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Summary

In this literature essay a review has been given how phase 

equilibria are modelled where a supercritical fluidum is involved. 

Two types of equations of state have been analysed: cubic equations 

of state and the virial equation of state. An analysis of degrees of 

freedom has been made.

Applying phase equilibria in process technological devices has alsn 

been reviewed. Phase equilibria where a supercritical fluidum is 

involved are applied in supercritical extraction columns. A model 

has been given for packed columns, both operating with reflux and 

without reflux. The number of degrees of freedom has been evaluated■

Unless its restriction of application limitations, the virial 

equation of state gives a first feeling about these types of phase 

equilibria. Above densities, however, larger than three fourths the 

critical density of the supercritical fluidum, the virial equation 

of state begins to deviate too much from reality. Cubic equations of 

state can be applied at higher densities of the supercritical 

fluidum.

The virial equation of state makes it possible to regard chemical 

interactions separately from the volatility of the compounds that 

need to be dissolved by the supercritical fluidum. These effects are 

completely strangled with each other when cubic equations of state 

are used.

In order to model phase equilibria where a supercritical fluidum is 

involved it can bestly be started with the virial equation of state.



When the system is studied and it appears that the system also has 

to be modelled at densities of the supercritical fluidum larger than 

three fourths the critical density, cubic equations of state may be 

used in order to be able to describe a larger range of pressure.
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1. Introduction

In this literature essay it will be pointed out how phase 

equilibria can bestly be modelled at supercritical conditions, thus 

at high pressure. Technological aspects of supercritical entrainment 

distillation will also be reviewed.

An comprehensive analysis of degrees of freedom has been taken into 

account. In this way it can be seen how many parameters are relevant 

to know.

The scope of this essay is to get a first insight in how the process 

is supposed to occur. Mass transfer takes place from both phases to 

each other. Therefore both phase equilibria modelling and column 

technology become of interest.

Supercritical fluida are neither gases nor liquids. A consideration 

will be given what the effect will be in modelling these types of 

separation processes.

Supercritical entrainment distillation is applied to separate 

mixtures of high boiling and/or heat sensitive compounds. The great 

advantage of this process-type is the relatively low temperature at 

which the process is operated. The volatility of the high boiling / 

heat sensitive compounds is not enhanced by enlarging the 

temperature, but by enlarging the help substance's density. The help 

substance is a supercritical compound. The density is enlarged by 

enlarging pressure. Reminding this scope, supercritical extraction 

is operated at relatively low temperatures and relatively high 

pressures.
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2. Qualitative Consideration of Supercritical Fluida and 
Supercritical Entrainment Distillation

In order to model the supercritical entrainment distillation process 

it is necessary to understand a supercritical fluidum (SCF) 

physically. A SCF is a compressed, dense gas. It is neither a gas 

nor a liquid but it is best understood to be some fluidum in 

between. Temperature and pressure of the considered fluidum are both 

above the critical temperature and pressure respectively.

Supercritical entrainment distillation is similar to the term 

supercritical extraction. In literature the latter term is more 

often used, but because the process cannot be regarded as a real 

extraction the first term is also used.

Considering the process, supercritical extraction will neither be a 

process of Liquid-Liquid Extraction nor a process of Vapour-Liquid 

Stripping.

Normal Liquid-Liquid Extraction modelling will take into account 

mutual solubilities of both phases, but because of the fact that no 

vapour phase is present, heat effects are ignored. Heat effects can 

indeed be ignored because heats of vaporization are never taken 

into account in heat balances. In case heat effects will be very 

small, the temperature can be assumed constant in the column.

Normal Vapour-Liquid Stripping modelling will not take into account 

the solubility of vapour in the liquid phase because this normally 

will be very small. Solubility of liquid phase components in the 

vapour phase are taken into account of course (because else no 

separation will occur) but it is assumed to be small. In that case 

flows in the column can be assumed to be constant.
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Because the presence of a vapour phase, heats of vaporization should 

be considered, so the temperature would not be constant in the 

column. However, because flows were assumed to be constant, because 

of small mutual solublities, heat contents of both phases will 

remain constant so temperature can also be taken constant.

In supercritical extraction flows cannot be assumed to be constant 

because mutual solubilities cannot be neglected: the solubility of 

the SCF in the liquid phase can be rather significant (solubility of 

40 mass % could be possible!). Because of the fact that the SCF can 

partly be considered as a gas, heat effects must be taken into 

account. Thus, neither temperature nor flows in the column can be 

assumed constant, involving a lot more variables in the column.

It is clear now that both mass and heat balances must be taken into 

consideration. The next problem will be the determination of the 

latent heat in the heat balance. In normal Vapour-Liquid contacting 

devices the latent heat equals the heat of vaporization. In Li gm'H 

-SCF contacting devices this is not the case. The latent heat of a 

component can be defined to be the heat necessary to put into the 

system in order to establish a change from the liquid phase to the 

"vapour" phase of one component. Change of phases in the opposite 

direction ("vapour" to liquid) will cause the latent heat to be 

liberated.

It has now become clear that supercritical extraction is neither 

oxtraction nor stripping. It can, however, be regarded as either a 

bad extraction or a good stripping. The term supercritical 

entrainment distillation is also used: the volatility of the 

compound to be extracted is enhanced. The supercritical nature of 

the help phase will cause entrainment-like occurences to take place. 
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This was a general consideration about technological design of SCE 

columns. The specific application to the column will be given in 

section 4.
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3. Modelling Phase Equilibria

Thermodynamic models describe phase equilibria for a certain system 

to occur. Phase equilibria, where a supercritical component is 

involved, have to be modelled at high pressure. Equilibrium will 

occur between phases; in the scope of supercritical entrainment 

distillation this means equilibrium between the supercritical phase, 

consisting mostly of the supercritical gas that is used and the 

liquid phase in which a considerable amount of supercritical 

compound can be dissolved. The purpose, thus, is to model the phase 

equilibrium between the supercritical ("vapour") and liquid phase.

In this chapter two equations of state will be considered. First a 

review is given regarding cubic equations of state, applied in both 

the liquid and supercritical phase, and the virial equation of 

state.

Prausnitz [2], De Loos [3] and McHugh [4] state that high pressure 

phase equilibria cannot be described with sufficient accuracy by 

means of models involving activity coefficients. Activity 

coefficients can be calculated with models like Margulus, Van Laar, 

UNIFAC, UNIQUAC and others. The dependence on pressure is not taken 

into account in these models. The authors mentioned above state that 

the best way to describe phase equilibria at high pressure is to 

assume that an appropriate equation of state (EOS) stands for both 

liquid and "vapour" phase. This indicates that instead of an 

activity coefficient for the liquid phase a fugacity coefficient is 

calculated. The equilibrium can be expressed in the following 

relationship:

,L * AV * yi (i)
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In equation (1) x and y symbolize mole fractions in respectively the 

liquid and "vapour" phase. <!> stands for the fugacity coefficient. 

The superscripts L and V are respectively Liquid and Vapour. The 

subscript i symbolizes component i.

The fugacity coefficients in equation (1) are functions of pressure, 

temperature, the compressibility factor and the composition of the 

considered phase. The compressiblity factor can be calculated from 

an EOS which must be specified. This scope is widely used in cubic 

equations of state, for example the Peng Robinson EOS.

When the supercritical ("vapour") phase is considered only, the 

virial EOS becomes very useful. The supercritical phase's non­

ideality can be accounted for, while the liquid phase is in a normal 

way modelled:

Ti * Xi * Piat * P0Yi = * Yi * P (2)

In (2) Y symbolizes the activity coefficient, Psat is the vapour 

pressure, while POY stands for the Poynting factor which is included 

for correcting the liquid phase's fugacity for high pressures.
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Equation (2) is applied in modelling solubilities of heavy compounds 

in the supercritical phase. In order to know the solubility of the 

supercritical compounds in the liquid phase, another model must be 

chosen, because the virial EOS cannot be applied for the liquid 

phase. First knowledge about the solubility of the supercritical 

compounds in the liquid phase can be obtained from Henry's law:

fSCF = XSCF*HSCF,i*P0YSCF = fSCF = *SCF*ySCF* P

In (2a) H symbolizes the Henry constant for the supercritical 

fluidum in the liquid compound i. Henry's law provides a good result 

at infinite dilution cases. When pressure becomes too large and, 

thus the SCF’s solubility increases, activity coefficients must be 

incorporated.

In section 3«1 equations of state are considered for a pure 

substance. Then the equation of state will be made applicable to 

mixture by means of mixing rules, followed by a section that deals 

with fugacity coefficients. This latter section will relate an 

equation of state for some mixture in some phase to the fugacity 

coefficient of each components in the mixture in the considered 

phase. Finally an overall view is given concerning phase equilibria 

calculations at high pressure with the equations summarized in the 

first part of this section.
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3.1 Equation of State for Pure Substances

An EOS is an equation that relates the quantities pressure, 

temperature and molar volume of one pure substance. Cubic equations 

of state are widely used in modelling phase equilibria at 

supercritical conditions. All basic properties causing the phase 

equilibrium to install, like vapour pressure and chemical 

interactions, are strangled with each other in these types of 

equations of state. The virial EOS, however, provides insight in the 

properties that cause the equilibrium to install. The great 

disadvantage of applying the virial EOS is the limited range of 

densities of the supercritical compound that is used. Truncated 

after the second coefficient, the virial EOS can be applied up to 

half the supercritical compound's critical density, while the virial 

EOS truncated after the third coefficient can be used up to three 

fourths the critical density of the considered supercritical 

compound [22].

3.1.1 Cubic Equations of State

Cubic equations of state are widely used in modelling phase 

equilibria at supercritical conditions. An example of such a cubic 

EOS is the Peng Robinson EOS. The Peng Robinson EOS which was first 

introduced in 1976 will now be considered here. The Peng Robinson 

EOS is now chosen because it is widely applied to supercritical 

mixtures. The equation is:

R*T a(T)
p --------- _ -------------- (3)

V-b V*(V+b) + b*(V-b)
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In (3) p, T and V symbolize pressure, temperature and molar volume. 

a(T) is a certain function of temperature and b is a constant. R 

stands for the ideal gas constant.

a(T) and b can be determined by different methods.. The most general 

and a relative new method proposed by Brunner [5] will be evaluated 

here.

a(T) and b are determined generally by analysis of the critical 

point. At the critical point the first and second derivative of 

pressure with respect to molar volume equal zero. These calculations 

(with a(T) considered constant) result finally in:

b = O.O778O*R*Tc/pc (4)

a = 0.45724*R2*t2/pc (5)

In. (4) and (5) P and T symbolize respectively the critical

pressure and critical temperature.

In order to reproduce vapour pressures Peng and Robinson made a(T) a 

function of temperature and acentric factor w:

a(T) = { 0.45724*R2*t|/pc }*

[ 1 + (0.37464 + 1.54226*0) - 0.26992*w2)*{i-(t/Tc)0-5} ]2

(6)

The acentric factor is a pure component constant defined as:

u = -log{pSat at (T/Tc=0.7) } - 1 (7)

In (7) stands for the vapour pressure of component i.
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When the acentric factor has not been given in literature it thus 

can be calculated from vapour pressure data.

With known critical properties and acentric factor, a and b can be 

calculated by equations (4) through (7). In that case the EOS. is 

purely a function of pressure, temperature and molar volume. In 

other words: with given pressure and temperature, the molar volume 

can be calculated.

The compressibilty factor, Z, can now be calculated by the 

definition of this quantity:

Z = p*V/(R*T) (8)

Substituting equation (8) in (3) results in another form of the Peng 

Robinson equation of state:

Z3- (1-B )*zz + (A - 3B -2B )*Z - A *B + B 3 + B 2 = 0 (9) 

* *
In (9) the new variables A and B are defined by:

A = a(T) * {p/(R^*T2)} (10)

B* = b * p / (R*T) (11)

The rewritten form of the Peng Robinson EOS (9) can directly be used 

in order to calculate the compressibility factor at given pressure 

and temperature.

