumption can be done because even the lightest nucleus (a proton) is about 2000 times heavier than an
electron. This approximation allows approximate separation of the wavefunction as a product of nuclear
and electronic terms. The electronic wavefunction Ψe (r,R) is solved for a given set of nuclear coordinates.
And the electronic energy obtained contributes a potential term to the motion of the nuclei described by the
nuclear wavefunctionΨN (R). The total energy is then obtained by adding the nuclear repulsion energy to the
electronic energy [50].

Using the Born-Oppenheimer approximation and two Hohenberg-Kohn theorems, Kohn and Sham de-
scribed a method to solve the Schrödinger equation using ρ(~r) as the key variable. The Kohn-Sham energy
term for the fully interacting Kohn-Sham system can be written as shown in Equation 2.3 [55]. This approach
is rooted in the Hartree-Fock approach where it is assumed that the electrons move in an effective potential
created by all other electrons and nuclei, thus creating a mean-field approximation for the electron-electron
repulsion term J.

EK S [ρ] =VA A +Ve A[ρ]+ J [ρ]+Ts [ρ]+EXC [ρ] (2.3)

Here, VAA is the nuclei-nuclei repulsion term, VeA the electrons-nuclei attraction term, J is the mean field
electron-electron interaction, Ts is the kinetic energy functional and EXC is the exchange-correlation func-
tional [50]. A functional (given as ’[ ]’) is a function of a function. For example, Ts[ρ] is a functional of the
electron density ρ which is a function of~r.

EXC describes exchange interaction and correlation effects of the electron-electron interaction that are
not contained in the mean-field approximation by Hartree-Fock. The actual form of EXC is not known, hence
approximate functionals based upon the electron density are needed to describe this term. A selection of
these approximate functionals will be explained in the next subsection.

2.1.1. Exchange-correlation functionals
Electrons interact via Coulomb repulsion, this repulsion stems from the Coulomb correlation between the
spatial coordinates of electrons. Additionally, electrons follow the Fermi statistics. Fermi statistics state that
the exchange of any two electrons reverses the sign of the total wavefunction. This is manifested in Pauli’s
exclusion principle, which states that two electrons of the same spin cannot be placed at the same point. This
introduces a purely quantum mechanical interaction in the system, which is called the exchange interaction.
Furthermore, a correlation is introduced by correlating the motions of electrons which have the same spin
state. This is known as the exchange correlation or Fermi correlation.

The exchange-correlation (XC) energies within DFT can be approximated by making use of various ap-
proximation methods. These approximation methods are shown in the Jacob’s ladder in Figure 2.2 where the
chemical accuracy and computational cost of each approximation method are shown on a relative scale.

The simplest approximation method is the local-density approximation (LDA), where the value of EXC [ρ(~r )]
is approximated by the exchange-correlation energy of an electron in an homogeneous electron gas of the
same density [56]. For systems where the density varies slowly, LDA performs well. In strongly correlated
systems LDA is very inaccurate. LDA tends to find wrong ground states in many simpler cases and LDA does
not account for van der Waals bonding. Additionaly, hydrogen bonding is poorly described, which is essential
for most biochemistry applications [56]. These flaws were addressed with the introduction of the generalized
gradient approximation (GGA). GGA also takes the gradient of the electron density into account as an addi-
tional term. Additionally, it is no longer assumed that the the electron gas is homogeneous. An example of
a GGA functional is the BP86 functional, this functional was regularly used during the research reported in
this thesis. BP86 is a combination of the Becke 1988 (B88) exchange functional and Perdew 86 correlation
functional [57, 58]. An improvement to the GGA functionals was made by the meta-GGA functionals, which
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Figure 2.2: Jacob’s ladder of density functional approximations which shows the increasing computational cost that go with increasing
chemical accuracy for functional approximations.

also takes the Laplacian (second derivative) of the density or the kinetic energy density into account. In more
recent advances the hybrid functionals were introduced. These functionals incorporate a part of the exact
exchange energy from Hartree-Fock theory. These functionals are called implicit density functionals since
the exact exchange energy functional is expressed as orbitals instead of a density. An example of a hybrid
functional, that was used for research reported in this thesis, is the PBE1PBE (or PBE0) functional [59]. In the
PBE1PBE functional 25% Hartree-Fock exchange energy and 75% Perdew–Burke-Ernzerhof (PBE) exchange
energy is used along with the full PBE correlation energy [60]. More accurate hybrid functionals exist. For
example, it is possible to use a combination of meta-GGA functionals with hybrid functionals or to use a
double-hybrid functional. These functionals were outside the scope of this project.

2.1.2. Basis sets
A basis set is a set of linear algebra based functions that convert the HF differential equations into algebraic
equations. These algebraic equations can be solved with matrix based methods, which is efficiently done by
computers.

For the research reported in this thesis, the double zeta basis set def2-SVP and triple zeta basis set def2-
TZVP were used [61]. The def2-SVP basis set consists of a split valence function with a polarization function
on all atoms. Split valence indicates that each atomic orbital is represented by two algebraically solvable
orbital-representations. Polarization functions describe the polarization of the electron density of the atom
in molecules. The def2-TZVP basis set consist of a valence triple zeta function with a polarization function
on all atoms. Triple zeta indicates that there are three algebraically solvable orbital-representations for each
atomic orbital. In def2-TZVP these algebraically solvable orbital-representations represent larger spatial or-
bitals such that the spatial accuracy can increase with the tradeoff of more computational cost.

2.1.3. Geometry optimization
Geometry optimization is used to find the configuration of a molecule in which the total energy is minimized.
This is done by exploring the potential energy surface (PES). The PES has local minima and maxima (peaks
and valleys) which resemble optimized geometries and/or transition states. It is hard to distinguish a global
minimum in the PES. A minimum of the PES is characterized by vanishing gradients of the potential energy
with respect to position ( dV

d xi
= 0) which means that the total force on each nucleus is vanishing. Additionally,

positive second order partial derivatives are all positive ( d 2V
d x2

i
> 0).

When optimizing a geometry, the method can choose whether the condition on the first derivative should
apply only or if the condition on the second derivative should apply as well. Calculation of the second deriva-
tive makes the geometry optimization more computationally demanding. However, in order to distinguish
between maxima, minima, transition states and higher order saddle points, it is necessary to examine these
second derivatives. The matrix of second derivatives is called the hessian matrix.
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2.1.4. Hessian
The hessian matrix can give additional information on a molecule and its geometry. This matrix can be diag-
onalized into eigenvectors and eigenvalues. The eigenvectors are normal modes of vibration and the square
root of the eigenvalues corresponds to the frequency that vibrations would have in an infrared spectrum [62].
It is possible to find negative (imaginary) frequencies, this means that the geometry is at a maximum or sad-
dle point (derivatives in all orthogonal directions are zero but geometry is not at a local extremum of the PES).
(local) Minima on the PES have only positive (real) vibrational frequencies. A computational chemist that is
using DFT can thus confirm that the geometry is in a (local) minimum by calculating the hessian matrix and
checking if all vibrational frequencies are real. Hessian calculations can be used to calculate properties like
the Gibbs free energy or enthalpy.

The vibrational free energy is one of the contributions to the Gibbs free energy and is defined as

Fvi b = Ezpe −T Svi b (2.4)

Where Ezpe is the zero-point-energy (defined as the lowest possible energy that a quantum mechanical system
may have) which can be calculated by hessian calculations. And TSvib is the vibrational contribution to the
thermal energy which can be calculated by hessian calculations assuming that the ideal gas law applies to the
molecular system.

2.1.5. Solvation
Different solvent models exist to simulate the effects of solvents on the system of interest. It is possible to use
explicit or implicit solvent models to approximate thermodynamic properties of liquids. In explicit solvent
models the system explicitly includes solvent molecules, this increases the number of interacting particles
and the number of degrees of freedom of a system significantly [63]. Since the contribution to the computa-
tional effort required of these solvent molecules can get to over 90% of the total simulated system, implicit
solvent models are more favourable to lower the computational cost [63]. In implicit solvent models the sol-
vent is treated as a structureless continuum with certain dielectric and interfacial properties [63–66]. The size
and shape of the continuum is subject to a tradeoff between computational cost and accuracy [65].

2.1.6. Dispersion corrections
Including the London dispersion interactions in the DFT approaches has shown to be important in order to
reach high chemical accuracy of large systems like bio- or nanoarchitectures [67]. The dispersion energy is
defined as a long ranged electron correlation effect and is not included in standard Kohn-Sham DFT (KS-
DFT).

For the DFT calculations done for the research in this thesis, Grimme’s D3 dispersion correction was used.
The energy of this correction is given by [67]:

ED3 = EK S−DF T −Edi sp (2.5)

Where EKS−DFT is the self-consistent Kohn-Sham energy as obtained from the chosen density functional and
Edisp is the dispersion correction as a sum of two- and three-body energies. Additionally, scaling factors
and averaged nth-order dispersion coefficients are used together with two- and three-body inter-nuclear dis-
tances to construct Edisp.

2.1.7. Density functional based tight-binding (DFTB)
DFTB uses an approximation to the KS-DFT scheme. Kohn-Sham equations are one-electron Schrödinger
equations of a fictitious system of non-interacting electrons that generate the same density as any given sys-
tem of interacting electrons [68, 69]. DFTB avoids any empirical parametrization by calculating the Hamilto-
nian and overlap matrices out of DFT-derived local orbitals (atomic orbitals, AO’s) and corresponding atomic
potentials [70, 71]. Although ab-intio DFT concepts are included in this method, efficiency and flexibility are
improved by using concepts from the semiempirical tight-binding method [71].

Recently an extended tight-binding method, xTB, was introduced by Grimme et al. which was used
throughout the research presented in this thesis [72]. Like closely related DFTB methods, the xTB meth-
ods use a semiempirical approximation to KS-DFT [72–75]. The GFNn-xTB methods (n = 0, 1, 2) focus on
molecular properties that can be accurately described at a low level, namely geometries, (vibrational) fre-
quencies and noncovalent interactions, hence the acronym GFN [72]. The first version of the GFNn-xTB
methods, GFN1-xTB, uses the same approximations for the Hamiltonian and electrostatic energy as DFTB3,
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but does not rely on atom pair-wise parameterization [72, 74]. Instead, element specific empirical fitting is
used to enable a parameterization that covers a large part of the periodic table [72]. The GFN2-xTB method
was mostly used for the research presented in this thesis and brings several improvements (and an increase
in computational cost) compared to GFN1-xTB. GFN2-xTB incorporates better physics, an extension of the
latest D4 dispersion model and is completely pair-parameter-free [72, 76]. The total energy expression of the
GFN2-xTB method is given by [77]:

EGF N 2−xT B = Er ep +Edi sp +EE HT +E I ES+I XC +E AES +E AXC +GFer mi (2.6)

In the GFN2-xTB method, it is chosen to work with a spin-restricted wave function, which means that
no spin density dependent terms are present. Hence it is possible that α (ms = +1/2) and β (ms = -1/2) or-
bitals can have a different occupation. It is chosen to use a finite temperature treatment, which means that
electrons are treated at finite temperature. In this approach, the bands in energy are smeared such that the
occupancies become continuous. Smearing means that the states of the system are occupied according to
a smooth function, the Fermi distribution for example. There is an additional entropic contribution to the
energy which must be calculated. The finite temperature treatment via fractional orbital occupation is cho-
sen to be able to handle static correlations (nearly degenerate states). An example of systems with strong
static correlation effects are: bond-breaking reactions, diradicals, conjugated polymers, magnetic materials,
and transition metal compounds [78]. The last term GFermi is introduced by the choice of finite temperature
treatment. This term describes the entropic contribution of an electronic free energy at finite electronic tem-
perature Tel due to Fermi smearing [77]. The first term Erep represents the classical repulsion energy which is
an atom pairwise potential. The Edisp term describes the dispersion energy. The D3 dispersion correction cal-
culates the inter- and intramolecular dispersion interactions only by employing the given system coordinates
(and atomic numbers) as mentioned in subsection 2.1.6. The D4 dispersion correction was improved by using
a less empiricial version of D3 dispersion correction together with the addition of atomic charge information.
This introduced charge dependence of the dispersion coefficients improves thermochemical properties [76].
In GFN2-xTB the atomic partial charges are taken from a Mulliken population and are solved self-consistently,
which allows for dropping a large three-body term from the dispersion energy equation. This noticeably de-
creases the computational cost of the method [72]. The EEHT term is the extended Hückel contribution and is
the crucial ingredient to describe covalent bonds in tight-binding methods [77]. EIES+IXC is the isotropic elec-
trostatic and exchange-correlation energy, this term is treated with shell-wise partitioned Mulliken partial
charge. Isotropic means that the electrostatic energy is independent of direction. The second-order charge
density fluctuations are approximated by the orbital Mulliken charges [79]. This shell-wise treatment requires
the definition of reference valence shell occupations. For the occupation of elements of group 1, 2, 12, 13, 16,
17, and 18, the aufbau principle is followed, whereas a modified method is used for treating transition met-
als and elements of group 14 and 15. EAES describes anisotropic (direction dependent) electrostatic interac-
tions. These terms are intended to improve the noncovalent interactions between the outer, less coordinated,
atoms. This is used such that no extra hydrogen or halogen bond corrections nor any element-specific bond
adaptations are required [77]. EAXC describes the anisotropic exchange-correlation energy, this term is sup-
posed to capture changes in the atomic exchange-correlation energy, which results from anisotropic density
distributions (polarization).

In all GFNn-xTB methods, semiempirical parameters are not precomputed by first principle methods as
in DFTB, but optimization on a large fit set is used to provide the best parameter combination for the desired
GFN target properties [72]. An overview of the GFNn-xTB methods is given in Figure 2.3 [72].

Continuum solvation model (GBSA)
In xTB, a polar implicit solvation model based on the generalized Born (GB) model extended with the hy-
drophobic solvent accessible surface area (SASA) is implemented. In the GB model the solute is a continuous
region surrounded by infinite solvent with a different dielectric constant than the continuous region. This GB
model is introduced in the xTB Hamiltonian as a second-order fluctuation in the charge density. In addition
to this polar contribution, a non-polar surface area contribution depending on the SASA of the molecule and
the surface tension is added. Additionally, the SASA is also used in an empirical hydrogen-bond correction to
the GB energy. Eventually, the total solvation free energy is fitted to reproduce COSMO-RS16 solvation free
energies [72, 80].
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Figure 2.3: Summary of GFNn-xTB methods. The dark gray shaded areas denote a quantum mechanical description while light gray
parts indicate a classical or semi-classical description. The parts surrounded by the arrows are treated in an iterative, self-consistent
fashion. A more detailed explanation of individual components in this figure is given by Bannwarth et al. in their introduction of the xTB
methods [72]

2.2. Descriptors
The calculation of molecular descriptors is needed to use QSAR and QSPR methods. A high-throughput
screening (HTS) approach can be used to design the optimal catalyst [33–36]. In this method, large cata-
lyst libraries are generated in silico and their catalytic performance is predicted by augmenting data from
(a limited amount of) conducted experiments using statistical models. Additionally, molecular (structural
or physico-chemical) descriptors, and QSAR/QSPR models are used in these predictions. Examples of used
statistical methods include (linear) regression or machine learning (ML). The relations between reaction de-
scriptors and molecular descriptors can be learned and be used to let the model predict which candidate will
have optimal properties for the desired use case. For example, it can be investigated which set of structural
properties (molecular descriptor) would drive the selectivity (reaction descriptor) of an investigated reac-
tion into the desired direction. In the fully automated design of catalysts, this data can be used to generate
new catalyst candidates that are likely to possess the defined optimal properties, which is called a generative
model. An alternative to HTS is virtual screening, in which statistical methods are used to predict reaction
descriptors (e.g. catalytic activity or selectivity) of conducted experiments based on molecular descriptors.
This approach is limited due to a need for the same amount of experiments as investigated catalysts.

For material design, thousands of descriptors have been reported in the literature, which allows for limit-
less possbilities to construct and define a chemical space [81, 82]. Hence, an overview of molecular descrip-
tors used in literature is given.

A group of important descriptors is fragment descriptors [83–85]. Fragment descriptors are extracted from
a selected subgraph of a molecular graph and binary values (0, 1) can be used to indicate their presence or ab-
sence in the molecular graph [86]. For these fragments, the bond distance from a central atom of the fragment
or SMILES strings can be used as descriptors. A major advantage of this method, breaking the catalyst into
fragments, is the simplicity of descriptor calculation. Molecular quantum number (MQN) is another example
of a simple molecular descriptor set consisting of atomic and bond counts and some other topological (2D
information derived directly from molecular connectivity table) descriptors [87–89]. In literature, 42 of these
MQN (counts for elementary constituents of molecules such as atoms, bonds, polar groups, and topological
features) were used for a more focused approach to virtual screening in drug discovery [88]. Additionally,
these descriptors were used to map the complex multi-dimensional descriptor space to a 2D space, which
makes the chemical space and search for similarities more interpretable to humans [89].

Apart from these structural properties, physico-chemical properties like pKa, redox potential, band gap
and hydricity can be used as molecular descriptors. Some of these descriptors are dependent on the Gibbs
free energy of reaction, which makes the Gibbs free energy in itself an useful descriptor to investigate [90–92].
The HOMO-LUMO gap (or band gap) is another useful descriptor which can be used to predict the strength
and stability of TM complexes [93]. The HOMO-LUMO gap has been used in research to generate materials
with desired electronic properties [94]. The Gibbs free energy and HOMO-LUMO gap for various structures
were studied in more detail in this research next to the electronic energy. The electronic energy is already
calculated when solving or approximating the schrödinger equation as explained in section 2.1. The Gibbs
free energy and HOMO-LUMO gap are explained below. Both xTB and DFT were used for the calculation of
these properties, with varying degrees of accuracy.
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2.2.1. Gibbs free energy
When studying a (T,p) ensemble in molecular thermodynamics, the Gibbs free energy G(T, p) is defined as
follows [95].

G(T, p) = Etot +Fvi b −T Scon f +pV (2.7)

Where Etot is the total electronic energy obtained from DFT as explained in section 2.1. Fvib is the vibrational
free energy and accounts for the vibrational contributions as explained in subsection 2.1.4. Due to this factor,
hessian calculations are required which make the calculation of G(T, p) computationally demanding. The
third term TSconf is the conformational free energy and includes configurational entropy. This term would
require a power series expansion of the partition function, which is a function that describes the statistical
properties of a system in thermodynamic equilibrium. The pV term accounts for expansion/compression
and is negligible for solids.

2.2.2. HOMO-LUMO gap
The HOMO-LUMO gap (also called the band gap) is the difference between the energy of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecuular orbital (LUMO). This energy difference
determines what type of light is absorbed and is thus crucial for photocatalysts and photovoltaic materials.
In TM-complexes the HOMO-LUMO gap can be used to predict the stability, the HOMO is a potential place
where electrophiles will attack so it is especially important in reaction chemistry and the LUMO is a potential
place where nucleophiles may attack [96]. An illustration of the HOMO-LUMO gap is shown in Figure 2.4.

Figure 2.4: The HOMO-LUMO gap is shown for a π conjugated system [97].

2.3. Force-field (FF) optimization
Force-field methods are empirical methods that try to estimate the forces between atoms. Parameterization
(either from DFT or experiments) and functional forms (relationship between a dependent variable and re-
gressors) are essential to force-field methods. The energy landscape is described by the force field parameters.
The acting forces on every atom are derived as a gradient of the potential energy with respect to the atom’s
coordinates [98]. Generally, the bonds between atoms are treated as springs. For the research presented in
this thesis, two types of force-field methods are used.

In the Universal Force Field (UFF), the force field parameters are estimated using general rules based only
on the element, its hybridization and its connectivity [99]. The original implementation of UFF determined
the parameterization without an electrostatic model and is capable of reproducing most structural features
across the whole periodic table with errors less than 0.1 Å in bond distances and 5° to 10° in angle bend [99].

The original Amber force fields were primarily developed for protein and nucleic acid systems and had
limited parameters for organic molecules [100–104]. The generalized amber force field (GAFF) was designed
to work for most pharmaceutical molecules and be as compatible as possible to the traditional Amber protein
force fields. This was possible because the biomolecular parameters in the Amber force fields were developed
using an extensible strategy and an extension had already been described [104]. GAFF uses 33 basic atom
types and 22 special atom types to cover almost all the chemical space composed of H, C, N, O, S, P, F, Cl, Br,
and I [100]. The parameterization is based on more than 3000 MP2/6-31G* optimizations and 1260 MP4/6-
311G(d,p) single-point calculations [105].
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2.4. Quality assessment of an optimized molecular geometry
The quality of a molecular geometry can be assessed in multiple ways. For the research presented in this
thesis, two approaches were considered: 1) calculate the difference between the total electronic energy of a
less accurate structure and a ’standard’. For example, EDFT −EGFN2−xTB 2) calculate the root mean square
deviation (RMSD) of atomic positions between a less accurate structure and a ’standard’. The first men-
tioned approach could be applied by simply using the optimization trajectory, for example: when optimizing
a GFN2-xTB pre-optimized structure with DFT, the first and the last energy in the optimization trajectory cor-
respond to the energy of the GFN2-xTB optimized and DFT optimized structure respectively. For the second
approach, a more elaborate method was needed. A script developed by Dr. J. C. Kromann was used to calcu-
late the RMSD between two structures [106]. For two molecules A and B which both have n atoms, the RMSD
is defined as

RMSD(A,B) =
√

1

n

n∑
i=1

((Ai x −Bi x )2 + (Ai y −Bi y )2 + (Ai z −Bi z )2) (2.8)

Note that it is also possible to calculate the RMSD between the cores of the structures, which is referred to as
the Cartesian heavy-atom (all elements except H) root-mean-square deviation (hRMSD). To correctly calcu-
late the true minimal RMSD between two structures, say molecule 1 and molecule 2, the following procedure
was used:

1. The atoms of each molecule are recentered according to the centroid of the molecule (the centroid is
the mean position of all the points in all of the coordinate directions (x, y and z), from a vectorset).

2. The Kabsch algorithm is used to calculate the rotation matrix that minimzes the RMSD between the
two molecules [107].

3. Molecule 2 is recentered to the center of the ’view’ (if no view is defined, the most outward atoms of
molecule 1 determine the borders of the view).

4. The rotation matrix calculated in step 2 is used to rotate molecule 2 on top of molecule 1 such that the
true minimal RMSD is calculated.

2.4.1. Calculating the optimal rotation matrix for RMSD
To calculate the rotation matrix that minimizes the RMSD between two molecules, the Kabsch algorithm is
used. This algorithm requires that the centroid of molecule 1 and molecule 2 are at the origin, which is done
in step 1. The molecules can then be represented in matrix notation where the x, y and z coordinates fit in
a N×3 (N = number of atoms) matrix and each row corresponds to an atom. Say for example that matrix A
corresponds to the coordinates of molecule 1 and matrix B to the coordinates of molecule 2.

A =


x1 y1 z1

x2 y2 z2
...

...
...

xN yN zN

 B =


x1 y1 z1

x2 y2 z2
...

...
...

xN yN zN

 (2.9)

Then the cross-variance matrix C is calculated. Which gives the covariance between all possible couples of
random variables row-wise [108]. The covariance gives the directional relationship between two variables
whenever one of them changes.

C = AT B (2.10)

C =
N∑

k=1
Aki Bk j (2.11)

The singular value decomposition (SVD) can then be used to get the optimal rotation matrix efficiently. First
the cross-covariance matrix is decomposed.

