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Abstract— Recently, multiple cutting edge technologies to 
facilitate data collection processes have emerged. One of the most 
prominent ones is the In-Vehicle Data Recorder (IVDR). Various 
identification technologies were employed to relate the IVDR’s 
data to multiple drivers sharing the same vehicle. Irrespective to 
the level of sophistication, all of these technologies still have 
considerable limitations on identifying drivers’ identity.  

The purpose of this study is to propose a methodology which 
can identify the driver of a given trip using historical trip-based 
data. To do so, an off-the-shelf Machine Learning (ML) 
framework is proposed. The main goal is to take advantage of 
inexpensive data – such as driver-labelled trip data - to build a 
pattern-based algorithm able to identify the trip’s driver 
category when its true identity is unknown. The proposed 
framework includes feature evaluation and category 
identification. Our ultimate goal is to provide an inexpensive 
alternative to existing IVDR technologies which can serve as their 
complement and/or validation purposes. 

Experiments conducted using four different types of induction 
learners over a real-world case study from Israel uncover the 
potential of this idea: decision trees obtained a promising range 
of accuracies on this task (i.e. 75% to 100%). 
 

Index Terms— Identification methods, in-vehicle data 
recorders, data entropy, feature selection, classification, 
supervised learning. 

I. INTRODUCTION 

n the last decade, significant advances have been made in 
measuring and communication technologies. Such advances 

led to a considerable growth in the development and use of 
Intelligent Transportation Systems. One of the widely used 
technologies regarding observing driver behavior is In-Vehicle 
Data Recorder (IVDR). IVDR is a system able to measure 
vehicle’s movement, driver control, and vehicle’s 
performance. Early usage of these systems was targeted 
towards fuel efficiency and vehicle location tracking purposes. 
Recently, it has been also proposed for driver behavior 
monitoring and traffic safety purposes [1]. IVDR can record 
detailed information on driving performance and thus assist in 
developing intelligent systems adapted to each driver’s unique 
driving characteristics. Several researchers applied 
classification and identification methods and developed 
algorithms on driver behavioral characteristics to detect 
abnormal driving behaviors for automotive control 
applications [2-4].  

In many cases, the same vehicle is shared by multiple 
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drivers (two or more). Thus, one of the challenges that 
researchers face when using IVDR devices in shared vehicles 
is the driver’s identification . Several identification 
technologies exist. However, the use of these technologies 
does not solve this issue adequately (i.e. expensive and/or 
inaccurate). Consequently, it is critical to develop affordable 
methodologies able to deal with such information loss.  

The availability of Global Positioning System (GPS) data 
faced an explosive grow. This data is available everywhere 
and widely used among transportation industry. Recently, 
Wallace et al. [5] used GPS and OBDII logs (on-board 
diagnostics) from a preliminary sample of 100 trips and 4 
drivers to test the potential of time of day, road choice, 
velocity and acceleration data to provide attributes to 
distinguish between drivers of a shared vehicle. Hence, the 
sample size is reduced to generalize significant conclusions on 
this topic. At the best of our knowledge, this is the only 
research work proposed using this approach.  

The main purpose of this study is to develop a methodology 
which can identify the driver for a given trip of interest using 
historical trip-based data. This data is not more than a high 
level aggregation of Floating Car Data (FCD) collected 
through a user-identified device, such as a registered GPS 
antenna and/or smartphone. Per opposition to most of existing 
IVDR and/or computer vision techniques to perform driver 
identification, we aim to leverage in simple things such as the 
daily seasonality inherent to the human behavioral routines 
(e.g. wake up, go to school and get back home for lunch). 
Moreover, the collection of this type of data is easier due to 
the amount of devices that already exist in our surroundings 
with capabilities of storing and/or broadcasting this type of 
data. Such availability makes the information about the 
driver’s identification easier and cheaper to get than for any 
other data source (e.g. video cameras) or abovementioned 
IVDR technologies. Throughout this simple idea, we intend to 
boost the existing technologies with a knowledge discovery 
framework. 

To do so, an off-the-shelf Machine Learning (ML) 
framework is proposed. The main goal is to take advantage of 
the driver-labelled trip data to build a pattern-based algorithm 
able to identify the trip’s driver where its true identity is 
unknown. Data collected from a particular case study from 
Israel ([6]) is used to validate the applicability of the proposed 
methodology to this task. The contributions of this study are 
twofold: (1) the suggestion and exploitation of supervised 
learning approach over trip-based data (easier to collect and to 
process) to serve as complement to existing IVDR 
technologies through an exhaustive comparison of different 
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types of induction learners; (2) a simple State-of-the-Art 
entropy-based framework to describe the explanatory power of 
multiple features regarding the driver identification from trip-
based data. 

