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Abstract

In this article, we’ll show how to solve the time-fractional seventh-order Lax’s
Korteweg—de Vries and Kaup—Kupershmidt equations analytically using the homotopy
perturbation approach, the Adomian decomposition method, and the Elzaki transfor-
mation. The KdV equation is a general integrable equation with an inverse scattering
transform-based solution that arises in a variety of physical applications, including
surface water waves, internal waves in a density stratified fluid, plasma waves, Rossby
waves, and magma flow. Fractional derivative is described in the Caputo sense. The
solutions to fractional partial differential equation is computed using convergent series.
The numerical computations and graphical representations of the analytical results
obtained using the homotopy perturbation and decomposition techniques. Moreover,
plots that are simple to grasp are used to compare the integer order and fractional-
order solutions. After only a few iterations, we may easily obtain numerical results
that provide us better approximations. The exact solutions and the derived solutions
were observed to be very similar. The suggested methods have also acquired the high-
est level of accuracy. The most prevalent and convergent techniques for resolving
nonlinear fractional-order partial differential issues are the applied techniques.
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1 Introduction

The derivative of a function can be extended in any order using the branch of cal-
culus known as fractional calculus. The use of fractional calculus across numerous
disciplines of applied science and engineering to describe the properties of various
real physical phenomena has captured the attention of many scholars in particular
fields of applied science and engineering in recent years. The concept of the fractional
derivative has been established in response to the problems brought on by hetero-
geneity. The fast development of mathematical techniques with computer packages
led to many researchers working on FC to illustrate their belvederes while studying
complex models. Recently, senior scholars provided a number of novel ideas for the
FC, and those provided the framework. FC is a commonly used idea and theory that
is connected to real-world initiatives [1-5]. Integrals and derivatives are addressed
by FC to an arbitrary real or complex order. Recently, a number of fractional oper-
ators, including Caputo, Caputo Fabrizio, Atangana—Baleanu, Katugampola, Hilfer,
etc. have been proposed and implemented for dealing with real-world applications.
The fractional calculus has demonstrated that it is the best tool for studying problems
in the actual world. The Caputo fractional derivative is often used in practical appli-
cations, as it enables one to include the traditional initial and boundary conditions in
formulating mathematical models. Moreover, as in the integer-order derivative, the
Caputo fractional derivative of a constant is zero [6].

A detailed association among an unknown function and its partial derivatives is
expressed using partial differential equations (PDEs). Nearly every area of engineer-
ing and study uses PDEs. PDEs are now being used more frequently in disciplines
like biology, economics, image processing, graphics and social sciences. As a result,
relevant functions in these variables can be formed when some independent variables
relate with one another in every of the areas listed before. This enables the model-
ing of diverse processes through equations for the corresponding functions. There
are many aspects to the study of PDEs. Developing techniques for identifying explicit
solutions was the conventional approach that predominated the eighteenth century. It’s
vital to note that certain highly complicated problems were not solved via computers.
In most cases, it is also preferred for the solution to be distinct and robust to minor
data interruptions. If these requirements are satisfied, the equation can be understood
theoretically [7-9].

Modern calculus tools like fractional partial differential equations (FPDEs) can be
used to model a number of events in the applied sciences and engineering. Researchers
began to be interested in fractional calculus since it was difficult to treat nonlinear
real-world processes in conventional calculus [10-16]. The proper description of the
behavior of significant physical processes in this context depends on the approxi-
mation of FPDEs and analytical solutions. In light of the aforementioned assertion,
mathematicians have developed and taken into practice a number of computations
and analytical techniques to determine the solutions for a variety of significant math-
ematical models that represent challenges. Mathematicians continue to make the best
efforts possible in this area despite the fact that computing the analytical and some-
times even approximative solutions of some nonlinear FPDEs and systems of FPDEs
is very difficult. Several studies have been done throughout the years in the domains
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of science and engineering all across the world, and many approaches have been cre-
ated to offer the best solutions attainable. The world is always being faced with new,
tough, and complex difficulties and problems; examples include [17-21]. This is an
unstoppable process, and new techniques are being established on a daily basis. The
literature has suggested a variety of approaches to addressing FDEs, which include the
Fractional complex transform [22], Finite difference methods [23], Adomian Decom-
position method [24], Residual power series method [25], Homotopy Analysis method
[26], Differential transform method [27], the Variational Iteration method [28], and
the predictor-corrector approach [29].

This article develops the solution of time-fractional seventh-order Lax’s Korteweg—
de Vries equation and Kaup—Kupershmidt equation using the Elzaki transform
decomposition technique (ETDM) and the Homotopy Perturbation Transform Method
(HPTM). The Elzaki transform was created by Tarig Elzaki to help resolving ordinary
and PDEs in the time domain simpler. On the other hand, the Adomian decomposition
approach [30, 31], which is well known, provides precise solutions in the form of a
convergent series for the solution of linear and nonlinear, homogeneous and nonho-
mogeneous differential equations. In 1998, he introduced HPM [32, 33]. According
to this method, the accuracy is assumed to be an in series solution with a large number
of terms that quickly converges to the actual derived solution. Nonlinear PDEs can be
successfully solved using this method. A higher degree of accuracy was demonstrated
when the HPTM findings were contrasted with the actual solutions to the problems.
The newly developed technique is a mix form of HPM and the Elzaki transform. The
time-fractional seventh-order nonlinear equations are solved analytically using the
existing methods, which are demonstrated to be highly efficient. The outcomes of the
suggested techniques are reliable and offer precise solutions to the desired issues. Our
methods produced infinite series as the results in the numerical examples. When we
write the series in closed form, it gives precise solutions to the relevant equations.
Researchers can use this study as a fundamental reference to examine these strate-
gies and employ it in many applications to get accurate and approximative results
in a few easy steps. The results of fractional problem analysis using the suggested
methodologies are also used to examine the issues from a fractional aspect.

