
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2017

MSc THESIS

Design & development of public-key based
authentication architecture for IoT devices using

PUF

Haji Akhundov

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2017-02

Secure communication has been paramount throughout history. Al-
though in the early ages it was mainly found in niche applications
such as the military and royal society, today it is an inevitable
part of our daily lives. The recent rapid proliferation of Internet of
Things (IoT), a diverse set of devices that are connected to the Inter-
net, imposes new challenges in protecting our privacy and security
in our daily connected lives. In most cases, one-size-fits-all security
solutions are inefficient; therefore, we need high-quality application-
specific solutions. This thesis designs, develops and evaluates a se-
cure communication architecture based on Static Random-Access
Memory (SRAM) Physical Unclonable Function (PUF) technology
and Elliptic Curve Cryptography (ECC) for IoT devices in collabo-
ration with Intrinsic ID, a world leading PUF technology company.
SRAM PUF is a popular emerging hardware intrinsic security prim-
itive: its start-up values (SUV) can be used to uniquely identify and
authenticate silicon, due to the hard to clone, inherent and device
unique deep-submicron process variations. ECC is an approach to
public-key cryptography, which can be used to establish shared secret
keys among parties; it has been gaining popularity among lightweight
IoT devices because achieving equivalent security level requires sig-

nificantly smaller operands when compared to other approaches. Our solution consists of two systematic
steps: (1) development of a cryptographic protocol which utilizes PUF-derived key as the root-of-trust,
while keeping the area constraint into account, and (2) design and development of a modular hardware
architecture that supports the protocol. We propose four protocol variants with trade-offs related to se-
curity versus implementation requirements. Further, we verify and prototype one protocol variant on the
Xilinx Zynq-7000 APSoC device, and analyze its practicality as well as its feasibility. The prototype offers
interesting insights and lays a solid foundation for future research.

Design & development of public-key based
authentication architecture for IoT devices using

PUF

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Haji Akhundov
born in Baku, Azerbaijan

Computer Engineering
Department of Quantum Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Design & development of public-key based
authentication architecture for IoT devices using

PUF

by Haji Akhundov

Abstract

Secure communication has been paramount throughout history. Although in the early ages
it was mainly found in niche applications such as the military and royal society, today it is an
inevitable part of our daily lives. The recent rapid proliferation of IoT, a diverse set of devices
that are connected to the Internet, imposes new challenges in protecting our privacy and security
in our daily connected lives. In most cases, one-size-fits-all security solutions are inefficient;
therefore, we need high-quality application-specific solutions. This thesis designs, develops and
evaluates a secure communication architecture based on SRAM PUF technology and ECC for IoT
devices in collaboration with Intrinsic ID, a world leading PUF technology company. SRAM PUF
is a popular emerging hardware intrinsic security primitive: its start-up values (SUV) can be used
to uniquely identify and authenticate silicon, due to the hard to clone, inherent and device unique
deep-submicron process variations. ECC is an approach to public-key cryptography, which can
be used to establish shared secret keys among parties; it has been gaining popularity among
lightweight IoT devices because achieving equivalent security level requires significantly smaller
operands when compared to other approaches. Our solution consists of two systematic steps:
(1) development of a cryptographic protocol which utilizes PUF-derived key as the root-of-trust,
while keeping the area constraint into account, and (2) design and development of a modular
hardware architecture that supports the protocol. We propose four protocol variants with trade-
offs related to security versus implementation requirements. Further, we verify and prototype
one protocol variant on the Xilinx Zynq-7000 APSoC device, and analyze its practicality as well
as its feasibility. The prototype offers interesting insights and lays a solid foundation for future
research.

Laboratory : Computer Engineering
Codenumber : CE-MS-2017-02
Committee Members :

Advisor: Prof. Dr. Ir. Said Hamdioui, CE, TU Delft

Chairperson: Prof. Dr. Ir. Said Hamdioui, CE, TU Delft

Member: Dr. Ir. Zekeriya Erkin, CYS, TU Delft

Member: Ir. Erik van der Sluis, Intrinsic ID

i

ii

Dedicated to my family and friends

iii

iv

Contents

List of Figures viii

List of Tables ix

List of Acronyms xii

Acknowledgements xiii

1 Introduction 1

1.1 Secure Communication . 1

1.1.1 The Past . 1

1.1.2 The Present . 3

1.1.3 The Challenges . 3

1.2 Need of High Quality and Efficient Solutions 6

1.2.1 Use Case . 6

1.3 Problem Statement . 8

1.3.1 Main Contributions . 9

1.4 Thesis outline . 10

2 An Overview Of Security Systems 11

2.1 Understanding Security . 11

2.1.1 Incentives behind threats and attacks 11

2.1.2 Security Assumptions . 13

2.2 Cryptographic Systems . 14

3 Related Work 17

3.1 Public-key Cryptography . 17

3.1.1 Discrete Logarithm problem family: DHKE 19

3.1.2 Integer-Factorization problem family: RSA 23

3.1.3 Elliptic Curve Cryptography . 27

3.2 Public-key Cryptography (PKC) Key Components 28

3.3 PKC Cores . 32

3.3.1 Commercial Products . 33

3.3.2 Academic Implementations . 35

3.4 Physical Unclonable Function (PUF) Technology 36

3.4.1 Background on PUF . 36

3.4.2 SRAM PUF . 38

3.4.3 Current Trends in SRAM PUF Technology 40

3.5 Discussion . 41

v

4 Protocol Design 43
4.1 Use Case and Application . 43
4.2 Protocol Design . 45

4.2.1 Key Agreement . 46
4.2.2 Authentication using PUF . 47
4.2.3 Protocol for key-agreement and authentication using PUF-derived

key . 48
4.3 Protocol Variants . 54

5 Hardware Design and Validation 63
5.1 Design and Development of the Architecture 63

5.1.1 High-level system architecture . 63
5.1.2 Design Space Exploration . 65

5.2 Implementation and Evaluation . 68
5.2.1 Building a Prototype . 68
5.2.2 System Integration and Experiments Performed 70
5.2.3 Discussion . 77

6 Conclusion 79
6.1 Summary . 79
6.2 Future Work . 80

Bibliography 87

vi

List of Figures

1.1 A Spartan soldier using the scytale transposition cipher. Spartan Cryp-
tography, by Hrana Janto . 2

1.2 A smart-home system, where multiple subsystems are connected together. 5

1.3 Targeted Applications . 7

2.1 Communication paradigms . 12

2.2 Ceaser cipher left shift of 3 . 14

2.3 Mesh network topology requiring n(n−1)
2 links. 15

2.4 Shamir’s no-key padlock analogy . 16

3.1 PKC Encryption and Decryption, where SK and PK are secret key and
public key respectively . 18

3.2 Discrete Log Problem (DLP) in Z∗p . 19

3.3 Setup of Diffie-Hellman protocol . 20

3.4 Diffie-Hellman Key Exchange protocol 21

3.5 Diffie-Hellman Key Exchange illustration 22

3.6 Successful MITM attack. Mallory has full access to the communication
between Alice and Bob, without them being aware of it. 23

3.7 RSA Key Generation . 24

3.8 Generalized Discrete Logarithm Problem (GDLP) 27

3.9 Elliptic Curve Discrete Logarithm Problem (ECDLP) 27

3.10 Elliptic Curve Diffie-Hellman Key Exchange protocol 28

3.11 ECC four layer approach . 29

3.12 PUF challenge-response uniqeness . 36

3.13 PUF Types . 37

3.14 Conceptual schematic of a 6T SRAM cell 38

3.15 The Enrollment and Reconstruction operations of PUF-based Key
Derivation. 39

4.1 Key components for secure communication 45

4.2 Different Scenarios . 50

4.4 Comparison of Protocol Variants A-D in terms of Communication Per-
formance, NVM Dependency, Certificate Management and Authentication 58

5.1 Conceptual Hardware Architecture . 64

5.2 Conceptual IoT device for a secure application 67

5.3 Zynq platform . 69

5.4 Mapping functionality onto the Zynq board 71

5.5 NaCl core verification . 72

5.6 Minimizing the NaCl core on a Zynq APSoC (Artix®-7 FPGA) C1:
Two-cycle Multiplier; C2: Two-cycle Multiplier and a reduced ROM;
C3: 16-cycle Multiplier . 73

5.7 Setup on a ZedBoard, hosting a Xilinx Zynq device 73

5.8 The final setup showing the proof-of-concept 74

5.9 Fuzzy-Extractor used in the proof-of-concept 75

vii

5.10 Behaviour of the Fuzzy-Extractor using rep(64,1) encoder. Note that
the decoder fails beyond the 32% error. 76

5.11 Top level block design of the prototype on the Zynq APSoC 76
5.12 Host Processor GUI; used to enroll, authenticate and provide the output

of the device. 77

viii

List of Tables

3.1 Successive squaring method example of 4242 (mod 100) 30
3.2 NIST SP 800-57 Pt. 1 Rev. 4, Comparable Strength 33
3.3 Commercial Public-Key Cores . 34
4.1 Properties of Protocol Variants A-D . 56
4.2 Communication Analysis (sensor) of Protocol Variants A-D 57
4.3 Distinguishing Properties of Protocol Variants A-D 57

ix

x

List of Acronyms

PKC Public-key Cryptography

PUF Physical Unclonable Function

IoT Internet of Things

TTP Trusted Third Party

NVM Non-volatile Memory

ECC Elliptic Curve Cryptography

SRAM Static Random-Access Memory

AC Activation Code

HD Helper Data

IFC Integer Factorization Cryptography

FFC Finite Field Cryptography

ALU Arithmetic Logic Unit

CR Challenge-Response

ECDH Elliptic Curve Diffie-Hellman

RTL Register Transfer Level

IC Integrated Circuit

MITM Man-In-The-Middle

DH Diffie-Hellman

DHKE Diffie-Hellman Key Exchange

CMOS Complementary Metal Oxide Semiconductor

ECDLP Elliptic Curve Discrete Logarithm Problem

DLP Discrete Log Problem

GDLP Generalized Discrete Logarithm Problem

ECDLP Elliptic Curve Discrete Logarithm Problem

SoC System on Chip

FPGA Field Programmable Gate Array

xi

AXI Advanced eXtensible Interface

ASIC Application Specific Integrated Circuit

PS Processing System

PL Programmable Logic

PCB Printed Circuit Board

IETF Internet Engineering Task Force

RFC Request for Comments

AMBA Advanced Microcontroller Bus Architecture

PKI Public Key Infrastructure

ASIP Application-specific Instruction Set Processor

ISA Instruction Set Architecture

RNG Random Number Generator

GPP General Purpose Processor

AES Advanced Encryption Standard

ECDSA Elliptic Curve Digital Signature Algorithm

APSoC All Programmable System on Chip

ROM Read-Only Memory

xii

Acknowledgements

Dear reader,

This project would not have been possible without the support of many people.
Therefore, I would like to take a moment to thank everyone who has helped me along
the way! Thank you all! Please forgive me if I forget someone!

Working on this project for several intensive months has left a long-lasting, positive
impact on me. I mark this period as a period of growth and transition. It was a period
of intense learning, in all different aspects: scientific, academic, personal, social, etc. It
has helped me become the better version of myself, which is the motto I live by.

Foremost, I would like to express my sincere gratitude to my advisor Said Hamdioui.
His guidance helped me in all the time of research and writing of this thesis. He has
taught me valuable lessons and is a great mentor. Furthermore, I thank Zekeriya Erkin,
for the support and encouragement in the course of this project. I would like to thank
Rene van Leuken who is always willing to help and open for interesting discussions. I
would like to thank Zaid Al-Ars who has encouraged me to come and do my masters at
TU Delft, and is always helpful. I would like to thank all members of the CYS and CE
groups at TU Delft who have helped!

My sincere thanks go to Intrinsic ID, for giving me this amazing opportunity, which
allowed me to work in collaboration with the industry, and therefore get a taste of
both worlds. I would like to thank all my colleagues there for being nice to me, always
supportive and always willing to help me. I thank Geert-Jan Schrijen for arranging
this project; Erik van der Sluis for his continuous supervision, motivation and guidance;
Roel Maes for his immense knowledge and thought-provoking comments on my work.
Big thanks goes to Sven Goossens who has spent a considerable amount of his time for
reading the entire thesis and providing me great feedback.

Thanks to Michael Hutter and Peter Schwabe for responding to my e-mails and
providing me with more information about the NaCl core.

I would also like to thank my fellow friends from the MSc lab: we had a lot of fun
times together! I thank all my friends in the Netherlands and around the globe for simply
being there and always being supportive!

Last but not the least, I would like to thank my family: my parents Rufat and Ziba,
for supporting me throughout my life, for their wise counsel, and for always being there
for me. I would like to thank my little sister Jamilya for being sweet. Your birth has
changed our lives. I thank my grandparents from whom I inherited the love for science
and academia.

Thank you all very much!

Haji Akhundov
Delft, The Netherlands
January 27, 2017

xiii

xiv

Introduction 1
This chapter motivates the work done in this thesis, introduces relevant background

information about security in general and cryptography in particular, stresses the main
contributions of the work and provides the outline of the thesis. Section 1.1 provides
some interesting historical background on secure communication and shows why the field
is important today more than ever. Section 1.2 elaborates on the motivation of application
driven implementations of secure hardware architectures and authentic communication,
which is the topic of this thesis. The major contributions of this thesis are highlighted in
Section 1.3, and the chapter concludes by describing the outline for this thesis in Section
1.4.

1.1 Secure Communication

1.1.1 The Past

The art of secret writing dates back to ancient times, where keeping secrets far from the
prying eyes of the enemies was a matter of winning or losing a battle, between life and
death. An excellent source of inspiration filled with examples of ancient secret writing is
provided in The Code Book [1]. For example, it illustrates how Greeks and Persians of
fifth century B.C. used stenography to hide secret messages. One such technique was by
writing secret messages on a shaved head of a human, letting the hair grow, therefore
hiding the message. The book gives another example of an interesting historical event
that dates back to the 16th century where Mary, Queen of Scots, was trialled and executed
for treason when her secret messages were captured, and her secret codes that contained
the assassination plan of Queen Elizabeth were easily broken. A painting by Hrana
Janto, shown in Figure 1.1 illustrates a scytale transposition cipher used by the ancient
Greek and Spartan soldiers during military campaigns [2]. In this cypher, a parchment is
wrapped around a rod with a certain diameter d, after which a secret message is written
on. The diameter of the rod on the recipients side must therefore also equal d, so that
message can be correctly read. A more recent example is the second world war (WWII).
Shortly after WWI, the now famous Enigma machine was developed, which later was the
technology used by the Nazi military during WWII for obfuscating their secret strategic
communications. Alan Turing was in charge of breaking the intercepted secret messages
at the British WWII codebreaking station, Bletchley Park [3]. He invented some devices
and techniques that have been able to break the Enigma machine and hence make sense
of the enemy’s secret communication, which contributed to the victory of the Allies. The
Enigma was the state-of-the-art machine used for secure communication. Many believe
that without the critical role of Alan Turing, the war could have could have lasted
longer or even lost by the Allies. Ever since then, methods for secure communication

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A Spartan soldier using the scytale transposition cipher. Spartan Cryptog-
raphy, by Hrana Janto

has significantly advanced; but before we talk about that, let us get a glimpse of what
is called cryptography.

Cryptography, derived from the Greek word kryptós & gráphein, meaning hidden
and writing respectively, is the art and science of secret writing [1]. In cryptography,
encryption is the process of making a message unintelligible, therefore hiding its meaning;
the opposite is decryption. Encryption works as follows: given a plaintext message m,
and a key K as inputs to a certain cipher or an algorithm f , the resulting output of the
encryption procedure is a ciphertext message c. The encryption process can be written
as c = fK(m), where fK is a cipher f that uses key K. Decryption, on the other hand,
is where the ciphertext is transformed back into the original plaintext message. This is
done by using an appropriate decryption algorithm DK = f−1K and the same key K, i.e.
m = DK(c).

Throughout history, different cryptographic algorithms and cyphers f have been
developed. In the old times, cryptography was a tool used by a niche market, such as
the military or the royalty, as seen from the earlier examples. It often involved simply
manipulating the characters and relied on the secrecy of the cryptosystem itself. These
are common characteristics of classic cryptography. With the advances in computing,
we have access to more and more computation power, facilitating the attacks on these
algorithms. One way of circumventing this is by making algorithms with longer keys.
Consequently increasing the key space became a common practice for a while. The level
of security is often measured in terms of the key size in binary representation. Note
that, cryptography can provide the means of obfuscating the messages. Yet there are
plenty of other security issues that need to be addressed in modern computer systems.
The field of computer security, or cyber security deals with protecting computer systems,
both hardware and software, networks and infrastructure.

1.1. SECURE COMMUNICATION 3

1.1.2 The Present

Today, the majority of us depend on cryptography on a daily basis without consciously
realising it. We live in a highly connected network world and heavily rely on its services in
our day to day lives. Bills are paid on-line, and money transfers are easily accomplished
with a couple of clicks on a smartphone. Sensitive and important documents such as
corporate business plans are sent over these networks. Video calls and instant messaging
with friends, family and business partners over the Internet has become commonplace.
With the development of smart grids1, electricity and water meters will be collecting our
detailed usage statistics for various reasons e.g. load balancing, managing, and billing.
Common house appliances, and other systems, are being connected to the Internet, to
enable smart homes2. These are just a few examples of some of the critical dependencies
that we have on the Internet in the 21st century.

Obfuscating the messages that travel through the Internet that traverse various phys-
ical channels (networks) spanning the globe has become paramount. This need has
fostered a lot of research in the field of cyber-security, and mainly modern cryptogra-
phy. Modern cryptography is different from the classic cryptography because of several
reasons:

• It is no longer a manipulation of traditional characters, but rather some operations
on binary bit sequences; which is a natural consequence of the digital revolution.

• Another significant difference is due to Kerckhoffs’ desiderata [4]; it states that ev-
erything about the secure system should be considered as public knowledge except
the key. This is the opposite of the security by obscurity paradigm, which was
often used in the past.

• Furthermore, maintaining privacy and confidentiality were once the central focus
of cryptography; however, today this is only a subset of the versatile operations
cryptography could equip us with. For example, authentication is yet another
mechanism that plays a crucial role in the security of our highly connected network
infrastructure. Authentication is a process where an entity’s (user, device etc.)
identity is verified before starting any secure communication.

Fortunately, modern cryptography has the necessary tools to achieve that. Never-
theless, the modern life and the fast pace of technological advancement introduce new
challenges, which is the topic of the next section.

1.1.3 The Challenges

Not too long ago the Internet comprised of a small set of devices such as simple servers
and personal computers. Today the Internet is a big global network hosting a diverse
set of devices, commonly referred to as Internet of Things (IoT), which require the use
of sophisticated cryptographic protocols, primitives, and beyond. Although there is no
concrete definition of IoT, the ‘things’ could refer to anything connected to the Internet

1http://www.intel.com/content/www/us/en/energy/iot-smart-grid-paper.html
2https://www.cnet.com/topics/smart-home/best-smart-home-devices/

4 CHAPTER 1. INTRODUCTION

such as small sensors and/or actuators, mobile devices, vehicles and house appliances
such as toasters or even refrigerators! In one of the essays by Bruce Schneier3, he
describes a network of IoT devices as a giant ‘robot’ spanning the globe. This massive
machine which is comprised of various sensors and actuators, connected to each other
on a network, where all kinds of computations are done in places such as the cloud,
is also commonly referred to as a cyber-physical system. According to an info-graphic
provided by Intel4, the number of IoT devices by 2020 would reach 200 billion. Such
rapid development of this segment encourages us to tackle the challenges that are either
directly or indirectly caused by it. At least two major challenges have to be carefully
worked out when it comes to IoT era: (1) keep up with privacy and security requirements
to ensure safe Internet; (2) deal with the diverse nature of IoT, which makes it hard, or
even inefficient to use one-size-fits-all security solutions. They are discussed next.

Firstly, with the rapid proliferation of IoT devices, it becomes a challenging task
to protect our privacy and security. An attacker could take control, steal information
or even disrupt services5. One of the reasons there are problems in the security of the
Internet is the fact that security was not the primary requirement when the Internet was
first developed and later released for public mainstream use. Originally it was intended
for small networks in relatively trusted infrastructures. These days the Internet is no
longer a trusted or reliable infrastructure. The global addressing nature makes everyone
on the Internet virtually your neighbour, imposing more threats. Imagine you as an
owner of a smart home system, which allows you to remotely control the heating system,
lighting system, entertainment systems and even access control systems, etc. as shown in
Figure 1.2.6 Clearly, no one would want an adversary to take over the control, switch off
your lights and unlock your front door. And if that was only possible by physically being
there, in this new paradigm, it is possible to attack from the antipodes. Another example
is the smartphone we carry with us at all times. It is not unusual for an average device
like that to host a dozen of different sensors such as GPS, accelerometer, fingerprint
sensor, barometer, magnetometer, light sensor, heart-rate sensors and of course the front
and back cameras and the microphone. Many applications depend on these sensors
and often upload them to a cloud infrastructure for some purposes. Understandably,
these devices potentially carry sensitive information that we would like to keep private
and not share with others. For this reason, the importance of privacy and security is
evident here. It is also the concerns and the awareness of the general public about their
privacy, governmental policies, etc. that foster the developments and the implementation
of security in these devices.

Secondly, the challenge is the diversity of IoT devices. It implies that we ought
to provide different solutions for the different challenges associated with individual IoT
devices. The reason is simple: It would be either inefficient or intractable to have a
universal security solution/architecture for all the devices out there. e.g. an IoT device
can be ‘big’ and have no area or power restrictions, or it can be a ‘small’ wearable,

3https://www.schneier.com/blog/archives/2016/02/the internet of 1.html
4http://intel.ly/1KXhnc2
5http://spectrum.ieee.org/telecom/security/how-to-build-a-safer-internet-of-things
6This illustration has been taken from an article “Why IoT Security Is So Critical” in TechCrunch.

Link: https://techcrunch.com/2015/10/24/why-iot-security-is-so-critical/

1.1. SECURE COMMUNICATION 5

Figure 1.2: A smart-home system, where multiple subsystems are connected together.

categorised as constrained devices.

In this thesis we are concerned with the constrained devices. Naturally, they have
more stringent requirements. They could be limited in their computing resources or
restricted in the power resources; or simply have a strict silicon area requirements such
as those on RFID cards. Because silicon area footprint directly translates to cost, there
is the desire to keep the silicon area footprint as minimal as possible. Reducing cost
stimulates the design of cryptographic algorithms that could be implemented with these
constraints in mind, without sacrificing for security. Cryptography engineering is the
discipline of applying and implementing the known algorithms. Naturally, the algorithms
could be implemented both in hardware and/or in software. Depending on the use case
and the end application in consideration, one implementation would render to be more
appropriate than the other. It is often a matter of trade-offs; e.g. in certain cases,
the speed or the throughput could have the utmost importance with the ‘unlimited’
computational power or hardware resources. On the other end of the spectrum we
might have very limited computational resources and low power/energy consumption
requirements to perform a similar task.