This paper is structured as follows: next section presents a 
comprehensive literature review about the topic. Section III 
presents the research methodology and discusses ML 
techniques including feature evaluation and category 
identification. This is followed by a description of the real-
world case study used to evaluate the applicability of this 
method. Section IV presents the results including: (1) the 
commonalities between the trip’s data on identified and 
unidentified trips; (2) the importance of each data feature and 
(3) category identification accuracy. Section V introduces a 
brief discussion on the obtained results, followed by section 
VI which concludes the paper. 

II. LITERATURE REVIEW 

Earlier research have used IVDR as a measurement tool to 
observe drivers’ naturalistic driving behavior, such as the “100 
cars naturalistic study” [7, 8], DriveAtlanta [9], and 
PROLOGUE [10]. Later, this tool was also used for 
intervention purposes; it supported reducing risky behaviors 
by providing feedback to drivers or to those who are 
responsible for their driving (e.g. parents, fleet managers), 
[11-13].  

IVDRs are widely applied. Yet, one of their drawbacks is 
the driver identification. For example, in Farah et al. [6, 13] all 
members of a participating family were requested to identify 
themselves at the beginning of each trip using Dallas keys 
(personal magnetic identification keys). However, when 
analyzing the trips’ dataset it was found that 22% of these trips 
were unidentified. 

The following sub-section provides an overview of the main 
identification technologies, as well as a comparison of their 
related weaknesses and strengths. 

A. Identification Technologies 

There are several identification technologies existing today 
that can be classified into two main categories: Physical 
systems and Sensing systems.  

Physical Systems: 

• Dallas keys/iButtons are personal magnetic identification 
keys (chip-based data carrier) which were used by [10] and 
[6, 13] for driver identification.  

• iRFID (Radio Frequency IDentification) technology is 
based on the use of radio waves to read and capture 
information stored on tags attached to persons, vehicles 
and other objects [14]. It has a similar concept to a 
barcode. However, unlike the barcode, the tag does not 
necessarily need to be in direct line-of-sight of the reader. 
This technology enables remote and automated data 
gathering using a wireless communication [15].   

 

Sensing Systems: 

• In-vehicle video cameras [16]. The most sophisticated 
technologies on this research line are the Apple iPhoto 
and the Google Picasa [17, 18], which are based on face 
detection and identification. In the context of driving, 
this technology takes a single snapshot of the driver’s 
face at the trip’s start to identify him/her. 

• Biometric fingerprint systems [19].  In the context of 
driving, upon vehicle startup, drivers need to verify their 
identity by a pre-authorized fingerprint.  

• Voice recognition and iris technology [20-22] can be 
also used for driver’s identification. These are two highly 
unique features in the human body (even identical twins 
present differences with respect to these features). The 
voice recognition is done through an in-vehicle 
microphone combined with a biometric speech 
identification software. Iris technology relies on two 
basic types of eye scans: iris scanning and retinal 
scanning.  

 

B. Shortcomings of existing identification technologies 

Each of the previously mentioned technology has its own 
strengths and weaknesses. Table I summarizes those points for 
each of them. 

Reference [23] considered several driver identification 
methods including key fobs or entry codes [24, 25]. However, 
these still require driver activation. Other options which were 
considered included the use of wearable devices [26] or 
applications downloaded onto mobile phones [27]. 
Nevertheless, these devices are not convenient as drivers will 
need to carry them on personally. 

ML and Computer Vision approaches [28, 29] have also 
been explored to this end. This type of methods aims to 
somehow identify the driver based on the images captured by 
a high-resolution video camera. Indeed, the richness of the 
features provided by multiple images per second represents a 
perfect gem to be explored by many of the cutting edge 
classification algorithms (e.g. Convolution Neural Networks 
[30]). Yet, they require a considerable large amount of 
samples to provide a reasonable output. On the other hand, 
more traditional approaches such as Support Vector Machines 
(SVM) require a complex and expensive future engineering 
process, which is not affordable in many cases, e.g. [32]. 
Contrary to video cameras, GPS antennas are widely spread 
among the automotive industry. Consequently, the 
accessibility of such individual probe car traces is higher than 
those camera footages – and therefore, to be explored by a 
knowledge discovery framework. 

C. The main contributions of this paper 

The analysis performed throughout the previous section 
uncovered that the state-of-the-art technologies for driver’s 
identification still have multiple limitations to overcome. They 
are related with the relationship between their identification 
accuracy and their cost – which are still far unbalanced in 
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most of the cases. The main motivation for this paper is to 
provide a way of generalizing driver’s behavior regarding 
their mobility seasonality. We propose to leverage on 
inexpensive FCD acquired from each individual to understand 

who is driving through a ML pipeline. Such data driven 
methodology is introduced throughout the next section. 