The Korteweg—de Vries (KdV) equation is an example of a partial differential equa-
tion. It has been used as a model for the evolution and interaction of nonlinear waves
to describe a wide range of physical phenomena. This equation was derived as an
evolution that controlled the propagation of long, low-amplitude, one-dimensional
surface gravity waves in a shallow water channel [34]. Nowadays, the KdV equation
is applied in many areas of physics, such as lattice dynamics, collision-free hydro-
magnetic waves, stratified internal waves, ion-acoustic waves, and plasma physics
[35]. Some possible physical phenomena in the framework of quantum mechanics
have been represented using a KdV model. It serves as a model for the propagation
of shock wave, turbulence, solitons, mass transport in fluid dynamics, boundary layer
behavior, continuum mechanics and aerodynamics [36]. In this study, we aim to solve
a fractional-order nonlinear Lax’s Korteweg—de Vries equation using two analytical
methods.
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D#y(w, 1) =— 140y3(w, D) YVp(w,1) — 70))3)(a), 1)
— 280V(@, 1)V (@, 1) Voo (@, 1) — T0V* (@, 1) Voo (@, 1)

= 10V ww (@, 1) Vowo(@,1) — 42V (@, 1) Vowwe (@, 1) ey
— 14V (0, 1) Vowwow (@,1) = Vovwwwws (@, 1),
O<pu=l,

and Kaup—Kupershmidt equation

D*Y(w,1) = — 2016)° (0, 1)V (@, 1) — 630Y3 (w, 1)
— 2268Y(, )V (@, 1) Vi (@, 1) — 50412 (0, 1) Vo (@, 1)

= 252w (@0, D) Voww(@,1) — 14TV (0, 1) Vowwe (@, 1) )
— 42V (0, 1) Vowwwo (@, 1) = Vowwwwes (@, 1),
O<p=1,

The parameter u here denotes the order of the fractional derivative. These equa-
tions serve as a mathematical representation of the complex physical processes that
develop in biology, physics, chemistry and engineering. Examples include nonlin-
ear optics, quantum mechanics, plasma physics, long wave propagation in shallow
water under gravity, and fluid mechanics. Several researchers have used the modified
Cole—Hopf transformation method [37], variational iteration method [38], and pseu-
dospectral method [39] to solve the seventh-order Lax’s Korteweg—de Vries. In [40],
time-fractional Rosenau—Hyman equation is solved numerically using the residual
power series technique and perturbation-iteration algorithm which is a model that is
comparable to KdV. Pomeau et al. [41] investigated the stability of the KdV equation
in terms of singular perturbation and came up with the classical model of Eq. 2.

The format of the present article is as follows: In Sect.2, we begin with the fun-
damental concept of fractional calculus. In Sects.3 and 4, we go over the core ideas
behind the suggested methods. In Sects.5 we give the convergence analysis of the
suggested techniques. These methods are used in Sect. 6 to solve the time-fractional
Lax’s Korteweg—de Vries and Kaup—Kupershmidt (KK) issues with the given initial
condition. The conclusion is presented in Sect. 6.

2 Preliminaries
We presented some fundamental concept of fractional calculus.

2.1 Definition

The fractional derivative in Abel-Riemann manner is taken as [42—44]

ds
i Y(w), p=g,

PEV@ =10 4 jo_ Yo g4 o<y
T(c—w) dos JO (w—g)i—stI %> S n<g,
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where ¢ € ZT, u € R* and
) e »
D FY(w) = —/ (@ — )P V@)dp, 0<p< 1.
r Jo

2.2 Definition

The fractional integral in Abel-Riemann manner is taken as [42-44]

l w
J*Y(w) = —/ (@ — )" V() dw, ©>0, u=>0.
I'(w) Jo
with below properties

THwS = ngw}
Fc+u+1)

Dhys — L6t oy
F(c—pn+1D)

)

2.3 Definition

The fractional derivative in Caputo manner is taken as [42—44]

! ® __ Y(¢)
DFY(w) = { ' Jo ((u—¢)#*§+ld¢’ c—l<p<cg,

L VW), s=n.

3)
with below properties

JEDEY(w) = g(w) — igk(OJr)%(, for >0, and¢ —l<pu<c, ce 1\7(4)
k=0 ’
Dy Jy Y (@) = g(w).
2.4 Definition
The ET of Caputo operator is taken as
51

E[DLY(@)] = s “EV(@)] — Y _ s> # Y0 (0), where ¢ —1 < p <.
k=0

3 Analysis of the HPTM

To present the concept of HPTM, we examine the FPDE of the form
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Dlﬂy(a)’l) = fl[a)]y((l),l) +gl[a)]y(a)vl)7 0< n= I,

with initial condition

V(w,0) =« (w).

(&)

Here, D! = gTi denotes the fractional Caputo operator of order u, and Fi[w], Gi[w]

are linear and nonlinear functions.
Apply the ET, we get

E[D{'Y(»,1)] = EVi[0]Y(®,1) + Rilw]Y (o, D],
1
J{M(u) —u?Y(,0)} = E[Fi[o]Y(@.1) + Gi[]Y (o, )].

On simplification we have
M) = u*Y(,0) + u"E[F [0]Y (. 1) + Gi[o] V(. )].
Apply the inverse ET, we get
V(.1 =Y@,0) +E [ E[Fi [0] V(. 1) + Gilo]V (@, )]].