To sum all, with the growth of IoT devices, and their pervasive effect on us in our
modern lives, keeping up with the privacy and security requirements is a challenge. The
diversity of these devices brings another set of challenges that stimulate researchers and
developers to investigate individual use cases and propose specialised solutions. Another
key point is that these ‘things’ further facilitate the emergence of other technologies such
as the smart grids, smart cities, etc., that impose even more challenges. The security

6 CHAPTER 1. INTRODUCTION

of these systems is paramount. Maliciously disabling a smart grid, and hence power
downing an entire city or even a country, or interfering with the traffic lights cause
disturbance and possible economic loss. Systems must work for us and not be used
against us as a weapon by those who wish to do harm. Systems we design and build
must not only be reliable, and resilient to failures, but also secure and preserve the
privacy of the users.

1.2 Need of High Quality and Efficient Solutions

In the previous section, we argued that one of the challenges that we face is the diverse
nature of devices on the Internet. The devices can be big or small; could be residing in
a server room, or can be simply constrained wearables powered by a battery, etc. This
implies different requirements for every device. Other factors such as policies and laws, or
even business models could be influencing the required solution with respect to security
and privacy. Prominently, the end application, or the use case, is what decides about
overall requirement, hence the design specification. To identify, clarify, and organise
system requirements, we will have to examine a concrete use case. The next section
shows the industrial relevant use case that will be investigated in this thesis.

1.2.1 Use Case

The use case under consideration, as we will see in details later, is intended for a more
secure application, as compared to a modern conventional consumer IoT device appli-
cation. Nevertheless, with the adoption of certain technologies described later in this
thesis, the solution could lend itself to ordinary consumer devices as well in the future.

The solution we ought to design and develop, in the most general sense, must en-
able secure communication between lightweight, resource-constrained IoT devices and
a resource-rich party such as a server as shown in Figure 1.3. Assume that the green
boxes in the field represent legitimate devices, performing their dedicated function in an
untrusted field. The reason it is untrusted is because we have very little, or no control
over the field at all. Therefore, the two fundamental assumptions about such field are
that:

• The communication medium could be wiretapped by an adversary eavesdropper.
Regardless of the type of communication (wired, wireless, optical etc.), there are
methods to sniff or ‘read’ such communication e.g. communication between the
‘green’ devices and the server.

• Furthermore, it is assumed that an adversary is capable of tampering with the
data in transit, as well as injecting new data. Therefore, malicious devices can
potentially be placed in the field (red box in Figure 1.3), that would pretend to
be legitimate, and spoof the sent data and hence possibly disrupt the data on the
server side.

Therefore, the need of authentic and secure communication is evident here. If such
system is compromised, the damage could take different forms and could be less or more

1.2. NEED OF HIGH QUALITY AND EFFICIENT SOLUTIONS 7

Figure 1.3: Targeted Applications

devastating depending on the exact end-user application. Nevertheless, it is imperative
that appropriate security measures are taken, and therefore it is in our interest to achieve
maximal security.

To alleviate any damage and address the field assumptions above, we rely on two con-
tributing factors of a secure communication, which are (1) encrypting the communication
channel, thus making sensitive data unintelligible to those who are not authorized, and
(2) authenticating legit devices, therefore, rejecting malicious devices that could cause
havoc. In our illustration in Figure 1.3, the legitimate ‘green’ devices are first accepted,
and ‘red’ devices are rejected, and perhaps even reported, using authentication tech-
niques. Later, all communication between ‘green’ devices in the field and the server are
encrypted.

Although the use case described above sets the common ground in designing the
solution, there are some other requirements that would shape the design of the solution
later. This thesis is partly done at Intrinsic ID. Therefore the set of requirements for
the project is reflected by the typical use cases in the vision of the company as well as
its industrial customers. Intrinsic ID is a world leader in the field of Cyber-Physical
Security Systems as a provider of Physical Unclonable Function (PUF) technology. PUF
is a hardware security primitive [5] that can be used for silicon authentication. PUF is
referred to as silicon fingerprint, the analogous to the unique and un-clonable human
fingerprint. It uses unique physical hardware properties of a device for generating those
fingerprints. Given a challenge as the input to the PUF, the output, often called the
response is generated [6]. By applying certain clever techniques such as error correcting
and privacy enhancing techniques to the response from the PUF, it is possible to derive a
stable and device unique secret key [7] [8]. Using Intrinsic ID patented PUF technology,
secret keys and identifiers are reliably extracted from the physical properties of chips [9].

In the context of this project, the PUF-derived key can be viewed as the primary asset
of the secure system, and the application of PUF technology for secure communication is

8 CHAPTER 1. INTRODUCTION

one of the driving factors of this project. PUF technology gives us the unique capability
to achieve a secure device-dependant cryptographic key. The PUF-derived secret key on
the constrained IoT device can be used as the hardware root-of-trust in authenticating
the devices in the field and enabling secure communication.

1.3 Problem Statement

As we have seen already, enabling secure communication for lightweight and constrained
IoT devices is paramount for preserving our privacy, our security and our general safety.
With the rapid proliferation of IoT devices, the challenges become even more profound.
In general, one-size-fits-all solutions are not efficient, mainly because the use-cases are
different and therefore the requirements are different. For example, a YouTube server is
expected to perform key-establishment with each and every client; a client on the other
hand, only does one key-establishment. Therefore, more often specialised and applica-
tion dependent solutions need to be designed and developed. Providing a high quality
and efficient solution for a specific purpose, that is, satisfying certain requirements such
as minimising the silicon footprint, while integrating several components such as PUF
hardware security primitive, is the research problem of this thesis. Therefore, the goal
is to design and develop an architecture that is scalable, provides secure communica-
tion with many resource-constrained IoT devices, and satisfies predefined requirements
including low power, small cost, etc. The problem is exacerbated, and remains a chal-
lenging task, due to the abundance of protocols, cryptographic primitives, diversity of
devices and multiple methodologies such as software, hardware or co-design methods,
and due to the lack of off-the-shelf solutions.

Under these circumstances, the problem statement of this thesis is to:

Design and develop an architecture for secure communication with IoT devices in un-
trusted fields, using PUF-derived keys as the root-of-trust, where the key components
are implemented in hardware while minimising the impact of the silicon footprint.

Naturally, this leads us to several important steps of the project:

(a) Investigate and analyse existing secure communication protocols (mainly key
establishing[10]), and authentication methods using PUF

(b) Derive a protocol that can be used to solve the problem

(c) Investigate an existing appropriate hardware solutions, design and implement the
core operation in hardware

(d) Propose a design of a hardware template of an architecture that augments the
necessary components for making a self-contained system

(e) Evaluate the solution by simulating certain components, prototyping a demon-
strator, experimenting and conducting performance analysis

1.3. PROBLEM STATEMENT 9

(f) Further investigate optimisations on protocol level and architectural level

(g) Lay foundation for future research

1.3.1 Main Contributions

Designing application specific solutions are necessary in such a diverse environment of
IoT devices and use cases. Securely transmitting data between authentic devices and
host processors is crucial for preserving our privacy and security, and for general safety.
To achieve a high quality and an efficient solution to our problem, a holistic approach
is necessary for designing the architecture. To accomplish this, we heavily rely on (1)
modern cryptography and a (2) PUF hardware intrinsic security primitive.

Cryptography has the means and tools for establishing shared keys, encrypting the
communication as well as authenticating the devices. To have an encrypted channel,
the communicating parties must share the same key. In this regard, we can make use
of key-establishing protocols [10], which works on the principles of public-key cryptogra-
phy. This key, in turn, can be used for encrypting the channel, by using the primitives
that work on the principles of symmetric cryptography. Using certain additional cryp-
tographic primitives, we can also achieve authentication. Using PUF technology, along
with the cryptographic primitives described above, we can create a secure and robust
authentication scheme for the IoT devices.

The focus of this thesis is secure communication for IoT. Establishing a secure authen-
ticated communication potentially enables a range of other use cases and applications
for PUF-embodied devices. Ultimately, the main contributions of this thesis are:

1. Cryptographic Protocol Design: A solution for a secure communication based on a
cryptographic protocol is developed; it has the following properties:

• Enables secure communication between constrained and a resource-rich de-
vices, by establishing a secure shared key based on public-key cryptography;
i.e., Elliptic Curve Cryptography (ECC) [10]. A particular emphasis was done
on the constrained devices, where the optimal goal was to minimize the silicon
footprint, therefore achieving a lightweight solution.

• Utilizes PUF-derived key as the root-of-trust. PUF technology allows us to
derive device dependant secure keys, and therefore provides the means to
authenticate the silicon.

• Uses additional authentication mechanism, i.e., challenge-response protocol
based on the derived keys.

• Additionally, we propose three protocol variants with trade-offs related to
security versus implementation requirements. The main achievements of the
variants are mainly: (1) enabling mutual-authentication and (2) reducing non-
volatile memory requirement on the constrained device.

2. Hardware Architecture Design and Development: A modular hardware architecture
that can be used for securing IoT devices based on the derived protocol is designed
and developed; it is a complete and a self-contained solution, where safety critical

10 CHAPTER 1. INTRODUCTION

and compute-intensive operations are implemented in hardware to minimize area
and keep them within a secure perimeter.

3. Validation and Evaluation: A prototype based on an instance of a designed hard-
ware architecture was developed and implemented using a Xilinx Zynq-7000 APSoC
device. This allowed us to verify one protocol variant and analyze its practicality
and feasibility. Further, this prototype offered interesting insights and provided a
solid foundation for an ASIC implementation and future research.

1.4 Thesis outline

This chapter motivates the work done in this thesis, introduces some relevant back-
ground information about cryptography, and describes the contributions of the work
and provides the outline of the thesis. The rest of the thesis is structured as follows:

• Chapter 2, An Overview of Security Systems. This chapter motivates why we need
secure systems, and provides an overview of what a secure system is. It discusses
some of the prevailing threats on the Internet and the incentives of the attackers.
The most used security requirements are presented, along with an introduction to
cryptographic systems.

• Chapter 3, Related Work. This chapter gives a broad overview of public-key
cryptography primitives, and shows related hardware implementations from both
academia and the industry. Furthermore, we introduce a hardware intrinsic secu-
rity primitive known as PUF.

• Chapter 4, Protocol Design. This chapter begins by providing an in-depth list of
requirements for this project. It then proceeds to protocol design and proposes four
protocol variants with trade-offs related to security quality versus implementation
requirements.

• Chapter 5, Hardware Design and Validation. This chapter discusses the design
and development of a modular hardware architecture that can be used to support
the execution of a protocol variant described in Chapter 4. Further, it discusses
the verification and the prototyping of a protocol variant on a Xilinx Zynq-7000
APSoC device, and analyzes its practicality practicality as well as its feasibility.

• Chapter 6, Conclusion. This chapter concludes the work done in this thesis.

An Overview Of Security
Systems 2
In the previous chapter we have introduced the importance of secure communication, and

outlined the challenges caused by the proliferation of Internet of Things (IoT) devices.
Therefore we need to design and develop scalable, high quality and efficient secure solu-
tions that are specially crafted for specific applications. To do so, a deep understanding
of secure systems is needed. In this Chapter we take a closer look at security systems
in general. In Section 2.1.1 we look at what attacks are, who the adversaries are, and
what their incentives might be, along with a gentle introduction to how security system
work and elaborates on widely agreed upon security requirements in the community. Sec-
tion 2.2 briefly describes how some of these requirements can be achieved by giving a
gentle introduction to cryptographic systems.

2.1 Understanding Security

Unless we live in a society where the ‘big brother is watching’1 having a secret conver-
sation in real life is straightforward. Just like in Figure 2.1(a), one can directly initiate
a private conversation. If necessary, the two parties can whisper, or even hide far away
from prying eyes. However, this is not the case on the Internet. On the Internet, the
same secret message might have to traverse through different mediums, different Internet
service providers, cross the ocean, get broadcasted via a wireless channels, etc. Anyone
on this path with just a little incentive would be capable of tuning in and capturing
those messages, as shown in Figure 2.1(b). Matters get even more complicated because
in real life identifying the person you are talking to is easy, because you can see or hear
the person. On the Internet, without special precaution steps, the recipient cannot be
sure of the sender, nor sender can be sure about the recipient of the message. Message
integrity is also an issue. How can one be sure that the message in transit has not been
altered? How can we know that the message is coming from the right person? Answer-
ing these questions is exactly the purpose of secure systems. Obviously, understanding
the potential threats and common incentives of attacks is critical for the development
of appropriate solutions. This helps in defining the requirements and the properties of
a secure system. Next, the incentives behind attacks will be discussed. Thereafter, the
common security requirements are addressed.

2.1.1 Incentives behind threats and attacks

According to a report from the Kaspersky Lab, “On average enterprises pay US$551,000
to recover from a security breach”.2 One big Chicago bank lost $60 million to check-

1Book: 1984 by George Orwell
2http://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf

11

12 CHAPTER 2. AN OVERVIEW OF SECURITY SYSTEMS

(a) Face to face conversation
(b) Message exchange on the Internet

Figure 2.1: Communication paradigms

related fraud by organised crime [11]. Piracy is another threat in the cyber world, since
copying bits is virtually easy. Industry’s losses due to piracy according to Business
Software Alliance (1997) account $15 billion. These are just some of the few shocking
facts that reveal the impact of cyber security breaches. What are the motives and
incentives behind these attacks?

It is important to realise that the crimes that are done in the cyber-world highly
resemble those in the physical world. Moreover, the incentives are usually very similar
in nature too; they are referred to as the unchanging nature of attacks [12]. Theft,
fraud, vandalism and other kinds of crimes can all be manifested in one way or the other
into the cyber world. However, there is also the changing nature of the attacks in the
cyber-world which make them potentially devastating. Schneier characterizes them with
three properties: Automation, Action at a Distance and Technique Propagation [12]. No
doubt that tasks could be automated on a computer: they are very good at performing
repetitive tasks. Furthermore, because of the nature of the Internet and networks in
general, actions can be carried out at a distance. A successful attack (e.g. or a well-
developed tool) could be easily shared with, or propagated to, someone else. These have
some implications that make the attacks in the cyber-world potentially more devastating
and very different from the physical attacks. Schneier provides great examples of these
implications in [12].

To put it differently, just like in the physical world, adversaries have different inten-
tions, often malicious, such as stealing information by eavesdropping on some communi-
cation (e.g. identity theft), and modifying data (e.g. altering bank account balance). It
is important to note that in some cases attacks are not malicious: an example would be
an academic research in the field of security. Sometimes attacks are not intended and
are simply caused by human error. Attack and their motivation is a vast subject, and
an interested reader may refer to Part I of Secrets & Lies [11].

It is a difficult task to devise a single universal attack taxonomy. There exist many
different attack classifications due to the complexity and the abundance of different tech-
nologies. Certain classifications are broad, and some are very specific. Certain articles
focus on the software-attack taxonomy and other focus on hardware attacks [13] [14].
Another perspective would be to classify attacks as those coming from insiders versus
outsiders. This suggests that not only the attacks but the adversaries could be classified

2.1. UNDERSTANDING SECURITY 13

as well; an interesting classification of adversaries is provided in [15] and also mentioned
in [16] is where the adversaries are classified into: Class I: Clever Outsiders, Class II:
Knowledgeable Insiders, and Class III: Funded Organizations. Another attack classifi-
cation is also provided in [17] that classifies attacks into three tiers: social engineering,
classical cryptanalysis and physical attacks. Papp et al. [18] conducted a systematic re-
view of public available data on existing threats and vulnerabilities in embedded systems
and provide an extensive attack taxonomy.

To put it briefly, there are a huge number of attacks and possible threats to the
system; and yet still more to be developed by someone in the future. This naturally
leads us to the question such as: can we protect a system against all known and unknown
threats and attacks? The answer is clearly a no. It is common to admit in the field of
cyber security that given enough time and resources any system can be compromised
[17] [14], hence there is no such thing as a 100% secure system. If a system is claimed
to be secure by someone, the questions are ‘from who’? and ‘from what’? [11]

So what is the definition of a secure system? Unfortunately, neither the academic
world nor the industry has converged on one single definition. Some argue that the sys-
tem can be considered secure if the investment that is needed for a successful exploitation
exceeds the potential gain by a tenfold. According to Pfleeger & Pfleeger, “Computer
security is the protection of the items you value, called the assets of a computer or a
computer system” [19]. This leads us to the question of how much effort needs to be put
into protecting an asset. Nuclear plants controlled by computer systems would require
much higher levels of security than a radio controlled car toy. Certain governmental or-
ganizations have adopted classifications for the assets such as top secret, confidential etc.
The classification is useful because it acts as standardisation and sets a common ground.
The different levels have specific guidelines associated with each level of security. Hence,
these classification tags help determine the degree of security needed for protecting the
asset. In the following section we briefly introduce certain security assumptions.

2.1.2 Security Assumptions

There are four common security requirements that are often mentioned in literature;
these are confidentiality, integrity, authentication and non-repudiation [20]:

• Confidentiality is a service used to keep the information accessible only to the
authorized users of the communication. This service includes both protection of
all user data transmitted between two points over a period of time as well as
protection of traffic flow analysis.

• Integrity is a service that requires that system assets and transmitted information
can only be modified by authorized users. Modification includes writing, changing
the status, deleting, creating, delaying, and replaying of transmitted messages.

• Authentication is a service that is concerned with assuring that the origin of a
message, date of origin, data content, time sent, etc are correctly identified. This
service is subdivided into two major classes: entity authentication and data origin
authentication. Note that the second class of authentication implicitly provides
data integrity.

14 CHAPTER 2. AN OVERVIEW OF SECURITY SYSTEMS

• Non-repudiation is a service which prevents both the sender and the receiver of a
transmission from denying previous commitments or actions.

2.2 Cryptographic Systems

To achieve the security properties discussed earlier we ought to use cryptographic algo-
rithms. The majority of cryptographic algorithms that have appeared historically since
the birth of cryptography could be categorised as what is known today as symmetric
algorithms.

In symmetric algorithms both the sender and the receiver need to have a common
secret key K that is used for encryption and decryption [10]. Some cipher f is used to
encrypt a plaintext message m and output an unintelligible ciphertext c = fK(m) to be
sent. At the reciever side, an inverse cipher f−1 is used to recover the plaintext message
from the ciphertext using m = f−1K (c) as shown in the figure below:

fK(m)

K

Sender

f−1K (c)

K

Receiver

m c m

A common example that is used to demonstrate a symmetric-key algorithm in most
of the textbooks on this subject is the näıve Caesar cipher. In Caesar cipher, the sender
encrypts the plain text by individually rotating every letter a certain amount of rotations.
Upon receiving the encrypted text, it is decrypted by rotating by the same amount of
rotations in the opposite direction. The number of rotations here is the key. A simple
example where key = 3 is shown in Figure 2.2. In this example fK(m) where K = 3 and
m = “E” would be f3(E) = “B”.

Using this algorithm, two parties who are in possession of the secret key K can now
communicate ‘secretly’ over the Internet. Note, however, that this algorithm is simply
used to demonstrate a concept here. If this algorithm is used for the English language, we
would have a space of 25 keys, which is clearly a weak algorithm (as one can easily try all
these 25 keys), and therefore insecure. Recent developments in cryptography have given
us a great set of fast, practical and secure symmetric algorithms that are commonly used
today for secure communication such as Advanced Encryption Standard (AES), DES,
Blowfish etc. [21]. Their security is due to lengthier key sizes, therefore substantially
complicating greedy brute-force attacks i.e., exhaustive key-search [10]. This is a simple

f3(e)

Sender

f−13 (b)

Receiver

‘e’ ‘b’ ‘e’

Figure 2.2: Ceaser cipher left shift of 3

2.2. CRYPTOGRAPHIC SYSTEMS 15

attack of trying every possible key, until the correct key is identified. Today, a key size of
112-128 bits is known to be sufficient for a long-term security of several decades; however,
advances in quantum computing will hinder this. Note that an exhaustive key-search is
not the only way of attacking a system, there can be other weaknesses in a system that
can be exploited. AES is a popular cipher that has been standardized by NIST to replace
DES and Triple DES [22]. AES is a variant of Rijndael which has a fixed block size of
128 bits, and a key size of 128, 192, or 256 bits. AES’s data path is well structured, and
certain hardware implementations take advantage of that by pipelining the architecture
for increased throughput such as the one described in [23].

One of the obvious properties of symmetric cryptography that can be looked at as a
drawback is that before establishing a secure communication, the secret key K has to be
somehow agreed upon, via some other secure channel e.g. in person or a courier. This
particular trait certainly has several disadvantages; for one reason, simply negotiating a
key before communication could be cumbersome and unpractical in many cases. This
is known as the key distribution problem [10]. To illustrate this, let us consider the
connected mesh network topology with n nodes (e.g. users) as shown in Figure 2.3.
In this case the number of keys that need to be negotiated beforehand for individual
private communications grow quadratically: n(n−1)

2 [20] [10]. Furthermore, a lot of keys
need to be stored and remembered by each user (node) on every device, which is often
unpractical. Moreover, this could introduce other vulnerabilities to the secure system.
As an example, a compromised device will reveal all stored secret keys and therefore all
prior communication that has been done with this device would be accessible. There are
some other disadvantages; an interested reader could refer to [20] [10]. In summary, the
major shortcomings of symmetric algorithms are:

• Key Distribution Problem

• Number of keys that need to be stored

Figure 2.3: Mesh network topology requiring n(n−1)
2 links.

Nevertheless, researchers have never proposed to abandon symmetric cryptography;
in fact, it is still the best tool for encryption. They rather look into how these short-
comings can be mitigated. A good foundation in understanding secret communication
without prior key establishment is the Shamir’s no-key protocol [24]. We will use a pad-
lock analogy as shown in Figure 2.4 and explained here. Imagine Alice who wants to send

16 CHAPTER 2. AN OVERVIEW OF SECURITY SYSTEMS

a secret parcel to Bob3 using an untrusted shipping company. According to Shamir’s
no-key algorithms what Alice could do is use her padlock A to lock the parcel with the
corresponding KeyA (as shown in Step 1) and ship it to Bob. Once received by Bob, he
is still not able to open the parcel because Bob does not have Alice’s KeyA. Instead,
Bob attaches his own new padlock B side by side with Alice’s padlock (as shown in Step
2) and ship the parcel back. Alice would then remove her padlock using KeyA (as shown
in Step 3) and ship the parcel back to Bob again. This time, however, Bob will be able
to open the parcel, simply by using his padlock’s KeyB that he owns (as shown in Step
4).

Notice that this protocol in not a key-based algorithm: it does not require Alice and
Bob to be in possession of identical keys. Shamir’s no-key protocol is the first known
three-pass protocol. Mathematically, for this scheme to work, we must use commutative
cryptographic functions [25]. This means that if the message was encrypted twice with
different keys, it should be possible to remove the first encryption while leaving the second
encryption. In other words, encryption and decryption are order-independent. In the
next chapter, we discuss the related work, among which is the Public-key Cryptography
(PKC): the building blocks that helps us tackle the issues discussed earlier as well as
provide us with interesting new capabilities.