As indicated above, the variables a(T) and b can also be evaluated 

by means of other methods. Brunner [5] proposes a relatively new 

method for determing a(T) and b. In this method a(T) and b are no 

longer a function of the critical properties. Because of this reason 

the method could be very useful.
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Critical properties of many high boiling substances have not been 

determined experimentally, because they are often heat sensitive 

with relatively low decomposition temperatures. This indicates that 

critical properties should be estimated by methods like Joback's 

estimation procedure, which for example can be found in [2], Brunner 

states that these estimation procedures would not be sufficiently 

accurate.

In case of supercritical extraction this problem occurs. Critical 

properties have not been determined experimentally. Supercritical 

extraction is applied in systems involving high boiling and/or heat 

sensitive compounds. Thus, for these substances it would be worth 

while to examine the possibility to calculate a(T) and b by 

Brunner's method.

The method proposed by Brunner can be expressed by the following 

equations:

b = kl*V(20) + k2 (12)

a(T) = ac* {1 + x0*(l - 2.4243*[R*T*b/ac]°-5) }2 (13)

ac = k3*V(20) + k/| (14)

x0 = k5* {V(20)}k6 (15)

In equations (12) through (15) k k_, k_, k,., k and k. are 
1^545 6

constants, which were experimentally determined by Brunner for many 

substances. The only parameter in these equations is V(20). This is 

the molar volume of the considered substance at 20 °C. As can be 

seen this method of determing a(T) and b is independent of the 

critical properties of the considered substance.
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It could, however, be possible the considered compound has a melting 

point above 20 °C. The molar volume at liquid state should be 

substituted to result in the correct a(T) and b by Brunner's method, 

wo methods of determing a(T) and b have been presented. Brunner [6]

also' presented a derivated procedure to determine a . c b and Xq. This

determination has been done by calculation from p-V-T data. The ' 

method is not presented here because of its analogy with the first 

method proposed by Brunner [5].

After choosing the method for determing a(T) and b, the 

compressibility factor can be calculated for a pure substance, when 

pressure and temperature are fixed.

3.1.2 Virial Equation of State and Henry's Law

As indicated above the virial EOS is very illustrative when it is 

desired to examine the effects of properties causing the equi1ibrinm 

to install separately. The solubility of heavy compounds in the 

supercritical fluidum can be described using this EOS, while the 

solubility of the supercritical compound in the liquid phase can be 

estimated from Henry's Law.

The virial EOS is a polynomal series in inverse molar volume which 

is explicit in pressure:

R*T # . B C D , ,p "v“ { + v + v2 + v3+ ...... }

In (16) B, C, D, ... symbolize the second, third, fourth, ... virial 

coefficient. The virial coefficients are only functions of 

temperature. In literature estimation methods are available for the 

second and third coefficient.



-14-

No method has been found in order to estimate the fourth 

coefficient, so the EOS can be applied with best accuracy truncated 

after the third coefficient. The virial coefficients are the only 

variables that are needed to be known. Because of their function of 

temperature it easily can be seen that the equation of state is a 

relation between p, V and T, just as the above discussed cubic 

equations of state.

A compilation of second virial coefficients is given by Dymond and 

Smith (1969). For estimating the B-coefficient a number of 

techniques are available. Most are based on intergration of some 

theoretical expression relating intermolecular energy to the 

distance of separation between molecules. Little is known about 

these energies and it is more common to estimate the virial 

coefficient by means of corresponding states correlations.

Corresponding states correlations (CSC) are available for B and C. 

The concept of corresponding states correlations provides general 

relations for certain properties, depending on parameters that are 

readily known. These parameters determine the state of the 

considered compound. They are the critical properties. Depending on 

critical properties, the correlations provide in "overall" 

behaviour, correlating the desired property to a standard state: the 

critical point in which the critical properties are valid.

For the second virial coefficient two CSC have been found in 

literature for both polar and nonpolar systems. The general form of 

the CSC for the second virial coefficient (B) is:

B * P c 
  = f0 + a * fi (TJ + f2 (T^) (17) 
R * T----------------------------------------------- r

c
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The temperature dependence is expressed in the reduced temperature, 

Tr ( = T / Tc). Tsonopoulos [23] has developed the following 

functions for nonpolar gases. For nonpolar gases f2 (T ) equals 

zero.

fO (T ) = 0.1445 - O.33O/T - 0.1385/T2 - 0.0121/T3 ■
r r r

- O.OOO6O7/T$ (18)

and

fl (Tr) = 0.0637 + 0.331/T2 - 0.423/T3 - 0.008/T3 (19)

For polar systems the last term of equation (17) has to be taken 

into account. Tsonopoulos developed:

f2 (Tr) = a/T/ - b/T« (20)

a and b are in (20) parameters determined by the geometry of the 

nonpolar compound. Parameter a is a function of the reduced dipole 

moment which is defined as:

= 105 * u2 * Pc / T2 (21)

In (21) is u the dipole moment, which is a characteristic quantity 

for compounds. It is not, however, a good quantity for correlating 

all compounds, since the dipole moment is a vector and its direction 

and location are also important.

Therefore it is impossible to correlate one function for all types 

of compounds and only global correlations can be made for some type 

of compound, for example ketones, aldehydes, alcohols etcetera.
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Tsonopoulos correlated functions for parameter a as function of 

reduced dipole moment for ketones, ethers and alcohols.

Parameter b equals zero for non-hydrogen bonded gases. For alcohols 

Tsonopoulos reported values for b, and fitted for.1-chain alcoholes- 

parameter b as a linear function of the reduced dipole moment. It 

goes beyond the scope of this essay to summarize all functions for a 

and b for every type of compounds. For these functions it is refered 

to [23].

Prausnitz [2] refers to Van Ness and Abbott (1982). They found more 

comprehensive function for fO (T^) and fl (T ):

fO (Tr) = 0.083 " 0.422/1**6 (22)

and

fl (Tr) = 0-139 - 0.172/t^*2 (23)

Van Ness and Abbott's technique in estimating fO (T ) and fl (T ) is r ' r'
ppofered, because it is more recent and it is more often refered to.

Less is known about estimating the third virial coefficient (C). De 

Santis and Grande [24] reported a technique. The great disadvantage 

of their technique is the use of uncommon parameters for 

corresponding states correlations, like dipole polarizability and 

molecular volume, even for nonpolar compounds. More common is the 

use of critical properties and acentric factor in corresponding 

states correlations, like equations (1?) - (23), except for (17). 

Orbey and Vera [22], however, correlated such a CSC for nonpolar 

compounds. The general form (in agreement with (17)) is:
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C * p2 
c

(R * TJ2
f3 (T ) + (o * f4 (T )r r (24)

Orbey and Vera found for f3 (T^) and f4 (T ) : -

f3 (Tr) = 0.0140? + 0.02432/T2'^ - 0.00313/t1°'5 (25)

and

f4 (TJ = -O.O2676 + O.O177O/t|‘8 + 0.040/t|’0

- 0.003/t|'° - 0.00228/t1°’5 (26)

Like the second coefficient, B, the third coefficient, C, can 

readily be evaluated as function of temperature by knowledge of the 

critical pressure and temperature of the considered compound and its 

acentric factor.

The virial EOS is used for modelling the vapour phase’s fugacity of 

the heavy compounds, that need to be dissolved by the supercritical 

fluidum. For cubic equations of state it was mentioned that it was 

assumed that these EOS also would hold for the liquid phase’s 

fugacity. The virial EOS has the restriction of being valid at 

densities of the supercritical fluidum smaller than three fourths of 

the critical density. The supercritical fluidum’s density in the 

liquid phase is larger than in the supercritical phase. Therefore 

another model for estimating the liquid phase’s fugacity of the 

supercritical fluidum must be chosen. The concept of vapour pressure 

is for the supercritical fluidum irrelevant, because temperature 

exceeds the critical temperature. The most logical approach in 

estimating the supercritical fluidum’s liquid phase's fugacity would 

be Henry's Law:
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fSCF “ XSCF * TSCF * HSCF,i * P0YSCF (2?)

In equation (27) x symbolizes the mole fraction in the liquid phase, 

while subscript SCF stands for supercritical fluidum. H is the Henry 

coefficient, which is a function of temperature, of the 

supercritical fluidum in some liquid compound i refered to the *
vapour pressure of the liquid compound, while Y stands for the 

activity coefficient. Because the model must stand for high 

pressures the Poynting factor is again invoked. When equilibrium is 

reached, the liquid phase’s fugacity equals the vapour phase's 

fugacity, so

ySCF ^SCF P - YSCF * XSCF * HSCF,i * P0YSCF

Because the mole fraction of dissolved heavy compound in the vapour 

phase is very small and less then 1 percent, the Lewis rule is 

applied:

yiï <|)scF(inlxture) = ^SCF (pure SCF) (29)

As will be shown later, the fugacity coefficient is determined by 

the chosen EOS.

No estimation method has been found in literature in order to 

estimate Henry coefficients. Henry coefficients must be determined 

experimentally, either in literature available or necessary to 

measure yourself. All other input variables in the model in order to 

calculate the output variables, x and y, can be estimated by 

corresponding states correlations.

The Poynting factor in equation (2?) is defined by the following 

expression:
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P^SCP = exp (pLat {vSCf/ <R*T> > dP > <30)

In (30) vgQp symbolizes the molar volume of the supercritical 

fluidum at infinite dilution in the liquid compound i. It is assumed 

that this molar volume is independent of pressure, so it follows 

that

P0YSCF = exP ( < VSCF / (R*T) J * <p-Piat} > (31)

However, if pressure becomes very large, the solubility of the 

supercritical fluidum increases and the assumption of infinite 

solution is no longer valid. At infinite dilution the activity 

coefficient is unity. The activity coefficient is a expermentally 

determined parameter depending on composition and temperature. In 

the model the molar volume at infinite dilution is used at high 

pressure. This is rather discrepant, but it is assumed that the 

invoked activity coefficient will adjust all deviations from reality 

including the mistake caused by the molar volume assumption at 

infinite dilution.

The molar volume at infinite dilution can also be estimated from 

corresponding states correlations. Brelvi and O'Connell [10] 

reported a CSC depending on,characteristic, volumes of the considered 

compounds (both supercritical fluidum and heavy compound) as well as 

the compressibility of the liquid, heavy compound. If the 

characteristic volumes are not known, critical volumes can be used.
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The molar volume at

can be evaluated by

infinite dilution of the supercritical compound 

the following expressions:

v” = K“ * R * T *SCF i K 1 SCF,i (32)( 1 - C

in ( i +------- ) = -0.42704 * (p -1) + 2.089 * (p -l)2
P*K"*R*T r r

i
- 0.4236? * (Pr-1)3 (33)

ln ( “CSCF,i * {vc,i Vc,SCF^°)

if 2.0 < P < 2.785 : -2.4467 + 2.12074*P ....  r r

if 2.785 < P< 3.2 : 3-02214 - 1.87085*p r r
+ O.71955*p^ (34)

In equations (32) through (34) p^ symbolizes the reduced density of

the heavy, liquid compound, while vc stands for the characteristic

molar volume, which could be set equal to critical molar volume. K 

symbolizes the compressibility of the liquid compound while C is 

some reduced volume Integral, which is evaluated by (34) by means of 

corresponding states.

The molar volume at infinite dilution can now be Avalnated,
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3.2 Equation of State for Mixtures

In problems of separation of substances always mixtures are present 

because else there will not be anything to separate.