By applying homotopy perturbation method (HPM) to (9), we have

Y. ) =V@,0) + e[E” W ELF [0]Y(@,1) + Gilo]V(w, ]]].

The basic series form solution is as
(o8]
k
Vi, ) =Y Vo,
k=0

having homotopy parameter € € [0, 1].
The nonlinear term is taken as

GilolV(@,1) =) e H (V).
k=0

The homotopy polynomial Hy is determined as

1 > .
H (Yo, Vi, ey Yu) = ml)’; [g] (Ze'yiﬂ :
k=0 e=0

: k_ of
with De = Sk
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By inserting (11) and (12) in (10), we have

D Vi(@,1) = V(,0) +€ x <E—1 [u“E{fl > Vi, + Zeka(w}D :
k=0 k=0 k=0
(14)

Equating the € coefficient, we have

e V(@) = V(,0),
e Vi, ) =E [W"EF [0V, 1) + H(V)],

€ : M(w,1) =E ' [uEF ]V (0, 1) + H )],
(15)

€ Ve(w, 1) = E7 [uMEF [0l Vi1 (@, 1) + H-1 V)], k>0, keN.

Hence, the series form solution of the proposed method is as

M
Y, = lim 3 V(.. (16)
k=1

4 Analysis of the ETDM
To present the concept of ETDM, we examine the FPDE of the form
DIY(w,1) = Fi(w,1) + Gi1(w,1), 0<p =<1, (17)
with initial condition
V(w,0) =«k(w).
Here, D' = gl—i denotes the fractional Caputo operator of order u, and F; and G are
linear and non-linear functions.

Apply the ET, we get

E[D{'Y(w, D] = E[Fi(0,1) + Gi(®, D],

1 ) (18)
M7{M(u) —uY(w,0)} =E[Fi(@, 1) + Gi(w,D].
On simplification we have
M) = u)(w,0) + u"E[Fi(w,1) + G1 (@, 1)]. 19)

@ Springer
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Apply the inverse ET, we get
V(,1) = V(,0) + E'[u E[Fi (@, 1) + Gi (o, D]. (20)

In terms of ADM, the basic series form solution is as

Vi, )= V(). 1)

m=0

The nonlinear term is taken as

Giw, ) =Y An(), (22)
m=0
with
1| o =
Am<y09ylvy2"" sym>:% [azm {gl <Z€mym)}:| , m :O, 1,2,"' .
’ m=0 £=0
(23)

By inserting (21) and (22) in (20), we have

> V.1 = V@, 0) +Euk [E {fl <

D Inlo, 1)) +> Am(w” :
m=0

m=0 m=0
(24
By equating both sides, we have
M@, 1) = V(w,0),
Vi(@,1) = E™' [ulB(F1 (Vo) + Ao}] - (25)

Hence, the general solution of the proposed method for m > 1 is as

Yn+1(@,10) = E~ [W'E{F1 Q) + An}].
5 Convergence analysis

In this section, the proposed approaches convergence are illustrated.

Theorem 5.1 Assume that the accurate solution of (5) is V(0,1) and let V(0,1),
U, (0,1) € H and p € (0, 1), where H illustrates the Hilbert space. The obtained
solution Z;O:() W, (0,1) converge to W(0,1) if ¥, (0,1) < ¥,_1(0,1) Vg > A, ie,
forany 6 > 03A > 0, such that ||Wy,(0,1)|| < B, Vm,n € N.

@ Springer
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Proof Consider a sequence of Z;}O:o W, (6,1).

Jo(6,1) = W6, 1),
Ji(6,1) = Wo(6,1) + W16, 1),

J2(6,1) = Wo(6,1) + W1 (6, 1) + 2(6, 1),

T3(0,1) = Wo(6, 1) + W1 (6,1) + W2 (6,1) + W36, 1), (26)

jq(@, 1) = \I]O(09 1) + \111(9, 1) + “I’[2(6’ 1) + e + \Ijq(es 1)‘

We must illustrate that 7,(0,1) forms a "Cauchy sequence" in order to attain the
chosen result. Also, let’s take

| Tg+1(0,10) — Ty(0,D]] = [[Wy41(8, D] < Wy (8, 1)]|
< P10, D] < @[ Wy2(0,D]]--- 27
< 9g+111%0(6, V).

Forg,n € N, we have

1740, 1) — Ju(6. |
= (| Wyin (0, DIl = 1750, 1) = Tyg—10, 1) + (Tyg—10,1) — Ty—2(6, 1))
F(Tg20,1) = Ty 30.10) + - + (Tur1(6,1) — Tu (@, )|
< 1T (0, 1) = Tg—10. DIl + [1(Tg=16, 1) — Ty—20, )|
F 1(Tg=20,1) = Tg—3@, D) + -+ + [(Tns10.1) = Tn @, DI (28)
< ©?[%o 0, DI + o7 W (0, DI + - - + 97T [ Wo (6, ]|
= [[Wo(0, Dl|(p? + ¢~ + )

L=
= H\PO(G’I)HW

As0 < e < 1,and ¥ (0, 1) are bound, so take 8 = l—p/(l—pq_n)g)"“ﬂ\llo(& ||,
and we get

Wg4+n (0. DIl < B, Vg,n € N. (29)
Hence, {¥, (0, 1)};"’:0 makes a "Cauchy sequence" in H. It proves that the sequence
{0, 1)};‘;0 is a convergent sequence with the limit lim; , o W4 (6,1) = W (6, 1) for
AW (0, 1) € H which complete the proof. O

Theorem 5.2 Assume that Zi:o W}, (0,1) is finite and WV (0,1) reflect the series solu-
tion. Considering ¢ > 0 with [|Vy+10,1)|| < ||Wr(0,1)]||, the maximum absolute
error is determined as

@ Springer
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k+1

k
19,1 = W@ 0] < Z— 1w, ], (30)

h=0 I-9

Proof Suppose Z’Z:o W, (6, 1) is finite which implies that Z];,:O v, (0,1) < oo.
Let us consider

k 00
W@, 1) =Y W@l =Il Y i, )|

h=0 h=k+1

< > %@l

h=k+1
0 (31)
< > oM,
h=k+1
<" A+ o+ o>+ )IW®. 1l
k+1

=

1 [[Wo(0, DII.
-8

which complete the proof of theorem. O

Theorem 5.3 The result of (17) is unique when 0 < (@1 + (pg)(%) < 1.

