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Summary

In this-literature essay a review has been given how phase
equilibria are modelled where a supercritical fluidum is involved.
Two types df equations of state have been analyéed: cubic eguations
of state and the virial equation of state. An analysis of dégrees of

freedom has been made.

Applying phase equilibria in process technological deviées has élso
been reviewed. Phase equilibria where a supercfitical fluidum is
involved are applied in supercritical extraction columns. A model
has been given for packed columﬁs, Both operating with reflux and

without reflux. The number of degrees of freedom has been evaluated.

Unless its restriction of application limitations, the Virial“
equation of state gives a first feeling about these types of phase
equilibria. Above densities, however, larger than three fourths the
criticél density of the supercritical fluidum, the virial equation
of state begins to deviate too much from reality. Cubic equations of

state can be applied at higher densities of the supercritical

fluidum.

The virial equation of state makes it possible to regard chemical
interactions separately from the volatility of the compounds that
need to be dissolved‘byAthe supercritical fluidum. These effects are
completely strangled with each other when cubic equations of state

are used.

In order to model phase equilibria where a supercriticél‘fluidum is

involved it can bestly be started with the virial equation of state.




When the system is studied and it appears that the system also has
to be modelled at densities of the supercritical fluidum larger than
three fourths the critical density, cubic equations of state may be

used in order to be able to describe a larger range of pressure.
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1. Introduction

In this literature essay it will be pointed out how phase
equilibria can bestly be modelled at supercritical conditions, thus
at high pressure. Technological aspects of‘supercriticallentrainment

distillation will also be reviewed.

An comprehensive analysis of degrees of freedom has been taken into
account. In this way it can be seen how many parameters are relevant

to know.

The scope of this essay is to get a first insight in how the process
is supposed to occur. Mass transfer takes place from both phases to
each other. Therefore both phase equilibria modelling and column

technology become of interest.

Supercritical fluida are neither gases nor liquids. A consideration
will be given what the effect will be in modelling these types of

separation processes.

Supercritical entrainment distillation is applied to separate
mixtures of high boiling and/or heat sensitive compounds. The great
advantage of this process-type is the relatively low temperature at
which the process is operated. The volatility of the high boiling /
heat sensitive compounds is not enhanced by enlarging the
temperature, but by enlarging the help substance's density. The help
substance is a supercritical compound. The density is enlarged by
enlarging pressure. Reminding this scope, supercritical extraction
is operated at relatively low temperatures and relativéiy high

pressures.
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2. Qualitative Consideration of Supercritical Fluida and
Supercritical Entrainment Distillation

In order to model the supercritical entrainment distillation process
it is necessary to understand a supercritical fluidum {SCF)
physically. A SCF is a compressed, dense gas. It is neither a gas
nor a liquid but it is best understood to be some fluidum in
between. Temperature and pressure of the considered fluidum are both

above the critical temperature and pressure respectively.

Supercritical entrainment distillation is similar to the term
supercritical extraction. In literature the latter term is more
often used, but because the process cannot be regarded as a real

extraction the first term is also used.

Considering the process, supercritical extraction will neither be a
process of Liquid-Liquid Extraction nor a process of Vapour-Liquid

Stripping.

Normal Liquid-Liquid Extraction modelling will take into account
mutual solubilities of both phases, but because of the fact that no
vapour phase is present, heat effects are ignored. Heat effects can
indeed be ignored because heats of vaporization are never taken
into account in heat balances. In case heat effects will‘be very

small, the temperature can be assumed constant in the column.

Normal VapourQLiquid Stripping modélling will not take into account
the solubility of vapour in the liquid phase because this normally
will be very small. Solubility of liquid phase componehts in the
vapour phase are taken into account of course (becausé else no
separation will occur) but it is assumed to be small. In that case

flows in the column can be assumed to be constant.




—ly

Because the presence of a vapour phase, heats of vaporization should
be considered, so the temperature would not be constant in the
column. However, because flows were assumed to be constant, because
of small mutual solublities, heat contents of both phases will

remain constant so temperature can also be taken constant.

In supercritiéal extraction flows cannot be assumed to bg constant
because mutual solubilities cannot be neglected: the solubility of
the SCF in the liquid phase can be rather significant (solubility of
40 mass % could be possible!).‘Because of the fact that the SCF can
partly be considered as a gas, heat effects must be taken into
account. Thus, neither temperature nor flows in the column can be

assumed constant, involving a lot more variables in the column.

It is clear now that both mass and heat balances must be taken into
consideration. The next problem will be the determination of the
latent heat in the heat balance. In normal Vapour-Liqﬁid contaéting
devices the latent heat equals the heat of vaporization. In Liquid
-SCF contacting devices this is not the case. The latent heat of a
component can be defined to be the heat necessary to put into the
system in order to establish a change from the liquid phase to the
"vapour" phase of one component. Change of phases in the opposite
direction ("vapour" to liquid) will cause the latent heat to be

liberated.

It has now become clear that supercritical ektraction is neither
extraction nor stripping. It can, however, be regarded as either a
bad extraction or a good stripping. The term supercritiéal
entrainment distillation is also used: the volatility of the
compound to be extracted is enhanced. The supercritical nature of

the help phase will cause entrainment-like occurences to take place.
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This was a general consideration about technological design of SCE

columns. The specific application to the column will be given in

section 4.




3. Modelling Phase Equilibria

Thermodynamic models describe phase equilibria for a cercain system
to occur. Phase equilibria, where a supercritical componant is
involved, have to be modelled'atvhigh pressure. Equilibrium will
occur between phases; in the scope of supercritical entrainment
distillation this means equilibrium between the supercritical phase,
consisting mostly of the supercritical gas that is used and the
liquid phase in which a considerable amount of supercritical
compound can be dissclved. The purpose, thus, is to model the phase

equilibrium between the supercritical ("vapour") and liquid phase.

In this chapter two equations of state will be considered. First a
review is given regarding cubic equations of state, applied in both
the liquid and supercritical phase, and the virial equation of

state.

Prausnitz [2], De Loos [3] and McHugh [4] state that hlgh pressure
phase equ111br1a cannot be descrlbed with sufficient accuracy by
means of models involving activity coefficients. Activity
coefficients can be calculated with models like Margulus, Van Laar,
UNIFAC, UNIQUAC and others. The dependence on pressure is not taken
into account in these models. The authors mentioned above state that
the best way to describe phase equiiibria at high pressure is to
assume that.an appropriate equation of state (EO0S) stands for both
liquid and "vapour" phase. This indiCafes‘that instead of an
activity coefficient for the liquid phase a fugacity coefficient is

calculated. The equilibrium can be expressed in the foilowing

relationship:
L* - V*
o *x, = o, * vy A (1)
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In equation (1) x and y symbolize mole fractions in respectively the
liquid and'"vapour" phase. ¢ stands for the fugacity coefficient.
The superscripts L and V are respectively Liquid and Vapour. The

subscript i symbolizes component i.

The fugacity coefficients in equation (1) are functions of pressure,
temperature, the compressibility factor and the composition of- the
considered phase. The compressiblity factor can be calculated from
an EOS which must be specified. This scope is widely used in cubic

equations of state, for example the Peng Robinson EOS.

When the supercritical ("vapour!") phase is considered only, the
virial EOS becomes very useful. The supercritical phase's non-
ideality can be accounted for, while the liquid phase is in a normal
way modelled:

v, % x * pSat & poy
1 1 1 1

n
©
*
<
*
o

(2)

In (2) Y symbolizes the activity coefficient, PSat is the wvapour
pressure, while POY stands for the Poynting factor which is included

for correcting the liquid phase's fugacity for high pressures.
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Equation (2) is applied in modelling solubilities of heavy compounds
in the supercritical phase. In order to know the solubility of the
supercritical compounds in the liquid phase, another model must be
chosen, because the virial EOS cannot be applied for the liquid
phase. First knowledge about the solubility of the supercritical
compounds in the liquid phase can be obtained from Henry's law:

L

v
- 3#* *
SCF ~ *SCF USCF, i

£ scr = fser =

POY ¢ P (2a)

* *
SCF YSCF

In (2a) H symbolizes the Henry constant for the supercritical
fluidum in the liquid compound i. Henry's law provides a good result
at infinite dilution cases. When pressure becomes too large and,
thus the SCF's solubility increases, activity coefficients must be

incorporated.

In section 3.1 equations of state are considered for a pure
substance. Then the equation of state will be made applicable to
mixture by means of mixing rules, followed by a section that deals
with fugacity coefficients. This latter section will relate an
equation of state for some mixture in some phase to the fugacity
coefficient of each components in the mixture in the considered
phase. Finally an overall view is given concerning phase equilibria
calculations at high pressure with the equations summarized in the

first part of this section.
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3.1 Equation of State for Pure Substances

An EQS is an equation that relates the quantities pressure,
temperature and molar volume of one pure substance. Cubic equations
of state are widely used in modelling phase equilibria at
supercritical conditions. All basic properties causing the phase
equilibrium to install, like vapour pressure and chemical
interactions, are strangled with each other in these types of
equations of state. The virial EOS, however, provides insight.in the
properties that cause the equilibrium to install. The great
disadvantage of applying the virial EOS is the limited range of
densities of the supercritical compound that is used. Truncated
af'ter the second coefficient, the virial EOS can be applied up to
half the supercritical compound's critical density, while the virial
EOS truncated after the third coefficient can be used up to three
fourths the critical density of the considered supercritical

compound [22].
3.1.1 Cubic Equations of State

Cubic equations of state are widely used in modelling phase
equilibria at supercritical conditions. An example of such a cubic
EOS is the Peng Robinson EO0S. The Peng Robinson EQOS which was first
introduced in 1976 will now be considered here. The Peng Rob;;sdn

EOS is now chosen because it is widely applied to supercritical

mixtures. The equation is:

p = —=----- e ey . (3)
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In (3) p, T and V symbolize pressure, temperature and molar volume.
a(T) is a certain function of temperature and b is a constant. R

stands for the ideal gas constant.

a(T) and b can be determined by different methods. The most general
and a relative new method proposed by Brunner [5] will be evaluated

here.

a(T) and b are determined generally by analysis of the critical
point. At the critical point the first and second derivative of
pressure with respect to molar volume equal zero. These calculations

(with a(T) considered constant) result finally in:

o
1}

O.O778O*R*Tc/pC (4)

o)
1]

2.2
0.45724fR *Tc/pc (5)

In . (4) and (5) P, and Tc symbolize respectively the critical
pressure and critical temperature.

In order to reproduce vapour pressures Peng and Robinson made a(T) a

function of temperature and acentric factor w: .
a(T) = { 0.45724*R2*T§/pc }*
[ 1+ (0.37464 + 1.54226%w - 0-26992*w2)*{1-(T/TC)°°5} 12

(6)
The acentric factor is a pure component constant defined as:

sat

= -log{p; ~ at (T/T,=0.7) } - 1 (7)

In (7) piat stands for the vapour pressure of component i.




-11-

When the acentric factor has not been given in literature it thus

can be calculated from vapour pressure data.

With known critical properties and acentric factor, a and b can be
calculated by equations (4) through (7). In that case the EOS. is
purely a function of pressure, temperature and molar volume. In
other words: with given pressure and temperature, the molar volume

can be calculated.

The compressibilty factor, Z, can now be calculated by the

definition of this quantity:
Z = p*V/(R*T) (8)

Substituting equation (8) in (3) results in another form of the Peng

Robinson equation of state:

2

* * #* * * % * *
Z3— (1-B )*z™ + (A - 3B 2-_2B )¥Z - A *B + B 3 + B 2 =0 (9)

* *
In (9) the new variables A and B are defined by:

~

a(T) * {p/(R%*1%)} (10)

>
I

B =b *p / (R*I) (11)

The rewritten form of the Peng Robinson EOS (9) can directly be used
in order to calculate the compressibility factor at given pressure

and temperature.

As indicated above, the variables a(T) and b can also be evaluated
by means of other methods. Brunner [5] proposes a relatively new
method for determing a(T) and b. In this method a(T) and b are no
longer a function of the critical properties. Because of this reason

the method could be very useful.
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Critical properties of many high boiling substances have not been
determined experimentally, because they are often heat sensitive
with relatively low decomposition temperatures. This indicates that
critical properties should be estimated by methods like Joback's
estimation procedure, which for example can be found in [2]. Brunner
states that these estimation procedures would not be sufficiently

accurate.