 

TABLE I 
COMPARATIVE TABLE BETWEEN EXISTING IDENTIFICATION (IVDR)  TECHNOLOGIES 

 
Technology Strengths Weaknesses 

Physical Systems 

Dallas keys/ 

iButtons 

- Relatively have a low cost; 

- Easy to implement [17]; 

- Requires drivers’ activation; 

- Can be  transferable among drivers, i.e. a driver can use another driver’s Dallas key  [1]; 

iRFID (Radio  

Frequency 
IDentification) 

- Relatively have a low cost; 

- Easy to implement; 

- Requires to attach the tag directly to the driver and not to the vehicle; 

- Drivers need to remember to wear it with them when driving; 

Sensing Systems 

In-vehicle  

video cameras 

-  It does not require drivers’ activation; - Costs more than the physical systems;  

- Camera’s lens can be highly sensitive to illumination conditions and driver orientation; 

Biometric  

fingerprint 
systems 

- Easy to use; 

- Have mono identification (i.e. unique for 

every person). 

- Relatively more accurate and reliable; 

- Moderately cheap; 

- Highly intrusive [31]; 

Voice  

recognition 

- Quite accurate; - Can be easily bypassed by using a pre-recorded voice of another driver; 

- Relatively expensive [1]; 

Iris 
technology 

- Quite accurate; 

- Not that easily bypassed; 

- Drivers may need to remove eyewear; 

- Scans may not work with people with cataract or glaucoma [1]; 

- Relatively expensive [1]; 

 

III.  METHODOLOGY 

The regularities of the human behavior have been providing 
important advances in many transportation-based research 
topics. Some successful examples on applying such insights 
are the passenger demand prediction problem [33] or the bus 
schedule planning [34]. In this particular application, the 
authors intend to take advantage on such type of seasonal 
patterns and trends to address the driver identification failures 
presented by most of the state of the art methodologies.  

Although being mostly invisible to human eye, such 
patterns are contained by the trip-based data. Consequently,  
data driven methodologies can solve such information loss in 
an effective and inexpensive way. 

Let T = {t�, t�, . . . , t	} define a series of n trips t� (which 
can also be denoted as data samples). Each trip t� can be 
expressed as a pair t� = (X�, Y�) where X� = {x�,�, x�,�, . . . , x�,�} 
stands for a set of ′a′ variables which describe a given trip and 
Y� ∈ L denotes the driver category form a set of c = |L| 
possible categories (which correspond to driver’s category in 
each family from the present context). From now on,  X =
{x�, x�, . . . , x�} is denoted as the Features - which have values 
X� for each sample i - while the driver category Y� will be 
denominated as the Target Value. 

 
Theoretically, there is a function ω capable of determining 

the Driver Category (i.e. Target Value) based on the feature 
values X�. It can be expressed as ω(X�) = Y�. However, the  

 

 
 
 
scope of this study is on exploring the different driving 
behaviors on each family. Therefore, a Statistical 
Independence is assumed to be in place between the trips of 
each family. Consequently, the previous equation can be 
extended as 

ω(X�, F�) = Y�                               (1) 

where F� stands for the family of the trip i. To introduce such 
independence, the original dataset T was split into f datasets as 
T = ⋃ T�

�
���  where f stands for the total number of families 

included in the study and T� contains only the trips performed 
by someone from family j. 

Hereby, a series of methods is proposed to extract Driver 
Information from a real world trip dataset T. Then, ML 
techniques are proposed to automatically explore the acquired 
data in order not only to 1) approximate the real function ω as 
much as possible, but also 2) to explain which are the 
relationships expressed between the feature values X� and the 
target values Y� and also within the feature set F. Concretely, 
these problems can be divided on the following two tasks: (i) 
Features Evaluation - to determine which are the most 
informative features to determine the trip’s driver in each 
family dataset; (ii) Category identification - to infer a function 
to determine the trip’s driver in each family dataset by 
employing Supervised ML techniques over the dataset. 

The remaining of this section is structured as follows: 
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firstly, the learning techniques for the above mentioned tasks 
are described in subsections A and B. Finally, the case study is 
detailed in the subsection C. 

A. Features evaluation 

Empirically, it is possible to conclude that the variable’s 
importance to determine the driver category on each family 
depends on the degree of randomness of the target variable 
(i.e. the trip’s driver) on each dataset of trips for a given 
family i, i.e. T�. In Information Theory, such quantity is also 
known as Entropy . This can easily be expressed by the 
following example: in family A, you have always the same 
driver...while in family B, you have always different drivers 
on each trip. While it is easy to predict the driver for the trips 
by family A - as it is always the same driver (i.e. low entropy), 
it may not be that easy for family B (i.e. high entropy).  