Proof Let H = (C[J], ||.||) with the norm ||¢(1)|| = max,cs|¢ (1)| is Banach space,
Y continuous function on J. Let I : H — H is a non-linear mapping, where

ME,, = M§ +E" WP E[FL (M6, 1) + G1 (M6, )]1, [ = 0.

Suppose that |Fj(M) — Fi(M*)| < ¢1IM — M*| and |G (M) — GI(M™)| <
@2 M — M*|, where M := M(0,1) and M* := M*(0, 1) are two separate function
values and ¢1,¢> are Lipschitz constants.

1M = IMP|| < maxies |E [uP BLF (M) = F1 (M)
+ uPB[G (M) — G M|
< maxes [orE” WP EIM — M)
+ @B WP B[M — M7 1] (32)
< maxies (g1 + ¢2) [E7 P EIM — M7
= (o1 +92) [E7 WP BIM — M1

1® N
= (¢1 +§02)(m)”/\4 - M|

@ Springer
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I is contraction as 0 < (¢1 + ¢2)(#‘11)) < 1. The result of (17) is unique by means
of Banach fixed point theorem. O

Theorem 5.4 The result of (17) is convergent.
Proof Let M,,, = Z:":O M, (6,1). To show that M,, is a Cauchy sequence in H. Let

m
M = M|l = maxies| Y Myl n=1,2,3, -
r=n+1

ot |:u5OE |: Z (FiM,—1) + Gi (Mr—l))]:|'

r=n+1

m—1
! |:u5°E |: Z (FiM,) + G (Mr)):|:H (33)

r=n+1

< maxej

= mdax,cj

< max,e s |E7 [uPE[(Fy (Mpm—1) — FI(Mu_1) + G1(Mum_1) — G1(M,_)]l|
< pimax,e 7 |E” u EL(F) (Mu—1) — Fr(Mu— )]
+ pamax,ej |E uS ELG1 (My—1) — G1(Mu— )]

e
= (g1 + §02)(m)||/\4m—1 — M1l

Letm =n + 1, then

||Mn+1 _MIIH

2 n (34)
< @lIMy — M|l £ @7 lIMy—i M2l < -+ < @"[IM1 — Moll,

where ¢ = (¢ + (pz)(#il)). Similarly, we have

M = Ml < [IMpg1 = Mall + [IMpio M il 4 - + [[Mn = M1l
1 —mn
@" +¢" " THIIM = Mol < ¢" (%) M,
(35)

AsO < ¢ < 1,wegetl —¢" ™" < 1. Hence,

n

My — Myl < maxe;|IMill. (36)

l—¢

Since ||M ||| < o0, [IM;; — M, || = 0 when n — oo. Hence, M,, is a Cauchy
sequence in H, illustrating that the series M,, is convergent. O

@ Springer
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6 Applications
Example 6.1 Assume the seventh-order TFLK-dV equation:

DE M(8,1) = —140M3 (6, 1) My (0,1) — TOM; (6, 1)
—280M (0, )My (0,1) My (0,1) — 70./\/12(9, 1) Mgy (0,1)
— T0Mgg (0, 1) Mg (0,1) — 42 Mg (0, 1) Moo (0, 1) 37
— 14M(0,1) Moggge (8,1) — Magegees (6,1),
0<p=1,

with initial condition
M@0, 0) = 2p? sech?(ph)).

Apply the ET, we get

)
E (381{;/l> = E|: — 140M3 (0, 1) Mg(0,1) — 70/\/13(0, 1)

— 280 M (8, 1) Mg (8, ) Mag (8, 1) — TOM> (8, 1) Mggg (6, 1) (38)
— T0Mg (8, 1) Mg (0, 1) — 42 Mg (0, 1) Mpgge (0, 1)

— 14M(6, 1) Mogsas (0, 1) — Mogasego (6, 1)]-

After, we get

iﬁMm)—#Auam}:E{—mmM%auMaao—7mMﬁan

— 280M (B, 1) Mg (B, 1) Mg (0, 1)

— T0M2(9, 1) Mg (0, 1)

— T0Mga (0, 1) Mogg (8, 1) — 42My(6, 1) Mgges (0, 1)
— 14M(0,1) Mgggge (0, 1)

— Maoosssee (0, 1)}, (39)

M@)=uﬂaa0y+¢ﬁ[—1mwﬂwawMan—7aMaan

— 280M(6, )My (6, 1) Mgg (6, 1) — TOM> (0, 1) Mags (6, 1)
— T0Mog (8, 1) Mggg (8, 1) — 42 My (0, 1) Mpgge (6, 1)
— 14M (0, 1) Mogges (0, 1)

— Moygoooee (0, l)]- (40)

@ Springer
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Apply the inverse ET, we get

M@, 1) = M@©,0) +E [W{E[ — 140M3 (6, )My (6,1) — TOM; (6, 1)

— 280M (8, 1) Mg (6, 1) Mag (6, 1)

— 70M2(0, 1) Mago (6, 1) — T0M g (6, 1) Mgag (0, 1)
—42Mg (0, 1) Mggge (0, 1)

— 14M (0, 1) Maggss (0, 1)

— Mogossss (0, 1)} ”

M@®,1) = 2p%sech®(p8)) + E! [u@ {E[ — 140M3 (6, )My (6,1) — TOM; (6, 1)

— 280 M (B, 1) Mg (6, 1) Mga (6, 1)

—TOM?(6, 1) Mggg (0, 1) — T0OMs (0, 1) Maga (6, 1)
—42Mg (0, 1) Mgggg (0, 1)