In case of supercritical extraction this problem occurs. Critical
properties have not been determined experimentally. Supercritical
extraction is applied in .systems involving high boiling and/or heat
sensitive compounds. Thus, for these substances it would be worth
while to examine the possibility to calculate a(T) and b by

Brunner's method.

The method proposed by Brunner can be expressed by the following

equations:

b = kl*V(ZO) + k2 (12)
" 0.5 <2

a(T) = ac* {1 + xo*(l - 2.4243*[R T*b/ac] ) } (13)

a, = k3*V(20) + kq (14)

x = k_* {V(20)}¥6 (15)

0 5

In equations (12) through (15) kl’ k2, k3, k4' k5 and k6 are

constants, which were experimentally determined by Brunner for many
substances. The only parameter in these equations is V(20). This is
the molar volume of the considered substance at 20 °C. As can be
seen this method of determing a(T) and b is independent of the

critical properties of the considered substance.
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It could, however, be possible the considered compound has a melting
point above 20 °C. The molar volume at liquid state should be
substituted to result in the correct a(T) and b by Brunner's method.
wo methods of determing a(T) and b have been presented. Brunner [6]

also presented a derivatéd'pfocedure to aeterminéiac, b and x This

0
determination has been done by calculation from p-V-T data. The~

method is not presented here because of its analogy with the first

method proposed by Brunner [5].

After choosing the method for determing a(T) and b, the
compressibility factor can be calculated for a pure substance, when

pressure and temperature are fixed.
3.1.2 Virial Equation of State and Henry's Law

As indicated above the virial EOS is very illustrative when it is
desired to examine the effects of properties causing the equilibrium
to install separately. The solubility of heavy compounds in the
supercritical fluidum can be described using this E0S, while the
solubility of the supercritical compound in the liquid phase can be

estimated from Henry's Law.

The virial EOS is a polynomal series in inverse molar volume which

is explicit in pressure:

R*T B C D
5 {1 + T Y Gt fe t eeeeee } (16)
In (16) B, C, D, ... symbolize the second, third, fourth, ... virial

coefficient. The virial coefficients are only functions of
temperature. In literature estimation methods are available for the

second aﬁd third coefficient.
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No method has been found in order to estimate the fourth
coefficient, so the EOS can be applied with best accuracy truncated
after -the third coefficient. The virial coefficients are the only
variables that are neéded to be known. Because of their function of
‘temperature it easily can be seen that the equation of state is a
relation between p, V and T, just as the above discussed cubic

equations of state.

A compilation of second virial coefficients is given by bymond and
Smith (1969). For estimating the B-coefficient a number of
techniques are available. Most are based on intergration of some
theoretical expression relating intermolecular energy to the
distance of separation between molecules. Little is known about
these energies and it is more common to estimate the virial

coefficient by means of corresponding states correlations.

éorresponding states correlations (CSC) are available for B and C.
The concept of corresponding states correlations pro§ides general
relations for certain properties, depending on parameters that are
readily known. These parameters determine the state of the
considered compound. They are the critical properties. Depending on
critical properties, the correlations provide in "overall"
behaviour, correlating the desired property to a standard state: the

critical point in which the critical properties are valid.

For the second virial coefficient two CSC have been found in
literature for both polar and nonpolar systems. The general form of

the CSC for the second virial coefficient (B) is:

FO (T) + w*f£1(T) + f2(T) (17)
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The temperature dependence is expressed in the reduced temperature

Tr (=1T/ Tc)' Tsonopoulos [23] has developed the following

functions for nonpolar gases. For nonpolar gases f2 (Tr) equals

zero. e o S
fo (?r) = 0.1445 - 0.330/T, - 0-1385/Ti - o.0121/T3
| - 0.000607/T§ (18)
and
f1 (T,) = 0.0637 + O.331/Tiv - 0.423/T3 - O;OO8/T§ (19)

For polar systems the last term of equation (17) has to be taken

into account. Tsonopoulos developed:

£2 (Tr)' - a/Tr6 - b/Tf (20)

a and b are in (20) parameters determined by the geometry of thé
nonpolar compound. Parameter a is a function of the reduced dipole
moment ur, which is defined as:
o= 102 *ud*p /2 (21)

c c
In (21) is u the dipole moment, which is a characteristic quantity
for compounds. It is not, however; a good quantity for correlating
all compounds, since the dipole moment is a vector and its direction

and location are also important.

Therefore it is impossible to correlate one function for all types

of compounds and only global correlations can be made for some type

of compound, for example ketones, aldehydes, alcohols etcetera.
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Tsonopoulos correlated functions for parameter a as function of

reduced dipole moment for ketones, ethers and alcohols.

Parameter b equals zero for non-hydrogen bonded gases. For alcohols

Tsonopoulos reported values for b, and fitted for l-chain alcoholes... ..

parameter b as a linear function of the reduced dipole moment. It
goes beyond the scope of this essay to summarize all functions for a

and b for every type of compounds. For these functions it is refered

to [23].

Prausnitz [2] refers to Van Ness and Abbott (1982). They found more

comprehensive function for f0O (Tr) and f1 (Tr):

£O (T) = 0.083 - o.uzz/Tl{°6 (22)
and
FL(T) = 0.139 - 0.172/Ti°2 (23)

Van Ness and Abbott's technique in estimating f0 (Tr) and f1 (Tr) is

prefered, because it is more recent and it is more often refered to.

Less is known about estimating the third virial coefficient (C). De
Santis and Grande [24] reported a technique. The great disadvantage
of their technique is the use of uncommon parametérs for
corresponding states correlations, like dipole polarizability and
molecular volume, even for nonpolar compounds. More common is the
use of critical properties and acentric factor in corresponding
states correlations, like equations (17) - (23), except for (17).
Orbey and Vera [22], however, correlated such a CSC for nonpolar

compounds. The general form (in agreement with (17)) is:




_________ = £3 (T.) + w * £lh (Tr) (24)

Orbey and Vera found for f3 (Tr) and f4'(Tr)

£3 (T_)) = 0.01407 + 0.02432/Ti'8 - o.o'o31:«5/'rio'5 (25)
and
P4 (T) = -0.02676 + 0.01770/"1‘i°8 . o.ouo/Tl?ﬁ'o

- o.oos/TS'0 0.002.28/1:1{0'5 (26)

Like the second coefficient, B, the third coefficient, C, can
readily be evaluated as function of temperature by knowledge of the
critical pressure and temperature of the considered compound and its

acentric factor.

The virial EOS is used for modelling the vapour phase's fugacity of
the heavy compounds, that need to be dissolved by the supercritical
fluidum. For cubic equations of state it was mentioned that it was
assumed that these EOS also would hold for the liquid phase's
fugacity. The virial EOS hés the restriction of being valid at
densitiés of the supercritiéal fluidﬁm smailer than thrée foﬁ?ths of
the critical density. The supercfitical fluidum's density in the
liquid phase is larger thap in the supercritical phase. Therefore
another model for estimating the liquid phase's fugacity of the
supercritical fluidum must be chosen. The concept of vapour pressure
is for the supercritical fluidum irrelevant, because temperature
exceeds the critical temperature. The most logical approach in
estimatiﬁg fhe supercritical fluidum’s liquid phase's fugacity would

be Henry's Law:
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L = X * * H

¥*¥
fser SCF Tscr POY

SCF, i SCF (27)

In equation (27) x symbolizes the mole fraction in the 1iquid phase,
while subscript SCF stands for supercritical fluidum. H is the Henry
coefficient, which is a function 6f-£émpéfature, of the o
supercritical fluidum in some liquid compound i refered to the
vapour pressure of the liquid compound, while Y stands for tﬁe
activity coefficient. Because the model must stand for high

pressures the Poynting factor is again invoked. When equilibrium is

reached, the liquid phase's fugacity equals the vapour phase's

fugacity, so

o * p = Y * x (28)

* *
SCF SCF H POY

y *
SCF SCF SCF,1i SCF

Because the mole fraction of dissolved heavy compound in the vapour
phase is very small and less then 1 percent, the Lewis rule is

applied:

%%T ¢SCF(mixture) = ¢SCF (pure SCF) (29)

As will be shown later, the fugacity coefficient is determined by

the chosen EOS.

No estimation method has been found in literature in order to
estimate Henry coefficients. Henry coefficients must be aetermined
experimentally, either in literature available or necessary to
measure yourself. All other.input variables in the model in order to
calculate the output variables, x and y, can be estimated by

corresponding states correlations.

The Poynting factor in equation (27) is defined by the following

expression:
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PO¥se = oxp (ol .o {viee/ (B*T) ) @) (30)

In (30) V;CF symbolizes the molar volume of the supercritical

fluidum at infinite dilution in the liquid compound i. It is assumed
that this molar volume is independent ofhbréésure;_so it follows

that

POYsep = exp ( { vgop / (R*T) } * (p-p2%} ) 31

However, if pressure becomes very large, the solubility of the
supercritical fluidum increases and the assumption of infinite
solution is.no longer valid. At infinite dilution the activity
coefficient is unity. The activity coefficient is a experﬁentally
determined parameter depending on composition and temperature. In
the model the molar voiume at infinite dilution is used at high h
pressure. This is rather discrepant, but it is assumed that the
invoked activity coefficient will adjust all deviations from reality
including the mistake caused by the molar volume assumption at

infinite dilution.

The molar volume at infinite dilution can also be estimated from
corresponding states correlations. Brelvi and O'Connell [10]
reported a CSC depending on.characteristic volumes of the considered
compounds (both supercritical fluidum and heavy compouna) as well as
the compressibility of the liquid, heavy compound. If the

characteristic volumes are not known, critical volumes can be used.
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The molar volume at infinite dilution of the supercritical compound

can be evaluated by the following expressions:

Vsop T Kf*R*T* O (1- Cecr,i ) (32)
In (1+-—=-fec) = 042704 * (p -1) + 2.089 * (p -1)2
P¥K*R*T r r
1
- 0.42367 * (p_-1)3 (33)
In ( ~Cgop ;3 * {vg ; / Vc,SCF}o.62 ) o=
if 2.0 < p < 2.785 : -2.4467 + 2.12074*pr .....
if 2.785 < 5 < 3.2 : 3.02214 - 1.87085%_
+ 0.71955%02 (34)

In equations (32) through (34) e symbolizes the reduced density of
the heavy, liquid compound, while Vc stands for the characteristic

molar volume, which could be set equal to critical molar volume. K
symbolizes the compressibility of the liquid compound while C is
some reduced volume integral, which is evaluated by (34) by means of

corresponding states.

The molar volume at infinite dilution can now be evaluated.
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3.2 Equation of State for Mixtures

In problems of separation of substances always mixtures are present

because else there will not be anything to separate.

The EOS still remains very important in fhis case. To extend the EO0S
to mixtures, the EOS must be modified to include the additional
variable of composition of the mixture. This inclusion is
accomplished by averaging the constants of the pure substances to
result in constants which are assumed to be valid for the mixture.
Equations that perform this averaging of constants are called mixing

rules.

Mixtures consist of substances which have seldom the same chemical
structure. If this is the case, interaction parameters must be
included in the mixing rules. As many interaction parameters as
desired can be used, but normally one or two binary interaction
parameters pro two components are believed to be sufficient to
describe p-V-T behaviour of the mixture. It is of course possible to
set the binary interaction parameters dependent on temperature and
or pressure, but the disadvantage of doing this would be that more
parameters have to be included. Setting the binary interaction
parameters not constant will cause the EOS to describe p-V-T

behaviour more accurately.

It is not only very important to choose an appropriate EOS but also

to know what mixing rule have to be used to give the best results.

In this section several mixing rules will be discussed.
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3.2.1 Cubic Equations of State

Mixing rules are comprehensively evaluated in literature. Several
types have been reported for especially cubic equations of state,
for example the Peng Robinson EOS. The first mixing rules that will
be discussed are the classical ones. These can be expressed in the

following equations:

= * * +* 0'5* -
(1) = §5 (g * vy * [a,(D*ay (1) 1721k, } ) (35)

by =% (v; *b.) | (36)

In equations (35) and (36) the subscripts i and J refer to the
component that is considered. The subscript m refers to the mixture.,

n stands for the total number of components in the mixture. ai(T),

aj(T) and bi symbolize the a(T) and b of pure component i or i.

