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Abstract

Catalysts play an essential role in the daily lives of humans. These catalysts are used in many industries to
make processes more energetically favourable. Climate change is pushing humanity towards the usage of
more green energy and catalysts play an important role in this transition. For example, in the hydrogenation
reaction used for the storage of Hp, where the catalyst is involved in the storage and removal of H, on a storage
medium like CO,. The properties of the catalyst involved in this (de)hydrogenation reaction can affect the
selectivity and yield of the reaction. Designing a catalyst that maximizes the property (yield for example) that
we are interested in for a specific reaction, is an essential asset to tune catalyzed processes.

Computational screening of many catalysts has attracted the attention of academia and industry due to
constant developments in the field of computational chemistry. In these computational methods, predictive
models together with DFT and/or DFTB methods can be used to correlate a set of reaction descriptors with
catalyst properties. The model has a higher probability to find novel molecules with a high activity when more
(reliable) training data is used and when the search space of the model is confined to a local chemical space.
This means that newly added molecules for screening should be structurally closely related to the molecule
that was used to build the model. Unfortunately, large data sets are not readily available for transition-metal
containing complexes although these complexes are widely applied in the field of homogeneous catalysis.

In this research a Python-based workflow, ChemSpaX, that is aimed at automating local chemical space
exploration for any type of molecule is introduced. This workflow enables the user to place fragments on
molecules based on 3D information, while staying close to the quality of the initial structure. This enables
data-driven property calculations and prediction models, which could eventually be extended towards the
automated design of new catalysts. Various representative applications of ChemSpaX are presented in which
data-driven XTB and DFT property calculations are done. The found correlations between catalyst properties
are shown and it is shown that ChemSpaX generates structures that have a reasonable quality for usage in
data-driven prediction models for high-throughput screening.
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Introduction

Modern civilization would not exist without the invention of catalysts, as catalysis is involved in the process-
ing of over 80% of all manufactured products [1]. Finding or creating a catalyst with the right catalytical prop-
erties is thus of great importance. A catalyst is defined as: "A substance which increases the rate at which a
chemical reaction approaches equilibrium without becoming itself permanently involved" [2]. Catalysts can
change the mechanism of a reaction which causes new barriers along the reaction coordinate to be lower [3].
Since the activation energy is lowered, the reaction can have a higher rate constant compared to the uncat-
alyzed reaction [3]. Although this may sound simple, the reaction mechanisms for catalyzed reactions can
get really complex. Generally, two types of chemical catalysts are identified.

Heterogeneous catalysts are in a different phase than the reaction mixture, typically these catalysts are
solids that are added in liquid or gas reactions mixtures. The reactant needs to bind onto the surface sites of
the catalyst in order for the reaction to take place and the availability of these surface sites is also the limiting
factor. Heterogeneous catalysts are mostly used in the processing of petrochemicals and fine chemicals [2].
In general, heterogeneous catalysts are preferred due to their easier recovery/separation from the products
which reduces the operational costs [4].

Homogeneous catalysts are in the same phase as the the reaction mixture, these catalysts are molecular
complexes. Organometallics are an example of homogeneous catalysts. The field of homogeneous catalysts
has seen a lot of progress. In literature, a large number of chiral ligands and modifiers are recorded which
achieve high enantioselectivity [5]. Additionally, the technology is now getting a better-defined scope and
limitations for selectivity, activity and productivity [5, 6].

Catalysis research has been focused on noble-metal-based pincer complexes such as those of ruthenium,
iridium or palladium [7-12]. Alternatives like manganese-based complexes are also being researched because
manganese represents a cheap and earth-abundant alternative to precious-metal catalysts [13]. Society is
shifting towards the usage of more green energy and these catalysts will play an important role in the success
of this transition. This can be shown by an example from the field of energy storage where renewable energy
is stored for later usage [14]. An example of such a storage process is the utilization of CO,. This has been
of particular interest in academia and industry, due to the renewable energy applications and the usage of
CO; as a C1 carbon building block [15]. Efforts have been directed towards researching CO, neutral fuels like
formic acid, where the same amount of CO, that was used to create the fuel is emitted. Apart from being used
as a fuel in a fuel cell, formic acid can be used as a medium for hydrogen storage. The formic acid would be
decomposed in CO; and H; at the desired location after which the CO; can be reused and the hydrogen can be
used in an hydrogen oxygen fuel cell [16]. This cycle would make handling and transport of hydrogen easier
[16, 17]. This cycle is shown graphically in Figure 1.1 [16]. This idea would be usable due to the simplicity of
the cycle, since the homogeneous hydrogenation of carbon dioxide has long been studied which lead to the
development of efficient procedures [17, 18].

Formic acid can be formed by the catalytic hydrogenation of CO, where the CO, is obtained from ambient
air and the Hy, is obtained by electrolysis using green sources of electricity. For this process, a catalytic system
consisting of a transition metal (TM) complex, solvent and base are needed. The catalyst is needed to harness
the two electrons and two protons of the hydrogen and transfer it to CO,. This is only one of the examples
where the catalyst is indispensable to the process. As said before, many more catalytic processes are essential
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Figure 1.1: Graphical overview of a catalytical cycle for storing hydrogen in formic acid [16].

to humanity. Being able to fine-tune these catalysts, which directly affects the processes, is an important
asset.

These catalysts can be broken into building blocks: the metal center(s) and its ligands. This is shown
in Figure 1.2 for a pincer complex. Finding the optimal metal-ligand complex from nearly infinite possible

Figure 1.2: Example of a metal with 4 ligands coordinated to it. Each ligand has a distinct color. The pincer ligand backbone (dark blue)
consists of an equatorial tridentate formed by posphorous, nitrogen and another phosphorous, hence the name PNP.

combinations is experimentally impossible and time-consuming. Machine learning (ML), genetic algorithms
(GA) and other computational methods are utilized in tackling the combinatorial problem of catalyst design
[19].

Using computational methods to design or select highly selective catalysts has been described as a holy
grail of chemistry [20]. Thanks to molecular modeling tools that balance cost and accuracy, computational
methods have taken a prominent role in the design of catalysts [21-30].

Analyzing a reaction’s potential energy surface (PES) and an analysis using transition state theory (TST)
are not sufficient to design the reactivity and selectivity of catalysts in most cases, dynamic effects need to be
taken into consideration [20, 31]. Catalytic processes occur at a finite temperature, pressure and possibly with
additives and solvents in the reaction mixture. The reaction conditions can affect the catalyst, for example,
higher thermal energy induces vibrational motion which can be observed in the IR spectrum of the catalyst.
Another example is the coordination to solvent molecules upon addition of a solvent. To take these dynamic
effects into account a more extensive computational method is required, which increases the computational
cost [32]. Thus, for screening thousands of catalysts a rational design strategy with low computational cost
and high accuracy (by taking dynamic effects into account) is needed. Generally, 3 predictive strategies for
catalyst design are described [25].

The first and the most primitive method is manual or interactive trial-and-error. Computational chem-
istry tools are becoming more accessible and are used by all sorts of chemists to test ideas and chemical
intuitions [25]. There are a large number of potential interactions between reactants, catalysts and other in-
termediates. Additionally, the possible combinations of metals and ligands to create catalytic complexes are
endless. Designing catalysts and determining the catalytic mechanism by trial-and-error, would require the
chemist to set up and analyze at least the same amount of calculations as possible interactions [20]. This will
be a time-consuming task if done manually.

Secondly, research is being done in the use of prediction models for catalyst design [33-36]. High-through
put screening (HTS) techniques, allow hundreds of tests and can be expanded using predictive models. Pre-
dictive models seek to correlate a set of descriptors with catalyst properties. Quantitative structure-activity



/| -property relationships (QSAR/QSPR) are methods that predict chemical properties when only molecular
structural information is available [37]. Macroscopic and microscopic properties of matter can be related
through a set of mathematical equations. These properties can be physical, chemical, biological and tech-
nological [37]. Using these descriptors and correlations, new compounds can be designed. However, the
chemical search space can be enriched if the molecular structures of newly researched compounds are simi-
lar to the structure of the compound that was used to build the model. QSAR/QSPR studies have shown that
the chemical space of active compounds could be local, so the enriched local chemical space may correspond
to a higher probability of discovering novel active molecules [38]. This means that this design strategy can
be confined to a local chemical space, that strategy is known as local chemical space exploration [20, 39-43].
Finding the descriptors that represent structural properties is the major hurdle in making these models, some
descriptors that are used in QSPR analysis can be found in literature [44-48].

Lastly, the most dedicated strategy is the automated design of catalysts, which can involve the use of gen-
erative models. To maximize their predictive power, the predictive models described above can be utilized
in an automated manner. This also requires automated generation of candidate molecules, since predictive
models get more reliable when more data is available. Therefore, the chemist would either have to automat-
ically generate candidate molecules or rely on the existence of a large database of the specific catalyst the
chemist is interested in. For complexes like TM based complexes, such a database does not exist yet and
the computational chemist would need to generate one. The database would need to be non-biased and
based on fundamental research, since difficult or unusual reaction pathways would require very customized
catalysts [20]. In a systematic and objective automation workflow the predictive power can be maximized.

The goal of this research was to lay the foundations for a workflow which enables catalyst design using
prediction models and could eventually be extended towards usage in automated catalyst design. The project
was focused on homogeneous catalysts.