— 14M (@, 1) Magaes (6, 1)

— Maassseee (0, 1)} ” (41

In HPM manner, the basic series form solution is as:
> M. = <2p2 sechz(pQ))) + <E—1 [MK’E[ — 140<Zeka(M))
k=0 k=0
- 70( > eka(M)) - 280( Z eka(M)>
70( eka(./\/l)) <Z € Hk(/\/l)> (42)
k

—4 ka(M>) (Ze"HuM))
k=0

- (kaMk(9,1)> H)
k=0 066060606

Equating the € coefficient, we have

(e T2 L

€Y Mo(8,1) = 2p* sech?(pb)),
256°1% tanh(p8) sech?(p8)
Cp+1)

el cM1(0,1) =
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1638412 p1%(cosh(2p8) — 2) sech*(p0)

2. —
€ My(6,1) = F2o 1)

)

Hence, the series form solution of the proposed method is as

M@, 1) = Mo(@,1) + M0, 1) + M2(6,1) + - --
256p°1# tanh(p0) sech?(p6)
Cp+1)
N 16384129 p'%(cosh(2p0) — 2) sech*(p8) L
r2e+1)

M(0,1) = 2p? sech®(pd)) +

Solution by means of ETDM

Apply the ET, we get
9%
E { 8.2/1 } = E|: - 140/\/{3(9, DMy (0,1) — 7()_/\/1%(9’ 1)
1

— 280 M0, )My (0,1) Myg(6,1) — 70/\/12(9, 1) Mg (0, 1) 43)
— T0Mpg (8, ) Magg (0, 1) — 42 Mg (0, 1) Mggee (0, 1)

— 14M (0, 1) Mogooe (0, 1) — Masassss (0, 1)]
After, we get

%{M(u) —u’ M(0,0)} = E|: — 140M3 (0, )M (0, 1) — TOM (0, 1)
u

— 280 M (8,1) Mg (8, 1) Mg (8,1)
—TOM2(6,1) Moo (6, 1) — T0OMog (0, 1) Magg (0, 1)
— 42Mp (6, 1) Mogep (6, 1)

— 14M(6, 1) Moagee (0, 1) — Mogaseeo (6, 1)], (44)

M) = u’>M(@,0) + u@E[ — 140M3 (6, )My (6, 1)

— TOM3 (6, 1) — 280 M (0, 1) Mg (6, 1) Mgy (6, 1)
—T0M2(,1) Moo (6, 1) — T0OMeg (0, 1) Magg (0, 1)
— 42Mp (6, 1) Mgogs (8, 1) — 14 M(6, 1) Mgoges (0, 1)

— Monsssee (0, 1)] (45)
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Apply the inverse ET, we get

M@, 1) = M(0,0) +E! [u@{E[ — 140M3 (0, )M (0, 1) — TOM (0, 1)

— 280 M (0, 1) My (0,1) Mgy (9, 1)
— 70./\/12(9, 1D Moggg (0,1) — T0Mgg (0, 1) Mpgg (6, 1)
— 42 M (6, ) Magge (0, 1)

— 14 M (6, 1) Moggge (0, 1) — Maasssss (0, 1)] H

(46)
M(6,1) = 2p° sech®(p9)) + E™! [W{E[ — 140M3(6, )My (0, 1)
—TOM3(6,1) — 280 M (8, 1) Mg (8,1) Mag (6, 1)
— TOM%(0, 1) Magg (9, 1) — T0Mgg (0, 1) Mogs (6, 1)
— 42 M (6, 1) Magge (0, 1)
— 14 M (6, 1) Moggge (0, 1) — Magsssss (0, 1)] H
In ADM manner, the basic series form solution is as:
o0
M@, 1) =" My (0.1). (47)

m=0

The nonlinear terms are taken as M?3(0,1)My(0,1) = Yoo Aum, Mg(@,l) =

> 0B, MO, )M (0, D)Mo (0, 1) = 3 oo Cpy M2, ) Moo (0,1) = Y oy

Dy, Mg (0, ) Maag(0,1) = Yoo B, Mo (8, D Magas (6, 1) = Yo Frn, M(0,1)
Moooog(0,1) = Yo"y Gy Thus, we get

oo oo

3 My (©,1) = M©,0) — " uPlEl =140 A, —70 ) B,
Z =0 =0

m=0
o

o0 o0 o
—280) Cp—=70) Dy =70 Ep—42) Fp
m=0 m=0 m=0 m=0
o0
— 14 " G — Masaossn (6. 1)] H
m=0

o0 o0
Z M, (6,1) = 2p* sech®(p0)) — E~! [zﬁ’ {E[ — 140 Z A
m=0 m=0

o0 o0
—70) "By, —280 ) C,
m=0

m=0
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o o0 o0
—70) "Dy —70) E,—42) T,
m=0 m=0 m=0
o0
— 143" Gy — Maaooass (6, 1)} ” (48)
m=0

By equating both sides, we have

M8, 1) = 2p° sech?(p0)).

Onm =0,
256°1% tanh(p8) sech? (o0
M6 1) = 0 (00) (00)
F'p+1)
Onm=1,
16384129 p10(cosh(2p0) — 2) sech®*(po
Ma(0.1) = p( (200) —2) (p ).

