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On Developing a Driver ldentification
Methodology Using In-Vehicle Data Recorders

HaneerFarah, Luis Moreir-Matias*

Abstract— Recently, multiple cutting edge technologies to
facilitate data collection processes have emerge@ne of the most
prominent ones is the In-Vehicle Data Recorder (IVR). Various
identification technologies were employed to relatehe IVDR'’s
data to multiple drivers sharing the same vehiclelrrespective to
the level of sophistication, all of these technolégs still have
considerable limitations on identifying drivers’ identity.

The purpose of this study is to propose a methoday which
can identify the driver of a given trip using histaical trip-based
data. To do so, an off-the-shelf Machine Learning ML)
framework is proposed. The main goal is to take adwntage of
inexpensive data — such as driver-labelled trip dat - to build a
pattern-based algorithm able to identify the trip’s driver
category when its true identity is unknown. The prposed
framework includes feature evaluation and category
identification. Our ultimate goal is to provide an inexpensive
alternative to existing IVDR technologies which carserve as their
complement and/or validation purposes.

Experiments conducted using four different types ofnduction
learners over a real-world case study from Israel mcover the
potential of this idea: decision trees obtained arpmising range
of accuracies on this task (i.e. 75% to 100%).

in-vehicle data
clasgifation,

Index Terms— Identification
recorders, data entropy,
supervised learning.

methods,
feature selection,

|I. INTRODUCTION

I n the last decade, significant advances have beste rim
measuring and communication technologies. Suchraga
led to a considerable growth in the development asel of
Intelligent Transportation Systems. One of the Wwidesed
technologies regarding observing driver behavioni¥ehicle

drivers (two or more). Thus, one of the challengkat
researchers face when using IVDR devices in shagbitles
is the driver's identification. Several identification
technologies exist. However, the use of these tolgies
does not solve this issue adequately (i.e. expenaid/or
inaccurate). Consequently, it is critical to deyekffordable
methodologies able to deal with such informaticsslo

The availability of Global Positioning System (GP®ta
faced an explosive grow. This data is availableryvbere
and widely used among transportation industry. Rige
Wallace et al. [5] used GPS and OBDII logs (on-board
diagnostics) from a preliminary sample of 100 trigosd 4
drivers to test the potential of time of day, roekdoice,
velocity and acceleration data to provide attributt
distinguish between drivers of a shared vehiclendde the
sample size is reduced to generalize significantksions on
this topic. At the best of our knowledge, this ke tonly
research work proposed using this approach.

The main purpose of this study is to develop a oektogy
which can identify the driver for a given trip oftérest using
historical trip-based data. This data is not mdr@nta high
level aggregation of Floating Car Data (FCD) cdhkec
through a user-identified device, such as a regdteGPS
antenna and/or smartphone. Per opposition to nfastisting
IVDR and/or computer vision techniques to perfornivet
identification, we aim to leverage in simple thirgeh as the
daily seasonalityinherent to the human behavioral routines
(e.g. wake up, go to school and get back home uncH).
Moreover, the collection of this type of data isiea due to
the amount of devices that already exist in ourcsundings

Data Recorder (IVDR). IVDR is a system able to nieas with capabilities of storing and/or broadcastings ttype of
vehicle’s movement, driver control, and vehicle’sdata. Such availability makes the information abdkié
performance. Early usage of these systems was tedrgedriver’'s identification easier and cheaper to detnt for any
towards fuel efficiency and vehicle location traukipurposes. other data source (e.g. video cameras) or abovésnent
Recently, it has been also proposed for driver Wieha IVDR technologies. Throughout this simple idea,imtend to
monitoring and traffic safety purposes [1]. IVDRnceecord boost the existing technologies with a knowledgecalvery
detailed information on driving performance andstlagsist in framework.

developing intelligent systems adapted to eachedswnique
driving  characteristics.  Several researchers
classification and identification methods and deped
algorithms on driver behavioral characteristics detect
abnormal driving behaviors for automotive
applications [2-4].