Information Gain (IG) is a metric commonly used in many 
Information Theory problems. One of its most popular 
applications is on selecting the attribute on which a split 
criteria must be set regarding the building of a decision node 
on Decision Trees (i.e. see, for instance, C4.5 algorithm in 
[35]). Hereby, IG was used to evaluate the feature relevance 
on inferring the trip’s driver on each family. 

B. Category Identification 

Departing from the features discovered to be relevant to 
infer the trip’s driver on each family using the 
abovementioned Information Gain, the dataset need to be used 
in order to extract the dependencies in place between the Y 
and X. By doing so, it would be possible to predict which will 
be the trip’s driver on future trips - where the driver is 
unidentified. The process of assigning output values given a 
set of input ones based on a given training dataset is known as 
Supervised Learning. As Y is a categorical variable (i.e. the 
category of the driver inside a given family), this comprises a 
Classification problem. Formally, the target is to Generalize 
the behavior and the characteristics of a Population (i.e. 
family) using only some data samples extracted from it. The 
aim is to build a function ω(X, F) ∼ ω(X, F) based on the 
labelled trips dataset of each family. This function is named as 
the predictive model. Obviously, the generalization comprises 
a given error ϵ - since each dataset represents only a part of 
the entire population. Based on ϵ, it is possible to express the 
previous relationship as follows: 

                       ω(X, F) = ω(X, F) + ϵ                                (2) 

The task behind a classification problem is to select a 
learning method able to approximate ω(X, F) by minimizing 
the value of ϵ. Hereby, we focus on four types of algorithms: 
1) Decision Trees using the C4.5 algorithm [36] and Logistic 
Model Trees (LMT)  [37], 2) Bayesian Learning using Naive 
Bayes (NB) [38], 3) Kernel-based using Support Vector 
Machines (SVM) [39] and 4) Instance Based using k-Nearest 
Neighbors (kNN) [40].   

In this paper, it is proposed to explore these five state-of-
the-art algorithms on this task. By doing so, we expect to 
provide insights on which is the best one to handle these type 
of problems and/or datasets. The different learning algorithms 

are evaluated by their accuracy using the 10-fold cross 
validation method on each family dataset.  

To evaluate the applicability of the above mentioned 
method, a comprehensive data set on both identified and 
unidentified trips was collected from a real world case study. 
This study is described in the following section.   

C. Case Study: "The First Year Study"  

In the "The First Year Study" the IVDR system that was 
used [6, 13] was the GreenRoad technology. It is a g-force 
based system which tracks all trips made by the vehicle and 
records the following information: 

� Trip start and end times; 
� Driver identification using Dallas keys; 
� Vehicle location; 
� Events of excessive manoeuvres defined by patterns 

of g-forces measured in the vehicle. 

Data from the IVDR was collected throughout one year. 

Participants & recruitment process 

A rolling recruitment procedure was carried out between 
July 2009 and November 2010. The data collection process 
was already in place throughout this period. 242 families 
started participation in the experiment. However, just 217 
completed the one year period. This represents a drop rate of 
10.3%. Participants were informed at the beginning of the 
study about a monetary compensation for their participation of 
1000 NIS (approximately $250) which they received at the 
end of the study. This was used as an incentive for 
participation.  

The recruitment’s process, the characteristics of the drivers 
and their families is described in detail in [6, 13]. Implications 
derived from the participation of the driver’s parents in this 
study is also reported in the abovementioned studies. 
 

Data collection 

The data collected in the experiment in terms of number of 
trips and driving hours by each family member, and for the 
unidentified trips are described in Table II. 
From analysing Table II, it is possible to conclude that roughly 
22% of the trips are unidentified, while 21% of the total 
driving time also follows the same pattern. Such ratio 
constitutes a significant portion of the total data which should 
not be discarded at any case to carry out any data driven 
analysis, regardless its goal. When further analysing this ratio 
per family it was found that many families present highly 
unbalanced identification ratios. In particular, ~62% of the 
families had an identification ratio above 0.8, ~25% had an 
identification ratio between 0.6-0.8. However, there are some 
families, ~8%, that had relatively similar number of identified 
and unidentified trips (between 0.4-0.6), and others ~5% that 
had an identification ratio between 0-0.4. 