TQ2p +1)

Hence, the series form solution of the proposed method is as

M@, 1) =" My (®.1) = Mo(0,1) + M1 (0. 1) + Ma(0.1) + - -

m=0

256 95/‘)t h(p6 h2 0
M6, 1) = 202 sech?(p8)) + L 110 (pB) sech”(p6)

C(p+1)
N 1638412 p1©(cosh(2p0) — 2) sech*(p8) N
r2p+1)
By choosing g = 1 we get
M@B,1) = 2p7 sech(p (0 — 64p%)). (49)

Example 6.2 Let’s suppose the seventh-order TK-K equation:

DE M(0,1) = —2016 M3 (0, 1) Mg (8, 1) — 630M3 (0, 1)
— 2268 M(0, )My (0, ) Meg (0, 1) — S04 M2(0, 1) Mago (0, 1)
— 252 Mg (8, 1) Mgy (0, 1) — 14T My (6, 1) Mggge (0, 1)
— 42M(0, 1) Mogooo (0, 1) — Mogossee(0,1), 0 <p <1,

(50)
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having initial source

2
M. 0) = %(1 _ %tanhz(pG)).

After, we have

<85"M
E

e ) = E|: — 2016 M3, 1) Mg (6, 1) — 630M3 (6, 1)
"

— 2268 M(0,1) Mg (0,1) Mgg (8, 1) —504./\/12(9, 1) Mg (0, 1) 51)
— 252 Mpg (0, 1) Mggg (0,1) — 14T Mg (0, 1) Mpges (0, 1)

— 42 M (0, 1) Mopgeoe (0,1) — Masassss (0, l)}
After, we obtain

u%{M(u) — i’ M(6,0)} = E|: — 2016 M3 (0, 1) Mg (0, 1) — 630M3 (6, 1)

— 2268 M (0,1) Mg (0,1) Mg (0, 1)
— 504./\/12(6’, 1 Moggg(0,1) — 252 Mg (6, 1) Mg (0, 1)
— 147 Mg (6,1) Mygge (6, 1)

— 42 M0, 1) Moggeo (0,1) — Magssses (0, 1)}, (52)

M) = uM(0,0) + uKJE|: — 2016 M3(6, )My (6, 1) — 630M3 (6, 1)

— 2268 M (0, ) Mg (0, 1) Mg (0, 1) — 504 M>(6, 1) Mape (0, 1)

53
— 252 Mg (8, 1) Moo (0,1) — 14T Mg (0, 1) Maggo (6, 1) 9

— 42 M0, 1) Moo (0, 1) — Magasass (9, 1):|~
Apply the inverse ET, we get

M@B,1) = M@©,0) +E! [u@{E[ — 2016 M3 (0, )My (0, 1) — 630M3 (6, 1)

— 2268 M (6, 1) Mg (0,1) Mgg(6,1) — 504./\/12(9, 1) Mg (0, 1)
— 252 Mg (0, ) Magg (0,1) — 14T Mg (0, 1) Mggee (6, 1)

— 42 M (0, 1) Mopgooe (0,1) — Masassss (0, 1)} ”
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2
M@,1) = %(1 — %tanhz(pé)) +E7! [up{E[ — 2016 M3 (0, 1) My (8, 1)

— 630M3 (0, 1) — 2268 M (8, ) My (0, 1) Mga (9, 1)
— 504 M2 (0, 1) Mggs (0, 1) — 252 M s (6, 1) Mags (6, 1)
— 147 Mg (6, 1) Mopgge (0, 1) — 42M(6,1)

Moogooe (0, 1) — Maaaseee (0, 1)] ” (54)

In terms of HPM, the basic series form solution is as:

oo ;02 3
> M. = <?(1 -3 tanhz(,oé)))

k=0
n (E_1 [upE[ - 2016< Zeka(M)> — 630<Z Eka(M))
k=0

k=0
- 2268(2 " Hy (M)) - 504( > eka(M)>
k=0 k=0
- 252( Zeka(M)> - 147( Zeka(M))
k=0 k=0

—42<Zeka(M)> - (Zek/\/tk(e,l)) H) (55)
k=0 k=0 0006660

Equating the € coefficient, we have

3
¥ Mo6,1) = ?(1 - 5tanhz(p@)),

4p%1# tanh(p0) sech?(pH)

’

el Mi6,1) =—

3+ 1)
€ Ma(6.1) = 16p'012# (cosh(2p6) — 2) sech4(p0)’
Ir2p + 1)

Hence, the series form solution of the proposed method is as

M@@,1) = Mo@,1) + M(0,1) + M2(0,1) + - -
4p%1® tanh(p6) sech?(pb)
3+ 1)
N 16p'012# (cosh(2p0) — 2) sech*(pH) L
Ir2p + 1)

2
M@, 1) = %(1 - %tanhz(pH)) _
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Solution by means of ETDM
Apply the ET, we get

{860/\/1
E

e } = E|: — 2016 M3, 1) Mg (0,1) — 630M3 (6, 1)

— 2268 M (0, )My (0, 1) Mg (0, 1) — 504 M>(6, 1) Mape (0, 1) 56)
— 252 Mg (6,1) Mggg(0,1) — 14T Mg (0, 1) Mggee (0, 1)

— 42 M (0, 1) Moggge (0, 1) — Magassss (0, 1)].
After, we obtain

%{M(u) —u*M(@0,0)} = E|: — 2016 M3, )My (6, 1) — 630M3 (6, 1)
y

— 2268 M (0, ) Mg(6,1) Mag(6,1)
— 504 M>(6, 1) Mago (0, 1) (57)
— 252 Mg (0, 1) Mggg (0,1) — 14T Mg(0,1) Mggee (6, 1)

— 42 M (0, 1) Mogeoe (0, 1) — Masassss (0, l)},

M) = u> M(8,0) + uK’E[ — 2016 M3 (6, )My (0, 1) — 630M; (6, 1)

— 2268 M(0, 1) Mg (8, 1) Mg (6, 1) — 504 M>(6, 1) Mg (6, 1)

58
— 252 Mg (8, 1) Mage (0, 1) — 14T Mg (0, 1) Moggeo (0, 1) ©8)

— 42M(0, 1) Mooose (0, 1) — Masogees (0, 1)}
Apply the inverse ET, we get

M@B,1) = M(@©,0) +E! |:u5’{E|: — 2016 M3(0, ) Mg (8, 1)