These values can thus be calculated by the methods decribed in the

previous section 3.1. kij is a binary interaction parameter. When
only chemical similar substances are present in the mixture, kij

equals zero.

In the same way interaction parameters between two molecules of the

same substance also equal zero: all kij equal zero if i=j. The

chemical interactions between molecule i and j are assumed to be the

same as the interactions between molecule j and i, so kij=kji’ The

more difference in chemical structure is present, the Qloser

kij becomes to unity.
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Normally kij is assumed to be constant, but it is also possible to
set kij to be a function of pressure for example, involving more

parameters:

.=k, .. +k, .. *p (37)

Equation (37) was proposed by Mohamed. This equation was refered to

by Johnston et.al.[7].

The above mixing rules are known as the classical quadratic mixing
rules. There are a lot of other mixing rules. Some of them will be

pointed out here.

Zou et.al.[21] uses the following mixing rule of the Peng-Robinson

EOS parameter a(T):

2 (1) = FH0y;*y " (ay (1% (1) 0241k, =0 ol %, 1 (38)

This mixing rule will predict the p-V-T relation of the mixture with
more accuracy than the classical mixing rule, but more interaction
parameters occur. This equation is the same as the classical
quadratic mixing rule with the binary interaction parameter varying

with composition:

= - - ¥
kig™ *1,a5 7 g iy 55) * Y (39)

s

This mixing rule was proposed by Panagiotopoulos and Reid whom were
refered to by Johnston et.al.[7]. They did not assume that all

k"=kji' Substituting this in equation (38) also result in the

classical mixing rules.
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Gangadhara Rao et.al. [8] uses the covolume dependent (CVD) mixing

rules:

_ 19 *., * q -
a (T) =b g? (y; Y aij/bij) (q=1.667) (40)

Equation (40) will not be elucidated here. For elucidation see [8].

Now p-V-T behaviour of the mixture is determined as function of
composition and several parameters. The compressiblity factor can

now be calculated for the mixture using an EOS.
3.2.2 Virial Equation of State and Henry's Law

In section 3.1 the approach has been elucidated for using the virial
equation of state to estimate solubility of the heavy compounds in
the vapour phase and Henry's Law to estimate solubility of the

supercritical fluidum in the liquid phase.

For the virial EOS the generally accepted mixing rules are (2] :

Tc‘ij = (1-kij) * (Tc’i * Tc’j) (41)
Vo= [ 1V« w3y w05 3 W)
Zc,ij = 0.5 * ( Zog ¥ Zc,j ) (43)
03 =0.5% (u + o) (1)
Peoij = Ze,15 B Teis 1 Ve ij - (45)

In this set of equations the critical properties are averaged. The

resulting properties are called pseudo-critical properties. kij is a

binary interaction parameter.
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Prausnitz [2] refers to an estimation for this parameter. If the
studied system is not known, i.e.vif no equilibrium data are

avéilable, a first estimate can be made by:

k. .
ij

T S P SO I VN A | (46)

s1J

When for the (binary) mixture the pseudo-critical properties'are
calculated, fhese properties can be used in the corresponding states
correlations, described in section 3.1, in order to calculate cross

virial coefficients: Bij and Cij' The virial coefficients of thé»

mixture can be calculated from:
_ * * )
B = g % y. v. ¥ B, . (47)

In a mixture containing n components, the mixture virial coefficient

Bm can be calculated.
The mixture third coefficient is calculated by [22]:
- y * * *
C = 3% E v Yyt vy Cijk | (48)

Concluding from (48) the Cijk coefficients are needed, while the

mixing rules result in pseudo-critical properties, which result in

Cij coefficients. The coefficient Cijk is calculated from binary

contributions Cij by:

_ 1/3 .
€1k - ( Cij Ol Cik ) o (49)

Now, all needed cross and mixture virial coefficients can be

calculated.
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Properties that occur in Henry's Law have been reviewed in section
3.1. If more than one liquid, heavy compound is used, these
quantities must be averaged. Henry coefficients are averaged by:

2 (x,*1n (H

In (Hgep niy) = 3 (%, scr, ) ) - B9

The mole fraction xj should been seen as SCF-free mole fractions. In -

estimating the molar volumes at infinite dilution of the SCF, the

averaging of the contributions to both compressibilty and integral

CSCF,i become:

The right hand of equation (33) is called C;i;

_ 2 4 m

c, = ? x; ¥ Cyy (51)
o _ * @

CScF.m = % %i * ooy (52)

With these averaged properties, the molar volume at infinite
dilution for the SCF can be evaluated when the liquid phase consists

of more than one heavy compound.

Averaging vapour pressures in the Poynting factor is not relevant,
because for heavy compounds they are very small compared to

sat

operating pressure, so the term (p—pi ) can be set equal to pP.
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3.3 Fugacity Coefficients from Equations of State

Fugacity coefficients are quantities that are used in phase
equilibria calculations. They represent deviations from ideal
behaviour. In this case, the fugacity coefficient is included in
order to calculate deviations from both ideal mixture behaviour for

the liquid phase and ideal gas behaviour for the vapour phase. -

When two phases are in equilibrium, the temperature, the pressure
and the chemical potential of the two phases are equal. Phase

equilibria at high pressure are calculated by equation (1) or (2).

Equation (1) will be repeated here:

0 * x_ = ¢, *y, (1)

The fugacity coefficients are deviations from ideal behaviour, so it
would be logical that they are some function of the chosen EQ0S. An
EOS represents the ideal gas law with certain added parameters: it
is a model to calculate p-V-T behaviour, deviating from ideal gas

law behaviour.

Fugacity coefficients are related to the chosen EOS by the following

equation:

F

R*T*ln(¢§) = - I.{ [ F

F

] @

p - R¥* F
nl T,VF,nj R*T/V' } Qv

- R¥T*1n(Z")

(53)

In equation (53) the partial derivative of P towardsAthe number of
moles of component i is calculated from the chosen EOS, for example

equation (3), combined with the classical mixing rules.
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Differentiating this equation, T, V and the number of ﬁoles of the
other components in the mixture are to be held constant. The
superscript F refers to the phase which is considered. V and Z in
phase F can be calculated directly as has been shown from the EOS et
fixed p and T. It can be seen from eqtation (53) that the fugacity
coefficient of component i in a mixture is a function of pressure,
temperature, composition and the molar volume in phase F (or the

compressiblity factor in phase F).

For the Peng Robinson EOS the solution of equation (53) becomes

finally, using classical mixing rules:

1n(8]) = (8;/8")*(27-1) - 1n(2"8") + [a"/(2.008%") 7

[ B*/B*.- 2*3{ y.*(a,(T)*a (T))O'S*(l-k ) Ya (T) 1*
i jt Y '8y j 1ij m
F * F *
In{(Z" +2.414*B )/(Z -0.414*B )} (54)
In equation (54) all used variables were already discussed.
Equations (53) and (54) have been derived in Appendix A.

When the virial EOS is used the result is less comprehensive., De
Swaan Arons [12] derived all equations needed to calculate the phase
equilibrium assuming that the supercritical phase consists of only
SCF as far as mixing rules are concerned, i.e. in estimating virial
coefficients for the mixture. The same assumption can be made while
also invoking the third virial coefficient. The result is shown

below, while the derivation is also incorporated in Appendix A:

y / x); = K, =

S * (1 /p ) * ENHANCEMENT (55)
i R *T SCF vap
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ThistNHANCEMENT can be regarded as follows. The concentration of

the heavy compound in the supercritical phase calculated by the

virial EOS devided by this concentration calculated by the ideal. gas’

law (Raoult's Law) is defined as the ENHANCEMENT factor. As can be .
seen in (55) on1y>vapour phase's non-ideality has been invoked in
this ENHANCEMENT, while liquid phase's non-ideality has already been
encountered by means of the.activity coefficient. This is refered to
by means of the subscript 'vap'. The solubility of the heavy
‘compounds in the supercritical phase is enhanced with respect to
ideal gas law behaviour, due to intermolecular forces. These
intermolecular forces increase of cburse with préssure causing the

gas mixture to bécome denser. It can be shown that this enhancement

factor varies exponentially with the density of the SCF (B-truncated‘

virial EOS). The term ENHANCEMENTVap in (55) equals (see Appendix A

for elucidation):

ENHANCEMENT = exp (- 2*B,.*p
vap

. 2
12 P 1.5%C 15 *07 ) (56)

" When the B-truncated virial EOS is used, 0112 becomes zero and (56)

and the result is the same as De Swaan Arons derived [12].

and C

Logically, when the ideal gas law is used as EOS, both B12 112

become zero, causing the ENHANCEMENT to be zero in complete habmbhy

with its definition.
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3.4 Calculation of Phase Equilibria Using One Equation of State

At fixed temperature, pressure and composition the EOS result in one
equation with oﬁly one'variable. This variable is either the molaf
volume or the compressibility factor, depending on how the equation
has been written. It is Qantéd to use equation (54), so it is
logical to use the EOS written like equation (9). Any cubic-EOS

result finally in a third order equation in Z or V.

For the liquid phase, ZL will be the smallest root of this third
order equation, depending on pressure, temperature and composition

X, . ZV will be the largest root, depending on pressure, temperature

and composition vy Convergence problems may occur because it is

very well possible to have a so called trivial root'problem [2].
Even when there are three roots for the system, one root could be
the result of iterations, because slight changes in initial
compositions and binary interaction parameters can have extreme
consequences for the iteration. This problem can be avoided by
choosing the intial values for composition in a dedicated manner.
This is not so easy as it looks like. It is a great disadvantage in
using the cubic E0S, which makes the virial EOS more popular in use,
because the virial EOS does not require any iteration at all if,the
corresponding states correlations reviewed in section 3.1 are used.
The major disadvantage of the virial equation is its iimitation of
not being valid at pressures which are too high. For example, when
carbon dioxide is used as SCF, the virial EOS canqot bé used with
much accuracy above 125-130 bar, depending on temperéture (e.g.

“about 70 °C).
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When, finally‘ﬁhe phase equilibrium has been modelléd, the result

can be used in diménsing separation columns. This is reviewed in

section 4. In this section a complete analysis of degrees of i |
freedom will be made, becguse it ié importént to know, which

vapiables and parameferS‘are imﬁortant to know and which.variébles

énd parameters are not relevant to>measureior estimate. Therefore

the analysis of degreés of freedéﬁ concerniﬁg the phase eéuilibrium

modelling will be made.
For the cubic equations of state:

If the total number of components is;c, there are c¢ equilibrium
conditions (1), 2*c fugacity coefficient equations (53) for the
liquid and vapour phase. For both phases the EOS is also valid and
the condition that Ix=1 and'2y=1 must also be satisfied. involving 4

more equations,
In total there are 3c+4 equations.

There aré 4*c variables because of the fugacity coefficients and
mole fractions of b&th phases. Pressure, temperature and
compressibility factors of both phases cause the total number of
variables to be: U4c+li. Other quantities are considered to be

parameters and-they are known: they are not variables.
Finally, it is found that there are c degrees of freedom.

For the virial EOS and Henryfs Law:

The virial coefficients, vapour pressures, critical properties,
Henry coefficients and binary parameters in both the virial EOS
mixing rules and activity coefficients are regarded as parameteré
and are known. Pressure, temperature and éomposition of goth phases

are variables (2c+2).
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The model results in three equation for the distribution
TN

coefficients (= y; / xi) for all compounds (Henry's. Law estimates

the distribution coefficient of the SCF, while the virial EQS
- estimates the distributionuééefficients of all heavy compounds). Sc
there are c¢ equations for the distribution coefficients. The
‘restriction that Zx and Zy must equal one results in a total of c+2

equations.

Finally it is found that there are c degress of freedom, like has
been found for cubic equations of state. This means that when
equations of étate are considered as black boxes, the two proposed
models require the same input variables two results in the same

output variables, but they of course differ in magnitude.

)



Figure I (1 Flowsheet for the extraction column without reflux.
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4, Modelling Separation Columns

In this section the column will be modelled by the stage to stage
calculation method. The column is considered to be a number of
stages in series. In every stage equilibrium will be reached between

the vapour and liquid phase. The column can be used in several ways.