The set of variables which describe a given trip X� =
{x�,�, x�,�, . . . , x�,�} are detailed in Table III. Four types of trips 
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TABLE II 
 NUMBER OF TRIPS AND DRIVING HOURS BY CATEGORY OF DRIVER 

Category No. of Trips Driving Hours (h) 

Young driver 108191 34074 

Father 78963 31325 

Mother 102120 33701 

Other family members 20070 7187 

Unidentified 87181 28489 

Total 396525 134776 

 
were defined: HH (home to home), which are trips that start 
and end in the area around home; HO (home to other), which 
are trips that start at home area toward a more distant location; 
OH (other to home), which are trips that start from a distant 
location toward the home area, and OO (other to other), are 
trips that start and end from locations distant from the home 
area. In this study, a home area is defined as the length of the 
radius of a circular area around the location of its exact 
address. This definition has an impact on the trip’s 
classification as (HH, HO, OH, and OO). An algorithm was 
developed in [41] to define a specific radius of a circular area 
around the home location of each participating driver. The 
average radius across families in the dataset was 1034 meters 
(SD= 346). Further details regarding this algorithm can be 
found in [41]. 
 

TABLE III 
SET OF VARIABLES THAT DESCRIBE A GIVEN TRIP 

Variable Type Domain 

Weekday Categorical {SUN, MON, …, SAT} 

Departure time Categorical 
{00-3, 3-6, 6-9, 9-12, 12-15, 
15-18, 18-21, 21-00} 

Trip duration (min) Categorical 
{0-5, 5-15, 15-30, 30-60, 60-
120, 120-180, >180} 

Trip aggressiveness 
level 

Categorical 
{Moderate, Intermediate, 
High} 

Solo or 
accompanied 

Categorical {Solo, Accompanied} 

Number of events 
(IVDR) 

Ordinal {count number} 

Cluster ID of trip 
origin  

Nominal {1,2,3,…,263} 

Cluster ID of trip 
destination 

Nominal {1,2,3,…,263} 

Cluster ID of home Nominal {1,2,3,…,80} 

Trip type Categorical 

HH (home to home); HO 
(home to other) 
OH (other to home); OO 
(other to other) 

Previous category 
Categorical {father, mother, young 

driver, other} 

 

IV.  RESULTS 

This section presents the experimental results. First, the 
results of the comparison between the identified and 
unidentified trips are introduced followed by the results of the 
feature evaluation and category identification.  

A. Comparison between identified and unidentified trips 

There is no information on the true driver-based label of the 
trips contained by the unidentified dataset. Such unawareness 
is a limitation to apply any learning method since the 
performance of any supervised learning method depends on 
the dataset on which is being applied to. Therefore, a training 
set with identified trips is required. One of the most important 
constrains when it comes to using a training set is to guarantee 
that the samples on both the training and the test sets belong to 
the very same population [42].    

In this particular problem, it is important to show that the 
identified trips have similar distribution to the unidentified 
trips, in terms of the variables that describe a trip. Therefore, 
the probability distributions of the identified trips and the 
unidentified trips were compared using Kolmogorov-Smirnov 
(K-S) test. The results are depicted in Table IV. It illustrates 
that the distributions of the identified trips and the unidentified 
trips for all the tested features do not differ significantly at the 
95% confidence level, except for the Cluster ID of the trip 
origin and trip destination.  

TABLE IV 
KOLMOGOROV-SMIRNOV TEST RESULTS  

Variable of Interest Sig. 

Weekday 0.938  

Departure time 0.964  

Trip duration (min) 0.998  

Trip aggressiveness level 0.996  

Solo or accompanied 0.964  

Number of events (IVDR) 0.931  

Cluster ID of trip origin  <0.001  

Cluster ID of trip destination <0.001  

Trip type 0.508  

Previous category 0.560  

 
The significantly different distributions in the trip origin 

and destination, between the identified and unidentified trips, 
can be explained from the large domain range of those 
variables (263 categories, see Table III). Consequently, such 
large range coupled with an unbalanced ratio between the 
identified (78%) and unidentified (22%) trips could point this 
result as an expected one. However, we argue that since there 
was no significant difference in the probability distributions of 
the identified and unidentified trips in all the remaining 
features, it can be assumed that the two samples do not differ 
significantly.  In other words, the training set can be used to 
train pattern-based models to predict the driver category of 
this test data set. Following this conclusion, the next section 
presents the results of the feature relevance analysis. 
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B. Experimental Setup 

All the experiments and analysis were conducted using the 
R Software [43]. The information gain was computed using 
the functions within the R package [infotheo]. The 
classification algorithms employed were the 1) C4.5, 2) LMT, 
3) NB, 4) SVM and 5) kNN using the implementations 
supplied by the R packages (1,2,3) [RWeka] [44], 4) [e1071] 
[45] and 5) [class] [46], respectively. The parameter setting for 
these algorithms followed their default values. The two 
mandatory parameters were the number of neighbors k in the 
kNN (i.e. empirically set to 2) and the kernel employed on the 
SVM algorithm (i.e. empirically defined to be linear). 