The EOS still remains very important in this case. To extend the EOS 

to mixtures, the EOS must be modified to include the additional 

variable of composition of the mixture. This inclusion is 

accomplished by averaging the constants of the pure substances to 

result in constants which are assumed to be valid for the mixture. 

Equations that perform this averaging of constants are called mixing 

rules.

Mixtures consist of substances which have seldom the samA chemical 

structure. If this is the case, interaction parameters must be 

included in the mixing rules. As many interaction parameters as 

desired can be used, but normally one or two binary interaction 

parameters pro two components are believed to be sufficient to 

describe p-V-T behaviour of the mixture. It is of course possible to 

set the binary interaction parameters dependent on temperature and 

or pressure, but the disadvantage of doing this would be that more 

parameters have to be included. Setting the binary interaction 

parameters not constant will cause the EOS to describe p-V-T 

behaviour more accurately.

It is not only very important to choose an appropriate EOS but also 

to know what mixing rule have to be used to give the best results.

In this section several mixing rules will be discussed.
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3.2.1 Cubic Equations of State

Mixing rules are comprehensively evaluated in literature. Several 

types have been reported for especially cubic equations of state, 

for example the Peng Robinson EOS. The first mixing rules that will 

be discussed are the classical ones. These can be expressed in the 

following equations:

am(T) = g (Yi * Yj * [ai(T)*a.(T)]°-5*{l-k..} ) (35)

bm = ? (yi * bi> (36)

In equations (35) and (36) the subscripts i and j refer to the 

component that is considered. The subscript m refers to the mixture, 

n stands for the total number of components in the mixture. a.(T), 

aj(T) and b^ symbolize the a(T) and b of pure component i or j. 

These values can thus be calculated by the methods decribed in the 

previous section 3.1. is a binary interaction parameter. When 

only chemical similar substances are present in the mixture k 
’ ij 

equals zero.

In the same way interaction parameters between two molecules of the 

same substance also equal zero: all k equal zero if i=j. The 

chemical interactions between molecule i and j are assumed to be the 

same as the interactions between molecule j and i, so k =k The 
ij ji’ • 

more difference in chemical structure is present, the closer 

k. . becomes to unity.
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Normälly is assumed to be constant, but it is also possible to 

set to be a function of pressure for example, involving more 

parameters:

kij = kl,ij + k2,ij * p (37)

Equation (37) was proposed by Mohamed. This equation was refered to 

by Johnston et.al.[7].

The above mixing rules are known as the classical quadratic mixing 

rules. There are a lot of other mixing rules. Some of them will be 

pointed out here.

Zou et.al.[21] uses the following mixing rule of the Peng-Robinson 

EOS parameter a(T):

am(T) = ^{yiXi*{^{T)*aj(T)}^^^ (38)

This mixing rule will predict the p-V-T relation of the mixture with 

more accuracy than the classical mixing rule, but more interaction 

parameters occur. This equation is the same as the classical 

quadratic mixing rule with the binary interaction parameter varying 

with composition:

k. .= kd .. - (k. . ,-k_ . ) * vl.ij l,ij 2,ij7 yi (39)

This mixing rule was proposed by Panagiotopoulos and Reid whom were 

refered to by Johnston et.al.[7]. They did not assume that all

Substituting this in equation (38) also result in the 

classical mixing rules.
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Gangadhara Rao et.al. [8] uses the covolume dependent (CVD) mixing 

rules:

am(T) - bq«?? (y »y -a /bq ) (q.1.667) (to)

Equation (40) will not be elucidated here. For elucidation see [8].

Now p-V-T behaviour of the mixture is determined as function of 

composition and several parameters. The compressiblity factor can 

now be calculated for the mixture using an EOS.

3.2.2 Virial Equation of State and Henry’s Law

In section 3.1 the approach has been elucidated for using the virial 

equation of state to estimate solubility of the heavy compounds in 

the vapour phase and Henry's Law to estimate solubility of the 

supercritical fluidum in the liquid phase.

For the virial EOS the generally accepted mixing rules are [2] :

T . . C,1J = (l-k±.) • V (TCil • T (41)

V . . C,1J
= [ { v17? * V1^ }

C,1 C,J 1
* 0.5 ]3 (42)

z . . C,1J = 0.5 * ( z . + Z .C.l C,J ) (43)

IJ = 0.5 * ( w. + to. ) 
1 J (44)

Pc,ij = Z . . * R * T . . / C,1J C,1J ' V . . C,1J (45)

In this set of equations the critical properties are averaged. The 

resulting properties are called pseudo-critical properties, k is 
ij 

binary interaction parameter.
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Prausnitz [2] refers to an estimation for this parameter. If the 

studied system is not known, i.e. if no equilibrium data are 

available, a first estimate can be made by:

• 1 - [ (v=,i * vc? 1 / Vcij W

When for the (binary) mixture the pseudo-critical properties are 

calculated, these properties can be used in the corresponding states 

correlations, described in section 3'1» in order to calculate cross 

virial coefficients: and . The virial coefficients of the

mixture can be calculated from:

m 1 J 1 ij

In a mixture containing n components, the mixture virial coefficient 

B can be calculated, m

The mixture third coefficient is calculated by [22]:

Cm ° J1 *Ï1 ‘’k * Cljk <i»8)

Concluding from (48) the C , coefficients are needed, while the 

mixing rules result in pseudo-critical properties, which result in 

Cij The coefficient is calculated from binary

contributions C.. by: ij

C. .. = ( C. . * C.. * C., (49)ijk v ij ik jk 1 .

Now, all needed cross and mixture virial coefficients can be 

calculated.
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Properties that occur in Henry's Law have been reviewed in section 

3.1. If more than one liquid, heavy compound is used, these 

quantities must be averaged. Henry coefficients are averaged by:

ln (HSCF,mix) - j xj * ln (HSCF,p (50)

The mole fraction x should been seen as SCF-free mole fractions. In J

estimating the molar volumes at infinite dilution of the SCF, the 

averaging of the contributions to both compressibilty and integral 

^SCF,i become:

The right hand of equation (33) is called c" . 
ii

c” = § x? * cT.
m 1 1 11 (51)

r® ? • r,®CSCF,m ~ 1 Xi CSCF,i (52)

With these averaged properties, the molar volume at infinite 

dilution for the SCF can be evaluated when the liquid phase consists 

of more than one heavy compound.

Averaging vapour pressures in the Poynting factor is not relevant, 

because for heavy compounds they are very small compared to 

operating pressure, so the term (p-p^at) can be set equal to p.



-21-

3-3 Fugacity Coefficients from Equations of State

Fugacity coefficients are quantities that are used in phase 

equilibria calculations. They represent deviations from ideal 

behaviour. In this case, the fugacity coefficient is included in 

order to calculate deviations from both ideal mixture behaviour for 

the liquid phase and ideal gas behaviour for the vapour phase.

When two phases are in equilibrium, the temperature, the pressure 

and the chemical potential of the two phases are equal. Phase 

equilibria at high pressure are calculated by equation (1) or (2).

Equation (1) will be repeated here:

The fugacity coefficients are deviations from ideal behaviour, so it 

would be logical that they are some function of the chosen EOS. An 

EOS represents the ideal gas law with certain added parameters: it 

is a model to calculate p-V-T behaviour, deviating from ideal gas 

law behaviour.

Fugacity coefficients are related to the chosen EOS by the following 

equation:

F
R*T*ln(^) = - I { [^] T VF n - R*T/VF } dVF - R*T*ln(ZF) 

i i ’ ’ j

(53)

In equation (53) the partial derivative of p towards the number of 

moles of component i is calculated from the chosen EOS, for example 

equation (3), combined with the classical mixing rules.
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Differentiating this equation, T, V and the number of moles of the 

other components in the mixture are to be held constant. The 

superscript F refers to the phase which is considered. V and Z in 

phase F can be calculated directly as has been shown from the EOS at 

fixed p and T. It can be seen from equation (53) that the fugacity 

coefficient of component i in a mixture is a function of pressure, 

temperature, composition and the molar volume in phase F (or the 

compressiblity factor in phase F).

For the Peng Robinson EOS the solution of equation (53) becomes 

finally, using classical mixing rules:

F * * p p * * #ln(0i) = (Bi/B )*(Z -1) - ln(Z -B ) + [A /(2.828*B )]*

[ B^B - 2*?{ yi*(ai(T)*aj(T))°-5*(l-kij) }/am(T) ]* 

p * p #ln{(Z +2.414*B )/(Z -O.414*B )} (54)

In equation (54) all used variables were already discussed.

Equations (53) and (54) have been derived in Appendix A.

When the virial EOS is used the result is less comprehensive. De 

Swaan Arons [12] derived all equations needed to calculate the phase 

equilibrium assuming that the supercritical phase consists of only 

SCF as far as mixing rules are concerned, i.e. in estimating virial 

coefficients for the mixture. The same assumption can be made while 

also invoking the third virial 

below, while the derivation is

(y / x)i = Ki

pSat * p0Y
1 i

coefficient. The result is shown 

also incorporated in Appendix A:

Y * ----------  * (
i R * T

1 / P ) * ENHANCEMENT (55) 
SCF vap
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This ENHANCEMENT can be regarded as follows. The concentration of 

the heavy compound in the supercritical phase calculated by the 

virial EOS devided by this concentration calculated by the ideal gas 

law (Raoult’s Law) is defined as the ENHANCEMENT factor. As can be 

seen in (55) only vapour phase's non-ideality has been invoked in 

this ENHANCEMENT, while liquid phase's non-ideality has already been 

encountered by means of the activity coefficient. This is refered to 

by means of the subscript 'vap'. The solubility of the heavy 

compounds in the supercritical phase is enhanced with respect to 

ideal gas law behaviour, due to intermolecular forces. These 

intermolecular forces increase of course with pressure causing the 

gas mixture to become denser. It can be shown that this enhancement 

factor varies exponentially with the density of the SCF (B-truncated 

virial EOS). The term ENHANCEMENT^ in (55) equals (see Appendix A 

for elucidation):

ENHANCEMENT_ = exp (- 2*B *p - 1.5*C119 *pf ) (56)

When the B-truncated virial EOS is used, C112 becomes zero and (56) 

and the result is the same as De Swaan Arons derived [12]. 

Logically, when the ideal gas law is used as EOS, both B12 and C112 

become zero, causing the ENHANCEMENT to be zero in complete harmony 

with its definition.
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3.4 Calculation of Phase Equilibria Using One Equation of State

At fixed temperature, pressure and composition the EOS result in one 

equation with only one variable. This variable is either the molar 

volume or the compressibility factor, depending on how the equation 

has been written. It is wanted to use equation (54), so it is 

logical to use the EOS written like equation (9). Any cubic EOS 

result finally in a third order equation in Z or V.

For the liquid phase, will be the smallest root of this third 

order equation, depending on pressure, temperature and composition

Vx_^. Z will be the largest root, depending on pressure, temperature 

and composition y_^. Convergence problems may occur because it is 

very well possible to have a so called trivial root problem [2]. 

Even when there are three roots for the system, one root could be 

the result of iterations, because slight changes in initial 

compositions and binary interaction parameters can have extreme 

consequences for the iteration. This problem can be avoided by 

choosing the intial values for composition in a dedicated manner. 

This is not so easy as it looks like. It is a great disadvantage in 

using the cubic EOS, which makes the virial EOS more popular in use, 

because the virial EOS does not require any iteration at all if the 

corresponding states correlations reviewed in section 3.1 are used. 