To do so, an off-the-shelf Machine Learning (ML)

applidramework is proposed. The main goal is to takeaathge of

the driver-labelled trip data to build a patterrséd algorithm
able to identify the trip’s driver where its trudentity is

controunknown. Data collected from a particular case ystirdm

Israel ([6]) is used to validate the applicabilifythe proposed

In many cases, the same vehicle is shared by rmltipnethodology to this task. The contributions of thiady are

! Haneen Farah, Assistant Professor at the Departoiefransport and
Planning, Delft University of Technology, e-mdilfarah@tudelft.nl

Luis Moreira-Matias, Research Scientist at NEC latmsies Europe
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twofold: (1) the suggestion and exploitation of ewysed
learning approach over trip-based data (easieolteat and to
process) to serve as complement to existing IVDR
technologies through an exhaustive comparison fiérdnt
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types of induction learners; (2) a simple StatehefArt
entropy-based framework to describe the explangtower of
multiple features regarding the driver identifioatifrom trip-
based data.

This paper is structured as follows: next sectiogsents a
comprehensive literature review about the topicctiSe Il
presents the
techniques including feature evaluation
identification. This is followed by a descriptiori the real-
world case study used to evaluate the applicabditythis
method. Section IV presents the results includif: the
commonalities between the trip’s data on identifiadd
unidentified trips; (2) the importance of each d&@ture and
(3) category identification accuracy. Section Vrawoluces a
brief discussion on the obtained results, follovigdsection
VI which concludes the paper.

Earlier research have used IVDR as a measuremeintato
observe drivers’ naturalistic driving behavior, ks the “100
cars naturalistic study” [7, 8], DriveAtlanta [9]and
PROLOGUE [10]. Later, this tool
intervention purposes; it supported reducing risighaviors

LITERATURE REVIEW

research methodology and discusses ML
and categor

2

Sensing Systems:

In-vehicle video camerag[16]. The most sophisticated
technologies on this research line are the Appl®ti®
and the Google Picasa [17, 18], which are basefh@mn
detection and identification. In the context ofwvihg,
this technology takes a single snapshot of theedsv
face at the trip’s start to identify him/her.

Biometric fingerprint systems [19]. In the context of
driving, upon vehicle startup, drivers need to fyetteir
identity by a pre-authorized fingerprint.

Voice recognition and iris technology[20-22] can be
also used for driver’s identification. These are twghly
unique features in the human body (even identiwalst
present differences with respect to these featurds}
voice recognition is done through an in-vehicle
microphone combined with a biometric speech
identification software. Iris technology relies dwo
basic types of eye scans: iris scanning and retinal
scanning.

was also used for

B. Shortcomings of existing identification technologies

by providing feedback to drivers or to those whee arEach of the previously mentioned technology hasoitm

responsible for their driving (e.g. parents, fleeanagers),
[11-13].

IVDRs are widely applied. Yet, one of their drawksids
the driver identification. For example, in Faratak{6, 13] all
members of a participating family were requesteddmtify
themselves at the beginning of each trip using d3akeys
(personal magnetic identification keys). Howeverhew
analyzing the trips’ dataset it was found that 2¥hese trips
were unidentified.

The following sub-section provides an overviewts thain
identification technologies, as well as a comparisd their
related weaknesses and strengths.

A. ldentification Technologies
There are several identification technologies égstoday
that can be classified into two main categoriesysital

systems and Sensing systems.

Physical Systems:

strengths and weaknesses. Table | summarizes ploasts for
each of them.

Reference [23] considered several driver identifica
methods including key fobs or entry codes [24, B&jwever,
these still require driver activation. Other opsomhich were
considered included the use of wearable device§ {26
applications downloaded onto mobile phones [27].
Nevertheless, these devices are not convenientivaes s will
need to carry them on personally.