The tenfold cross validation process was manually 
implemented (without using a pre-defined coding package) by 
dividing each family trip dataset into ten folds. Each fold 
contains roughly 10% of the total number of trip samples 
available for each family. The sample selection to compose 
each individual followed is completely random. By doing so, 
we end up training 10 different models to be evaluated in 10 
different test sets. The main goal in employing such process is 
to assess the true generalization error achieved by each 
individual method. 

C. Feature Evaluation 

This section presents an analysis of variables’ importance to 
determine the driver category on all families. Table V 
illustrate descriptive statistics of the Average Information 
Gain by each feature (i.e. AIG). Based on it, it is possible to 
conclude that the most informative trip’s feature is the 
Previous Category (PC) (i.e. AIG=0.49). It corresponds to 
the driver’s category {father, mother, young driver, other} in 
the previous trip. In other words, if for example the driver in 
the previous trip was the father, it is most likely that the driver 
in the current subsequent trip is also the father. The second 
two most informative features are the trip’s 
origin/destination (both AIG=0.18), followed closely by the 
trip's departure time (AIG=0.16). 

One of the most well-known methods to estimate the 
probability distribution of a given Population whenever it is 
unknown is to compute sample-based Probability Density 
estimations. Such estimations provide fair approximations of 
the Probability Density Function (p.d.f.) of a given random 
variable. In this particular study, the sample-based p.d.f. can 
be used to approximate the probability of the IG of a certain 
feature to fall into a given range of values by calculating the 
area under such p.d.f. (i.e. the integral within such range).  

Fig. 1 presents a sample-based p.d.f. for the four most 
important features - which was computed using the Kernel 
Density  Estimation (KDE) [47]. To do it so, the well-known 
Gaussian kernel was employed along with the Silverman’s 
rule of thumb [48] to determine the correspondent bandwidth. 
Fig. 1 clearly illustrates that PC is the most informative feature 
to determine the category of a trip. To demonstrate such a 
concept, we can infer the validity of the following equation: 

%(&'(()*) > 0.5) ≥ /%(&'(0123*45&6) > 0.5) +
%(&'(6758*45&6) > 0.5) + %(&'(906) > 0.5):    (3) 

by just performing an empirical analysis on the Figure’s 
insights. Such relationship clearly uncovers the informative 
power of PLC regarding the remaining features.  

D. Driver Identification 

In this study, the abovementioned five state-of-the-art 
algorithms were explored to carry out the identification task. 
By doing this, we expect to provide insights on which is the 
most adequate algorithm to handle these type of problems 
and/or datasets – while, at the same time, we want to uncover 
the power of the relevant information hidden on this type of 
data relevant for this problem.  

Table VI presents the average weighted accuracy for all 
families for each one of the methods. Fig. 2 presents the 
corresponding confusion matrices. These results illustrate that 
the C4.5 presents the best (averaged) accuracy on this task – 
followed closely by LMT. 

 To give a better view of the performance of these methods, 
the accuracy’s p.d.f. of each one of the classification methods 
employed was computed and illustrated in Fig. 3. 

TABLE V 
DESCRIPTIVE STATISTICS OF THE AVERAGED  

INFORMATION GAIN (AIG)  OF EACH FEATURE 

 Information Gain (IG) 

Variable 
Min Max Mean Std. 1st 

qrt. 
3rd 
qrt. 

Weekday 0.00 0.39 0.07 0.06 0.02 0.09 

Departure time 0.00 0.62 0.16 0.11 0.07 0.24 

Trip duration (min) 0.00 0.19 0.04 0.04 0.02 0.06 

Trip aggressiveness 
level 0.00 0.24 0.04 0.05 0.01 0.04 

Solo or accompanied 0.00 0.59 0.03 0.06 0.00 0.03 

Number of events 
(IVDR) 0.00 0.24 0.04 0.05 0.01 0.05 

Cluster ID of trip 
origin  0.00 0.49 0.18 0.11 0.10 0.26 

Cluster ID of trip 
destination 0.00 0.48 0.18 0.11 0.10 0.26 

Cluster ID of home 0.00 0.13 0.00 0.02 0.00 0.00 

Trip type 0.00 0.18 0.03 0.03 0.01 0.04 

Previous category 0.00 1.22 0.49 0.23 0.33 0.63 

 
Based on Table VI, it is possible to confirm that the LMT 

and the C4.5 are the methods with the highest performance. 
The accuracy of their outputs range between 0.75 and 1.00. 
The LMT accuracy’s p.d.f. (presented in Fig. 3) is quite 
similar to the one computed on the C4.5 outputs (i.e. both are 
right-shifted). On the other hand, the NB and the SVM p.d.f. 
have lower peaks and minor areas regarding the high-accuracy 
space (i.e. > 0.75). 