C =U SV T (2.12)
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Where U is an orthogonal m ×m matrix, S is an m ×n diagonal matrix and V is an orthonormal (columns
are an orthonormal set) n ×n matrix [109]. Next, the determinant of V and U are used to check whether the
rotation matrix needs to be corrected to ensure a right-handed coordinate system.

d = det (V U T ) (2.13)

If d < 0 then the last row of S and V need to be multiplied by -1 to flip the z axis. So, the final optimal rotation
matrix R can be calculated.

R =V

1 0 0
0 1 0
0 0 d

U T (2.14)

The script also supplies several options. Apart from the Kabsch algorithm, quaternions can be used [110].
Quaternions work by minimizing a single cost function associated with the sum of the orientation and posi-
tion errors which was expected to improve both accuracy and speed [110]. The quaternion-based formula is
equivalent to the formula derived by Kabsch, but quaternions might have a slight advantage in dealing with
issues regarding chirality and degeneracy [111].

2.5. Local chemical space exploration
Local chemical space exploration is done by creating structural variations of an input structure. This ap-
proach creates structures that are closely related to each other and thus confines the search space ’locally’.
In this research, this chemical space exploration was done by using various input complexes (referred to as
’skeletons’) and placing substituents on indicated sites. To maximize predictive power by generating more
data, it was decided that this process needed to be automated. A workflow needed to be designed that would
take a skeleton complex as input together with functional groups, which could be substituted onto the skele-
ton. The workflow would need to output the functionalized version of the skeleton complex with a reason-
able quality. After publication, the source code for the designed workflow, ChemSpaX, can be found on ISE’s
Github page (https://github.com/EPiCs-group/).

For ChemSpaX, it was necessary to rotate and align a substituent group that was to be placed on a molecule.
The mathematical details for these operations are explained in this section together with examples from the
ChemSpaX code. Two different approaches were taken in this code:

1. The first approach was to generate a tetrahedron on the indicated sites and place atoms on the vertices
of this tetrahedron. With this approach only tetrahedral substituents could be created. The code for
this approach is contained in generate_tetrahedron.py.

2. The second approach was to view the whole substituent group as a rigid block and attach it to the skele-
ton. The whole block is oriented correctly using the centroid vector of the substituent group. This ap-
proach works for substituents of all geometries, but requires a pre-made library of substituent groups.
The code for this approach is contained in attach_substituent.py.

To orient newly placed substituents correctly in both approaches, the bond between the skeleton and the
atom that will be replaced by the substituent is used. In ChemSpaX, these variables are called bonded_atom
and atom_to_be_functionalized respectively. Note that indexing of atoms in ChemSpaX starts from 0. The
indices of these atoms need to be given as input by the user for each functionalization to ensure correct
placement of a substituent. The correct input format is explained in subsection 2.5.3 where a manual for
ChemSpaX is given.

2.5.1. Approach 1: generate tetrahedron
The mathematics involved in approach 1 will be explained first. Although this approach was not actively
used, the mathematical foundation of this approach was used to create approach 2.

In this approach a substituent is created by generating a correctly oriented tetrahedron on the skeleton
and placing atoms on the vertices of this tetrahedron. In this explanation the placement of a CH3 substituent
on a skeleton is taken as example. This would mean that in Figure 2.5, A would be the atom of the skeleton
that is bonded to the substituent group (bonded_atom). The atom of the skeleton that will be replaced by
the substituent group (atom_to_be_functionalized) is located at O. The central atom of the substituent group,
carbon, would be placed at O when the functionalization occurs. The bond b between atom A and O together

https://github.com/EPiCs-group/
https://github.com/EPiCs-group/
https://github.com/EPiCs-group/
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with the centroid of tetrahedron ABCD is used to rotate the new substituent group. The 3 hydrogens of CH3
would be placed on the vertices of equilateral triangle BCD.

Figure 2.5: Example of a tetrahedron ABCD, which is used to illustrate the placement of a CH3 substituent group on a skeleton [112].

In the code, we start with a general equilateral triangle with its centroid at position [0, 0, 0]. The place-
ment of a substituent group is done by scaling this triangle such that if the hydrogens of the substituent (3
hydrogens in our example of CH3) are placed on the vertices of the triangle BCD and the central atom of the
substituent (carbon) replaces the atom_to_be_functionalized at O, the tetrahedron ABCD is formed as de-
scribed in Figure 2.5. After this scaling is done, we want to find the centroid of the substituent group, which
is used to rotate the substituent group correctly with respect to the skeleton.

To scale this equilateral triangle, the distance between the hydrogens of CH3, a = CD = DB = BC, needs to
be found. The triangle law of vector addition is used to find this distance a.

a2 = b2 +b2 −2b2 cos(θ) (2.15)

Where b is the normalized bond length between O (atom_to_be_functionalized) and A (bonded_atom). Since
we know that for a tetrahedral CH3, the H-C-H angle θ = 109.5 °, this equation can be simplified.

a2 = 2b2(1+1/3) (2.16)

a2 = 8b2

3
(2.17)

a = 2

√
2

3
b (2.18)

By scaling the equilateral triangle by 2
√

2
3 b we can thus create equilateral triangle BCD with the same distance

between hydrogens as in CH3.
To calculate the centroid of the substituent group to rotate the group correctly, we need to take the central

atom of the substituent into account since the central carbon atom is placed at O. Using that the distance

from a vertex to the centroid of the tetrahedron in our case is given by length of each sidep
3

= 2
√

2
3 bp
3

together with

the Pythagorean Theorem, one can find that the distance OH is equal to b
3 . This factor is used to find the

actual centroid of the tetrahedral substituent. The logic for scaling the equilateral triangle and finding the
new centroid is contained in find_new_centroid function inside the Complex class of generate_tetrahedron.py.
This is shown in Code Listing 2.1.

After scaling of the equilateral triangle and calculation of the centroid, the rotation matrix for correctly
rotating this tetrahedral substituent group onto the skeleton needs to be calculated. An explanation for this
is given on the Mathematics Stack Exchange [113]. In our code the correct rotation is determined by two
vectors, 1) the bond that will be functionalized (between bonded_atom and atom_to_be_functionalized) and
2) a normal vector pointing upwards in the z direction ([0, 0, 1]). The second vector is needed because we
want the CH3 to be pointing outwards of the skeleton upon functionalization. In short, a rotation matrix R
needs to be found which rotates unit vector ~a onto unit vector ~b. Let ~v = ~a ×~b, s = ‖~v‖ (sine of angle) and
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1 s e l f . bond_length = s e l f . atom_to_be_functionalized_xyz − s e l f . bonded_atom_xyz # vector with origin on C
and points to H in xyz plane

2 s e l f . e q u i l a t e r a l _ t r i a n g l e = np . array ( [ [ 0 , 1/np . sqrt ( 3 . 0 ) , 0 ] ,
3 [−0.5 , −0.5/np . sqrt ( 3 . 0 ) , 0 ] ,
4 [ 0 . 5 , −0.5/np . sqrt ( 3 . 0 ) , 0 ] ] ) # e q u i l a t e r a l t r i a n g l e with

centroid at origin
5 def find_new_centroid ( s e l f ) :
6 # find new centroid and find where e q u i l a t e r a l t r i a n g l e needs to be translated to
7 b = np . l i n a l g .norm( s e l f . bond_length ) # bond to be functionalized −H
8 b = b * ( 2 . 0 * np . sqrt ( 2 . 0 / 3 . 0 ) )
9 s e l f . e q u i l a t e r a l _ t r i a n g l e = b* s e l f . e q u i l a t e r a l _ t r i a n g l e # make side lengths equal to tetrahedral

bond length
10 centroid = s e l f . atom_to_be_functionalized_xyz + (b/ 3 . 0 ) * s e l f . normalized_bond_vector
11 return centroid

Code Listing 2.1: In this code example the scaling of an equilateral triangle and finding the centroid of a tetrahedron is shown.

c =~a ·~b (cosine of angle). If c is equal to -1 (which means cos(∠(~a,~b)) =−1, happens if~a and~b point in exactly
the opposite directions), then the rotation matrix R is equal to the identity matrix. Else, R is given by

R = I + [v]x + [v]2
x

1− c

s2 (2.19)

Where [v]x is the skew-symmetric cross-product matrix of v

[v]x =
 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (2.20)

The last part of the formula can be simplified to

1− c

s2 = 1− c

1− c2 = 1

1+ c
(2.21)

Which finally gives

R = I + [v]x + [v]2
x

1

1+ c
(2.22)

The logic for calculating the rotation matrix is contained in generate_substituent_vectors function inside the
Complex class of generate_tetrahedron.py. This is shown in Code Listing 2.2. Where we take a normal vector
[0, 0, 1] as a and the bond length as b.

1 normal_vector = np . array ( [ 0 , 0 , 1 ] )
2 normal_vector = normal_vector / np . l i n a l g .norm( normal_vector ) # make unit vector
3 # construct rotation matrix
4 bond_length_norm = np . array ( s e l f . normalized_bond_vector . astype ( ’ f l o a t 6 4 ’ ) )
5 v = np . cross ( normal_vector . T , bond_length_norm . T) # v i s perpendicular to normal vector and bond between

C−H
6 v_x = np . array ( [ [ 0 , −v [ 2 ] , v [ 1 ] ] , [ v [ 2 ] , 0 , −v [ 0 ] ] , [−v [ 1 ] , v [ 0 ] , 0 ] ] )
7 v_xsq = np . dot ( v_x , v_x )
8 c = np . dot ( bond_length_norm . T , normal_vector . T)
9 i f c != −1.0:

10 rotation_matrix = np . eye ( 3 ) + v_x + v_xsq * (1 / (1 + c ) )
11 else :
12 rotation_matrix = np . eye ( 3 )

Code Listing 2.2: In this code example construction of a rotation matrix is shown.

After constructing this rotation matrix the rotation is applied to the tetrahedral group using the calculated
centroid vector. This tetrahedral group is then translated to the correct distance from the skeleton, which
completes the placement of a tetrahedral substituent. A disadvantage of the explained approach 1 is that
only tetrahedral substituents can be created.
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2.5.2. Approach 2: attach substituent block
In this approach, the substituent group is attached to the skeleton as a rigid block of atoms. This is done by
aligning and translating the centroid vector of the substituent group. A visual example can be given using
ice cream in a cone. By moving the cone, the ice cream contained in the cone is also moving in the same
direction. The cone can be viewed as the centroid vector while the ice cream contained in the cone is the
substituent group. Calculating this centroid vector for every substituent that can be attached is done before
doing the functionalization, this is explained in the ChemSpaX manual in subsection 2.5.3. This centroid
vector is generated and stored in a CSV file by methods in the Substituent class in attach_substituent.py. To
generate the centroid vector, the first_coordination method of the Substituent class is used.

This method works by using the central atom of the substituent group to find all atoms bonded to this
central atom. Carbon is the central atom of the substituent in the case of attaching CH3 and the 3 hydro-
gens are the atoms bonded to it. Based on this geometry of the central atom of the substituents and the
atoms that are bonded to it, the centroid vector used to rotate and align the substituent group can be cal-
culated. This calculation of the centroid vector is shown in Code Listing 2.3. A CSV file of substituents
for which this calculation has been done is present in the ChemSpaX repository on Github. The name of
the substituent, central atom and centroid vector are stored in central_atom_centroid_database.csv in the
substituents_xyz/manually_generated/ folder. Storing this data for substituents together with their xyz files
and/or MDL molfiles allowed for less usage of computational resources when multiple functionalizations are
done subsequently. The centroid vectors for substituents that are contained in the CSV database are used cal-

1 def scale_vector ( start ing_point , vector , length ) :
2 """ Scales a vector with a given length
3 : param start ing_point :
4 : param vector :
5 : param length :
6 : return : scaled vector
7 """
8 vector = vector /np . l i n a l g .norm( vector )
9 return start ing_point + vector * length

10

11 def f i r s t _ c o o r d i n a t i o n ( s e l f ) :
12 # find atoms bonded to central atom of substituent , use mol f i l e since graph representation i s more

accurate
13 edges = get_bonded_atoms ( s e l f . path [:−4]+ ’ . mol ’ , s e l f . central_atom_index )
14 # scale bonds such that an hypothetical symmetrical molecule i s created say C−X ’ C−Y ’ C−Z ’
15 for i in range (np . shape ( edges ) [ 0 ] ) :
16 scale_vector ( s e l f . central_atom , ( edges [ i , :]− s e l f . central_atom ) , s e l f . bond_length )
17 # calculate centroid of t h i s hypothetical molecule , which w i l l be similar to r e a l molecule
18 centroid = np .sum( edges , axis =0) /edges . shape [ 0 ] # sum over rows and divide by amount of atoms found
19 # get correct orientation of t o t a l group s . t . the centroid vector i s pointing towards the central atom

of the substituent group
20 centroid = ( centroid − s e l f . central_atom ) /np . l i n a l g . norm( centroid − s e l f . central_atom )
21 return np . array ( centroid )

Code Listing 2.3: In this code example the construction of a centroid vector pointing towards the central atom of the substituent group
is shown.

culate the optimal rotation matrix. This approach was shown for generate_tetrahedron.py in Code Listing 2.2.
For the current approach, the normal vector [0, 0, 1] is now replaced by the centroid vector of the substituent
in Code Listing 2.2. Afterwards, the rotation is applied to the whole substituent group and the whole group is
translated to the correct bonding distance from the skeleton. Finally, Universal Force Field (UFF) and Gen-
eralized Amber Force Field (GAFF), as implemented in the Openbabel package, are used to cheaply optimize
the newly placed substituents [99, 100, 114, 115]. This FF optimization is done while the atoms of the skeleton
are frozen, to preserve the input skeleton’s quality.

This second approach was mainly used for the research reported in this thesis. The above mentioned
steps are all contained in scripts which simplify the workflow.

2.5.3. ChemSpaX manual
To summarize, a step-by-step guide for placing substituents using attach_substituents.py is given. This ex-
plains the steps that were used to generate the complexes for the research presented in this thesis. Before
explaining these steps in more detail, an important distinction should be made between xyz files and MDL
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molfiles. The xyz file format contains only the x, y and z coordinates per atom of a molecule. The MDL Molfile
format contains these x, y and z coordinates together with a list of (single, double or triple) bonds formed be-
tween atoms. It is thus always desirable to use a MDL molfile for a molecule and convert it to xyz format
instead of converting xyz to MDL molfile format. In the latter case the program used for conversion will make
assumptions about bonds (and a computational graph representation of the molecule) based on inter-atomic
distances. The code for ChemSpaX was initially designed to only work with xyz files and was extended to use
MDL molfiles for the FF optimization. Hence, this explanation is currently focused on xyz files, but is subject
to change.

1. It is recommended to start with a DFT optimized skeleton structure. After this optimization, the atom_to
_be_functionalized and bonded_atom should be placed in a nested list on the comment line (the sec-
ond line) of the optimized skeleton’s xyz file. For example, if we want to replace the atom of index 3 with
a substituent group that is bonded to the skeleton at index 2, and afterwards we want to replace index
10 that is bonded to the skeleton at index 9, then the functionalizations_list becomes: [[3, 2], [10, 9]].
After preparation of this skeleton, the skeleton’s xyz file should be placed in the skeletons folder.

2. Substituents that can be placed on the skeleton are present in the substituents_xyz/manually_generated
folder, if one of these pre-made substituents will be used then this step can be skipped.

If a substituent needs to be added to this library, then the following procedure should be followed. If
we would like to add methyl (which is already in the substituents_xyz/manually_generated folder): Take
an xyz file for (optimized) CH4, then remove one of the hydrogens such that C (central atom of the
substituent) has a lone pair of electrons. This lone pair of electrons will be used to form a bond with
the skeleton. Let the C be the first atom in the xyz file of the substituent, since data_preparation.py
assumes that the central atom of the substituent is always the first atom in the substituent’s xyz file.
Save the xyz file in substituents_xyz/manually_generated and run data_preparation.py which uses the
Substituent class of attach_substituent.py to generate the centroid vector for the substituent group and
adds this centroid to central_atom_centroid_database.csv.

3. If data_preparation.py has not been ran in the previous step, it should be ran now such that MDL
molfiles from the skeleton and substituent xyz files are generated. These MDL molfiles are used to
fetch correct bonding information to create the functionalized structure and FF optimize the newly
placed substituent group.

4. If the same optimization (FF on newly placed substituents) method will be used as presented in this
thesis, the user needs to modify the functionalize_and_optimize_obabel.sh script. For example, in
step 1 we have defined that we want to place 2 substituents on the skeleton, thus we should make
sure that we define the 2 substituents that need to be placed. This is done by modifying the START-
ING_C_SUBSTITUENT and RANDOM_C_SUBSTITUENTS variables. If we want to place a CH3 on the
first defined site and an OH on the second defined site, the variables become: STARTING_C_SUBSTIT
UENT="CH3" and RANDOM_C_SUBSTITUENTS="OH". If we had more than 2 substituents, the addi-
tional substituents need to be added to the RANDOM_C_SUBSTITUENTS variable as a string separated
by a space.

5. After these preparation steps, the script can be called with the command:
bash functionalize_and_optimize_obabel.sh C

If the user wants to run xTB optimizations after every functionalization, the explanation in the previous
step and this step should be applied to the functionalize_and_optimize_xtb.sh script.



3
Results

First, the introduction to ChemSpaX with various representative use cases is given in ’ChemSpax: Exploration
of chemical space by automated functionalization of molecular scaffold’. The SI for this section can be found
in Appendix A. Secondly, an application of ChemSpaX to Mn based pincer complexes is shown in ’Metal-
ligand cooperative activation of HX (X=H, Br, OR) bond on Mn based pincer complexes’. The SI for this section
can be found in Appendix B. This application will be published in: A. Krieger, V. Sinha, A. Kalikadien, and E.
A. Pidko, “Metal-ligand cooperative activation of HX (X=H, Br, OR) bond on Mn based pincer complexes,”
Zeitschrift für Anorg. und Allg. Chemie, 2021, doi: in press.

Apart from the presented research, several conferences, workshops and symposia were attended during
this thesis project and the notes for these events can be found in Appendix C.
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Abstract
Generation of many molecular structures with reasonable quality, that resemble an existing (chemical) purposeful
material, is needed for high-throughput screening purposes in material design. Large databases for complexes
containing transition metals are not readily available, although these complexes are widely used in homogeneous
catalysis. A Python-based workflow, ChemSpaX, that is aimed at automating local chemical space exploration
for any type of molecule is introduced. The overall computational workflow of ChemSpaX is explained in more
detail. ChemSpaX uses initial input of a molecular structure and 3D information, to place substituent groups on
the input structure. The newly placed substituents are optimized using a cheap force-field optimization method.
Representative applications of ChemSpaX are shown by the functionalization of transition-metal based pincer
complexes, cobalt porphyrin complexes and a bipyridyl functionalized cobalt-porphyrin trapped in a M2L4 type
cage complex. The relatively fast GFN2-xTB optimization method was used to compare structures generated by
ChemSpaX. For selected use cases a comparison was also done against DFT optimized structures. Descriptors
that can be used in data-driven material design were selected and studied in more detail for the selected use cases.
It is shown that the structures generated by ChemSpaX have a reasonable quality for usage in high-throughput
screening applications.

Keywords: catalysis; data-driven material design; density functional tight‐binding theory; chem-
ical space exploration; open source;
Article type: Software Focus

1 Introduction
The discovery of novel molecules is important for many industries. The usage of computational
methods for the design or selection of highly selective catalysts has been described as a holy
grail of chemistry [1]. Computer-aided drug discovery (CADD) led to the discovery of the HIV
protease inhibitors ritonavir, indinavir and saquinavir. This discovery proved to be the key in
reversing rapid growth in deaths due to AIDS in the US [2, 3]. This is one of the many examples
that show that CADD has been playing a key role in the discovery of drugs and will continue
to do so [4, 5]. Efforts are being made in the energy and chemicals sector to successfully
apply computer-aided methods for discovery of new materials. For example, in the design of
materials for lithium-ion batteries, hydrogen production and storage materials, superconductors,
photovoltaics and thermoelectric materials [6, 7, 8, 9]. A roadmap for materials by computational

1
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design is given by Alberi et al., where it is discussed that a common need in material design
is the need for high-throughput computational and experimental techniques as a foundation for
the materials-by-design paradigm [10].

The chemical space is vast and global exploration of chemical space is difficult [11]. It is
experimentally impossible and time-consuming to find the optimal molecule or material from
nearly infinite possible combinations. Therefore, machine learning (ML) and other cost-effective
computational methods are an attractive solution to the combinatorial problem of material and
catalyst design [12]. Von Lilienfeld and coworkers propose that exploration and understanding
of chemical space can be done by combining physical theories, data sets of quantum mechanics
(QM) and statistical mechanics (SM) properties, and ML methods that incorporate physical
and chemical knowledge [13]. These combinations of QM, SM and ML approaches are called
QML models. In QML models, modern statistical learning theory is applied to predict electronic
and atomistic properties and processess in molecules and materials [13]. However, there are
challenges that need to be addressed before a complete workflow for in silico design of chemicals
and materials can be achieved.

The first challenge is that computational methods should support scientists in adjusting their
hypothesis after synthesis of a material has happened. This is part of the molecular design cycle
[14]. To enable this cycle, a systemic approach for the local exploration of the chemical space of
the synthesized material is needed to learn more about the chemistry involved. This approach
can then be expanded to generate new candidate molecules and adjust the initial hypothesis. By
building upon experimental knowledge in a systemic way together with automated computational
high-throughput screening (HTS), larger subsets of chemical space can be covered.

The second challenge is that even when accurate simulations are available, the process of
molecular design is still limited by the search strategy used to explore chemical space and the
representation of a molecule in chemical space [15]. A differentiable continuous space is required
to enable the use of gradient-based optimization and make larger jumps in chemical space [15].
An example of molecular representations is shown in literature, where autoencoders are used to
map molecule structures onto a continuous latent space. The latent space preserves chemical
similarity principle and thus can be used for the generation of analogue structures [16]. Another
often used representation is the sorted Coulomb Matrix (CM), this representation was applied
successfully in the ML screening of thousands of catalysts [17]. These representations require
that the molecular structure that is represented, is of reasonable quality, while consumption of
computational resources for the generation of the structure is kept to a minimum.

The third challenge is that advances in this field also highly depend on the availability of
trustworthy QM data sets. For (small) organic molecules, reliable data sets like the GDB-13 or
GDB-11 database exist which are being used to train generative models [18, 19, 20]. In these
virtual screening workflows, 3D coordinates are generated from the simplified molecular-input
line-entry system (SMILES) strings and these complexes are analyzed further. Large data sets
are not readily available in the field of homogeneous catalysis and the alternative approach of
using synthetic data generated in silico would become expensive due to the high computational
cost of accurate QC methods like DFT [21, 22, 23]. This unavailability stems from the fact
that transition metal (TM) complexes are regularly used in homogeneous catalysis and it is
known that TM-complexes pose an issue for the SMILES. In current research, a toolkit is being
developed to convert SMILES correctly to 3D XYZ coordinates for TM-complexes [24]. In the
molsimplify code, a divide-and-conquer technique is used to get the correct 3D geometry of
any complex. Force fields for organic components are being used together with a databases
of quantum-mechanically derived rules for the metal–organic bonds [25, 26, 27, 28, 29]. For
the exploration of local chemical space for TM complexes, using a SMILES string as starting
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point is thus something that needs additional research. Another approach that could be taken
for exploration of these complexes, is using the XYZ coordinates directly. This is the approach
that has been taken in this research, which allowed chemical space exploration for any type of
geometry.