The major disadvantage of the virial equation is its limitation of 

not being valid at pressures which are too high. For example, when 

carbon dioxide is used as SCF, the virial EOS cannot be used with 

much accuracy above 125-130 bar, depending on temperature (e.g. 

about 70 °C).
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When, finally the phase equilibrium has been modelled, the result 

can be used in dimènsing separation columns. This is reviewed in 

section 4. In this section a complete analysis of degrees of 

freedom will be made, because it is important to know, which 

variables and parameters are important to know and which variables 

and parameters are not relevant to measure or estimate. Therefore 

the analysis of degrees of freedom concerning the phase equilibrium 

modelling will be made.

For the cubic equations of state:

If the total number of components is c, there are c equilibrium 

conditions (1), 2*c fugacity coefficient equations (53) for the 

liquid and vapour phase. For both phases the EOS is also valid and 

the condition that Sx=l and Sy=l must also be satisfied, involving 4 

more equations.

In total there are 3c+4 equations.

There are 4*c variables because of the fugacity coefficients and 

mole fractions of both phases. Pressure, temperature and 

compressibility factors of both phases cause the total number of 

variables to be: 4c+4. Other quantities are considered to be 

parameters.and they are known: they are not variables.

Finally, it is found that there are c degrees of freedom.

For the virial EOS and Henry's Law:

The virial coefficients, vapour pressures, critical properties, 

Henry coefficients and binary parameters in both the virial EOS 

mixing rules and activity coefficients are regarded as parameters 

and are known. Pressure, temperature and composition of both phases 

are variables (2c+2).
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The model results in threeequation for the distribution 

coefficients (= yi / xi) for all compounds (Henry’s. Law estimates 

the distribution coefficient of the SCF, while the virial EOS 

estimates the distribution-coefficients of all heavy compounds). So 

there are c equations for the distribution coefficients. The 

restriction that Sx and Sy must equal one results in a total of c+2 

equations.

Finally it is found that there are c degress of freedom, like has 

been found for cubic equations of state. This means that when 

equations of state are considered as black boxes, the two proposed 

models require the same input variables two results in the same 

output variables, but they of course differ in magnitude.
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Figure I (: Flowsheet for the extraction column without reflux.
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4. Modelling Separation Columns

In this section the column will be modelled by the stage to stage 

calculation method. The column is considered to be a number of 

stages in series. In every stage equilibrium will be reached between 

the vapour and liquid phase. The column can be used in several ways.

It can be used without reflux: the column will be a normal 

extraction column, as shown in figure I, with the liquid feed coming 

in at the top of the column.

It is also possible to operate the column with reflux, while the 

feed can be added at several places to the column. This is shown in 

figure II.

First the column without reflux will be considered, afterwards the 

refluxed operation.
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Figure II .: Flowsheet for the extraction column with reflux.
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4.1 Modelling the Extraction Column without Reflux

The operation is schematically shown in figure I. Two flows, that 

come into 1 theoretical stage, are mixed and two flows leave the 

same stage. The leaving flows are a vapour and a liquid stream which 

are thermodynamically in equilibrium. This equilibrium has al ready 

been modelled in section 3- The mass balance (when no accumulation 

occurs) for component i over stage j is:

IN = OUT

Xi,j-l*Lj-l + yi,j+l*Vj+l = xi*Li + yi*Vi (57)

The subscript j-1 refers to the stage above stage j, j+1 refers to 

the stage below stage j, see figure I. L and V symbolize the flow 

rates of respectively liquid and vapour phase.

In order to know the temperature at stage j for the equilibrium 

calculation, a heat balance also must be satisfied. In the heat 

balance, which will not be given here, it would be necessary to know 

the latent heat of each component. This is the heat that must be 

added in order to establish a phase transition of the liquid phase 

to the vapour phase. In pure vapour liquid contacting devices this 

would be the heat of vaporization. A supercritical phase can neither 

be considered to be a vapour phase nor a liquid phase. In liquid­

liquid contacting devices the latent heat would be approximately 

zero. It is clear that the latent heat for liquid-SCF transition 

must be known.

In the heat balance also heat capacities or specific heats occur. 

These could be calculated from the chosen EOS. Further it could be 

possible to extract or add some amount of heat by external coolers 

or heaters.
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In the column heaters are used in order to establish phase 

transitions. Heat losses to surroundings also have to be included in 

the heat balance.

A heat balance will not be given here, because the heat added by the 

external heater is in such an amount that the temperature in the 

column will remain constant. In other words, the temperature is 

controled in the entire column to be a certain value which must be 

fixed. It is clear now that a heat balance does not have to be taken 

into consideration: the extraction process will occur at constant 

temperature.

In order to know the pressure at stage j it is necessary to know the 

pressure drop in the column. Knowing the type of packing material it 

is possible to calculate the pressure drop over one stage. There is 

an empirical relation available [9] which relates the pressure drop 

to the liquid hold up and the gas flow at stage j. For Berl-Saddles, 

for example, it has been found:

Apj = [1 - 2.5*1.36*{u^j/(dr*g)0.29*Fp*(H/n)*Pv

(58)

In equation (58) d^ is the diameter of one element of the package, g

is the gravitational acceleration constant. U. , and u,. . stand for B»J V, j

respectively the liquid phase and vapour phase superficial velocity

at stage j. H is the height of the package, P . symbolizes the • • J

density of the vapour phase at stage j. F is a package constant and 

depends purely on the geometric properties of the package.
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The pressure at stage j can then be calculated:

Pj = pj+l ‘ Apj (59)

Equation (58) consists of a number of new variables not discussed

sofar. d , g, H are known: they are parameters. The value of F is 
P

not known: it must be specified by pressure drop data correlation.

The superficial velocities contain the same information as the flows

L. and V.. They are only written in another way: J J

UV.j = VrMV,j/{ pv,j* (0.25*n*D2) } (60)

and similarly,

UL,j = PL,j* (0.25*n*D2) } (61)

In equations (60) and (61) M stand for molar mass and D is the 

diameter of the column, n is a constant.

The parameter D is known, while M can be calculated by:

Vj = (62)

"l.j ■ (63)

Mi is the molar mass of component i and is constant: this is a 

parameter.

The densities used in equations (58) through (61) are rewritten 

quantities of the compressibility factor of the considered phase:
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Pv n. = Pf M /(R*T*ZV) 
> J J * > u

PT . = p.* M. ,/(R*T*ZL) 
J-1» J J J

(64)

(65)

Now the pressure at stage j can be calculated as function of F 
P

when the value of Pn+^ has been given. This is the pressure of the

pure SCF flow added at the bottom of the column.

The pressure of the liquid stream added at the top can be assumed to 

be equal to the pressure at stage 0. This can be made plausible by 

considering the pump which is used to put in the liquid feed. If the 

pressure at stage 0 equals p^, the pump builds up a pressure in the 

liquid income pipe that is only a slight fraction higher than ^0' If

the pressure in the liquid income pipe is somewhat higher then P0.

the liquid feed will flow into the column. By means of the 

gravitation force the liquid will fall down in the column because 

its density is higher than the. SCF's density. This will be so when 

the vapour flow in the column is not high enough to cause flooding 

to occur. At the flooding border the liquid neither falls down nor 

will escape at the top: it stays constantly at the same place. 

Somewhat above the flooding border, the input of liquid feed is 

greater than the liquid flow coming out of the bottom. All liquid 

escapes then over the top: no separation has been accomplished.

It is useful to make an analysis of the number of the degrees of 

freedom in the total system.
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For every stage and for every component the mass balance (57) is 

valid involving c*n equations. The pressure drop correlation (58) 

can also be applied to all stages including the relation for the 

explicit pressure (59): 2*n equations. Equations (60) through (65) 

are also valid for every stage: 6*n equations. So, totally we have 

added a number of n*(c+8) equations.

In this model there have been used a set of new variables, which are 

listed here: x. y. ..V.V L L 11 n o n 1,0’ yi,n+l vj’ vn+l’ b0’ UL,j’ uV,j’ PV,j’ PL,j’ 

aP4. Pn+1, F n, Mv ., Mt ..j n+1 p v,j’ L,j

All variables with subscript i have to be included c times; all 

variables with subscript j have to be included n times. Totally it 

is found that there are 2c+9n+5 new variables.

Thermodynamics showed that pro stage there are c degrees of freedom. 

So for n stages this will be a number of c*n. Temperature is 

constant so we can write n-1 more equations:

Tj-l=Tj=Tj+l (66)

Because of the fact that there are 2*c more mole fractions used in 

the total system (x^ and y^ n+^) than already have been used in 

the section concerning thermodynamics, two more equations can be 

added: Sx.^ 0=l and n+1=l. which are summation conditions.

Now the total number of degrees of freedom for the extraction column 

can be calculated:

DegrFr = cn+2c+9n+5-n(c+8)-2-(n-1) = 2c+4.
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Let us confirm this result. When the packing factor and the number 

of equilibrium stages would be known, the complete system must be 

known specifying the complete input. The input variables are all 

x minus 1, all y minus 1 (because the last x. _ and y.1’u i,n+i lt0 ^i.n+l

can be calculated from the summation conditions for mole fractions), 

the operation temperature, pressure of the Incoming SCF flow and 

total flows Lq=F and Vn+1=S. Summing up these variables it is found 

that there are:

2*(c-l) + 4 = 2c+2 input variables. Input of n and F would result 
P

in a total number of variables which are externally specified of 

2c+4 which is exactly the same as the number of degrees of freedom 

that was derived. Thus: the number of degrees of freedom of 2c+4 is 

correct.

The above modelling is valid, when no accumulation occurs. This 

means that all derivatives towards time equal zero. As indicated 

before, the model can only be applied below the flooding border. The 

flooding border can be determined experimentally, but can also be 

estimated by figure 7, page 89 in [9]. The disadvantage of this 

estimation procedure is that viscosities of both phases have to be 

known. At high pressures it could very well be possible that the 

relations [9] are not valid. Another remark can be made about this 

correlation: it can be applied for L-V systems, while here no V - 

phase is present, but a supercritical phase. It is thus very 

dangerous to use these correlations. Little is known about flooding 

borders for column-types while operated at high pressures.



Figure III: Flowsheet for the extraction column with reflux. A scheme 
for the system built up in four sections. See text for 
elucidation.
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4.2 Modelling the Extraction Column with Reflux

In this section the the extraction column will be modelled in the 

case that a reflux section has been included. The fresh liquid feed 

not be added at the top of_the column, but somewhere _ _  

between the bottom and the top. The column should be designed in 

such a way that fresh liquid feed can be added at several places to 

the column. The column has been shown schematically in figure II.

In order to model the column, it can be cut into four sections:

1. Bottom Section : stages m+1 to n

2. Feed Stage : stage m

3. Top Section : stages 1 to m-1.

4. Reflux Arrangement : stage 0 (the condensor).

This cutting has been shown in figure III.

When possible, equations which were used in section 4.1, are not 

rewritten. These equations will be refered to.

1. Bottom Section.

As can be seen in figure III the bottom section is exactly the same 

as an extraction column without reflux, which has been considered in 

figure II. The only difference is that there are now only (n-m) 

equilibrium stages and thus subscripts for mole fractions, flows and 

pressure at the top stage of the bottom section have been changed.

For each stage of the (n-m) stages present the mass balance is 

valid. The mass balance is represented by equation (57).

The pressure drop equations (58) through (65) are also valid, while 

temperature is controled to be constant. This indicates that 

equation (66) also-must be included.
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Let us now make an analysis of the degrees of freedom in the bottom 

section:

There are (n-m)*c mass balances and in the pressure drop 

correlations 8*(n-m) equations are present. Equation (66) can be 

written for (n-m) temperatures, so equation (66) represent (n-m-1) 

more equations. Thus, totally there are (n-m.)*(c+9)-1 equations.