For past research, most of the exploration of the local chemical space of catalysts was done manually.
This meant that the scientists had to open each structure’s xyz coordinates, place the desired substituents
and optimize the geometry afterwards. This process could be accelerated by automating the placement of
substituents on an optimized structure, while staying close to the quality of a DFT optimized structure. This
would mean that the manual labor and usage of computational resources are reduced, working towards a
more efficient predictive model or an automated design workflow. For this purpose a workflow, ChemSpaX,
which can place substituents on molecules in a high-throughput workflow was designed in this project. Al-
though this project was mainly focused on the screening of catalysts, it is important to note that ChemSpaX
can be applied to many geometries and thus could be utilized for other material discovery purposes like drug
screening.

A simplified version of a data-driven catalyst design cycle is shown in Figure 1.3. This highlights how
the designed computational workflow, ChemSpaX, could aid in the discovery of active catalysts. The topics
highlighted in green show the parts of this cycle that were covered in this project. In this thesis the theoretical

/-{ Synthesis of catalyst in experiments

Learning and prediction Automated local
of the ideal catalyst Data driven catalyst design chemical space
from database exploration
Generation of (molecular and Molecular descriptor
reaction) descriptors database calculation & correlation

Figure 1.3: Simplified version of a data-driven catalyst design cycle. The green boxes are topics that were covered in this project.

background necessary to understand and use the chemical space explorer ChemSpaX is given. Afterwards,
representative use cases are presented in which ChemSpaX was applied to generate structures. In these use
cases, data-driven methods are used to extract and correlate relevant descriptors of the generated structures.
Finally, a summary of the project and an outlook for future research is given.



Theory

In this chapter an introduction into the used DFT and DFTB methods is given. Afterwards, the chemical prop-
erties that were studied in more detail are explained. Then, an explanation of the used force-field optimiza-
tion methods and an explanation of the used methods to determine the quality of an optimized molecular
geometry is given. Finally, the workflow of the chemical space explorer ChemSpaX is explained in more detail
together with examples from the source code.

2.1. Density functional theory

The schrédinger equation is one of the fundamental equations in the field of quantum chemistry [49]. In its
nonrelativistic, time-independent form the schrédinger equation is given by Equation 2.1.

H\Pl’()_el,-%Zr---)er ﬁl)EZ) )EN) = Ei‘yi(x’ly-%Zr---)xN, ﬁl)EZy rEN) (2]-)

W;(X1,X2,..., XN, ﬁl, ﬁz, . ﬁN) is called the wavefunction, in itself it is not a physical observable. However, the
wavefunction can be squared to find the probability density:

W (%1, %2, ., XN)12dR1 dRo...d TN (2.2)

Which represents the probability that electrons 1,2,...,N are located in the volume d%;dX;...d%y with [ ... [
P (%1, X2, ..., X)) [2d Ty dp...d Ty = 1.

H is the Hamiltonian operator for a system consisting of N electrons and M nuclei. The Hamiltonian
operator for a system corresponds to its total energy (kinetic + potential), which is shown in Figure 2.1 [50-
52]. In this equation, index i iterates over the electrons, while index A or A’ iterate over the nuclei. Z, is the

Kinetic energy Potential energy
N N 2 N M N M M M
1 2 1 V i Z A -1 Z Al Z A
H = —= Vi - = — - + rl' ] +
24 2LuM, 4 Tia &4 Ryu
i=1 i=1 i=1 A#1 i=1j#1 A=1A">A
Electrons Nuclei (c:i;:‘::g::;ﬁ" lCTulfmbrrelput\sior; (C:ﬂ::rzfgisgzgn

Figure 2.1: The Hamiltonian operator in the non-relativistic, time-independent Schrodinger equation [50-52]

charge of nucleus A and rj is the inter-electronic distance between the ith and jth electron. ri is the distance
between electron i and nucleus A while Rpx/ is the inter-nuclear distance between nucleus A and A’

The schrédinger equation can be solved analytically for small molecular systems. However, approxima-
tions are needed when expanding the equation to a many-body system. For example, Hartree-Fock methods
provide an approximate solution to the schréodinger equation and make determination of the ground-state
energy possible [53]. According to this method, the exact many-body wave function can be approximated by
a single Slater determinant. A set of equations can be derived for the N spin orbitals and by solving these
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equations, the Hartree-Fock wave function and energy of the system is found. The Hartree-Fock method is
often referred to as the self-consistent field (SCF) method, since the final field computed from the charge dis-
tribution needs to be consistent with the initial field. The non-linear Hartree-Fock equations are solved using
iterative methods.

Density functional theory (DFT) is a popular Quantum Chemistry (QC) method to calculate properties of
atoms and molecules using the electron density of the system as variable. DFT originates from the Hohenberg-
Kohn theorems. These two theorems formally establish the electron density p(f) as the central quantity de-
scribing electron interactions. The first theorem states that the external potential, and hence the total energy
is a unique functional of the electron density [54]. The second theorem states that the ground state energy
can be obtained variationally: the density that minimises the total energy is the exact ground state density
[54]. DFT uses various assumptions to approximate a solution to the schroédinger equation.

In the Born-Oppenheimer approximation it is assumed that nuclei have a kinetic energy of zero. This
assumption can be done because even the lightest nucleus (a proton) is about 2000 times heavier than an
electron. This approximation allows approximate separation of the wavefunction as a product of nuclear
and electronic terms. The electronic wavefunction W, (r,R) is solved for a given set of nuclear coordinates.
And the electronic energy obtained contributes a potential term to the motion of the nuclei described by the
nuclear wavefunction ¥ 5 (R). The total energy is then obtained by adding the nuclear repulsion energy to the
electronic energy [50].

Using the Born-Oppenheimer approximation and two Hohenberg-Kohn theorems, Kohn and Sham de-
scribed a method to solve the Schrodinger equation using p(Y) as the key variable. The Kohn-Sham energy
term for the fully interacting Kohn-Sham system can be written as shown in Equation 2.3 [55]. This approach
is rooted in the Hartree-Fock approach where it is assumed that the electrons move in an effective potential
created by all other electrons and nuclei, thus creating a mean-field approximation for the electron-electron
repulsion term J.

Exslpl = Vaa+ Vealpl + Jlpl + Tslpl + Exclpl (2.3)

Here, Va4 is the nuclei-nuclei repulsion term, Vea the electrons-nuclei attraction term, J is the mean field
electron-electron interaction, Ty is the kinetic energy functional and Exc is the exchange-correlation func-
tional [50]. A functional (given as ’[ ]’) is a function of a function. For example, Ts[p] is a functional of the
electron density p which is a function of 7.

Exc describes exchange interaction and correlation effects of the electron-electron interaction that are
not contained in the mean-field approximation by Hartree-Fock. The actual form of Exc is not known, hence
approximate functionals based upon the electron density are needed to describe this term. A selection of
these approximate functionals will be explained in the next subsection.

2.1.1. Exchange-correlation functionals

Electrons interact via Coulomb repulsion, this repulsion stems from the Coulomb correlation between the
spatial coordinates of electrons. Additionally, electrons follow the Fermi statistics. Fermi statistics state that
the exchange of any two electrons reverses the sign of the total wavefunction. This is manifested in Pauli’s
exclusion principle, which states that two electrons of the same spin cannot be placed at the same point. This
introduces a purely quantum mechanical interaction in the system, which is called the exchange interaction.
Furthermore, a correlation is introduced by correlating the motions of electrons which have the same spin
state. This is known as the exchange correlation or Fermi correlation.

The exchange-correlation (XC) energies within DFT can be approximated by making use of various ap-
proximation methods. These approximation methods are shown in the Jacob’s ladder in Figure 2.2 where the
chemical accuracy and computational cost of each approximation method are shown on a relative scale.

The simplest approximation method is the local-density approximation (LDA), where the value of Exc[p(7)]
is approximated by the exchange-correlation energy of an electron in an homogeneous electron gas of the
same density [56]. For systems where the density varies slowly, LDA performs well. In strongly correlated
systems LDA is very inaccurate. LDA tends to find wrong ground states in many simpler cases and LDA does
not account for van der Waals bonding. Additionaly, hydrogen bonding is poorly described, which is essential
for most biochemistry applications [56]. These flaws were addressed with the introduction of the generalized
gradient approximation (GGA). GGA also takes the gradient of the electron density into account as an addi-
tional term. Additionally, it is no longer assumed that the the electron gas is homogeneous. An example of
a GGA functional is the BP86 functional, this functional was regularly used during the research reported in
this thesis. BP86 is a combination of the Becke 1988 (B88) exchange functional and Perdew 86 correlation
functional [57, 58]. An improvement to the GGA functionals was made by the meta-GGA functionals, which
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Figure 2.2: Jacob’s ladder of density functional approximations which shows the increasing computational cost that go with increasing
chemical accuracy for functional approximations.

also takes the Laplacian (second derivative) of the density or the kinetic energy density into account. In more
recent advances the hybrid functionals were introduced. These functionals incorporate a part of the exact
exchange energy from Hartree-Fock theory. These functionals are called implicit density functionals since
the exact exchange energy functional is expressed as orbitals instead of a density. An example of a hybrid
functional, that was used for research reported in this thesis, is the PBE1PBE (or PBEO) functional [59]. In the
PBE1PBE functional 25% Hartree-Fock exchange energy and 75% Perdew-Burke-Ernzerhof (PBE) exchange
energy is used along with the full PBE correlation energy [60]. More accurate hybrid functionals exist. For
example, it is possible to use a combination of meta-GGA functionals with hybrid functionals or to use a
double-hybrid functional. These functionals were outside the scope of this project.