Figure 2.4: Shamir’s no-key padlock analogy

3Alice and Bob are common placeholder names used in the field of cryptography.

Related Work 3
In the previous chapter we introduced the concept of a secure system. We also introduced

the concept of symmetric cryptography, and highlighted its shortcomings such as the key
distribution problem. This chapter examines Public-key Cryptography, which mitigates
those shortcomings, and equips us with additional tools that can help in achieving a more
secure system. In addition, a hardware security primitive known as Physical Unclonable
Function (PUF) is discussed in this chapter; they can further enable security as they are
able to authenticate the silicon. The first three sections of this chapter discuss public-key
cryptography; i.e. Section 3.1 describes the widely known Public-key Cryptography prim-
itives in greater detail, Section 3.2 discusses aspects of Public-key Cryptography (PKC)
implementation, and Section 3.3 highlights some commercial and academic hardware
cores equipped with PKC primitives. The last section, Section 3.4, discusses Physical
Unclonable Function and its current trends.

3.1 Public-key Cryptography

The shortcomings and limitations that were described in the previous chapter have trou-
bled engineers and scientists until Diffie and Helman published their famous paper ‘New
Directions in Cryptography’ [26] in 19761. The paper illustrates the shortcomings of
symmetric algorithms and proposes asymmetric algorithms or Public-key Cryptogra-
phy (PKC). Shortly after that, a key transport and digital signing scheme were pro-
posed by Rivest, Shamir and Adleman (RSA) in 1977. Later in 1985, the use of elliptic
curves in cryptography was suggested independently by Neal Koblitz [27] and Victor S.
Miller [28]. Note that evidence exist that similar public-key techniques were used even
earlier by British secret agencies2, by the trio James Ellis, Clifford Cocks and Malcolm
Williamson, who later were recognised and awarded3.

In PKC the key is comprised of two parts: the private key4 and the public key. The
private keys are kept secret, and the public keys are made public. A public key PK is
used for encryption, and successful decryption is possible only with the corresponding
private/secret key SK as shown in Figure 3.1. A good analogy as shown in [10] is a
traditional mailbox: anyone can deposit mail, but only the owner who is in possession
of the key can unlock the mailbox and fetch all the mails.

PKC is not only used to encrypt by definition but in general, can provide the following
mechanisms [10]:

1Awarded with the Turing Award, a Nobel Prize equivalent for computer scientists in 2015.
2https://www.gchq.gov.uk/note-non-secret-encryption
3http://www.bbc.com/news/uk-england-gloucestershire-11475101
4Often interchanged with the term secret key.

17

18 CHAPTER 3. RELATED WORK

fPK(m)

PK

f−1SK(c)

SK

m c m

Figure 3.1: PKC Encryption and Decryption, where SK and PK are secret key and
public key respectively

• Encryption: Making plaintext messages unintelligible for those who are not in
possession of the secret key. The reverse process is decryption.

• Key Establishment: This is the most important operation in the context of this
thesis. As stated earlier in Chapter 2, the problem with symmetric cryptography
is that the communicating parties who wish to secure their communication must
have a key that is known to both. Using this mechanism, two sides who do not
share copies of the same key can securely establish a shared key, that can be later
used for other purposes.

• Identification and Non-repudiation: Non-repudiation is a mechanism which pre-
vents a party denying its actions e.g. a user who has signed a document shouldn’t
deny this action in the future. Identification, a closely related term can help in
identifying messages, as well as aid in authentication. By using digital signatures,
which is possible using PKC, we can add these mechanisms to our communication.

Theoretically, encryption using PKC is possible in certain cases e.g. RSA; however,
public key algorithms are computationally more demanding than the symmetric algo-
rithms, and hence are usually not used for session encryption; i.e., encryption of the
ongoing communication session using a session key, a key that is valid only for a short
period of time. Instead a symmetric algorithm is used. As discussed earlier, for sym-
metric algorithms to work, the principals need a shared secret key. PKC is traditionally
used for session key establishment ; i.e., establishing secret keys over an unsecure chan-
nel. In general there are two ways of doing this: (1) key transport or (2) key agreement
protocols. In the former, a secure key is derived by a principal and is transferred to oth-
ers (e.g. RSA key transport); in the latter, the principals involved (two or more) make
their individual contributions to derive their shared secure key [29] (e.g. Diffie-Hellman
key exchange (DHKE) protocol). Non-repudiation and identification can be realised by
specific protocols using digital signatures [10]. A document can be digitally signed by a
party using a secret key. The signature can be verified by using the public key. This sim-
ple method provides the non-repudiation mechanism, and naturally provides the means
to verify the identification of the signee. Moreover, this is also a mechanism for providing
integrity, a slight change in the document (e.g. flip of one bit) will not produce the same
digital signature. Assuming, of course, that the secret key has not been stolen.

PKC algorithms are classified, according to the underlying mathematically/compu-
tationally hard problem that they are based on, into three known families [10]:

• Discrete Logarithm problem family: Difficulty based on the discrete logarithm

3.1. PUBLIC-KEY CRYPTOGRAPHY 19

problem in finite fields. Diffie-Hellman key-exchange is an example from this family.

• Integer-Factorization problem family: Based on the difficulty of large integer
factorization. RSA is the most prominent example in this family.

• Elliptic Curve problem family: These algorithms are based on the generalised
discrete log problem in a finite field defined over an elliptic curve group. The
underlying problem is commonly referred to as Elliptic Curve Discrete Log Problem
(ECDLP).

In the subsequent sections, we briefly examine these families in chronological order
of their appearance.

3.1.1 Discrete Logarithm problem family: DHKE

The Diffie-Hellman Key Exchange (DHKE) was the first PKC protocol introduced to the
public that belongs to the Discrete Log Problem (DLP) family. Today, many versatile
protocols that are widely used in modern cryptographic software libraries are based
on DHKE. In this section we first give a formal definition of DLP, followed by the
definition of DHKE. An illustration that helps understand the protocol is given along
with a numerical example. We end this section by discussing the potential attack on the
protocol by introducing the concept of Man-In-The-Middle (MITM) attacks, to which
all PKC protocols are susceptible.

The formal definition of DLP as given in [10] is:

Definition Discrete Log Problem (DLP) in Z∗p
Given is the finite cyclic group Z∗p i.e., the set which consists of all integers i =
0, 1, . . . , p − 1 for which gcd(i, p) = 1, of order p-1 and a primitive element α ∈ Z∗p and
another element β ∈ Z∗p. The DLP is the problem of determining the integer 1 ≤ x ≤ p−1
such that:

αx ≡ β mod p.

Figure 3.2: Discrete Log Problem (DLP) in Z∗p

If the chosen numbers are sufficiently large, computing the discrete logarithm i.e.,
x as in Figure 3.2, becomes a very time consuming and a challenging task[10]. There
exist several ways that try to compute the discrete logarithm, therefore ‘solving’ the
DLP [10]. One may think of these as ways of attacking the DLP. In [10], the authors
classify these algorithms into generic and non-generic algorithms. In the generic class, the
general group operations are under the consideration. Example of generic are brute-force
search algorithm, baby-step giant-step algorithm, Pollard’s rho method, Pohlig-Hellman
algorithm etc. Nongeneric algorithms, on the other hand, exploit special properties of a
particular cyclic group. A prominent example of this kind of attack is the Index-Calculus
Method. Detailed explanation of these attacks are beyond the scope of this section, an

20 CHAPTER 3. RELATED WORK

interested reader may refer to [10] for more information. Note that these are the best-
known algorithms for solving the discrete logarithm problem. Even though we know of
these attacks, it is worth mentioning that it is still possible to achieve a certain level of
bit-level security by choosing the appropriate parameter sizes (e.g. key size). Next we
explore the well-known DHKE protocol that belongs to this family.

Diffie-Hellman Key Exchange (DHKE) Protocol

One of the most famous protocols of DLP family is the Diffie-Hellman Key Exchange
(DHKE); it was the first algorithm introduced to the public. DHKE consists of two main
steps: (a) set-up or initialization and (b) key-agreement. These are discussed next.

During the set-up step, a set of parameters often called domain parameters need to
be agreed upon; these are the initial parameters needed by the key exchange protocol
in order to determine the secret key and realize the key establishment between the
principals. In practice, the domain parameters are defined by either a standard, set-up by
a trusted third party, or agreed upon by the participating parties in some other way. An
interested reader may refer to the Request for Comments (RFC)5 #2631 standard drafted
by the Internet Engineering Task Force (IETF) for detailed requirements, examples and
implementation guide.

Diffie-Hellman Set-up

1. Choose a large prime p

2. Choose a postiive integer α, such that α is a primitive root modulo p

3. Publish p and α

Figure 3.3: Setup of Diffie-Hellman protocol

Figure 3.3 shows the set-up step as described in [10]. In the set-up step
shown in Figure 3.3, p and α are the DHKE domain parameters and are made
public. Note that α must be a primitive root modulo p, also called the base.
Using these parameters any two (or more) parties can generate a common se-
cret key k over an unsecure channel using the second step i.e. key-agreement.

5https://tools.ietf.org/html/rfc2631

3.1. PUBLIC-KEY CRYPTOGRAPHY 21

Diffie-Hellman Key Exchange

Alice Bob

1 : Choose a = kpr,A ∈R {2, ..., p− 2} b = kpr,B ∈R {2, ..., p− 2}
2 : Compute A = kpub,A ≡ αa mod p B = kpub,B ≡ αb mod p

3 : A = kpub,A

4 : B = kpub,B

5 : kAB = k
kpr,A

pub,B ≡ B
a mod p kAB = k

kpr,B

pub,A ≡ A
b mod p

. .Key established: kAB .

Figure 3.4: Diffie-Hellman Key Exchange protocol

During the key-agreement step, both participants contribute to the key establish-
ment. Figure 3.4 shows the corresponding algorithm. Assume that both Alice and Bob
are aware of the DHKE domain parameters. They proceed by randomly choosing their
private keys a = kpr,A and b = kpr,B as shown in Line 1 of the protocol; the private key
should be selected from a pre-defined set of integers at random; e.g. a ∈R {2, ..., p−2}. In
Line 2, the private keys are used to compute the corresponding public-keys; Thereafter,
these are exchanged as shown in Line 3 and 4; this is sometimes referred to as individual
DHKE contributions. Finally, in Line 5, the shared key is computed by both parties.
It is easy to see that after the key-agreement step, both Alice and Bob get the same
key: Alice computes kAB ≡ Ba ≡ (αb)a ≡ αab mod p, which is equivalent to what Bob
computes: kAB ≡ Ab ≡ (αa)b ≡ αab mod p. Remember that computations in the DHKE
protocol are exponentiation in Zp i.e., arithmetic modulo p. Therefore, the security of
the protocol is based on the DLP in Zp, as stated previously in Figure 3.2

DHKE Example

Next we will first illustrate the DHKE using a paint bucket analogy and thereafter
using a simple numerical example. Figure 3.5 provides an illustration of DHKE using a
paint bucket analogy. Alice and Bob start with a common paint, the domain parameters.
They choose their secret colors and individuality mix it with the common paint. The
resulting paint is their contribution; that is exchanged via an unsecured public transport.
The secret colors are then added to the received pain bucket by both sides, resulting in
a common paint, a common secret. Note that the secret color is never disclosed to the
public nor to the other party at any point in time. The analogous to DLP in this example
is that the mixture separation is expensive and unfeasible.

22 CHAPTER 3. RELATED WORK

Figure 3.5: Diffie-Hellman Key Exchange illustration

Let us quickly look at a simple numerical example: Initially, Alice and Bob agree on the
domain parameters: p = 23 and the base α = 4. Thereafter, corresponding to Line 1 and
2 of the protocol: Alice chooses a secret integer a = 6, and computes A = 56 mod 23 = 8.
Bob chooses a secret integer b = 15, and computes B = 515 mod 23 = 19. After which
their contributions are exchanged as in Line 3 and 4. As in Line 5, the shared keys
are computed as follows: Alice computes kAB = 196 mod 23 = 2, and Bob computes
kAB = 815 mod 23 = 2. Alice and Bob now share a common secret kAB = 2.

Notice that the individual contributions from Alice and Bob, A and B, travel freely
and are publicly available to anyone. As mentioned earlier, it is due to the DLP that
finding the secret exponent is computationally intractable; i.e., no efficient algorithm
exists today that make attacks feasible, as discussed earlier on page 19. Nevertheless,
there exist other kinds of attacks on DHKE that are not based on solving the DLP, but
still jeopardize the entire communication, one such attack is discussed next.

Man-In-The-Middle (MITM) Attack

An eavesdropper (Eve) who is tapping the channel can easily reconstruct the secret
key k if one of the private keys kpr,A or kpr,B is known. However, even though Eve
can capture Alice’s and Bob’s public keys A = kpub,A & B = kpub,B, she is unable to
calculate Alice’s or Bob’s private keys due to the DLP discussed above. However, public-

3.1. PUBLIC-KEY CRYPTOGRAPHY 23

key based protocols are prone to a well-known attack known as the active MITM attack.
The problem lies in the authenticity of the public keys. In a MITM attack, the attacker
sits in the middle of the conversation, secretly relaying messages between communicating
parties. Meanwhile, the communicating parties think that they are communicating with
each other directly. Let us examine how a MITM attack is possible on the DHKE
protocol shown in Protocol 3.4. An attacker, Mallory6, can pretend to be Bob and
perform DHKE with Alice, therefore establishing a shared key kAM . At the same time,
Mallory will pretend to be Alice and perform DHKE protocol with Bob, establishing
a different separate shared key kBM . The relaying then becomes trivial, messages c
transmitted from Alice are encrypted using some encryption function c = Ek(m), where
k is the previously agreed kAM and m is the original plain-text message. Since Mallory
is in the possession of the key, she can retrieve the original message m using a decryption
function m = Dk(c). Using a similar process, Mallory can now relay the original message
m or possibly a modified message m′ to Bob using the other, previously establish key
kBM . This is illustrated in Figure 3.6. The entire process is identical the other way
around. As a result, the communication between Alice and Bob is jeopardized and
can be eavesdropped and tampered, without their knowledge. Note that this problem is
relevant to any public-key protocols; to circumvent this, we need to somehow authenticate
public-keys. One way to protect public keys is through certificates. A certificate binds an
identity of a user to their public key [10]. A hardware intrinsic primitive PUF, discussed
in Section 3.4, can be used as a root-of-trust to authenticate the silicon of a device. e.g.
using PUF, we can issue certificates that bind certain parameters to the silicon.

Alice

kAM

Mallory

kAM , kBM

Bob

kBM

c c′

Figure 3.6: Successful MITM attack. Mallory has full access to the communication
between Alice and Bob, without them being aware of it.

3.1.2 Integer-Factorization problem family: RSA

Shortly after the introduction of DHKE, Ronald Rivest, Adi Shamir, and Leonard Adel-
man introduced a full-fledged public cryptosystem in [30] that is based on a simple piece
of classical number theory. The hardness of which is provided by the integer factoriza-
tion problem; i.e., it is easy to multiply two integers but extremely hard to factorise the
result; e.g. see [31].

There are no known efficient non-quantum algorithms that can do prime factorization;
therefore, choosing sufficiently large numbers can guarantee a certain level of security
even with the best-known factorization methods and algorithms (e.g. Pollar’s rho). This

6Mallory is a common placeholder name for an active Man-In-The-Middle (MITM) attacker who can
alter messages, delete, or inject messages; Eve, on the other hand, is a passive character who is an
eavesdropper who can only listen but not modify the messages in transit.

24 CHAPTER 3. RELATED WORK

section discusses the RSA construction and the potential attacks it can suffer from. First,
we show how key generation in RSA is performed; i.e., the generation of private/public
key-pair. Thereafter we show how encryption can be done using RSA, and show an
easy to understand proof of correctness. A numerical example is given at the end for
illustration purposes. Finally, we briefly discuss the potential attacks on RSA.

RSA Key Generation
RSA is most often used for [10]:

1. Encryption of small amounts of data: Key transport, discussed earlier in Section 3.1
is a prominent example of this.

2. Creating digital signatures: used for non-repudiation, identification, integrity etc.

Before discussing encryption, it is vital to understand the RSA Key Generation Pro-
tocol shown in Figure 3.7. First, two large prime numbers are chosen, after which their
product is computed as shown in Step 1 and 2 respectively. In Step 3, the Euler’s func-
tion φ is computed; it returns the number of integers between 1 and n that have no
common factors with n. After this step, the previously chosen primes can be discarded.
The public exponent (part of the public key) is computed as shown in Step 5; i.e., a
carefully chosen integer such that e ∈ {2, ..., φ(n)− 1}, and that it is coprime with φ(n);
i.e., gcd(e, φ(n)) = 1. Once the public exponent is computed, we can proceed to comput-
ing d (part of the public key), such that de mod φ(n) = 1, as shown in Step 6. At last,
once e and d are computed, φ(n) can be discarded as in Step 7. The final output of the
RSA Key Generation step is the public/private key-pair; The public key is kpub =(e,n)
where n is called the modulus and e the exponent. The private key is kpr = (d, n).

RSA Key Generation

1 : Choose two large primes p and q

2 : Compute n = pq

3 : Compute φ(n) = (p− 1)(q − 1)

4 : p and q can now be discarded

5 : Select public exponent e ∈ {2, ..., φ(n)− 1} such that gcd(e, φ(n)) = 1.

6 : Compute the private key d such that de mod φ(n) = 1

7 : Computed φ(n) can now be discarded

Figure 3.7: RSA Key Generation

RSA Encryption/Decryption
Now that we have discussed how RSA keys are generated, we can discuss Encryption

and Decryption using RSA. To encrypt the plaintext message m and get the ciphertext
c, given the public key kpub=(e,n) we compute:

c = Ekpub(m) ≡ me mod n, (3.1)

3.1. PUBLIC-KEY CRYPTOGRAPHY 25

where c,m ∈ Zn.
To get the original message m, the ciphertext c has to be decrypted using the private
key kpr = (d, n) as follows:

m = Dkpr(c) ≡ cd mod n. (3.2)

Note that all operations are done in the integer ring where Zn [10]. Hence the
messages must be encoded in such way that they can be represented with the limited
space of up to n.

The correctness of RSA encryption and decryption comes from the fact that

Dkpr(c) = Dkpr(Ekpub(m)) ≡ (me)d = med mod n. (3.3)

and by definition: (see RSA Key Generation, Line 6)

ed = kφ(n) + 1 (3.4)

where k is some constant.
Therefore,

med = mkφ(n)+1 (3.5)

Rewriting the exponents we get the following:

med = mkφ(n)+1 = mkφ(n)m1. (3.6)

From Euler’s totient theorem [10], we know that αφ(n) ≡ 1mod n when gcd(α, n) = 1.
Therefore,

med = mkφ(n)m1 = m mod n. (3.7)

�
An interested reader may refer to related literature such as [30] for more details.

Next we provide a simple example of encryption and decryption using RSA.

RSA Example
Next we will provide a simple numerical ‘textbook’ example of RSA Key generation,

and encryption and decryption using RSA. First we choose two distinct prime numbers,

such as p = 61 and q = 53, and compute n = pq giving n = 61 ∗ 53 = 3233. After that,
we need to compute the totient: φ(n) = (p−1)(q−1) giving φ(3233) = (61−1)(53−1) =
3120.

The next step is to select the public exponent e such that 1 < e < 3120 and that is
coprime to 3120. We randomly choose e = 17. Now that the public exponent is chosen,
we can compute the private key d, such that de mod φ(n) = 1, 17d mod 3120 = 1
resulting into d = 2753.

The public key, therefore, is (n = 3233, e = 17). The encryption function is

c(m) = m17 mod 3233

26 CHAPTER 3. RELATED WORK

. For an encrypted ciphertext c, the decryption function is

m(c) = c2753 mod 3233

As an example, to encrypt a message m where m = 65, we get a ciphertext c which is
c = 6517 mod 233 = 2790. To decrypt the c, we compute m = 27902753 mod 3233 = 65.

According to [10], there are three types of potential attacks on RSA:

• Protocol Attacks: Several protocol attacks have been introduced since the birth of
RSA. However, protocol attacks could be mitigated easily if modern standards are
properly followed.

• Mathematical Attacks: As mentioned earlier, the security of RSA is dependant on
the Integer factorization problem. Obviously, the eavesdropper has an immediate
access to the public key (e,n). Decrypting an intercepted encrypted text c requires
the private key d. As we see from the definition, one must calculate φ = (p−1)(q−1)
to get the private key, where p and q are unknown. The product n = pq is
public, however, factorizing the huge integer n into the prime factors p and q is
a computationally hard problem. As it was shown in the beginning, there are no
efficient integer factorization algorithms today. A good survey on RSA attacks can
be found in [32]. Nevertheless, due to the best-known factorization algorithms as
shown in [33], it is important to choose the correct RSA parameters for a long-
term security. Note that there exist efficient algorithms for solving the integer
factorization problem as well as the DLP on quantum computers as shown in [34].
However, this is a topic for discussion in the future.

• Side-channel attacks: This is a different kind of attack, where physical properties
such as power consumption or timing information can reveal secret information
such as the private key d. Certain operations in RSA such as the modular expo-
nentiation can reveal the private key with a simple power analysis [10].

3.1. PUBLIC-KEY CRYPTOGRAPHY 27

3.1.3 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) had come to the scene around 1985 when it was
independently introduced by Neal Koblitz [27] and by Victor S. Miller [28]. ECC has been
gaining popularity because achieving the same level of security as RSA in ECC requires
much shorter operands [10]; shorter operands translate to shorter arithmetic operations,
resulting in simpler hardware implementation. Therefore, ECC is an appealing PKC
primitive for constrained devices. In this section, we will give a definition of Generalized
Discrete Logarithm Problem (GDLP) and of Elliptic Curve Discrete Logarithm Problem
(ECDLP). We will also show an Elliptic Curve Diffie-Hellman (ECDH) protocol. Due to
the fact that this family is highly related to the Discrete Log problem family discussed
earlier in the chapter, we omit common examples.

Figure 3.2 defined DLP over a multiplicative group Z∗p. The DLP
can be defined over any other cyclic group. As given next [10]:

Definition Generalized Discrete Logarithm Problem (GDLP)
Given is a finite cyclic group G with the group operation ◦ and cardinality n. We consider
a primitive element α ∈ G and another element β ∈ G. The discrite logarithm problem
is finding the integer x, where 1 ≤ x ≤ n, such that:

β = α ◦ α ◦ ... ◦ α︸ ︷︷ ︸
x times

= αx.

Figure 3.8: Generalized Discrete Logarithm Problem (GDLP)

ECC is based on the ECDLP which is the generalization of the DLP. This makes all
discrete log based protocols, such as DHKE, suitable for ECC.