In this manuscript a tool that can be used for automated molecular design workflows is
presented. ChemSpaX, a Python based workflow, aims to make the exploration of local chemical
space of both organic and inorganic complexes as easy as possible. The exploration is done by
automated placement of substituents on a given molecular scaffold while maintaining the quality
of the initial scaffold. Several molecular scaffolds are already present in literature and can be
used for an automated exploration of local chemical space. If a particular complex is known for
its high catalytic activity, the 3D coordinates of this complex can be used as a starting point
for exploration in the neighbourhood of its chemical space. With ChemSpaX it is possible to
automate this exploration of the local chemical space. The user has full control of the placement
of substituents groups and can thus guide the exploration of the local chemical space based on
chemical intuition. A general overview of ChemSpaX is given in Figure 1.

Figure 1: A general overview of ChemSpaX. Using ligands and an user-defined complex, the
local chemical space of this input geometry can be explored. Color code used for elements: gray
= C, white = H, red = O, pink = Ru, dark-blue = N and turquoise = F.

The key features of ChemSpaX are presented in the next section. Subsequently, repre-
sentative applications of ChemSpaX are presented. First, the functionalization of a RuPNP
complex involved in a (de)hydrogenation reaction is studied [30, 31, 32, 33, 34, 35]. The
(de)hydrogenation reactions are important in several industries. Catalytic hydrogenation has
become a key technology for the manufacturing of pharmaceuticals and fine chemicals, this pro-
cess replaces chemical reduction methods that generate large quanitities of waste [36]. Catalytic
hydrogenation is currently the most widely applicable method for the reduction of organic com-
pounds which causes it to belong to the most important transformations in chemical industry
[37]. At healthcare company Roche, 10 to 20% of chemical reactions in fine chemical synthesis
are catalytic (de)hydrogenations, catalytic hydrogenation is of importance for the economic pro-
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duction of carotenoids, sorbitol and vitamins A, E and C [38]. In the energy storage/conversion
industry, (de)hydrogenation reactions play an important role in enabling a renewable energy-
based hydrogen economy. For example, a formic acid based hydrogen battery allows efficient
transportation of hydrogen [39, 40, 41]. Analyzing the properties of these RuPNP intermediates
by exploration of the chemical space can thus be a valuable asset for multiple industries. For
RuPNP, the quality of geometries generated by ChemSpaX, the energy of hydrogenation and a
comparison of calculated HOMO-LUMO gaps are presented.

Secondly, the functionalization of Mn-pincer complexes as potential (de)hydrogenation cat-
alysts is studied. This study is an extension of previous work by our research group [42]. With
this application the chemical space of a more climate-friendly alternative to RuPNP is explored.
Next to ruthenium pincer complexes, manganese-derived pincer complexes have also attracted
the interest of the catalytic community. Manganese is known to be a cheap, abundant and
biocompatible alternative to precious-metal catalysts [43]. The quality of geometry generation
and energy of reaction with various adducts are investigated in more detail.

For both pincer complexes the activated catalyst (M –L) has a Lewis acid site on the metal and
the ligand can act as a Bronsted base. This means that the metal can coordinate with an electron
donating species while the ligand can accept a proton [42, 44]. For the (de)hydrogenation reac-
tions, the outer-sphere Noyori-type mechanisms, involving proton transfer to the amido ligand
and hydride transfer to the metal center are typically proposed. For the Mn-pincers, potential
deactivation/inhibition through the metal-ligand cooperative addition of alcohol/water/base are
studied [42]. The properties of the pincer complexes’ intermediate with an electron donating
species on the metal and a proton on the ligand are thus an important factor to ensure that the
desired product is synthesized. The Noyori-type mechanism involved in these reactions together
with an example 3D structure of the Mn-pincer is shown in Figure 2.

Figure 2: A representative proposed Noyori type cooperative catalytic cycle for dehydrogenation
of methanol in aqueous phase is shown (left). Together with an example Mn-pincer complex
(right). Color code used for elements: gray = C, white = H, red = O, pink = Mn, dark-blue =
N.

Thirdly, the generation of a database of ∼1100 functionalized Cobalt Porphyrin (referred to as
’Co porphyrin’ in the rest of this manuscript) complexes is shown. Co porphyrins are successful in
the field of carbene and nitrene transfer reactions and its usage as a catalyst provides interesting
possibilities [45, 46, 47, 48]. Automated generation of this database shows the possibility of
systemic exploration of local chemical space. The generated database is used to investigate the
correlation of root mean square deviation of atomic positions (RMSD) with other descriptors
and to perform a regression analysis of HOMO-LUMO gaps of functionalized Co porphyrins.
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Lastly, the functionalization of a bipyridyl functionalized Cobalt-porphyrin trapped in a M2L4
type cage complex (referred to as ’M2L4 cage’ in the rest of this manuscript) is presented. This
cage complex confines the Co porphyrin catalyst, which can lead to changed catalyst proper-
ties [49, 50, 48]. This case shows how ChemSpaX can be used to automatically functionalize
structures that are more difficult to functionalize. The RMSD of various optimization methods
is compared for the M2L4 cage.

2 Computational methods
2.1 Open Babel
Conversions between MDL Molfile and XYZ format were done using Open Babel [51, 52]. For
structures generated by ChemSpaX the Generalized Amber Force Field (GAFF) followed by
the Universal Force Field (UFF) optimization method as implemented in Openbabel was used
[53, 54]. This order of optimization gave a reasonable geometry based on pre-defined molecular
connections

2.2 Semiempirical tight-binding
Grimme lab’s xTB package (version 6.3.3) was used for semiempirical tight-binding calculations
[55]. The GFN2-xTB method and GFN-FF methods were used for geometry optimization [56,
57, 58, 59]. The RuPNP geometries were optimized using GFN2-xTB with verytight criteria,
hessian calculations were also performed for these geometries to verify the absence of imaginary
frequencies and that each geometry corresponds to a local minimum on its respective potential
energy surface (PES). The Mn-pincer complexes and Co porphyrins were optimized using GFN2-
xTB without hessian calculations. The M2L4 cage geometries were optimized using GFN2-xTB
and GFN-FF.

The GBSA solvation method as implemented in xTB was used with THF as solvent for most
optimizations, to implicitly account for solvent effects [60, 61]. These GFNn (n= 0, 1, 2, FF)
methods are denoted as GFNn-xTB(THF) or GFNn-xTB(GAS) depending on whether GBSA
solvation was used.

2.3 Density Functional Theory
2.3.1 Pincer complexes
Gaussian 16 C.01 was used to perform DFT calculations [62]. The BP86 exchange-correlation
functional was used for geometry optimizations together with the def2SVP basis set [63, 64]. This
combination of functional and basis set have shown reliable geometry predictions accompanied
with low costs [65, 66]. Geometry optimizations were performed in the gas phase. Single point
DFT calculations were performed using the SMD solvation (THF) model [67]. This was combined
with either the BP86 or PBE1PBE (also known as PBE0) functional with the def2TZVP basis set
to further refine the electronic energies [68]. All DFT calculations were performed with Grimme’s
D3 dispersion corrections [69]. These composite methods, BP86/def2-SVP//XC/def2-TZVP
(THF), are denoted as XC(THF) or XC(GAS) depending on the exchange-correlation (XC)
functional used and if a single-point calculation (SP) with solvation was done.

All geometries were pre-optimized with a combination of Openbabel’s GAFF and UFF meth-
ods or GFN2-xTB before being subjected to full DFT based optimization. In this research no
conformational search was conducted.

For the Ru-pincer complexes the PNP ligand was researched. Multiple ligands were selected
for DFT calculations for the Mn-pincer complexes, namely: CNC, PNN and PCP ligands. The
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research was focused on the hydrogenation (addition of a H-H species) of the Ru based catalyst
and the addition of H-X (X=Br, H, OH, iPrO) species to the Mn-based catalyst. The catalysts
are represented as M-L where M represents the metal center and L the ligand. This lead to
the formation of M(X)-L(H) species. The thermodynamic stability of the formed M(X)-L(H)
species was estimated by computing the Gibbs free energy and total energy change under standard
conditions upon addition of the H-X moiety.

H−X+M−L −−→ M(X)−L(H) (1)
∆G◦

HX = G(M(X)− L(H))−G(M − L)−G(H−X)... (2)
∆E◦

HX = E(M(X)− L(H))− E(M − L)− E(H−X)... (3)

2.3.2 Co porphyrins
TeraChem v1.94V-2019.08-beta was used to perform GPU-accelerated DFT SP calculations
[70, 71, 72]. The PBE1PBE exchange-correlation functional was used with empirical dispersion
corrections [68, 73]. The LANL2DZ basis set is a widely used effective core potential (ECP) type
basis set and was used to model the Co metal centers [74]. All geometries were pre-optimized
using the GFN2-xTB method before being subjected to DFT SP calculations.

2.4 Root-mean-square deviation of atomic positions (RMSD)
The RMSD is used to compare two molecular structures, the difference between the position
of the same atom on both molecular structures is used. the RMSDs were calculated using a
Python package made by Dr. Kromann [75]. First, the Kabsch or Quaternion algorithm can be
used to align the cartesian coordinates [76, 77]. This ensures that real minimal average distance
between atoms is calculated. Subsequently, the minimal average distance between atoms of two
superimposed molecules can be calculated. If for example the two molecules p and q with n
points are compared, the RMSD is defined as

RMSD(p,q) =

√√√√ 1

n

n∑

i=1

∥pi − qi∥2 (4)

=

√√√√ 1

n

n∑

i=1

((pix − qix)2 + (piy − qiy)2 + (piz − qiz)2) (5)

2.5 Linear regression
For selected Co porphyrin structures, the correlation between HOMO-LUMO gaps computed
using DFT and GFN2-xTB was investigated. This was done with linear regression via ordinary
least squares (OLS) fitting using the sklearn library in python [78].

3 Code implementation
ChemSpaX is a python tool that allows the automated functionalization of molecular structures,
aimed at easing the creation of an automated workflow for quantum chemistry calculations. An
overview of the overall workflow of ChemSpaX as described in this section is shown in Figure 3.
The user has to supply: a molecule that needs to be functionalized (skeleton), which sites on
the supplied molecule should be functionalized (functionalization_list) and what substituent

23



should be placed on the supplied site (substituent). Substituents can be chosen from a pre-
made database or users can supply new substituents in XYZ or MDL Molfile format. Based on
the user input and molecular geometry calculations, the substituent is placed optimally on the
skeleton. Information for the correct placement of a substituent is kept in a CSV file, here the
central atom of the substituent group and its centroid vector is stored. After a geometrically
correct placement, the GAFF and UFF optimization methods from Open Babel are used to
optimize the newly placed substituent [51, 52]. This combination of GAFF and UFF was found
by trial-and-error. This choice is explained in the SI.

It is recommended to use a DFT optimized geometry as input skeleton. When a new
functional group is placed on the skeleton, the skeleton itself is fully constrained, hence the FF
optimization only influences the newly placed functional group. This choice was made to keep
the core of the geometry as close to its DFT optimized input structure as possible while pre-
venting steric hindrance from newly placed substituents cheaply. The resulting geometries can
be used for screening purposes or can be further optimized using semi-empirical methods or DFT.
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Figure 3: Overall workflow of ChemSpaX. 1) The user supplies a skeleton XYZ, functionaliza-
tion_list and substituent. 2) The XYZ files are converted to MDL Molfiles to conserve correct
bonding info. 3) The central atom of the substituent group and the centroid vector are used
to rotate and translate the substituent group towards the functionalization site. 4) atom_to_-
be_functionalized is replaced by the substituent group. 5) The skeleton and substituent group
are merged in one MDL Molfile with correct bonding information from input MDL Molfiles. 6)
GAFF optimization is done to prevent steric hindrance. 7) Additionally, UFF optimization is
done to prevent GAFF related issues. 8) Optionally, xTB optimization can be used for further
optimization of the functionalized skeleton. 9) If there are no functionalizations left to do,
the program is done and the functionalized skeleton is saved in MDL Molfile format. Else the
functionalized skeleton will be used as input and the process starts again at step 1.
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4 Results and discussion
4.1 Pincer complexes
In this research the functionalization of the ligand scaffold of TM pincer complexes was inves-
tigated. First, we looked at Ru based pincer complexes. Expanding on previous research done
by our group, Mn-based pincer complexes functionalized with various adducts were investigated
afterwards [42].

4.1.1 Functionalization strategy
The Ru-based complexes had a PNP-(bis(3-phosphaneylpropyl)amine)- backbone coordinated
to a Ru(II) center stabilized by CO, PMe3 and/or H ligands. For these RuPNP complexes, 288
geometries were generated by functionalization of the M-L complex and the M(H)-L(H) variant.
27 geometries were selected for BP86(GAS) optimization. BP86(THF) and PBE1PBE(THF)
single-point (SP) calculations were done on the optimized geometries. Generally, the phospho-
rus sites were functionalized first and the carbon moieties on the PNP ligand backbone were
functionalized second. This strategy is shown in Figure 4.

Figure 4: Functionalization strategy for the RuPNP pincer complexes.

For the Mn-based complexes five representative ligand scaffolds were considered, PNP-
(bis(3-phosphaneylpropyl)amine)-, SNS-(azanediylbis(ethane-1-thiol))-, CNC-(bis(2-(1H-3�4-
imidazol-3-yl)ethyl)amine)-, PNN-(N1-(2-phosphaneylethyl)ethane-1,2-diamine)-, and PCP-
(N1,N3-bis(phosphaneyl)benzene-1,3-diamine)- backbones coordinated to a Mn(I) center sta-
bilized by CO ligands. 1225 geometries were generated using ChemSpax and optimized using
GFN2-xTB(THF). Functionalizations were done on the M-L and M(X)-L(H) complex. From
these 1225 geometries, 545 geometries were selected for DFT optimization using BP86(GAS).
BP86(THF) (SP) calculations were done on the optimized geometries. Functionalizations were
performed symmetrically, all four R1 sites were kept the same and both R2 sites (only 1 in case
of PCP backbone) were functionalized with the same group. However, R1 and R2 were not
constrained to be the same. The various backbones and the functionalization strategy is shown
in Figure 5.
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Figure 5: Functionalization strategy for Mn-pincers with various donor (R1) and backbone (R2)
groups.

4.1.2 Quality assessment of generated geometries
For screening purposes and in generative models, an extensive database of accurate geometries is
needed. These geometries need to be generated efficiently, so a computational efficient method
with a performance close to full DFT optimization is desirable [17, 79, 80]. Methods like FF, xTB
and genetic algorithms (GA) thus are attractive solutions for in situ structure generation. For
this research all input skeletons were optimized on DFT level. ChemSpaX uses FF optimizations
on newly placed substituent groups in each iteration, hence these geometries are referred to as
’FF geometries’ in this manuscript. In this research the quality of the generated geometries was
assessed by comparison with GFN2-xTB optimized structures. DFT optimized structures were
used as a ’standard’ for comparison.

First, the electronic energy was used for comparison. In this comparison, a FF optimized
geometry is taken, its geometry is then optimized using DFT. By comparing the ∆E before
and after DFT by subtracting the energy from the FF optimized geometry from the energy of
the DFT optimized geometry, the quality of the geometry can be assessed. By comparing ∆E
before and after DFT for a geometry optimized with GFN2-xTB by subtracting the energy from
the GFN2-xTB optimized geometry from the energy of the DFT optimized geometry, a similar
quality assessment can be done.

∆∆EGFN2−xTB = ∆EDFT −∆EGFN2−xTB (6)
∆∆EFF = ∆EDFT −∆EFF (7)

For RuPNP this ∆∆E was calculated by comparing BP86(THF) and GFN2-xTB(THF) op-
timized structures. The mean of the ∆∆EFF was found to be 7.20 kcal mol−1 with a relatively
large standard deviation of 4.57 kcal mol−1. The mean of the ∆∆EGFN2−xTB was found to
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be 4.77 kcal mol−1 with a standard deviation of 2.57 kcal mol−1. This indicates an overall
good agreement between the GFN2-xTB optimized structures and the structures generated by
ChemSpaX. For Mn-pincer complexes only the ∆∆EFF was calculated. With an average of 27.2
kcal mol−1 and a very high standard deviation of 26.1 kcal mol−1. The FF geometries were com-
pared against BP86(GAS) optimized geometries because the database contained a substantial
amount of structures and the DFT optimization was only done in gas phase to save computa-
tional resources. Due to this, there was no ∆∆EGFN2−xTB available to compare the ∆∆EFF

against. This result shows that although the GFN2-xTB optimized structures and structures
generated by ChemSpaX can be in good agreement as observed for the RuPNP structures, these
structures can still be far off from the DFT optimized structure.

Apart from the electronic energy, the root-mean-square deviation of atomic positions (RMSD)
can be used to assess the quality of a geometry. For the RuPNP complexes, the Cartesian
heavy-atom (all elements except H) root-mean-square deviation (hRMSD) was calculated [55].
With this method the average distance between two geometries (in Å) is calculated. Again,
DFT optimized structures were used as the standard for comparison. Both FF and GFN2-xTB
structures had a similar average hRMSD when compared to DFT structures, 0.67 Å and 0.41
Å respectively. With low standard deviations of 0.30 Å and 0.34 Å respectively. As observed
with the electronic energy, the structures generated by ChemSpaX are in good agreement with
GFN2-xTB optimized structures. Generally, it was observed that the hRMSD’s were mostly
close to 1 Å and never exceeded 2.5 Å, both for FF and GFN2-xTB. Distributions of the hRMSD
values are shown in the SI.

A selection of the geometries are visualized using structure overlay plots in Figure 6. The
comparisons in these structure overlay plots are done in a similar way as calculating the RMSD,
a) the FF optimized structure (silver), generated by ChemSpaX, is compared to a DFT opti-
mized structure (green) and b) a GFN2-xTB optimized structure (silver) is compared to a DFT
optimized structure (green). It was observed that FF optimization is worse at orienting the
ligands on the phosphine sites correctly. However, the hRMSD mostly remains close to 1 Å. FF
optimization on newly placed substituents only as employed by ChemSpaX can thus generate
promising geometries for HTS applications since the geometries are in reasonable agreement
with higher-level methods like GFN2-xTB while FF is relatively less resource consuming.
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Figure 6: Structure overlay plots of some selected TM complexes. a) shows FF optimized
(silver) vs DFT optimized (green) structures and b) shows GFN2-xTB optimized (silver) vs DFT
optimized (green) structures. The ’-H’ indicates that the complex is hydrogenated. Color code
used for elements: red = O, purple = Ru, dark-blue = N and turquoise = F.

A comparison using the hRMSD was done in a similar manner for the Mn-pincer complexes.
It was again observed that both FF and GFN2-xTB structures had a similar average hRMSD
when compared to DFT structures, 0.70 Å and 0.78 Å respectively. With low standard deviations
of 0.45 Å and 0.67 Å respectively. This confirms the previous observation seen from the RuPNP
structures, that the structures generated by ChemSpaX are in good agreement with GFN2-xTB
optimized structures.

The effect on the hRMSD of ligands bonded to the metal center was also compared for
various backbones. This comparison is shown in Figure 7. As observed in previous research,
most PNN based complexes resulted in hemilabile ligands, this hemilability could arise as an
artifact of xTB based geometry optimization or it can be genuinely present in the system [42].
Due to this hemilability, the spread of the PNN backbone hRMSD data was larger compared to
the other backbones. For the PNN and CNC backbones it was observed that functionalization
with electron donating substituents on the R1 site resulted in a higher hRMSD. For the PCP
backbone it was observed that functionalization with tBu on the R1 site specifically gave a larger
hRMSD. This observation is expected to have the following cause: although electron donating
groups should increase basicity of the acceptor site and should hava a stabilizing effect, electron
donating groups like tBu are bulky and thus introduce a high amount of strain in the coordinated
ligand geometry [42].
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Figure 7: Comparison of hRMSD for the PCP, PNN and CNC ligand backbone of a) FF optimized
structures compared to DFT optimized structures, b) GFN2-xTB optimized structures compared
to DFT optimized structures. The various ligands bonded to the metal center are color coded.

4.1.3 Comparison of ∆G and ∆E
A relation between the Gibbs free energy of reaction (∆G) for species A and species B can
indicate that ∆GA can be used as descriptors to estimate the energetics of species B.

For the RuPNP complexes, it was observed that ∆G correlates well with ∆E, this observa-
tion is shown in Figure 8. This is in line with a previous study done by our group where the
same correlation was observed [81]. Calculation of ∆G is relatively resource consuming since it
involves a calculation of the full Hessian of the system. This correlation shows that ∆E scales
well with ∆G and due to the observed minimal loss of accuracy, ∆E can be used instead of
∆G as descriptor in high-throughput screening (HTS) applications [81]. Thus, heavy resource-
consuming hessian calculations can be skipped without losing a significant amount of accuracy.
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Figure 8: Comparison of the Gibbs free energy of reaction (∆G) and the electronic energy of
reaction (∆E) in GFN2-xTB(THF) calculations for RuPNP complexes [81].

The same correlation between ∆G and ∆E was found for the Mn-pincers, regardless of the
backbone and/or functionalization. Which confirms the finding that ∆E can be used in HTS
applications without significantly losing accuracy. This correlation is shown in Figure 9.

Figure 9: Comparison between the Gibbs free energy of reaction (∆G) and the electronic energy
of reaction (∆E) in a) DFT calculations and b) GFN2-xTB calculations [81].

4.1.4 Comparison of HOMO-LUMO gap GFN2-xTB vs DFT
Functional inorganic materials that are used for photocatalysis or photovoltaics require knowledge
of the HOMO-LUMO gap (also known as the band gap), since this gap determines which
wavelength of light is absorbed [82, 83, 84]. Additionaly, the HOMO-LUMO gap can be used to
predict the strength and stability of TM complexes [85]. HOMO-LUMO gap prediction based
on only the molecular structure can thus be a great resource to screen and develop functional
inorganic materials [86].

The HOMO-LUMO gap of the RuPNP pincers calculated for GFN2-xTB(THF) optimized
geometries was compared to the HOMO-LUMO gap of BP86(THF) optimized structures. It
was found that the HOMO-LUMO gap calculated by GFN2-xTB has a decent correlation with
the HOMO-LUMO gap calculated by DFT. This result is shown in Figure 10 where a R2 of
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0.74 and a RMSE of 0.4 eV was found. This indicates a reasonable accuracy of the GFN2-xTB
calculated HOMO-LUMO gap, which can be useful in HTS applications for replacing resource-
consuming DFT calculations.

Figure 10: Comparison of the HOMO-LUMO gap calculated by GFN2-xTB and DFT.

For the Mn-pincers, the correlation between GFN2-xTB(THF) and BP86(THF) was worse
(R2 = 0.3). The correlation for various analyzed adducts on the metal site and for the various
backbones are tabulated in the SI.

4.2 Co porphyrin
Serial functionalization of a Co porphyrins was done to create a relatively large database for
analysis. Co porphyrins are reported to have a unique reactivity in carbene transfer reactions
and are thus of importance for direct functionalization of C-H bonds compared to traditional
hydro-carbon functionalization approaches [87, 88, 89, 90]. The potential of ChemSpaX is shown
in the functionalization of a 2D Co porphyrin structure.

When functionalizing a structure as implemented in ChemSpaX (freezing the skeleton and
performing FF on newly placed substituents), errors can be introduced. Stretching or compres-
sion of the skeleton structure is not taken into account since the skeleton is frozen. Relaxation
of the skeleton upon placement of a new substituent group is thus barely taken into account.
By investigating a structure that is close to 2D instead of 3D, the assessment of the introduced
errors and their propagation by the workflow of ChemSpaX is simplified.