2.1.2, Basis sets

A basis set is a set of linear algebra based functions that convert the HF differential equations into algebraic
equations. These algebraic equations can be solved with matrix based methods, which is efficiently done by
computers.

For the research reported in this thesis, the double zeta basis set def2-SVP and triple zeta basis set def2-
TZVP were used [61]. The def2-SVP basis set consists of a split valence function with a polarization function
on all atoms. Split valence indicates that each atomic orbital is represented by two algebraically solvable
orbital-representations. Polarization functions describe the polarization of the electron density of the atom
in molecules. The def2-TZVP basis set consist of a valence triple zeta function with a polarization function
on all atoms. Triple zeta indicates that there are three algebraically solvable orbital-representations for each
atomic orbital. In def2-TZVP these algebraically solvable orbital-representations represent larger spatial or-
bitals such that the spatial accuracy can increase with the tradeoff of more computational cost.

2.1.3. Geometry optimization

Geometry optimization is used to find the configuration of a molecule in which the total energy is minimized.
This is done by exploring the potential energy surface (PES). The PES has local minima and maxima (peaks
and valleys) which resemble optimized geometries and/or transition states. It is hard to distinguish a global
minimum in the PES. A minimum of the PES is characterized by vanishing gradients of the potential energy
with respect to position (Z—;/i = 0) which means that the total force on each nucleus is vanishing. Additionally,

2
positive second order partial derivatives are all positive (ZT‘Z/ >0).

When optimizing a geometry, the method can choose whether the condition on the first derivative should
apply only or if the condition on the second derivative should apply as well. Calculation of the second deriva-
tive makes the geometry optimization more computationally demanding. However, in order to distinguish
between maxima, minima, transition states and higher order saddle points, it is necessary to examine these
second derivatives. The matrix of second derivatives is called the hessian matrix.
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2.1.4. Hessian

The hessian matrix can give additional information on a molecule and its geometry. This matrix can be diag-
onalized into eigenvectors and eigenvalues. The eigenvectors are normal modes of vibration and the square
root of the eigenvalues corresponds to the frequency that vibrations would have in an infrared spectrum [62].
It is possible to find negative (imaginary) frequencies, this means that the geometry is at a maximum or sad-
dle point (derivatives in all orthogonal directions are zero but geometry is not at a local extremum of the PES).
(local) Minima on the PES have only positive (real) vibrational frequencies. A computational chemist that is
using DFT can thus confirm that the geometry is in a (local) minimum by calculating the hessian matrix and
checking if all vibrational frequencies are real. Hessian calculations can be used to calculate properties like
the Gibbs free energy or enthalpy.

The vibrational free energy is one of the contributions to the Gibbs free energy and is defined as

Fyip= Ezpe —TSyip (2.4)

Where E_p is the zero-point-energy (defined as the lowest possible energy that a quantum mechanical system
may have) which can be calculated by hessian calculations. And TS,j, is the vibrational contribution to the
thermal energy which can be calculated by hessian calculations assuming that the ideal gas law applies to the
molecular system.

2.1.5. Solvation

Different solvent models exist to simulate the effects of solvents on the system of interest. It is possible to use
explicit or implicit solvent models to approximate thermodynamic properties of liquids. In explicit solvent
models the system explicitly includes solvent molecules, this increases the number of interacting particles
and the number of degrees of freedom of a system significantly [63]. Since the contribution to the computa-
tional effort required of these solvent molecules can get to over 90% of the total simulated system, implicit
solvent models are more favourable to lower the computational cost [63]. In implicit solvent models the sol-
vent is treated as a structureless continuum with certain dielectric and interfacial properties [63—-66]. The size
and shape of the continuum is subject to a tradeoff between computational cost and accuracy [65].

2.1.6. Dispersion corrections
Including the London dispersion interactions in the DFT approaches has shown to be important in order to
reach high chemical accuracy of large systems like bio- or nanoarchitectures [67]. The dispersion energy is
defined as a long ranged electron correlation effect and is not included in standard Kohn-Sham DFT (KS-
DFT).

For the DFT calculations done for the research in this thesis, Grimme’s D3 dispersion correction was used.
The energy of this correction is given by [67]:

Eps = Exs-prr — Eaisp (2.5)

Where Exs_prr is the self-consistent Kohn-Sham energy as obtained from the chosen density functional and
Egisp is the dispersion correction as a sum of two- and three-body energies. Additionally, scaling factors
and averaged nth-order dispersion coefficients are used together with two- and three-body inter-nuclear dis-
tances to construct Egjgp.

2.1.7. Density functional based tight-binding (DFTB)

DFTB uses an approximation to the KS-DFT scheme. Kohn-Sham equations are one-electron Schrodinger
equations of a fictitious system of non-interacting electrons that generate the same density as any given sys-
tem of interacting electrons [68, 69]. DFTB avoids any empirical parametrization by calculating the Hamilto-
nian and overlap matrices out of DFT-derived local orbitals (atomic orbitals, AO’s) and corresponding atomic
potentials [70, 71]. Although ab-intio DFT concepts are included in this method, efficiency and flexibility are
improved by using concepts from the semiempirical tight-binding method [71].

Recently an extended tight-binding method, xTB, was introduced by Grimme et al. which was used
throughout the research presented in this thesis [72]. Like closely related DFTB methods, the XTB meth-
ods use a semiempirical approximation to KS-DFT [72-75]. The GFNn-xTB methods (n = 0, 1, 2) focus on
molecular properties that can be accurately described at a low level, namely geometries, (vibrational) fre-
quencies and noncovalent interactions, hence the acronym GFN [72]. The first version of the GFNn-xTB
methods, GFN1-xTB, uses the same approximations for the Hamiltonian and electrostatic energy as DFTB3,
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but does not rely on atom pair-wise parameterization [72, 74]. Instead, element specific empirical fitting is
used to enable a parameterization that covers a large part of the periodic table [72]. The GFN2-xTB method
was mostly used for the research presented in this thesis and brings several improvements (and an increase
in computational cost) compared to GFN1-xTB. GFN2-xTB incorporates better physics, an extension of the
latest D4 dispersion model and is completely pair-parameter-free [72, 76]. The total energy expression of the
GFN2-xTB method is given by [77]:

EGrN2-x1B = Erep + Edisp + EEHT + E1ES+1xXC + EAES + EAXC + GFermi (2.6)

In the GFN2-xTB method, it is chosen to work with a spin-restricted wave function, which means that
no spin density dependent terms are present. Hence it is possible that a (mg = +1/2) and f (mg = -1/2) or-
bitals can have a different occupation. It is chosen to use a finite temperature treatment, which means that
electrons are treated at finite temperature. In this approach, the bands in energy are smeared such that the
occupancies become continuous. Smearing means that the states of the system are occupied according to
a smooth function, the Fermi distribution for example. There is an additional entropic contribution to the
energy which must be calculated. The finite temperature treatment via fractional orbital occupation is cho-
sen to be able to handle static correlations (nearly degenerate states). An example of systems with strong
static correlation effects are: bond-breaking reactions, diradicals, conjugated polymers, magnetic materials,
and transition metal compounds [78]. The last term Gpermi is introduced by the choice of finite temperature
treatment. This term describes the entropic contribution of an electronic free energy at finite electronic tem-
perature T due to Fermi smearing [77]. The first term E,.p represents the classical repulsion energy which is
an atom pairwise potential. The Egjsp, term describes the dispersion energy. The D3 dispersion correction cal-
culates the inter- and intramolecular dispersion interactions only by employing the given system coordinates
(and atomic numbers) as mentioned in subsection 2.1.6. The D4 dispersion correction was improved by using
aless empiricial version of D3 dispersion correction together with the addition of atomic charge information.
This introduced charge dependence of the dispersion coefficients improves thermochemical properties [76].
In GFN2-xTB the atomic partial charges are taken from a Mulliken population and are solved self-consistently,
which allows for dropping a large three-body term from the dispersion energy equation. This noticeably de-
creases the computational cost of the method [72]. The Egyr term is the extended Hiickel contribution and is
the crucial ingredient to describe covalent bonds in tight-binding methods [77]. Ergs+1xc is the isotropic elec-
trostatic and exchange-correlation energy, this term is treated with shell-wise partitioned Mulliken partial
charge. Isotropic means that the electrostatic energy is independent of direction. The second-order charge
density fluctuations are approximated by the orbital Mulliken charges [79]. This shell-wise treatment requires
the definition of reference valence shell occupations. For the occupation of elements of group 1, 2, 12, 13, 16,
17, and 18, the aufbau principle is followed, whereas a modified method is used for treating transition met-
als and elements of group 14 and 15. Eags describes anisotropic (direction dependent) electrostatic interac-
tions. These terms are intended to improve the noncovalent interactions between the outer, less coordinated,
atoms. This is used such that no extra hydrogen or halogen bond corrections nor any element-specific bond
adaptations are required [77]. Eaxc describes the anisotropic exchange-correlation energy, this term is sup-
posed to capture changes in the atomic exchange-correlation energy, which results from anisotropic density
distributions (polarization).

In all GFNn-xTB methods, semiempirical parameters are not precomputed by first principle methods as
in DFTB, but optimization on a large fit set is used to provide the best parameter combination for the desired
GFN target properties [72]. An overview of the GFNn-xTB methods is given in Figure 2.3 [72].