The p.d.f. of the accuracies by the NB method and the SVM 
method have lower peaks and are less shifted to the right 
compared to the LMT and C4.5 methods. The method with 
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worst performance was kNN, which its accuracy’s values are 
mostly concentrated within 0.65-0.75.  

The high peaks close to zero accuracy in Fig. 3 result from 
the fact that many times, the learning functions are unable to 
fit an objective function ω(X, F) to their training data. It 
happens because some families had relatively few number of 
trips from which is not possible to generalize the population’s 
behavior.  

Nevertheless from the results exhibited in Fig. 3, it is not 
possible to conclude which is the most adequate method to use 
for every situations on this particular task. Even if Fig. 3 
suggests 

TABLE VI 

 AVERAGE WEIGHTED ACCURACY PER FAMILY  

Method Average Weighted Accuracy 

Naïve Bayes (NB) 0.671 

Logistic Model Tree (LMT) 0.716 

k-Nearest Neighbors (kNN) 0.580 

Decision Tree  (C4.5 algorithm) 0.717 

Support Vector Machines (SVM) 0.651 

 
Fig. 1. Probability density functions of the four most informative features to determine the driver category. 

 

 
Fig. 2. Confusion Matrices of each method using relative frequencies. Legend:  

F- Father, M-Mother, Y-Young Driver, O-others. 

that %(ACC<=.> > ACC?@A) > 0.5 (by analyzing the areas 
below the lines), it is not possible to compute the significance 
level of such hypothesis using the current results. 

V. DISCUSSION  

The informative feature set uncovered by the IG is not 
surprising. They suggest that the families behavior regarding 
the use of their vehicle follow some seasonalities very close 
to the regularities of the human behavior. Such regularities are 
usually based on some commuter trips where the pair 
origin/destination is the same on a daily basis given some 
specific time of the day [49]. Some examples could be 
commuter trips from home to a work place, a specific trip to 
school or grocery performed by a given family member. In 
many cases, it is reasonable to assume that such feature values  
(i.e. departure time and trip’s origin and destination) can be 
known even before the trip starts – which highlight the 
possibility of performing an apriori driver identification . 

This insight is key to illustrate the contribution of our 
predictive model: more than completing the missing 
identification data produced by other identification methods 
based on the driver behavior (such as the face recognition 
ones), it can improve their accuracy. The idea is to reduce 
uncertainty around the outputs of behavior-based 
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identification methods by providing an apriori  likelihood of 
who might be driving the car even before its engine starts. 
However, the validity of such hypothesis requires a real world 
validation to be claimed as so. The apriori driver identification 
is problematic when driving behavioral characteristics (speed, 
acceleration) are combined with trip-based information to 
identify the driver category of a shared vehicle as done 
recently by [5]. However, such information of driver behavior 
can be used after a trip is initiated to enhance the predictability 
power. For example, a driver is first identified based on the 
trip information as done in this study, and after the trip is 
initiated the identification is re-examined and validated based 

on the added attributes of the unique driving behavior 
characteristics of the specific driver.   

 The PC (i.e. previous category) is, by far, the most 
informative feature on the present dataset – which also follows 
the abovementioned regularities of the families’ behavior. 
However, it also uncovers strong dependencies between trips 
regarding its driver. Such dependencies between sequences of 
trips are common in many transportation problems (see, for 
instance, the Bus Bunching issues in [50]. A good insight on 
its impact is depicted in Table VII, where the results of testing  
 

 

 
Fig. 3. Probability density functions of the accuracy of the five learning methods used throughout all the families. 

 
the induction learners on same dataset but excluding the PC 
are displayed. 

IG is a simple metric which provides insights on the 
contribution of an individual feature on reducing the entropy 
about a given target variable (i.e. driver identification). 
However, it disregards the dependencies that might be in place 
between features (e.g. the trip’s origin/destination may also 
have some dependency on the departure time). Consequently, 
it cannot be faced as a pure rank of the most informative 
features since it only addresses the relationship between each 
individual feature and its target variable. Such characteristic 
comprise one of the main limitation of this method. Fig. 5 
displays a pairwise scatterplot to compare the 
interdependences among the present feature space. On a first 
glance, the features seem quite uncorrelated among each other. 
However, the authors want to highlight that such analysis 
should be conducted in any dataset (prior to the application of 
any supervised learning task as we are performing hereby).  

The LMT and C4.5 are the methods which present the best 
accuracy on the present dataset. It is well-known that SVM is 
mainly a binary classifier and therefore, the quality of its 
results may degrade along with the incensement of the 
cardinality’s (number of possible output labels) of the target 

variable. The NB also assumes the abovementioned statistical 
independence between the features – which may explain its 
lower accuracy. 