As described in [10], the elliptic curve over Zp, p > 3, is the set of all pairs (x, y) ∈ Zp
which fulfill

y2 ≡ x3 + ax+ b mod p

together with an imaginary point of infinity θ, where a, b ∈ Zp and the condition 4a3 +
27b2 6= 0 mod p.

The security of the primitive is based on the ECDLP, which is defined next [10]:

Definition Elliptic Curve Discrete Logarithm Problem (ECDLP)
Given is an elliptic curve E. We consider a primitive element P and another element
T . The ECDLP problem is finding the integer d, where 1 ≤ d ≤ #E, such that

P + P + ...+ P︸ ︷︷ ︸
d times

= dP = T

where #E is the number of points on the curve.

Figure 3.9: Elliptic Curve Discrete Logarithm Problem (ECDLP)

28 CHAPTER 3. RELATED WORK

Due to the similarities to the DLP, the ECDH highly resembles the DHKE protocol
discussed earlier as is shown in Figure 3.10.

Elliptic Curve Diffie-Hellman Key Exchange

Alice Bob

1 : Choose a = kpr,A ∈R {2, ...,#E − 1} b = kpr,B ∈R {2, ...,#E − 1}
2 : Compute A = kpub,A ≡ aP = (Xa, Ya) B = kpub,B ≡ bP = (Xb, Yb)

3 : A = kpub,A

4 : B = kpub,B

5 : TAB = aB TAB = bA

. Key established: TAB = (Xab, Yab) .

Figure 3.10: Elliptic Curve Diffie-Hellman Key Exchange protocol

Elliptic Curve Cryptography (ECC) implementation is often viewed in a four layered
approach as shown in Figure 3.11. On the top level is the protocol; which relies on
the scalar multiplication. Scalar multiplication is the most computationally intensive
operation required by the protocol and is the primary target for optimization in this
thesis. This layer depends on the elliptic curve group operations: point addition &
point doubling. On the last (base) layer we have the finite field arithmetic operations
such as the multiplication, addition, subtraction and inversion, without which the group
operations above are not possible.

Multiple choices at each and every level of the abstraction pyramid are possible.
The choices can be different protocols, different algorithms for scalar multiplication,
different group operations depending on the curve, its parameters and the coordinate
system, finite field arithmetic can also be done in various ways using different algorithms.
Furthermore, a choice of a particular curve will directly reflect on the implementation
as well. A choice made at a particular level can directly affect the choices in the lower
levels. There have been advances made individually on different levels of the pyramid as
well as a whole, that target different applications and optimization criteria [35]. There
exist commercial and academic hardware IP cores that support ECC and implement the
entire stack described above, which will be discussed later in the chapter.

3.2 PKC Key Components

Recall that since the introduction of public-key cryptography by Diffie & Hellman [26],
multiple other primitives have been introduced such as the RSA by Rivest, Shamir and

3.2. PKC KEY COMPONENTS 29

Figure 3.11: ECC four layer approach

Adleman in 1977 and a slightly newer development in 1985 was the ECC. As stated
earlier in the chapter, these primitives are based on distinct hard to solve mathematical
problems. Diffie-Hellman relies on the discrete log problem; RSA relies on the hardness
of prime factorization. ECC is based on elliptic curve discrete log problem. Also, they
usually involve a compute intensive function that dominates the majority of computation
time such as modular exponentiation and scalar multiplication.

Specifically, in Diffie-Hellman and RSA, the compute intensive operation is modular
exponentiation: computing ab in a finite field GF (p). In other words, given base b,
exponent e, and modulus m, the modular exponentiation c is:

c ≡ be (mod m). (3.8)

Recall from Section 3.1 that these cryptographic systems are usually based on large
number arithmetic operations. The most straightforward method for modular exponen-
tiation requires e− 1 multiplications as shown below, with one modular reduction at the
end.

c = b ∗ b ∗ ... ∗ b︸ ︷︷ ︸
e times

(mod m). (3.9)

A simple improvement is to make modular reductions after every multiplication: it
is more memory-efficient and maybe even computationally-efficient. Performing these
compute intensive operations efficiently in practice is critical. There are a number of
other techniques, algorithms and methods [35] that optimize these steps in software and
hardware implementations, that target speed improvement, memory access reduction,
intermediate storage optimization, and even side-channel attacks countermeasures etc.

30 CHAPTER 3. RELATED WORK

For example, one technique that speeds up modular exponentiation is exponentiation
by squaring, commonly referred to as square-and-multiply algorithms, or the successive
squaring method7, etc. The square-and-multiply method relies on the fact that the
exponent e can be represented in a binary form, hence the equation can be efficiently
rewritten:

Exponent e is first decomposed into a binary notation, where n is the length of bits
of e, or log2(e):

e =

n−1∑
i=0

ai2
i. (3.10)

Rewriting be with the above equation yields,

be = b
∑n−1

i=0 ai2
i

=
n−1∏
i=0

(b2
i
)ai . (3.11)

Therefore, the final modular exponentiation is:

c ≡
n−1∏
i=0

(b2
i
)ai(mod m). (3.12)

Let us look at a simple example of square-and-multiply method for calculating
4242 (mod 100): Firstly, the base b is successively squared log2(e) times, which is the
length of the binary representation, as shown in the Table 3.1 below.

Table 3.1: Successive squaring method example of 4242 (mod 100)

i a a2 a2 mod p remark

0 42 42 42 mod 100 = 42 421

1 42 1764 1764 mod 100 = 64 422

2 64 4096 4096 mod 100 = 96 424

3 96 9216 9216 mod 100 = 16 428

4 16 256 256 mod 100 = 56 4216

5 56 3136 3136 mod 100 = 36 4232

Then the exponent e is decomposed into successive powers of two, simply put is rewritten
in radix 2: e = 1010102. From the simple radix conversion formula for fixed-radix
positional number system, the exponent e = 1010102 can be also written as 1010102 =
25+23+22. Our exponentiation can therefore be rewritten as 422

5+23+21
= 422

5 ∗422
3 ∗

422
1

= 4232 ∗ 428 ∗ 422. Therefore we must multiply the corresponding values, marked
in bold, and make one final reduction in GF (100): 36 ∗ 16 ∗ 64 (mod 100) = 64. Using
this simple algorithm we were able to calculate 4242 (mod 100) = 64. This algorithm is
an improvement when compared to the straightforward method. The running time of
this algorithm is O(log2 e), while the previous one was O(e).

7http://mathworld.wolfram.com/SuccessiveSquareMethod.html

3.2. PKC KEY COMPONENTS 31

Another compute intensive operation is scalar multiplication which is the fundamen-
tal operation in Elliptic Curve Cryptography (ECC). The most straightforward method
for scalar multiplication requires d− 1 point additions as shown below:

dP = P + P + ...+ P︸ ︷︷ ︸
d times

. (3.13)

where d is a scalar and P is a point on an elliptic curve.

Point addition defined over a finite field elliptic curve group is often a complex func-
tion, which depends on the chosen curve and domain parameters, and usually involve
field addition, subtraction, multiplication and inversion. Point addition where two points
are identical, P +P , is also known as point doubling, an is commonly a computationally
simpler than point addition. For improvements, it is important to minimize the num-
ber of steps as much as possible, and potentially use point doubling instead of point
additions. One way of doing this is using the double-and-add algorithm, in some sense
an algorithm similar to the square-and-multiply algorithm. Achieving a running time
O(log2 d), while the previous one was O(d). Algorithm 1 below is the pseudocode for
the double-and-add algorithm.

Algorithm 1 Double-and-Add algorithm

1: procedure Double-and-Add(d, P) . Scalar Multiplication of dP
2: Q← 0
3: for i:=m downto 0 do
4: Q := point double(Q);
5: if di == 1 then
6: Q := point add(Q,P);
7: end if
8: end for
9: return Q

10: end procedure

The double-and-add has one major drawback: a side-channel. Point double and point
addition operations are inherently different. Therefore, using differential power-analysis,
one can reveal the scalar, which is often the secret key. Consequently, other techniques
have been developed to prevent side-channel attacks. One such method that is com-
monly used is the Montgomery Ladder [36], which is later used in this thesis. It is a
constant time algorithm which is resistant to this side-channel attack. Other methods
that are resilient to such attacks are described in [37]. Other algorithms exist for scalar
multiplications, such as the windowed algorithm, sliding-window algorithm, the w-ary
non-adjacent form (wNAF) method, etc.

The algorithms discussed above were optimizations of the scalar multiplication layer
as shown in Figure 3.11 RSA also has some well-known high level optimization techniques
such as the Chinese Remainder Theorem for decryption.8 Note that optimisations are

8RFC2437 PKCS #1: RSA Cryptography Specifications

32 CHAPTER 3. RELATED WORK

possible and have to be done at lower levels too for achieving optimal results. For in-
stance, the modular multiplications that were used earlier can be optimised too. One
such optimisation is, for example, the Montgomery Modular Multiplication [35]. It is
important to note that certain optimisations are more relevant to software implementa-
tions. Some optimization techniques are specific for hardware design. For instance, there
are several ways of doing modulo reduction in hardware. One way is to attach a modular
reduction circuit to an output of a standard binary multiplier. However designing special
modular multipliers are often simpler and could be more optimal. In addition, squaring
is a special case of multiplication that could also be optimised for better results [38].

Modern standard cryptographic software libraries such as OpenSSL support discrete
logarithm and elliptic curve based cryptography and therefore heavily rely on the oper-
ations discussed above and their optimizations. OpenSSL is an open source project that
provides a robust, commercial-grade, and full-featured toolkit for the Transport Layer
Security (TLS) and Secure Sockets Layer (SSL) protocols9. In general, PKC is known to
be more computationally intensive primitive; hence, new developments are constantly in
progress that aim to optimise these operations for efficiency purposes. Often the optimi-
sations that have proven to be efficient without jeopardising the security of a system are
adopted by standards and/or are implemented in popular software libraries and hard-
ware implementations. It is important to note that hardware designs often have specific
optimisations goals such as optimising for silicon area, power consumption etc. In the
following section, we explore some of the existing commercial and academic hardware
cores.

3.3 PKC Cores

In resource constrained devices, ECC is preferred over RSA, because it requires less
storage, less power, less memory, and less bandwidth10 due to their shorter key sizes
and therefore operands compared to other public-key cryptosystems such as RSA and
Diffie-Hellman [10].

Figure 3.2, taken from the Guidance for Cryptographic Algorithm and Key-Size Se-
lection of NIST SP 800-57 as is, shows the key sizes for various algorithms. Column 1
shows the estimated maximum security strength in bits for that particular row. Column
2 shows a symmetric algorithm that can provide such strength. Column 3 shows the
parameters of Finite Field Cryptography (FFC) (e.g. Diffie- Hellman) for achieving that
security level, where L is the size of the public key, and N is the size of the private
key. Column 4 shows the parameters that are necessary for Integer Factorization Cryp-
tography (IFC), where k is commonly referred to as the key size, but is the size of the
modulus n of the particular IFC algorithm. Lastly, Column 5 provides the parameters
for ECC for achieving the security level as shown in column 1. Here f is the range of
the size of the order of the base point G. This value is commonly referred to as the
key size. Note that it is assumed that the keys are generated under specific rules that
render them to be secure. BlueKrypt11 provides a detailed comparison of key-lengths

9https://www.openssl.org/
10https://www.certicom.com/index.php/the-basics-of-ecc
11https://www.keylength.com

3.3. PKC CORES 33

Table 3.2: NIST SP 800-57 Pt. 1 Rev. 4, Comparable Strength

for various PKC algorithms based on different methods provided by institutions such
as ECRYPT II, NIST and NSA. For an extensive explanation, please refer to the NIST
special publication NIST SP 800-57 Pt. 1 Rev. 4 12.

A common security requirement nowadays is to achieve a 128-bit security level. As it
can be seen from Table 3.2, for that particular level of security, ECC key is 3072/256=12
times smaller than an IFC and FFC keys. Clearly, this has a substantial implication
on their implementations. For example, shorter key sizes require less storage area. And
most importantly, shorter key sizes mean that arithmetic is done with shorter operands,
consequently, reducing the area of hardware components such as the Arithmetic Logic
Unit (ALU).

Since our main focus are constrained devices where area is scarce, we would narrow
our focus to ECC primitives. In the next section, we explore the current developments
of ECC cores in the industry and the academia.

3.3.1 Commercial Products

There is an abundance of public-key cryptography IP cores in the market. Their spec-
ifications are usually limited to the publicly available datasheets that do not particu-
larly follow any predefined standard; some provide details, some only provide a broad
overview. This makes them somewhat difficult to compare to each other. For exam-
ple, the metrics used for silicon area usage can be different for different IP cores; the
overall functionality that they achieve is often different, and their interfaces are often
different, etc. For instance, some cores implement an Advanced Microcontroller Bus Ar-
chitecture (AMBA)13 bus for an easy System on Chip (SoC) integration. Some cores are
optimised to be highly speed-efficient, whereas some are optimised for the area, hence
making them slow.

12http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
13https://www.arm.com/products/system-ip/amba-specifications

34 CHAPTER 3. RELATED WORK

Table 3.3: Commercial Public-Key Cores

Certain IP cores come with nice features such as customization, e.g. where the number
of arithmetic units can be customised. This feature allows the user to adapt the core
to meet their requirements. The majority of suppliers allow you to optionally choose
counter-measures against simple and statistical timing side channel attacks, simple power
analysis, differential power analysis, doubling attacks etc.

Clearly, commercial cores incur license fees, which are often not listed. The prices
can be obtained by request and are typically negotiable, which depend on many factors
such as the purchase volume etc. Moreover, some IP cores will incur additional cost due
to export regulations of certain countries. These costs play a significant role in choosing
the right core.

Some commercial companies that provide such IP cores are BarcoSilex, Fraunhofer,
IPCORES and EnSilica. Often these are fullfledged cryptographic processors that can do
symmetric and asymmetric crypto, digital signing, hashing, etc. Table 3.3 summarises
some of the essential features of these commercial cores from their respective datasheets.
As one can see, area comparison is not trivial. Although the number of gates is specified
for some cores, the technology node is not. In the case of EnSilica, the area can range
between ‘small’ and ‘medium’. IPCores claim that ECC1 core is the smallest ECC core
on the market that also achieves a high throughput. All cores are usually delivered
with either synthesizable RTL source code or a netlist along with some other supporting
deliverables such as test-benches, software libraries, documentation, etc. which allow for
a smooth integration process. One other core that is worth looking at is the Dragon-QT
core.

Dragon-QT14 is an IP core that integrates Athena’s TeraFire F5200 security mi-
croprocessor with Intrinsic-ID’s Quiddikey-Flex secure key management. It implements
nearly any cryptographic operation, including AES, SHA, elliptic curve cryptography,
public key cryptography, advanced true random number generation, SCA/DPA counter-
measures, and more. This extends the Quiddikey capabilities by providing an extensive
cryptographic solution.

14https://www.intrinsic-id.com/wp-content/uploads/2014/09/2015-01-Brochure-Dragon-QT.pdf

3.3. PKC CORES 35

3.3.2 Academic Implementations

The academia have been doing similar research and has implemented some different
implementations. For example, TinyECC is a configurable elliptic curve cryptography
software package aimed for constrained devices [39]. Similary, [40] presents an imple-
mentation of ECC Curve25519 [41] for MSP43015 microcontrollers that target low-power
applications. However, our focus is on hardware implementations of similar systems. An
example of a hardware implementation is [42] that implements ECC using Curve25519
[41], achieving a throughput of more than 32k scalar multiplications per second on a
Xilinx Zynq 7020 FPGA. Kumar and Paar investigated the feasibility of ECC on con-
strained devices and proposed an ASIC implementation of such processor [43] in 2006.

NaCls Crypto box in Hardware [44], which we will refer to as “NaCl core” or simply
“NaCl”, is an example of low-resource hardware implementation of the widely known
crypto box function of the ’Networking and Cryptography’(NaCl) (pronounced ”salt”)
crypto library. The NaCl core is in public domain making it worthwhile for further
investigation. NaCl uses Curve25519 elliptic curve which is supported by the popular
OpenSSL library and is included in the TLS1.3 draft. This is the only low-resource
hardware implementation of Curve25519 to our knowledge. The NaCl core supports the
X25519 Diffie-Hellman key exchange using Curve25519, the Salsa20 stream cypher, and
the Poly1305 message authenticator. The NaCl core is implemented as an Application
Specific Instruction Processor (ASIP), with a silicon area utilization of 14.6kGE. It con-
sumes less than 40uW of power consumption at 1MHz frequency for a 130nm low-leakage
CMOS process technology [44].

15http://www.ti.com/lsds/ti/microcontrollers 16-bit 32-bit/msp/overview.page

36 CHAPTER 3. RELATED WORK

3.4 Physical Unclonable Function (PUF) Technology

3.4.1 Background on PUF

The need for secure systems is growing, but fortunately there are tools we can use to
provide the security. One such tool is a hardware security primitive known as Physical
Unclonable Function (PUF), referred to as silicon fingerprint, the analogous to the unique
and unclonable human fingerprint. Maes describes PUF as ‘an expression of an inherent
and unclonable instance-specific feature of a physical object’ [45]. The concept of PUF
was first introduced by Pappu in his PhD dissertation in 2001 [5]. Given a challenge as
the input to the PUF, a unique and device dependant output, often called the response
is generated [6]. It is possible to derive a stable and device unique secret key by applying
certain techniques such as error correcting and privacy enhancing techniques to the PUF
response [7, 8]. The unique secret key generated by the PUF could be used in multiple
different use cases [46]. It has found applications in technology anti-counterfeiting, device
authentication & hardware/software binding applications [8].

Figure 3.12: PUF challenge-response uniqeness

Some other properties are important to PUF such as reliability, uniqueness, etc. but
are outside the scope of this thesis. For more literature on reliability and robustness of
SRAM PUF, an interested reader may refer to [17].

Although it is a relatively recent technology, there is a broad taxonomy around PUF
today [47]:

(I) Non-electronic PUFs: This is the PUF where we rely on the non-electronic PUF
properties such as the random fibre structure of the paper or a scattering charac-
teristic in an optical medium.

(II) Electronic PUFs: PUFs where we use electric properties such as resistance and
capacitance.

(III) Silicon PUFs: This is a subclass of the Electronic PUFs i.e. ICs exhibiting PUF
behaviour.

3.4. Physical Unclonable Function (PUF) TECHNOLOGY 37

Other classification exist that are based on how the PUF is constructed:

(i) Non-intrinsic PUF constructions: These are constructions with explicitly-
introduced randomness.

(ii) Intrinsic PUF constructions: Predominantly silicon PUFs based on random pro-
cess variations that are hard to control. They can further be categorized into three
classes [47]:

(a) Delay-based silicon PUFs

(b) Memory-based PUFs

(c) Mixed-signal PUFs

The illustration in Figure 3.13 shows some of the different kinds of PUFs and sum-
marises their properties. Optical and Coating PUFs are examples of non-intrinsic (or
explicitly introduced) PUF construction. In an optical PUF, a transparent layer is
doped with light scattering particles. When a laser beam shines through it, a random
and unique speckle pattern can be observed [48]. Although the number of Challenge-
Response (CR) pairs and the entropy is high, its downside is that it is not an IC imple-
mentation, not a standard manufacturing process nor uses standardised components. In
coating PUFs, the coating that covers the Integrated Circuit (IC) is doped with random
dielectric particles; that would result in variable capacitance. An array of sensors is used
to measure the capacitance of the coating [49]. Delay and Memory PUFs are examples
of intrinsic constructions. Delay PUFs are based on the delays in wires and gates.

Figure 3.13: PUF Types

Using PUFs, we can authenticate the ‘silicon’ of the constrained IoT device. Memory-
based PUFs are particularly useful in our case, as we will see in the following section.

38 CHAPTER 3. RELATED WORK

3.4.2 SRAM PUF

We would now focus on the intrinsic, memory-based PUF construction, specifically the
Static Random-Access Memory (SRAM) PUF. SRAM PUFs are more widely used
in the industry because they can be built using standard digital IC components. An
SRAM-based PUF uses the intrinsic randomness PUF of the start-up values in the
SRAM. Figure 3.14 shows a typical six transistor SRAM cell design, consisting of two
cross-coupled Complementary Metal Oxide Semiconductor (CMOS) inverters using four
transistors M1 through M4. Transistors M5 and M6 are known as the pass transistors.
The wordline (WL), bitline (BL) and its complement are used to access the cell. For

Figure 3.14: Conceptual schematic of a 6T SRAM cell

performance reasons, the two inverters in the SRAM cell are designed in a well-balanced,
symmetrical way. However, the small and random submicron process variations due
to manufacturing process cause different physical properties of the transistor. These
differences in the transistors of the SRAM cell causes a skew. Due to this skew, a cell
acquires a preferred state of a logic ‘0’ or a logic ‘1’ when powered on, referred to as one
bit of ‘electronic’ fingerprint. This phenomenon of inherent, device unique variations
makes SRAM PUFs construction possible. It is resistant to cloning even if one can
get their hands on the circuit design/layout files since the skew is not visible in the
layout. With the current manufacturing process variations are inevitable and cannot be
controlled; therefore, cloning an SRAM PUF yields to be tough or even impossible [45].

An array of uninitialized SRAM cells provides a device fingerprint that uniquely
identifies each device [50]. We can use these properties to securely store or generate a
cryptographic key on a PUF embodied device. This is referred to as a key derivation
based on the SRAM PUF. The key must be reliably extracted every time and must be
unpredictable. Techniques such as entropy extraction and error-correcting codes are used
to achieve this [7].

Entropy extraction can be achieved by using key derivation function. A key deriva-
tion function, e.g. a cryptographic hash function, is meant to produce a high quality
cryptographically secure key.

Upon power-up, the PUF response will be noisy, when compared to initial measure-
ment, referred to as the reference PUF response. Error-correction is a necessary step in

3.4. Physical Unclonable Function (PUF) TECHNOLOGY 39

(a) Enrollment (b) Reconstruction

Figure 3.15: The Enrollment and Reconstruction operations of PUF-based Key Deriva-
tion.

a key-derivation system due to this noisy bit error phenomenon in SRAM PUF. Selimis
et al. [51] conducted experiments on a 90nm 6T-SRAM ICs under various stress condi-
tions to demonstrate PUF reliability. Temperature variation, voltage variation, voltage
ramp-up, data retention tests as well as an aging test were performed. These statistical
measurements were done by taking a reference measurement and the consequent mea-
surements on the same chip. Results showed that temperature variation had the biggest
impact on noise, causing a 19% error. Whereas, voltage variation had the least impact,
introducing only 6% noise.