ML and Computer Vision approaches [28, 29] have als
been explored to this end. This type of methodssatm
somehow identify the driver based on the imagesucag by
a high-resolution video camera. Indeed, the richn&fsthe
features provided by multiple images per secondessmts a
perfect gem to be explored by many of the cutting edge
classification algorithms (e.g. Convolution NeunN&tworks
[30]). Yet, they require a considerable large antooh
samples to provide a reasonable output. On ther dtaed,
more traditional approaches such as Support Védtmhines

+ Dallas keys/iButtonsare personal magnetic identification(sym) require a complex and expensive future engimg

keys (chip-based data carrier) which were usedlLBydnd
[6, 13] for driver identification.

iRFID (Radio Frequency IDentification) technology is
based on the use of radio waves to read and capt
information stored on tags attached to personsichesh
and other objects [14]. It has a similar conceptato
barcode. However, unlike the barcode, the tag duds
necessarily need to be in direct line-of-sighttaf teader.

process, which is not affordable in many cases, [88].
Contrary to video cameras, GPS antennas are wijgkyad

among the automotive industry. Consequently, the

@@:essibility of such individual probe car tracesigher than

those camera footages — and therefore, to be exploy a
knowledge discovery framework.

C. Themain contributions of this paper
The analysis performed throughout the previous i@ect

This technology enables remote and automated dq{gcovered that the state-of-the-art technologiesdiiver's

gathering using a wireless communication [15].

identification still have multiple limitations tovercome. They
are related with the relationship between theimidieation
accuracy and their cost — which are still far uahaéd in
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most of the cases. The main motivation for thisepap to
provide a way of generalizing driver's behavior aating
their mobility seasonality. We propose to leverage
inexpensive FCD acquired from each individual tdenstand

who is driving through a ML pipeline. Such dataven
methodology is introduced throughout the next secti

TABLE |
COMPARATIVE TABLE BETWEENEXISTING IDENTIFICATION (IVDR) TECHNOLOGIES

Technology Strengths Weaknesses
Physical Systems
Dallas keys/ - Relatively have a low cost; - Requires drivers’ activation;
iButtons - Easy to implement [17]; - Can be transferable among drivers, i.e. a drigarwse another driver’'s Dallas key [1];
IRFID (Radio - Relativelyhavealowcost; - Requires to attach the tag directly to the drivetf mot to the vehicle;
Frequency - Easy to implement; - Drivers need to remember to wear it with them wlewing;
IDentification)
Sensing Systems
In-vehicle - It does not require drivers’ activation; - Costs more than the physical systems;

video cameras -

Biometric - Easyto use; -
fingerprint - Have mono identification (i.e. unique for
systems every person).

- Relatively more accurate and reliable;

- Moderately cheap;
Voice - Quite accurate;
recognition -
Iris - Quite accurate; -
technology - Not that easily bypassed; -

Camera’s lens can be highly sensitive to illumination conditions and driver orientation;

-Can be easily bypassed by using a pre-recordeé wdianother driver;
Relatively expensive [1];

Drivers may need to remove eyewear;
Scans may not work with people with cataract ougtena [1];

- Relatively expensive [1];

I1l. METHODOLOGY

The regularities of the human behavior have beewiging
important advances in many transportation-base@arel
topics. Some successful examples on applying sosighits
are the passenger demand prediction problem [38jebus
schedule planning [34]. In this particular applicat the
authors intend to take advantage on such type asosal
patterns and trends to address the driver ideatifin failures
presented by most of the state of the art methgjiedo

Although being mostlyinvisible to human eye, such
patterns are contained by the trip-based data. écpresitly,
data driven methodologies can solve such informaliss in
an effective and inexpensive way.

Let T = {t,,t,,...,t,} define a series ofi trips t; (which
can also be denoted asta samples). Each tript; can be
expressed as a pair= (X;, Y;) whereX; = {x;,Xp4,...,Xai}

scope of this study is on exploring the differemtvidg
behaviors on each family. Therefore, &atigtical
Independence is assumed to be in place between the trips of
each family. Consequently, the previous equation ba
extended as

o(X, F) =Y; )

whereF; stands for the family of the trip i. To introdusech
independence, the original dataset T was splitfic@tasets as
T= U]leTj where f stands for the total number of families
included in the study anff} contains only the trips performed
by someone from family j.