It can be used without reflux: the column will be a normal
extraction column, as shown in figure I, with the liquid feed coming

in at the top of the column.

It is also possible to operate the column with reflux, while the
féed can be added at several places to the column. This is shown in

figure II.

First the column without reflux will be considered, afterwards the

refluxed operation.
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Figure II : Flowsheet for the extraction column with reflux.
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4.1 Modelling the Extraction Column without Reflux

oL .

The operation ig schematically shown in figure I. Two flows, that
come into 1 theoretical stage, are mixed and two flows leave the

same stage. The leaving flows are a vapour and a liquid stream which

are thermodynamically in equilibrium. This equilibrium has already
been modelled in section 3. The mass balance (when no accumulation

occurs) for component i over stage j is:

IN = OUuT

‘ = x.¥L, =+ yi*V

%* *
*i,d-1 B Y Vi a1 Ve iy (57)

The subscript j-1 refers to the stage above stage j, j+1 refers to
the stage below stage j, see figure I. L and V symbolize the flow

rates of respectively liquid and vapour phase.

In order to know the temperature at stage j for the equilibrium
caiculation, a heat balance also must be satisfied. In the heat
balance, which will not be given here, it would be necessary to know
the latent heat of each component. This is the heat that must be
added in order to establish a phase transition of the liquid phase
to the vapour phase. In pure vapour liquid contacting devices this
would be the heat of vaporization. A supercritical phase can neither
be considered to be a vapdur phase nor a liquid phase. In liquid-
liquid contacting devices the latent heat would be approximately
zero. It is clear that the latent heat for'liquid-SCF transition

must be known.

In the heat balance also heat capacities or specific heats occur.
These could be célculated from the chosen EOS. Further it could be
possible to extract or add some amount of heat by external coolers

or heaters.
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In the column heaters are used in order to establish phase
transitions. Heat losses to surroundings also have to be included in

the heat balance.

A heat 531%996 will not be given here, because the heat added by the _
external heater is in such an amount that the temperature in the
column ‘will-remain constant. In other words, the temperature is
controled in the entire column to be a certain value which must be
fixed. It is clear now that a heaf balance does not have to be taken
into consideration: the extraction process will occur at constant

temperature.

In order to know the pressure at stage j it is necessary to know the
pressuré drop in the column. Knowing the type of packing material it
is possible to calculate the preséure drop over one stage. There is

an empirical relation available [9] which relates the pressure drép

to the liquid'hold up and the gas flow at stage j. For Berl-Saddles,
for ekample, it has been found:

bp, = [1 - 2.5*1.36*{uf'j/(dr*g)}1/3]'3* O.29*Fp*(H/n)*pV’j*u$’j

(58)

In equation (58) dr is the diameter of one element of the package, g

is the gravitational acceleration constant. UL j and uy i stand for

respectively the liquid phase and vapour phase superficial velocity

at stage j. H is the height of the package, o symbolizes the

V,3i

density of the vapour phase at stage j. Fp is a package constant and

depends purely on the éeometric properties of the package.
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The pressure at stage j can then be calculated:

(59)

Equation (58) consists of a number of new varlables not discussed

sofar d .y S, H are known' they are parameters. The value of F is

not known: it must be specified by pressure drop data correlation.
The superficial velocities contain the same information as the flows

Lj and Vj' They are only written in another way:

_ 2
Uy g = VJ.*MV,J./{ pv,j* (0.25*1*D7) } (60)

and similarly,

2

u . = L'*ML,j/{ pL,j* (0.25%*n*D™) } (61)

L,J J

In equations (60) and (61) M stand for molar mass and D is the

diameter of the column. 1 is a constant.

The parameter D is known, while M can be calculated by:

M, . = g(y. *M ) (62)

Moo= £(x, M) ‘ (63)
Mi is the molar mass of component i and is constant: this is'a
parameter.

The densities used in equations (58) through (61) are rewritten

quantities of the compressibility factor of the considered phase:




\Y

©
]

* Mv,j/(R*T*Z ) (64)

v,i =P

©
"

L.j = By M/ (RFTAZY) (6

Now the pressure é%iétége”j can be calculated as function of Fp,
when the value of P has been given. This is the pressure of the

pure SCF flow added at the bottom of the column.

The pressure of the liquid stream added at the top can be assumed to
be equal to the pressure at stage 0. This can be made plausible by
considering the pump which is used to put in the liquid feed. If the

pressure at stage 0 equals po, the pump builds up a pressure in the
liquid income pipe that is only a slight fraction higher than po. If
the pressure in the liquid income pipe is somewhat higher then po,

the liquid feed will flow into the column. By means of the
grévitaﬁion force the liquid will fall down in the column because
its density is higher than the SCF's density. This will be so when
the vapour flow in the column is not high enough to cause flooding
to occur. At the flooding border the liquid neither falls down nor
will escape at the top: it stays constantly at the same place.
Somewhat above the flooding border, the inpuﬁ of liquid feed is
greater than the liquid flow coming out of the bottom. All liquid

escapes then over the top: no separation has been accomplished.

It is useful to make an analysis of the number of the degrees of

freedom in the total system.
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For every stage and for every component the mass balance (57) is
valid involving c*n equations. The pressure drop correlation (58)
can also be applied to all stages including the relation for the

explicit pressure (59): 2*n equations. Equations (60) through (65)

are also valid foﬁﬂgeeﬁ§“§£ége: G*ﬁméquéfions. So, totally we have

added a number of n*(c+8) equations.

In this model there have been used a set of new variables, which are

V., V L

listed here: Xi,O’ yi,n+1' j ne1t Ly LO' uL,j’ uV,j’ pV,j’ pL,j’

A .
Pis Phuqe Fp, n, MV,j' ML’j

All variables with subscript i have to be included c¢ times; all
variables with subscript j have to be included n times. Totally it

is found that there are 2c+9n+5 new variables.

Thermodynamics showed that pro stage there are c degrees of freedonm.
So for n stages this will be a number of c*n. Temperature is

constant so we can write n-1 more equations:

T, =Tj=T. (66)

Because of the fact that there are 2¥c more mole fractions used in

the total system (xi,O and yl,n+1) than already have been used in

the section concerning thermodynamics, two more equations can be

added: in’0=1 and 2yi,n+1=1’ which are summation conditions.

Now the total number of degrees of freedom for the extraction column

can be calculated:

DegrFr = cn+2c+9n+5-n(c+8)-2-(n-1) = 2c+4.
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Let us confirm this result. When the packing factor and the number
of equilibrium stages would be known, the complete system must be
known specifying the complete input. The input variables are all

X, minus 1, all y. minus 1 (because the last x, and y.
i,0 i,n+1 i,

0 i,n+1
can be calculated from the summation conditions for mole fractions),
the operation temperature, pressure of the incoming SCF flow and

total flows LO=F and Vn+1=S’ Summing up these variables it is found

that there are:

2%¥(c-1) + 4 = 2c+2 input variables. Input of n and Fp would result

in a total number of variables which are externally specified of
2c+4} which is exactly the same as the number of degrees of freedom
that was derived. Thus: the number of degrees of freedom of 2c¢+l4 is

correct.

The above modelling is valid, when no accumulation occurs. This
means that all derivatives towards time equal zero. As indicated
before, the model can only be applied below the flooding border. The
flooding border can be determined experimentally, but can also be
estimated by figure 7, page 89 in [9]. The disadvantage of this
estimation procedure is fhat viscosities of both phases have to be
known. At high pressures it could very well be possible that the
relations [9] are not valid. Another remark can be made about this
correlation: it can be épplied for L-V systems, while here no V -
phase is present, but a supercritical phase. It is thus very

dangerous to use these correlations. Little is known about flooding

borders for column-types while operated at high pressurés.
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Figure III: Flowsheet for the extraction column with reflux. A scheme
for the system built up in four sections. See text for

elucidation.




will now not be added at the top of the column, but somewhere..
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4.2 Modelling the Extraction Column with Reflux
In this section the the extraction column will be modelled in the

case that a reflux section has been included. The fresh liquid feed

between the bottom and the top. The column should be designed in
such a way that fresh liquid feed can be added at several places to

the column. The column has been shown schematically in figure II.

In order to model the column, it can be cut into four sections:

1. Bottom Section stages m+1l to n

2. Feed Stage

stage m

3. Top Section

stages 1 to m-1.

4. Reflux Arrangement : stage O (the condensor).
This cutting has been shown in figure III.

When possible, equations which were used in section 4.1, are not

rewritten. These equations will be refered to.

1. Bottom Section.

As can be seen in figure III the bottom section‘is exactly the same
as an extraction column without reflux, which has been considered in
figure II. The only difference is that thefe are now only (n-m)
equilibrium stages and thus subscripts for mole fractions, flows and

pressure at the top stage of the bottom section have been changed.

For each stage of the (n-m) stages present the mass balance is

valid. The mass balance is represented by equation (57).

The pressure drop equations (58) through (65) are also valid, while
temperature is controled to be constant. This indicates that

equation (66) also-must be included.
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Let us now make an analysis of the degrees of freedom in the bottom

section:

There are (n-m)*c mass balances and in the pressure drop
correlations 8%*(n-m) equations are present. Equation (66) can be

written for (n-m) temperatures, so equation (66) represent {(n-m-1)

more equations. Thus, totally there are (n-m)*(c+9)-1 equations.

The variables in the mass balances, pressure drop correlations, that

were not included in the thermodynamical part are: x. . V. .
. i,m i,n+1
A ‘ :
VJ-’ Vn+1’ Lj! Lm’ uL,j, uv"_jv pv,j”pL,j’ pj’ pn+1! Fpi n, m’ Mv'j’
ML,j'

Each variable with a subscript j is present at each stage: so there
are (n-m) variables times the number of variables with subscript j.
The variables with subscript i are present for each component: so

there are c variables times the number of variables with subscript

1.

Summing up there have to be included 2c+9(n-m)+6 variables more.

Because two more mole fractions have been included here, there also

are two more equations valid for this system: in m=1 and Zyi n+ =1.

1

In thermodynamics it has been found that there are c degrees of

freedom pro stage, involving to be (n-m)*c in the bottom section.
The number of degrees of freedom becomes now:
DegrFr = 2c¢+9(n-m)+6-2~(n-m) (c+9)+1+(n-m)c = 2¢ + 5.

This number is one more than in the extraction column without

reflux, because the new variable m has been introduced.
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2. Feed Stage.

The feed stage is one equilibrium stage with an extra external input

of feed as can bee seen in figure IIT.
The mass balance for component i over the feed stage is:

* % * - ¥* *
Xpom-1 Cme1 YR et Yy et Vper = % Lg vtV (67)

Equation (67) is almost the same as equation (57); only the extra
feed input has been included. F symbolizes the total feed flow rate,

while xi £ stands for the mole fraction of component i in the feed.

For the (liquid) feed the pressure can be set equal to the pressure
at stage m (the feed stage). This has already been elucidated under
equation (65). In that case the pressure drop correlation remains
the same as equations (58) through (65), while substituting constant

m for variable j.

Thermodynamics for stage m have shown that there are c degrees of

freedom more.

It will be derived now what happens to the total number of degrees

of freedom when the feed stage is included in the bottom section.

In equation (67) an amount of new variables occur, which has neither

been included in the bottom section nor in the thermodynamical part.
These variables are:

X Vv

A
i,m-1’"m’ Lm—l’F’ Xi,f"uV,m’ pV,m’ Py MV,m’ uL,m’ M

p
L,m* "L,m

Summing up the variables, it is found that there are 2¢+10 new

variables.
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0f course we can write two more equations for L and x, These

, i, f’

are the summation conditions that equal 1.

It is necessary to make a correction here. The thermodynamical part
also takes into consideration the summation conditions. Viewing
sceptically at the above made analysis, it can be seen that the

summation condition in o has been counted twice as well as variable

Xi,m'
So there are for the feed stage c mass balances, 8 equations in the
pressure drop correlations and 2 more summation conditions. 1

condition has been counted twice as well as ¢ variables. We already
found that 2c+10 variables have been added and the number of degrees
of freedém due to thermpdynamics has been extended by c. The number
of degrees of freedom for the feed stage integrated with the bottom

section is now extended by

2c+10 (variables) - (c+10) (equations) + c (degrees of freedom due

to thermodynamics) - ¢ (xi . counted twice) + 1 (in o counted

twice) = c+l1.
The number of degrees of freedom now becomes: 3c+6.