The variables in the mass balances, pressure drop correlations, that 

were not included in the thermodynamical part are: x . v i,m •'i.n+l’

vr vn+r h- Lm’ “L.r Vr ’v.r ’ur w V "• «».ƒ•

..L,J

Each variable with a subscript j is present at each stage: so there 

are (n-m) variables times the number of variables with subscript j. 

The variables with subscript i are present for each component: so 

there are c variables times the number of variables with subscript 

i.

Summing up there have to be included 2c+9(n-m)+6 variables more.

Because two more mole fractions have been included here, there al so 

are two more equations valid for this system: Sx. =1 and Sv =1 i,m ^i.n+l

In thermodynamics it has been found that there are c degrees of 

freedom pro stage, involving to be (n-m)*c in the bottom section.

The number of degrees of freedom becomes now:

DegrFr = 2c+9(n-m)+6-2-(n-m)(c+9)+1+(n-m)c = 2c + 5.

This number is one more than in the extraction column without 

reflux, because the new variable m has been introduced.
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2. Feed Stage.

The feed stage is one equilibrium stage with an extra external input 

of feed as can bee seen in figure III.

The mass balance for component i over the feed stage is:

X. *L d + x. *F + v *V = x *L + v *V 1(^7}i,m-l m-1 i,f yi,m+l m+1 i m yi m

Equation (6?) is almost the same as equation (57); only the extra 

feed input has been included. F symbolizes the total feed flow rate, 

while xi f stands for the mole fraction of component i in the feed.

For the (liquid) feed the pressure can be set equal to the pressure 

at stage m (the feed stage). This has already been elucidated under 

equation (65). In that case the pressure drop correlation remains 

the same as equations (58) through (65), while substituting constant 

m for variable j.

Thermodynamics for stage m have shown that there are c degrees of 

freedom more.

It will be derived now what happens to the total number of degrees 

of freedom when the feed stage is included in the bottom section.

In equation (67) an amount of new variables occur, which has neither 

been included in the bottom section nor in the thermodynamical part.

These variables are:

xl,fuV,m’ ’».A’ "V.m- UL,ni’ ML,m’ PL.m

Summing up the variables, it is found that there are 2c+10 new 

variables.
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Of course we can write two more equations for x. . and x.i,m-l i,f These

are the summation conditions that equal 1.

It is necessary to make a correction here. The thermodynamical part 

also takes into consideration the summation conditions. Viewing 

sceptically at the above made analysis, it can be seen that the 

summation condition Sx^ has been counted twice as well as variable 

x.i ,m

So there are for the feed stage c mass balances, 8 equations in the 

pressure drop correlations and 2 more summation conditions. 1 

condition has been counted twice as well as c variables. We already 

found that 2c+10 variables have been added and the number of degrees 

of freedom due to thermodynamics has been extended by c. The number 

of degrees of freedom for the feed stage integrated with the bottom 

section is now extended by 

2c+10 (variables) - (c+10) (equations) + c (degrees of freedom due 

to thermodynamics) - c (x. counted twice) + 1 (Sx. countedi,m x,m

twice) = c+1.

The number of degrees of freedom now becomes: 3c+6.

While integrating the feed stage with the bottom section also an 

extra equation appears because of temperature equality (66) at 

stages m and m+1.

The final number of degrees of freedom in the system feed stage 

integrated with bottom section now becomes:

DegrFr = 3c+5-
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Let us confirm this result. Total input must give total ouput. 

Input: mole fractions and flow rates of all input flows and the 

pressure of the incoming SCF flow at stage n: 3(c-l)+4 

specifications. Further specification of operation temperature and 

the column properties F , m and n result in a total number of

specified variables: 3(c-l)+8 = 3c+5. So the analysis of the number 

of degrees of freedom is correct.

3. Top Section.

The top section is again exactly the same as the extraction column 

without reflux which can be seen when comparing figure III with 

figure I. Thus, it is also the same as the bottom section, only the 

number of equilibrium stages is different.

The number of degrees of freedom in an extraction column without 

reflux is independent on the number of stages. This has been shown 

in the analysis of the number of degrees of freedom for both the 

extraction column without reflux and the bottom section.

So, the number of degrees of freedom in the top section equals 2c+4. 

In the bottom section it has been found that this number was 2c+5, 

because of the extra variable m, when being compared with the 

extraction column without reflux. In the top section the number of 

stages is only a function of variable m. The number of stages is 

m-1, thus independent of n.

Now it is necessary to find the number of equations and variables 

which have been counted twice.
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The variables, which have been counted twice, can be found at the 

connecting point of the top section and the feed stage as well as 

the variables which symbolize column properties:

Xi,m-1’ yi,m’ Lm-l’Vm’ m’ Fp’ Pm : 2c+5

Equations which have been counted twice:

i,m-l ’ ^i.m •

Extra equation: T „ = T (66) • 1m-1 m '

So the total number of degrees of freedom, which must be added when 

integrating the top section with the already integrated bottom 

section and feed stage, becomes:

2c+4 - (2c+5) +2-1 =0

Thus, the total number of degrees of freedom after integrating the 

top and bottom section and the feed stage has been fixed by:

DegrFr = 3c+5-

4. Reflux Arrangement.

In the reflux arrangement the outcoming SCF flow is cooled in order 

to establish condensation of the dissolved components. Then the 

nearly pure SCF can be recycled to the bottom of the column in order 

to perform a new extraction. The condensed components flow out of 

the condensor and can partly be refluxed. This can be seen in figure

III.
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In the condensor it can be assumed that the pressure equals the 

pressure at stage 1 in the column, because no pump is used between 

the SCF flow coming out of the column and the incoming flow in the 

condensor. In that case possible pressure losses due to cooling 

cause the incoming flow to increase to a steady state flow rate. In 

this situation the pressure in the condensor equals the pressure at 

stage 1 in the column when the pressure drop due to friction in the 

pipe is neglected.

The fact that the SCF flow rate coming out of the column increases 

until steady state is reached does not make the total model to be 

inaccurate. The model, as has been stated before, is applicable in 

the steady state situation. This consideration of increasing flow 

has only been made here in order to state why the pressure in the 

condensor equals the pressure at stage 1 in the column.

Let us now write down the equations which are valid for the reflux 

arrangement. The condensor can be seen as an additional equilibrium 

stage at which the pressure is the same as at stage 1 and the 

temperature is unknown. The temperature in the condensor is unknown 

because it is optional to what temperature the flow coming out of 

the column is cooled. The reflux arrangement has been shown in 

figure III.

Thermodynamics thus can be applied to the condensor as well as a 

mass balance.

The mass balance for one component over the condensor is:

y. .*V = x. *L + y. *V1»1 J- 1, c c i, rec rec (68)
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In equation (68) is the mole fraction of component i in the

SCF flow leaving the condensor to be recycled. This flow rate is 

symbolized by ^rec- The subscript c stands for condensor.

A part of the liquid flow, Lc> is refluxed and introduced again in 

the column at stage 1. This part of Lc thus equals the liquid flow 

Lq. The part which is not refluxed equals the flow leaving the 

system at the reflux arrangement. This flow is symbolized by D, 

where D stands for distillate. Looking sceptically at figure III, it 

can be seen that the condensor can also be indicated as equilibrium 

stage 0, because the leaving liquid flow has the same composition as 

flow Lq which is introduced at stage 1 at the top of the column. In 

that case the mass balance (68) can be rewritten in an equation 

which causes the condensor to be connected with the column by means 

of other subscripts:

‘ * yl,0*V0 <65>

The phase equilibrium occuring at "stage 0" can be described by 

thermodynamics. It has been shown that thermodynamics cause the 

number of degrees of freedom to be extended by c.

How much liquid product leaving the condensor is refluxed can be 

expressed in terms of a reflux ratio, R, which is defined as:

R = Lo / 0 (70)

Let us now make an analysis of the number of degrees of freedom in 

the total extraction column with reflux.
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There are c mass balances (69) and an extension of the number of 

degrees of freedom due to thermodynamics of c. Also 1 equation (70) 

has been added.

The now variables.which have neither been included in 

thermodynamics nor in the top and bottom sections nor in feed stage, 

are:

R, D, Vq : 3 variables.

The variable x^ has been counted twice as well as its summation 

condition, 2x. „=1.1,0

We can write an additional equation:

P0 Pcondensor " P1 (71)

So the number of degrees of freedom due to the reflux arrangement, 

has to be extended by:

3 - (c+1) +C-C+1-1 = 2 - c

Integrating the reflux arrangement to the top and bottom section and 

the feed stage, it is found the the total number of degrees of 

freedom in the extraction column with reflux is:

DegrFr = 3c+5 + 2-c = 2c+7

Let us confirm this final result.

Specification of all input variables must determine all output 

variables.
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Specification of composition and

and the incoming pure SCF, V . : n+1

Specification of the geometrical 
3 specified variables.

flow rate of the incoming feed F 

2(c-l)+2 specified variablés.

properties of the column, F , n, mP

Specification of operation temperature and pressure of the incoming 

pure SCF: 2 specified variables.

There are now 2c+5 variables specified, leaving two to be specified 

in order to fix the total system to be k equations with k unknown 

variables. These last variables must be specified by other external 

inputs, for example the reflux ratio and the temperature in the 

condensor. Also the mole fraction of the SCF in the SCF flow that is 

recycled can be set equal to 1, causing all other mole fraction to 

equal zero.
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5. Discussion of Models

In section 3 models were presented to calculate the phase 

equilibrium as function of temperature, pressure and composition. It 

has been shown that only using one equation of state (EOS) the total 

phase equilibrium can be determined at certain temperature, pressure 

and composition. In that case mixing rules must be known as well as 

binary interaction parameters. The a(T) and b parameters for a pure 

substance in an EOS must also be known. They can either be a 

function of the critical properties of the substance or a function 

of the liquid density at 20 °C as has been pointed out in section 3.

The second model that has been proposed was an EOS for the 

supercritical phase and a measure for gas solubilities (Henry 

constants) for the liquid phase. All parameters can be estimated, 

except for Henry coefficients. Vapour pressure data are often 

available, so no estimation method for vapour pressures have been 

evaluated here.

The major difference in use between the two proposed models are 

calculation time and convergence problems. The latter model can 

readily be used, without comprehensive knowledge of numerical 

iterative methods. The first model, however, is more often used, 

because of its wider range of applicance. The second model can not 

be used at densities of the SCF above half the critical density (B- 

truncated virial EOS) or three fourths the critical density (C- 

truncated virial EOS). When the B-truncated virial EOS is used above 

0.5 times the critical density, the model will yield solubilities of 

the heavy compounds in the supercritical phase to be too high. The 

chemical interactions, that become important in dense gases, are 

estimated too high: the B-coefficient exaggerates the effect [12].
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From that moment the C-coefficient becomes important. It pulls the 

effect of B back to result in results that are in more agreement 

with reality. At about three fourths the critical density this 

pulling back effect of C becomes too large and the model will 

estimate the solubility of the heavy compounds in the supercritical 

phase to be too small. This can be seen in figure IV. Because no 

corresponding states correlations are available in literature, no 

extension of the model to higher densities can be made.

Scientifically seen, the second model is somewhat more educative and 

easier to evaluate. Chemical interactions and the heavy compound's 

own volatility can be regarded separately, while these effects are 

completely strangled in cubic equations of state. In getting first 

feelings about equilibria of certain systems the second model could 

be prefered. Cubic equations of state can be used in a later 

stadium, to make the model applicable to a greater range of 

densities of the SCF.

For cubic equations of state:

Summarizing, three cases are important in fixing the phase 

equilibrium:

- choose an appropriate equation of state,

- choose an appropriate model to determine the pure substance 

parameters a(T) and b,

- choose appropriate mixing rules,

- knowledge of the binary interaction parameters.