Hereby, a series of methods is proposed to exDawer
Information from a real world trip dataset T. TheWL
techniques are proposed to automatically explogeattquired

stands for a set 6&’ variables which describe a given trip antyata in order not only to 1) approximate the reakfiono as

Y; € L denotes the driver category form a set cof |L|
possible categories (which correspond to drivedtegory in
each family from the present context). From now dh=
{x1,%,,...,X,} is denoted as thieeatures - which have values
X; for each sample - while the driver category; will be
denominated as thEarget Value.

Theoretically, there is a function capable of determining
the Driver Category (i.e. Target Value) based o féature
valuesX;. It can be expressed @$X;) = Y;. However, the

much as possible, but also 2) to explain which tre
relationships expressed between the feature v&luasd the
target valued; and also within the feature set F. Concretely,
these problems can be divided on the following tasks: (i)
Features Evaluation - to determine which are thestmo
informative features to determine the trip’s drivier each
family dataset; (ii) Category identification - tofér a function
to determine the trip’s driver in each family datady
employing Supervised ML technigues over the dataset

The remaining of this section is structured asofed:
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firstly, the learning techniques for the above rimmd tasks are evaluated by theiaccuracy using the 10-fold cross

are described in subsectioAsindB. Finally, the case study is validation method on each family dataset.

detailed in the subsectid To evaluate the applicability of the above menttbne

) method, a comprehensive data set on both identified

A Features evaluation unidentified trips was collected from a real wockise study.
Empirically, it is possible to conclude that theighle’'s This study is described in the following section.

importance to determine the driver category on daachily . . \

depends on theegree of randomness of the target variable C. Case Sudy: "The First Year Sudy

(i.e. the trip's driver) on each dataset of trigs & given  In the"The First Year Sudy” the IVDR system that was

family i, i.e.T;. In Information Theory, such quantity is alsoused [6, 13] was the GreenRoad technology. It g-farce

known asEntropy. This can easily be expressed by th&ased system which tracks all trips made by thecietand

following example: in familyA, you have always the samefecords the following information:

driver...while in familyB, you have always different drivers = Trip start and end times;

on each trip. While it is easy to predict the drif@ the trips = Driver identification using Dallas keys;

by family A - as it is always the same driver (i@w entropy), = Vehicle location:;

it may not be that easy for famiy(i.e. high entropy).
Information Gain (IG) is a metric commonly usedniany

Information Theory problems. One of its most popula

applications is on selecting the attribute on whehsplit

criteria must be set regarding the building of aislen node participants & recruitment process

on Decision Trees (i.e. see, for instance, C4.%rétgn in

[35]). Hereby, IG was used to evaluate the featetevance

on inferring the trip’s driver on each family.

= Events of excessive manoeuvres defined by patterns
of g-forces measured in the vehicle.

Data from the IVDR was collected throughout oneryea

A rolling recruitment procedure was carried outwmstn
July 2009 and November 2010. The data collectiorcgss
was already in place throughout this period. 24filias
B. Category Identification started participation in the experiment. Howeverstj217

Departing from the features discovered torbevant to  cOmMPpleted the one year period. This representop dtte of
infer the trip's driver on each family using the10.3%. Participants were informed at the beginnifigthe

: ; : tudy about a monetary compensation for their gipettion of
abovementioned Information Gain, the dataset nedx tused S . . :
in order to extract thelependenciesn place between thg 1000 NIS (approximately $250) which they receivactre

andX. By doing so, it would be possible to predict whiaill end of the study. This was used as an incentive for

L ) A . , participation.
be the trip’s driver on future trips - where theivdr is The recruitment’s process, the characteristichefdrivers

unidentified. The process of assigning output v&lg&ven a 4nq their families is described in detail in [6].2&plications
set of input ones based on a given training datadetown as yerived from the participation of the driver's patein this

Supervised Learning AsY is a categorical variable (i.e. thestudy is also reported in the abovementioned ssudie
category of the driver inside a given family), teismprises a