Continuum solvation model (GBSA)

In xTB, a polar implicit solvation model based on the generalized Born (GB) model extended with the hy-
drophobic solvent accessible surface area (SASA) is implemented. In the GB model the solute is a continuous
region surrounded by infinite solvent with a different dielectric constant than the continuous region. This GB
model is introduced in the xTB Hamiltonian as a second-order fluctuation in the charge density. In addition
to this polar contribution, a non-polar surface area contribution depending on the SASA of the molecule and
the surface tension is added. Additionally, the SASA is also used in an empirical hydrogen-bond correction to
the GB energy. Eventually, the total solvation free energy is fitted to reproduce COSMO-RS16 solvation free
energies [72, 80].
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Figure 2.3: Summary of GFNn-xTB methods. The dark gray shaded areas denote a quantum mechanical description while light gray
parts indicate a classical or semi-classical description. The parts surrounded by the arrows are treated in an iterative, self-consistent
fashion. A more detailed explanation of individual components in this figure is given by Bannwarth et al. in their introduction of the xTB
methods [72]

2.2. Descriptors

The calculation of molecular descriptors is needed to use QSAR and QSPR methods. A high-throughput
screening (HTS) approach can be used to design the optimal catalyst [33-36]. In this method, large cata-
lyst libraries are generated in silico and their catalytic performance is predicted by augmenting data from
(a limited amount of) conducted experiments using statistical models. Additionally, molecular (structural
or physico-chemical) descriptors, and QSAR/QSPR models are used in these predictions. Examples of used
statistical methods include (linear) regression or machine learning (ML). The relations between reaction de-
scriptors and molecular descriptors can be learned and be used to let the model predict which candidate will
have optimal properties for the desired use case. For example, it can be investigated which set of structural
properties (molecular descriptor) would drive the selectivity (reaction descriptor) of an investigated reac-
tion into the desired direction. In the fully automated design of catalysts, this data can be used to generate
new catalyst candidates that are likely to possess the defined optimal properties, which is called a generative
model. An alternative to HTS is virtual screening, in which statistical methods are used to predict reaction
descriptors (e.g. catalytic activity or selectivity) of conducted experiments based on molecular descriptors.
This approach is limited due to a need for the same amount of experiments as investigated catalysts.

For material design, thousands of descriptors have been reported in the literature, which allows for limit-
less possbilities to construct and define a chemical space [81, 82]. Hence, an overview of molecular descrip-
tors used in literature is given.

A group of important descriptors is fragment descriptors [83-85]. Fragment descriptors are extracted from
a selected subgraph of a molecular graph and binary values (0, 1) can be used to indicate their presence or ab-
sence in the molecular graph [86]. For these fragments, the bond distance from a central atom of the fragment
or SMILES strings can be used as descriptors. A major advantage of this method, breaking the catalyst into
fragments, is the simplicity of descriptor calculation. Molecular quantum number (MQN) is another example
of a simple molecular descriptor set consisting of atomic and bond counts and some other topological (2D
information derived directly from molecular connectivity table) descriptors [87-89]. In literature, 42 of these
MQN (counts for elementary constituents of molecules such as atoms, bonds, polar groups, and topological
features) were used for a more focused approach to virtual screening in drug discovery [88]. Additionally,
these descriptors were used to map the complex multi-dimensional descriptor space to a 2D space, which
makes the chemical space and search for similarities more interpretable to humans [89].

Apart from these structural properties, physico-chemical properties like pK,, redox potential, band gap
and hydricity can be used as molecular descriptors. Some of these descriptors are dependent on the Gibbs
free energy of reaction, which makes the Gibbs free energy in itself an useful descriptor to investigate [90-92].
The HOMO-LUMO gap (or band gap) is another useful descriptor which can be used to predict the strength
and stability of TM complexes [93]. The HOMO-LUMO gap has been used in research to generate materials
with desired electronic properties [94]. The Gibbs free energy and HOMO-LUMO gap for various structures
were studied in more detail in this research next to the electronic energy. The electronic energy is already
calculated when solving or approximating the schrédinger equation as explained in section 2.1. The Gibbs
free energy and HOMO-LUMO gap are explained below. Both xTB and DFT were used for the calculation of
these properties, with varying degrees of accuracy.
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2.2.1. Gibbs free energy
When studying a (T,p) ensemble in molecular thermodynamics, the Gibbs free energy G(T, p) is defined as
follows [95].

G(T,p) = Etor + Fyip — TScong + PV 2.7

Where E is the total electronic energy obtained from DFT as explained in section 2.1. Fy, is the vibrational
free energy and accounts for the vibrational contributions as explained in subsection 2.1.4. Due to this factor,
hessian calculations are required which make the calculation of G(T, p) computationally demanding. The
third term TS¢qp¢ is the conformational free energy and includes configurational entropy. This term would
require a power series expansion of the partition function, which is a function that describes the statistical
properties of a system in thermodynamic equilibrium. The pV term accounts for expansion/compression
and is negligible for solids.

2.2.2. HOMO-LUMO gap

The HOMO-LUMO gap (also called the band gap) is the difference between the energy of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecuular orbital (LUMO). This energy difference
determines what type of light is absorbed and is thus crucial for photocatalysts and photovoltaic materials.
In TM-complexes the HOMO-LUMO gap can be used to predict the stability, the HOMO is a potential place
where electrophiles will attack so it is especially important in reaction chemistry and the LUMO is a potential
place where nucleophiles may attack [96]. An illustration of the HOMO-LUMO gap is shown in Figure 2.4.

.
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Figure 2.4: The HOMO-LUMO gap is shown for a 7 conjugated system [97].

2.3. Force-field (FF) optimization

Force-field methods are empirical methods that try to estimate the forces between atoms. Parameterization
(either from DFT or experiments) and functional forms (relationship between a dependent variable and re-
gressors) are essential to force-field methods. The energy landscape is described by the force field parameters.
The acting forces on every atom are derived as a gradient of the potential energy with respect to the atom’s
coordinates [98]. Generally, the bonds between atoms are treated as springs. For the research presented in
this thesis, two types of force-field methods are used.

In the Universal Force Field (UFF), the force field parameters are estimated using general rules based only
on the element, its hybridization and its connectivity [99]. The original implementation of UFF determined
the parameterization without an electrostatic model and is capable of reproducing most structural features
across the whole periodic table with errors less than 0.1 A in bond distances and 5° to 10° in angle bend [99].

The original Amber force fields were primarily developed for protein and nucleic acid systems and had
limited parameters for organic molecules [100-104]. The generalized amber force field (GAFF) was designed
to work for most pharmaceutical molecules and be as compatible as possible to the traditional Amber protein
force fields. This was possible because the biomolecular parameters in the Amber force fields were developed
using an extensible strategy and an extension had already been described [104]. GAFF uses 33 basic atom
types and 22 special atom types to cover almost all the chemical space composed of H, C, N, O, S, B E Cl, Br,
and I [100]. The parameterization is based on more than 3000 MP2/6-31G* optimizations and 1260 MP4/6-
311G(d,p) single-point calculations [105].



2.4. Quality assessment of an optimized molecular geometry 11

2.4. Quality assessment of an optimized molecular geometry

The quality of a molecular geometry can be assessed in multiple ways. For the research presented in this
thesis, two approaches were considered: 1) calculate the difference between the total electronic energy of a
less accurate structure and a 'standard’. For example, Eprr — Egen2—xTB 2) calculate the root mean square
deviation (RMSD) of atomic positions between a less accurate structure and a ’standard’. The first men-
tioned approach could be applied by simply using the optimization trajectory, for example: when optimizing
a GFN2-xTB pre-optimized structure with DFT, the first and the last energy in the optimization trajectory cor-
respond to the energy of the GFN2-xTB optimized and DFT optimized structure respectively. For the second
approach, a more elaborate method was needed. A script developed by Dr. J. C. Kromann was used to calcu-
late the RMSD between two structures [106]. For two molecules A and B which both have n atoms, the RMSD
is defined as

1 n
RMSD(A,B) = /= ) ((Aix = Bix)? + (Aiy = Biy)? + (Aiz = Biz)?) (2.8)
i=1
Note that it is also possible to calculate the RMSD between the cores of the structures, which is referred to as
the Cartesian heavy-atom (all elements except H) root-mean-square deviation (hRMSD). To correctly calcu-
late the true minimal RMSD between two structures, say molecule 1 and molecule 2, the following procedure
was used:

1. The atoms of each molecule are recentered according to the centroid of the molecule (the centroid is
the mean position of all the points in all of the coordinate directions (x, y and z), from a vectorset).

2. The Kabsch algorithm is used to calculate the rotation matrix that minimzes the RMSD between the
two molecules [107].

3. Molecule 2 is recentered to the center of the 'view’ (if no view is defined, the most outward atoms of
molecule 1 determine the borders of the view).

4. The rotation matrix calculated in step 2 is used to rotate molecule 2 on top of molecule 1 such that the
true minimal RMSD is calculated.

2.4.1. Calculating the optimal rotation matrix for RMSD

To calculate the rotation matrix that minimizes the RMSD between two molecules, the Kabsch algorithm is
used. This algorithm requires that the centroid of molecule 1 and molecule 2 are at the origin, which is done
in step 1. The molecules can then be represented in matrix notation where the x, y and z coordinates fit in
a N x 3 (N = number of atoms) matrix and each row corresponds to an atom. Say for example that matrix A
corresponds to the coordinates of molecule 1 and matrix B to the coordinates of molecule 2.