4.2.1 Functionalization strategy
Figure 11 shows the functionalization strategy for Co porphyrin, the Co porphyrin skeletons
were functionalized with various phenyl groups on the R1 sites to generate 10 skeletons. These
skeletons were then used to generate 1120 functionalized Co porphyrin complexes. The func-
tionalization was done serially as described in Code implementation. The sites X1-X5 on the
phenyl rings (R1) were functionalized first. Afterwards, functionalizations were done on R2 and
R3 respectively. This functionalization strategy is shown for 3 different skeletons in Figure 12,
where the skeleton, 5th functionalization and 15th functionalization are shown in a column. The
1120 geometries were optimized using GFN2-xTB(THF) and from these 1120 geometries 280
geometries were selected for PBE1PBE(GAS) calculations.

32



Figure 11: Functionalization strategy for Co porphyrin, phenyl groups were placed on the R1
sites and these newly placed phenyl groups were the first targets for functionalization. With this
strategy a database of 1120 Co porphyrin structures was generated.

Figure 12: Functionalization strategy for Co porphyrin shown for 3 different skeletons. For each
skeleton the 5th functionalization and 15th functionalization are shown in 1 column. The phenyl
rings are functionalized symmetrically. In the 5th functionalization the most left phenyl ring of
the skeleton is functionalized, in the 10th functionalization the same substituents are placed on
the upper phenyl ring and in the 15th functionalization on the most right phenyl ring. Color
code used for elements: gray = C (metal center = Co), white = H, red = O, dark-blue = N
and turquoise = F.

4.2.2 Error propagation of serial functionalization
To compare the quality of the geometries generated by ChemSpaX against GFN2-xTB optimized
geometries, the hRMSD was calculated. The average hRMSD was 1.43 Å with a relatively low
standard deviation of 0.53 Å. It was observed that the hRMSDs were mostly close to 1.25 Å and
the maximum was 2.69 Å.
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Upon detailed analysis of the hRMSD it was observed that the hRMSD increases nearly
linear for each subsequent functionalization on a skeleton. The error introduced by placing a
new substituent group is thus propagated upon the next placement of a substituent. An example
is shown in Figure 13 where the hRMSD for each skeleton is plotted. The first 10 blocks shows
the increasing hRMSD for each functionalization on a given skeleton. The last block shows
the hRMSDs for all 10 skeletons, showing how the error increases almost linearly upon each
functionalization regardless of the used skeleton.

This finding could help researchers in getting the most accurate geometry when using
ChemSpaX. One can determine when an extra geometry optimization with a higher-level method
is needed in between functionalizations by setting a hRMSD treshold. When this treshold is
reached, the higher-level optimization method can be used to reduce the hRMSD and the func-
tionalization can be continued.

Figure 13: Increasing hRMSD for each functionalization on a given skeleton. Where N is the
number of functionalizations, starting from 0. 10 skeletons were created and 28 functionalizations
were done for each skeleton. The first 10 blocks each represent a skeleton, while the last block
on the bottom shows the increasing hRMSD for each skeleton grouped in 1 figure. After every
28th functionalization (0 ≤ N ≤ 279), a new skeleton is functionalized.
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When analysing correlations of the hRMSD with other variables in more detail, clustering
was observed. This observation was done when correlating hRMSD and the number of atoms in
a structure. The data was divided into 3 groups, namely:

1. hRMSD < 1.5 Å (low)
2. 1.5 Å < hRMSD < 2.0 Å (middle)
3. hRMSD > 2.0 Å (high)

The clustering is shown in Figure 14. As expected from previous results, the highest hRMSDs
are found in the heavy functionalized structures with a higher number of atoms. The error
introduced by ChemSpaX upon functionalization is thus propagated, but the hRMSD remains
below 2.69 Å, even after 28 functionalizations on the same skeleton.

Figure 14: Observation of clustering when correlating the hRMSD with the number of atoms in
a complex. 3 regimes were observed, which are color coded accordingly.

Structure overlay plots of the FF geometries (silver) and the GFN2-xTB optimized geometries
(green) are shown in Figure 15. Within the 3 observed clusters there were 2 categories: structures
with more than 200 atoms and structures with less than 200 atoms. For each cluster, 4 structure
overlays were plotted. The upper half of the figure shows structures within these clusters with
less than 200 atoms.

Figure 15: (Caption next page.)
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Figure 15: (Previous page.) Structure overlay plots of selected Co porphyrin complexes.
ChemSpaX generated (FF) structures (silver) are plotted against GFN2-xTB optimized (sil-
ver) structures. For each cluster 4 structures were plotted, the upper half of the figure consists
of structures that have less than 200 atoms and the lower half of the figure shows structures that
have more than 200 atoms. For example, structures 6, 7, 12 and 13 are in cluster 1 (hRMSD
< 1.5 Å), here structure 6 and 7 have less than 200 atoms and structure 12 and 13 have more
than 200 atoms. Color code used for elements: red = O, dark-blue = N and turquoise = F. .

4.2.3 HOMO-LUMO gap prediction
The correlation between HOMO-LUMO gaps for 280 selected structures was computed using
DFT and GFN2-xTB. Three features (number of atoms in the structure, hRMSD and GFN2-
xTB calculated HOMO-LUMO gap) were then used to apply linear regression via OLS fitting
and predict the DFT calculated HOMO-LUMO gap. These features were chosen in an effort to
select relevant and easily computable features from xTB calculations for HTS applications. 75%
of the dataset was applied to learn the DFT calculated HOMO-LUMO gap, 25% of the dataset
was used for testing the model. The results are presented in Figure 16. The model’s R2 = 0.71
and the RMSE = 0.12 eV. This shows that the predictive power of xTB is reasonable for HTS
applications as observed for the RuPNP complexes.

Figure 16: The comparison of the experimental and OLS-predicted HOMO-LUMO gap for (a)
the training and (b) test sets
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4.3 M2L4 cage
The real versatility of ChemSpaX is shown by the automated placement of substituents
without introducing steric hindrance on a geometry that is more complex. An M2L4 cage was
functionalized at 16 sites with various substituent groups. The M2L4 cage was functionalized on
16 sites using ChemSpaX, the results are shown in figure Figure 17. This serial functionalization
yielded 16 structures and these were further optimized using GFN-FF and GFN2-xTB(GAS).
The RMSDs between geometries generated by workflow of ChemSpaX (FF) were calculated
against the GFN-FF and GFN2-xTB optimization methods. The results are shown in Table 1.
This shows that the GFN-FF and FF geometries are in good agreement an reasonably close to
the GFN2-xTB optimized geometries.

Figure 17: A visualization of the functionalized M2L4 cage which shows a) the input skeleton
and b) the GFN2-xTB optimized geometry after placement of 16 substituents. The newly placed
substituents are shown in a distinguished representation.

Table 1: Statistics for the RMSD between various methods. The two optimization methods that
are compared to each other are shown in the first row.

GFN-FF v GFN2-xTB FF v GFN2-xTB FF v GFN-FF
Average 2.54 Å 2.14 Å 0.83 Å
St. dev. 0.34 Å 0.25 Å 0.26 Å
Max. 3.18 Å 2.46 Å 1.37 Å
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5 Summary and conclusions
In this research, an automated Python-based workflow for the exploration of local chemical space
is presented. ChemSpaX can place substituents on a specific site of many structures based on
initial user input and uses FF optimization to optimize newly placed substituents. Use cases
were shown by using a data augmented approach which utilized fast GFN2-xTB optimizations
to compare structures generated by ChemSpaX. For selected use cases a comparison was also
done against DFT optimized structures. Descriptors that can be used for high-throughput
screening were studied in more detail for some of the presented use cases.

For the pincer complexes a nearly linear scaling of ∆E and ∆G (R2 = 0.99 for RuPNP
and the Mn-pincers) was found. This correlation was found for both DFT and GFN2-xTB
calculations. Due to this correlation, ∆G can be replaced by ∆E in high-throughput screening,
which would lower the consumption of computational resources significantly [81]. The HOMO-
LUMO gap calculated by GFN2-xTB was compared against the DFT calculated HOMO-LUMO
gap. The correlation (R2 = 0.74 and RMSE = 0.4 eV) indicated that GFN2-xTB has a reasonable
accuracy for calculating the HOMO-LUMO gap and could potentially be used in high-throughput
screening. This correlation was not observed for the Mn-pincers.

The investigated Co porphyrins showed a nearly linear increase in hRMSD for serial func-
tionalizations done on the same skeleton. Using this linearity, the optimal moment to employ
a higher-level optimization method on a geometry that is being functionalized can be deter-
mined. Clustering was observed when comparing the hRMSD against the number of atoms in
a structure. Although a higher hRMSD was observed for structures with more atoms (= highly
functionalized), the average hRMSD was 1.43 Å with a relatively low standard deviation of 0.53
Å. Additionally, three easily computable features (number of atoms in the structure, hRMSD
and GFN2-xTB calculated HOMO-LUMO gap) were used to predict the DFT calculated HOMO-
LUMO gap using linear regression via OLS. On the test set a reasonable correlation was found
(R2 = 0.71 and RMSE = 0.12 eV), which again shows that the predictive power of GFN2-xTB is
reasonable for high-throughput screening applications. Additionally, it has been presented that
structures generated by ChemSpaX in this research are reasonably close to GFN2-xTB optimized
structures and that all kinds of geometries can be functionalized using ChemSpaX.

As shown in this manuscript, ChemSpaX can be used in the generation of many structures
in the local chemical space with a good quality for high-throughput calculations. The generated
structures can be used to generate databases, which can play a role in enabling generative
models for material design. There is room for improvement in ChemSpaX, which is in the early
stages of development. Currently, the user is required to manually check their input geometry
for correctness, this includes checking bond lengths/angles. There is work being done on a set
of tools that check for correct bond lengths/angles against a quantum chemical database.

With the development of ChemSpaX, the door to data-driven catalyst design has been opened
in our research group and this will stay an ongoing effort. Together with experimental chemists,
work is being done on realizing an automated data-driven workflow where property calculations
and/or predictions can be done with the simple click of a button.
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Metal-ligand cooperative activation of HX (X=H, Br, OR) bond on 

Mn based pincer complexes   

Annika M. Krieger a, Vivek Sinha *a, Adarsh V. Kalikadien a, Evgeny A. Pidko*a 

Abstract: Reversible dissociation of H-X bond (M-L + H-X → M(X)-

L(H); Δ𝐺𝐻𝑋) is an important step during pre-activation, catalysis and 

possible deactivation of acid-base cooperative pincer based transition 

metal catalysts (M-L). Herein we carried out a high-throughput 

computational investigation of the thermodynamic stability of different 

adducts in various functionalized Mn(I) based pincer complexes. We 

used a combination of density functional theory (DFT) and density 

functional tight binding (DFTB) calculations to analyze Δ𝐺𝐻𝑋 of > 700 

(M(X)-L(H)) intermediates based on functionalized variants of four 

pincer type ligand scaffolds derived from PCP, CNC, PNP and SNS 

ligands. We discovered linear scaling relations between Δ𝐺𝐻𝑋  of 

various species. Strongest correlations were found between species 

of similar size and chemical nature e.g. Δ𝐺𝑡𝐵𝑢𝑂𝐻  correlated best with 

Δ𝐺𝑖𝑃𝑟𝑂𝐻 and worst with Δ𝐺𝐻𝐵𝑟. Such scaling relations can be useful for 

property based screening of catalysts and selection of 

(co)solvent/substrate/base for optimized reaction conditions. We also 

investigated the influence of the ligand backbone and the 

functionalization of donor and backbone sites in the ligand. Our 

analysis reveals the crucial role of the second coordination sphere 

functionalization for the reactivity of the complexes with impact in 

some cases exceeding that of the variation of the functional groups 

directly attached to the donor atoms. 

Introduction 

Pincer complexes are important catalysts in organometallic 

chemistry for multiple applications such as transformation and 

synthesis of imines, amines, peptides, pyridines, pyrroles, acetals, 

and carboxylic acid derivatives, such as esters, ketones and 

amides.1–3 Owing to their success with (de)hydrogenation of a 

wide scope of substrates, pincer complexes have been adopted 

favorably by the pharmaceutical, fine chemicals and the energy 

industry4 (representative examples shown in Figure 1a,b). The 

well-defined geometry and tridentate coordination mode of this 

class of complexes offers a stable catalytic structure. Most highly 

active pincers such as Ru-MACHO complex5,6 and Nozaki’s Ir-

PNP complex7 are based on expensive Ru and Ir metals. Catalytic 

systems based on such metals are not desirable for large scale 

ubiquitous applications due to high cost and limited availability. 

Several successful examples of pincer catalysts based on earth 

abundant 3d transition metals (TMs) such as Fe and Mn have 

been realized in the last decade.8,9 However, the activity and 

stability of such catalysts based on first row TMs remains a 

challenge. Therefore, the development and optimization of 

catalysts based on 3d transition metals is an active and highly 

sought after area of research.10–12 Manganese is particularly 

attractive as the active metal in such catalysts in view of its high 

biocompatibility, which is of interest for industries in the food or 

pharmaceutical sector.  

Functionalization of the ligand scaffold can be used to 

explore the chemical space of TM pincers in the pursuit of highly 

active and stable catalysts based on first row TMs. In such an 

approach one can start with a “skeleton” complex bearing a TM 

center coordinated to a pincer scaffold. Selected sites on the 

scaffold or metal center can be functionalized generating an 

ensemble of new TM complexes using various combinations of 

functional groups.13,14 Experimentally only a handful of 

functionalized variants of pincer ligand scaffolds have been 

reported. Moreover, synthesis and subsequent testing of the 

catalytic activity of functionalized TM complexes quickly becomes 

intractable. Theoretical consideration of the functionalized 

variants that are synthetically not accessible can provide an 

insight into rational design principles. In this regard, 

computational methods are relevant and can be applied to screen 

through a large ensembles of functionalized TM complexes.15,16 

Recently such approaches have been applied to screen TM 

complex including pincer complexes for activity, regioselectivity 

and ligand effects.17–19    

Herein we screened the effect of functionalization of the 

ligand backbone on the stability of potential catalytic 

intermediates on Mn(I)-pincer complexes. The focus was on the 

determination the effect of the type of functionalization and the 

functionalization site (backbone/donor site). We chose five 

representative pincer ligand scaffolds, namely, PNP- (bis(3-

phosphaneylpropyl)amine)-, SNS- (azanediylbis(ethane-1-thiol))-, 

CNC- (bis(2-(1H-34-imidazol-3-yl)ethyl)amine)-, PNN- (N1-(2-

phosphaneylethyl)ethane-1,2-diamine)-, and PCP- (N1,N3-

bis(phosphaneyl)benzene-1,3-diamine)- backbones coordinated 

to a Mn(I) center stabilized by CO ligands as illustrated in Figure 

1c. Our analysis included the pristine complexes as well as their 

catalytically relevant intermediates resulting in over ~1200 

structures based on the five selected pincer ligand scaffolds 

(Figure 1c). 
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Figure 1. Representative transition metal pincer complexes of (a) 4d, 5d and (b) 3d metals, followed by (c) the catalyst scope of this work.1

Pincer complexes based on these ligands have been 

reported for various transition metals, including manganese 

(Figure 1b).8,13,20–29 SNS-,30–35 CNC-,36–41 and PCP-ligands42–46 

are primarily known for their use in 4d and 5d transition metal 

catalysis (Figure 1a). Especially in 4d and 5d-transition metal 

catalysis high turnover frequencies and turnover numbers are 

reported for the complexes.21,38,40,47  

Literature on 3d-transition metals generally reports lower 

catalytic efficiencies,20,46 which indicates that there is opportunity 

to maximize their potential towards sustainable catalyst systems. 

Catalysts based on 3d metals are known to be more prone to 

deactivation and formation of resting states, limiting their 

reactivity.4,48  

Herein, we investigated Mn(I) -pincers as potential 

(de)hydrogenation catalysts. Possible applications are the 

storage of H2 in unsaturated moieties such as CO2, the reduction 

of organic substrates with H2 gas or with hydrogen donors such 

as iPrOH.49–51 Figure 2 illustrates representative catalytic cycles 

of dehydrogenation of methanol to acetone and hydrogenation of 

acetone to isopropanol. The Br adduct (M(Br) – L(H)) is a common 

precursor to the active form of Mn-pincers.11 The activation of the 

catalyst is commonly carried out by the reaction with a strong 

base (e.g. KOH or KOtBu). The activated catalyst (M – L) features 

a Lewis acid site on the metal and the ligand can act as a Bronsted 

base i.e. the metal can coordinate with an electron donating 

species while the ligand can accept a H+. The activated catalyst 

is susceptible for potential deactivation/inhibition through the 

metal-ligand cooperative addition of alcohol/water/base resulting 

in the formation of -OR adducts.52  Alkoxide adduct of hydrogen 

donating alcohols such iPrOH, MeOH and EtOH are often formed 

as intermediates in the course of catalytic hydrogenation 

 
 

reactions, and can even act as the resting states limiting the 

catalytic performance depending on their stability.48,53–58 

Competitive bonding of other species such as the solvent or the 

nucleophile base to the metal can slow down or even deactivate 

the catalyst.  

For example, water can compete with methanol for the 

catalytically active site via the formation of a stable hydroxide 

adduct upon reaction with the catalyst or via ligand exchange with 

the methoxide adduct (Figure 2). To continue the catalytic cycle, 

the alkoxide adduct must convert to the hydride adduct (M(H)-

L(H)), which in turn regenerates the catalyst by hydrogen 

evolution/transfer. Catalytic turnover is inhibited if the alkoxide 

adducts is very stable compared to the hydride adduct. Similarly, 

an excessively stable hydride adduct would render it inactive 

towards hydrogen liberation resulting in an adverse effect on the 

catalysis. 

When employed as a hydrogenation catalysis, the hydride 

adduct is formed as the first step via heterolytic H2 dissociation. A 

less stable hydride would be prone to H2 recombination instead of 

catalytic turnover. On the other hand, excessive hydride stability 

would make it less reactive towards the hydride transfer steps of 

the catalytic cycle. The alkoxide adduct formed upon the hydride 

transfer to C=O must dissociate to regenerate the catalyst.  
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Figure 2. Representative catalytic cycles for dehydrogenation and 

hydrogenation reaction with possible competing and deactivation pathways. 

Dehydrogenation of methanol in aqueous phase and hydrogenation of acetone 

to iPrOH have been used as representative examples. Possible alkoxides and 

hydroxide based competing and resting states have been highlighted in yellow 

and red respectively 

Transfer hydrogenation reactions with e.g. isopropanol 

often proceeds via the formation of an intermediate alkoxide 

species. Excessive stability of this alkoxide adduct would have a 

deactivating effect and adversely affect the catalytic turnover. 

From a mechanistic perspective the relative stability of hydride, 

hydroxide and alkoxides intermediates are important for the 

catalytic turnover. Their relative stability, in accordance with the 

Sabatier’s principle should be balanced and any excessive 

stabilization/destabilization would have an inhibiting effect on the 

catalyst.  

In the present work we investigate functional strategies to 

tune the stability of aforementioned intermediates. Our results 

allow comparison of different ligand scaffolds and 

functionalization strategies in a common framework. We have 

identified linear free energy scaling relations (LFESRs) between 

various intermediates. By analyzing relative stabilities of various 

adducts we analyze their competitive binding at the metal center. 

We describe the impact of functionalization of the complexes near 

the metal center and on the ligand backbone. Finally, we draw 

conclusions about catalyst behavior and formulate perspectives 

on catalyst activation strategies, choice of solvent environment 

and possible deactivation species. The paper is organized as 

follows: in the computational methods section we describe the 

functionalization approach, computational model to investigate 

the thermodynamic parameters, and details of the quantum 

chemical calculations applied. Next we describe and discuss the 

results from our calculations. Finally we summarize the results 

and present our conclusions. 

Computational methods 

Electronic structure calculations on the transition metal 

complexes were carried out either by using the extended density 

functional tight-binding (DFTB) or the density functional theory 

(DFT) methods. For a large number of calculations, a full DFT 

based approach is computationally expensive. Extended DFTB 

calculations via the xTB code from Grimme’s group has recently 

emerged as a rapid tool with reasonable accuracy to predict 

geometry and thermochemistry of various chemical systems 

including TM complexes.59 We therefore performed xTB 

calculations on all the complexes in our paper. On a selected 

number of TM complexes (432) based on CNC, PCP and PNN 

ligands, we also performed DFT calculations. xTB calculations on 

the same 432 complexes were compared with DFT based 

predictions to determine the accuracy of xTB. 

 

Extended density functional tight-binding calculations 

Extended DFTB calculations were performed using the xTB 

software suite (version 6.3.3).60,61 The GFN2-xTB method was 

applied for geometry optimization, using the verytight criteria. 

Hessian matrix calculations were performed for all optimized 

geometries to verify the absence of imaginary frequencies and 

that each geometry corresponds to a local minimum on its 

respective potential energy surface (PES). The GBSA solvation 

model parametrized for THF as implemented in xTB was used to 

account for solvent effects.  

 

Density functional theory calculations  

Density functional theory (DFT) calculations were performed 

using the Gaussian 16 C.01 suite of software.62 All geometries 

were optimized using the BP86 functional with a def2-SVP basis 

set in the gas phase.63 The combination of functional and basis 

set have shown reliable geometry predictions accompanied with 

low computational costs.64,65  Hessian calculations were 

performed to ensure that all optimized geometries were a minima 

on the PES (no imaginary mode). Zero-point energy and Gibbs 

free energy corrections to electronic energy were obtained from 

hessian calculations within the harmonic approximation under 

standard conditions (298.15K, 1bar). Single point (SP) energy 

calculations with the SMD66 solvation (THF) model were carried 

out using the PBE0 hybrid functionals67 with a triple zeta basis set 

(def2-TZVP) to further refine the electronic energies. SPs were 

also carried out using the BP86 functional.68 We denote such 

composite methods BP86/def2-SVP//XC/def2-TZVP (THF), as 

bp86(thf) or pbe0(thf) depending on the exchange-correlation 

(XC) functional used for the SP single-point calculations. This 

allowed to investigate the impact of solvation (bp86(gas) vs 

bp86(THF)) and the functional (bp86(THF) vs pbe0(THF)) on the 
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computed free energies. All DFT calculations were performed 

with dispersion correction (D3).69 

DFT calculations were performed for a selected number of 

complexes bearing CNC, PNN and PCP ligands. We focused our 

investigation on the addition of H-X species (X=H, OH, MeO, EtO, 
iPrO, tBuO, Br) across the catalyst which is represented as M – L, 

where M represents the metal center and L represents the ligand. 

Addition of H – X across M – L leads to formation of M(X)- L(H) 

species, where metal forms an adduct with X and the ligand gets 

protonated.  We estimated the thermodynamic stability of M(X) – 

L(H) by computing the Gibbs free energy change under standard 

conditions upon addition of H-X  moiety across M-L bond (eq. (1)). 

𝑯 − 𝑿 + 𝑴 − 𝑳 → 𝑴(𝑿) − 𝑳(𝑯) 

𝚫𝑮º
𝑯𝑿

= 𝑮(𝑴(𝑿) − 𝑳(𝑯) − 𝑮(𝑴 − 𝑳) − 𝑮(𝑯 − 𝑿)  … (𝟏) 

Results and Discussion 

Functionalization strategy 

 All functionalized geometries were obtained via an in-house 

developed automated python based workflow.70 We chose two 

different functionalization sites: four R1 sites which are located 

near the metal center, and two R2 sites (only one in case of PCP) 

which functionalize the ligand backbone as shown in Figure 1. We 

chose to perform symmetric functionalizations meaning all four R1 

sites were kept the same, and both R2 sites were also 

functionalized with the same ligand. R1 and R2 were however not 

constrained to be the same. In addition to functionalization sites 

on the ligand, seven Mn-adducts were also considered which 

included vacant site (pristine complex), H, Br, MeO, iPrO, EtO and 

tBuO adducts. This functionalization scheme generated ~1200 

geometries of metal complexes. Out of these 1225 geometries, 

we filtered geometries where the pristine complex had a hemi-

labile ligand resulting in a total of 732  geometries which are 

discussed in this work. We found that most PNN based 

complexes resulted in hemi-labile ligand. Hemi-lability can arise 

as an artifact of xTB based geometry optimization or it can be 

genuinely present in the system. Since this would require further 

investigation we excluded all xTB based results for the PNN 

catalyst. 