However, the authors want to highlight that all methods but 
kNN present a good predictive capacity (i.e. ACC > 0.65). The 
low performance of kNN may be explained on its sensitivity 
to parameter changes (such as the number of neighbors B).  

The errors uncovered by Fig. 2 also indicate that the errors 
may be due to high-variance of the methods output (e.g. 
overfitting of majority class performed by kNN). One known  

 
TABLE VII 

 AVERAGE WEIGHTED ACCURACY WITHOUT PC FEATURE 

Method Average Weighted Accuracy 

Naïve Bayes (NB) 0.637 

Logistic Model Tree (LMT) 0.691 

k-Nearest Neighbors (kNN) 0.554 

Decision Tree  (C4.5 algorithm) 0.694 

Support Vector Machines (SVM) 0.533 
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technique to reduce such variance-type of error is ensemble 
learning. To test such hypothesis in the present context, we 
tested a known boosting-based algorithm – Adaboost [51].  

The obtained results (using bootstrapping and a reduced 
number of trials, i.e.10) are promising: they pointed a superior 
accuracy of 73.72%. However, it is important to note that this 
comes in exchange of combining multiple models– thus 
providing no fair comparison to the previous ones. 

Ideally, a study to determine the best algorithm on a given 
supervised learning task should contain two steps that were 
not followed on this study: a hyperparameter tuning and a 
statistical test (such as the Friedman rank test, as proposed by 
[52] to evaluate the significance of its results. The 
hyperparameter tuning stage serves to determine which is the 

best parameter setting to employ with each algorithm. A 
common technique to address such issue is a grid search over 
a cross validation procedure conducted with the training set.  
A more sophisticated version of this is the sequential Monte 
Carlo method [53] – where multiple possible combinations of 
parameters are tested on a validation data set prior to the test 
data (see, for instance, [42]). Regarding a supervised learning 
context, the aim of employing a Friedman test is to attest if a 
given method is significantly better than other given a specific 
predictive task [52]. Such steps were not included in this study 
because we are not focused on algorithmic details (such as 
preprocessing/postprocessing tasks and/or significance tests) 
but on the concept of reusing trip labelled data as additional 
source of information regarding the driving identification. 

Fig. 5. Scatterplot of the Pairwise combinations of all available feature pairs. 
 

VI. CONCLUSIONS 

This study aimed at developing and testing an identification 
methodology when using trip-based data. The main motivation 
to do it so is to complement the deficiencies of the existing 
IVDR technologies. For this purpose, a ML framework, 
including feature evaluation and category identification, was 
proposed to take advantage of the underlying patterns of the 
human behavior. Trip-based data collected in Israel was used 
to test the usefulness of the proposed methodology.  

The results of this paper provide a first glimpse on which 
are the most promising ML techniques for the applications of 
driver's identification, as well as which travel features are 
deemed to be informative – and thus relevant - for predictive 
analytics. A high accuracy was achieved in predicting the 
driver category using basic trip information. Therefore, the 
authors believe that this methodology is worth to be further 
investigated in future studies when using IVDR or similar 
identification devices. It should be noted, however, that the  

 
 
 
proposed methodology is recommended to be used as a 
support method to the different identification technologies 
(e.g. Dallas Key, Face Identification) and not as a standalone 
methodology for driver identification. Furthermore, the 
assumption, in the proposed methodology, is that the training 
data-set is reliable and trustworthy to a certain extent. 
Therefore, further research is still needed. 

In order to carry out such future work, possible directions 
are proposed as follows: (1) testing the information gained by 
other trip features that were not included in this study, such as 
route choice, type of roads (rural, urban, suburban), and 
purpose of the trip; (2) testing unsupervised learning 
approaches to derive the number of driver categories when it 
is not possible to know it apriori; (3) testing the usefulness and 
accuracy of the methodology on a larger domain of the 
drivers’ category. In this study four categories were included 
{father, mother, young driver, and other}, future study can 
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include siblings, grandparents, etc.; (4) testing the 
appropriateness of this methodology as a complement and a 
validation technique to the deficiencies of various 
identification technologies, such as the iPhoto. In particular, 
how well this method can work when advanced technologies 
fails to identify the driver category; (5) investigating the 
relationships between family characteristics and the 
importance (IG) of trips’ features. This will provide insights 
for which families the information gained by a specific trip 
feature will be high and for which it will be low. This can 
improve the predictive power; (6) testing the proposed 
methodology on larger datasets, and (7) explore additional 
ensemble learning approaches (such as gradient boosting 
[54]). 
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