Classification problem. Formally, the target is @eneralize
the behavior and the characteristics of a Populatice.
family) using only some data samples extracted fibrithe
aim s to'build a functiono (X, F).N w().(, F) bqsed on the unidentified trips are described in Table II.
Iabelled_tr!ps dataset of g—rach family. This fqnnt!s named as From analysing Table II, it is possible to concldiat roughly
the predictive model. Obviously, the generalization comprises;oo, of the trips are unidentified, while 21% of tiwtal
a givenerror € - since each dataset represents only a part H’ifiving time also follows the same pattern. Suchiora
the entire population. Based enit is possible to express the constitutes a significant portion of the total dataich should
previous relationship as follows: not be discarded at any case to carry out any dat@n
_— analysis, regardless its goal. When further anadysiis ratio
WX F) = o F) +e 2) per family it was found that many families presénghly
The task behind a classification problem is to ctel®@ unbalanced identification ratios. In particular,296 of the
learning method able to approximate (X, F) by minimizing families had an identification ratio above 0.8, ¥2%ad an
the value ofe. Hereby, we focus on four types of algorithmsidentification ratio between 0.6-0.8. However, thare some
1) Decision Trees using tt@4.5 algorithm [36] andLogistic  families, ~8%, that had relatively similar numbéidentified
Model Trees (LMT) [37], 2) Bayesian Learning usitdpive  and unidentified trips (between 0.4-0.6), and athe€$% that
Bayes (NB) [38], 3) Kernel-based usin@upport Vector had an identification ratio between 0-0.4.
Machines (SVM) [39] and 4) Instance Based usikgdNearest The set of variables which describe a given ip=
Neighbors (kNN)[40]. {X11,X24,...,Xa;} @re detailed in Table Ill. Four types of trips
In this paper, it is proposed to explore these ftate-of-
the-art algorithms on this task. By doing so, wezt to
provide insights on which is the best one to hatldése type
of problems and/or datasets. The different learilggrithms

Data collection

The data collected in the experiment in terms ohber of
trips and driving hours by each family member, &dthe
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TABLE Il
NUMBER OFTRIPS ANDDRIVING HOURS BY CATEGORY OFDRIVER

Category No. of Trips Driving Hours (h)
Young driver 108191 34074

Father 78963 31325

Mother 102120 33701

Other family members 20070 7187
Unidentified 87181 28489

Total 396525 134776

were defined: HH (home to home), which are tripst thtart
and end in the area around home; HO (home to otiwbith
are trips that start at home area toward a motartifocation;
OH (other to home), which are trips that start frandistant
location toward the home area, and OO (other terpttare
trips that start and end from locations distantrfrthe home
area. In this study, a home area is defined atetigth of the
radius of a circular area around the location af éixact

IV. RESULTS

This section presents the experimental resultsst,Fthe
results of the comparison between the identifiedd an
unidentified trips are introduced followed by thesults of the
feature evaluation and category identification.

A. Comparison between identified and unidentified trips

There is no information on the true driver-basdaktleof the
trips contained by the unidentified dataset. Suchwareness
is a limitation to apply any learning method sintee
performance of any supervised learning method digpem
the dataset on which is being applied to. Therefargaining
set with identified trips is required. One of theshimportant
constrains when it comes to using a training st guarantee
that the samples on both the training and thesegstbelong to
the very same population [42].

In this particular problem, it is important to shakat the
identified trips have similar distribution to thenidentified
trips, in terms of the variables that describeifa fFherefore,

address. This definition has an impact on the grip’the probablllty distributions of the identified p:E and the

classification as (HH, HO, OH, and OO). An algamitiwas
developed in [41] to define a specific radius dfirgular area
around the home location of each participating etrivihe
average radius across families in the dataset Wa4 tneters
(SD= 346). Further details regarding this algorititan be
found in [41].