— 630M3 (0, 1) — 2268 M (6, ) Mg (0, 1) Mgg (6, 1)
_ 504/\/{2(9’ 1)_/\/1099 (0, l) — 252./\/100 (97 1)M099 (93 1)
— 147 My (6, 1) Magag (0, 1) — 42M (6, 1) Mogae (0, 1)

— Mossssee (0, 1):| ”

2
M@,1) = %(1 - ;tanhz(pQ)) +E7! [MP{E[ — 2016 M3 (0, 1) My (8,1)

— 630 M3 (6, 1) — 2268 M (6, )My (0, 1)
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Moo (0,1) — 504 M2 (0, 1) Moga (0, 1) — 252 Mg (0, 1) Moea (0, 1)
— 147 M (6, 1) Moo (0, 1) — 42M(6, 1) Myggss (0, 1)

— Moosssee (0, 1):| ” (59

In terms of ADM, the basic series form solution is as:

o
M@O.1) =Y Mu®.1). (60)
m=0
Let us assume nonlinear terms by adomian polynomial as M3O, )My (0,1) =
Yoo B, M3O,1) = 30 By, MO, )Mg (0,0 Me(0,1) = Yo Cp,

MZ(O,1)Maga(0,1) = 300 Dy, Mg (0, D Moag(0,1) = 300 By, Mp(6,1)
Moooe(0,1) = Y oo Fouy M0, 1) Mogose (0,1) = > oo Fru. So, we get

o0 o0 o0
> Mu(6.1) = M@©,0) —E”! [u@{E[ —2016 ) " A, —630 Y By,
m=0 m=0

m=0
o0 o0 o0
—22682@,,, —50421@,” —25221&”
m=0 m=0 m=0

o0 o0
— 147 Z F,, —42 Z G — Mogassss (0, 1)] ”
m=0 m=0 (61)
— :02 3 2 —1| p .
> Mu(®.0) = 5-(1 = S tanh’(p8) — |:u H - 2016;)&”

"= o0 o0 o0 o0
—630 ) "B, —2268 Y C, —504) D), —252) R,
m=0 m=0 m=0 m=0

o0 o
— 147 Z F, —42 Z Gm — Mooeseeo (6, 1)] H
m=0 m=0

By equating both sides, we have

> 3
Mo(0,1) = ?(1 - ztanhz(pe)).

Onm =0,

4p°1# tanh(p0) sech?(ph)

M6 ) = - 3 (p + 1)
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(a) (b)

0.5

(b)

0.5+

0.4

Fig.2 The graphical view of our approaches solution at g = 0.8, 0.6

(b)

p=1
$=0.75

$=0.50

p=0.25

go

Fig.3 The graphical view of our approaches solution at different orders of g
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Fig.4 The graphical view of our
approaches solution by means of

absolute error

Table 1 Nature of accurate and our approaches solution for TFLK-dV equation at various orders of ¢

B 6 © =07 » =0.8 © =09 » = l(approx) » = l(exact)
0.01 0.2 0.3195902 0.3190435 0.3185029 0.3179660 0.3179660
0.4 0.3151229 0.3140570 0.3130030 0.3119561 0.3119561
0.6 0.3068229 0.3052898 0.3037739 0.3022682 0.3022682
0.8 0.2950949 0.2931661 0.2912589 0.2893645 0.2893645
1 0.2804830 0.2782424 0.2760268 0.2738262 0.2738262
0.02 0.2 0.3196105 0.3190570 0.3185115 0.3179713 0.3179713
0.4 0.3151626 0.3140833 0.3130198 0.3119665 0.3119665
0.6 0.3068799 0.3053277 0.3037981 0.3022832 0.3022832
0.8 0.2951667 0.2932137 0.2912892 0.2893833 0.2893833
1 0.2805664 0.2782977 0.2760621 0.2738480 0.2738480
0.03 0.2 0.3196279 0.3190691 0.3185197 0.3179766 0.3179766
0.4 0.3151964 0.3141070 0.3130357 0.3119769 0.3119769
0.6 0.3069286 0.3053617 0.3038210 0.3022981 0.3022981
0.8 0.2952280 0.2932565 0.2913180 0.2894020 0.2894020
1 0.2806375 0.2783474 0.2760956 0.2738698 0.2738698
0.04 0.2 0.3196436 0.3190805 0.3185276 0.3179819 0.3179819
0.4 0.3152270 0.3141291 0.3130511 0.3119872 0.3119872
0.6 0.3069726 0.3053935 0.3038431 0.3023130 0.3023130
0.8 0.2952833 0.2932966 0.2913459 0.2894208 0.2894208
1 0.2807018 0.2783939 0.2761279 0.2738916 0.2738916
0.05 0.2 0.3196581 0.3190912 0.3185353 0.3179872 0.3179872
0.4 0.3152553 0.3141501 0.3130661 0.3119976 0.3119976
0.6 0.3070133 0.3054238 0.3038647 0.3023279 0.3023279
0.8 0.2953346 0.2933346 0.2913731 0.2894395 0.2894395
1 0.2807614 0.2784381 0.2761595 0.2739134 0.2739134
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(a)

0.4+

2

Fig.5 The graphical view of accurate and our approaches solution

Onm=1,

1600128 (cosh(2p8) — 2) sech*(pH)

Ma®.1) = o (2p + 1)

Hence, the series form solution of the proposed method is as

M@O.1) =Y Mpu®.1) = Mo(®.1) + Mi(0.1) + Ma(®.1) + - -

m=0

4p%1® tanh(p6) sech?(pH)
3AM(p+ 1)
16p'012% (cosh(2p8) — 2) sech* (pH)
* 9r2p + 1) L