While integrating the feed stage with the bottom section also an
extra equation appears because of temperature equality (66) at

stages m and m+l.

The final number of degrees of freedom in the system feed stage

integrated with bottom section now becomes:

DegrFr = 3c+5.
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Let us confirm this result. Total input must give total ouput.
Input: mole fractions and flow rates of all input flows and the
pressure of the incoming SCF flow at stage n: 3(c-1)+l

specifications. Further specification of operation temperature and A

‘ﬂﬁhéféolumn'bfoperties—F;;uﬁWéﬂd n result in a total number of
specified variables: 3(c-1)+8 = 3c+5. So the analysis of the number

of degrees of freedom is correct.
3. Top Section.

The top section is again exactly the same as the extraction column
: /

without reflux which can be seen when comparing figure III with

figure I. Thus, it is also the same as the bottom section; only the

number of equilibrium stages is different.

The number of degrees of freedom in an extraction column without
reflux is independent on the number of stages. This has been shown
in the analysis of the number of degrees of freedom for both the

extraction column without reflux and the bottom section,

So, the number of degrees of freedom in the top section equals 2c+4.
In the bottom section it has been found that this number was 2c+5,
because of the extra variable m, when being compared with the
extraction column without reflux. In the top section the number of
stages is oﬁly a function of variable m. The number of stages is

m-1, thus independent of n.

Now it is necessary to find the number of equations and variables

which have been counted twice.
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The variables, which have been counted twice, can be found at the
connecting point of the top section and the feed stage as well as

the variables which symbolize column properties:
,Vm,_m, Fp, o : 2c+b

'Xi;m-l' yi,m' Lm-l”

Equations which have been counted twice:

n

> = > =
xi,m-l 1, yi,m 1

Extra equation: Tm-l = Tm (66) : 1

e
So the total number of degrees of freedom, which must be added when

integrating the top section with the already integrated bottom

section and feed stage, becomes:
2c+lh - (2¢c+5) + 2 -1 =0

Thus, the total number of degrees of freedom after integrating the

top and bottom section and the feed stage has been fixed by:
DegrFr = 3c+5.
4. Reflux Arrangement.

In the reflux arrangement the outcoming SCF flow is cooled in ordgr
to establish condensation of the dissolved components. Then the
nearly pure SCF can be recycled to the bottom of the column in order
to perform a new extraction. The condensed components flow out of
the coqdensor and can partly be refluxed. This can be seen in figure

ITI.
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In the condensor it can be assumed that the pressure equals the
pressure at stage 1 in the column, because no pump is used between
the SCF flow coming out of the column and the incoming flow in the
condensor. In that case possible pressure losses due to cooling
cause the incomingifibw to increase to a#steady state flow rate. In
this situation the pressure in the condensor equals the pressure at
stage 1 in the column when the pressure drop due to friction in the

pipe is neglected.

The fact that the SCF flow rate coming out of the column increases
until steady state is reached does not make the total model to be
inaccurate. The model, as has been stated before, is applicable in
the steady state situation. This consideration of increasing flow .
has only been made here in order to state why the pressure in the

condensor equals the pressure at stage 1 in the column.

Let us now write down the equations which are valid for the reflux
arrangement. The condensor can be seen as an additional equilibrium
stage at which the pressure is the same as at stage 1 and the
temperature is unknown. The temperature in the condensor is unknown
because it is optional to what temperature the flow coming out of
the column is cooled. The reflux arrangement has been shown in

figure III.

Thermodynamics thus can be applied to the condensor as well as a

mass balance.
The mass balance for one component over the condensor is:

¥* - #* . ¥
i1 V1 - Xi,c Lc * Vi, rec Vrec (68)
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In equation (68) Yi rec is the mole fraction of component i in the
i}

SCF flow leaving the condensor to be recycled. This flow rate is

symbolized by Vrec' The subscript c stands for condensor.

A part of the 1iquia flow, LC, is refluxéd and int%éauced again in
the column at stage 1. This part of LC thus equals the'liquid'flow
LO. The part which is not refluxed equals the flow leaving the

system at the reflux arrangement. This flow is symbolized by D,

where D stands for distillate. Looking sceptically at figure III, it
can be seen that the condensor can also be indicated as equilibrium
stage 0, because the leaving liquid flow has the same composition as

flow LO which is introduced at stage 1 at the top of the column. In

that case the mass balance (68) can be rewritten in an equation
which causes the condensor to be connected with the column by means

of other subscripts:
* = * *
Vi 1 X;,0 LoD+ vy %Y, (69)

The phase equilibrium occuring at "stage O" can be described by
thermodynamics. It has been shown that thermodynamics cause the

number of degrees of freedom to be extended by c.

How much liquid product leaving the condensor is refluxed can be

expressed in terms of a reflux ratio, R, which is defined as:
R=1Ly /D (70)

Let us now make an analysis of the number of degrees of freedom in

the total extraction column with reflux.
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There are ¢ mass balances (69) and an extension of the number of
degrees of freedom due to thermodynamics of c. Also 1 equation (70)

has been added.

The new variables, which have neither been included in.

thermodynamics nor in the top and bottom sections nor in feed stage,

are:
R, D, Vo : 3 variables.
The variable X 0 has been counted twice as well as its summation
condition, Zx, .=1.
i,0

We can write an additional equation:

pO = pcondensor = p1 : (71)

So the number of degrees of freedom due to the reflux arrangement,

has to be extehded by:
3-(ctl) +ec-c+1-1 = 2-¢

Integrating the reflux arrangement to the top and bottom section and
the feed stage, it is found the the total number of degrees of

freedom in the extraction column with reflux is:
DegrFr = 3c+5 + 2-¢ = 2c+7
Let us confirm this final result.

Specification of all input variables must determine all output

variables.
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Specification of composition and flow rate of the incoming feed F

and the incoming pure SCF, Vn+ : 2(c-1)+2 specified variables.

1
Specification of the geometrical properties of the column, Fp, n, m:

3 specified variables.

Specification of operation temperature and pressure of the incoming

pure SCF: 2 specified variables.

There are now 2c¢+5 variables specified, leaving two to be specified
in order to fix the total system to be k equations with k unknown
variables. These last variables must be specified by other external
inputs, for example the reflux ratio and the temperature in the
condensor. Also the mole fraction of the SCF in the SCF flow that is
recycled can be set equal to 1, causing all other mole fraction to

equal zero.
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5. Discussion of Models

In section 3 models were presented to calculate the phase
equilibrium as function of temperatufe, préssure‘and composition. It
_has been shown that only using one equation of state (EOS) the total
phase equilibrium can be determined at certain temperature, pressure
and composition. In that case mixing rules must be known as well as
binary interaction parameters. The a(T)_and b parameters for a pure
substance in an EOS must also be known. They can either be a
function of the critical properfies of the substance or a function

of the liquid density at 20 °C as has been pointed out in section 3.

The second model that has been proposed was an EOS for the
supercrifical phase and a measure for gas solubilities (Henry
constants) for the liquid phase. All parameters can be estimated,
except for Henry coefficients. Vapour pressure data are often
available, so no estimation method for vapour pressures have been

evaluated here.

The major diffefence in use between the two proposed models are
calculation time and convergence problems. The latter model can
readily be used, without comprehensive knowledge of numerical
iterative methods. The first model, however, is more often used,
because of its wider range of applicance. The second model can not
be used at densities of the SCF above half the critical density (B-
truncated virial EOS) or three fourths the critical density (C-
truncated virial EOS). When the B-truncated virial EOS is used above
0.5 times the critical density, the model will yield solubilities of
the heavy compounds in the supercritical phase to be too high. The
chemical interactions, thét become important in dense gases, are

estimated too high: the B-coefficient exaggerates the effect [12].
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From that moment the C-coefficient becomes important. It pulls the
effect of B back to reéﬁit in resulﬁs.that éfé:in more agreement
with reality. At ébout tﬁree fourths the critical density this
pulling back effect of C beéomes-tob 1arg; and the model will
estimate the solubility of the heavy compounds in the supercritical
phase to be too small. This can be seen in figure IV. Because no
corresponding states.correlations‘are available in literature, no

extension of the model to higher densities can be made.

Scientifically seen, the second model is somewhat more educative and
éasier to evaluate. Chemical interactions and the>heavy compound's
own volatility can be regarded separately, thle these effects are
completely strangled in cubic equations of stéte. In getting first
feelings about equilibria of certain systems the second model.could
be prefered. Cubic equations of state can be used in a later
stadium, to make the model applicable to a greater range of

‘densities of the SCF.
For cubic equations of state:

Summarizing, three cases are important in fixing the phase

equilibrium:

- choose an appropriate equation of state,

choose an' appropriate model to determine the pure substance
parameters a(T) and b,

- choose appropriate mixing rules,

knowledge of the binary interaction parameters.

The first three items are choices to be made. Combination of these

three choices must describe the phase equilibrium in the best‘way.
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The values. for the binary interaction parameters can be determined
by means of solubility experiments or can be known out of
literature: it could be possible that solubility experiments have

already been done by another person. The values for kij's are

dependent on the three chosen items EOS, a(T) and b, mixing rules.

The model which describes the technology of the column calculates at
each equilibrium stage incoﬁing and leaving mole fractions as well
as the flow rates. Thus, it can be called a stage to stage
calculatibh procedure. The calculation procedure will be iterative
because external specifications are not known at the same stage. In
case of an extraction column without reflux, the input
specifications are to be set at stage 1 aﬁd stage n. So knowledge of

mathematics is also needed in order to solve the equations.

The stage to stage calculation model which has been discussed is

only valid at steady state: no accumulation has been assumed to

occur.

Normally equilibrium will not be reached in a real stage, but since
there are no real stages present this is no problem. The packed
column can be-assumed to be built up of n theoretical equilibrium

stages in series.
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6. Conclusion

In section 3 phase equilibria were modelled where a supercritical
fluidum was involved. This means that there has to be dealt with
high pressures. Two models for describing phase equilibria at high
pressure (where a supercritical fluidum is involved) have been
presented. Advantages and disadvantages have comprehensively been

discussed in section 5.

It has been shown that due to corresponding states correlations many
relevant properties such as virial coefficients can be estimated.
Because of its simplicity the virial equation of state can provide
fast and reasonably good estimates of these types df phase
equilibria. Further knowledge of Henry constants and vapour pressure
data provides the calculation of complete phase equilibria. No
iterations ére required, even for systems consisting of many

components.

Applying phase equilibria in industries, it is desired to connect
these models to technological models that describe in- and output
flow in a separation column. These types of phase equilibria are
applied in supercritical extraction processes (or: supercritical
entrainment distillation processes). In section 4 an analysis of
degrees of freedom has been made when a continuously operated

separation column is used.




7. Notation

First a list (in alphabetical order) will be given of the variables,
followed by a number of Greek variables, without taking into
consideration their sub- and superscripts..The latter'will be listed

afterwards. Finélly, a list of abbreviations will be given.

Symbol_ -~ Description . : Units
a and a(T) pure substance parameter in EOS . J*m?® /mol?
) o
A dimensionless form of parameter a(T) K -
b pure substance parameter in EOS m? /mol
* -A
B 1. dimensionless form of parameter b -
2. " second virial coefficient R _ m® /mol
c third virial éoefficient ﬁl‘/mol2
D flow rate of disfillate mol/s
DegrFr number of degrees of freedom -
F flow rate of feed mol/s
Fp \ " packing factor | -
H Henry constant Pa
1 binary interaction parameter -
L flow rate of liquid phase mol/s
m " number of feed stage -
M | molar mass kg/mol
n number of stages in column -
p pressure j: Pa
"R reflux ratio _ . -
S Flow rate of SCF = Vo1 | " mol/s

T absolute temperature . K
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vV 1, molar volume . m® /mol

2. flow rate of vapour (=SCF) phase mol/s
u ‘ superficial velocity © m/s
X mole fraction in liquid phase -
X variable used in Brunner's method to

determine a(T) and b -
y mole fraction in vapour (=SCF) phase -

Z compressibility factor -

Greek symbols:

Ap | pressure drop Pa

p density kg/m?
] fugacity coefficient ' -

0 Pitzer's acentric factor -

Y (acentric) activity coefficient -

Sub- and Superscripts used:

c 1. condensor
2. critical

£ ' feed

F phase

i component

J 1. component
2. - stage

k component

L Liquid phase

m 1. number of feed stage
2. mixture

rec . recycle

sat saturated (used in vapour pressure notation)

v Vapour (=SCF) phase
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Abbreviations:

EOS -~ equation of state

HETP height equivalent to one theoretical plate
SCE supercritical extraction

SCF supercritical fluidum

CSC corresponding states correlation



_57_

8. Literature

1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

Delamine, Brochure of Akzo Salt and Bsic Chemicals Nederland

b.v. about Ethylene Amines, Delfzijl (August 1985).