Additionally, they examined the relationship between different SRAM devices. For a
secure key extraction, the devices must be unique and independent. Such independence
can be measured as the Hamming distance between the responses of different devices. A
Hamming distance d is the number of positions in which two binary strings x and y of
the same length n differ, formally defined as:

d(x, y) = |{i|xi 6= yi, 0 ≤ i ≤ n}| (3.14)

A fractional Hamming distance between x and y is defined as:

δ(x, y) = d(x, y)/n (3.15)

Let us quickly observe the two extremes: a δ(x, y) between two SRAM start-up
values that equals to 0 signifies that xi = yi ∀ i. On the other hand, a δ(x, y) = 1 implies
that xi = NOT (yi) ∀ i. Clearly, the desirable value is δ(x, y) = 0.5, which signifies
independence between the start-up values of different device. Their results show that
this distance is distributed around 0.5 for their selected SRAM, therefore making it a
suitable PUF. Note that an SRAM PUF must be profiled in such way to make sure that
it can be used.

Typically, for error-correction a code-offset method is used where helper data is
generated during the enrollment phase, and is later used in the reconstruction phase
to correct the bit-errors in SRAM as shown in Figure 3.15. The operations are explained
in more detail below.

40 CHAPTER 3. RELATED WORK

(a) Enrollment
The purpose of this stage is to generate a cryptographic key that is based on this unique
device fingerprint. First, the SRAM values are read, which is the PUF reference re-
sponse (R). This response is an input to the fuzzy extractor16 [52, 53, 54] as shown in
Figure 3.15(a). The fuzzy extractor in this case constitutes of two parts: ECC encoding
and Privacy amplification. The ECC Encoding is responsible for encoding a random
secret (S) with a chosen error correction code. The Helper Data 17(W) is computed by
XORing (⊕) R with the encoded secret as shown in Equation 3.16. The secret key is an
output of the privacy amplification block. Privacy amplification is a necessary step for
getting a cryptographically secure key with maximum entropy.

W = R ⊕ C = R ⊕ Encode(S) (3.16)

(b) Reconstruction
Reconstruction phase is for recovering the secret key at a later point in time in the field.
A new PUF response is measured (R′), which is used as an input to the fuzzy extractor,
along with the helper data (W) that was previously generated during the enrollment
stage as shown in Eqn. 3.16. The helper data is XORed with the new PUF response to
get the noisy codeword C ′ as shown below:

C ′ = R′ ⊕ W (3.17)

Substituting Eqn. 3.16 into Eqn. 3.17 we get Eqn. 3.18, the output of which is the
encoded secret S with noise (R ⊕ R′).

C ′ = R′ ⊕ W = R′ ⊕ (R ⊕ Encode(S)) = noise+ Encode(S) (3.18)

The secret is successfully reconstructed as shown in Eqn. 3.19 if the PUF response is
close enough to the reference PUF response, i.e. if it is within the chosen error-correcting
code correction capability.

S = Decode(noise+ Encode(S)) (3.19)

3.4.3 Current Trends in SRAM PUF Technology

The current trends in PUF technology mostly deal with improving their quality, espe-
cially those of the key generators. The quality is primarily determined by two properties:
the reliability and the security of this hardware security primitive [7]:

1. Reliability: if the occurrence of (bit) errors between PUF reference response and
the consequent PUF responses is limited, then with high probability the original
key will be properly reconstructed.

2. Security: if the reference PUF response is sufficiently unpredictable, then the key
is secure even to a party which observes the Helper Data.

16https://www.intrinsic-id.com/physical-unclonable-functions/fuzzy-extractor/
17The term Helper Data can be interchanged with Activation Code in this thesis.

3.5. DISCUSSION 41

Ideally an SRAM PUF should be unbiased to prevent any information leakage. In
an unbiased PUF, ‘0’ bits and ‘1’ bits are evenly distributed, meaning that each single
bit has the same chance to be a ‘0’ or a ‘1’. In other words a fractional Hamming weight
of 0.5. A Hamming weight is the number of non-zero elements in a binary string x,
formally defined as:

w(x) = |{i|xi 6= 0}| (3.20)

Van der Leest et al. [7] point out that experiments show that most PUFs are not
unbiased. A deviation from w = 0.5 in SRAM response is known as the global bias. A
global bias cause entropy leakage, hence reducing the entropy of the cryptographic key.
Van der Leest et al. [7] present a number of ‘debiasing’ methods evaluated in terms of
reliability, efficiency, leakage and re-usability where secure secret keys are still generated
from PUFs with arbitrary large global bias.

Other research is done in exploring the trade-off between the number of SRAM cells
needed for achieving a full entropy key using different error-correcting codes. Leest et
al. propose new methods for reducing existing known method where 4700 SRAM cells
are needed for securely storing a 128-bit key to 3900 SRAM cells (17% reduction) and
to 2900 SRAM cells (38% reduction) at a cost of a more sophisticated decoders.

There are numerous open problems concerning PUF technology, and typically several
papers are published per week. Current research typically investigates different types of
PUFs, applications of PUFs, new attacks on PUFs etc.

3.5 Discussion

It is a challenging task to identify the exact state-of-the-art solution because the project
encompasses a broad scope, comprising of several different topics and layers of abstrac-
tion. Therefore we investigate the state-of-the-art of individual components and subsys-
tems of the entire architecture. At the highest level are the protocols that can solve our
problem. On lower levels is the implementation of the arithmetic operations in hard-
ware that are necessary for the appropriate computations, with all the other steps in
between. In this chapter, we have looked at some prior work done in public-key cryptog-
raphy as well as some of the existing hardware implementations that implement those
cryptographic primitives. We have also looked at a hardware security primitive known
as PUF. In the next chapter, we will be designing a flexible architecture for enabling a
secure communication between lightweight devices and host processors using public-key
based primitives and PUF technology as the root-of-trust. A prototype will be built as a
proof-of-concept, and a recommendation on a high-level hardware design will be drafted.

42 CHAPTER 3. RELATED WORK

Protocol Design 4
Security becomes a major concern with the proliferation of lightweight IoT devices. In

fact, we need to design architectures that are tailored for new applications and meet new
and innovative security system requirements. In our case, it is establishing a secure con-
nection between a resource-constrained device that has an embodied Physical Unclonable
Function (PUF) and a resource-rich host processor. In this chapter we will propose a
protocol that best solves the problem, and in addition propose several protocol variants
that are better in certain aspects. In Section 4.1 we first reintroduce the use case applica-
tion and proceed with defining a set of requirements for this project which are influenced
by Intrinsic-ID and its vision on the industry. Section 4.2 demonstrates the procedure of
selecting and achieving a protocol that fulfils the given set of requirements. Section 4.3
proposes several protocol variants and compares them.

4.1 Use Case and Application

As described earlier in Section 1.2, the goal is to authenticate lightweight devices in the
field and establish secure communication between them and a host computer. For that
purpose, we need to design a secure solution that enables that. This includes designing
a protocol as seen in this Chapter and designing a hardware architecture as we will see
in the next Chapter. Below is a set of requirements that defines the scope of the project
and serves as the guideline in designing such complex secure solution.

Requirements
In this section, we elaborate on the design requirements that allow us to make appropriate
decisions throughout all stages of design i.e. when deriving the protocol and designing
the hardware template.

(i) Authenticate the Silicon

The goal is to authenticate the device’s silicon. Using Physical Unclonable Function
(PUF) technology we are able to do just that. For that reason, a Static Random-
Access Memory (SRAM) PUF-derived key must be used as the root-of-trust in our
architecture. From the security perspective, this PUF-derived key is the primary
asset in this system and must be well protected.

(ii) Key-length Security Level

The desired security level is 128-bits. Therefore, the cryptographic algorithms and
protocols must be chosen such that it guarantees this security level. A higher
security level is unnecessary.

43

44 CHAPTER 4. PROTOCOL DESIGN

(iii) Self-Contained Solution

It is required that all the necessary operations are done within our security bound-
ary as much as possible, meaning that all the operations are done under our control.
Therefore, the architecture must be self-contained. Reliance on the end user’s com-
pute resources must be minimal.

(iv) Rely on best practice in Public-key Cryptography (PKC)

An elliptic curve to be chosen must be an acceptable standard, meaning that is
well-known and is well-researched, and that has low-overhead properties.

(v) Side-channel Resistance

In the course of design, all countermeasures against side-channel attacks are prefer-
able as long as they do not significantly impact the size, but are not strictly re-
quired.

(vi) Area constraints Because the target application is a constrained lightweight
Internet of Things (IoT) device, silicon area consideration is necessary. Ideally,
the area needs to be as small as possible. A gate count of ≤ 10k gates TSMC
65nm GP is an acceptable target.

(vii) Timing Requirements

Timing requirements specify bounds under which a certain operation should be
executed. There are no strict timing requirements for this project. Nevertheless,
we wish not to have an authentication mechanism that takes infinitely long time.
In general, the timing requirement is specific to end user’s application. Important
to note here is that authentication and key agreement happens only a few times,
and therefore is not usually the bottleneck. Nevertheless, faster designs could
potentially allow more applications: it is therefore in our interest to optimise for
timing too.

(viii) Technology Independent

The end-product implementation ought to be a hardwired based solution that is
technology independent. Therefore no device / technology specific optimisations
are possible. Optimisations must be generic and done on the architectural and/or
Register Transfer Level (RTL) level. Furthermore, the circuitry must be purely dig-
ital Integrated Circuit (IC) implementation using standard manufacturing process
and utilizing standard components.

(ix) Patent/License free

Any component reuse (IP, source code etc.) must be in public domain which
implies that there is no requirement of disclosure. Furthermore, technologies that
are covered by known patents should be avoided in the design.

Some of the requirements above are rigid; others are more flexible. For example, in
certain cases a slight increase in the area could be viable if the gain in speed is noticeably

4.2. PROTOCOL DESIGN 45

bigger; or overall security is substantially increased. Therefore, various trade-offs such
as this one is to be analysed during the design, and a balanced choice must be made to
achieve an elegant solution that best satisfies the requirements.

Besides the requirements that are listed above, it is also important to consider the
parties involved in the protocol, as well as the attack models in consideration. This plays
a significant role in designing the protocol, which is the subject of the next section.

4.2 Protocol Design

Establishing a secure communication between a device and a host processor requires a
secure protocol. Authentication and key establishment are the two key components that
need to be achieved by the cryptographic protocol that we are going to design. Au-
thentication is required for assuring that the identity of an IoT device that is trying to
communicate to the host processor is legit. This can be achieved by using PUF technol-
ogy and additionally through some sort of proof as we will see later. Note that malicious
devices cannot be completely ruled out, because even an authenticated device can be
malicious e.g., a device that was hacked. As one of the requirements, the PUF hardware
security primitive must be used as the root-of-trust, which provides authentication of
the silicon. Furthermore, to keep the data transmission confidential and accessible only
by authorized parties, it is necessary that the communication is encrypted. To achieve
this, symmetric cryptography can be used. However, as we know by now, symmetric
cryptography requires that a copy of the same key is available on both ends of the com-
munication channel, which can be achieved by a key-establishment protocol such as the
one shown in Section 3.1.1. In the rest of the section, we show the steps in deriving
a protocol that establishes a secure shared key between the IoT devices and the host
processor, and authenticates device’s silicon using PUF, therefore establishing a secure
communication.

Figure 4.1: Key components for secure communication

46 CHAPTER 4. PROTOCOL DESIGN

4.2.1 Key Agreement

Earlier in Section 3.1, we showed that public-key primitives and their respective protocols
are typically used for key-exchange purposes: both key transportation and key agreement
methods have been introduced. We also argued that Elliptic Curve Cryptography (ECC),
whose underlying computationally hard problem is the Elliptic Curve Discrete Logarithm
Problem (ECDLP), is the choice for constrained devices at the moment of writing. The
reason is due to its inherently shorter operand sizes; Furthermore, since ECDLP is just a
generalisation of the Discrete Log Problem (DLP), all existing DLP protocols are suitable
under ECC e.g. Elliptic Curve Diffie-Hellman (ECDH).

The ECDH Key Exchange is a key-agreement protocol that can be used for deriving
a shared key. Although described in Section 3.1.3, shown again below in Protocol 4.1
for convenience. Let #E be the group order of E (domain parameter) and a, b the
private keys of Alice and Bob respectively, that are chosen at random from a set i.e.
{2, ...,#E − 1}. Another domain parameter is a P , which is the base point for a given
curve. Let (X,Y) denote points on the given curve E. The output of the protocol is
TAB which is the shared key. Unfortunately, that protocol has obvious shortcomings.
Mainly, it lacks an authentication mechanism, and is therefore vulnerable to a multitude
of attacks e.g. Man-In-The-Middle (MITM) attack on the key agreement as described
in Section 3.1.1. As it was stated earlier, authentication is one of the key components
in establishing a secure channel. Furthermore, according to the requirements, the PUF
hardware security primitive must be used as the root-of-trust, for authenticating IoT
device’s silicon. Therefore, it is necessary that this protocol is modified to an extent
that it satisfies the requirements described in Section 4.1. In the following subsection
we will examine how the PUF security primitive can be used in our advantage, e.g. in a
protocol for authentication.

Elliptic Curve Diffie-Hellman Key Exchange

Alice Bob

1 : Choose a = kpr,A ∈R {2, ...,#E − 1} b = kpr,B ∈R {2, ...,#E − 1}
2 : Compute A = kpub,A ≡ aP = (Xa, Ya) B = kpub,B ≡ bP = (Xb, Yb)

3 : A = kpub,A

4 : B = kpub,B

5 : TAB = aB TAB = bA

. Output: TAB = (Xab, Yab) .

Protocol 4.1: Elliptic Curve Diffie-Hellman (ECDH) key-exchange protocol

4.2. PROTOCOL DESIGN 47

4.2.2 Authentication using PUF

Let us first examine and understand how PUF technology can be used for authentication.
We first examine an existing protocol that uses PUF that we could possibly improve on
or extend for our purpose. One of the simple authentication methods we can use for IC
authentication using PUF is described in [55] and is shown in Protocol 4.2. The protocol
goes as follows: Before operation in the field, a number of Challenge-Response (CR)
pairs associated with the device’s PUF is recorded in a database by a Trusted Third
Party (TTP)’s as shown in (I) Enrollment of the sensor stage of the protocol. In Step
1 the TTP chooses a random challenge and sends it to the sensor node. The sensor
node processes the challenge using PUF and replies with a response as shown in Steps
2-4. In Step 5, the TTP stores this CR pair in the database. TTP can then repeat
this procedure as much as necessary as shown in Step 6. Later in the field, the host
computer (authenticator) can use one of the recorded challenges to challenge the device
and compare the received response with the real recorded response in the database to
authenticate the device as shown in (II) Sensor Authentication stage . First the host
processor must choose a CR pair that corresponds to that particular device and send the
challenge to the device as show in Steps 7-8. The sensor will process the challenge using
the PUF and respond with a corresponding response as shown in Step 10. To decide
whether the device is authentic or not, the host processor can compare the response to
the reference response retrieved from the database, as shown in Step 11. This protocol
is susceptible to a MITM replay attack, where the CR pairs can be captured and later
reused for malicious purposes, therefore, [55] suggests that every pair is used at most
once.

Although this protocol provides a good understanding of how a PUF primitive can be
used for authentication, it clearly lacks a key-exchange mechanism if used independently,
therefore is limited. At first it might seem that this protocol can be used in conjunction
with an existing key-agreement protocol described earlier to achieve our goal: first a key-
agreement using ECDH (Protocol 4.1) followed by the described CR PUF authentication
(Protocol 4.2); however, this construction is vulnerable to a MITM attack on the key-
agreement as described in Section 3.1.1. Adding the CR PUF protocol would therefore
be useless: after successfully placing himself in the middle, the attacker would simply
relay the challenges and the correct responses, hence jeopardizing the entire system, and
making this step useless. There are several other disadvantages of Protocol 4.2:

• Scalability: This protocol does not scale well with the number of devices, since
the database is required to store a large number of CR pairs: number of devices
multiplied by N as in Protocol 4.2. It is also limited because new enrollments must
be done if CR pairs for a particular device are depleted.

• Suitability: The SRAM PUF does not have the capability of providing a large
amount of CR pairs. The CR pairs depend on the size of available SRAM cells
allocated specially for the purpose of PUF. Therefore, this protocol is not suitable
for SRAM PUF.

In the following section we examine a protocol that uses a PUF-derived key along
with the Diffie-Hellman Key Exchange (DHKE) to achieve our goal.

48 CHAPTER 4. PROTOCOL DESIGN

(I) Enrollment of the sensor

Trusted Third Party (TTP) Sensor(ID)

1 : Choose CID

| CID ∈R {set of all possible challenges}

2 : Challenge CID

3 : PUF processing

RID = f(CID)

4 : Response RID

5 : Store (CID, RID) pair to a database

6 : Repeat Steps 1 to 5 N times

(II) Sensor Authentication

Host Processor (HP) Sensor(ID)

7 : Choose (CID, RID) pair from database

8 : CID

9 : PUF processing

rID = f(CID)

10 : rID

11 : V erify RID
?
= rID

12 : Remove (CID, RID) pair from database

Protocol 4.2: Device authentication using PUF

4.2.3 Protocol for key-agreement and authentication using PUF-
derived key

So far in this Chapter we have briefly shown a key-agreement protocol and a simple
protocol that uses PUF CR pairs for authentication, both of which have certain disad-
vantages and therefore not useful for our special purpose application. As it was shown in
Section 3.4.2 it is possible to derive a random, device unique, cryptographically secure
key from an SRAM PUF. We propose to derive a protocol based on DHKE, that uses a
PUF-derived key.

As we have seen in Section 3.4.2, one way to use PUF for key derivation is to use
a code-offset method. Hence, the protocol is naturally divided into two stages: the
enrollment stage, and the key-agreement and authentication stage. The first stage is used
to record all the necessary data from device’s PUF, that is used to generate certificates
that bind those measurements to the identity, which is used in later stages of the protocol

4.2. PROTOCOL DESIGN 49

for authentication. The second stage is when the device is in operation in the field. It is,
therefore, important to identify the different assumptions and consider the attack models
for each stage individually.

General Assumptions
The adversary can eavesdrop all the messages in the communication channels; passive
attacks are possible. In passive attacks an intruder can only eavesdrop on the commu-
nication. Therefore, we shall not transmit any sensitive data along the communication
channel in plaintext thus creating an unsecure system. In fact, this is the main motiva-
tion for that we need to establishing a secure communication in the first place.

Field Assumptions
The field is untrusted, therefore it is assumed that both active and passive attacks are
possible. In an active attack an intruder may transmit, replay, modify, or delete any
selected messages in a communication.

Enrollment Assumptions
In this stage, the security assumptions are less stringent as compared to the field. We
assume that active attacks are not possible during enrollment; an eavesdropper is not
able to modify any messages, but one is capable of recording the messages in transit. The
motive behind this assumption is that the device is enrolled in a controlled environment
such as at the manufacturer’s facilities.

The first step towards a solution is a protocol1 that is shown in Protocol 4.3. In
essence, the ECDH protocol is modified such that the PUF is used as the hardware
root-of-trust. The PUF derived secret key on the device is used as the secret key in
Diffie-Hellman key generation. Unfortunately, this particular protocol is limited because
it does not use a Public Key Infrastructure (PKI) and therefore does not inherit all
its benefits. In this scenario the key-agreement must be done at enrollment with a
host processor as shown in in Figure 4.2(a). Only that same host processor is able to
communicate with the sensor later in the field.

Using a PKI and a TTP as shown in Figure 4.2(b) adds substantial flexibility. It
allows all devices to be enrolled by one single TTP at a very early stage such as at the
factory or during chip test. A modified protocol that uses a TTP is shown in Protocol 4.4.
In that protocol, during the enrollment phase, the necessary components for key recon-
struction in the field at a later time, such as the Activation Code along with the device’s
ID and the newly generated public key, is sent to the TTP for signing and certificate
generation. Later in the field, the authenticator is able to verify if the certificate belongs
to a device that has been previously enrolled, by inspecting the received certificate. If
the verification is successful, both parties proceed with ECDH for key-agreement, and
finalize it with an authentication step. The following is a detailed explanation of the
protocol.

1Relevant notations are described on Page 51.

50 CHAPTER 4. PROTOCOL DESIGN

(a) Scenario 1 (b) Scenario 2

Figure 4.2: Different Scenarios

(I) Enrollment of the sensor

Host Processor (HP) Sensor (ID)

1 : (SKHP , PKHP)← DH KGen 2 : x, AC ← PUF − enroll
3 : PKID ← DH KGen(x)

4 : ID,AC, PKID

5 : PKHP

6 : Store (ID,AC,PKID) 7 : Store (PKHP)

. Sensor enrollment complete .

(II) Key-agreement

Host Processor (HP) Sensor (ID)

8 : Session request, AC

9 : x ← PUF − reconstruct
10 : w = SKHP ∗ PKID 11 : w = x ∗ PKHP

. Output: Shared secret w .

Protocol 4.3: Diffie-Hellman Key Exchange (DHKE) using Physical Unclonable Function
(PUF)-derived key

4.2. PROTOCOL DESIGN 51

Notation
Notations used in Protocols 4.3 through 4.7:

• PUF-enroll: generates a (PUF-derived) cryptographically secure key x and an
Activation Code (Helper Data) AC that is used later in the decoding stage of the
key reconstruction as described in Section 3.4.2.

• PUF-reconstruct: is the reconstruction process of the secure key that was enrolled
earlier as described in Section 3.4.2.

• DH KGen(x): calculates the public key based on the private key x. In ECC
it corresponds to a scalar multiplication of the scalar x and the base point of a
particular elliptic curve as per curve’s specifications.

• Ephemeral DH KGen: this function generates an ephemeral key-pair suitable for
a chosen elliptic curve.

• KDF(): is a Key Derivation Function that improves the quality of the key.

• Ek, Dk: are symmetric encryption and decryption functions respectively, using
key k.

• ID: is an identification number unique to a device.

Protocol 4.4 Detailed Explanation
The protocol is divided into three stages. In the first stage, the device is enrolled by a
TTP in a relatively secure environment. In the second and third stages, key-agreement
and authentication respectively, happen in the field. Individual stages are described in
more detail below:

(I) Enrollment All sensor nodes2 must first be enrolled with a TTP before their
operation in the field. The enrollment phase happens as follows: In Step 1, the sensor’s
PUF is enrolled, and the key-generation subsystem generates a cryptographic key x. In
Step 2, the generated key x is used as the private key component in calculating the
corresponding public key. This computation is done using scalar multiplication in a
suitable elliptic curve group, the result of which is a point on the curve. In Step 3, the
sensor sends its identifier ID, Activation Code (AC) and the computed public key to the
TTP. The AC is required for the reconstruction of the private key x from the PUF in
the later stage. The TTP signs the received data using its private key and generates a
certificate as shown in Steps 4 and 5. The certificate binds the sensor’s ID to its PUF
based public key, and the AC needed to generate it. The signed certificate is sent back
to the sensor and is stored in the Non-volatile Memory (NVM) of the sensor, as shown
in Steps 6 and 7 respectively.

2Note that sensor here refers to a constrained IoT device.