 

Comparison of xTB with DFT 

Low computational cost and wide applicability of xTB calculations 

make them suitable for high throughput screening of TM 

complexes. The accuracy of xTB calculations has not been tested 

for Mn complexes. To investigate the accuracy of xTB calculations 

with respect to DFT based results, we computed CO stretching 

freqnecies and Δ𝐺𝐻𝑋for  selected complexes. Figure 3 compares 

xTB and DFT results for addition of HBr to Mn-PCP, Mn-PNN and 

Mn-CNC complexes. DFT and xTB computed Δ𝐺𝐻𝐵𝑟 agree well 

with R2 = 0.82 and a RMSE (based on the linear fit; see SI) of 7.19 

kcal mol-1. The correlation coefficient between xTB and DFT 

computed Δ𝐺𝑖𝑃𝑟𝑂𝐻  is relatively poor (R2 = 0.28; RMSE = 10.48 

kcal mol-1) and the two methods reach only qualitative agreement 

(see SI) for the addition of iPrOH. 

 

Figure 3. Correlation between Gibbs free energies for addition of HBr computed 

using xTB (x-axis) and DFT (y-axis). 

 

Figure 4. a) xTB and b) DFT computed ν(CO) for Mn-PCP complexes sorted 

by electron donating properties of the functionalization group. 
[70] The geometries of functionalized complexes were generated using an 

in-house developed automated python based workflow named 

"ChemSpaX". The related manuscript is currently in preparation. 
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To further compare the performance of xTB and DFT, we 

analyzed the computed CO stretching frequencies (ν(CO)) for the 

carbonyl moieties in the Mn pincers. A comparison of the results 

obtained with the DFT and xTB methods for a representative case 

of Mn-PCP complex is presented in Figure 4. Both methodologies 

reveal a similar trend in computed ν(CO). For a given R1, electron 

donating  R2 groups give rise to lower ν(CO). The plots also show 

that the electron donating effect of R1 functionalziation in this case 

is more important that that of the R2, because of the major role of 

the electronic effects at the metal center on the coordinated CO 

ligands. Furthermore, we observed a good agreement between t 

xTB and DFT results when all systems with CF3 functionalization 

are excluded from the dataset (R2=0.85).  xTB calculations seem 

to overestimate the CO stretching for CF3 functionalized ligands 

for all pincer complexes considered in this study (see SI). 

Nevertheless, the comparison of Δ𝐺𝐻𝑋  and ν(CO) parameters 

point to a qualitative agreemenet between the results obtained 

with the xTB and DFT methods. 

 

Scaling Relations and competitive adduct formation 

The activation of H – X bonds is assumed to proceed via a metal-

ligand cooperative heterolytic cleavage over the M–L site in all of 

the pincer complexes discussed here. We therefore, expect 

similar  trends in Gibbs free energy for addition of H – X species, 

with differences arising from the nature of M-X bonding. Such 

similarities practically manifests themselves in scaling or linear 

free energy relationships between different substrates. Such 

relationships imply that having computed the Δ𝐺𝐻𝑋1
 for a 

substrate HX1, one can estimate the Δ𝐺𝐻𝑋𝑖
 for all other species 

that follow a linear scaling relation with HX1. Figure 5 shows a 

significant correlation between the DFT-computed Δ𝐺𝐻𝐵𝑟  and 

Δ𝐺𝐻2  using DFT (R2=0.91), especially for PCP and CNC 

complexes. Therefore, the Gibbs free energy of the bromide 

adduct formation can  be used to estimate the relative energy of 

formation of the hydride species. 

 

Figure 5. Comparison of xTB and DFT computed Gibbs free energy of formation 

of bromide and hydride adducts in Mn-PCP, Mn-PNN and Mn-CNC complexes. 

In our experience metal hydrides complexes are not 

described well using xTB.71 Often the M-H bond was found to be 

very elongated (> 2.8 Å) (see SI) in the structures obtained by the 

xTB-based geometry optimizations. However, Br complexes are 

described well and reasonable geometries were obtained with 

both xTB and DFT optimizations. Therefore, the scaling 

relationship that we observed between the bromide and hydride 

adduct becomes particularly practical because the Δ𝐺𝐻𝐵𝑟  

computed using xTB can be directly used to estimate the stability 

of the active hydride intermediates in screening studies.  

Figure 5 also shows that while both PCP and PNN complexes 

react with H2 in an exergonic manner, the reaction is endergonic 

with Mn-CNC complexes. DFT calculations also revealed linear 

scaling relations among hydride, iso-propoxide, bromide and 

hydroxide adducts. The correlation of Δ𝐺𝐻2
 with OH and iPrO 

adduct was found to be rather weak (R2 = 0.53 and 0.55) (see SI). 

We attribute this weaker correlation to differences in M – X bonds 

formed upon addition of H – X (M – OR vs. M – H) (vide infra). 

Δ𝐺𝐻2𝑂  and Δ𝐺𝑖𝑃𝑟𝑂𝐻  were found to have a moderate correlation 

with R2 = 0.71. We also investigated the correlation coefficient 

between the xTB-computed Δ𝐺𝐻𝑋values. The resulting correlation 

matrix is shown in Figure 6. We observe that Gibbs free energies 

for addition of chemically similar species have higher correlation 

coefficient. For example, all alkoxides correlate well among each 

other but have relatively poor correlation with hydrides and 

bromides. Therefore, isopropoxide and ethoxide have the 

strongest correlation followed by the correlation between 

methoxide and ethoxide. The weakest correlation is between the 

Mn-alkoxides and the catalyst precursor (Mn-Br). 

 

Figure 6. Correlation matrix of Gibbs free energy of formation in all ligand 

backbones investigated by xTB of the different metal adducts 

Adduct stability modulations via ligand modifications 

Next we investigated the impact of the functionalization of donor 

site vs backbone on Δ𝐺𝐻𝑋. For this purpose we examined Δ𝐺𝐻𝐵𝑟 

in two scenarios: 1) R2 = H with R1 varied to investigate the impact 

of functionalization at the donor site 2) R1 =  H with R2 varied to 

investigate the impact of functionalization on the ligand backbone 

(Figure 4). Functionalizations on the ligand either on donor or 

acceptor site can have a stabilizing or a destabilizing effect in two 

ways: 1) via (de)stabilization of the pristine catalyst 2) Electronic 

and/or steric (de)stabilization of the adduct moieties/. The pristine 

complex can be (de)stabilized via geometric distortions and the 

resulting strain in the ligand scaffold introduced by 

functionalization. The adduct moiety such as an alkoxides can be 

destabilized by increased electronic density at the metal center. 

On the other hand, the L-H bond in the adducts can be favorably 
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stabilized by an increased electronic density at the ligand. Larger 

alkyl groups such as tBu/cy can also destabilize bulky alkoxides 

by steric repulsion. An accurate consideration of electronic effects 

is necessary to examine the impact of functionalization. Therefore 

we examined the impact of functionalization of Δ𝐺𝐻𝑋 using DFT 

calculations.  

 

Functionalization on donor site R2 = H resulted in five PCP (R1 

= H, Ph, iPr, cy, tBu), four CNC (R1 = CF3, Ph, iPr and cy) and 

three PNN (R1 = Ph, iPr and tBu) ligand complexes. The resulting 

Δ𝐺𝐻𝑋 are presented in Table-S5. For both PCP and PNN 

complexes, electron donating groups at R1 destabilize the adduct 

leading to higher (more positive) Δ𝐺𝐻𝑋. In contrast to PCP and 

PNN complexes, the CNC complexes exhibit a different trend. 

The electron withdrawing CF3 groups also destabilize Br and OH 

adducts. A detailed analysis of this divergent trend is beyond the 

scope of this paper. We speculate that these differences are 

related to the nature of Mn-C coordination in the CNC complexes. 

Furthermore, the R1 functionalizations in this case are not 

performed on the C moiety coordinating the Mn center unlike for 

the other complexes where the functionalized P/N/S are directly 

bound with the metal site. 

 

Functionalization on ligand backbone  

Primarily two factors control the impact of functionalization on the 

ligand backbone: 1) electronic effect which influences the basicity 

of the acceptor site and 2) strain in the geometry upon 

functionalization. Electron releasing groups should increase the 

basicity of the acceptor site and, therefore, are expected to have 

a stabilizing effect. At the same, since electron releasing groups 

such as a tBu are bulkier they are also expected to introduce a 

high amount of strain in the coordinated ligand geometry. R1 = iPr 

resulted in 6 CPC and PNN, and 5 PCP complexes with Br 

coordinated to the Mn. The resulting Δ𝐺𝐻𝐵𝑟 are presented in Table 

S7. 

Variation of R2 seems to have minimal impact on the PCP 

scaffold where Δ𝐺𝐻𝐵𝑟 shows little variation with the R2 = H being 

the most stable complex, and R2 = CF3 being the least stable. This 

behavior is expected since the R2 site is located further away from 

the proton acceptor site on the ligand. For both Mn-PNN and Mn-

CNC complexes, R2 = cy results in most favorable adduct 

formation. R2 = CF3 leads to most destabilized adduct for the Mn-

CNC, whereas R2 = tBu is most destabilizing functionalization for 

Mn-PNN. The additional stabilization of cy substitution is in 

contrast with the destabilization introduced by other electron 

donating groups namely Ph, iPr and tBu. The Hamett constants of 

cy and iPr are -0.05 and -0.04, respectively, indicating similar 

electron releasing behavior via inductive effect.72 We attribute the 

observed destabilizing effect of Ph, iPr and tBu groups, despite 

their electron donating nature, to the geometric strain. Analysis of 

geometric strain showed that R2 = cy scaffold had an effective 

stabilization of 4.15 kcal mol-1 relative to R2 = H. In contrast while 

R2 = iPr suffered a destabilization of 1.37 kcal mol-1 (Table S5-S6). 

Therefore both steric and inductive effects play an important role 

in stabilization of the Br adducts. 

Heatmap plots for the functionalization on donor and ligand 

backbone sites respectively represent the average impact of the 

choice of the functionalization groups (Figure S9). Both donor and 

backbone site functionalization leads to a great spread in average 

Gibbs free energy of formation, which can vary by up to 20 kcal 

mol-1 between different functionalizations. This reflects the degree 

of tunability of the catalytic properties that these ligand scaffolds 

can offer. Especially interesting are the qualitative changes in the 

average stability, where for example the substitution of CF3 on the 

backbone site can turn the adduct formation from exergonic to 

endergonic. The relative range and standard deviation does not 

change significantly within the data sets. 

 

Figure 7. Comparison of isopropxide stabilities with hydroxide per catalytic 

ligand group. Swarmplots are added indicaton the functionalization on a) 

catalyst donor site R1 and b) catalyst backbone site R2.  

Catalytic adduct species  

With regards to the catalytic cycle, different adduct stabilities that 

play a significant role in activity and efficiency are examined. The 

heatmaps of the average formation Gibbs free energies shows 

the difference between the investigated adducts (Figure S9). The 

results indicate that the bromide adduct sustains substantial 

stability upon functionalization, especially for CNC complexes. 

The stabilities of the other adducts with similar structure such as 

MeO and EtO, or tBuO and iPrO are quite similar.  

Boxplots comparing the difference formation Gibbs free 

energies for the catalysts with different ligands are shown in 

Figure 7 and 8 allow to analyze the trends in more detail. One 

interesting aspect in (de)hydrogenation chemistry is the choice of 

the base activator / promotor for the catalytic reaction. An 

enhanced stability of a complex formed with the base can result 

in inhibition and the catalyst can remain in a resting state. Here, 
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we considered a model (de)hydrogenation of iPrOH reaction as 

an example.  

In Figure 7 and 8, the stability of isopropxide to the adduct 

of two potential bases (KOH and KOtBu, respectively) is 

compared. The results show that a competition between the base 

(KOtBu) and iPrOH for complexation with the Mn center is highly 

likely. However, the iPrO adduct was generally found to be more 

stable than the OH adduct for all Mn-pincers studied here. This 

concludes that KOH may represent a better choice for the 

systems where IPA dehydrogenation is important. Consistent with 

our observation, Beller and co-workers observed that switching 

from KOH to KOtBu lead to catalyst deactivation in 

dehydrogenation of methanol catalyzed by a Mn-PNP pincer 

complex.52 

 

Figure 8. Comparison of isopropxide stabilities with tert-butoxide per catalytic 

ligand group. Swarmplots are added indicaton the functionalization on a) 

catalyst donor site R1 and b) catalyst backbone site R2.  

Conclusions 

In this investigation, we carried out a computational analysis of 

the effect of functionalization on different Mn-adducts of five types 

of pincer catalysts. Here, a data augmented approach was 

employed using fast xTB optimizations to analyze stabilities of 

metal adducts that can play a significant role in the catalytic cycle. 

The xTB results were compared to DFT calculations, which 

showed qualitative agreement and helped identifying the 

accuracy boundary of the accelerated xTB methodologies for 

studying Mn(I)-pincer complexes We identified linear scaling 

relation between Gibbs free energy for formation of different 

adducts, which can be used for rapid screening purposes.  

Functionalization of the donor site directly affects the metal 

center activation, as illustrated by the changes in the computed 

CO stretching frequencies. Increased electronic density at the 

metal center and geometric strain both have destabilizing effects 

on the formation of alkoxides, hydroxide, bromides and hydride 

adducts. Comparison of relative stabilities of the iso-propoxide 

adduct with hydroxide and tert-butoxide adducts showed that 

KOtBu can have a poisoning effect during iPrOH dehydrogenation, 

and that KOH would be a more suitable base. 

In the outlook, this work is a first step in mechanism based 

high throughput screening of pincer ligand based catalysts. 

Development of data-augmented approaches to screen and 

design highly active homogeneous catalysts is an ongoing effort 

in our laboratory.  
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4
Summary & outlook

4.1. Summary
In this thesis, a workflow for the exploration of the local chemical space of a structure was presented. In
this workflow, ChemSpaX, substituents are placed on specific sites of an input structure. A data-driven ap-
proach for calculating and correlating descriptors by using chemical intuition to place these substituents in
combination xTB and DFT calculations was investigated.

In the first application of ChemSpaX, ’ChemSpax: Explorationof chemical space by automated function-
alization of molecular scaffold’, various complexes were investigated by extracting relevant descriptors and
correlating them. First a ruthenium-based and manganese-based pincer complexes were investigated. The
Ru based intermediates were derived from a functionalized PNP ligand. For the manganese-based pincers,
the functionalized variants of four pincer type ligand scaffolds derived from PCP, CNC, PNP and SNS lig-
ands were used. Here, a nearly linear scaling of ∆E and ∆G (R2 = 0.99 for Ru- and the Mn-pincers) was found.
Which indicates that∆G can be replaced by∆E in high-throughput screening. Then the GFN2-xTB calculated
HOMO-LUMO gap was compared against the DFT calculated HOMO-LUMO gap and a reasonable correla-
tion was found for the Ru-based structures (R2 = 0.74 and RMSE = 0.4 eV).

Then cobalt porhpyrins were investigated. These Co porphyrins showed a linear increase in hRMSD upon
serial functionalization on the same structure which can be used to predict when a higher-level optimiza-
tion method is needed to optimize the structure. Clustering was observed in the data when the hRMSD was
compared against the number of atoms in a structure. Using linear regression via OLS, easily computable de-
scriptors extracted from GFN2-xTB were used to predict the DFT calculated HOMO-LUMO gap. A reasonable
correlation was found on the test set (R2 = 0.71 and RMSE = 0.12 eV).

To conclude, this first application of ChemSpaX showed that ChemSpaX can be used in the generation of
many structures with a quality reasonably close to GFN2-xTB optimization for high throughput calculations.
The potential of GFN2-xTB for high-throughput screening applications was also shown.

In the second application of ChemSpaX, ’Metal-ligand cooperative activation of HX (X=H, Br, OR) bond
on Mn based pincer complexes’, the thermodynamic stability of different adducts in various functionalized
Mn based pincer complexes was investigated [116]. Here, DFT and xTB calculations were used to analyze
the same functionalized Mn-based pincer complexes as presented in the previous application. The ∆GHX

of > 700 (M(X)-L(H)) intermediates were investigated and linear scaling relations were found between the
∆GHX of various species. These scaling relations can be useful in HTS of catalysts. It was found that the
CO stretching frequencies would change upon functionalization of the donor site, which indicates that this
functionalization affects the metal center activation. Increased electron density at the metal center and ge-
ometric strain were found to have destabilizing effects on the formation of alkoxides, hydroxide, bromides
and hydride adducts. Finally, it was found that KOH would be a more suitable base compared to KOtBu by
comparison of relative stabilities of the isopropoxide adduct with the hydroxide and tert-butoxide adducts.
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4.2. Outlook
The future of computational catalyst discovery is bright, but if we want to combine computational screen-
ing with experimental work, extensive benchmarking is needed. Benchmarking means that various levels
of theory should be compared compared against each other, as well as comparing theoretical calculations
against experimental results [117]. For DFT various examples can be given. So are the dispersion corrections
and hydrogen-bonding interactions assessed [118–120]. And there are efforts made on the development of
standardized and unbiased methods for benchmarking [121]. For xTB various benchmarks for structural and
thermochemical properties including (transition-)metal systems are done against benchmarking sets [72].
Although computational chemistry is rapidly evolving, theoretical calculations on their own can be insuffi-
cient to predict reaction mechanisms [122]. For comparisons of theoretical calculations against experimen-
tal results, standardization of sharing methods, models and code is necessary [117]. This would increase the
chance that other researchers start using this data and would simplify benchmarking. Futhermore, theoreti-
cal results for simple model systems should be compared with results of more accurate theoretical methods or
with experimental results from well-characterized materials such as molecular catalyst [117]. An issue arises
for TM complexes since there is not much high-quality theoretical/experimental data available for these com-
plexes, even though these compounds play an essential role in catalysis. More research and development is
needed on this front.

Next to this, good descriptors of catalytic activity are needed which can be used as target in predictive
models. This would accelerate virtual screening (VS) methods in which both the descriptors and catalytic
activity or selectivity are computed. Additionally, this would aid in the usage of methods like the volcano
plot, which relate descriptors to catalytic performance and can distinguish structures based descriptors on
catalytic performance using Sabatier’s principle [123–126].

As explained in ’ChemSpax: Exploration of chemical space by automated functionalization of molecular
scaffold’, a molecular projection scheme to map the electronic structure and geometry to relevant reaction
descriptors is needed. This would enable ML methods for screening. Several representations like the au-
toencoders that map molecular structures into a continuous latent space and the sorted Coulom Matrix are
mentioned [123, 127]. However, more research, benchmarking and standardization is needed in this area.

Several new projects and improvements based on the research reported in this thesis can be envisioned.
In ChemSpaX the user is currently required to manually check their input geometry, which includes check-
ing bond lengths/angles. In the utilities_scripts folder in the ChemSpaX repository on ISE’s Github page
(https://github.com/EPiCs-group/), get_neighbour_distance_search.py can be used to find the bond lengths
between two atoms. A caveat is that the atoms should have a bond in the graph representation, which is
prone to errors when XYZ files are used. If the approach used in this script is improved to create correct
graph representations on its own, it can be used to calculate bond lengths between atoms and compare them
against a quantum chemical database. A similar approach using Openbabel’s methods can be used for bond
angles. Using this, an automated bond/angle check can be done before functionalizations are done.

Currently, ChemSpaX uses Openbabel’s force field methods for optimization of newly placed substituents.
The end goal is to make ChemSpaX easily usable by the scientific community, implementing a standalone
optimization method for newly placed substituent would lift the dependency on Openbabel. This optimiza-
tion method could be based on Openbabel’s force field methods or Spartan’s PM3tm semi-empirical method.
Having less dependencies on external packages would greatly improve the ease of installation and would thus
improve the willingness of people to use the program.

Ideally, ChemSpaX would be implemented in a workflow where automated data-driven property calcula-
tion/prediction is done. Work is being done on a workflow that enables these automated high-throughput de-
scriptor calculations, which is called epic_dna, and will be hosted on ISE’s Github page (https://github.com/EP
iCs-group/). Eventually, the computational workflow of epic_dna should be integrated with an experimental
workflow. Work is required to make the integration as understandable as possible for researches from vari-
ous disciplines. In the advances that are made with epic_dna, this will mean that experimental researchers
can draw their synthesized catalyst structure in programs like Marvinsketch. The SMILES string generated
from this drawing will be used together with experimental data for generating a database of molecular and
reaction descriptors. After the generation of this database is realized, property prediction with ML combined
with local chemical space exploration done by ChemSpaX can be researched. Using this workflow together
with chemical intuition, a larger subset of the chemical space can then be covered in future research.

Extensive benchmarking is needed for ChemSpaX. This can be done as presented in this thesis, by cal-
culating the same property for two structures that were optimized with a different optimization method and
comparing the property afterwards. By using higher level DFT methods as ’standard’ for comparison, the

https://github.com/EPiCs-group/
https://github.com/EPiCs-group/
https://github.com/EPiCs-group/
https://github.com/EPiCs-group/
https://github.com/EPiCs-group/
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workflow can be improved and the bar can be raised.
ChemSpaX and related automation tools are meant to be open source and easy to use for the scientific

community. By sharing data and code, more progress can be made in the exploration of chemical space,
of which humanity has just been scratching the surface. The help of young researchers is needed to push
this interdisciplinary young field forward. Unfortunately, this shows an educational challenge, since research
programmes in chemistry, physics and computer science need to be tightly interwoven [128]. The coursework
in conventional curriculae of chemistry, materials science, physics, computer science or biology would need
to be adapted for students to reach a level by which they can have a meaningful contribution to this line of
research [128]. These adaptations can also be done in the master’s programme in chemical engineering at
the TU Delft, where subjects like data science, object-oriented programming and machine learning currently
do not get the attention that they deserve.
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S1. Remarks 
With regards to computational methods following nomenclature is adopted: 

GFN2-xTB(GAS): optimization using Grimme’s xTB (6.3.3) package. 

GFN2-xTB(THF): optimization and hessian calculation in THF using the GBSA solvation 

model using Grimme’s xTB (6.3.3) package. 

BP86(GAS): DFT calculations were performed at various levels of theory. Geometry 

optimizations were performed in the gas phase using BP86 XC functional and def2-SVP basis 

set. Free energy corrections were obtained via hessian calculations within the harmonic 

approximation at the same level of theory. This method is denoted as BP86(GAS). 

PBE1PBE(thf) (or PBE0(THF)) and BP86(THF): To include the solvent effects the electronic 

energies were further refined via single point energy calculations using SMD solvation method 

with THF as solvent. Two XC functionals namely BP86 and PBE1PBE were used with a triple 

zeta quality basis set (def2-TZVP). The free energy corrections obtained via hessian 

calculations at BP86(gas) level of theory were added to the electronic energies obtained during 

the singlepoint energy calculations. These methods are denoted as PBE0(THF) and 

BP86(THF). 