X1 N 21 X1 N 21
X2 )2 22 X2 Y2 22

A= . B= . (2.9
XN YN 2N XN YN 2N

Then the cross-variance matrix C is calculated. Which gives the covariance between all possible couples of
random variables row-wise [108]. The covariance gives the directional relationship between two variables
whenever one of them changes.

Cc=A"B (2.10)
N

C=) AkiByij (2.11)
k=1

The singular value decomposition (SVD) can then be used to get the optimal rotation matrix efficiently. First
the cross-covariance matrix is decomposed.

c=usv’ 2.12)
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Where U is an orthogonal m x m matrix, S is an m x n diagonal matrix and V is an orthonormal (columns
are an orthonormal set) 7 x n matrix [109]. Next, the determinant of V and U are used to check whether the
rotation matrix needs to be corrected to ensure a right-handed coordinate system.

d=der(vU") (2.13)

If d < 0 then the last row of S and V need to be multiplied by -1 to flip the z axis. So, the final optimal rotation
matrix R can be calculated.

1 0 0
R=v|o 1 o|UT (2.14)
0 0 d

The script also supplies several options. Apart from the Kabsch algorithm, quaternions can be used [110].
Quaternions work by minimizing a single cost function associated with the sum of the orientation and posi-
tion errors which was expected to improve both accuracy and speed [110]. The quaternion-based formula is
equivalent to the formula derived by Kabsch, but quaternions might have a slight advantage in dealing with
issues regarding chirality and degeneracy [111].

2.5. Local chemical space exploration

Local chemical space exploration is done by creating structural variations of an input structure. This ap-
proach creates structures that are closely related to each other and thus confines the search space ’locally’.
In this research, this chemical space exploration was done by using various input complexes (referred to as
'skeletons’) and placing substituents on indicated sites. To maximize predictive power by generating more
data, it was decided that this process needed to be automated. A workflow needed to be designed that would
take a skeleton complex as input together with functional groups, which could be substituted onto the skele-
ton. The workflow would need to output the functionalized version of the skeleton complex with a reason-
able quality. After publication, the source code for the designed workflow, ChemSpaX, can be found on ISE’s
Github page (https://github.com/EPiCs-group/).

For ChemSpaX; it was necessary to rotate and align a substituent group that was to be placed on a molecule.
The mathematical details for these operations are explained in this section together with examples from the
ChemSpaX code. Two different approaches were taken in this code:

1. The first approach was to generate a tetrahedron on the indicated sites and place atoms on the vertices
of this tetrahedron. With this approach only tetrahedral substituents could be created. The code for
this approach is contained in generate_tetrahedron.py.

2. The second approach was to view the whole substituent group as a rigid block and attach it to the skele-
ton. The whole block is oriented correctly using the centroid vector of the substituent group. This ap-
proach works for substituents of all geometries, but requires a pre-made library of substituent groups.
The code for this approach is contained in attach_substituent.py.

To orient newly placed substituents correctly in both approaches, the bond between the skeleton and the
atom that will be replaced by the substituent is used. In ChemSpaX, these variables are called bonded_atom
and atom_to_be_functionalized respectively. Note that indexing of atoms in ChemSpaX starts from 0. The
indices of these atoms need to be given as input by the user for each functionalization to ensure correct
placement of a substituent. The correct input format is explained in subsection 2.5.3 where a manual for
ChemSpaX is given.

2.5.1. Approach 1: generate tetrahedron
The mathematics involved in approach 1 will be explained first. Although this approach was not actively
used, the mathematical foundation of this approach was used to create approach 2.

In this approach a substituent is created by generating a correctly oriented tetrahedron on the skeleton
and placing atoms on the vertices of this tetrahedron. In this explanation the placement of a CH3 substituent
on a skeleton is taken as example. This would mean that in Figure 2.5, A would be the atom of the skeleton
that is bonded to the substituent group (bonded_atom). The atom of the skeleton that will be replaced by
the substituent group (atom_to_be_functionalized) is located at O. The central atom of the substituent group,
carbon, would be placed at O when the functionalization occurs. The bond b between atom A and O together
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with the centroid of tetrahedron ABCD is used to rotate the new substituent group. The 3 hydrogens of CH3
would be placed on the vertices of equilateral triangle BCD.

A

Figure 2.5: Example of a tetrahedron ABCD, which is used to illustrate the placement of a CH3 substituent group on a skeleton [112].

In the code, we start with a general equilateral triangle with its centroid at position [0, 0, 0]. The place-
ment of a substituent group is done by scaling this triangle such that if the hydrogens of the substituent (3
hydrogens in our example of CH3) are placed on the vertices of the triangle BCD and the central atom of the
substituent (carbon) replaces the atom_to_be_functionalized at O, the tetrahedron ABCD is formed as de-
scribed in Figure 2.5. After this scaling is done, we want to find the centroid of the substituent group, which
is used to rotate the substituent group correctly with respect to the skeleton.

To scale this equilateral triangle, the distance between the hydrogens of CH3, a= CD = DB = BC, needs to
be found. The triangle law of vector addition is used to find this distance a.

= b? + b* - 2b* cos () (2.15)

Where b is the normalized bond length between O (atom_to_be_functionalized) and A (bonded_atom). Since
we know that for a tetrahedral CH3, the H-C-H angle 6 = 109.5 °, this equation can be simplified.

a®=2b*(1+1/3) (2.16)

, 8

a’=— 2.17)
3

2
a—2\/;b (2.18)

By scaling the equilateral triangle by 2 \/g bwe can thus create equilateral triangle BCD with the same distance
between hydrogens as in CH3.

To calculate the centroid of the substituent group to rotate the group correctly, we need to take the central
atom of the substituent into account since the central carbon atom is placed at O. Using that the distance

. 2./2p
from a vertex to the centroid of the tetrahedron in our case is given by <281 O\f/%aCh side \/\/g together with

the Pythagorean Theorem, one can find that the distance OH is equal to %. This factor is used to find the
actual centroid of the tetrahedral substituent. The logic for scaling the equilateral triangle and finding the
new centroid is contained in find_new_centroid function inside the Complex class of generate_tetrahedron.py.
This is shown in Code Listing 2.1.

After scaling of the equilateral triangle and calculation of the centroid, the rotation matrix for correctly
rotating this tetrahedral substituent group onto the skeleton needs to be calculated. An explanation for this
is given on the Mathematics Stack Exchange [113]. In our code the correct rotation is determined by two
vectors, 1) the bond that will be functionalized (between bonded_atom and atom_to_be_functionalized) and
2) a normal vector pointing upwards in the z direction ([0, 0, 1]). The second vector is needed because we
want the CH3 to be pointing outwards of the skeleton upon functionalization. In short, a rotation matrix R
needs to be found which rotates unit vector @ onto unit vector b. Let U = @ x b s = ||7]l (sine of angle) and
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self .bond_length = self.atom_to_be_functionalized_xyz — self.bonded_atom_xyz # vector with origin on C
and points to H in xyz plane
self.equilateral _triangle = np.array ([[0, 1/np.sqrt(3.0), 0],
[-0.5, —0.5/np.sqrt(3.0), 0],
[0.5, —0.5/np.sqrt(3.0), 0]]) # equilateral triangle with
centroid at origin
def find_new_centroid (self):
# find new centroid and find where equilateral triangle needs to be translated to
b = np.linalg.norm(self.bond_length) # bond to be functionalized -H
b=Db x (2.0 = np.sqrt(2.0 / 3.0))
self.equilateral_triangle = bxself.equilateral_triangle # make side lengths equal to tetrahedral
bond length
centroid = self.atom_to_be_functionalized_xyz + (b/3.0) * self.normalized_bond_vector
return centroid

Code Listing 2.1: In this code example the scaling of an equilateral triangle and finding the centroid of a tetrahedron is shown.

¢ = d-b (cosine of angle). If ¢ is equal to -1 (which means cos(Z (@, b)) = —1, happens if 4 and b point in exactly
the opposite directions), then the rotation matrix R is equal to the identity matrix. Else, R is given by

R=T+[vlc+[V3—— (2.19)
s
Where [v]y is the skew-symmetric cross-product matrix of v
0 —U3 U
[vlx=1| vs 0 - (2.20)
—U2 141 0
The last part of the formula can be simplified to
l—c_l—c_ 1 2.21)
2 1-¢2 1+c )
Which finally gives
. 1
R=1+[v]y+[v]s— (2.22)

*l+c¢

The logic for calculating the rotation matrix is contained in generate_substituent_vectors function inside the
Complex class of generate_tetrahedron.py. This is shown in Code Listing 2.2. Where we take a normal vector
[0, 0, 1] as a and the bond length as b.

normal_vector = np.array ([0, 0, 1])

normal_vector = normal_vector / np.linalg.norm(normal_vector) # make unit vector

# construct rotation matrix

bond_length_norm = np.array(self.normalized_bond_vector. astype (' float64 "))

v = np.cross (normal_vector.T, bond_length_ norm.T) # v is perpendicular to normal vector and bond between
CH

» v_x = np.array ([[0, —v[2], v[1]], [v[2], O, —v[O]], [=v[1l], v[O], O]])

v_xsq = np.dot(v_x, Vv_Xx)
¢ = np.dot(bond_length_norm.T, normal_vector.T)
if ¢ != -1.0:
rotation_matrix = np.eye(3) + v.x + v.xsq * (1 / (1 + c))
else:
rotation_matrix = np.eye(3)

Code Listing 2.2: In this code example construction of a rotation matrix is shown.