52 CHAPTER 4. PROTOCOL DESIGN

(II) Key-agreement In the field, the sensor must be able to establish an authen-
ticated secure communication with the host processor. In this variant of the protocol,
the host processor initiates the protocol by sending a session request message as shown in
Step 8. In Step 9, the sensor replies with the certificate that has been stored previously
during the enrollment phase. Because the Host Processor possesses TTP’s public key, it
can verify the certificate; meanwhile, the sensor can engage in the reconstruction of the
PUF-based private key that corresponds to the certificate. After successful verification,
the Host Processor chooses a random secret key and calculates the corresponding public
key in Step 12. In Step 13, the Host Processor transmits its computed public key (its
Diffie-Hellman contribution) to the sensor. Now that both parties involved have all the
required contributions, they can compute their shared secret w as shown in Steps 14 and
15. In Step 16 a Key Derivation Function is used for privacy enhancing purposes for
deriving a cryptographically secure session key.

(III) Authentication Until this point any sensor will succeed. Both parties
will calculate k as in Step 16. But will those calculated keys be the same on both
sides of communication? Only legit and authenticated devices will have the expected
keys on both sides. It is therefore paramount to check that the sensor has indeed the
correct session key. The authentication step is necessary to weed out unauthenticated
devices, and deny any further communication. There are multiple ways of how this can
be achieved, one of which could be done by using a simple challenge-response based
authentication protocol based on the derived key. The host processor creates a challenge
by randomly picking a number from a predefined set and encrypting it with the derived
key k and sends this challenge to the sensor as shown in Steps 17-19. The sensor decrypts
the message, increments the number and encrypts it back using the same session key k
and sends it back to the host processor as shown in Steps 20-23. The host processor
decrypts the response and verifies if it is the expected incremented value as shown in
Steps 24 and 25. Obviously, the verification will succeed if and only if the sensor was
able to correctly decrypt the initial challenge and therefore properly increment the value.

Discussion
The above authentication protocol (Stage III) is a simple challenge-response based au-
thentication. Alternatively, Message Authentication Code (MAC) can be used. It is
important to note that this is a one-way authentication. Only the host-processor can
be sure that the sensor is legit. There is no way for the sensor to be sure about the
authenticity of the host processor using this protocol. That said, from the sensor’s point
of view, a MITM attack cannot be ruled out. A malicious host can initiate a commu-
nication with such sensor. In the following section we propose protocol variants that
mitigates this issue, and moreover, introduces other advantages.

4.2. PROTOCOL DESIGN 53

(I) Enrollment of the sensor

Trusted Third Party (TTP) has SKTTP Sensor (ID)

1 : (x, AC) ← PUF − enroll
2 : PKID ← DH KGen(x)

3 : ID,AC,PKID

4 : σID ← SigskTTP
(ID,AC, PKID)

5 : CertID = [ID,AC, PKID, σID]

6 : CertID

7 : Store(CertID)

. Sensor enrollment complete .

(II) Key-agreement

Host Processor (HP) has PKTTP Sensor (ID)

8 : Session request

9 : CertID = [ID,AC,PKID, σID]

10 : VfpkTTP
(CertID) 11 : x ← PUF − reconstruct(AC)

12 : (SKHP , PKHP)← Ephemeral DH KGen

13 : PKHP

14 : w = SKHP ∗ PKID 15 : w = x ∗ PKHP

16 : k = KDF (w) k = KDF (w)

. .Key Agreement complete .

(III) Authentication

17 : Choose N | N ∈R {Set of integers}
18 : Encrypt N : C = Ek(N)

19 : C

20 : Decrypt C : n = Dk(C)

21 : n := n+ 1

22 : Encrypt n : R = Ek(n)

23 : R

24 : Decrypt R : n = Dk(R)

25 : V erify n
?
= N + 1

. Authentication complete .

Protocol 4.4: Diffie-Hellman Key Exchange (DHKE) using Physical Unclonable Function
(PUF)-derived key and a Trusted Third Party (TTP) (Variant A)

54 CHAPTER 4. PROTOCOL DESIGN

4.3 Protocol Variants

In the previous section we show how a suitable protocol is derived. The derived protocol
tackles the challenges discussed earlier in Chapter 1 while satisfying the requirements
discussed in Section 4.1 at the same time. Although the proposed Protocol 4.4, which
will be referred to as ‘Variant A’ from here on, is satisfactory, it can be modified and
improved in terms of security and area requirements. The improvement could be more
fit for certain use cases as we will see later. In this section, we propose and examine three
protocol variants. At the end, a summary is provided that highlights their distinguishing
characteristics along with some measurements. In short, the all protocol variants are
distinguished by the following properties:

• Variant A: This is the originally proposed protocol that achieves only a one-way
authentication.

• Variant B: This protocol is modified in such way that a mutual-authentication is
achieved. This is done by enrolling and issuing a certificate to a Host Processor
that can be verified by the IoT device in the field.

• Variant C: This variant adds a cloud infrastructure, therefore reducing the NVM
requirements on the device and furthermore improves certificate management.

• Variant D: This variant combines variant B and C.

Similarly to Variant A, all variants are divided into three stages. In the first stage (I)
Enrollment, the devices are enrolled by a TTP, which is typically done only once during
the life-cycle of a device. The second (II) Key-agreement and third (III) Authentication
stages are performed in the field whenever necessary: communicating parties establish
a shared key, followed by an authentication step. Since the following protocol variants
are all similar to Variant A, we describe only the important differences for the sake of
brevity. Note that the notations used in the following protocols are similar to those
described on Page 51, therefore not repeated here.

Variant B Explanation Protocol 4.5 as shown on Page 59
In Variant A, only the sensor node is enrolled, therefore it is capable of offering only a
one-way authentication. The host processor is confident in the sensor’s authenticity, but
not vice versa. In many use cases we ought to have a mutual authentication. In fact,
one can argue that sending data to the ‘right’ server is more important. For example,
privacy issues can be avoided in mutually authenticated communications. Clearly, not
everyone on the Internet should be able to ‘securely’ access ones GPS sensor. Only those
intended, should be able to.

Fortunately with slight modifications in Variant B we achieve mutual authentication.
To achieve this, the host processor needs to be enrolled (issued a certificate) by a TTP
similarly as the sensor, shown in Steps 8-13 of this Protocol. The sensor must verify
the identity of the HP in the field by verifying its certificate, therefore an additional
step in sensor enrollment is storing the TTP’s public key PKTTP on the sensor. In the
field, the host processor sends its signed certificate to the sensor for verification. Only

4.3. PROTOCOL VARIANTS 55

after a successful signature verification, the communicating parties can proceed to the
usual ECDH for key agreement. Followed by an authentication stage, however this time,
challenges going in both directions.

Note that the signature scheme can be implemented using Elliptic Curve Digital
Signature Algorithm (ECDSA). A verification step is considered to be computationally
intensive because it requires two scalar multiplications of the form k1xP + x2xQ [35].
This is known as multi-scalar multiplication. There exist tricks that accelerate this
procedure such as in [56].

Variant C Explanation Protocol 4.6 as shown on Page 60
In Variant A, the sensor node is required to store a certificate, that can take up a
‘significant’ amount of space on a constrained device. In certain cases, reducing the
NVM or completely eliminating our dependency on it can bring tremendous benefits.
More over it is one of the requirements to reduce silicon area.

This proposed protocol, Variant C, requires zero NVM storage on the sensor by
leveraging a cloud infrastructure. The notable differences during the enrollment phase is
that the sensor does not store any information locally. Instead, the TTP publishes the
sensor’s certificate to a cloud as shown in Step 6. In the field, the host processor retrieves
the certificate from the cloud and verifies it as shown in Steps 7 and 9 respectively, and
proceeds with PUF-based ECDH. Note that because of the addition of the online cloud
infrastructure, we get additional benefits such as an easier certificate management e.g.
sensors can be easily blacklisted if necessary.

Variant D Explanation Protocol 4.7 as shown on Page 61
Thus far, two variants have been proposed that independently achieve a mutual authen-
tication and zero NVM storage on sensor, along with their advantages.

It is worth examining a variant that can do both. Basically, by merging the two, i.e.
enrolling the host processor and adding a cloud infrastructure, we achieve this Variant D
that has a mutual authentication, very little NVM requirement, and adds the certificate
management flexibility via the cloud infrastructure.

Discussion
The four protocol variants (A, B, C, and D) have been proposed so far that use ECDH
and that are based on PUF-derived keys. Although the differences between the pro-
tocol variants are simply slight changes, the results e.g. communication performance,
functionality etc. can be significantly different as we will see. Table 4.1 shows basic mea-
surements such as the number of transfers, data transfer size, and NVM requirement.
Note that the estimations are chosen to be based on realistic values. The size of ID is
chosen to be identical to the size of a Media Access Control address3 which is 48 bits.
The size of AC is based on the latest Intrinsic-ID Quiddikey technology4. A key with 256
bits of entropy needs approximately 720 bytes of SRAM and 752 bytes AC. Moreover,

3IEEE Standard.
4https://www.intrinsic-id.com/products/quiddikey/

56 CHAPTER 4. PROTOCOL DESIGN

the following analysis is focused more on the sensor side and the interactions with the
sensor due to its constrained nature.

The Number of Transfers shows the number of message transactions during enroll-
ment and reconstruction. As we can see, Variant B has the most data transfers, whereas
Variant C has the least. The Data Transfer Size shows size of the messages in terms
of the number of bits needed to be communicated during the transactions. This metric
is especially important for the constrained devices because every bit sent is counted to-
wards consumed power. Clearly, Variant B transmits the most amount of bits back and
forth with the sensor, whereas Variant C the least. The NVM Requirement shows how
much data need to be ‘permanently’ stored on the sensor. Variant B requires the most
since it needs to store the certificate as well as the TTP’s public key, whereas Variant C
requires no storage. The main properties of the protocol variants A-D are summarized
in Table 4.3. Options/properties with (+) are welcome whereas (-) are not so welcome.

Additionally, Figure 4.4 visually compares the different protocol variants. We have
chosen to compare the protocol variants based on the following four dimensions:

• Communication Performance: This directly reflects the transfer size in bits. Less
data transferred we consider as better performance.

• NVM Dependency: The amount of NVM storage required on the sensor. Shown
inversely on the plot: the highest point on the curve corresponds to zero storage
requirement on the device.

• Certification Management: This is a binary value. It is either online (end of axis)
or offline (middle of the axis).

• Authentication: This is a binary value. Middle of axis corresponds to one-way,
whereas the peak corresponds to a mutual authentication.

All values have been normalized and scaled accordingly, origin represents worse,
whereas perimeter is better. Therefore, a bigger area of the spiderweb represents a
better protocol variant in terms of these dimensions. In the next section, we discuss the
hardware architecture that is required on the sensor side to support one of these protocol
variants.

Variant A Variant B Variant C Variant D

Number of Transfers
Enrollment 2 4 1 4

Reconstruction 5 5 4 4
Total: 7 9 5 8

Data Transfer Size in bits (sensor)
Enrollment 12896 13152 6320 6576

Reconstruction 6928 13312 6368 6736
Total: 19824 26464 12688 13312

NVM Requirement (sensor) 6576 6832 0 256

Table 4.1: Properties of Protocol Variants A-D

4.3. PROTOCOL VARIANTS 57

Packet Size (bits) Variant A Variant B Variant C Variant D

Sent Total Sent Total Sent Total Sent Total
Enrollment:

ID 48 2 96 2 96 1 48 1 48
AC 6016 2 12032 2 12032 1 6016 1 6016
PK 256 2 512 3 768 1 256 2 512
Sig 256 1 256 1 256 0 0 0 0

Total: 12896 13152 6320 6576
Reconstruction:

syn 32 1 32 1 32 1 32 1 32
ID 48 1 48 2 96 0 0 1 48
AC 6016 1 6016 2 12032 1 6016 1 6016
PK 256 2 512 2 512 1 256 1 256
Sig 256 1 256 2 512 0 0 1 256

C, R 32 2 64 4 128 2 64 4 128
Total: 6928 13312 6368 6736

Table 4.2: Communication Analysis (sensor) of Protocol Variants A-D

Protocol S
en

so
r

A
u

th
en

ti
ca

ti
on

H
P

A
u

th
en

ti
ca

ti
on

N
V

M
R

eq
u

ir
em

en
t

C
lo

u
d

In
fr

as
tr

u
ct

u
re

C
er

ti
fi

ca
te

M
an

a
ge

m
en

t

S
ig

.
V

er
ifi

ca
ti

on
on

S
en

so
r

Variant A + - large (–) offline (+/-)
Variant B + + large (–) offline (+/-) required (–)
Variant C + - none (++) required (+/-) online (+)
Variant D + + negligible (+) required (+/-) online (+) required (–)

Table 4.3: Distinguishing Properties of Protocol Variants A-D

58 CHAPTER 4. PROTOCOL DESIGN

Inverse NVM
Dependency

Communication
Performance

Authentication

Certificate
Management

(a) Variant A

Inverse NVM
Dependency

Communication
Performance

Authentication

Certificate
Management

(b) Variant B

Inverse NVM
Dependency

Communication
Performance

Authentication

Certificate
Management

(c) Variant C

Inverse NVM
Dependency

Communication
Performance

Authentication

Certificate
Management

(d) Variant D

Figure 4.4: Comparison of Protocol Variants A-D in terms of Communication Perfor-
mance, NVM Dependency, Certificate Management and Authentication

4.3. PROTOCOL VARIANTS 59

(I) Enrollment of the sensor and the host processor

Trusted Third Party (TTP) has SKTTP Sensor (ID)

1 : (x, AC) ← PUF − enroll
2 : PKIDS

← DH KGen(x)

3 : ID,AC, PKIDS

4 : σID ← SigskTTP
(ID,AC,PKIDS

)

5 : CertIDS
= [ID,AC, PKIDS

, σID]

6 : CertIDS
, PKTTP

7 : Store(CertIDS
, PKTTP)

Trusted Third Party (TTP) has SKTTP Host Processor(HP) (ID)

8 : (SKHP , PKHP)← DH KGen

9 : ID, PKHP

10 : σID ← SigskTTP
(ID, PKHP)

11 : CertIDHP
= [ID, PKID, σID]

12 : CertIDHP
, PKTTP

13 : Store(CertIDHP
, SKHP , PKTTP)

(II) Key-agreement

Host Processor (HP) has PKTTP Sensor (ID) has PKTTP

14 : Session request, CertIDHP

15 : VfpkTTP
(CertIDHP

)

16 : CertIDS
= [ID,AC, PKID, σID]

17 : VfpkTTP
(CertIDS

) 18 : x ← PUF − reconstruct(AC)

19 : w = SKHP ∗ PKIDS
20 : w = x ∗ PKHP

21 : k = KDF (w) k = KDF (w)

(III) Authentication

22 : Choose N1 | N1 ∈R {Set of integers} 23 : Choose N2 | N2 ∈R {Set of integers}
24 : Encrypt N1 : C1 = Ek(N1) 25 : Encrypt N2 : C2 = Ek(N2)

26 : C1

27 : Decrypt C1 : n = Dk(C1)

28 : n := n+ 1

29 : Encrypt n : R1 = Ek(n)

30 : R1, C2

31 : Decrypt R1 : n = Dk(R1)

32 : V erify n
?
= N1 + 1

33 : Decrypt C2 : n = Dk(C2)

34 : n := n+ 1

35 : Encrypt n : R2 = Ek(n)

36 : R2

37 : Decrypt R2 : n = Dk(R2)

38 : V erify n
?
= N2 + 1

. Key-agreement and Authentication complete .

Protocol 4.5: Mutual Authentication Diffie-Hellman Key Exchange (DHKE) using Phys-
ical Unclonable Function (PUF)-derived key and a Trusted Third Party (TTP)(Variant
B)

60 CHAPTER 4. PROTOCOL DESIGN

(I) Enrollment of the sensor

Trusted Third Party (TTP) has SKTTP Sensor (ID)

1 : (x, AC) ← PUF − enroll
2 : PKID ← DH KGen(x)

3 : ID,AC, PKID

4 : σID ← SigskTTP
(ID,AC, PKID)

5 : CertID = [ID,AC, PKID, σID]

6 : Store(CertID) in cloud

. Sensor enrollment complete .

(II) Key-agreement

Host Processor (HP) has PKTTP and access to cloud storage Sensor (ID)

7 : Retrieve(CertID) from cloud

8 : Session request, AC

9 : VfpkTTP
(CertID) 10 : x ← PUF − reconstruct(AC)

11 : (SKHP , PKHP)← Ephemeral DH KGen

12 : PKHP

13 : w = SKHP ∗ PKID 14 : w = x ∗ PKHP

15 : k = KDF (w) k = KDF (w)

. Key Agreement complete .

(III) Authentication

16 : Choose N | N ∈R {Set of integers}
17 : Encrypt N : C = Ek(N)

18 : C

19 : Decrypt C : n = Dk(C)

20 : n := n+ 1

21 : Encrypt n : R = Ek(n)

22 : R

23 : Decrypt R : n = Dk(R)

24 : V erify n
?
= N + 1

. .Authentication complete .

Protocol 4.6: Cloud storage Diffie-Hellman Key Exchange (DHKE) using Physical Un-
clonable Function (PUF)-derived key and a Trusted Third Party (TTP) (Variant C)

4.3. PROTOCOL VARIANTS 61

(I) Enrollment of the sensor

Trusted Third Party (TTP) has SKTTP Sensor (ID)

1 : (x, AC) ← PUF − enroll
2 : PKID ← DH KGen(x)

3 : ID,AC, PKID

4 : σID ← SigskTTP
(ID,AC, PKID)

5 : CertID = [ID,AC, PKID, σID]

6 : Store(CertID) in cloud

7 : PKTTP

8 : Store(PKTTP)

Trusted Third Party (TTP) has SKTTP Host Processor(HP) (ID)

9 : (SKHP , PKHP)← DH KGen

10 : ID, PKHP

11 : σID ← SigskTTP
(ID, PKHP)

12 : CertIDHP
= [ID, PKID, σID]

13 : CertIDHP
, PKTTP

14 : Store(CertIDHP
, SKHP , PKTTP)

(II) Key-agreement

Host Processor (HP) has PKTTP and access to cloud storage Sensor (ID) has PKTTP

15 : Retrieve(CertID) from cloud

16 : VfpkTTP
(CertID)

17 : Session request, AC, CertIDHP

18 : x ← PUF − reconstruct(AC)

19 : w = SKHP ∗ PKID 20 : w = x ∗ PKHP

21 : k = KDF (w) k = KDF (w)

(III) Authentication

22 : Choose N1 | N1 ∈R {Set of integers} 23 : Choose N2 | N2 ∈R {Set of integers}
24 : Encrypt N1 : C1 = Ek(N1) 25 : Encrypt N2 : C2 = Ek(N2)

26 : C1

27 : Decrypt C1 : n = Dk(C1)

28 : n := n+ 1

29 : Encrypt n : R1 = Ek(n)

30 : R1, C2

31 : Decrypt R1 : n = Dk(R1)

32 : V erify n
?
= N1 + 1

33 : Decrypt C2 : n = Dk(C2)

34 : n := n+ 1

35 : Encrypt n : R2 = Ek(n)

36 : R2

37 : Decrypt R2 : n = Dk(R2)

38 : V erify n
?
= N2 + 1

. Key-agreement and Authentication complete .

Protocol 4.7: Mutual Authentication Cloud storage Diffie-Hellman Key Exchange
(DHKE) using Physical Unclonable Function (PUF)-derived key and a Trusted Third
Party (TTP) (Variant D)

62 CHAPTER 4. PROTOCOL DESIGN

Hardware Design and
Validation 5
In the previous chapter we proposed several protocol variants that enable establishing a

secure connection between a resource-constrained device with an embodied Physical Un-
clonable Function (PUF) and a resource-rich host processor. In this chapter, we first
investigate the key components that are necessary for enabling such security system, based
on a proposed protocol. Then, we design and develop an application-specific architecture,
a hardware template, that can be used as a guide in implementing such systems for IoT
devices. In Section 5.1, we present the system level approach for this design. In Sec-
tion 5.2, we show a proof-of-concept realisation of an instance of the proposed hardware
template on a Xilinx Zynq-7000 family APSoC.

5.1 Design and Development of the Architecture

In this section, we design and propose a hardware template of an architecture that adds
secure system capability to an IoT device. Previously we have seen that to establish
a secure connection with the constrained IoT devices in an untrusted environment we
need to (1) authenticate them and (2) perform a key-exchange operation with the host
processor. A key-exchange protocol based on Elliptic Curve Diffie-Hellman (ECDH) and
Physical Unclonable Function (PUF)-derived key has been proposed in Section 4.2.3
along with additional protocol variants as can be seen in Section 4.3. PUF technology is
used to authenticate device’s silicon. Elliptic Curve Cryptography (ECC) is chosen due
to its suitability for lightweight devices. These choices satisfy the requirements imposed
earlier in Section 4.1.

By inspecting these protocols, we can identify the key components that are necessary
for this secure application, and therefore we can design a high-level hardware architec-
ture. Next we discuss the high-level system architecture and the components it comprises
of, followed by a discussion on the various design choices that can be made.

5.1.1 High-level system architecture

Based on the Protocol 4.4, the constrained device must host a minimal set of primitives
as elaborated below and shown in Figure 5.1:

• Scalar Multiplication unit: The protocols are based on ECDH; by inspecting
the protocols, we can identify that the device performs scalar multiplication oper-
ation during enrollment as well as later in the field during the key-agreement stage
of the protocol. As it was mentioned earlier in Section 3.2, scalar multiplication is
the most compute intensive operation in ECC. Furthermore, it is the most critical
component in terms of security. Therefore, its implementation in hardware, within
our security boundary/perimeter is vital. This is discussed later in the section.

63

64 CHAPTER 5. HARDWARE DESIGN AND VALIDATION

Figure 5.1: Conceptual Hardware Architecture

• PUF System: One of the objectives in this thesis was to use PUF-technology for
silicon authentication. Therefore, the protocols designed in the previous chapter
are all based on PUF-derived keys. In that regard, a PUF system must be present
in the system. The choice of PUF is Static Random-Access Memory (SRAM) PUF
as motivated earlier in Section 3.4.2. The following are the integral parts of the
SRAM PUF system:

– SRAM: Since we are focused on SRAM PUF, a block of uninitialized SRAM
must be available in the system.

– Random Number Generator (RNG): During PUF enrollment stage a
key must be supplied for the purpose of key-programming. One such way can
be by using an RNG, which indirectly can be a source of such key. Interest-
ingly, a noisy PUF can be a good source of entropy when seeding an RNG
[57].

– Fuzzy Extractor: As shown in Section 3.4.2, SRAM start-up values are
usually noisy, mostly due to environmental factors e.g. temparature variation.
Therefore, a fuzzy extractor is needed to compensate for the noise present in
SRAM start-up values. Only after that, a reliable and stable secure key can
be reconstructed.

• Control unit: A control unit is essential for orchestrating all components, and
interfacing with the outer world. This can be a microprogram for implementing
the protocol, as well as an interface to the outside e.g. AMBA bus interface.