We have calculated pearson correlation coefficient (R2) related to a linear fitting (𝑦𝑖̂ = 𝑎𝑥𝑖 +

𝑏) for all case where two methods/quantities (𝑥𝑖, 𝑦𝑖) were compared in a scatter plot. We 

computed the root mean squared error (RMSE) related to the linear fit as : 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖̂ − 𝑦𝑖)2
𝑁
𝑖=1

𝑁
 

The XYZ files of structures and datasets used for this publication are attached. 

ChemSpaX will be made publicly available after publication on our group’s Github page 

(https://github.com/EPiCs-group/) together with a manual.  
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S2. Observed issues with FF optimization 
When functionalizing a complex recursively, it was observed that using Openbabel’s universal force 

field optimization (UFF) only for geometry optimization would cause hydrogens on the complex to 

interfere. Which is illustrated in figure 1. 

 

Figure 1. Hydrogen interference upon serial functionalization and optimization with UFF. 

In the same scenario, but using Openbabel’s GAFF only for geometry optimization, bonds between 

carbon and a halogen would have an incorrect angle. Which is shown in figure 2, with the incorrect 

angle on the right side and the correct angle on the left side of the figure.  

 

Using a combination of GAFF and UFF for geometry optimization resulted in a highly increased 

probability of an error-free geometry. 
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S3. Comparison of calculated energies of reaction using xTB 

or DFT for pincer complexes 

RuPNP 

 

Figure 2. Comparison of ΔE calculated by BP86(GAS) vs GFN2-xTB(GAS). 

 

Figure 3. Comparison of ΔE calculated by PBE0(THF) vs GFN2-xTB(THF). 

Mn-pincers 

 

Figure 4. Comparison of ΔE calculated by PBE0(THF) vs GFN2-xTB(THF) for various adducts. The correlation is show for 

the total x and y dataset. 
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Linear scaling of ΔE and ΔG for Mn-pincers 

 

Figure 5. Linear scaling of ΔE against ΔG calculated by BP86(GAS) for various adducts. The correlation shown is for the 

total x and y dataset, thus the scaling relation holds regardless of the adduct. 

 

Figure 6. Linear scaling of ΔE against ΔG calculated by PBE0(THF) for various adducts. The correlation shown is for the 

total x and y dataset, thus the scaling relation holds regardless of the adduct. 

S4. Distribution of Gibbs free energy for RuPNP 

 

Figure 7. ΔG calculated by GFN2-xTB for all generated RuPNP geometries 
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Figure 8. ΔG calculated using PBE0(THF) for 27 selected RuPNP geometries 

S5. Distribution of total energy for Mn-pincers 

 

Figure 9. ΔE calculated using BP86(GAS) for geometries generated by ChemSpaX 

 

Figure 10. ΔE calculated using BP86(GAS) after full DFT optimization. 
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S6. Distribution of hRMSD for pincer complexes 

RuPNP 

 

Figure 11. Distribution of hRMSD for ChemSpaX generated structures (newly placed substituents optimized with FF) 

compared against DFT (BP86) optimized structures. 

 

Figure 12. Distribution of hRMSD for GFN2-xTB optimized structures compared against DFT (BP86) optimized structures. 

 

Figure 13. Distribution of hRMSD for ChemSpaX generated structures (newly placed substituents optimized with FF) 

compared against GFN2-xTB optimized structures. 
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Mn-pincers 

 

Figure 14. Distribution of hRMSD for ChemSpaX generated structures (newly placed substituents optimized with FF) 

compared against DFT (BP86) optimized structures. Plotted for all datapoints. 

 

Figure 15. Distribution of hRMSD for GFN2-xTB optimized structures compared against DFT (BP86) optimized structures. 

Plotted for all datapoints. 

S7. Comparison of DFT and xTB calculated HOMO-LUMO 

gap for Pincer complexes 

RuPNP 

 

Figure 16. Comparison of HOMO-LUMO gap calculated using a BP86 SP on a FF optimized geometry and a fully DFT 
optimized geometry. 
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Figure 17. Comparison of HOMO-LUMO gap calculated using BP86(THF) and BP86(GAS), which shows the effect of solvation 
on the HOMO-LUMO gap. 

 

Mn-pincers 

 

Figure 18. Comparison of HOMO-LUMO gap calculated by BP86(THF) against GFN2-xTB(THF) for various adducts on 

the metal site. 

 

 

Table 1. Pearson's correlation coefficient and RMSE of HOMO-LUMO gap comparison for various adducts on the metal 

site. 

Adduct on metal site R2  RMSE (eV) 

Br 0.74 0.18 

H 0.26 0.28 

OH 0.32 0.25 

iPrO 0.23 0.27 

no 0.008 0.23 
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Figure 19. Comparison of HOMO-LUMO gap calculated by BP86(THF) against GFN2-xTB(THF) for various ligand 

backbones. 

 

 

Table 2. Pearson's correlation coefficient and RMSE of HOMO-LUMO gap comparison for various ligand backbones 

Ligand backbone R2 RMSE (eV) 

PCP 0.58 0.26 

PNN 0.28 0.37 

CNC 0.25 0.34 
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S1. Remarks 
With regards to computational methods following nomenclature is adopted: 

xTB: optimization and hessian calculation in THF using the GBSA solvation model using 

Grimme’s xTB (6.3.3) package. 

bp86(gas): DFT calculations were performed at various levels of theory. Geometry 

optimizations were performed in the gas phase using BP86 XC functional and def2-SVP basis 

set. Free energy corrections were obtained via hessian calculations within the harmonic 

approximation at the same level of theory. This method is denoted as bp86(gas). 

pbe0(thf) and bp86(thf): To include the solvent effects the electronic energies were further 

refined via single point energy calculations using SMD solvation method with THF as solvent. 

Two XC functionals namely BP86 and PBE0 were used with a triple zeta quality basis set (def2-

TZVP). The free energy corrections obtained via hessian calculations at BP86(gas) level of 

theory were added to the electronic energies obtained during the singlepoint energy 

calculations. These methods are denoted as pbe0(thf) and bp86(thf). 

We have calculated pearson correlation coefficient (R2) related to a linear fitting (𝑦𝑖̂ = 𝑎𝑥𝑖 +

𝑏) for all case where two methods/quantities (𝑥𝑖, 𝑦𝑖) were compared in a scatter plot. We 

computed the root mean squared error (RMSE) related to the linear fit as : 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑁

𝑖=1

𝑁
 

S2. Computational remarks on xTB optimization 
 

Catalyst structures showing hemilability (bond length between metal and ligand > 2.8 A) in the 

activated catalyst structure were excluded from the analysis. One entire data set of ligand 

backbones (PNN) was excluded for this reason. The nature and related chemical reactivity 

arising from hemilability was not investigated further. A selection of the catalyst structures that 

show hemilability is depicted in Figure S1. 
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Figure S1. Structure of catalysts showing hemilability after GFN2-xTB optimization. 

 

Additionally, it was observed that some structures showed an elongated M-H bond after 

geometry optimization with GFN2-xTB. This was not only observed for Mn metal centers from 

the current research, but also for Ru metal centers from a different research done by our group. 

Examples of these elongated M-H bonds are shown in Figure S2.  
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Figure S2. Structure of catalysts showing elongated M-H bonds after GFN2-xTB optimization. 

 

 

S3. Computed Gibbs free energy for formation of various 

adducts (xTB) 
 

The Gibbs free energy of formation of the Manganese adduct from the activated catalyst is 

summarized. The ligand, donor (R1) and backbone (R2) sites are given accompanied by the ΔG 

of formation in kcal mol-1 of the different metal adduct species. All structures were optimized 

using xTB. 

Table S1. xTB computed Gibbs free energy of adduct formation for the Mn-PCP complexes 

(kcal mol-1) 

Ligand Donor Backbone Br OH OMe OEt OiPr OtBu 

PCP CF3 CF3 16.36 20.93 14.91 15.68 15.68 21.41 

PCP CF3 cy 12.88 14.86 12.34 14.17 14.17 19.83 

PCP CF3 iPr 13.72 13.67 12.79 14.31 14.31 20.15 

PCP CF3 ph 13.51 13.98 12.99 14.66 14.66 14.94 

PCP CF3 tBu 13.47 13.84 12.92 14.53 14.53 14.78 

PCP cy CF3 14.56 39.70 4.58 8.65 8.65 13.53 

PCP cy cy 9.15 41.81 34.94 9.65 9.65 14.13 

PCP cy iPr 9.85 42.29 35.39 9.67 9.67 14.28 

PCP cy H 10.21 42.65 35.37 9.54 9.54 14.09 

PCP cy ph 10.79 42.73 35.50 9.69 9.69 48.31 

PCP cy tBu 10.44 43.06 35.94 10.46 10.46 14.93 

PCP H CF3 5.00 21.77 19.39 20.68 20.68 19.06 

PCP H cy 2.15 22.35 18.85 18.82 18.82 17.92 

PCP H iPr 2.31 22.24 17.80 19.48 19.48 18.13 

PCP H H 2.13 21.53 18.41 18.76 18.76 17.54 

PCP H ph 2.63 20.75 20.63 18.98 18.98 17.87 

PCP H tBu 2.38 21.92 19.03 18.76 18.76 17.95 

PCP iPr CF3 13.25 37.72 4.60 6.25 6.25 9.10 

PCP iPr cy 8.54 40.10 6.31 8.40 8.40 10.62 
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PCP iPr iPr 9.25 35.89 34.58 8.33 8.33 10.45 

PCP iPr H 9.40 40.63 5.68 7.80 7.80 10.07 

PCP iPr ph 9.53 36.25 5.64 7.86 7.86 9.99 

PCP iPr tBu 8.78 35.72 6.44 8.21 8.21 10.50 

PCP ph CF3 5.38 31.76 29.35 32.52 32.52 -2.94 

PCP ph cy 1.13 33.67 26.98 29.41 29.41 30.58 

PCP ph iPr 1.95 34.12 27.22 30.53 30.53 30.95 

PCP ph H 2.07 34.61 27.97 30.55 30.55 30.88 

PCP ph ph 1.88 34.30 28.06 30.20 30.20 -1.54 

PCP ph tBu 1.61 33.48 27.44 30.41 30.41 30.52 

PCP tBu CF3 28.29 10.51 9.96 13.81 13.81 12.13 

PCP tBu cy 23.04 11.94 11.44 18.15 18.15 22.58 

PCP tBu iPr 23.39 12.28 11.35 14.14 14.14 10.14 

PCP tBu H 23.94 11.35 10.91 13.64 13.64 13.21 

PCP tBu ph 24.61 12.27 11.27 14.16 14.16 14.31 

PCP tBu tBu 23.44 12.22 11.24 14.09 14.09 23.09 

 

Table S2. xTB computed Gibbs free energy of adduct formation for the Mn-PNP complexes 

Ligand Donor Backbone Br OH OMe OEt OiPr OtBu 

PNP CF3 cy -22.99 -14.89 -16.42 -15.82 -11.88 -30.95 

PNP CF3 iPr -20.10 -14.12 -16.39 -14.66 -10.52 -5.40 

PNP CF3 H -29.10 -25.02 -27.43 -26.79 -23.94 -22.13 

PNP CF3 ph -22.84 -16.79 -18.22 -17.24 -13.47 -2.83 

PNP CF3 tBu -23.69 -15.66 -15.97 -14.79 -10.49 -36.25 

PNP cy CF3 -22.76 -1.00 -6.24 -4.20 -1.46 4.23 

PNP cy cy -29.75 -2.57 -7.54 -22.04 -2.62 -20.48 

PNP cy iPr -34.15 -6.49 -12.05 -10.67 -8.13 -21.25 

PNP cy H -31.44 1.21 -5.80 -2.87 -1.70 1.56 

PNP cy ph -31.53 -1.38 -7.62 -6.75 -4.41 0.81 

PNP cy tBu -31.56 -8.58 -10.32 -8.89 -27.92 -26.12 

PNP H H -34.40 -12.25 -17.08 -17.01 -15.72 -15.25 

PNP iPr CF3 -17.41 4.88 2.63 2.25 5.86 -10.90 

PNP iPr cy -29.95 -0.10 -21.71 -24.02 -22.96 -22.08 

PNP iPr iPr -24.41 4.62 -1.39 1.36 -20.17 -19.58 

PNP iPr H -27.18 4.92 0.60 1.85 3.18 -4.09 

PNP iPr ph -25.93 4.94 -0.70 0.71 2.99 -6.68 

PNP iPr tBu -40.93 -14.90 -39.35 -15.12 -38.00 -38.23 

PNP ph CF3 -12.03 7.60 3.27 3.39 6.24 -4.16 

PNP ph cy -26.49 -0.23 -7.69 -2.39 -0.24 -6.20 

PNP ph iPr -25.21 -0.72 -6.84 -5.06 -3.46 -20.48 

PNP ph H -27.57 -1.60 -2.68 -1.29 0.82 -8.98 

PNP ph ph -26.50 -0.51 -5.38 -0.74 -0.98 6.47 

PNP ph tBu -24.68 -4.50 -6.78 -5.92 -2.79 -15.66 

PNP tBu H -22.64 -0.27 -11.82 -10.60 -9.69 -8.79 

 

Table S3. xTB computed Gibbs free energy of adduct formation for the Mn-SNS complexes 

Ligand Donor Backbone Br OH OMe OEt OiPr OtBu 

SNS CF3 CF3 -2.57 11.33 -5.62 -7.27 5.57 -7.33 

SNS CF3 cy -15.34 2.83 -2.98 -2.63 -3.15 -1.12 

SNS CF3 iPr -15.16 3.78 -21.03 -1.87 -1.75 -19.56 

SNS CF3 H -24.67 -6.13 -11.70 -11.80 -11.74 -10.42 

SNS CF3 ph -19.67 -2.04 -7.11 -6.89 -6.98 -5.84 
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SNS CF3 tBu -9.79 7.87 2.29 2.46 2.62 4.20 

SNS cy CF3 -2.95 13.03 0.89 2.31 3.77 3.29 

SNS cy cy -21.37 6.35 -10.19 -0.47 0.70 2.01 

SNS cy iPr -24.82 -0.82 -12.52 -10.95 -9.96 -10.01 

SNS cy H -22.25 -2.98 -14.14 -10.73 -12.85 -12.81 

SNS cy ph -24.27 -3.02 -10.01 -12.73 -11.25 -12.48 

SNS cy tBu -12.85 12.99 7.08 7.85 8.37 -15.54 

SNS H CF3 3.42 6.28 -5.69 -5.08 -4.33 -5.08 

SNS H cy -18.79 -10.09 -21.85 -20.15 -22.26 -21.12 

SNS H iPr -13.00 -3.00 -15.51 -14.76 -13.78 -15.01 

SNS H H -20.52 -5.57 -28.89 -15.28 -12.73 -15.24 

SNS H ph -20.03 -8.79 -21.23 -29.08 -26.30 -27.29 

SNS H tBu -9.39 -6.76 -20.70 -19.54 -16.48 -19.32 

SNS iPr CF3 5.69 18.12 5.66 6.63 9.34 7.18 

SNS iPr cy -19.94 7.37 -8.86 1.01 1.90 2.96 

SNS iPr iPr -17.83 1.43 -12.75 -10.85 -9.84 -9.98 

SNS iPr H -22.95 -1.01 -9.03 -6.70 -6.60 -11.21 

SNS iPr ph -17.19 4.07 -7.83 -6.09 -4.18 -5.56 

SNS iPr tBu -12.07 13.98 -5.92 8.07 8.93 -6.27 

SNS ph CF3 -2.39 11.49 -0.92 -0.04 0.98 0.62 

SNS ph cy -20.91 6.34 -10.96 -9.74 0.98 -9.27 

SNS ph iPr -21.22 -1.12 -16.81 -11.33 -15.66 -15.76 

SNS ph H -23.58 -1.53 -12.98 -12.13 -11.93 -11.55 

SNS ph ph -21.08 -1.60 -13.09 -11.67 -11.23 -11.89 

SNS ph tBu -15.71 9.95 -11.24 -10.38 5.41 -10.34 

SNS tBu CF3 1.31 22.89 6.29 6.88 8.59 8.79 

SNS tBu cy -14.01 13.16 -7.15 -6.14 -5.07 -4.16 

SNS tBu iPr -19.94 7.74 -7.86 2.74 3.40 3.71 

SNS tBu H -22.37 0.14 -11.83 -9.90 -7.98 -8.47 

SNS tBu ph -20.42 3.34 -9.45 -8.27 -6.27 -7.28 

SNS tBu tBu -9.05 18.07 11.97 12.98 13.71 14.10 

 

 

Table S4. xTB computed Gibbs free energy of adduct formation for the Mn-CNC complex 

Ligand Donor Backbone Br OH OMe OEt OiPr OtBu 

CNC CF3 CF3 -3.43 8.72 18.99 19.73 20.67 20.34 

CNC CF3 cy -26.77 7.37 1.53 2.56 2.81 2.88 

CNC CF3 iPr -28.14 4.82 -1.20 -0.63 0.94 1.21 

CNC CF3 ph -30.05 3.54 -2.63 -2.39 -0.24 -0.30 

CNC CF3 tBu -27.56 4.01 -1.39 -0.79 0.19 2.01 

CNC cy CF3 -0.11 16.02 20.03 20.84 21.08 22.07 

CNC cy cy -23.27 12.03 3.41 4.86 6.20 6.36 

CNC cy iPr -24.90 7.69 0.89 2.33 3.45 4.91 

CNC cy ph -25.23 8.46 1.44 2.89 4.08 4.59 

CNC cy tBu -25.28 7.15 0.24 1.76 2.86 4.33 

CNC iPr CF3 -9.56 7.10 10.43 10.94 12.39 12.73 

CNC iPr cy -31.25 1.97 -4.59 -2.88 -1.11 -0.82 

CNC iPr iPr -24.97 7.57 0.99 2.18 3.58 5.66 

CNC iPr ph -22.51 10.64 3.93 5.19 6.44 6.69 

CNC iPr tBu -36.15 -2.85 -9.50 -7.94 -5.77 -4.33 

CNC ph CF3 -3.36 13.84 20.48 21.18 22.29 22.35 

CNC ph cy -32.52 3.97 -2.99 -2.55 -0.20 0.04 

CNC ph iPr -22.46 12.77 5.22 6.96 8.80 8.69 
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CNC ph H -29.09 7.43 0.14 1.57 3.36 3.77 

CNC ph ph -26.67 9.01 1.95 3.89 5.11 5.36 

CNC ph tBu -22.17 13.00 6.34 7.56 9.70 9.88 

CNC tBu CF3 0.36 11.86 18.99 19.62 20.77 20.92 

CNC tBu cy -32.15 1.53 -5.52 -4.71 -2.19 -2.45 

CNC tBu iPr -25.63 5.20 -1.67 -0.57 -14.05 2.41 

CNC tBu ph -22.58 9.16 1.88 1.55 4.53 2.99 

CNC tBu tBu -21.68 9.13 2.84 3.90 6.37 6.99 

 

S4. Computed Gibbs free energy for formation of various 

adducts (DFT) 
 

The Gibbs free energy of formation of the Manganese adduct from the activated catalyst is 

summarized. The ligand, donor (R1) and backbone (R2) sites are given accompanied by the ΔG 

of formation in kcal mol-1 of the different metal adduct species. All structures were optimized 

by DFT. 

Table S5. Computed Gibbs free energy (pbe0(thf) for addition of HBr on selected Mn pincers 

with backbone functionalization R2=H. All energy values in kcal mol-1. 

Ligand Donor Backbone Δ𝐺𝐻𝐵𝑟 

PCP H H -8.21 

PCP Ph H -2.70 

PCP iPr H 0.27 

PCP Cy H -1.54 

PCP tBu H 17.52 

CNC CF3 H -33.81 

CNC Ph H -36.98 

CNC iPr H -34.50 

CNC cy H -37.11 

PNN Ph H -36.54 

PNN iPr H -31.67 

PNN tBu H -26.74 

 

Table S6. Computed Gibbs free energy (pbe0(thf)) for addition of HBr on selected Mn pincers 

with donor site functionalization R1=
iPr. All energy values in kcal mol-1. 

Ligand Donor Backbone Δ𝐺𝐻𝐵𝑟 

PCP iPr CF3 1.29 
PCP iPr H 0.27 
PCP iPr Ph 0.62 
PCP iPr iPr 0.63 
PCP iPr cy 0.60 
CNC iPr CF3 -28.53 
CNC iPr H -34.50 
CNC iPr Ph -32.79 
CNC iPr iPr -30.96 
CNC iPr cy -38.34 
PNN Ph CF3 -28.98 
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PNN iPr H -31.67 
PNN iPr Ph -31.51 
PNN iPr iPr -28.97 
PNN iPr cy -34.86 
PNN iPr tBu -23.32 

 

 

Table S7. DFT computed Gibbs free energy of adduct formation for the Mn-PCP complexes 

(bp86(gas) ) 

Ligand Donor Backbone Br OH OiPr H 
PCP CF3 cy -4.267692109 19.10076167 -12.8670823 15.8069643 
PCP CF3 tBut -3.886166334 18.69162548 -13.12812625 15.57290326 
PCP cy CF3 -7.004888548 -6.173438461 -3.18774826 23.7198591 
PCP cy cy -5.542163904 -3.364078429 -0.797564574 25.84523378 
PCP cy iPr -6.782122676 -5.042666342 -2.174320417 24.30469795 
PCP cy H -7.028733909 -5.229036663 -2.22201114 24.1490756 
PCP cy ph -7.614200273 -5.875371448 -5.476275407 23.49270066 
PCP cy tBut -7.473010635 -5.426074646 -2.864580867 23.85979372 
PCP H CF3 -9.596502783 -13.40423043 -14.33294449 19.10640926 
PCP H cy -8.953933056 -12.18184192 -12.13917128 20.6745555 
PCP H iPr -9.027979176 -12.14607388 -12.17305679 20.44174947 
PCP H H -9.474138431 -12.59160563 -13.41489809 19.97111735 
PCP H ph -9.171051342 -12.43723829 -12.51191192 20.08406906 
PCP H tBut -9.144695943 -12.20756981 -13.04090243 20.36331078 
PCP iPr CF3 -4.787269975 -3.04969617 -2.452934635 25.12736291 
PCP iPr cy -4.554463951 -3.310112612 -0.672690184 26.83920882 
PCP iPr iPr -4.647962866 -2.520078152 -1.276354323 26.37798934 
PCP iPr H -5.200171226 -2.809987541 -1.335967725 25.86907914 
PCP iPr ph -4.714478874 -2.774219499 -1.44264434 25.88413937 
PCP iPr tBut -4.745226839 -2.226403706 -1.178462841 26.24872238 
PCP ph iPr -8.030239071 -13.78575621 -12.87712245 20.22525869 
PCP ph H -8.445022851 -14.53876761 -13.56048029 19.78223699 
PCP ph ph -8.179586332 -14.51805979 -9.394444725 20.16501778 
PCP tBut CF3 8.800820737 6.287017681 12.28663601 31.86053984 
PCP tBut cy 8.424315037 6.817890717 11.89569759 32.42969096 
PCP tBut iPr 8.773837829 7.107172597 12.22827763 32.83568961 
PCP tBut H 8.372859259 6.347886102 12.30357877 32.52820995 
PCP tBut ph 8.832823722 7.398337005 43.07036955 32.22261282 
PCP tBut tBut 8.253004944 6.845501135 12.12285603 32.32426936 

 

 

Table S8. DFT computed Gibbs free energy of adduct formation for the Mn-PCP complexes 

(bp86(thf)) 