After constructing this rotation matrix the rotation is applied to the tetrahedral group using the calculated
centroid vector. This tetrahedral group is then translated to the correct distance from the skeleton, which
completes the placement of a tetrahedral substituent. A disadvantage of the explained approach 1 is that
only tetrahedral substituents can be created.
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2.5.2. Approach 2: attach substituent block

In this approach, the substituent group is attached to the skeleton as a rigid block of atoms. This is done by
aligning and translating the centroid vector of the substituent group. A visual example can be given using
ice cream in a cone. By moving the cone, the ice cream contained in the cone is also moving in the same
direction. The cone can be viewed as the centroid vector while the ice cream contained in the cone is the
substituent group. Calculating this centroid vector for every substituent that can be attached is done before
doing the functionalization, this is explained in the ChemSpaX manual in subsection 2.5.3. This centroid
vector is generated and stored in a CSV file by methods in the Substituent class in attach_substituent.py. To
generate the centroid vector, the first_coordination method of the Substituent class is used.

This method works by using the central atom of the substituent group to find all atoms bonded to this
central atom. Carbon is the central atom of the substituent in the case of attaching CH3 and the 3 hydro-
gens are the atoms bonded to it. Based on this geometry of the central atom of the substituents and the
atoms that are bonded to it, the centroid vector used to rotate and align the substituent group can be cal-
culated. This calculation of the centroid vector is shown in Code Listing 2.3. A CSV file of substituents
for which this calculation has been done is present in the ChemSpaX repository on Github. The name of
the substituent, central atom and centroid vector are stored in central_atom_centroid_database.csv in the
substituents_xyz/manually_generated/ folder. Storing this data for substituents together with their xyz files
and/or MDL molfiles allowed for less usage of computational resources when multiple functionalizations are
done subsequently. The centroid vectors for substituents that are contained in the CSV database are used cal-

1 def scale_vector(starting_point, vector, length):

2 """ Scales a vector with a given length
:param starting_point:

i :param vector:

5 :param length:

6 :return: scaled vector

8 vector = vector/np.linalg.norm(vector)

9 return starting_point + vectorxlength

11 def first_coordination (self):

12 # find atoms bonded to central atom of substituent, use mol file since graph representation is more
accurate

13 edges = get_bonded_atoms(self.path[:—4]+ .mol’, self.central atom_index)

14 # scale bonds such that an hypothetical symmetrical molecule is created say CX' CGY GC-Z

15 for i in range (np.shape(edges) [0]) :

16 scale_vector (self.central_atom, (edges[i, :]—-self.central_atom), self.bond_length)

17 # calculate centroid of this hypothetical molecule, which will be similar to real molecule

18 centroid = np.sum(edges, axis=0)/edges.shape[0] # sum over rows and divide by amount of atoms found
19 # get correct orientation of total group s.t. the centroid vector is pointing towards the central atom

of the substituent group
20 centroid = (centroid — self.central _atom)/np.linalg.norm(centroid — self.central_atom)
21 return np.array (centroid)

Code Listing 2.3: In this code example the construction of a centroid vector pointing towards the central atom of the substituent group
is shown.

culate the optimal rotation matrix. This approach was shown for generate_tetrahedron.py in Code Listing 2.2.
For the current approach, the normal vector [0, 0, 1] is now replaced by the centroid vector of the substituent
in Code Listing 2.2. Afterwards, the rotation is applied to the whole substituent group and the whole group is
translated to the correct bonding distance from the skeleton. Finally, Universal Force Field (UFF) and Gen-
eralized Amber Force Field (GAFF), as implemented in the Openbabel package, are used to cheaply optimize
the newly placed substituents [99, 100, 114, 115]. This FF optimization is done while the atoms of the skeleton
are frozen, to preserve the input skeleton’s quality.

This second approach was mainly used for the research reported in this thesis. The above mentioned
steps are all contained in scripts which simplify the workflow.

2.5.3. ChemSpaX manual

To summarize, a step-by-step guide for placing substituents using attach_substituents.py is given. This ex-
plains the steps that were used to generate the complexes for the research presented in this thesis. Before
explaining these steps in more detail, an important distinction should be made between xyz files and MDL
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molfiles. The xyz file format contains only the x, y and z coordinates per atom of a molecule. The MDL Molfile
format contains these x, y and z coordinates together with a list of (single, double or triple) bonds formed be-
tween atoms. It is thus always desirable to use a MDL molfile for a molecule and convert it to xyz format
instead of converting xyz to MDL molfile format. In the latter case the program used for conversion will make
assumptions about bonds (and a computational graph representation of the molecule) based on inter-atomic
distances. The code for ChemSpaX was initially designed to only work with xyz files and was extended to use
MDL molfiles for the FF optimization. Hence, this explanation is currently focused on xyz files, but is subject
to change.

1. Itisrecommended to start with a DFT optimized skeleton structure. After this optimization, the atom_to
_be_functionalized and bonded_atom should be placed in a nested list on the comment line (the sec-
ond line) of the optimized skeleton’s xyz file. For example, if we want to replace the atom of index 3 with
a substituent group that is bonded to the skeleton at index 2, and afterwards we want to replace index
10 that is bonded to the skeleton at index 9, then the functionalizations_list becomes: [[3, 2], [10, 9]].
After preparation of this skeleton, the skeleton’s xyz file should be placed in the skeletons folder.

2. Substituents that can be placed on the skeleton are present in the substituents_xyz/manually_generated
folder, if one of these pre-made substituents will be used then this step can be skipped.

If a substituent needs to be added to this library, then the following procedure should be followed. If
we would like to add methyl (which is already in the substituents_xyz/manually_generated folder): Take
an xyz file for (optimized) CH4, then remove one of the hydrogens such that C (central atom of the
substituent) has a lone pair of electrons. This lone pair of electrons will be used to form a bond with
the skeleton. Let the C be the first atom in the xyz file of the substituent, since data_preparation.py
assumes that the central atom of the substituent is always the first atom in the substituent’s xyz file.
Save the xyz file in substituents_xyz/imanually_generated and run data_preparation.py which uses the
Substituent class of attach_substituent.py to generate the centroid vector for the substituent group and
adds this centroid to central_atom_centroid_database.csv.

3. If data_preparation.py has not been ran in the previous step, it should be ran now such that MDL
molfiles from the skeleton and substituent xyz files are generated. These MDL molfiles are used to
fetch correct bonding information to create the functionalized structure and FF optimize the newly
placed substituent group.

4. If the same optimization (FF on newly placed substituents) method will be used as presented in this
thesis, the user needs to modify the functionalize_and_optimize_obabel.sh script. For example, in
step 1 we have defined that we want to place 2 substituents on the skeleton, thus we should make
sure that we define the 2 substituents that need to be placed. This is done by modifying the START-
ING_C_SUBSTITUENT and RANDOM_C_SUBSTITUENTS variables. If we want to place a CH3 on the
first defined site and an OH on the second defined site, the variables become: STARTING_C_SUBSTIT
UENT="CH3" and RANDOM_C_SUBSTITUENTS="OH". If we had more than 2 substituents, the addi-
tional substituents need to be added to the RANDOM_C_SUBSTITUENTS variable as a string separated
by a space.

5. After these preparation steps, the script can be called with the command:
bash functionalize_and_optimize_obabel.sh C

If the user wants to run xTB optimizations after every functionalization, the explanation in the previous
step and this step should be applied to the functionalize_and_optimize_xtb.sh script.



Results

First, the introduction to ChemSpaX with various representative use cases is given in ' ChemSpax: Exploration
of chemical space by automated functionalization of molecular scaffold’. The SI for this section can be found
in Appendix A. Secondly, an application of ChemSpaX to Mn based pincer complexes is shown in 'Metal-
ligand cooperative activation of HX (X=H, Br, OR) bond on Mn based pincer complexes’. The SI for this section
can be found in Appendix B. This application will be published in: A. Krieger, V. Sinha, A. Kalikadien, and E.
A. Pidko, “Metal-ligand cooperative activation of HX (X=H, Br, OR) bond on Mn based pincer complexes,”
Zeitschrift fiir Anorg. und Allg. Chemie, 2021, doi: in press.

Apart from the presented research, several conferences, workshops and symposia were attended during
this thesis project and the notes for these events can be found in Appendix C.
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ChemSpaX: Exploration of chemical space by automated
functionalization of molecular scaffold
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Applied Sciences, Delft University of Technology, 2629 HZ, Delft, The
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Abstract

Generation of many molecular structures with reasonable quality, that resemble an existing (chemical) purposeful
material, is needed for high-throughput screening purposes in material design. Large databases for complexes
containing transition metals are not readily available, although these complexes are widely used in homogeneous
catalysis. A Python-based workflow, ChemSpaX, that is aimed at automating local chemical space exploration
for any type of molecule is introduced. The overall computational workflow of ChemSpaX is explained in more
detail. ChemSpaX uses initial input of a molecular structure and 3D information, to place substituent groups on
the input structure. The newly placed substituents are optimized using a cheap force-field optimization method.
Representative applications of ChemSpaX are shown by the functionalization of transition-metal based pincer
complexes, cobalt porphyrin complexes and a bipyridyl functionalized cobalt-porphyrin trapped in a M2L4 type
cage complex. The relatively fast GFN2-xTB optimization method was used to compare structures generated by
ChemSpaX. For selected use cases a comparison was also done against DFT optimized structures. Descriptors
that can be used in data-driven material design were selected and studied in more detail for the selected use cases.
It is shown that the structures generated by ChemSpaX have a reasonable quality for usage in high-throughput

screening applications.