2
M@, 1) = %(1 - ;tanhz(pG)) —

By choosing o = 1 we get

2 6
M@, 1) = %(1 - %tanhz (p[e + 4%1})). (62)

Numerical simulation studies

In this study, the exact approximate solution of time-fractional seventh-order nonlin-
ear equations has been studied using two novel approaches. The Caputo fractional
derivative operator at any order for variable values of space and time is presented as
exact analytical solutions for the time-fractional seventh-order nonlinear equations
via Maple. The numerical results demonstrate the technique’s applicability, and the
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(a) (b)

Fig.6 The graphical view of our approaches solution at g = 0.8, 0.6

(a) (b)

. p-1
B 9-075

$=0.50

$=0.25

Fig.7 The graphical view of our approaches solution at different orders of g

Fig.8 The graphical view of our
approaches solution by means of
absolute error

precision of the approach is assessed in light of the precise results. The suggested
approaches solution plot of M (8, 1) is shown in Fig. 1a, while Fig. 1b shows the actual
solution plot. Figure 2a,b display the fractional-order behavior of M (0, 1) for o = 0.8
and 0.6. Figure 3a, b show the plots of M (6, 1) for the range of o = 0.25, 0.50, 0.75,
and 1, whereas Fig.4 displays the error evaluation for the same equation generated
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Table 3 Nature of the accurate and proposed approaches solution at various orders of o

B 6 ©» =0.85 » =0.90 © =0.95 » = l(approx) » = l(exact)
0.01 0.2 0.06080016 0.06080053 0.06080090 0.06080126 0.06080127
0.4 0.05947033 0.05947106 0.05947178 0.05947249 0.05947250
0.6 0.05731134 0.05731240 0.05731345 0.05731449 0.05731450
0.8 0.05440336 0.05440470 0.05440604 0.05440736 0.05440738
1 0.05084969 0.05085128 0.05085287 0.05085443 0.05085444
0.02 0.2 0.06080014 0.06080052 0.060800894 0.06080125 0.06080126
0.4 0.05947030 0.05947103 0.059471766 0.05947247 0.05947249
0.6 0.05731130 0.05731236 0.057313426 0.05731445 0.05731448
0.8 0.05440330 0.05440466 0.054406011 0.05440732 0.05440735
1 0.05084963 0.05085123 0.050852830 0.05085438 0.05085441
0.03 0.2 0.06080013 0.06080051 0.06080088 0.06080124 0.06080125
0.4 0.05947027 0.05947101 0.05947174 0.05947245 0.05947247
0.6 0.05731126 0.05731233 0.05731340 0.05731442 0.05731445
0.8 0.05440325 0.05440462 0.05440597 0.05440728 0.05440732
1 0.05084957 0.05085118 0.05085279 0.05085433 0.05085438
0.04 0.2 0.06080012 0.06080050 0.06080087 0.06080123 0.06080124
0.4 0.05947025 0.05947099 0.05947173 0.05947243 0.05947246
0.6 0.05731122 0.05731230 0.05731337 0.05731439 0.05731443
0.8 0.05440320 0.05440458 0.05440594 0.05440724 0.05440730
1 0.05084952 0.05085114 0.05085275 0.05085429 0.05085435
0.05 0.2 0.06080011 0.06080049 0.06080086 0.06080122 0.06080124
0.4 0.05947022 0.05947097 0.05947171 0.05947241 0.05947244
0.6 0.05731119 0.05731227 0.05731334 0.05731436 0.05731441
0.8 0.05440316 0.05440454 0.05440591 0.05440720 0.05440727
1 0.05084946 0.05085109 0.05085271 0.05085424 0.05085432

by both methods. For various values of 6 and 1, the analytical solution to the equation
M0, 1) is displayed in Table 1 while the error evaluation has been evaluated in Table
2 for various values of 6 and 1. The proposed techniques solution plot of M(8,1) is
shown in Fig. 5a, while Fig. 5b shows the actual solution plot. Figure 6a, b display the
graphical representations of M(6, 1) for o = 0.8 and 0.6. Figure 7a, b show the plots
of M (8, 1) for the range of g = 0.25,0.50, 0.75, and 1, whereas Fig. 8 displays the
error evaluation for the same equation generated by both methods. For various values
of 0 and 1, the analytical solution to the equation M (0, 1) is displayed in Table 3 while
the error evaluation has been evaluated in Table 4 for various values of 6 and 1. It need
to be noted that throughout the calculations, we used second-order approximations
and that using accurate results to the problem gave us a better estimate. We could
have obtained more accurate approximation solutions by increasing the order of the
approximation, which results in more terms in the solution.
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7 Conclusion

The ETDM and the HPTM are two unique methodologies that have been thoroughly
examined in this work for solving non-linear fractional seventh-order Lax’s Korteweg—
de Vries and Kaup—Kupershmidt equations. The methods that are proposed are the
combined form of the Elzaki transformation with the homotopy perturbation method
and the Adomian decomposition approach. The fractional-order solutions give dif-
ferent dynamics for different fractional orders of the derivative. In comparison to
numerical studies, which require more complex computations, the task can be com-
pleted quite simply and effectively using analytical solutions. After all, the researchers
can now choose the fractional-order issue whose solution is comparable and extremely
close to the experimental results of any physical problem. The graphical analysis of
the revealed solutions was executed. The study’s findings showed that the precise solu-
tions offered and those actually found were very congruent. As the problems fractional
orders change, different dynamical patterns emerge in the solutions, which are gener-
ated for various fractional orders. The tables show the applicability of the suggested
methods by offering a variety of fractional-order results. The existing approaches have
shown to be an efficient and straightforward process when compared to the precise
solution. Finally, this research leads us to the conclusion that the suggested approaches
are strong and useful mathematical tool for examining a variety of real problems that
arise in the natural sciences and engineering and that may be represented by fractional
differential equations.
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