Optionally the final design might or might not include additional modules such as a

5.1. DESIGN AND DEVELOPMENT OF THE ARCHITECTURE 65

test unit, Non-volatile Memory (NVM), Symmetric crypto unit, and a Power manage-
ment unit. These modules are discussed next in more detail.

(i) Test unit: Testability is essential when making a system. Because we use a secure
application, there are specific implications on the test unit. For example, a typical
test solution scan-based design for test(DfT) scanchain is not designed for security.
Yang et al. propose a secure scan method that does not compromise the security,
while still maintaining a high test quality similar to the traditional scan DfT [58].
Testability is outside the scope of this thesis project.

(ii) NVM: Protocol 4.4 and Protocol 4.5 require data to be stored on the device. This
NVM storage can either be part of the architecture or provided externally by the
user.

(iii) Symmetric Crypto Unit: A symmetric crypto unit such as Advanced Encryp-
tion Standard (AES) can be added. Adding this block to the architecture will
allow the user to accelerate the symmetric encryption/decryption process with the
shared key that is produced by the protocol. It can also be used as the KDF as
used in Protocol 4.4 and its variants.

(iv) Power Management Unit:

Most (or even all) of the components in the system described here, are only used
occasionally, that is, during enrollment and key agreement during session estab-
lishment. Therefore, it is possible to power down the circuitry when the system
is not needed. Depending on the final realization product, other techniques such
as power gating [59] or clock gating [60] can be implemented for low-power appli-
cations. Furthermore, we should also be able to power down the SRAM. In fact,
since we are interested in the PUF’s power-up behaviour, it might be very bene-
ficial have this functionality in the first place. Details of power management are
outside the scope of this project.

5.1.2 Design Space Exploration

The main challenge in designing a secure system, as described in the previous section, is
the large design space due to the plethora of possible options. It is paramount to pick
the right sub-components/sub-systems and combine them in a way that best satisfies the
requirements, and therefore producing an efficient solution. There exist different design
paradigms that we can employ, this is discussed next.

Certain components such as SRAM can only be realised in hardware. However, for ex-
ample scalar multiplication and the fuzzy extractor units can be designed in various ways.
The architecture of these individual components can be based on different paradigms i.e.,
hardware design, software design, and hardware/software co-design. These are described
below.

1 Hardware design: This is usually a highly optimised application-specific architec-
ture. An example of such design is a finite-state machine implementation of a
certain algorithm/datapath. The main advantage of a hardware design is high

66 CHAPTER 5. HARDWARE DESIGN AND VALIDATION

performance. The downside is that that the architecture loses flexibility and does
not allow for easy modification.

2 Software design: This is an implementation, where the software application is
executed on a General Purpose Processor (GPP). Contrary to hardware design,
software design is very flexible. A GPP can execute a variety of applications, which
can be easily modified, updated, etc. The downside however is worse performance,
lower silicon area efficiency, and higher power usage.

3 Hardware/Software Co-design: A Hardware/Software co-design paradigm involves
the right allocation of functionality between software and hardware designs. In
essence, it is an alternative that benefits from both paradigms described above.
One example that employs such paradigm is an Application-specific Instruction
Set Processor (ASIP). An ASIP is designed with an intention that it is a purposely
crafted processor that has a clever thought-of Instruction Set Architecture (ISA)
that is most suitable for the application.

Note that the above are merely architectural paradigms, and must be kept separate
from and not confused with hardware realisation paradigms. The above architectures
can be realized as an Application Specific Integrated Circuit (ASIC), on an Field Pro-
grammable Gate Array (FPGA), or even on a combination of both [61]. Typically, one
realization is chosen over the other based on the ultimate goals. For a lightweight solu-
tion with the smallest form factor, and better speeds an ASIC realisation is preferred.
This option, however, is usually economically feasible only if the volume of production
is high, due to the manufacturing technology we have today. Naturally, high volume
production also minimises the per-unit costs. On the other hand, for prototyping and
for a low volume production an FPGA is usually a better and and a popular option.
Moreover, since FPGAs are of-the-shelf products, deploying them provides a fast time
to market.

Certain modules such as the scalar multiplication unit and the fuzzy extractor unit
can be implemented in the various paradigms discussed earlier: hardware, software, or
co-design. With a complete hardware solution, we might be able to achieve the smallest
silicon footprint and relatively better performance. However, in a co-design paradigm,
we can still do well regarding the area, and in addition, have a flexible solution, which
is desirable. One way is to use an ASIP. An ASIP can be compared to a GPP but is
tailored for a particular application. It can have a special ISA with dedicated instructions
and optimised accelerators for certain specific tasks, e.g., big-integer multiplication with
modular reduction.

Now that we have discussed the different paradigms individual components can be
designed in, we are going to explore what is known as the security boundary or the
perimeter. It is an important aspect to focus on, since it plays a crucial role in the sys-
tem’s security, and that is also very related to the self-contained solution requirement.
Security boundary dictates which components are included in our hardware template,
or otherwise shared with external or third-party resources. From a security standpoint,
a design, where all components are within the secure boundary, is best. The reason is

5.1. DESIGN AND DEVELOPMENT OF THE ARCHITECTURE 67

Figure 5.2: Conceptual IoT device for a secure application

that components within our boundary are also within our full control. This is the way
to achieve maximal security. But once resources are shared, control becomes shared and
typically having things under control becomes complicated. On the other hand, shar-
ing resources can have advantages; for example, possibly a better hardware utilization,
therefore decreased hardware area.

In this regard, we will closely look at SRAM and RNG modules, and discuss the
consequences of them being within or outside the boundary. In order to get a better
understanding we can examine a possible attack and its consequences. For example,
altering or reading SRAM start-up values is clearly unsecure. Altering the start-up
values can be seen as artificially injecting noise. The fuzzy-extractor will only be able
to compensate for that noise to a certain extent, after which a stable and reliable key
would not be reconstructed. Reading the SRAM values poses a security risk. However, if
one can guarantee that an ‘outsourced’ SRAM module will not be tampered or read-out
by unauthorized people, then it can be a suitable solution. As mentioned earlier, the
SRAM can either be included within our architecture or provided/shared from outside.
Although the security issue is evident here, relying on an externally provided SRAM
values can possibly be a better option due to area savings. For the purpose of PUF, we
are only interested in the uninitialized start-up values. Therefore, another benefit is that
memory can be reused for other purposes after the initial values are read out. Similarly,
the RNG is used only once during enrollment. Therefore, an externally provided random
value under a controlled environment can be a possible solution as well, but a less secure
one, due to the increase of the attack surface. Unfortunately, as we move our components
outside the ‘perimeter’, we lose control over them, and trust that other parties will take
care of the security at that level. In practice users tend to ignore security measures, or
disable them altogether.

Let us examine a conceptual design of an IoT device, which can resemble something as
shown in Figure 5.2. Its system’s architecture constitutes of a lightweight processor such

68 CHAPTER 5. HARDWARE DESIGN AND VALIDATION

as an ARM Cortex-M0 (M0)1 augmented with a secure core that we aim to design and
develop in this chapter. The most unsecure option perhaps would be to share as much
resources as possible and even offload most of the operations onto the host processor.
Besides the fact that this option is unsecure, this option has several other disadvantages
and clearly violates some of the requirements set earlier. First of all, it contradicts the
notion of having a self-contained solution, which is one of the requirements. Furthermore,
an IoT device does not require to have a processor by definition i.e., it might comprise
of only a simple circuitry that does not even need a processor as lightweight as ARM
Cortex-M0. Therefore, proposing a design that is tailored for ARM Cortex-M0 would
make the solution hardly portable. A similar but an alternative solution is to place a
lightweight processor in our architecture and execute all the security related operations
on that processor. In general we avoid using a GPP altogether in this project, because
it does not provide an efficient use of the area.

5.2 Implementation and Evaluation

In Section 4.2, we demonstrated an ECDH-based protocol that use PUF-derived keys for
hardware root-of-trust, and later proposed protocol variants that can be considered as
improvements. In Section 5.1 we identified the key components that are needed to enable
the protocol, and examined the design choices that can be made. Then, we proceed
to the development of a proof-of-concept prototype system, where we aim to validate
the idea, get more insights into the prototype, further explore the design possibilities
and eventually make suggestions for future improvement. Finally, we build a prototype
system based on the hardware template described earlier in Figure 5.1, to realize, validate
and evaluate this secure solution.

5.2.1 Building a Prototype

The purpose of building a prototype is to demonstrate the protocol and show that a
possible solution that satisfies all requirements can be developed using off-the-shelf com-
ponents. As a prototyping platform, we choose to use platform with a Xilinx Zynq-7000
family All Programmable System on Chip (APSoC) device. This platform comprises of
a GPP and an FPGA, which gives the flexibility to design and develop for hardware,
software, and hardware/software co-design paradigms discussed earlier. For this proto-
type, we chose to use the NaCl core for the ECC scalar multiplication, introduced earlier
in Section 3.3.2. In the following, we take a closer look the Zynq device and at the NaCl
core.

Xilinx Zynq-7000 family APSoC

After a considerable evaluation and some experimentation, we decided that the most
suitable platform for prototyping this system is the Xilinx Zynq APSoC [62] product
family, which provides a fast time to market, flexibility and upgrade-ability when com-
pared to traditional System on Chip (SoC). A SoC is usually referred to an ASIC which

1ARM Cortex-M0 Processor: https://www.arm.com/products/processors/cortex-m/cortex-m0.php

5.2. IMPLEMENTATION AND EVALUATION 69

hosts heterogeneous components needed for a particular purpose on a single die, rather
than separate subsystems connected to each other on a Printed Circuit Board (PCB).
Benefits of SoC are lower cost, smaller physical size and better reliability, faster and
more secure data transfer between various system elements, lower power consumption
etc. [62] But obviously, ASIC SoCs are rigid and lack flexibility because they cannot
be modified after production. Moreover, such systems require substantial non-recurring
engineering costs and time. This is a feasible choice for high volume production, where
no future upgrades are necessary. On the other hand, FPGAs have been a great solution,
so far, that have the flexibility and no non-recurring costs. FPGAs are programmable
devices where logic can be reconfigured after production. For more more information
about FPGA technologies, refer to [63].

The architecture of Zynq constitutes of primarily two segments: the Processing Sys-
tem (PS) and the Programmable Logic (PL) as shown in Figure 5.3 The PS consists

Figure 5.3: Zynq platform

of a ‘hard’ ASIC implementation of ARM® dual Cortex®-A9 based processor cores
along with other supporting peripherals such as a dedicated and optimized silicon ele-
ment, whereas the PL side is the Xilinx 7-series FPGA fabric. Both sides are closely
integrated. An industry standard Advanced eXtensible Interface (AXI) interface, which
provides high bandwidth, low latency between the two parts, is used to connect them.
An excellent source of reference where one can find all kinds of information about the
Zynq platform is the Zynq Book [62].

This architecture is ideal for prototyping and proof-of-concept demonstration of this
project. It allows us to implement a self-contained solution that hosts all the necessary
custom hardware modules on the fabric side and makes it possible to use conventional
software methods to interface with those hardware modules.

NaCl hardware core

We will use the NaCls Crypto box in Hardware [44] (NaCl core) for the scalar multipli-
cation, which is one of the key operations in the Diffie-Hellman Key Exchange (DHKE)
protocol as described earlier in Section 4.2.3. As mentioned earlier in Section 3.3.2,

70 CHAPTER 5. HARDWARE DESIGN AND VALIDATION

NaCl core is an example of low-resource hardware implementation of the widely known
crypto box function of the ‘Networking and Cryptography’ (NaCl) crypto library. The
NaCl core supports the X25519 Diffie-Hellman key exchange using Curve25519, the
Salsa20 stream cypher, and the Poly1305 message authenticator [44]. There are sev-
eral reasons why this particular core is chosen. The NaCl core is in sync with all the
requirements listed in Section 4.1: Firstly, it is a technology independent hardware im-
plementation targeting highly resource-constrained devices i.e., optimized for area. Sec-
ondly, the VHDL code of the core is in the public domain and therefore freely available
for the public. This allows us to modify the existing solution to best fit our need if
necessary. Moreover, by using the NaCl core, we build on top of previous academic work
and reduce development time.

The NaCl core is designed and developed as an ASIP, which is, as we advocated, the
most suitable for our need. The NaCl core constitutes of a memory unit, a controller,
and a NaCl-specific Arithmetic Logic Unit (ALU). The NaCl core was specifically de-
signed for a lightweight implementation; therefore, several decisions and trade-offs were
made by the authors already for that reason. They implement a 32-bit single-port RAM,
due to its smaller area sizes compared to dual-port RAMs. To compensate for the re-
duced throughput of single-port memories they have incorporated other techniques, e.g.
optimised single-port memory arithmetic by using an additional register at the ALU to
buffer the fetched values from the RAM etc. The controller hosts two Read-Only Mem-
ory (ROM) modules for storing the program, a program counter, instruction decoder,
dedicated multiplication controller and a memory management unit. The two ROMs
contain separate code, first for Curve25519 and the second for XSalsa20 and Poly1305.
The multiplication controller implements big-integer multiplication using the smaller
32x32 bit multiplications. The multiplier is a customizable digit-serial-multiplier. This
NaCl core supports 46 instructions, 26 of which are general purpose and 20 are NaCl-
specific. The programs stored in ROM are hardcoded in a specific machine-code. A
special program is provided, that generates the machine-code from an assembly look-
ing like program. In addition, the NaCl core comes with a SELFTEST module that
can be enabled or disabled. The SELFTEST module is a hardware implemented state
machine that supplies hardware burned-in input test vectors and compares them with
corresponding output values.

5.2.2 System Integration and Experiments Performed

For this experiment, we chose to partition the functionality among the different parts of
the Zynq board as shown in Figure 5.4. The most complex, non-trivial and time con-
suming operation in the protocol is the scalar multiplication that is present in ECDH.
Therefore, we focus on placing a hardware implementation of this element on the FPGA,
and augment it with all other necessary components either in hardware or software. The
prototyping board has an on-chip SRAM, which theoretically can be used as a PUF.
However, accessing it and reading its non-initialized start-up values is not straightfor-
ward. Therefore, for the sake of simplicity, an external SRAM module is connected to the
board. The application stack responsible for executing the protocol and implementing
communication, as well as a fuzzy-instructor are implemented in software on the GPP

5.2. IMPLEMENTATION AND EVALUATION 71

Figure 5.4: Mapping functionality onto the Zynq board

side of the Zynq device.

In the following, we show a step-by-step way of building the proof-of-concept sys-
tem, building it in a bottom-up fashion. First we look at the (I) scalar multiplication
operation using the NaCl core. Thereafter, we (II) develop software support system e.g.,
drivers for the Zynq device, where the key operations are abstracted for the programmer.
Thereafter, we (III) add secure communication, and finally, (IV) integrate it with PUF
technology.

(I) Scalar Multiplication using NaCl core. We begin by integrating the ECC
scalar multiplication unit. Obviously, one of the essential steps was to read the docu-
mentation, understand the interfaces as well as the different components within the core;
followed by, simulations, and eventually a synthesis and verification of the core on an
FPGA board. Prior to deciding to use the Zynq device for prototyping, we used a Xilinx
Kintex-5 FPGA. In order to understand the core, we have made a special set-up, which
will be briefly discussed next.

Basic Verification. The NaCl core by itself is ‘empty’: the ROM contents need
to be filled in and certain configuration parameters need to be configured. A NaCl
compiler, supplied along with the source code2, reads in the application program and
configuration parameters, and generates a corresponding ROM content file as well as a
configuration file in VHDL. There are multiple configurations that are possible such as
including a SELFTEST unit or not, using a special multiplication controller circuit or
not, and configuring the multiplier itself, that is the 32-bit multiplier present in NaCl
can be set to be a 2, 4, 8, and 16 cycles.

To be able to interface, and therefore test the NaCl core, we needed set up the system
in way that allowed us to take control of the core. This was made possible by connecting

2NaCl hardware code publicly available at http://mhutter.org/research/vlsi/#naclhw and at
http://cryptojedi.org/crypto/#naclhw

72 CHAPTER 5. HARDWARE DESIGN AND VALIDATION

the NaCl core to the BOARD TESTER3 component as shown in Figure 5.5. Using
the BOARD TESTER one can issue commands, read and write to the NaCl core. The
BOARD TESTER component hosts a UART unit that allows external control. Using
a special dedicated BOARD TESTER interpreter, we can write custom programs for
testing the NaCl core. With this properly configure system we can write, read, check
and poll signals that we dedicated and connected to the NaCl core. Having this kind
of interface allowed us to experiment and test with the NaCl core. Certain tests were
performed and the results were reproduced as in the original paper [44].

Figure 5.5: NaCl core verification

Area and Performance. The performance of the NaCl core mainly depends on
the chosen multiplier configuration. The fastest two-cycle version of the core utilises 2754
Slice LUTs on a Xilinx Artix®-7 FPGA and takes approximately 830882 cycles for a
scalar multiplication. The original core contains other functionality such as the XSalsa20
and Poly1308 code [44], compiled and stored in the ROM program that we do no need
for our project. Because we do not need these primitives in our protocols, we, therefore,
reduced the program to its minimum, recompiled it and re-synthesized the core. This
reduced the ROM size by approximately a factor of two. The new reduced utilisation
becomes 2080 Slice LUTs. We skip the intermediate versions here and proceed to the
slowest version, configured as a 16 cycle multiplier. This configuration takes 3475123
cycles, and obviously the least area utilisation of 946 Slice LUTs. This is summarized in
Figure 5.6.

(II) Abstracting Key Operations. The most obvious choice for a prototyping
platform is the Xilinx Zynq APSoC platform described earlier. This platform tightly
couples together a processor with the fabric, and the communication is possible via
the AXI-peripheral. The first step was to wrap the NaCl core into an AXI-peripheral.

3The BOARD TESTER is an Intrinsic-ID in-house developed tool that facilitates testing and verifi-
cation of hardware components.

5.2. IMPLEMENTATION AND EVALUATION 73

C
1

C
2

C
3

1,000

1,500

2,000

2,500

3,000
2,754

2,080

946
S

li
ce

L
U

T
s

Figure 5.6: Minimizing the NaCl core on a Zynq APSoC (Artix®-7 FPGA) C1: Two-
cycle Multiplier; C2: Two-cycle Multiplier and a reduced ROM; C3: 16-cycle Multiplier

The second important step was to abstract the hardware and expose only the high-level
operations to the programmer, by creating hardware interface drivers. Some of the high-
level operations API are reading from and writing to NaCl registers and performing the
scalar multiplications as shown in Listing 5.1.

Figure 5.7: Setup on a ZedBoard, hosting a Xilinx Zynq device

1 void w r i t e t o r e g (char reg , unsigned char value [3 2]) ;
unsigned char ∗ r ead f rom reg (unsigned char reg) ;

3 unsigned char ∗ s ca l a rmu l t ba s e (unsigned char s e c r e t k e y [3 2]) ;
unsigned char ∗ s ca l a rmu l t (unsigned char s e c r e t k e y [3 2] , unsigned char
PK point [3 2]) ;

5

Listing 5.1: Hardware Abstraction: NaCl C interface

74 CHAPTER 5. HARDWARE DESIGN AND VALIDATION

(III) Adding Secure Communication. At this stage, we have the NaCl core
embodied into the fabric, with its operations exposed to the programmer. An essential
part of this system is communication to the outside world. The actual way or the medium
of communication is irrelevant for this project. Therefore, simple serial communication
with a Host Processor is sufficient. The next step is to integrate security into this
communication. We implement Protocol 4.4 with a slight twist. At this point in time,
there is no PUF-system on the prototype board yet. Therefore the secret-key values are
forced. We verify that both the device and the Host Processor can achieve a common
shared key. The host processor app was developed as well and is briefly discussed later
in this Section.

Figure 5.8: The final setup showing the proof-of-concept

(IV) Integrate PUF Technology To finalize the implementation of the proof-
of-concept, we need to integrate the SRAM PUF technology into our prototype. For
demonstration purposes, we would be using an external SRAM chip, namely 23LCV1024
from Microchip4: it is an off-the-shelve ‘1 Mbit SPI Serial SRAM’ module IC in an 8-
pin DIP package. To make this project open source so that anyone could benefit from
it, we have decided to avoid using Intrinsic-ID proprietary PUF technology, which is
developed to work under extreme conditions, and has high error correcting capabilities,
etc. Instead, as a proof of concept, we implement our simple mock-up fuzzy-extractor,
which is based on simple error correcting codes, that is still able to reconstruct the key
under normal conditions. Optimising a particular fuzzy-extractor is not within the scope
of this project. Therefore, we implement and use a very simple error correcting code.
The error correcting code we use for encoding and decoding during the enrollment and
reconstruction phases respectively is a repetition code. The fuzzy extractor used in the
prototype is shown in Figure 5.95.

The rep(64,1) encoder turns one bit into a 64 bit codeword. Therefore, 2kB chunk
is produced when a 256-bit key is input to the encoder. To reverse this operation, the
counterpart decoding logic for a repetition code is implemented by a majority decoder
logic. The Hamming weight of the 64 bit codeword at the input will determine whether
it is a zero or a one. Although it is a naive error correcting code, rep(r,1)’s error

4Data Sheet: http://ww1.microchip.com/downloads/en/DeviceDoc/25156A.pdf
5The repetition code is an even number because it allows for an easier implementation on the chosen

platform.

5.2. IMPLEMENTATION AND EVALUATION 75

Figure 5.9: Fuzzy-Extractor used in the proof-of-concept

correcting capabilities are (r − 1)/2. A rep(63, 1) code is able to correct up-to 31 errors
in a 64-bit codeword. Therefore the error tolerance is 31/63 = 49%. However, a quick
experiment showed that a conservative and safe threshold is around 30% error as shown
in Figure 5.10. Another profiling experiment revealed that the same SRAM chip used in
this setup has the following properties:

(a) Noise range of 5−10% under normal room conditions. Meaning that the fractional
hamming distance d(R,R′)(see Eq. 3.14), where R is the reference measurement
and R’ are subsequent measurements taken from the same device is 0.05 to 0.10.

(b) Hamming weight (see Eq. 3.20) of approximately 68%.

(c) Hamming distance between devices around 44%. Meaning that the d(R1, R2) where
R1 and R2 are the reference measurement of different devices is 0.44.

This experiment shows that the fuzzy extractor used in the experimental setup could
be used under normal room conditions since the SRAM startup noise is within the
error correcting capabilities of the fuzzy extractor. However, the Hamming weight is
68% which indicates a global bias; therefore, a debiasing technique must be used to
compensate for that as discussed in Section 3.4.3.

Figure 5.8 shows the conceptual view of the overall system and Figure 5.11 shows
the block design of the integrated system on the Zynq APSoC. The ZYNQ7 Processing
System block connected to two IP blocks via the AXI peripheral. The NaCl 0 block is
the minimal configuration NaCl core. Two additional signals led0 and led1 are added
for debugging purposes. The AXI peripheral and the NaCl core run at two different
frequencies. Therefore an external clock is supplied to the NaCl core. The clock domain
crossing had to be taken care of. The axi uartlite 0 block is used to interface an external
SRAM chip.