Keywords: catalysis; data-driven material design; density functional tight-binding theory; chem-
ical space exploration; open source;
Article type: Software Focus

1 Introduction

The discovery of novel molecules is important for many industries. The usage of computational
methods for the design or selection of highly selective catalysts has been described as a holy
grail of chemistry [1]. Computer-aided drug discovery (CADD) led to the discovery of the HIV
protease inhibitors ritonavir, indinavir and saquinavir. This discovery proved to be the key in
reversing rapid growth in deaths due to AIDS in the US [2, 3]. This is one of the many examples
that show that CADD has been playing a key role in the discovery of drugs and will continue
to do so [4, 5]. Efforts are being made in the energy and chemicals sector to successfully
apply computer-aided methods for discovery of new materials. For example, in the design of
materials for lithium-ion batteries, hydrogen production and storage materials, superconductors,
photovoltaics and thermoelectric materials [6, 7, 8, 9]. A roadmap for materials by computational
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design is given by Alberi et al., where it is discussed that a common need in material design
is the need for high-throughput computational and experimental techniques as a foundation for
the materials-by-design paradigm [10].

The chemical space is vast and global exploration of chemical space is difficult [11]. It is
experimentally impossible and time-consuming to find the optimal molecule or material from
nearly infinite possible combinations. Therefore, machine learning (ML) and other cost-effective
computational methods are an attractive solution to the combinatorial problem of material and
catalyst design [12]. Von Lilienfeld and coworkers propose that exploration and understanding
of chemical space can be done by combining physical theories, data sets of quantum mechanics
(QM) and statistical mechanics (SM) properties, and ML methods that incorporate physical
and chemical knowledge [13]. These combinations of QM, SM and ML approaches are called
QML models. In QML models, modern statistical learning theory is applied to predict electronic
and atomistic properties and processess in molecules and materials [13]. However, there are
challenges that need to be addressed before a complete workflow for in silico design of chemicals
and materials can be achieved.

The first challenge is that computational methods should support scientists in adjusting their
hypothesis after synthesis of a material has happened. This is part of the molecular design cycle
[14]. To enable this cycle, a systemic approach for the local exploration of the chemical space of
the synthesized material is needed to learn more about the chemistry involved. This approach
can then be expanded to generate new candidate molecules and adjust the initial hypothesis. By
building upon experimental knowledge in a systemic way together with automated computational
high-throughput screening (HTS), larger subsets of chemical space can be covered.

The second challenge is that even when accurate simulations are available, the process of
molecular design is still limited by the search strategy used to explore chemical space and the
representation of a molecule in chemical space [15]. A differentiable continuous space is required
to enable the use of gradient-based optimization and make larger jumps in chemical space [15].
An example of molecular representations is shown in literature, where autoencoders are used to
map molecule structures onto a continuous latent space. The latent space preserves chemical
similarity principle and thus can be used for the generation of analogue structures [16]. Another
often used representation is the sorted Coulomb Matrix (CM), this representation was applied
successfully in the ML screening of thousands of catalysts [17]. These representations require
that the molecular structure that is represented, is of reasonable quality, while consumption of
computational resources for the generation of the structure is kept to a minimum.

The third challenge is that advances in this field also highly depend on the availability of
trustworthy QM data sets. For (small) organic molecules, reliable data sets like the GDB-13 or
GDB-11 database exist which are being used to train generative models [18, 19, 20]. In these
virtual screening workflows, 3D coordinates are generated from the simplified molecular-input
line-entry system (SMILES) strings and these complexes are analyzed further. Large data sets
are not readily available in the field of homogeneous catalysis and the alternative approach of
using synthetic data generated in silico would become expensive due to the high computational
cost of accurate QC methods like DFT [21, 22, 23]. This unavailability stems from the fact
that transition metal (TM) complexes are regularly used in homogeneous catalysis and it is
known that TM-complexes pose an issue for the SMILES. In current research, a toolkit is being
developed to convert SMILES correctly to 3D XYZ coordinates for TM-complexes [24]. In the
molsimplify code, a divide-and-conquer technique is used to get the correct 3D geometry of
any complex. Force fields for organic components are being used together with a databases
of quantum-mechanically derived rules for the metal-organic bonds [25, 26, 27, 28, 29]. For
the exploration of local chemical space for TM complexes, using a SMILES string as starting
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point is thus something that needs additional research. Another approach that could be taken
for exploration of these complexes, is using the XYZ coordinates directly. This is the approach
that has been taken in this research, which allowed chemical space exploration for any type of
geometry.

In this manuscript a tool that can be used for automated molecular design workflows is
presented. ChemSpaX, a Python based workflow, aims to make the exploration of local chemical
space of both organic and inorganic complexes as easy as possible. The exploration is done by
automated placement of substituents on a given molecular scaffold while maintaining the quality
of the initial scaffold. Several molecular scaffolds are already present in literature and can be
used for an automated exploration of local chemical space. If a particular complex is known for
its high catalytic activity, the 3D coordinates of this complex can be used as a starting point
for exploration in the neighbourhood of its chemical space. With ChemSpaX it is possible to
automate this exploration of the local chemical space. The user has full control of the placement
of substituents groups and can thus guide the exploration of the local chemical space based on
chemical intuition. A general overview of ChemSpaX is given in Figure 1.

Ligand database (Substituents) Functionalized complexes
R
R R R

o O

R R R

80 Ligands
R: H, CH3, iPr, F, Cl, Br, NH2, OH, OR

3D structures (Skeletons)

? i .
B

Figure 1: A general overview of ChemSpaX. Using ligands and an user-defined complex, the
local chemical space of this input geometry can be explored. Color code used for elements: gray
= C, white = H, red = O, pink = Ru, dark-blue = N and turquoise = F.

The key features of ChemSpaX are presented in the next section. Subsequently, repre-
sentative applications of ChemSpaX are presented. First, the functionalization of a RuPNP
complex involved in a (de)hydrogenation reaction is studied [30, 31, 32, 33, 34, 35]. The
(de)hydrogenation reactions are important in several industries. Catalytic hydrogenation has
become a key technology for the manufacturing of pharmaceuticals and fine chemicals, this pro-
cess replaces chemical reduction methods that generate large quanitities of waste [36]. Catalytic
hydrogenation is currently the most widely applicable method for the reduction of organic com-
pounds which causes it to belong to the most important transformations in chemical industry
[37]. At healthcare company Roche, 10 to 20% of chemical reactions in fine chemical synthesis
are catalytic (de)hydrogenations, catalytic hydrogenation is of importance for the economic pro-
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duction of carotenoids, sorbitol and vitamins A, E and C [38]. In the energy storage/conversion
industry, (de)hydrogenation reactions play an important role in enabling a renewable energy-
based hydrogen economy. For example, a formic acid based hydrogen battery allows efficient
transportation of hydrogen [39, 40, 41]. Analyzing the properties of these RuUPNP intermediates
by exploration of the chemical space can thus be a valuable asset for multiple industries. For
RuPNP, the quality of geometries generated by ChemSpaX, the energy of hydrogenation and a
comparison of calculated HOMO-LUMO gaps are presented.

Secondly, the functionalization of Mn-pincer complexes as potential (de)hydrogenation cat-
alysts is studied. This study is an extension of previous work by our research group [42]. With
this application the chemical space of a more climate-friendly alternative to RuPNP is explored.
Next to ruthenium pincer complexes, manganese-derived pincer complexes have also attracted
the interest of the catalytic community. Manganese is known to be a cheap, abundant and
biocompatible alternative to precious-metal catalysts [43]. The quality of geometry generation
and energy of reaction with various adducts are investigated in more detail.

For both pincer complexes the activated catalyst (M —L) has a Lewis acid site on the metal and
the ligand can act as a Bronsted base. This means that the metal can coordinate with an electron
donating species while the ligand can accept a proton [42, 44]. For the (de)hydrogenation reac-
tions, the outer-sphere Noyori-type mechanisms, involving proton transfer to the amido ligand
and hydride transfer to the metal center are typically proposed. For the Mn-pincers, potential
deactivation/inhibition through the metal-ligand cooperative addition of alcohol /water/base are
studied [42]. The properties of the pincer complexes’ intermediate with an electron donating
species on the metal and a proton on the ligand are thus an important factor to ensure that the
desired product is synthesized. The Noyori-type mechanism involved in these reactions together
with an example 3D structure of the Mn-pincer is shown in Figure 2.

Metal-ligand cooperation 9
A H i 3
M-L+A-H=—="p i f?-ﬂ
-0—¢
Dehydrogenation ’
Competitve| OH H
e
+H,0 \M—L/
4 H R, R
KO'Bu /
Br\ /H Q ’ N
M—L Lﬁ» M— CH,0 O
KBr 7~ H M <\/\Nﬂo \CXJ
H, M—L o
O = Acid site Ry Ry
M = base site Mn-CNC

Figure 2: A representative proposed Noyori type cooperative catalytic cycle for dehydrogenation
of methanol in aqueous phase is shown (left). Together with an example Mn-pincer complex
(right). Color code used for elements: gray = C, white = H, red = O, pink = Mn, dark-blue =
N.