Prausnitz J.M.; Reid, R.C.; Poling, B.E., The Properties of

Gases and Liquids, 4th ed., McGraw-Hill, New York (1987).

De Loos, Th.W.; Van der Kooi, H.J., Toegepaste Thermodynamica

en fasenleer, Handout for Lecture st79, Delft University of

Technology, University Press.

McHugh, M.A.; Krukonis V.J., Supercritical Fluid Extraction,

Principles and Practice, Butterworth Publishers, Boston (1986).

Brunner, G.; Dohrn, R., Empirische Korrelationen zur Bestim-

mung der Reinstoffparameter der Peng-Robinson-Zustands-

gleichung und ihre Anwendung zur Phasengleichwichtsberechnung,

Chem. Ing. Tech., 60 (12), 1059-1061 (1988).

Brunner, G.; Dohrn, R., Programmsystem zur Berechnung von

Hochdruckphasengleichwichten-Anwendung auf Stoffe mit Unbe-

kannten Kritischen Daten, Chem. Tech. (Leipzig), 41 (2),

65-68 (1989).

Johnston, K.P.; Peck, D.G.; Kim, S., REVIEWS: Modeling

Supercritical Mixtures: How Predictive Is It?,

Ind. Eng. Chem. Res., 28, 1115-1125 (1989).

Gangadhara Rao, V.S.; Mukhopadhyay, M., Solid Solﬁbilities

in Spuercritical Fluids from Group Contributions, J. Supercrit.

Fluids, 3 (2), 66-70 (1990).




[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

_58_

Zuiderweg, F.J., FysischelScheidingsmethoden, deel I:

Evenwichten, Scheidingsberekeningen, Fysische Transport

Verschijnselen, Handout for Lecture st77, Delft University of

Technology, University Press (1980).

Brunner, G., Selectivity of Supercritical Compounds and

Entrainers with Respect to Model Subéﬁances, Fluid Phase

Equilib., 10, 289-298 (1983).

Brunner, G.; Peter, S., Zum Stand dér Extraktion mit

Kompriﬁierten Gasen, Chem Ing. Tech. 53 (7), 529-542 (1981).

De Swaan Arons, J; Coorens, H.; De Loos, Th.W.; Supercritical

Extraction. Prediction of the Capacity and Selectivity of

Supercritical Solvents, Delft Progress Report, 12, 1988.

Neau, E.; Alessi, P.; Fermeglia, M.; Kikic, I., Low-Pressure

Equilibrium Data for the Prediction of Solubility in Carbdn

Dioxide, Chem Eng. Sci., 45 (4), 795-808 (1990).

Walas, S.M., Phase Equilibria in Chemical Engineering,

Butterwoth Publishers, Boston (1985).

Stahl, E.; Quirin, K.W.; Gerard, D., Verdichtefe Gase zur

Extraktion und Raffination, Springer Verlag, Berlin (1987).

Treybal, R.E., Liquid Extraction, 2nd ed., McGraw-Hill,"

New York (1963), in: Chemical Engineering Series.

Weast, R.C., Handbook of Chemistry and Physics, 52nd ed.,

The Chemical Rubber Co., Cleveland (197171972).

Perry, R.H.; Chilton, C.H., Chemical Engineers' Handbook,

5th ed., McGraw-Hill, New York (1973).




[19]

[20]

[21]

[22]

[23]

[24]

[25]

=59~

Macknick, A.B.; Prausnitz, J.M., Vapor Pressure of High

Molecular-Weight Hydrocarbons, J: Chem. Eng. Data, 24 (3)

'Y

175-178 (1979).

Smith et.al., Physical Science Data 25: Thermodynamic Data

for Pure Compounds, Part B: Halogenated Hydrocarbons and

Alcohols, Elsevier, Amsterdam (1986).

Zou, M.; Yu, Z.R.; Kashulines, P.; Rizvi, S.S.H., Fluid-Liquid

Phase Equilibria of Fatty Acids and Fatty Acid Methyl Esters

in Supercritical Carbon Dioxide, J. Supercrit. Fluids, 3 (1),

23-28 (1990).

Orbey, H.; Vera, J.H., Correlation for the Third Virigl

Coefficient Using Tc, pc and v As Parameters, J. AIChE.,

29 (1), 107-113 (1983).

Tsonopoulos, C., An Empirical Correlation of Second Virial

Coefficients, J. AIChE., 20 (2), 263-272 (1974).

De Santis, R.; Grande, B., An Equation for Predicting Third

Virial Coefficients of Nonpolar Gases, J. AIChE., 25 (6),

931-938 (1979).

Brelvi, S.W.; 0'Connell, J.P., Corresponding States

Correlations for Liquid Compressibility and Partial Molal

Volumes of Gases at Infinite Dilution in Liquids, J. AIChE.,

18 (6), 1239-1243 (1972).




-Al-

Appendix A: Derivation of Equations (53) through (56)

At page 27, 28 and 29 in this report four formulas were used. The
first (53) links any equation of state (EOS) to the fugacity
coefficients of every component present in the mixture."(53),cgn be
derived from fundamental thermodynamics: definition of certain
quantities and the first and second law of thermodynamics.

quation (54) is the solution for equation (53) when the Peng
Robinson EOS is used. This concerns rather mathematics than

fundamental thermodynamics.

Equation (55) and (56) are solutions for equation {53) when the

virial equation of state is used, while the Lewis rule is applied.

This appendix has been built up of three sections, deriving all

equations.
A.l. Derivation of Equation (53)

For the fugacity coefficient, ¢i, of component i in a mixture

containing n components, a relation will be derived that relates
this property to any EOS.

The fugacity, fi' of component i in a mixture containing n

components is defined by:
R*T*d{In(f,)} = v,*d{p} = o¥ *a{p} (A1)
i i ani

In (A1) vy is the partial molar volume of component i, while V

stands for total volume.
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The chemical potentiél, ui, of component i is defined by:
W, o= {3M/ani} [M= G, U, H or A] (A2)

In (A2) G is the free Gibbs energy, U the internal energy, H the
enthalpy and A the free Helmholz energy. The internal energy of a
mixture will be considered first. If heat is put into the system the
internal energy of the mixture will increase, while the internal
energy will decrease if the mixture performs some work. So, the
increase of the internal energy of a mixture equals the difference
between the heat which is added to the mixture and the work which is
performed by the mixture. This consideration is known as the first

law of thermodynamics. Written in formula:

AU = Q-W (A3)
or in differential form:

dU = 23Q - 3w (AL)

The process of adding heat and performing work is now considered
reversible, that is when the changes of the properties concerned,
will take place in an infinite long time. Consider a tube in which
the mixture is present with on top of the mixture in the tube a
piston that'can move freely. The work performed by the mixture is
now defined as the force performed by the mixture multiplied by the
distance the piston moved. Since the area of the tube is constant
the force will be the area multiplied by the pressure of the
mixture. The distance multiplied by the area will be the mixture's

volume. So work is defined, remembering that area is constant:

W = F*ds = p*A * d (V/A) = p*dv (A5)
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Considering a Carnot cycle and the second law of thermodynamics it

can be concluded that entropy, S, is given by the equation:

3Q = T*ds ' (A6)
‘Combining (Al), (A5), and (A6) it is found that

du = T*dS. -. p*av . : . (A7)
Enthalpy is defined as

H=1U+P*V or dH = duU + p*¥dV + V*dp (A8)
Substituting (A7) in (A8) it is found that

dH = T*dS + V*dp | (A9)

The free Gibbs and free Helmholz energy are defined by

e
1]

U - T*¥S or dA

dU - T*dS - S*dT (A10)

H - T*S or 4G

Q
n

dH - T*dS - S*dT (A11)
Substituting (A7) in (A10) it can be seen that

dA = - S*¥dT - p*dv (A12)
In the same way, substitution of (A9) in (All) leads to:

dG = V*dp - S*qdT (A13)

Now it can be seen from (A12) and (A13) that A=A(T,V,n) and
G=G(p,T,n). Equation (A2) represents partial differentials, so
taking all other properties constant. Applying (A2) to both the free

Gibbs and Helmholz energy, it is found that:
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{aA/ani}T’V'n(j) = u, 7 (A1L)

/e b ra) =M (A15)

~ At constant temperature and composition (A12) and (A13) become:
dA = - p*d@V and dG = V*dp (A16)

If (All4) is differentiated towards volume the result will be:
-7 2 %A *
M= Uag Landrvng) drong (A17)

If (Al5) is differentiated towards pressure the result will be:

2 ac
an,
i

} * dp (A18)

p.T,n(j) T,n(j)
In (A17) and (A18) the differentials below the quotient sign can be
exchanged:

9 JA %
30 'T,n(3) Iuneg " (419)

If (A15) is differentiated towards pressure the result will be:

3 3G *
du. = [ 5— { -3-5 }T,n(j) ]p,T,n(j) dp ‘ (AZO)

i n,
i

It follows that equation (A19) equals (A20). From equation (A16) it

is found that:

Qg A
{ ==

3 ITn(g) -V @™ {55lp gy = P (A21)
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The equality of (A19) and (A20), while substituting equation (A21)

results in:

av
an,
i

{

} dp * qv (A22)

* - { 3p }
p.T,n(j) 9n,°T,V,n(j)

This result can be substituted in equation (Al) to give:

R*T*d{ln(fi)} e \Y (A23)

3p
t aﬁi}T,v,n(j)
Adding the term R*T*d{ln [ V/(n*R*T) ] } at both sides of A(23) it

follows that:

R¥T*a{In F=§z} = R*T*d{ln-giz-} - {

n*R*T} ( AZL{' )

3p #
3n,JT,V,n(3) O
Next, the just added term can be rewritten:
R*T*d{lnﬁgggi} = R*T*{ 1/( V/{n*R¥T} ) }*dV = {R¥T/V}*qV (A25)

Substitution of (A25) in (A24) results in:

fi*v R¥*T
R¥T¥d{In-gzzz} = [ =5°

3p
i 7 ladrung 1T (426)

Equation (A26) can be integrated from V towards infinity. If V=o
than the mixture behaves like an ideal gas, because the molecules do
not interact with each other. In that case the left term of (A26)

becomes: R*T*lnyi, because p; = fi = yi*p (ideal gas behaviour).

The result becomes:

1TV ! R™T 3p :
*T¥ - £iTV_ = = - _E
R*¥T*[ 1ny. In FRET ] [ 7 { 3 .}T,V, (j)]dV (A27)
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or

R*T*[ 1n(f,/y,) ] = l [ { §§i}T'V,n(j) 555 1av - merincglss
(A28)

or, because of the fugacity coefficient's definition (fi=yi*¢i*p):

R¥*T 3%

R*T*[1n(¢,%p)] = I, [{ gﬁ_}T'V'n(j)— =5~ 14V - R*T*In-g=gz (A29)
1

Defining the compressibility factor as Z=p*V/(n*R*T) the final

equation becomes

R*T*[1n(0.)] = l [ { ggi}T,V,n(j) - B\;I 1dV - R*T*1nZ (A30)

Equation (A30) is the same as equation (53) at page 27 in the

report., It is, thus, derived.