TABLE Il
SET OFVARIABLES THAT DESCRIBE AGIVEN TRIP
Variable Type Domain
Weekday Categorical  {SUN, MON, ..., SAT}
. . {00-3, 3-6, 6-9, 9-12, 12-15,
Departure time Categorical 15-18, 18-21, 21-00}

. . . . {0-5, 5-15, 15-30, 30-60, 60-
Trip duration (min) Categorical 120, 120-180, >180}
Trip aggressiveness . {Moderate, Intermediate,
level Categorical High}

Solo or . .
accompanied Categorical ~ {Solo, Accompanied}
Number of events .
(IVDR) Ordinal {count number}
Cluster ID of trip . minal {1,2,3,... 263}
origin
S'“S.ter IDoftrip  Nominal (1,2,3,...,263}
estination
Cluster ID of home Nominal {1,2,3,...,80}
HH (home to home); HO
Trip type Categorical (home o other)
PP 9 OH (other to home); OO
(other to other)
Categorical  {father, mother, young

Previous category driver, other}

unidentified trips were compared using Kolmogoroui®iov
(K-S) test. The results are depicted in Table iMlluistrates
that the distributions of the identified trips ahe unidentified
trips for all the tested features do not diffemsfigantly at the
95% confidence level, except for the Cluster IDtlod trip
origin and trip destination.

TABLE IV

KOLMOGOROV-SMIRNOV TESTRESULTS
Variable of Interest Sig.
Weekday 0.938
Departure time 0.964
Trip duration (min) 0.998
Trip aggressiveness level 0.996
Solo or accompanied 0.964
Number of events (IVDR) 0.931
Cluster ID of trip origin <0.001
Cluster ID of trip destination <0.001
Trip type 0.508
Previous category 0.560

The significantly different distributions in theigrorigin
and destination, between the identified and unitiedttrips,
can be explained from the large domain range ofeho
variables (263 categories, see Table Ill). Consettyjesuch
large range coupled with an unbalanced ratio betwtbe
identified (78%) and unidentified (22%) trips couydint this
result as an expected one. However, we argue itz there
was no significant difference in the probabilitgtdibutions of
the identified and unidentified trips in all thenraining
features, it can be assumed that the two samplesddiffer
significantly. In other words, the training seihdae used to
train pattern-based models to predict the drivaegary of
this test data set. Following this conclusion, tiext section
presents the results of the feature relevance sisaly
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B. Experimental Setup

All the experiments and analysis were conductedguttie
R Software [43]. The information gain was computesihg
the functions within the R package [infotheo].
classification algorithms employed were the 1) C2)5LMT,

3) NB, 4) SVM and 5) kNN using the implementations

supplied by the R packages (1,2,3) [RWeka] [44]je4)071]

[45] and 5) [class] [46], respectively. The paraenetetting for
these algorithms followed their default values. Ttveo

mandatory parameters were the number of neighbarsthe
kNN (i.e. empirically set to 2) and the kernel eay@d on the
SVM algorithm (i.e. empirically defined to be linga

The tenfold cross validation process was manuallf)é

implemented (without using a pre-defined codingkpae) by
dividing each family trip dataset into ten foldsadg fold
contains roughly 10% of the total number of tripnpées
available for each family. The sample selectioncompose
each individual followed is completely random. Bgiry so,
we end up training 10 different models to be evadan 10
different test sets. The main goal in employinghsprocess is
to assess the true generalization error achievededgh
individual method.

6

by just performing an empirical analysis on the urgs
insights. Such relationship clearly uncovers thi@rmative
power of PLC regarding the remaining features.

They, Driver Identification

In this study, the abovementioned five state-ofdlte
algorithms were explored to carry out the identifion task.
By doing this, we expect to provide insights on athis the
most adequate algorithm to handle these type oblgnts
and/or datasets — while, at the same time, we veaahcover
the power of the relevant information hidden ors ttyipe of
data relevant for this problem.
Table VI presents the average weighted accuracyafior
milies for each one of the methods. Fig. 2 presehe
corresponding confusion matrices. These resulistithte that
the C4.5 presents the best (averaged) accuracki®nask —
followed closely by LMT.

To give a better view of the performance of thesthods,
the accuracy’s p.d.f. of each one of the clasgificamethods
employed was computed and illustrated in Fig. 3.