The first three items are choices to be made. Combination of these 

three choices must describe the phase equilibrium in the best way.
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The values•for the binary interaction parameters can be determined 

by means of solubility experiments or can be known out of 

literature: it could be possible that solubility experiments have 

already been done by another person. The values for k 's are 
ij

dependent on the three chosen items EOS, a(T) and b, mixing rules.

The model which describes the technology of the column calculates at 

each equilibrium stage incoming and leaving mole fractions as well 

as the flow rates. Thus, it can be called a stage to stage 

calculation procedure. The calculation procedure will be iterative 

because external specifications are not known at the same stage. In 

case of an extraction column without reflux, the input 

specifications are to be set at stage 1 and stage n. So knowledge of 

mathematics is also needed in order to solve the equations.

The stage to stage calculation model which has been discussed is 

only valid at steady state: no accumulation has been assumed to 

occur.

Normally equilibrium will not be reached in a real stage, but since 

there are no real stages present this is no problem. The packed 

column can be assumed to be built up of n theoretical equilibrium 

stages in series.
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6. Conclusion

In section 3 phase equilibria were modelled where a supercritical 

fluidum was involved. This means that there has to be dealt with 

high pressures. Two models for describing phase equilibria at high 

pressure (where a supercritical fluidum is involved) have been 

presented. Advantages and disadvantages have comprehensively been 

discussed in section 5*

It has been shown that due to corresponding states correlations many 

relevant properties such as virial coefficients can be estimated. 

Because of its simplicity the virial equation of state can provide 

fast and reasonably good estimates of these types of phase 

equilibria. Further knowledge of Henry constants and vapour pressure 

data provides the calculation of complete phase equilibria. No 

iterations are required, even for systems consisting of many 

components.

Applying phase equilibria in industries, it is desired to connect 

these models to technological models that describe in- and output 

flow in a separation column. These types of phase equilibria are 

applied in supercritical extraction processes (or: supercritical 

entrainment distillation processes). In section 4 an analysis of 

degrees of freedom has been made when a continuously operated 

separation column is used.
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7. Notation

First a list (in alphabetical order) will be given of the variables, 

followed by a number of Greek variables, without taking into 

consideration their sub- and superscripts. . The latter will be listed

afterwards. Finally, a list of abbreviations will be given.

Symbol Description Units
a and a(T) pure substance parameter in EOS J*m3/moT
*

A dimensionless form of parameter a(T) -

b pure substance parameter in EOS m3/mol
*

B 1. dimensionless form of parameter b -

2. second virial coefficient m3 /mol
C third virial coefficient m6/mol2
D flow rate of distillate mol/s
DegrFr number of degrees of freedom -
F flow rate of feed mol/s
F P packing factor -

H Henry constant Pa
k. .ij binary interaction parameter -

L flow rate of liquid phase mol/s
m number of feed stage -

M molar mass kg/mol
n number of stages in column -

P pressure Pa

R reflux ratio -

S flow rate of SCF = V . n+1 mol/s

T absolute temperature K
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V i. molar volume m3/mol
2. flow rate of vapour (=SCF) phase mol/s

u superficial velocity m/s
X mole fraction in liquid phase -

xo variable used in Brunner's method to 
determine a(T) and b —

y mole fraction in vapour (=SCF) phase -
z compressibility factor

Greek symbols:

AP pressure drop pa

P density kg/m3

•t1 fugacity coefficient

n Pitzer's acentric factor

1 (acentric) activity coefficient

Sub- and Superscripts used:

c 1. condensor

2. critical

f feed

F phase

i component

j 1• component

2. stage

k component

L Liquid phase

m 1. number of feed stage

2. mixture

rec recycle

sat saturated (used in vapour pressure notation)

V Vapour (=SCF) phase
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Abbreviations:

EOS - equation of state

HETP height equivalent to one theoretical plate

SCE supercritical extraction

SCF supercritical fluidum

CSC corresponding states correlation
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Appendix A: Derivation of Equations (53) through (56)

At page 27, 28 and 29 in this report four formulas were used. The 

first (53) links any equation of state (EOS) to the fugacity 

coefficients of every component present in the mixture. (53) can be 

derived from fundamental thermodynamics: definition of certain 

quantities and the first and second law of thermodynamics.

quation (54) is the solution for equation (53) when the Peng 

Robinson EOS is used. This concerns rather mathematics than 

fundamental thermodynamics .

Equation (55) and (56) are solutions for equation (53) when the 

virial equation of state is used, while the Lewis rule is applied.

This appendix has been built up of three sections, deriving all 

equations.

A.1. Derivation of Equation (53)

For the fugacity coefficient, <1^, of component i in a mixture 

containing n components, a relation will be derived that relates 

this property to any EOS.

The fugacity, f , of component i in a mixture containing n 

components is defined by:

R*T*d{ln(f.)} = v.*d{p} = *d{p} (Al)
i

In (Al) vi is the partial molar volume of component i, while V 

stands for total volume.
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The chemical potential Ui, of component i is defined by:

u., = {aM/an±} [M= G, U, H or A] (A2)

In (A2) G is the free Gibbs energy, U the internal energy, H the 

enthalpy and A the free Helmholz energy. The internal energy of a 

mixture will be considered first. If heat is put into the system the 

internal energy of the mixture will increase, while the internal 

energy will decrease if the mixture performs some work. So, the 

increase of the internal energy of a mixture equals the difference 

between the heat which is added to the mixture and the work which is 

performed by the mixture. This consideration is known as the first 

law of thermodynamics. Written in formula:

AU = Q - W / 

or in differential form:

dU = 9Q - 3W (A4)

The process of adding heat and performing work is now considered 

reversible, that is when the changes of the properties concerned, 

will take place in an infinite long time. Consider a tube in which 

the mixture is present with on top of the mixture in the tube a 

piston that can move freely. The work performed by the mixture is 

now defined as the force performed by the mixture multiplied by the 

distance the piston moved. Since the area of the tube is constant 

the force will be the area multiplied by the pressure of the 

mixture. The distance multiplied by the area will be the mixture's 

volume. So work is defined, remembering that area is constant:

3W = F*ds = p*A * d (V/A) = p*dV (A5)
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Considering a Carnöt cycle and the second law of thermodynamics it 

can be concluded that entropy, S, is given by the equation:

Combining (A4), (A5), and (A6) it is found that

3Q = T*dS (A6)

dU = T*dS- p*dV (A7)

Enthalpy is defined as

Substituting (A?) in (A8) it is found that

H = U + P*V or dH = dU + p*dV + V*dp (A8)

The free Gibbs and free Helmholz energy are defined by

dH = T*dS + V*dp (A9)

Substituting (A?) in (A10) it can be seen that

A = U - T*S or dA = dU - T*dS - S*dT (A10)

G = H - T*S or dG = dH - T*dS - S*dT (All)

In the same way, substitution of (A9) in (All) leads to:

dA = - S*dT - p*dV (A12)

dG = V*dp - S*dT (A13)

Now it can be seen from (A12) and (A13) that A=A(T,V,n) and 

G=G(p,T,n). Equation (A2) represents partial differentials, so 

taking all other properties constant. Applying (A2) to both the free 

Gibbs and Helmholz energy, it is found that:
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W^T.v.nfj) * »i (A14)

W^Jp.T.nU) = “1 (A15)

At constant temperature and composition (A12) and (A13) become:

dA = - p*dV and dG = V*dp (A16)

If (A14) is differentiated towards volume the result will be:

3 9 AdUi [ 3V { ä^^.V.nCj) ^T.n(j) * dV <A17)

If (A15) is differentiated towards pressure the result will be:

3 3 GdUi t 3p { än^}p,T,n(j) ^T.nfj) * dp (A18)

In (A17) and (A18) the differentials below the quotient sign can be 

exchanged:

3 3 AdWi = t änj av }T,n(j) ^T,V,n(j) * dV (A19)

If (A15) is differentiated towards pressure the result will be:

3 3 Gdul = [ 55/ 55 >T.n(J) ]p,T,n(j) ‘ dp <“0)

It follows that equation (A19) equals (A20). From equation (A16) it 

is found that:

{ if ’T.nIJ) ’ V < 55 >T.n(J) = - p (A21>
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The equality of (A19) and (A20), while substituting equation (A21) 

results in:

{ äJ.>p.T,n(J) * dp " - I IS/T.V.nO) * dV <A22>

This result can be substituted in equation (Al) to give:

R‘T*d{ln(f.)} = - { . dV (A23)

Adding the term R*T*d{ln [ V/(n*R*T) ] } at both sides of A(23) it 

follows that:

R-T-dUng^} . R-min^} - { <A2,t)

Next, the just added term can be rewritten:

R*T*d{ln-™-} = R*T*{ l/( V/{n*R*T} ) }*dV = {R*T/V}*dV (A25)

Substitution of (A25) in (A24) results in:

R-Wiln^) - [ V - ( 3S.}T.V.n<J) 1 ’ dV <A26)

Equation (A26) can be integrated from V towards infinity. If V=o> 

than the mixture behaves like an ideal gas, because the molecules do 

not interact with each other. In that case the left term of (A26) 

becomes: R*T*lnyi, because p.. = f± = y *p (ideal gas behaviour).

The result becomes:

R*T*[ iny. - In^ J = J C Sjï _ { j) MV (A27)
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or

¥R*T*r ln(f./y.) 1 = F { I - 5-T IdV - R*T*1n—- —L k J L t a^^T.V.nCj) V JÜV H 1 n*R*T

(A28)

or, because of the fugacity coefficient's definition (f.=y *<l> *p):

R*T*tln(Vp)J = J [ { 7 ]dV - (A29)

Defining the compressibility factor as Z=p*V/(n*R*T) the final 

equation becomes

R*T*[ln(<i>.)] = J [ { |^}T,V,n(j) " ]dV “ R*T*lnZ (A30)

Equation (A30) is the same as equation (53) at page 27 in the 

report. It is, thus, derived.

A.2 Derivation of Equation (54)

Equation (54) represents the solution of equation (53) when the Peng 

Robinson EOS with classical mixing rules is used. As can be seen 

from equation (A30) the partial derivative of pressure towards mole 

species i has to be calculated. Temperature and volume have to be 

held constant. Explicitely volume is meant because molar volume 

depends on composition and in that case molar volume cannot be held 

constant. Thus, the Peng Robinson EOS has to be written in an 

expression depending on V rather than molar volume like has been 

done in the report.
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The Peng Robinson EOS in molar volume is repeated here:

_ R*T a
v-b v2 + 2*b*v"--b2' (A31)

substitution of v = V/Sn. leads to J

R*T*Snj a*(Sn.)2
P “ V=b*Sn7 - V2’“+-2*b*V*Sn“=“(b*SnT)2’ (^32)

J J J

From the classical mixing rules it follows that:

b = S(n *b )/Sn (A33)J J J ' 'J'J'

and

a = ^(ni*nj*a:Lj)/(Snj)2 (A^)

Substitution of (A33) and (A34) in (A32) leads to the good form of 

the Peng Robinson EOS that can be differentiated towards mole 

species i:

R*T*Sn S2(n.n*a..)
V-S(n *b ) V2 + 2*V*S(n.*br=“(H;r*b"))2“ (A35)

J J J J J J

Knowing that

3n7 { 22(ni*nj*aij } = 2 * S(n.*a..) (A36) 

9(A35)/3n. becomes:
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,3p _ R*T R*T*Sn,.
1 3Ä /T.V.nCj)- V”“ï(n/b;y + (V"”ï (^bj * bi +

1 J J J J

[ 2*bi*V - *b.)) ]
[“V2"""2*V*S(Ä7*b7)"=~(S(n7*b7))r“p * 

J J J J

2*S(n*a..)
(A37)

Now the differentiation towards n has been executed. The total

absolute volume in (A37) can again be replaced by the molar volume, 

v, because in (A30) no further operation has to be done depending on 

n^. It is found that:

9p R*T R*T*b.
än^T.V.nCj)~ n*(v:b) + n*(v=b)?