Ligand Donor Backbone Br OH OiPr H 
PCP CF3 cy 0.643761997 26.68688253 -0.24737805 13.38907847 
PCP CF3 tBut 1.045248849 26.32569433 -0.469008131 13.26648193 
PCP cy CF3 -1.804842823 7.717891575 9.774086717 20.18115972 
PCP cy cy -1.805991167 10.29342902 11.28328472 21.07851085 
PCP cy iPr -2.121164087 9.405408947 10.72264263 20.5565861 
PCP cy H -2.301642095 9.124378817 10.51519426 20.29803964 
PCP cy ph -2.868465151 8.578451828 6.7312053 19.72084385 
PCP cy tBut -2.688219322 9.110284954 10.20399975 20.15947299 
PCP H CF3 -8.62195543 -2.729583117 -4.928511069 13.68727098 
PCP H cy -8.589651241 -1.48131612 -2.496980782 14.74630621 
PCP H iPr -8.544652534 -1.37699894 -2.44665452 14.65578797 
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PCP H H -8.936632619 -1.919531104 -4.121935458 14.1574513 
PCP H ph -8.502647048 -1.649338063 -2.778042287 14.43228163 
PCP H tBut -8.750218372 -1.47567481 -3.67226215 14.49329438 
PCP iPr CF3 -0.579850153 11.43438561 7.688383192 21.6004356 
PCP iPr cy -0.788258609 10.86945136 9.563099198 22.91445305 
PCP iPr iPr -0.822991259 12.52213568 8.967580132 22.51081384 
PCP iPr H -1.29007168 12.2542958 8.86205186 22.05125725 
PCP iPr ph -0.954548626 12.20366834 8.68106557 21.98171038 
PCP iPr tBut -0.944665351 12.91474328 9.184503891 22.45167107 
PCP ph iPr -4.171425877 -0.792706019 -1.497784855 17.06401883 
PCP ph H -4.688010523 -1.814040482 -2.462768964 16.41033591 
PCP ph ph -4.433266766 -1.815684557 1.355262387 16.79073216 
PCP tBut CF3 13.32389039 20.46052619 24.74971389 28.17562447 
PCP tBut cy 12.56861995 21.13737048 24.38433393 28.63872648 
PCP tBut iPr 12.95733071 21.36606005 24.64682743 29.20279477 
PCP tBut H 12.66134703 20.54137451 24.77438128 28.91929226 
PCP tBut ph 12.86880167 21.96306631 52.84775069 28.2982712 
PCP tBut tBut 12.24545884 20.99089722 24.49261697 28.47406172 

 

Table S9. DFT computed Gibbs free energy of adduct formation for the Mn-PCP complexes 

(pbe0(thf))  

Ligand Donor Backbone Br OH OiPr H 
PCP CF3 cy 2.212836951 31.65212574 1.358788363 18.63228925 
PCP CF3 tBut 2.721640478 31.42314752 1.230010864 18.69006405 
PCP cy CF3 -0.786802787 8.715636951 13.18173878 24.65709581 
PCP cy cy -2.154591519 10.474088 13.43200839 24.13035179 
PCP cy iPr -1.483112428 10.50041202 13.85572791 24.63252254 
PCP cy H -1.541495912 10.33139861 13.75078949 24.49207336 
PCP cy ph -2.119237633 9.800368697 9.34342632 23.91057286 
PCP cy tBut -1.9750234 10.25686931 13.36952727 24.31194676 
PCP H CF3 -7.498004339 -2.071314105 -2.542645276 19.51828874 
PCP H cy -8.09716296 -1.326705058 -0.644617291 19.84780025 
PCP H iPr -8.006500387 -1.17393787 -0.549662554 19.82607587 
PCP H H -8.212593333 -1.533212159 -2.065593729 19.52077995 
PCP H ph -7.848079339 -1.37110763 -0.769472856 19.74909301 
PCP H tBut -8.162511799 -1.272902394 -1.813912219 19.72777651 
PCP iPr CF3 1.294508173 13.48133942 11.46684944 26.94276152 
PCP iPr cy 0.597451794 12.06737227 12.90860899 27.71161753 
PCP iPr iPr 0.62813701 13.74324306 12.35800706 27.36566527 
PCP iPr H 0.270933502 13.60219775 12.38846009 27.03626671 
PCP iPr ph 0.622552175 13.54145483 12.22767333 26.99839023 
PCP iPr tBut 0.492149426 14.16644175 12.60451161 27.29308752 
PCP ph iPr -2.249885112 -0.071755084 2.025987839 22.40813941 
PCP ph H -2.697675891 -1.020844377 1.160834217 21.8321861 
PCP ph ph -2.459881166 -1.092399285 4.362004905 22.20155701 
PCP tBut CF3 18.45073713 23.20331273 28.86796398 34.18161071 
PCP tBut cy 17.2662502 23.58145623 28.42006025 34.14178895 
PCP tBut iPr 17.71803821 23.82030517 28.76797034 34.79262926 
PCP tBut H 17.51746735 23.09261378 29.03614908 34.60827324 
PCP tBut ph 17.7319752 24.76512113 63.69604645 34.02534829 
PCP tBut tBut 17.02416331 23.45076483 28.64203546 34.09260476 

 

 

Table S10. DFT computed Gibbs free energy of adduct formation for the Mn-PNN complexes 

(bp86(gas)) 

Ligand Donor Backbone Br OH OiPr H 
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PNN CF3 CF3 -29.75336294 -23.6734234 -29.62221346 -4.80672277 
PNN CF3 iPr -37.41086137 -25.463708 -29.29779105 -2.720881192 
PNN CF3 ph -26.75449504 -20.17003786 -19.79102212 11.3347041 
PNN CF3 tBut -28.69224438 -24.96546546 -28.32954389 -1.236821225 
PNN cy CF3 -32.65496687 -23.6207126 -26.65974111 4.450297374 
PNN cy cy -38.3966788 -18.38540084 -22.12284742 0.690887959 
PNN cy iPr -33.29314403 -18.14945727 -17.58783627 7.458577917 
PNN cy ph -28.07665756 -12.93297079 -12.37950742 12.81248897 
PNN H CF3 -26.11820041 -9.162893719 -11.73066259 12.05822255 
PNN H iPr -31.95843133 -12.84574697 -14.47099658 8.076674774 
PNN H ph -37.62609713 -17.4115061 -19.79729722 4.588976974 
PNN iPr CF3 -29.37246468 -14.82804949 -18.60251913 8.312618346 
PNN iPr cy -30.92178563 -16.78525162 -18.00262005 10.96070844 
PNN iPr iPr -26.29327556 -12.83507931 -15.97639187 12.10340324 
PNN iPr H -31.97035401 -23.21910652 -23.17329833 1.140812271 
PNN iPr ph -30.70905991 -15.6613821 -16.18221499 5.875371449 
PNN iPr tBut -19.74584144 -2.577181516 -8.655238533 18.05846839 
PNN ph CF3 -29.8958076 -20.01504301 -22.78675247 -5.77245989 
PNN ph cy -31.98353171 -22.68760597 -18.6866054 -7.884029358 
PNN ph iPr -20.17756797 -10.78061321 -8.743089864 7.65498839 
PNN ph H -36.56874362 -29.75650049 -24.28273512 -5.148087938 
PNN ph ph -29.228765 -20.57917405 -17.28349416 8.481418402 
PNN ph tBut -31.69864239 -20.75738675 -24.03926144 -4.359308497 
PNN tBut CF3 -19.46408967 -10.07905759 -6.682976175 16.65347462 
PNN tBut cy -20.5490536 -8.869846783 -14.31035415 14.12272881 
PNN tBut H -21.88502132 -15.1330191 -15.83896729 14.90272312 
PNN tBut ph -21.67794319 -10.87348462 -15.12548899 12.1404263 

 

Table S11. DFT computed Gibbs free energy of adduct formation for the Mn-PNN complexes 

(bp86(thf))  

Ligand Donor Backbone Br OH OiPr H 
PNN CF3 CF3 -29.2155622 -17.15602025 -21.70076069 -8.771250099 
PNN CF3 iPr -33.27884937 -16.14997192 -18.92755775 -6.584097112 
PNN CF3 ph -23.8285563 -10.21447251 -9.361250727 9.61173483 
PNN CF3 tBut -27.43972287 -13.78905527 -17.18478189 -4.971868329 
PNN cy CF3 -29.93284948 -16.35086281 -17.726925 0.488123206 
PNN cy cy -36.2536209 -8.367530071 -10.92293989 -3.705246679 
PNN cy iPr -31.62827975 -7.992285665 -7.718129651 1.295382802 
PNN cy ph -25.67151405 -2.119279928 -2.247093949 8.575603694 
PNN H CF3 -28.09116558 -1.130469283 -3.31590578 3.016547234 
PNN H iPr -31.90166054 -3.325880295 -5.329464539 0.519561431 
PNN H ph -35.69495547 -6.95881517 -9.211301057 -1.092460273 
PNN iPr CF3 -26.51314234 -4.358064396 -7.524360993 3.161790583 
PNN iPr cy -28.88359085 -6.190812568 -8.72830072 5.552068395 
PNN iPr iPr -24.08604227 -1.840326855 -6.732644807 8.399932409 
PNN iPr H -30.48144966 -13.88021358 -14.3957971 -3.310951084 
PNN iPr ph -28.21728871 -5.101794931 -6.750848858 1.739308123 
PNN iPr tBut -18.12977857 2.397922509 -0.380165336 12.63087129 
PNN ph CF3 -29.98589286 -11.69580908 -14.89195631 -10.9178095 
PNN ph cy -31.28877829 -11.53948392 -10.03009428 -10.99474216 
PNN ph iPr -18.09889255 0.812187177 1.312723519 5.005576646 
PNN ph H -35.07973888 -20.54450252 -15.91133922 -10.14545198 
PNN ph ph -26.7650874 -9.560086776 -7.090256196 4.438690839 
PNN ph tBut -29.36361679 -9.801050424 -14.21357461 -9.118783685 
PNN tBut CF3 -18.7907406 -3.032343901 0.333614171 13.00706951 
PNN tBut cy -19.86640484 -0.189154832 -4.062322055 8.660110398 
PNN tBut H -22.68340166 -7.421578326 -8.270695692 9.06315975 
PNN tBut ph -22.42290364 -3.225911756 -6.742139025 7.949844945 
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Table S12. DFT computed Gibbs free energy of adduct formation for the Mn-PNN complexes 

(pbe0(thf)) 

Ligand Donor Backbone Br OH OiPr H 
PNN CF3 CF3 -32.64837175 -15.93151176 -18.2864633 -8.393528348 
PNN CF3 iPr -39.12931496 -18.67391653 -18.82764632 -10.06675105 
PNN CF3 ph -26.55222363 -9.16507055 -5.612497052 11.39420562 
PNN CF3 tBut -32.60191722 -15.31063504 -15.51168532 -5.88356565 
PNN cy CF3 -28.42014371 -11.81199975 -13.57564281 3.96761814 
PNN cy cy -39.69377858 -11.46100231 -10.59861851 -2.831064512 
PNN cy iPr -31.74096163 -5.767978845 -3.594075094 3.031173163 
PNN cy ph -25.44031445 0.966766864 2.579413568 11.67816622 
PNN H CF3 -29.87985003 0.697226433 0.463206805 4.305651232 
PNN H iPr -37.28023899 -4.827800186 -4.977074657 -1.901095433 
PNN H ph -40.40039821 -7.734945024 -8.376287343 -0.700594458 
PNN iPr CF3 -28.97966255 -2.997486752 -4.913953476 4.356837182 
PNN iPr cy -34.85529756 -8.731586987 -8.590776365 2.093015085 
PNN iPr iPr -28.97165553 -2.88144142 -4.166903416 6.694008865 
PNN iPr H -31.66901767 -14.15188227 -12.02425734 -0.022470042 
PNN iPr ph -31.51031424 -3.599029909 -4.67251292 2.768711039 
PNN iPr tBut -23.3199222 -3.765351302 -0.917326645 10.19014039 
PNN ph CF3 -33.05866256 -11.67694088 -13.29506448 -12.93164568 
PNN ph cy -35.22811978 -11.03019194 -7.946286458 -11.25315189 
PNN ph iPr -18.15218066 4.723327385 6.944150022 8.38461986 
PNN ph H -36.53505264 -20.13593836 -11.19345359 -8.767931892 
PNN ph ph -30.54648475 -8.802175531 -5.425687473 5.15925868 
PNN ph tBut -34.01862032 -10.36239633 -12.57029101 -11.84792422 
PNN tBut CF3 -21.34304764 -4.381709958 -0.191342079 14.56982412 
PNN tBut cy -24.51399747 -1.639531094 -1.385906814 6.585261469 
PNN tBut H -26.73780956 -8.910697024 -6.617353114 12.15051145 
PNN tBut ph -26.16852667 -3.389504487 -4.112115562 9.071868264 

 

Table S13. DFT computed Gibbs free energy of adduct formation for the Mn-CNC complexes 

(bp86(gas)) 

Ligand Donor Backbone Br OH OiPr H 
CNC CF3 cy -31.99545439 -12.18121441 -16.76328878 3.807727646 
CNC CF3 iPr -19.28650448 0.222138363 0.031375475 14.63665909 
CNC CF3 H -29.91839794 -7.312995713 -10.67519161 1.163402613 
CNC CF3 ph -31.30393892 -9.12336062 -13.77257851 -4.516813381 
CNC CF3 tBut -15.72476056 4.80672277 0.994602558 16.94526654 
CNC cy CF3 -21.83231052 -2.041288404 -5.010663357 16.08244098 
CNC cy iPr -28.38539223 -5.608679911 -9.144695944 8.76003262 
CNC cy H -32.1617444 -8.468240702 -12.48932158 6.679211118 
CNC cy ph -31.63589144 -7.727151983 -13.04278496 6.705566517 
CNC cy tBut -28.65710385 -6.468367926 -9.860684283 7.0149287 
CNC H CF3 -26.53298419 -4.500498134 -8.618842983 13.00199684 
CNC H cy -23.00763582 0.881023338 -3.332075445 15.42920359 
CNC H iPr -32.93671864 -8.426825075 -13.3954453 5.991460706 
CNC H tBut -24.16037077 0.28865437 -5.542791414 12.27471333 
CNC iPr CF3 -28.90308757 -7.810610747 -10.22212976 8.641433324 
CNC iPr cy -31.50599698 -8.340228764 -10.73229498 6.163398309 
CNC iPr iPr -27.69324925 -4.83182315 -7.272207596 7.473010635 
CNC iPr H -30.13677125 -5.415406985 -9.552577119 8.545424371 
CNC iPr ph -28.79892099 -6.012796029 -9.367461816 9.956065727 
CNC ph CF3 -26.80093075 -5.630015234 -8.971503322 12.44288588 
CNC ph cy -34.21119043 -14.56575051 -17.87021554 4.297812565 
CNC ph iPr -30.88288004 -8.648963439 -11.46334355 6.278860057 
CNC ph ph -33.22913806 -7.890304453 -13.44250851 6.457700265 
CNC tBut CF3 -17.23768597 1.228036091 -1.040410751 17.45731429 
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CNC tBut cy -19.68309049 -5.023213547 -5.071531779 16.84298249 
CNC tBut iPr -15.90485579 3.232928944 4.802957713 15.93121119 
CNC tBut ph -27.99508132 -5.407249361 -8.887417048 7.845751279 
CNC tBut tBut -13.8252893 5.006898301 5.411641928 14.88389783 

 

Table S14. DFT computed Gibbs free energy of adduct formation for the Mn-CNC complexes 

(bp86(thf))  

Ligand Donor Backbone Br OH OiPr H 
CNC CF3 cy -31.87666684 -3.165488867 -4.455161828 -4.037757688 
CNC CF3 iPr -22.21543017 6.510858226 6.654297736 4.726121565 
CNC CF3 H -29.42890916 2.131306273 0.439700927 -4.11755807 
CNC CF3 ph -30.32641717 0.607725757 -2.344765803 -8.804062571 
CNC CF3 tBut -18.86299205 10.13564803 9.109761235 7.078133848 
CNC cy CF3 -21.39369393 6.653240132 4.842539757 9.637054838 
CNC cy iPr -26.95921374 4.082452937 3.004614632 3.293881332 
CNC cy H -32.1847489 1.018160896 -1.435341385 -0.109642344 
CNC cy ph -31.03526445 1.181495344 -2.435309149 0.266901006 
CNC cy tBut -27.32640093 3.212599268 2.140013218 1.853577602 
CNC H CF3 -24.49182129 5.210005932 1.986191814 6.892033356 
CNC H cy -23.64241815 9.0290915 6.093869002 8.867489737 
CNC H iPr -34.70229192 -2.18088881 -5.731804805 -4.222176455 
CNC H tBut -26.61138523 5.887916995 2.003931508 3.051461863 
CNC iPr CF3 -25.49975215 4.15338661 2.627362196 5.099012811 
CNC iPr cy -31.84363474 0.358617036 -1.146636814 -1.041832807 
CNC iPr iPr -26.93798509 4.414719217 4.506696673 1.320251003 
CNC iPr H -30.65516939 4.05458524 0.69485884 0.854551103 
CNC iPr ph -28.23645913 3.992022543 1.011807613 2.197477909 
CNC ph CF3 -23.85225105 6.193394894 3.808705306 8.497039504 
CNC ph cy -35.33888775 -5.901367535 -8.008779502 -4.153922246 
CNC ph iPr -30.26680377 1.325766052 -0.284426211 0.031572394 
CNC ph ph -32.09163277 2.472822043 -1.308935871 0.232463285 
CNC tBut CF3 -14.89848743 12.21678956 11.16395123 12.78424088 
CNC tBut cy -19.81076984 4.300123432 4.169761722 11.12395115 
CNC tBut iPr -15.97900231 12.74049644 13.808521 9.990060307 
CNC tBut ph -27.12814557 4.885439193 2.285746025 2.480057987 
CNC tBut tBut -13.87020643 14.45873668 15.59244893 8.733635686 

 

 

Table S15. DFT computed Gibbs free energy of adduct formation for the Mn-CNC complexes 

(pbe0(thf)) 

Ligand Donor Backbone Br OH OiPr H 
CNC CF3 cy -36.23821554 -3.825278459 -3.114312706 -4.044605134 
CNC CF3 iPr -26.67109903 6.124098017 8.562829602 4.02407517 
CNC CF3 H -33.80514158 2.305909787 1.882601919 -2.968482817 
CNC CF3 ph -33.38076946 1.202170778 0.306122352 -7.368654732 
CNC CF3 tBut -22.70483738 10.26256709 11.439421 6.907261693 
CNC cy CF3 -21.32940559 10.49328351 10.69289177 13.07319514 
CNC cy iPr -30.06991011 4.84621257 5.852722748 3.305407364 
CNC cy H -37.11435058 0.466622967 -0.28715023 -0.941489081 
CNC cy ph -33.56826302 2.368961942 0.664957385 1.541352658 
CNC cy tBut -30.50218885 3.800969996 4.91094394 1.725846726 
CNC H CF3 -25.64892998 8.014966118 6.130006646 9.113949051 
CNC H cy -26.31247735 10.41092917 8.954044125 10.45856386 
CNC H iPr -39.33953064 -2.620284517 -5.059429003 -5.051400201 
CNC H tBut -29.95821342 6.419102782 4.009733622 3.254284166 
CNC iPr CF3 -28.52769884 4.899852082 4.873412597 5.522749833 
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CNC iPr cy -38.33692107 -2.175731686 -2.054505636 -4.20553622 
CNC iPr iPr -30.96188349 3.98818118 6.078030034 0.651581837 
CNC iPr H -34.49563421 4.316538077 2.578064423 1.230929983 
CNC iPr ph -32.78621048 3.478706217 2.01283524 1.122941874 
CNC ph CF3 -25.43570225 8.817193088 7.936782199 10.52206782 
CNC ph cy -39.49787012 -6.17653773 -6.499080123 -4.49183743 
CNC ph iPr -33.8048843 1.933495449 2.15352287 0.291290983 
CNC ph ph -34.05373575 4.103542527 2.9167564 2.994526608 
CNC tBut CF3 -17.00801121 13.8614784 14.83945572 14.94422767 
CNC tBut cy -24.42082486 3.015930511 4.649912539 10.55862025 
CNC tBut iPr -20.84223858 11.77352839 14.79944572 9.720430708 
CNC tBut ph -31.00921025 5.161084288 3.893976945 3.243453351 
CNC tBut tBut -18.21308673 13.99587839 17.04070885 8.584111405 

 

 

 

S5. Plots of Relative Gibbs Free Energy 
In the following section figures displaying thermodynamic trends are displayed. 
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Figure S3. Boxplot and swarmplot of the change in xTB computed Gibbs free energy for the 

addition of tBuOH and HBr on various Mn-pincers.  Individual data points are sorted by  ligand 

backbones, and color coded based on functionalization of the donor and backbones sites. All 

energy values in kcal mol-1. 
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Figure S4. Boxplot and swarmplot of the change in xTB computed Gibbs free energy for the 

addition of tBuOH and iPrOH on various Mn-pincers. Individual data pints are sorted by  ligand 

backbones, and color coded based on functionalization of the donor and backbones sites. All 

energy values in kcal mol-1. 
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Figure S5. Boxplot and swarmplot of xTB computed Gibbs free energy of addition of various 

substrates (HX = HBr, H2O, MeOH, EtOH, iPrOH and tBuOH) on Mn-pincers. Data points are 

sorted by donor site functionalization groups and color coded by the substrate. All energy values 

in kcal mol-1. 
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Figure S6. Boxplot and swarmplot of xTB computed Gibbs free energy of addition of various 

substrates (HX = HBr, H2O, MeOH, EtOH, iPrOH and tBuOH) on Mn-pincers. Data points are 

sorted by the substrate and color coded by the ligand backbone. All energy values in kcal mol-

1. 
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Figure S7. Boxplot and swarmplot of the change in xTB computed Gibbs free energy for the 

addition of a) H2O and HBr and b) H2O and tBuOH on various Mn-pincers. Individual data 

points are sorted by ligand backbones, and color coded based on functionalization of the donor 

site (R1). All energy values in kcal mol-1. 
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Figure S8. Boxplot and swarmplot of the change in xTB computed Gibbs free energy for the 

addition of a) H2O and HBr and b) H2O and tBuOH on various Mn-pincers. Individual data 

points are sorted by ligand backbones, and color coded based on functionalization of the ligand 

backbone site (R2). All energy values in kcal mol-1. 
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S6. Heatmaps of computed Gibbs free energies 
 

 

Figure S9. Correlation matrix of Gibbs free energy of formation in all ligand backbones 

investigated by xTB of the different metal adducts 

  

 

 

Figure S10. Heat maps of DFT (pbe0(thf)) computed average Gibbs free energies of formation 

of the Bromide adduct species in different ligand backbones a) as functionalization of donor 

site (R1) and b) functionalization on the backbone site (R2). 
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S7. Linear scaling plots 
 

In the following section figures displaying scaling relationships between computed Δ𝐺𝐻𝑋 for 

addition of various substrates to Mn-pincers using DFT, xTB, and between both methods are 

illustrated. 

 

Figure S11. Comparison of DFT (pbe0(thf)) computed Gibbs free energies for the formation 

of iPrO and hydride complexes. The data for catalysts with different backbones are 

differentiated by colors. All energy values in kcal mol-1.All energy values in kcal mol-1.  
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Figure S12. Comparison of DFT (pbe0(thf)) computed Gibbs free energies for the formation 

of hydroxide and hydride complexes. The data for catalysts with different backbones are 

differentiated by colors. All energy values in kcal mol-1. 