76 CHAPTER 5. HARDWARE DESIGN AND VALIDATION

Figure 5.10: Behaviour of the Fuzzy-Extractor using rep(64,1) encoder. Note that the
decoder fails beyond the 32% error.

Figure 5.11: Top level block design of the prototype on the Zynq APSoC

Host Processor

In order to emulate the protocol, and the communication with the host processor it
was decided to put together a GUI that will do that and also provide a ‘screen’ to the
prototyping board. A screenshot can be seen in Figure 5.12. A procedure is as follows;
when a user clicks the enroll button, an ‘enroll’ command is sent to the device. When
this command is received on the device, it begins by reading out the SRAM values from

5.2. IMPLEMENTATION AND EVALUATION 77

Figure 5.12: Host Processor GUI; used to enroll, authenticate and provide the output of
the device.

the external chip and feeds it into the fuzzy-extractor which produces the Activation
Code (AC). The secret key is used to produce the corresponding public key using the
scalar multiplication unit. Since Protocol A has been implemented for this experiment,
the necessary information is sent back to the host processor, which then signs the data
and send back a certificate. The certificate is stored on the device.

When an authenticate command is sent to the device, the device first reads the SRAM
values, and uses it along with the previously stored activation code to reproduce the
secret key as before. Once the secret key is recovered, it is used by the scalar multiplier
to produce the corresponding public key. Both parties then proceed with the DHKE as
in Protocol 4.4 Steps 14-15 to derive a shared key. From here on, the communication
can be encrypted using this shared key.

5.2.3 Discussion

The challenge was to enable a secure communication with authenticated resource-
constrained IoT devices. Several cryptographic protocol variants were proposed in the
previous chapter that solves this challenge. In this chapter we focused on designing
a hardware architecture that supports these proposed protocols. Thereafter, we went
through a systematic way of building a prototype of this secure communication system.

78 CHAPTER 5. HARDWARE DESIGN AND VALIDATION

The prototype allowed us to verify, evaluate, and analyze the feasibility of such a sys-
tem. Further, it has given us insight on what can be done, what can be improved and
optimised. Despite that it is only a prototype, it is a big step towards making a real
product out of it; since it lays foundation for both low-volume FPGA and high-volume
ASIC production. For instance, the entire IoT device along with the designed security
related parts can be rolled out for production on a small Cost-Optimized Zynq devices
such as Single-Core Z-7007S or Dual-Core Z-7010 6 if needed. For example, Zynq-7000
family such as XC7Z010-1CLG225C can be bought for 57.75 USD per piece7. As stated
earlier, this has the potential to be a viable option for a low to medium production, and
a fast time to market. Alternatively, for a higher production volume, we might need to
design an ASIC. Although the non-recurring costs are known to be high for such design,
the resulting per-unit price can be substantially minimised this way. Furthermore, ASIC
design can be optimised for an area, resulting in the smallest form factor.

6Zynq-7000 Product Selection Guide: https://www.xilinx.com/support/documentation/selection-
guides/zynq-7000-product-selection-guide.pdf

7DigiKey Online product price: http://www.digikey.com/product-detail/en/xilinx-inc/XC7Z010-
1CLG225C/122-1855-ND/3925788.

Conclusion 6
6.1 Summary

In this thesis, we showed the importance of secure communication throughout history.
Although in early ages secure communication was used in niche applications such as the
military, today it is an essential part of our connected online world. The Recent pro-
liferation of Internet of Things (IoT) devices, their diversity and the need for security,
impose many new challenges. One such challenge is that one-size-fits-all solutions are not
efficient. Therefore, we need to design and develop application-specific solutions. In this
thesis, we examined a use-case: secure communication with resource-constrained devices;
with the primary focus of key-agreement and authentication of the silicon. We showed
what a secure system is, discussed some incentives behind the attacks and provided a
broad taxonomy of them. We discussed the security requirements such as integrity, au-
thenticity, confidentiality, and non-repudiation, and what they mean; and, how certain
cryptographic systems can equip us with tools that can guarantee these properties. In
the related work chapter, we discussed public-key cryptography and its key components.
Furthermore, we looked at some of the Public-key Cryptography (PKC) cores that exist
in academia and the industry. We go in-depth on this subject because this primitive
is responsible for key-establishment, the crucial mechanism for enabling a secure com-
munication in the use-case under investigation in this thesis. With regards to PKC,
a gentle overview of integer factorization, discrete logarithm and elliptic curve discrete
logarithm problem based public-key primitives such as RSA, Diffie-Hellman (DH), and
Elliptic Curve Diffie-Hellman (ECDH) respectively are discussed. Elliptic Curve Cryp-
tography (ECC) has been gaining popularity in the community as a suitable candidate
for constrained devices. The reason is due to much shorter operands that are required
for achieving the same level of security as compared to others. Shorter operands imply
simpler hardware. Next, we introduced PUF technology. PUF is an intrinsic hardware
security primitive that is an essential part of this thesis. It is the hardware root-of-trust,
which provides a strong authentication mechanism to authenticate the ‘silicon’ of the
device. Among the different types of PUFs, we have mainly discussed the SRAM PUF.
Therefore, a set of requirements is presented, influenced by the academia and the indus-
try. Eliciting a set of requirements is essential for a project like this; it shaped how the
protocol and the consequent hardware architecture is designed and developed. The first
proposed protocol was a modification of a Diffie-Hellman Key Exchange (DHKE), which
used a PUF-based key. The analyziz showed that it was a one-way authentication with
a non-negligible Non-volatile Memory (NVM) requirement on the device’s side. Three
more protocol variants were proposed after that to mitigate those issues. A thorough
comparison of the variants was provided at the end; showing the trade-offs related to se-
curity versus implementation requirements. The designed protocol served as a roadmap

79

80 CHAPTER 6. CONCLUSION

in drafting a modular hardware architecture that can be used as a guideline in designing
architectures that support the protocol. One such instance was chosen to be verified
and prototyped on the Xilinx Zynq-7000 APSoC device. This allowed us to analyze its
practicality as well as its feasibility. Furthermore, the prototype offered interesting in-
sights and laid a solid foundation for future research, which is the subject of the following
section.

6.2 Future Work

This works lays a solid foundation for future research and investigation. Different alter-
native paths can be pursued; which are discussed next.

(I) Related to the NaCl-core:

• Expanding the NaCl core: The NaCl core used in this project is a public-
domain ASIP implementation, used to perform ECC scalar multiplications
on Curve25519. Although this core has application specific instructions, it
still mostly depends on the software code stored in ROM.

Perhaps equipping this core with additional accelerators, or more complex in-
structions may be feasible. In other words, shifting some functionality towards
‘state-machine’ implementation, and conducting an extensive design-space ex-
ploration can be done.

• Fuzzy-Extractor on the NaCl: As stated before, the NaCl Core is an ASIP. It
consists of general purpose as well as an application specific instruction set.
It is worth investigating to see whether a suitable error-correcting scheme can
be ported on to the NaCl core without modifying or with few modifications
to the core.

(II) Related to the current implementation on a Zynq device: Further investigations
can be done that target the Zynq device, such as:

• The Zynq platform has an on-chip memory module such as the 256KB SRAM1

which in theory can be used as a PUF. Further investigation is required to
see if the on-chip SRAM can be ‘read’ in its uninitialized state; and profiled
to check its feasibility as a PUF.

• Leverage other available technologies. In particular, the on-chip ARM core is
equipped with TrustZone. Therefore, all security related software operations
should eventually leverage that. Furthermore, The Zynq platform provides
mechanisms for power management, and clock throttling, which can be em-
ployed for power optimization in future implementations.

(III) Evaluating the solution using other technology:

1Zynq Product Specification: https://www.xilinx.com/support/documentation/data sheets/ds190-
Zynq-7000-Overview.pdf.

6.2. FUTURE WORK 81

• The proposed hardware template can be further spun into an ASIC design
and implementation.

• The Microsemi SmartFusion2 SoC FPGA Family2 hosts an on-chip Intrinsic-
ID’s Quiddikey PUF technology. An interested party might wish to evaluate
or even deploy a product on this platform.

2Product Overview: http://www.microsemi.com/products/fpga-soc/soc-
fpga/smartfusion2#overview.

82 CHAPTER 6. CONCLUSION

Bibliography

[1] S. Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum
Cryptography. Anchor Books, 2000. [Online]. Available: https://books.google.nl/
books?id=skt7TrLK5uYC

[2] T. Kelly, “The myth of the skytale,” Cryptologia, vol. 22, no. 3, pp. 244–260, 1998.
[Online]. Available: http://dx.doi.org/10.1080/0161-119891886902

[3] B. Copeland, “Alan turing.” [Online]. Available: http://www.britannica.com/
biography/alan-turing

[4] A. Kerckhoffs, La cryptographie militaire, ou, Des chiffres usités en temps de guerre:
avec un nouveau procédé de déchiffrement applicable aux systèmes à double clef, ser.
Extrait du Journal des sciences militaires. Librairie militaire de L. Baudoin, 1883.
[Online]. Available: https://books.google.nl/books?id=VbQBAAAAYAAJ

[5] P. S. Ravikanth, “Physical one-way functions,” Ph.D. dissertation, Cambridge, MA,
USA, 2001, aAI0803255.

[6] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study on the state
of the art and future research directions,” in Towards Hardware-Intrinsic Security.
Springer, 2010, pp. 3–37.

[7] R. Maes, V. van der Leest, E. van der Sluis, and F. Willems, “Secure key gen-
eration from biased pufs,” Cryptology ePrint Archive, Report 2015/583, 2015,
http://eprint.iacr.org/.

[8] V. van der Leest and P. Tuyls, “Anti-counterfeiting with hardware intrinsic secu-
rity,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2013,
March 2013, pp. 1137–1142.

[9] “Intrinsic id,” https://www.intrinsic-id.com/, accessed: 2016-04-20.

[10] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, 1st ed. Springer Publishing Company, Incorporated, 2009.

[11] B. Schneier, Secrets & Lies: Digital Security in a Networked World, 1st ed. New
York, NY, USA: John Wiley & Sons, Inc., 2000.

[12] ——, Digital Threats. Wiley Publishing, Inc., 2015, pp. 14–22. [Online]. Available:
http://dx.doi.org/10.1002/9781119183631.ch2

[13] S. Hamdioui, G. Di Natale, G. van Battum, J.-L. Danger, F. Smailbegovic, and
M. Tehranipoor, “Hacking and protecting ic hardware,” in Proceedings of the
Conference on Design, Automation & Test in Europe, ser. DATE ’14. 3001 Leuven,
Belgium, Belgium: European Design and Automation Association, 2014, pp.
99:1–99:7. [Online]. Available: http://dl.acm.org/citation.cfm?id=2616606.2616728

83

https://books.google.nl/books?id=skt7TrLK5uYC
https://books.google.nl/books?id=skt7TrLK5uYC
http://dx.doi.org/10.1080/0161-119891886902
http://www.britannica.com/biography/alan-turing
http://www.britannica.com/biography/alan-turing
https://books.google.nl/books?id=VbQBAAAAYAAJ
http://eprint.iacr.org/
https://www.intrinsic-id.com/
http://dx.doi.org/10.1002/9781119183631.ch2
http://dl.acm.org/citation.cfm?id=2616606.2616728

84 BIBLIOGRAPHY

[14] S. P. Skorobogatov, “Semi-invasive attacks: a new approach to hardware security
analysis,” Ph.D. dissertation, University of Cambridge Ph. D. dissertation, 2005.

[15] D. G. Abraham, G. M. Dolan, G. P. Double, and J. V. Stevens, “Transaction security
system,” IBM Systems Journal, vol. 30, no. 2, pp. 206–229, 1991.

[16] S. P. Skorobogatov, “Semi-invasive attacks – a new approach to hardware security
analysis,” 2005.

[17] A. Monteiro Oliveira Cortez, “Reliability assessment and test methods for anti-
counterfeiting technology,” Ph.D. dissertation, TU Delft, Delft University of Tech-
nology, 2015.

[18] D. Papp, Z. Ma, and L. Buttyan, “Embedded systems security: Threats, vulner-
abilities, and attack taxonomy,” in Privacy, Security and Trust (PST), 2015 13th
Annual Conference on. IEEE, 2015, pp. 145–152.

[19] C. P. Pfleeger and S. L. Pfleeger, Security in Computing (4th Edition). Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2006.

[20] S. S. Kumar, “Elliptic curve cryptography for constrained devices,” Ph.D. disserta-
tion, Ruhr University Bochum, 2006.

[21] B. Mandal, S. Chandra, S. S. Alam, and S. S. Patra, “A comparative and analytical
study on symmetric key cryptography,” in Electronics,Communication and Compu-
tational Engineering (ICECCE), 2014 International Conference on, Nov 2014, pp.
131–136.

[22] C.-C. Lu and S.-Y. Tseng, “Integrated design of aes (advanced encryption stan-
dard) encrypter and decrypter,” in Proceedings IEEE International Conference on
Application- Specific Systems, Architectures, and Processors, 2002, pp. 277–285.

[23] A. Hodjat and I. Verbauwhede, “A 21.54 gbits/s fully pipelined aes processor on
fpga,” in Field-Programmable Custom Computing Machines, 2004. FCCM 2004.
12th Annual IEEE Symposium on. IEEE, 2004, pp. 308–309.

[24] C. H. Gebotys, Security in Embedded Devices. Springer, 2010.

[25] K. Huang and R. Tso, “A commutative encryption scheme based on elgamal en-
cryption,” in 2012 International Conference on Information Security and Intelligent
Control, Aug 2012, pp. 156–159.

[26] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans.
Inf. Theor., vol. 22, no. 6, pp. 644–654, Sep. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TIT.1976.1055638

[27] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48,
no. 177, pp. 203–209, 1987. [Online]. Available: http://www.jstor.org/stable/
2007884

http://dx.doi.org/10.1109/TIT.1976.1055638
http://www.jstor.org/stable/2007884
http://www.jstor.org/stable/2007884

BIBLIOGRAPHY 85

[28] V. S. Miller, Use of Elliptic Curves in Cryptography. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1986, pp. 417–426. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-39799-X 31

[29] C. Boyd and A. Mathuria, Protocols for Authentication and Key Establishment,
1st ed. Springer Publishing Company, Incorporated, 2010.

[30] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp.
120–126, Feb. 1978. [Online]. Available: http://doi.acm.org/10.1145/359340.359342

[31] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik et al., “Factorization of a 768-bit rsa
modulus,” in Annual Cryptology Conference. Springer, 2010, pp. 333–350.

[32] D. Boneh et al., “Twenty years of attacks on the rsa cryptosystem,” Notices of the
AMS, vol. 46, no. 2, pp. 203–213, 1999.

[33] P. L. Montgomery, “A survey of modern integer factorization algorithms,” CWI
quarterly, vol. 7, no. 4, pp. 337–366, 1994.

[34] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332,
1999. [Online]. Available: http://dx.doi.org/10.1137/S0036144598347011

[35] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptogra-
phy. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2003.

[36] M. Joye and S.-M. Yen, The Montgomery Powering Ladder. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 291–302. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-36400-5 22

[37] T. Izu, B. Möller, and T. Takagi, Improved Elliptic Curve Multiplication Methods
Resistant against Side Channel Attacks. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 296–313. [Online]. Available: http://dx.doi.org/10.1007/
3-540-36231-2 24

[38] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford,
UK: Oxford University Press, 2000.

[39] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve cryptography
in wireless sensor networks,” in Information Processing in Sensor Networks, 2008.
IPSN ’08. International Conference on, April 2008, pp. 245–256.

[40] G. Hinterwälder, A. Moradi, M. Hutter, P. Schwabe, and C. Paar,
Full-Size High-Security ECC Implementation on MSP430 Microcontrollers. Cham:
Springer International Publishing, 2015, pp. 31–47. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-16295-9 2

http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31
http://doi.acm.org/10.1145/359340.359342
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-36231-2_24
http://dx.doi.org/10.1007/3-540-36231-2_24
http://dx.doi.org/10.1007/978-3-319-16295-9_2
http://dx.doi.org/10.1007/978-3-319-16295-9_2

86 BIBLIOGRAPHY

[41] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in International
Workshop on Public Key Cryptography. Springer, 2006, pp. 207–228.

[42] P. Sasdrich and T. Güneysu, Efficient Elliptic-Curve Cryptography Using
Curve25519 on Reconfigurable Devices. Cham: Springer International Pub-
lishing, 2014, pp. 25–36. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-05960-0 3

[43] E. S. Kumar and C. Paar, “Are standards compliant elliptic curve cryptosystems
feasible on rfid,” in In Proc. of RFIDSec06, 2006.

[44] M. Hutter, J. Schilling, P. Schwabe, and W. Wieser, NaCl’s Crypto box in
Hardware. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 81–101.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-48324-4 5

[45] R. Maes, Physically Unclonable Functions - Constructions, Properties and Ap-
plications. Springer, 2013. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-41395-7

[46] V. van der Leest and A. Schaller, “Physically unclonable functions found in
standard components of commercial devices,” 2013, http://www.intrinsic-id.com/
wp-content/uploads/2014/09/Unclonable-functions.pdf.

[47] M. Roel, “Physically unclonable functions: Constructions, properties and applica-
tions,” Ph.D. dissertation, Ph. D. thesis, Dissertation, University of KU Leuven,
2012.

[48] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,”
Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[49] P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, and
R. Wolters, Read-Proof Hardware from Protective Coatings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 369–383. [Online]. Available: http:
//dx.doi.org/10.1007/11894063 29

[50] A. Cortez, A. Dargar, G. Schrijen, and S. Hamdioui, “Modeling sram start-up be-
havior for physical unclonable functions,” in Proc. IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Austin, USA,
October 2012, pp. 1–6.

[51] G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken, H. de Groot, V. van der
Leest, G.-J. Schrijen, M. van Hulst, and P. Tuyls, “Evaluation of 90nm 6t-sram
as physical unclonable function for secure key generation in wireless sensor nodes,”
in 2011 IEEE International Symposium of Circuits and Systems (ISCAS). IEEE,
2011, pp. 567–570.

[52] X. Boyen, “Reusable cryptographic fuzzy extractors,” in Proceedings of the
11th ACM Conference on Computer and Communications Security, ser. CCS
’04. New York, NY, USA: ACM, 2004, pp. 82–91. [Online]. Available:
http://doi.acm.org/10.1145/1030083.1030096

http://dx.doi.org/10.1007/978-3-319-05960-0_3
http://dx.doi.org/10.1007/978-3-319-05960-0_3
http://dx.doi.org/10.1007/978-3-662-48324-4_5
http://dx.doi.org/10.1007/978-3-642-41395-7
http://dx.doi.org/10.1007/978-3-642-41395-7
http://www.intrinsic-id.com/wp-content/uploads/2014/09/Unclonable-functions.pdf
http://www.intrinsic-id.com/wp-content/uploads/2014/09/Unclonable-functions.pdf
http://dx.doi.org/10.1007/11894063_29
http://dx.doi.org/10.1007/11894063_29
http://doi.acm.org/10.1145/1030083.1030096

BIBLIOGRAPHY 87

[53] Y. Dodis, L. Reyzin, and A. Smith, Fuzzy Extractors: How to Generate Strong
Keys from Biometrics and Other Noisy Data. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 523–540. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-24676-3 31

[54] J.-P. Linnartz and P. Tuyls, New Shielding Functions to Enhance Privacy and
Prevent Misuse of Biometric Templates. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 393–402. [Online]. Available: http://dx.doi.org/10.1007/
3-540-44887-X 47

[55] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication
and secret key generation,” in 2007 44th ACM/IEEE Design Automation Confer-
ence, June 2007, pp. 9–14.

[56] K. Okeya and K. Sakurai, Fast Multi-scalar Multiplication Methods on Elliptic
Curves with Precomputation Strategy Using Montgomery Trick. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 564–578. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-36400-5 41

[57] A. Van Herrewege, V. van der Leest, A. Schaller, S. Katzenbeisser, and
I. Verbauwhede, “Secure prng seeding on commercial off-the-shelf microcontrollers,”
in Proceedings of the 3rd International Workshop on Trustworthy Embedded Devices,
ser. TrustED ’13. New York, NY, USA: ACM, 2013, pp. 55–64. [Online]. Available:
http://doi.acm.org/10.1145/2517300.2517306

[58] B. Yang, K. Wu, and R. Karri, “Secure scan: A design-for-test architecture for
crypto chips,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 10, pp. 2287–2293, Oct 2006.

[59] H. Jiang, M. Marek-Sadowska, and S. R. Nassif, “Benefits and costs of power-gating
technique,” in 2005 International Conference on Computer Design, Oct 2005, pp.
559–566.

[60] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to low power
design of sequential circuits,” IEEE Transactions on Circuits and Systems I: Fun-
damental Theory and Applications, vol. 47, no. 3, pp. 415–420, Mar 2000.

[61] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features, design tools,
and application domains of fpgas,” IEEE Transactions on Industrial Electronics,
vol. 54, no. 4, pp. 1810–1823, 2007.

[62] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The Zynq
Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All
Programmable Soc. UK: Strathclyde Academic Media, 2014.

[63] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features, design tools,
and application domains of fpgas,” IEEE Transactions on Industrial Electronics,
vol. 54, no. 4, pp. 1810–1823, Aug 2007.

http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/3-540-44887-X_47
http://dx.doi.org/10.1007/3-540-44887-X_47
http://dx.doi.org/10.1007/3-540-36400-5_41
http://dx.doi.org/10.1007/3-540-36400-5_41
http://doi.acm.org/10.1145/2517300.2517306

88 BIBLIOGRAPHY

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Secure Communication
	The Past
	The Present
	The Challenges

	Need of High Quality and Efficient Solutions
	Use Case

	Problem Statement
	Main Contributions

	Thesis outline

	An Overview Of Security Systems
	Understanding Security
	Incentives behind threats and attacks
	Security Assumptions

	Cryptographic Systems

	Related Work
	Public-key Cryptography
	Discrete Logarithm problem family: DHKE
	Integer-Factorization problem family: RSA
	Elliptic Curve Cryptography

	PKC Key Components
	PKC Cores
	Commercial Products
	Academic Implementations

	Physical Unclonable Function (PUF) Technology
	Background on PUF
	SRAM PUF
	Current Trends in SRAM PUF Technology

	Discussion

	Protocol Design
	Use Case and Application
	Protocol Design
	Key Agreement
	Authentication using PUF
	Protocol for key-agreement and authentication using PUF-derived key

	Protocol Variants

	Hardware Design and Validation
	Design and Development of the Architecture
	High-level system architecture
	Design Space Exploration

	Implementation and Evaluation
	Building a Prototype
	System Integration and Experiments Performed
	Discussion

	Conclusion
	Summary
	Future Work

	Bibliography