Z^/^n^C^v-^b)
+ ïnr*vr“ï-2*n*v*n*b"--(n*b)rÏ2

. 2*n*S(y,*a..) 
J^"*v"”2*n*v*n*b"=“(n*b)2" (A38)

In (A38) y symbolizes mole fraction of component j and is defined J

as n /n and n is defined as Sn.. 
J J

As can be seen from (A38) the term 1/n can be set outside brackets.

The final equation for the derivative becomes now:

a _ 1 R*T + + 2*bi*a*(v-b) ^(y^ij)
1 3ni^T,V,n(j) n L v-b + (v=b)2~ + (v2 T2*b*v:b2')r " v^Z^v-b2"

(A39)

The next thing to do is to integrate (A39) according to equation

(A30). First the following integral will be solved:
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A TA

[ { än^T.V.nU) ~ R*T/V 1 dv (A40)

In (Ä40) the new symbol I symbolizes "Integral". It can be seen that 

in (A40) the symbol for absolute total volume appears (V). This is 

also the case in equation (A30). Before substituting (A39) into 

(A40), (A40) first has to be rewritten in the molar volume form:

1 = E { In }T V n(D- R*T/(v*n) J d(n*v) (A41)

or

1 = J E n*< InA.V.nU)- R*T/v ] dv (A42)

Substitution of (A39) into (A42) results in:

R*T R*T*bi 2*bi*a*(v-b) 2*2(y*a..) R*T
v [ v-b + ^v-bj^ + {vrÏ2*b*v:br}r ” v2~+2*b*v-br " “v" dv

A B C DE (A43)

(A43) is the integral to be solved. It has been split up (as can be 

seen) into five parts, A, B, C, D, and E. First the primitive

functions (function after integration without filling in the limits) 

of terms A, B and E will be solved:

Primitive of term

A+E

A

E

B

is

R*T*ln(v-b)

- R*T*ln(v)

R*T*ln--- v

- R*T*b / (v-b) 
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The primitives of terms C and D are more difficult to determine. 

Therefore a mathematical intermezzo is given in section A.2.1

A.2.1 Mathematical Operation: Getting primitives of terms C and D

In order to get the primitives of terms 0 and D, standard 

integrals can be used. The following integrals have been listed in 
[17]: ...... .

X = c*xz + b*x + a and q = 4*a*c - b2 ( and q<0 )

- ^5 = 1__ * in _2*c*x_+_b_=_i/(-q)
+ X ^(-q) 2*c*x + b + 7(-q)

dx
X2“

2*c*x + b 2*c # dx 
“"q*X"““ + "q" + "X

f _ b*x_t_2*a b * _ dx+ X?~ ~ " q*X q + -X 

(A44)

(A45)

(A46)

Equations ((A44) - (A46)) can be used in order to get the primitives

of terms 0 and D. They integrals ((A44) - (A46)) will be proofed in 

this section first. Starting with (A44), differentiating the right 

part of this equation towards x must result in 1/X. If this is so, 

(A44) has been proofed. Differentiating results in:

_1_ * r ëcx+b+i/C^q) * 2c*(2cx+b+i/(-q)_-_2c*(2cx+b21/(-q))
7(-q) L 2cx+b-7(-q) (2cx+b+7(-q))J 

equals

1 * 4c*V(-q)
^(-q) (2cx+b-?(-q))*(2cx+b+7(-q)) 

equals

____ 4c__________ _______ 4c___ _ 1 1
^c^cx^+bx) +b2'+q Qc^cx^+bx)+b^+4ac-b^ " ex2 +bx+ä - X
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So, (A44) has been proofed. Next (A45) will be proofed. 

Differentiating its right part must result in 1/X2. Differentiating 

gives:

X*2c - (2cx+b)2 
q*X2" + 2c equals

2clxii2bcx+2ac=4c^x2-4bcx-b2 2c*(ex2+bx+a) 4ac-b2 1
q*X2 + q*Xr = -q*Xr“ = Xr

Thus, (A45) has been proofed. In the same way (A46) will be proofed.

Differentiating the right part must result is x/X2:

X*b-(bx+2a)*(2cx+b) b
- -Sx?--------  " q*x e^uals

_ b2?llb^x+ab=2bcx^+b^x-4acx-2ab b*(ex2+bx+a) _ (4ac-b2)*x _ xq*X2 ---------------------*x2- - - xf

Now equations ((A44) - (A46)) have been proofed and can be used in 

determing the primitive function of terms C and D of equation (A43).

A.2 Derivation of Equation (54) (Continued)

With help of equation (A44) the primitive function of D can be 

found. In section A.2.1 new variables have been introduced. Before 

applying (A44) these variables must be linked to term D:

variable in (A44) 

x 

a 

b 

c

X

q

corresponding relation in term D 

v

-b2

2*b

1

y2 + 2*b*v - b2

-8*b2
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Afterwards the primitive must be multiplied by the constant

-2*S(y *a. ). Substituting these values in (A44) results in J

f/AüZMX - 1 * 1 2*v + 2*b - b*V8 . , .{(A44)} - In 2*v""2*b"-“b*?8 (Ail7)

Knowing that equals 2*^2 and multiplying the integral with the

constant results finally in the primitive for term D:

Pr^D) . • 2,1,^ • in (M8)

In order to find the primitive of term C, the variables in term C 

also must be linked to the variables in the integral. This linking 

is exactly the same as the linking done for term D. The constant, 

which the primitive must be multiplied with afterwards, is in case 

of term C: 2*a*bi. Term C must be split:

2*b^*a*(v-b)
{v2+2*b*v-b2 }2 2 a bi ^[v2+2*b*v=b2’]2’ ” [v2’+2*b*v-b2']2'^ (A^9)

The first term of (A49) can be solved with help of (A46); the second 

with help of (A45).

{A(46)} - Z8*gr*(“2’;2*b*v=b2') - (A50)

{(A45)} b * [ Z8*b^*(vr72*b*v-b2’) + l8*b?*^Ai|Zt^ MSI)

According to (A49), (A50) and (A51) have to be substracted and 

multiplied by the constant 2*a*b^:

Prim(C) = 2*a*bi * + * {(a44)}

+ Q^CvM^b^b2") + * HA44)} ] (A52)
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or

Prim(C) = 2*a*b. * r________ Y______ + _L * _1__ * v+b*(l-^2)n
L2*b*(v2+2*b*v-b2) 2*b b*^8 v+b*(ÏT72)J

(A53)

or

Prim(C)
b. 

a*-i a b v^+2*b*v-b^
1 * T v+b* (1-^2)2*b*?2 ln vïb*(ïï?2)^ (A5/|)

Now all primitives of all terms in (A43) have been determined and
the integral I (equation (A43)) without filling in the limits
becomes (notation: I'):

v-b b.
I' = R*T*ln---- R*T*—r v-bv - 2*2(y*a) J ■J" J

* _ 1
2*b*i/2

. v+b*(l+V2) 
v+b*(ï-?2)

or

I'

b.
*_1 * T-- v b Lv2 +2*b*v-b2'

1 * n2*b*?2 ln v+b^l-^) 
v+b*(l+?2) (A55)

v-b
= R*T*ln— v

b.
- R*T*—1 

v-b
b. 

*_i 
' b

* v^+2*b*v-b^

a 
2*b*?2 * E

b.1 
b“

2*2(y*a) 
a ] * ln (A56)

Let us now fill in the limits. If v becomes very large (®) then all
terms in (A56) become zero. Thus, the solution of integral I (A4g)

becomes by filling in the limits in I' (A56):

v b.
I = R*T*ln—- + R*T*—1 - 

v-b v-b
b.#_i #____ v___
b v^+^b^v-b2" +

a * p bl 
2*b*?2 L b" -I * ln v+b*(l+x/2)

a J v+b*(ï-?2) (A57)
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The expression for the fugacity coefficient will be repeated here 

(equation (A30)):

R^LlntO».)] = J [ { _ RJT ]dv _ R*T*lnZ (A30)

or

R^ElnC^)] = I - R*T*lnZ (A58)

where I is given by equation (A57).

Now the following term in (A57) is considered:

bT bn- „ b. b.
R*TVb - a*b- • ■ R*TV6 - ''•b1 • jr;2»k:br

The term

a , R*T^"2*b*;=b^ eqUals v=b " P‘

This can be seen with help of the Peng Robinson EOS, equation (A31). 

For the pressure p can be written:

p = R*T*Z/v according to definition of the compressibility factor Z. 

Substituting these equations in (A59):
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b. b. R*T R*T*ZR*T*—i- - ” * v * [—---------1 =
v-b b v-b v J

R*T*b.*[--- - *{-L - ?}■] =
1 v-b b '•v-b v'J

R*T*b *r--- - __ -___ + -1 - i Lv-b b*(v-b) bJ “

R*T*b.*[r*7=-rV + ?] = 
1 b*(v-b) bJ

R*T*b.*[^ - i] = R*T*gi * (Z-l) (A60)

The final expression for the fugacity coefficient will be found by

substituting (A60) in (A57) and substituting this result in (A59): 

v b.
R*T*[In(<|> ) ] = R*T*ln—r + R*T*r- * (Z-l) - R*T*lnZ +

1 V“D D

a * r ^i
2*b*?2 L b"

2*2(y*a)__ — — —
a

v+b*( 1+^/2) 
v+b*(l-72) (A61)*

In the report the new variables A and B were already introduced.

Substitution of

* * #a = A *(R*T)2/p , b = B *R*T/p , b± = B.*R*T/p and v = R*T*Z/p 

will result in the following expression for the fugacity 

coefficient:

*
B. #

ln(<|) ) = -i * (Z-l) - ln(Z-B ) +
B

-4- • [ V m
2*B V2 B a Z+B *(l-x/2)
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According to the classical mixing rules :

aij = { (A63)

Equation (A62) combined with the mixing rule (A63) equals equation 

(5^) in the report.

A.3 Derivation of Equation (55) and (56)

At page 28 and 29 in the report, equations (55) and (56) are 

mentioned. These are results of applying equation (53) and Raoult's 

law. First an enhancement factor is defined:

Enh ■ C1,SCF / ■ <AM)

The enhancement factor is the factor with which the ideal 

concentration of the considered heavy compound in the supercritical 

fluidum has to be multiplied in order to yield the real 

concentration.