Thirdly, the generation of a database of ~1100 functionalized Cobalt Porphyrin (referred to as
"Co porphyrin’ in the rest of this manuscript) complexes is shown. Co porphyrins are successful in
the field of carbene and nitrene transfer reactions and its usage as a catalyst provides interesting
possibilities [45, 46, 47, 48]. Automated generation of this database shows the possibility of
systemic exploration of local chemical space. The generated database is used to investigate the
correlation of root mean square deviation of atomic positions (RMSD) with other descriptors
and to perform a regression analysis of HOMO-LUMO gaps of functionalized Co porphyrins.
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Lastly, the functionalization of a bipyridyl functionalized Cobalt-porphyrin trapped in a M2L4
type cage complex (referred to as 'M2L4 cage' in the rest of this manuscript) is presented. This
cage complex confines the Co porphyrin catalyst, which can lead to changed catalyst proper-
ties [49, 50, 48]. This case shows how ChemSpaX can be used to automatically functionalize
structures that are more difficult to functionalize. The RMSD of various optimization methods
is compared for the M2L4 cage.

2 Computational methods

2.1 Open Babel

Conversions between MDL Molfile and XYZ format were done using Open Babel [51, 52]. For
structures generated by ChemSpaX the Generalized Amber Force Field (GAFF) followed by
the Universal Force Field (UFF) optimization method as implemented in Openbabel was used
[563, 54]. This order of optimization gave a reasonable geometry based on pre-defined molecular
connections

2.2 Semiempirical tight-binding

Grimme lab's xTB package (version 6.3.3) was used for semiempirical tight-binding calculations
[55]. The GFN2-xTB method and GFN-FF methods were used for geometry optimization [56,
57, 58, 59]. The RuPNP geometries were optimized using GFN2-xTB with verytight criteria,
hessian calculations were also performed for these geometries to verify the absence of imaginary
frequencies and that each geometry corresponds to a local minimum on its respective potential
energy surface (PES). The Mn-pincer complexes and Co porphyrins were optimized using GFN2-
xTB without hessian calculations. The M2L4 cage geometries were optimized using GFN2-xTB
and GFN-FF.

The GBSA solvation method as implemented in xTB was used with THF as solvent for most
optimizations, to implicitly account for solvent effects [60, 61]. These GFNn (n= 0, 1, 2, FF)
methods are denoted as GFNn-xTB(THF) or GFNn-xTB(GAS) depending on whether GBSA
solvation was used.

2.3 Density Functional Theory

2.3.1 Pincer complexes

Gaussian 16 C.01 was used to perform DFT calculations [62]. The BP86 exchange-correlation
functional was used for geometry optimizations together with the def2SVP basis set [63, 64]. This
combination of functional and basis set have shown reliable geometry predictions accompanied
with low costs [65, 66]. Geometry optimizations were performed in the gas phase. Single point
DFT calculations were performed using the SMD solvation (THF) model [67]. This was combined
with either the BP86 or PBE1PBE (also known as PBEO) functional with the def2TZVP basis set
to further refine the electronic energies [68]. All DFT calculations were performed with Grimme's
D3 dispersion corrections [69]. These composite methods, BP86/def2-SVP//XC/def2-TZVP
(THF), are denoted as XC(THF) or XC(GAS) depending on the exchange-correlation (XC)
functional used and if a single-point calculation (SP) with solvation was done.

All geometries were pre-optimized with a combination of Openbabel’'s GAFF and UFF meth-
ods or GFN2-xTB before being subjected to full DFT based optimization. In this research no
conformational search was conducted.

For the Ru-pincer complexes the PNP ligand was researched. Multiple ligands were selected
for DFT calculations for the Mn-pincer complexes, namely: CNC, PNN and PCP ligands. The
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research was focused on the hydrogenation (addition of a H-H species) of the Ru based catalyst
and the addition of H-X (X=Br, H, OH, iPrO) species to the Mn-based catalyst. The catalysts
are represented as M-L where M represents the metal center and L the ligand. This lead to
the formation of M(X)-L(H) species. The thermodynamic stability of the formed M(X)-L(H)
species was estimated by computing the Gibbs free energy and total energy change under standard
conditions upon addition of the H-X moiety.

H—X + M—L — M(X)—L(H) (1)
AGSy = G(M(X) — L(H)) — G(M — L) — G(H-X)... (2)
AESy = B(M(X) — L(H)) — E(M — L) — B(H-X)... (3)

2.3.2 Co porphyrins

TeraChem v1.94V-2019.08-beta was used to perform GPU-accelerated DFT SP calculations
[70, 71, 72]. The PBE1LPBE exchange-correlation functional was used with empirical dispersion
corrections [68, 73]. The LANL2DZ basis set is a widely used effective core potential (ECP) type
basis set and was used to model the Co metal centers [74]. All geometries were pre-optimized
using the GFN2-xTB method before being subjected to DFT SP calculations.

2.4 Root-mean-square deviation of atomic positions (RMSD)

The RMSD is used to compare two molecular structures, the difference between the position
of the same atom on both molecular structures is used. the RMSDs were calculated using a
Python package made by Dr. Kromann [75]. First, the Kabsch or Quaternion algorithm can be
used to align the cartesian coordinates [76, 77]. This ensures that real minimal average distance
between atoms is calculated. Subsequently, the minimal average distance between atoms of two
superimposed molecules can be calculated. If for example the two molecules p and q with n
points are compared, the RMSD is defined as

1
RMSD(p,q) = ﬁZHpi_%”Q (4)
i=1
1 - 2 2 2
= E Z((pzw - Qim) + (piy - qiy) + (piz - Qiz) ) (5)
i=1

2.5 Linear regression

For selected Co porphyrin structures, the correlation between HOMO-LUMO gaps computed
using DFT and GFN2-xTB was investigated. This was done with linear regression via ordinary
least squares (OLS) fitting using the sklearn library in python [78].

3 Code implementation

ChemSpaX is a python tool that allows the automated functionalization of molecular structures,
aimed at easing the creation of an automated workflow for quantum chemistry calculations. An
overview of the overall workflow of ChemSpaX as described in this section is shown in Figure 3.
The user has to supply: a molecule that needs to be functionalized (skeleton), which sites on
the supplied molecule should be functionalized (functionalization_list) and what substituent
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should be placed on the supplied site (substituent). Substituents can be chosen from a pre-
made database or users can supply new substituents in XYZ or MDL Molfile format. Based on
the user input and molecular geometry calculations, the substituent is placed optimally on the
skeleton. Information for the correct placement of a substituent is kept in a CSV file, here the
central atom of the substituent group and its centroid vector is stored. After a geometrically
correct placement, the GAFF and UFF optimization methods from Open Babel are used to
optimize the newly placed substituent [51, 52]. This combination of GAFF and UFF was found
by trial-and-error. This choice is explained in the SI.

It is recommended to use a DFT optimized geometry as input skeleton. When a new
functional group is placed on the skeleton, the skeleton itself is fully constrained, hence the FF
optimization only influences the newly placed functional group. This choice was made to keep
the core of the geometry as close to its DFT optimized input structure as possible while pre-
venting steric hindrance from newly placed substituents cheaply. The resulting geometries can
be used for screening purposes or can be further optimized using semi-empirical methods or DFT.



25

Start
[[2,201]]
Functionalization_list Gather input:
) Skeleton XYZ
Substituent XYZ
p Centroid vector Functionalization | <]
>¢ sites

g P29 G
Skeleton Substituent

Save bonding info

l

Rotate and translate
substituent towards
functionalization site

l

Replace
€ £ atom_to_be_functionalized

with substituent

Merge substituent
and skeleton to
create functionalized
complex

GAFF optimization

A

UFF optimization

l

(optional)
XTB optimization

functionalization_list

Done

Figure 3: Overall workflow of ChemSpaX. 1) The user supplies a skeleton XYZ, functionaliza-
tion_list and substituent. 2) The XYZ files are converted to MDL Molfiles to conserve correct
bonding info. 3) The central atom of the substituent group and the centroid vector are used
to rotate and translate the substituent group towards the functionalization site. 4) atom_to_-
be_functionalized is replaced by the substituent group. 5) The skeleton and substituent group
are merged in one MDL Molfile with correct bonding information from input MDL Molfiles. 6)
GAFF optimization is done to prevent steric hindrance. 7) Additionally, UFF optimization is
done to prevent GAFF related issues. 8) Optionally, xXTB optimization can be used for further
optimization of the functionalized skeleton. 9) If there are no functionalizations left to do,
the program is done and the functionalized skeleton is saved in MDL Molfile format. Else the
functionalized skeleton will be used as input and the process starts again at step 1.
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4 Results and discussion

4.1 Pincer complexes

In this research the functionalization of the ligand scaffold of TM pincer complexes was inves-
tigated. First, we looked at Ru based pincer complexes. Expanding on previous research done
by our group, Mn-based pincer complexes functionalized with various adducts were investigated
afterwards [42].

4.1.1 Functionalization strategy

The Ru-based complexes had a PNP-(bis(3-phosphaneylpropyl)amine)- backbone coordinated
to a Ru(ll) center stabilized by CO, PMe3 and/or H ligands. For these RuPNP complexes, 288
geometries were generated by functionalization of the M-L complex and the M(H)-L(H) variant.
27 geometries were selected for BP86(GAS) optimization. BP86(THF) and PBELIPBE(THF)
single-point (SP) calculations were done on the optimized geometries. Gen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>