A.2 Derivation of Equation (54)

Equation (54) represents the solution of equation (53) when the Peng

Robinson EOS with classical mixing rules is used. As can be seen

from equation (A30) the partial derivative of pressure towards mole

species 1 has to be calculated. Temperature and volume have to be

held constant. Explicitely volume is meant because molar volume

depends on composition and in that case molar volume cannot be held

constant. Thus, the Peng Robinson EOS has to be written in an
expression depending on V rather than molar volume like has been

done in the report.
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The Peng Robinson EOS in molar volume is repeated here:
PEUT T WTYERRRIR (A31)

substitution of v = V/an leads to

PRy T TR IRRRE IR (#32)

From the classical mixing rules it follows that:

b = Z(nj*bj)/Znj (A33)
and
a = ZZ(ni*nj*aij)/(an)z . (A34)

Substitution of (A33) and (A34) in (A32) leads to the good form of
the Peng Robinson EOS that can be differentiated towards mole

species 1i:

= mmmoem do_ - _____ . r 3 ij_ _______
P = §Z5Th %5]) (A R IR WL (A35)
i3 j i’
Knowing that

9
sny ( #2(ny"ngeeyy ) = 2% 2(ngtay ) (436)

a(A35)/8nj becomes:



op = $  mmmcmmmme S * +
{ ani}T,V,n(j) vV - E(nj*bj) (v = z(nj*bj))z bi

O GV S0 R S W39 ) I G PSP
J J J J
- 2*Z(n¥*a..)
R (Ve S o b (A37)
i} 5P |

Now the differentiation towards ni has been executed. The total

absolute volume in (A37) can again be replaced by the molar volume,
v, because in (A30) no further operation has to be done depending on

ni. It is found that:

= —ge———= F mETemoTr o mmrmmse e e e

p
{ ani}T,V,n(j) n*(v-b) n*(v-b)? * [n2*v? + 2*n*v¥*n*p - (n*pb)2 2

O e e (438)

In (A38) yj symbolizes mole fraction of component j and is defined

as nj/n and n is defined as an.

As can be seen from (A38) the term 1/n can be set outside brackets.

The final equation for the derivative becomes now:

R¥T  R*T*p 2*p_ *a%* (v-b) 2*Z(y*a. .)

{ 3p } =1« [ - + 7-=—=c I L e o L 4. Td__ ]
ani T,V,n{(j) n v=b (v-b)? (v? +2%p¥y-p2? )2 v2 +2¥p¥y-p?
(A39)

The next thing to do is to integrate (A39) according to equation

(A30). First the following integral will be solved:
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I-= I [ { §§1}T,V,n(j) - R*T/V ] av  (ALO)

In (A40) the new symbol I symbolizes "Integral". It can be seen that
in (A40) the symbol for absolute total volume appears (V). This is
also the case in equation (A30). Before substituting (A39) into

(ALk0), (A4O) first has to be rewritten in the molar volume form:

I - I [ 152 Yo y,n(g)™ F/(v*0) 1 dla%o) (A1)
or
L= I [t R by gy R/ D @ | )

Substitution of (A39) into (A42) results in:

R¥*T R¥T¥*Db, 2%, ¥a¥* (v-b) 2*%Z(y*a. .) R¥*T

I=| [ ==+ 5=-=c T4 e SogosorTr = mperz T S 1 dv
v-b (v-b)2 {v2 +2%p*y-b2 }2 v2 +2%¥p¥*y-p2 v
A B C D E  (A43)

(Al3) is the integral to be solved. It has been split up (as can be
seen) into five parts, A, B, C, D, and E. First the primitive
functions (function after integration without filling in the limits)

of terms A, B and E will be solved:

Primitive of term is
A R*T*1n(v-b)
E - R*T*1n(v)
A+E R*T*lanp

B - R*T*bi/ (v-b)



T

The primitives of terms C and D are more difficult to determine.

Therefore a mathematical intermezzo is given in section A.2.1
A.2.1 Mathematical Operation: Getting primitives of terms C and D -

In order to get the primitives of terms C and D, standard
integrals can be used. The following integrals have been>listed in

[171:

X =c*k® + b*x +a and q = U*a*c - b2 ( and q<0 )

_dx _ 1 . _2%c*x + b_- Y(-q)

+ X V(=4 In SRRy B V(a) (ARk) B
dx  _ 2%c*x_ + b | 2% , _ dx :

J XZ - q*X * a + X . . (ALl’B )

[ x*dx _ _ b*x_+ 2*a _ b, _ dx \

+ X2 - a*X - q + X - (A46)

Equations ((Al4l) - (Al6)) can be used in order to get the primitives
of terms C and D. They integrals ((A4l) - (AL6)) will be_prodféd in
this section first. Starting with (Al44), differentiating the right

part of this equation towards x must result in 1/X. If this is so,

(Abli) has been proofed. Differehtiating results in:

Lo w  2exebav(-a) o 2¢¥(2cxvbeV(-q) = 2c¥(2exsbzV(zq)) |
V(-a) - 2cx+b-Y(-q) (2cx+b+V(-q))*
equals‘

1« he*V(=q)

Le be _ 1

1
BE*Tax? +BR) 7hT+q ~ Ba¥(owt Tbx) v shacTh? ~ i sbxva - X
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So, (ALl) has been proofed. Next (AlU5) will be proofed.
Differentiating its right part mﬁst result in 1/X?. Differentiating

- gives:

2c 1
--—-ag)—(z— ------- + (—l;}—( equals

Thus, (A45) has been proofed. In the same way (AU6) will be proofed.

Differentiatihg the right part must result is x/X?:

——————————————————— - —p— e uals
q*X? a*x 4
bex? +b? x+ab-2bex? +b2 x-lacx-2ab _ b¥*(cx? +bx+a) _ (bac-b? )*x _ x
- DCXTtb7xta SRgpo--o-T-a8SRIER RS i or = SERGLE

Now equations ((Al44) - (A46)) have been proofed and can be used in

determing the primitive function of terms C and D of equation (A43)

A.2 Derivation of Equation (54) (Continued)

With help of equation (A44) the primitive function of D can be
found. In section A.2.1 new variables have been introduced. Before

applying (A44) these variables must be linked to term D:

variable in_(A44) corresponding relation in term D
X : v

a -b?

b 2*p

c 1
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Afterwards the primitive must be multiplied by the constant
‘—2*Z(yj*aij). Substituting these values in (Ally) results in
* ¥* - ¥* .

{(all)} = BéVQ % 1p 20V_+_2%b_- b*V8 (ALT7).

Knowing that V8 equals 2*V2 and multiplying the integral with the
constant'results'finally in the primiti@e-for term D:

Prim(D) = —2*Z(yj*aij) * 3¥GFY5 ¥ 1n =——-coaso—2L T (A48) :

In ofder_té find the primitive of term C, the variables in term C
also must be linked to the variables in the integral. This linking
is exactly the same as the linking done for térm D. The constant,
which the primitive must be multiplied with afterwards, is in case

of term C: 2*a*bi, Term C must be split:

______________ = %g¥p *fo_oo Vo ___ _ _____ b ______
{v? +2%p*v-bh2 }2 2a’h,y {[v2+2*b*v-bz]z [v2 +2%p*v-b2 ]2 (A49)

The first term of (A49) can be solved with help of (Al6); the second

with help of (Al5).

{A(46)} = - :gsg;§§53¥§§525:5;7 - :§§E;*{(AM4)} (A50)
{(Ak5)} = b * [ :g;g;;%§¥§§§§;;:5;7 * :g%ﬁ;*{(Aqq)} 1 (a51)

According to (A49), (A50) and (A51) have to be substracted and

multiplied by the constant 2*a*bi:

Prim(C) = Z*a*bi * [ﬁ --------------- * [Fp * {(Abb)}

v pRRETT SaRERTEE) * Oep ¢ LAY 1 (as2)
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or
. _ ¥* K1 L Y _______ 1 * _l__ * Yibfi;:l/gl
Prlm(C) = 2%g bi [2*b*(v2 +2*b*v_bz) 2%p b*.'/8 1 V+b*(1+‘/2)]
(A53)
or
. *bi % v 1 * v+b* (1-V2)
Prin(C) = o'5% ¥ [Grizspmomr * 595573 © 10 GipE(Tava))  (A5H)

Now all primitives of all terms in (A43) have been determined and
the integral I (equation (Al43)) without filling in the limits

becomes (notation: I'):

v-b b
! - R¥T*In——e _ R¥TR__L  _ ox * w 1 __ w g, ViD*(1+v2)
I R*T*1n v R*T V-b‘ 2 Z(yJ aij) 2*b*V2 1 V"'b*(l—VZ)
b ared o [epon ¥ Ly vrb*(1-V2) (455)
“b v2 +2%p*yopz T 2FpFY3 v+b*(1+V2)
or
v-b bi bi v
' = R¥THIn___ _ p¥m#__1 w = o _____V _____
11 = RPTMn-o= - R¥T¥oof + a0 * crosapscoor
b, 2*Z(y.*a. .) *
_8 w1 T3 Tl oo vib*(1-v2)
5%5%73 L g a 1% In v+ (1+V3) (A56)

Let us now fill in the limits. If v becomes very large () then all
terms in‘(A56) become zero. Thus, the solution of integral I (A43)
becomes by filling in the limits in I' (A56):

v b

- *m¥ ——— ¥* *___J_" - *_J;' * Y X
T = RPTng-p + RYT¥ oo - @%5= * orisepagopr *
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The expression for the fugacity coefficient will be repeated here

(equation (A30)):

R*T*[1n(6,)] = I [ { gg_}T v.n(4) - B;T JdV - R*T*1nZ (A30)
l ’ ’

or

R*T*[In(6,)] = I - R*T*1nz o (A58)

where I is given by equation (A57).

Now the following term in (A57) is considered:

b, b, b, b,
wpw__L _ w1 ow _____ vV oo = pwpw__L _ w1l ow _____ a____._
M0 T T T srisRReer T BTG - vy T srisepagpr (859)
The term

——————————— equals RIT |
- q vb ~ P

This can be seen with help of the Peng Robinson EQS, equation (A31).

For the pressure p can be written:

P = R*¥T*Z/v according to definition of the compressibility factor Z.

Substituting these equations in (A59):



bi bi R¥*T R*T*7
¥ _ _ = - - ¥ ¥ [ o me =
R*T v- b v [v—b v 1
1 v 1 Z
*m¥e ¥ o= - o Hf_=_ - = =
R™T bi [v-b b {v—b v}:|
1 v Z
H#mit Wlroon o Yo o =
R*T™b,;* 555 B*(vB) ¢ bd
b-v Z
*m¥* L] . - =
R " L5%555) * b4
Z 1 bi
#T*L *¥rZ L 27 - perx_l = -
R*T bi [b b] R*T g (Z-1) (A60)

The final expression for the fugacity coefficient will be found by

substituting (A60) in (A57) and substituting this result in (A59):

v b.
R*T*[1n(¢,)] = R*T*ln-—- + R*T*El * (Z-1) - R*T*1nZ +

1
5%p%73 © L 5 a D SIEF(1-V3) (A61)

3* *
In the report the new variables A and B were already introduced.

Substitution of
* * *
a=A *¥(R*T)2/p, b = B ¥R*T/p , bi = Bi*R*T/p and v = R¥T*Z/p

will result.in the following expression for the fugacity

coefficient:

*

Bi *
In(¢.) = -5 * (Z-1) - 1n(Z-B ) +

i
B
+#* ¥ *z * ) #*
B. 2 .“a, .,
A _wp A ___ffg__u_ ] * 1n th;’_‘ﬂ:‘_@l (A62)

2B V2 B a Z+B *(1-V2)
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According to the classical mixing rules :
- * ¥* -

Equation (A62) combined with the mixing rule (A63) equals equation

(54’ in the report.
A.3 Derivation of Equation (55) and (56)

At page 28 and 29 in the report, equations (55) and (56) are
mentioned. These are results of applying equation (53) and Raoult's

law. First an enhancement factor is defined:

Enh - / ideal

¢4, SCF Ci.SCF - (a6t

The enhancement factor is the factor with which the ideal
concentration of the considered heavy compound in the supercritical
fluidum has to be multiplied in order to yield the real

concentration.