 

 

Figure S13. Comparison of DFT (bp86(thf)) computed Gibbs free energies for the formation 

of bromide and hydride complexes. The data for catalysts with different backbones are 

differentiated by colors. All energy values in kcal mol-1.All energy values in kcal mol-1. 
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Figure S14. Comparison of DFT (bp86(gas)) computed Gibbs free energies for the formation 

of iPrO and hydride complexes. The data for catalysts with different backbones are 

differentiated by colors. All energy values in kcal mol-1. All energy values in kcal mol-1. 

 

Figure S15. Comparison of DFT (bp86(gas)) computed Gibbs free energies for the formation 

of hydroxide and hydride complexes. The data for catalysts with different backbones are 

differentiated by colors. All energy values in kcal mol-1. 
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Figure S16. Comparison of DFT (bp86(thf)) computed Gibbs free energies for the formation 

of bromide and hydride complexes. The data for catalysts with different backbones are 

differentiated by colors. All energy values in kcal mol-1. 

 

Figure S17. Comparison of DFT (bp86(thf)) computed Gibbs free energies for the formation 

of iPrO and hydride complexes. The data for catalysts with different backbones are 

differentiated by colors. All energy values in kcal mol-1. All energy values in kcal mol-1.  
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Figure S18. Comparison of DFT (bp86(thf)) computed Gibbs free energies for the formation 

of hydroxide and hydride complexes. The data for catalysts with different backbones are 

differentiated by colors. All energy values in kcal mol-1. 

 

Impact of solvation on Gibbs free energies 
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Figure S19. Comparison of Gibbs free energies for the formation of bromide complexes in gas 

and solvated phase. The blue line shows a linear fit of the data. The dashed black line is the y 

= x line. Points below the y = x line show stabilization of the bromide adduct upon solvation 

while points above this line show a destabilizing effect of the solvent..  All energy values in 

kcal mol-1. 
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Figure S20. Comparison of Gibbs free energies for the formation of hydride complexes in gas 

and solvated phase. The blue line shows a linear fit of the data. The dashed black line is the y 

= x line. Points below the y = x line show stabilization of the hydride adduct upon solvation 

while points above this line show a destabilizing effect of the solvent.  All energy values in kcal 

mol-1. 
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Figure S2𝟏. Comparison of Gibbs free energies for the formation of iPrO complexes in gas and 

solvated phase. The blue line shows a linear fit of the data. The dashed black line is the y = x 

line. Points below the y = x line show stabilization of the iPrO adduct upon solvation while 

points above this line show a destabilizing effect of the solvent.  All energy values in kcal mol-

1. 

 

Figure S19: The linear fit to the data is close to the y = x line but generally above it indicating 

that the addition of HBr complexes seems to be slightly less favoured in THF solvent compared 

to the gas phase. 

Figure S20: The linear fit to the data is clearly below the y = x line indicating that addition of 

H2 is favoured in THF solvent compared to the gas phase. 

Figure S21: The linear fit to the data is clearly above the y = x line indicating that the addition 

of iPrOH is less favoured in THF solvent with respect to the gas phase.  

 

Impact of XC functional on Gibbs free energies 
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Figure S22. Comparison of Gibbs free energies for the formation of bromide complexes 

obtained using BP86 and PE0 XC functionals. The blue line shows a linear fit of the data. The 

dashed black line is the y = x line. Points below the y = x line show stabilization of the bromide 

adduct with PBE0 functional while points above this line show that BP86 overestimates the 

stabilization.  All energy values in kcal mol-1. 

Figure S22 shows that pbe0(thf) and bp86(thf)  agree reasonably well. The GGA functional 

BP86 seems to mostly underestimate the stability of bromide complexes. 
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Figure S23. Comparison of Gibbs free energies for formation of iPrO complexes obtained using 

BP86 and PE0 XC functionals. The blue line shows a linear fit of the data. The dashed black 

line is the y = x line. Points below the y = x line show stabilization of the iPrO adduct with 

PBE0 functional while points above this line show that BP86 overestimates the stabilization.  

All energy values in kcal mol-1. 

Figure S23 shows that pbe0(thf) and bp86(thf)  agree reasonably well. The GGA functional 

BP86 seems to mostly overeestimate the stability of iPrO complexes. 

 

Comparison of xTB and DFT computed Gibbs free energies 
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Figure S24. Comparison of xTB and DFT-computed formation energies of bromide complexes. 

All energy values in kcal mol-1. 

 

Figure S25. Comparison of xTB and DFT-computed formation energies of iPrO complexes. 

All energy values in kcal mol-1. All energy values in kcal mol-1. 
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Figure S26. Comparison of xTB and DFT-computed formation energies of iPrO complexes. 

All energy values in kcal mol-1. All energy values in kcal mol-1. 

 

S8. CO stretching frequencies 
 

In this section figures displaying the CO stretching frequencies calculated by DFT (bp86(gas)) 

and/or xTB are illustrated. 

 

Figure S27. xTB (left) and DFT (right) computed CO stretching frequencies in the Mn-CNC 

complexes. 
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Figure S29. xTB computed CO stretching frequencies of Mn-SNS complexes.  

 

Figure S30. xTB computed CO stretching frequencies of Mn-PNP complexes.  
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C
Conferences/workshops/symposia

logbook

C.1. Workshop Princeton University July 2020
On 13 and 14 July 2020, before the start of Adarsh’s master project, an online workshop on molecular simula-
tion with machine learning organized by Princeton University was attended. More information and, eventu-
ally, a recording of the session can be found on the website of the workshop and the website of the Computa-
tional Chemical Science Center. A summary of the attended lecture sessions of the workshop is given in this
chapter.

C.1.1. Morning session 1, 13-7-2020
The first presentation was given by prof. Weinan E, on machine learning assisted modelling (MLAM). Neural
networks offer an accurate approach to model potential-energy surfaces. These models work since the an-
alytical option, a discrete fourier transform, does not work in higher dimensions. Instead a probability and
expectation with low error rate are used.

Several methods were explained, a DNN-SGD and the Behler Parinello architecture being the main ones.
The Behler Parinello architecture was explained in more detail, here each atom is a sub-network and the total
energy of each atom needs to be fitted. The user needs to pay attention to the preservation of symmetry
otherwise the same interaction will have a different energy.

Deep potentials in deep-potential generator (DP-GEN, a software package that was explained in the next
presentation) were generated with concurrent learning using the exploration-labeling-training algorithm.
The DeepMD package was used and 0.005% of the configurations given in this package were labeled [129]. It
was concluded that MLAM can be a powerful tool for solving multi-scale problems.

The second presentation was given by prof. Roberto Car, on molecular simulation with the deep potential
method. It was explained that the usage of DNN’s has multiple benefits; Performance can be boosted, the
’curse’ of dimensionality can be overcome and a molecule can be followed more accurately. The potential
energy, polarization and polarizability can be used as observables. The mathematical details of fitting a DNN
for this use-case were given, however at the time of writing the used presentation slides were not uploaded
by the workshop organisation yet, so these details will be skipped. Using DNN’s with DP-GEN and DeepMD
were shown, multiple DNN’s were fit to represent a vector~o that contains a symmetry preserving continuous
function f . The dependency is non-linear so each initialization leads to a new DNN ensemble. The cost of
this method scales linearly with the system size and it was concluded that DeepMD is more efficient than
DFT based ab initio molecular dynamics.

The third presentation, titled ’the art of non-boltzmann sampling’, was given by dr. Pablo Piaggi. In molec-
ular dynamics simulations a lot of the simulation time is spent on waiting for a rare event to occur. By using
enhanced sampling the probability of the rare event is enhanced. A non-physical distribution Q(R) can be
chosen using two methods: the generalized ensemble method or the collective variable method. In the gen-
eralized ensemble method a random walk in potential energy space is realized and the simulation can avoid
the multiple-minima problem. In the collective variable method, the large number of degrees of freedom of
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a physical system is reduced into a few ’collective variables’. These methods were explained in further math-
ematical detail and were shown to be available in the PLUMED plugin. A public repository which contains
data to reproduce results of PLUMED-enhanced molecular dynamics simulations called PLUMED-NEST was
shared as well.

Dr. Gary Grest presented use cases and several functions of LAMMPS, which is a large scale molecular
dynamics simulation software that focuses on material modeling. It can make accurate descriptions of >
1000 atoms. The software package can be downloaded from its own website.

Prof. Thomas Kuhne presented the use cases of CP2K, this is a quantum chemistry and solid state physics
software package that can perform atomistic simulations of solid state, liquid, molecular, periodic, material,
crystal, and biological systems. It also provides a general framework for different modeling methods such as
DFT using the mixed Gaussian and plane waves approaches GPW and GAPW. This software package can also
be found on its own website.

C.1.2. Morning session 2, 14-7-2020
Dr. Michele Ceriotti gave a presentation on equivariant representations for atomistic machine learning.
Atomic structures are mapped to mathematical representations, however basic physical symmetries should
be included. This is hard to do in cartesian coordinates. Radial functions and spherical harmonics might be
an outcome and the experimental Smooth Overlap of Atomic Position (SOAP) can be used for this. The rep-
resentation of the structure is an additive property because the representation is local and it can be proved
that by combining representations of the system that are sensitive to long-range effects, this method can out-
perform current machine learning methods, and provides a conceptual framework to incorporate non-local
physics into atomistic machine learning [130].

PhD candidate Sebastian Dick’s presentation was titled ’Machine learning XC potentials in SIESTA: Neu-
ralXC’. Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) software package and
method to perform electronic structure calculations and ab initio molecular dynamics simulations. As ex-
plained, ML might be used to develop density functionals. For the approaches that were considered in
SIESTA, 2 choices have to be made, a grid based vs. a basis set expansion and a problem specific solution
vs. universal functional.

2 packages for developing the functional were explained. ML-electron needs a small dataset, is based on
unsupervised training and 4 functionals are obtained: LDA, GGA, meta-GGA and near region approximation
(NRA).

In NeuralXC the electron density is projected on atom centered basis functions. The total energy is
summed from atomic contributions. The potential is obtained by taking the functional derivative of this
energy. The loss of the neural network is optimized by taking the RMSE, keeping ρ fixed while the machine
learned parameters are being optimized and afterwards recalculating ρ using the self consistent field (SCF)
[131]. Related to NeuralXC is the Deep post Hartree-Fock method (DeepHF), where eigenstates and eigenval-
ues are projected instead of a functional. The workshop was concluded with a panel discussion between all
presenters, the audience could submit questions and topics to discuss.

C.2. NWO ACOS symposium October 2020
On 28 october 2020, while Adarsh was doing his master’s project and Covid-19 ravaged the world, an online
symposium from Applied Computational Sciences (ACOS) organized by the NWO was attended. More infor-
mation the session can be found on the website of ACOS. The sessions are posted on youtube. Summaries of
the attended symposium sessions are given in this chapter.

C.2.1. Benjamin Sanderse - Uncertainty quantification meets machine learning
Dr. Sanderse from the scientific computing group of Centrum Wiskunde en Informatica (CWI) Amsterdam
gave a presentation. He combines physics based modelling with data-driven methods.

Uncertainty quantification (UQ) and machine learning (ML) go hand in hand, an example was drawn with
the modelling of sloshing of a liquid in a tank. Machine learning is used to reduce the complexity problem,
PDE’s are used in the navier stokes equation and uncertainty quantification gives the margin in found pa-
rameters. Currently, uncertainty quantification is also used by CWI to determine the uncertainty in Covid-19
models used by the dutch government. Generally, machine learning emphasizes simplifying complex prob-
lems and is more data driven while uncertainty quantification focuses on applications in the real world and
is more physics driven. Model reduction, regression and inference are used in ML and UQ, but nomenclature

https://www.plumed.org/
https://www.plumed-nest.org/
https://lammps.sandia.gov/
https://www.cp2k.org/
https://www.acosonline.nl/
https://www.youtube.com/watch?v=YrXDbfoHo9o
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of the methods used is sometimes different.
If we have input z, PDE(u,z) and output u(z), we can say that the input and output have a probability

distribution, ML comes into play in approximating the exact PDE, this combines physics driven and data
driven methods.

An example was given with real time wind-turbine control, this requires unsteady flow models. The di-
mensions are reduced using projection (POD-Galerkin). In the reduced order model (ROM), the PDE is dis-
cretized, a matrix (snapshot) is gathered of results, singular value decomposition (SVD) is and the results are
truncated. After some iterations this returns a ROM. We feed the input to the returned ROM, but we need
to preserve the structure of the PDE in the ROM to have a stable solution. Another example was shown with
shear-stress of a liquid with periodic boundary conditions and the order was reduced with O(100-1000) from
40000 to 16.

An example of a multi-level neural network was given. Here dimension reduction via grid coarsening is
used, we want to get to a parametric circuit model without doing to many expensive computations. We divide
the grid into coarse gridpoints and fine gridpoints. The error structure between the grid levels is learned to
use a similar approach to multi-level monte-carlo methods. Use convolutional neural network (CNN) to go
towards a MLP, train the model on the coarse grid and use it on the fine grid. It was shown that when the
number of levels of the network is increased the error decreases fast.

C.2.2. Giuseppe Carleo - Machine learning in many-body quantum science
Prof. Carleo from EPFL Switzerland gave a presentation on the application of ML techniques on many-body
quantum mechanics problems.

There is a problem in quantum science, if we look at a qubit it can have 2 states, we know that we need
a multi-dimensional vector in space. This becomes very complex if we go to multi-body systems with many
qubits for example, we go to a 2n complex vector space. Since 2019 we can save the wave function of 54 qubits
on the SUMMIT supercomputer, which is the current world record.

If we only focus on physical states in Hilbert spaces we don’t have to store all the complexity of these
wavefunctions. We want to find a way to encode this ’corner of the Hilbert space’ with some vector which
is parametrized by a large set of conventional parameters, using the Rayleigh quotient. If we try this with
classic variational states we use our GPU, CPU etc. (conventional computer) but when approaching it with a
quantum variational state we need a quantum computer.

In the classical setting we compute variational parameters by using a neural network (NN) [132]. Almost
all variational representation and entanglement can be modeled using this method. There is a loss function
but there is no dataset, it is closer to a reinforcement learning (RL) method.

This method is tested on frustrated 2D spins in a J1-J2 model. It is shown that making the network larger
(adding more hidden layers?) the performance is increased [132]. A key insight was shown how many samples
are needed to learn these wavefunctions, they found if you increase the number of states that the amount of
samples increase [133].

For the quantum method a QPU is used with a variational quantum eigensolver. The same approach
is taken as the classical approach but encoding now happens on the QPU and it’s a composition of multiple
layer of grids. The comparison between classical and quantum methods is made and shows how the quantum
method is inspired by the classical method [134]. The group is working on Netket which is a python library
that uses the classical method.

C.2.3. Tess Smidt - Neural Networks with Euclidean Symmetry for Physical Sciences
Dr. Smidt focuses on the use of neural networks to design crystal structures and gave a presentation on neural
networks with euclidean symmmetry. She has posted her slides on a google drive.

Deep learning is a subset of machine learning which in turn is a subset of artificial intelligence. Our model
is the function f(x,w) = y and the evaluation is done with loss = mean((y-ytrue))2. Dr. Smidt used to have a
atomic structure and use quantum mechanical methods to calculate properties, she wanted to use ML to
make these calculations more efficient. She wanted to use inverse design to use properties and based on that
design a good molecule while also mapping properties to a structure.

We have freedom to choose our starting coordinates in a molecule which is called euclidean symmetry
E(3). We use 3 methods to modify our coordinates: translation, rotation and inversion. The magnitude of a
vector is invariant, however the direction can be variant if you translate it.

We want to make a model that understands the symmetry of a structure. Generally there are 3 approaches:
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1. Data-augmentation

2. Take a system and use invariant parameters to describe it

3. Make a model that uses equivariant and uses euclidean symmetry preserving

For 3D data the data-augmentation can get very expensive, you need a lot of training data. With the third
approach of equivariant models, you would only need 1 example for the model to get it correctly. Dr. Smidt
focuses on these equivariant models.

Euclidean models are similar to CNNs, but there are 2 important differences:

1. We use equivariant convolutional filters which are based on learned radial functions and spherical har-
monics

2. Geometric tensor algebra allow us to generalize scalar operations to more complex geometric tensors

We give an input to the system, but we also need a representation list to show what changes when we apply
translation, rotation or inversion.

Examples were shown, if the system is given a complex and it’s rotated copy the force predicted will always
be the same, the network thus learns well. For crystals represented as primitive unit cells, conventional unit
cells, and supercells of the same crystal produce the same output, assuming periodic boundary conditions.
The network can also can predict molecular Hamiltonians in any orientationfrom seeing a single example, so
less data is needed. The code was also applied to molecular dynamics to show its data efficiency [135].

An advantage found by accident is that the input for these networks are only geometric tensors. Another
advantage is that the outputs have equal or higher symmetry than the inputs.

The work of Dr. Smidt’s research group on these E(3) neural networks is posted on github: e3nn: a modu-
lar PyTorch framework for Euclidean neural networks.

C.3. WWU Munster mini-symposium Molecular Machine Learning January
2021

On 14 January 2021, Adarsh was still working on his master’s project and a new mutation of Covid-19 was
ravaging the world. An online symposium from the WWU Munster was held, unfortunately the session was
not recorded. The attended sessions are summarized in the next sections.

C.3.1. Abby Doyle - Machine learning for experimental synthetic chemists
Abby Doyle from Princeton University is focusing her work on data-driven machine learning. Toward these ef-
forts, her group has utilized high-throughput experimentation (HTE) for the generation of multi-dimensional
datasets and developed tools to automate the parameterization of reaction components using computationally-
derived descriptors that can be correlated with physical behavior and chemical reactivity. Experimental syn-
thetic chemists generate a lot of data related to reactions, yield, selectivity, but also analytical data such as
structures of catalysts. A fraction of the data is saved in electronic notebooks and only a small part of that
data is published.

ML can help in reaction prediction and in mechanistic understanding. To model experimental data,
datasets from literature or de novo datasets need to be generation. de novo datasets are mostly smaller and
may be more biased. The next step is featurization, how do you best describe the structure? Is there a uni-
versal way for this? After featurization, modelling needs to happen, there are various ways to do this (lin. reg.
etc.).

An example is shown by finding new phospine ligands for a Ni catalyst. A student found out that only 2
commercially available pohsphine worked. It turned out that only phosphines that were functionalized on
the meta site worked. These ligands were named after dinosaurs.

A multivariate linear model was made that could predict new phosphines using the cone angle, radius
and buried volume (Vbur ). The cone angle had a positive coefficient and the Vbur a negative coefficient. After
analysis it turned out that a low buried volume and high cone angle is optimal for phosphine ligands on Ni
catalysts.

Capturing 4D data on phosphine ligands can be important for activity-structure relations. The smallest
conformational buried volume is also the smallest possible structure, a treshold (about 58 cubic angstrom)
was established which shown that after a certain size no binding would happen. Another example was given

https://github.com/e3nn/e3nn
https://github.com/e3nn/e3nn
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with Pd catalysts, it is known that these are sensitive to speciation. It was observed that the treshold for Pd
catalysts was similar to the one of the Ni catalysts (58 cubic angstrom).

Reaction optimization is being researched using bayesian optimization. There needs to be statistical eval-
uation for how the bayesian optimization (BO) works for synthetic chemists. The system needs to be tuned
to various types of parameters. Chemistry knowledge needs to be included together with the selection of how
many experiments are optimized at once (a batch). Search space, surrogate model and acquisition function
are key to BO. auto-Qchem was used to automate DFT featurization.

50 chemists could compete against the BO system. BO was able to find the global optimum every time in
only 5 batches of experiments. The human participants were able to get higher yields in some experiments,
but the BO performed better on average. Ultimately the human experimentalists were outperformed because
they thought they had reached the optimal yield and did not continue with experimentation.

C.3.2. Klaus Muller - Machine learning for the sciences, towards understanding
Klaus is an computer scientist, he is working on applying ML in quantum chemistry applications and he is
trying to understand the black box of ML and AI. His opinion is very respected even with political people.

2 major workhorses in ML, one is kernel networks and the other is neural networks. ML is not about fitting
data, but about generalizing a model. He explained NNs using a convolutional neural network (CNN). Error-
backpropagation is the exact opposite, you take the output of the model and propagate it back to iterate and
approximate a decision function. This theory is called the deep taylor decomposition. The relevance of each
layer should be conserved in this process. Datasets can contain artifacts (copyright links etc.) that lets the
model say the right thing but for the wrong reason.

ML for chemical space exploration, it was suggested that we use DFT optimized structures and learn a
function from that to predict new molecules. The coulomb matrix was used first, where the interaction be-
tween the ith and jth matrix is shown. Using a kernel ridge regression a simple equation was left to solve. With
deep neural networks an atomistic representation can be ’learned’. This is a newer and improved represen-
tation over the coulomb matrix [136]. With other ML methods like reinforcement learning (RL), a scanning
probe microscope can be used to move multiple molecules instead of only 1 molecule. A video example
showing how the RL model learns was shown.

Explaining and interpretation are important when bringing ML into chemistry because you have to know
how and why something (does not) work.

C.3.3. Alan aspuru Guzik - There is no time for science as usual: Materials Acceleration
Platforms

Alan is one of the most famous players in the field. He is currently focusing on self-driven laboratories and
quantum chemical applications.

There is a certain time pressure for finding new materials (climate change, Covid-19 etc.). A typical ma-
terial takes more than 10 years to market. Instead of the current paradigm, we need a closed loop using
automation and AI (generative and backpropagation).

For photomaterials AI-discovery of materials was used, in 2014 they started working on this. 100.000 DFT
complexes were used as training and other 300.000 candidates were predicted and synthesized [137].

For generative models autoencoders were used to encode a SMILES string and decode it again. They
used a method that can relate this latent space to a function which makes it a differentiable. You can relate
a property to latent space (backward searching). So you can find from properties ’which material shows this
certain property?’.

Complicated generative models for reticular materials (MOFs for example) were published from their
group. SELFIES is a representation of molecules that claims to be right in 100% of the cases where [138].

Deep molecular dreaming was also mentioned. A direct gradient-based molecule optimization that ap-
plies inceptionism techniques from computer vision was described. This exploits the use of gradients by
directly reversing the learning process of a neural network, which is trained to predict real-valued chemical
properties. This method uses SELFIES.

C.4. Workshop SCM Chemistry & Materials Modeling workshop for TU Delft
January 2021

All material for this hands-on workshop was uploaded to the workshop website.

https://github.com/PrincetonUniversity/auto-qchem
https://www.scm.com/news/chemistry-materials-modeling-workshop-for-tu-delft-21-22-january-2021/
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C.5. PAC symposium March 2021
On 4 March 2021, Adarsh was in the process of finalizing his project while the vaccination plan against Covid-
19 in the Netherlands had finally started. The online PAC symposium, organised by 4 chemistry study associ-
ations (ACD, CDL, U.S.S Proton and VCSVU), was held. Various speakers from dutch universities and compa-
nies gave a talk and there was a panel discussion about the future of earth and the role of young chemists and
engineers in this future. Nobel prize winner Prof. Dr. M. Stanley Whittingham presented his ground-breaking
research on lithium-ion batteries.

Since the symposium was held online this year, the poster competition was replaced with a video-pitch
competition. In this competition the participants had to make a video of 1.5 minutes explaining their thesis
work. The maker of the best video was invited as speaker to the PAC symposium. Adarsh’s submission was
posted to linkedin (link to post). Unfortunately no notes were made of this symposium because Adarsh was
present as one of the speakers thanks to his video-pitch submission :).

https://www.linkedin.com/posts/adarshkalikadien_computationalchemistry-chemistrythatmatters-activity-6765987557802168320-X-OB
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