The ideal concentration is calculated from Raoult's law, extended 

for high pressures by the Poynting factor:

ideal 
y.;

ideal % ^sat * x. P. * POY.111 (A65)* P

The ideal concentration follows by multiplying the mole fraction in 

the supercritical phase by the density of this phase. Because 

solubilities are very small (< 1 mass percent), the density of the 

supercritical phase is almost the same as the density of the 

supercritical fluidum as if it was pure (Lewis rule):

ideal c.1
ideal * y. * idealPSCF (A66)
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Combining (A65) and (A66) yields:

cideal = xldeal . psat . . „Ideal / p

Because the ideal gas law is valid for this ideal concentration 

calculation, (A67) can be modified:

ideal ideal * „sat *ci = xi Pi * PO^ / (R*T) (A68)

Like equation (A66) the real concentration of the heavy compound in 

the supercritical phase equals:

Ci = yi PSCF (A69)

For the density of the supercritical fluidum considered to be an 

ideal gas follows:

ideal .PSCF - p / (R T) „ (A70)

The real density is found in the same manner by introducing the 

compressibility factor of the fluidum ( Z = p*v/(R*T) );

PSCF = P / (R * T * zSCp) (A71)

For the real situation Raoult's law has to be modified by means of 

fugacity and activity coefficients:

* yi * P = y. * x * p^at * p0Y^ (A?2)

Combining (A65) and (A72) yields:

y± / yideal = ( \ * x. / X^deal ) * ( 1 / 0. ) (A73)
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Substitution of (A?!) in (A69) and (A70) in (A66) results in 

ideal ideal * , ,, „ * m .ci =yi ( P /( R * T )) (A74)

and

=! = yj * ( p / (R * T • zSCF )) (A75)

Revision of (A75) by (A74) yields:

ci / 4deal = ( ^i / ytdeal ) * ( 1 / zSCF ) (A77)

Further subsitution of (A73) results in:

o. / e“eal =(!/[♦,. Zscf] ) • ( f. . X. / ) (A78)

This equals the enhancement factor. The result is a slight different 

than De Swaan Arons reported [12], because his derivation was valid 

for solubility of solid heavy compounds, thus no supercritical 

fluidum can be dissolved. Let us first consider the enhancement due 

to the vapour phase’s non-ideality and the liquid phase's non­

ideality is in first instance neglected. Later on the liquid phase's 

non-ideality will be incorporated. Then the similarity with De Swaan 

Arons's derivation becomes clear. Then the result becomes:

c = c^deal * Enh * Ï. * x. / xideal (A79)
1 1 vap 111

Substitution of (A68) in (A79) yields:

Ci = Yi * Xi * Piat * P0Yi * Enhvan / ( R * T ) (A80)
-u -L _L Vci£J
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With help of (A69) it is finally found that 

yl / X1 = C h • pi • POY. / ( R ♦ T •eSCF)] • Enhvap (A81)

which is equal to equation (55) in the report.

Let us now consider the vapour phase’s contribution to the 

enhancement factor. It was already derived that

^vap = 1 / ( *1 * ZSCF) (A82)

At this point the virial equation of state, which has been chosen, 

becomes important. In the report it had already been mentioned that 

the fugacity coefficient, I , is denpendent of the type of equation

of state that has been chosen. The virial equation of state is 

repeated here, truncated after the third coefficient:

P=(R*T/v)*(1+B/v+C/v2) (A83)

In (A30) it can be seen that (AÖ3) should be written in terms of

mole species i, knowing that n = Sn.. The equations for the mixture J
virial coefficients have already been given in the report:

Bm “ ’/’j* Blj = (1 / ns) • g n. • n. ♦ B.. (A84)

Cm ” yiVyk* hjk • d / ■>') ♦ n.«n.*nk» C.Jk(A85)

The molar volume becomes total volume devided by n. (A83) now 

becomes: 

p = (R*T*Sn. / V) * (1 + (l/(V*Sn.)*^ n.*n.*B.
J J ij 1 J ij

(l/(vnn3)*^ ,k ) (A86)
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Now the derivative ap/3^ can be obtained from (A86). (A84) and

(A85) will first be written in a form where mole species i is taken 

outside the summation sign:

----- .. 2 — - -: — - ■ • • --- — . - - .
Bm = (ni * Bii + 2 * ni *i2ini * BiP / (A87)

" (»’ • C1U + 3 • nJ ..5^ . t

3 ’ nl *Ä Ä “J X ’ ClJk) / <V!*Znj> <A88>

Differentiation pressure towards mole species i now yields:

ap/9n = (R*T/V) * (1 + (l/(V*Sn.)*S§ n.*n.*B. . +
1 J ij 1 J ij

(l/(V**Sn.)<®
J X J 1C n.*n .*n, *C k ijkJ

(R*T*Sn /V) *

{
2*§ n.*B..

J J ij

V * Sn. J

3*n.* C... + 6*n.*.S n.* C... + 3*.S. ^.n/n * C 1 111 1 J*k j 11j J j*i k*i j k ijk

V2* In.J
} (A89)

Rearrangement results in:

2*5 n *B. .
J J ij

ap/Sn. = (R*T/V) + (R*T/V) * [ --- -----

->* 2, 3 n. C... + 6*n.*.Sin.* C... + 3*.S. ,S.n *n,* C. , 111 1 j*k j iij J j*i k*i j k ijk
] (A90)

V2
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Equation (A90) can be rewritten in terms of mole fracions, y:

Sn. *2*? y.*B. .
, J J J ijap/Sn^ = (R*T/V) + (R*T/V) * [------- -------- +

-__ p p ..........
(Sn.) *3*y.*C. +6*v * S v *C +^* S S v *v *C1j7 3 yi viii ° yi j*kyj biij+J jèi kiiyj yk cijk
---------------------------------------------------- ] (A91)

v2

The term

9
3*y.*C. . ,+6*y.* .2, y ,*c. . . + 3* J. y *Y *C1 in ^i j^k^j iij j*i k*iyj yk ijk

equals

3 * 22 y.y * C. „ j k ijk

so the final result of the derivative ap/a^ becomes:

(2n.)*2*§ y *B. .
, J J J ijap/a^ = (R*T/V) + (R*T/V) * [------- -------- +

3#s yrvci jk
--------------  J {A92)

V2

The derivative (A92) must now be substituted in equation (A30). It

can be seen that the integral term of (A30) becomes:

(Sn.)2*3*22 y *y. *C. ..J jk J k ijk -------- ------------- j dv (A93)
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The primitive of this function is rather simple:

Prim = - (R*T/V) * ( (Sn.)*2*§ y.*B.. + 
J J J J

y^y^C.^ I (2*V) ) (A94)

Filling in the borders, V and «>, and substituting the integral in 

(A30), while replacing total volume by molar volume, results finally 

in the expressing for the fugacity coefficient:

In (I.) = 2*Syi*B../v + 1.5*^ - ln(Z) (A95)

Species i is the heavy compound. Since its mole fraction in the 

supercritical phase is very small (< 1 %), the molar volume of this 

phase can be set equal to the molar volume of the pure supercritical 

fluidum. For the binary system heavy compound-SCF, this assumption 

leads to (SCF=1 and heavy compound=2):

In (<l>2) = 2 * B12 / V1 + 1.5 * C122 / v^ - ln(Z) (A96)

Using equation (A82) and known that = P. = l/vd, the result is: □Ur 1 1

Enhvap = exP ( " 2*Bi2*Pi - 1"5*c112*pi ) (A97)

This last equation is the same as equation (57) and it is, thus.

derived.
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Appendix B: Estimating Binary Interaction Parameters: 
Peng Robinson Equation of State

In this Appendix a method will be presented that can be used in 

estimating binary interaction parameters. It is a sort of group 

contribution method in which interaction between groups of molecules 

are calculated from existing data of random compounds. The values 

which are found for the groups are used to estimate the interaction 

of the total compound with another molecule.

This can be expressed by the following relationship:

(1-k, .) = S (n *K ) / § (n ) (Bl)
ij P P PPP ' '

In (Bl) is m the number of different interactions that occur, n is 

the number of times that interaction p occurs. is the group 

contribution of the occuring interaction between two groups, k. . is 

the binary interaction parameter that is used in the mixing rules. 

Because it indirectly reflects interaction, it must be rewritten in 

1-^1j. k^ is a measure for the repulsion that occurs between two 

molecules, so is a measure for the occuring interaction.

Let us apply this method for the system n-octadecane (C18), 

1-hexadecanol (C160H) and carbon dioxide (C02) as supercritical 

fluidum.

It is desired to know the binary interation parameters of the 

interaction between C160H-C02, C18-C02 and C160H-C18.

Reference substances in order to calculate the interactions were 

found in the DECHEMA Data Series. First the binary interaction 

parameters of the systems C160H-C02 and C18-CO2 will be calculated. 

Then, C16OH-C18 will be considered.
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B.1 The systems C160H-C02 and

The reference substances that 

carbon dioxide, n-butanol and 

were found:

C18-CO2

are going to be used are: n-butane, 

i-butane. The following interactions

k. .ij 1-k. . ij

C02 - CH3-CH2-CH2-CH3 O.1333 O.8667

C02 - CH3-CH2-CH2-CH20H 0.0470 O.953O

C02 - CH3-CH-CH3 
1
CH3 0.1200 0.8800

Interaction are assumed to be built up by the following groups:

C02 - CH3 (KI)

C02 - CH2 (K2)

C02 - CH20H (K3)

C02 - CH (K4)

Carbon dioxide will show most interaction with (K3) because of its 

chemical affinity. This is descending in the row: (Kl) > (K2) > 

(K4). Because interaction (K3) is relatively very large, the 

difference between the interactions (K2) and (K4) will be relatively 

small. In that case (K4)=(K2).

Filling in (Bl) results in:

0.8667 = (2*K1 + 2*K2 )/4

O.953O = ( KI + 2*K2 + K3)/4

O.88OO = (3*K1 + K2 )/4

These are three equations with three unknown parameters. Solving 

this set results in:
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K1 = O.8932 K2 = 0.8400 K3 = I.2388

For the interaction C160H-C02 it can be found that:

(l-k.,.) = ( KI + 14*K2 + K3 )/16 = O.8683-- > k = O.I3I8

For the interaction C18-C02 it can be found that:

(1-k.p = (2*K1 + 16*K2 )/18 = 0.8459 -—> k = 0.1541

B.2 The system C16OH-C18

In the same way as described in section B.l the binary interaction 

parameters for the system C18-C160H can be estimated. The chosen 

reference substances are: n-propanol, n-hexaan, n-propaan, 

n-pentanol and n-heptaan. The interactions that will be focussed 

are:

k. . ij ■ 1-k. . ij

CH3-CH2-CH20H - CH3-(CH2)4-CH3 0.0844 O.9156

CH3-CH2-CH3 - CH3-(CH2)4-CH3 0.0007 0.9993

CH3-(CH2)3-CH20H -
__ y

CH3-(CH2) -CH35 0.0693 O.93O7

Because of small differences the interactions between CH3-CH3, 

CH2-CH3 and CH2-CH2 are assumed to be equal. With this assumption 

the following interaction are found to occur:

CH3 - CH20H

CH2 - CH20H (KI)

CH2 - CH2 (K2)

(K3)
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With help of (Bl) it can be found that

O.9156 = (4*K1 + 12*K2 + 2*K3)/18

O.9993 = ( 18*K2 )/18

O.93O7 + (5*K1 + 28*K2 + 5*K3)/35

From this set the solution can be found:

KI = 0.1049 K2 = 0.9993 K3 = 2.0348

In order to estimate the binary interaction parameter of the system 

C160H-C18 it follows with help of (Bl):

1-k = (16*K1 + 270*K2 + 2*K3)/288 = 0.9568 -- > k..= 0.0432
ij

B.3 Summary

When the compound are indexed:

CI6OH = 1 C18=2 002=3

then it was found that —

k12 = O.O432 k13 = O.I318 k23 = 0.1541

The accuracy of these values is hard to estimate. Binary interaction 

parameters are normally calculated by fitting the chosen equation of 

state (for èxample the Peng Robinson EOS) on available data. In 

literature the following values were found:

Neau (I99O) : k = 0.161 Walas : k = 0.15 ^3 riL/“"C’U^

As can be seen the found values from the presented "group 

contribution" method are in fair agreement with reported values.
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The method has been presented because there is a theoretical 

fundation for the physical meaning of binary interaction parameters. 

Normally, however, they are used mathematical quantity in order to 

get experimental data described in the best possible way. Physically 

the quantity can be understood, so maybe it could be worth while to 

develop a complete group contribution method with theoretical 

foundation for some correction. In this review estimations were made 

to set some interactions equal.

S.H. Walas: In his text book "Phase Equilibria in Chemical 
Engineering" Walas recommends the value 0.15 for interactions 
between hydro carbons (HC) and carbon dioxide.