The ideal concentration is calculated from Raoult's law, extended
for high pressures by the Poynting factor:

%deal * p - X}deal

% psSat 4
i 1 Pi POYi (A65)

The ideal concentration follows by multiplying the mole fraction in
the supercritical phase by the density of this phase. Because
solubilities are very small (< 1 mass percent), the density of- the
supercritical phase is almost the same as the density of the

supercritical fluidum as if it was pure (Lewis rule):

ideal _ ideal , _ideal
°i T Y3 PScF (466)
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Combining (A65) and (A66) yields:

ideal

ideal _ ideal , _sat , #
c = X, P; POY, S / P (A67)

i i

Because the ideal gas law is valid for this ideal concentration

calculation, (A67) can be modified:

ideal ideal
= X,

C.
1 1

* Piat * POY, / (R*T) (A68)

Like equation (A66) the real concentration of the heavy compound in

the supercritical phase equals:
i i SCF | (A69)

For the density of the supercritical fluidum considered to be an

ideal gas follows:

"ég;al =p/ (R*T) . (A70)

The real density is found in the same manner by introducing the

compressibility factor of the fluidum ( Z = p*v/(R¥*T) ):

Poep = P / (R*¥T*¥ ZSCF) (A71)

For the real situation Raoult's law has to be modified by means of

fugacity and activity coefficients:

0, %y, *P = T ¥ x ¥ Piat * POY, (A72)

Combining (A65) and (A72) yields:

vy /i e v kg sl e (A73)
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Substitution of (A71) in (A69) and (A70) in (A66) results in-

ideal
c,

= v (b /(R*TY) (A7)
and _ o .
c; =v; "/ R*T™* Zp ) (A75)

Devision of (A75) by (A74) yields:

. c:|:.deal - (y. / y%deal ) *

i i i i 1/ ZSCF ) (ATT)

Further subsitution of (A73) results in:

oy /g = (1 Loy a1y (w120 (g

This equals the enhancement factor. The result is a slight different
than De Swaan Arons reported [12], because his derivation was valid
fof solubility of solid heavy compounds, thus no supercritical
fluidum can be dissolved. Let us first consider the enhancement due
to the vapour phase's non-ideality and the liquid phase's non-
ideality is in first instance neglected. Later on the liquid phase's
non-ideality will be incorporated. Then the similarity with De Swaan
Arons's derivation becomes clear. Then the:result becones:

ideal
o

P / xieet (479)

* Enh Y, ¥ x,
vap i i

Substitution of (A68) in (A79) yields:

c, = Y, *x *pC wpoy ¥ g /(R¥*T) (A80)
1 1 1 1 1 vap ,
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With help of (A69) it is finally found that

v. / x. = [, * Piat *POY, / (R*T*

* Enh (A81)
i i i vap

scr’ ]
which is equal to equation (55) in the report.

Let us now consider the vapour phase's contribution to the

enhancement factor. It was already derived that

Enh = 1/ (¢

vap i * ZSCF) (A82)

At this point the virial equation of state, which has been chosen,
becomes important. In the report it had already been mentioned that

the fugacity coefficient, ¢i, is denpendent of the type of equation
of state that has been chosen. The virial equation of state is
repeated here, truncated after the third coefficient:

p = (R¥T/v) * (1 + B/v + C/ v?) ' (A83)
In (A30) it can be seen that (A83) should be written in terms of
mole species i, knowing that n = an. The equations for the mixture

virial coefficients have already been given in the report:

B = g? y; *v; By, o= (1 /) gg n; *n, % B, (ABH)
Cp = ??E iyt Cije = 1/ n3) ¥ E?E n,;*n*n * Ci 51 (885)

The molar volume becomes total volume devided by n. (A83) now

becomes:

- *mH * % #* ¥* *
P = (R¥*In, / V) * (1 + (1/(V Zn,) ?? ni*n By, s

(A86)

(1/(V2*znj)*ggg ny*ng*m *Cy )
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Now the derivative ap/ani can be obtained from (A86). (A84) and

(A85) will first be written in a form where mole species i is taken

outside the summation sign:

TR T 2 % S R T w w o N powe N T e
Bm = (n:.L Bii + 2 n, jéinj Bij) / (v an) (A87)
cC = (n? *C + 3% n? *3 * C, +
m i iii i j#ij iij
* * * * 2 ¥
3 n, jgi kzi ng *my Cijk) / (V an) (A88)

Differentiation pressure towards mole species i now yields:

3p/n; = (R*T/V) * (1 + (1/(vf2nj)*§? ni*nj*Bij +

2 ¥ ¥* *. %* #*
(1/(v an) ggg n; nj ny Cijk ) +

(R*T*an/V) *

2%% n *B_ . B C
J 1]
{ === - mmme e e +
V ¥ 2n, Zn Zn,
J J J
2
* * * * * #* * *
3 ni C111 + 6%n 'Ekn CllJ *3 jzi k¢1n3 nk Cle
---------------------------------------------------- } (A89)
Ve¥* 3In
Rearrangement results in:
2*% n *B_
J 1)
3p/3n; = (R¥T/V) + (R*T/V) * [ ---=g---= =+
* * #* * * * 5 ¥* *
3"n C ii + 6%n J¢knj C113 3 j=i k=1n3 nk Cle
---------------------------------------------------- 1 (A90)
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Equation (A90) can be rewritten in terms of mole fracions, y:

In,)*2*% y *g
( J) J yJ 1

J
3p/3n, = (R*T/V) + (R*T/V) * [ -~------ go--m--- +
Lunx,x Ry, * % #* L Wy, #
(30 )33 04400 " 3 57054 73 10 13493
---------------------------------------------------- 1 (a91)
VZ
The term
2
* * * 3* * * s * ¥*
3%yi7Cy4576%y; 335 Ci13%37 55 k%1Y3 Yk Cijk
equals
* ¥*
3722y Cogy
so the final result of the derivative ap/ani becomes:
In,)*2%3 v *B, .
( L 595 Cij
9p/3n; = (R*T/V) + (R*T/V) * [ ---~---- oo +
* * *
SRR Ciix
——————————————— ] (A92)

The derivative (A92) must now be substituted in equation (A30). It

can be seen-that the integral term of (A30) becomes:

In,)*2*% v *B. .
(Zny) 2% Y3 %ij

v
I - J (R¥T/V) * [ —=-mmmmmpmmmmmee

PR e 1 dv (A93)



-A22-

The primitive of this function is rather simplé:

Prim = - (R*T/V) * Sn.)*2%5 y *B, . 4
(B¥T/V) * ( (znj)*2*% y *B,

Co)PSU 5 v g /@) ) (k)

Filling in the borders, V and «, and substituting the integral in
(A30), while replacing total volume by molar volume, results finally
in the expressing for the fugacity coefficient:

In (6,) = 2*Zyi*Bij/V * 1-5*§E yj*yk*cijk/vz - In(Z)  (A95)

Species i is the heavy compound. Since its mole fraction in the
supercritical phase is very small (< 1 %), the molar volume of this
phase can be set equal to the molar volume of the pure supercritical
fluidum. For the binary system heavy compound-SCF, this assumption

leads to (SCF=1 and heavy compound=2):

. = ¥* * 2 o

1n (¢2) 2 B12 / v + 1.5 0122 / vi in(Z) (A96)

Using equation (A82) and known that Poop = 1 T 1/V1, the result is:
= - * ¥* - * *n2

Enhvap exp ( - 2 B12 oy 1.5 0112 4] ) (A97)

This last equation is the same as equation_(57) and it is, thus,

derived.
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Appendix B: Estimating Binary Interaction Parameters:
Peng Robinson Equation of State

In this Appendix a method will be presented that can be used in
estimating binary interaction parameters. It is a sort of group
‘contribution method in which interéétion:befween gfoups of molecules
are calculated from existing data of random compounds. The values
which are found for the groups are used to estimate the interaction

of the total compound with another molecule.

This can be expressed by the following relationship:
1-k, ., =§ n_*K g n ’ B1
(k) = § (¥ ) / & (n) (B1)

In (Bl) is m the number of different interactions that occur, n is

the number of times that interaction p occurs. Kp is the group
contribution of the occuring interaction between two groups. kij is

the binary interaction parameter that is used in the mixing rules.
Because it indirectly reflects interaction, it must be rewritten in

1—kij. kij is a measure for the repulsion that occurs between two

molecules, so 1-kij is a measure for the occuring interaction.

Let us apply this method for the system n-octadecane (C18),
1-hexadecanol (C160H) and carbon dioxide (C02) as supercritical

fluidum.

It is desired to know the binary interation parameters of the

interaction between C160H-C02, C18-C02 and C160H-C18.

Reference substances in order to calculate the interactions were
found in the DECHEMA Data Series. First the binary interaction
parameters of the systems C160H-CO2 and C18-C02 will be calculated.

Then, C160H-C18 will be considered.
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B.1 The systems C160H-C02 and C18-C02

The reference substances that are going to be used are: n-butane,

carbon dioxide, n-butanol and i-butane. The following interactions

were found:

C02 - CH3-CH2-CH2-CH3
C02 - CH3-CH2-CH2-CH20H
coz - CH3—?H—CH3

o3

k.. 1-k. .

ij 1]
0.1333 0.8667
0.0470 0.9530
0.1200 0.8800

Interaction are assumed to be built up by the following gfoups:

C02 - CH3 (K1)
C02 - CH2 (K2)
C02 - CH20H (K3)

co2

CH (Kb)

Carbon dioxide will show most interaction with (K3) because of its

chemical affinity. This is descending in the row: (K1) > (K2) >

(K4). Because interaction (K3) is relatively very large, the

difference between the interactions (K2) and (K4) will be relatively

small. In that case (K4)=(K2).

Filling in (B1) results in:

0.8667 = (2%K1 + 2*K2 ) /4
0.9530 = ( K1 + 2*¥K2 + K3)/4
0.8800 = (3*Kl + K2 ) /4

These are three equations with three unknown parameters. Solving

this set results in:




_BS_
K1 = 0.8932 K2 = 0.8400 K3 = 1.2388
For the interaction C160H-~C02 it can be found that:

(1=kg ) = ( K1+ 14*K2 + K3 )/16

0.8683 ---> kij= 0.1318

For the interaction C18-C02 it can be found that:

(1-kij) = (2*K1 + 16*K2 )/18 = 0.8459 ---> kij= 0.1541

B.2 The system C160H-C18

In the same way as described in section B.1 the binary interaction
parameters for the system C18-C160H can be estimated. The chosen
reference substances are: n-propanol, n-hexaan, n-propaan,
n-pentanol and n-heptaan. The interactions that will be focussed

are:

k.. o1-k,

ij ij
CH3~CH2-CH20H - CH3-(CH2)4-CH3 0.0844 0.9156
CH3-CH2-CH3 - CH3-(CH2)4-CH3 0.0007 0.9993
CH3—(CH2)3-CH20H - CH3—(CH2)5-CH3 0.0693 0.9307

Because of small differences the interactions between CH3-CH3,
CH2-CH3 and CH2-CH2 are assumed to be equal. With this assumption

the following interaction are found to occur:

CH2 - CH20H (K1)
CH2 ~ CH2 (K2)

CH3 -~ CH20H (K3)
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With help of (Bl) it can be found that

0.9156 = (4*K1 + 12¥K2 + 2*K3)/18
0.9993 = ( 18*K2 )/18
0.9307 + (5*K1 + 28%¥K2 + 5%K3)/35

From this set the soluﬁion can be found:
K1 = 0.1049 K2 = 0.9993 K3 = 2.0348

In order to estimate the binary interaction parameter of the system

C160H-C18 it follows with help of (B1):

1_kij = (16¥K1 + 270%K2 + 2*K3)/288 = 0.9568 ---> kij= 0.0432

B.3VSummary
When the compound are indexed:
C160H = 1 C18=2 C02=3

then it was found that

—

k12 = 0.0432 k13 = 0.1318 k23 = 0.1541

The accuracy of these values is hard to estimate. Binary interaction
parameters are normally calculated by fitting the .chosen equation of
state (for éxample the Peng Robinson EOS) on available data. In

literature the following values were found:

*

Neau (1990) : k,5 = 0.161  Walas : ky, uq,

23 = 0.15

As can be seen the found values from the presented "group

contribution" method are in fair agreement with reported values.
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The method has been presented because there is a theoretical
fundation for the physical meaning of binary interaction parameters.
Normally, however, they are used mathematical quantity in order to
get experimental data described in the best possible way. Physically
the quantity can ke understood, so maybe it could be worth while to
develop a complete group contribution method with theoreticql
foundation for some correction. In this review estimations were made

to set some interactions equal.

S.H. Walas: In his text book "Phase Equilibria in Chemical
Engineering" Walas recommends the value 0.15 for interactions
between hydro carbons (HC) and carbon dioxide.