TABLE V
DESCRIPTIVESTATISTICS OF THEAVERAGED

INFORMATION GAIN (AIG) OF EACH FEATURE

C. Feature Evaluation

Information Gain (IG)

This section presents an analysis of variables'citgmce to
determine the driver category on all families. TEalbV
illustrate descriptive statistics of the Averageoimation

Gain by each feature (i.e. AlG). Based on it, ipassible to
conclude that the most informative trip's feature the
Previous Category (PC)(i.e. AIG=0.49). It corresponds to
the driver's category {father, mother, young drivether} in
the previous trip. In other words, if for example tdriver in
the previous trip was the father, it is most likéigat the driver
in the current subsequent trip is also the fathi&e second
two most informative features are thetrip’s
origin/destination (both AIG=0.18), followed closely by the
trip's departure time (AlG=0.16).

One of the most well-known methods to estimate th@

probability distribution of a given Population wheser it is

unknown is to compute sample-based Probability Density

estimations. Such estimations provide fair apprations of
the Probability Density Functiorp.¢.f.) of a given random
variable. In this particular study, the sample-base.f. can
be used to approximate the probability of the IGaafertain
feature to fall into a given range of values byca#dting the
area under sughd.f. (i.e. the integral within such range).

H it rd
Variable Min  Max Mean Std. I 3
grt. grt.
Weekday 0.00 039 0.07 0.06 0.02 0.09
Departure time 0.00 062 0.16 011 0.07 0.24
Trip duration (min) 0.00 019 0.04 0.04 0.02 0.06
Trip aggressiveness
level 0.00 0.24 0.04 0.05 0.01 0.04
Solo or accompanied 0.00 0.59 0.03 0.06 0.00 0.03
Number of events
(IVDR) 0.00 0.24 0.04 0.05 0.01 0.05
luster ID of trip
origin 0.00 049 0.18 011 0.10 0.26
Cluster ID of trip
destination 0.00 048 0.18 0.11 0.10 0.26
Cluster ID of home 0.00 0.13 0.00 0.02 0.00 0.00
Trip type 0.00 0.18 0.03 0.03 0.01 0.04
Previous category 0.00 122 049 023 033 0.63

Fig. 1 presents a sample-based.f. for the four most
important features - which was computed using tlenkl
Density Estimation (KDE) [47]. To do it so, the Nsenown
Gaussian kernel was employed along with the Sileg‘m
rule of thumb [48] to determine the correspondeartdwidth.
Fig. 1 clearly illustrates that PC is the most infative feature
to determine the category of a trip. To demonstsieh a
concept, we can infer the validity of the followiequation:

p(IG(PLC) > 0.5) > [p(IG(OrigClsID) > 0.5) +

p(IG(DestClsID) > 0.5) + p(IG(TOD) > 0.5)] 3)

Based on Table VI, it is possible to confirm thia¢ £ MT
and the C4.5 are the methods with the highest pedoce.
The accuracy of their outputs range between 0.%b 1a@0.
The LMT accuracy’'s p.d.f. (presented in Fig. 3) gsite
similar to the one computed on the C4.5 outpués fioth are
right-shifted). On the other hand, the NB and thMMSp.d.f.
have lower peaks and minor areas regarding thedtdghracy
space (i.e. > 0.75).

The p.d.f. of the accuracies by the NB method &ed3VM
method have lower peaks and are less shifted torigjtnd
compared to the LMT and C4.5 methods. The methdt wi
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worst performance was kNN, which its accuracy’sueal are
mostly concentrated within 0.65-0.75.

The high peaks close to zero accuracy in Fig. 8lréeom
the fact that many times, the learning functiores @mable to
fit an objective functionw(X,F) to their training data. It
happens because some families had relatively fewbeu of
trips from which is not possible generalize the population’s
behavior.

Nevertheless from the results exhibited in Figit3s not
possible to conclude which is the most adequat@aodeto use
for every situations on this particular task. EvierFig. 3
suggests

TABLE VI
AVERAGE WEIGHTED ACCURACY PERFAMILY

Method Average Weighted Accuracy

Naive Bayes (NB) 0.671
Logistic Model Tree (LMT) 0.716
k-Nearest Neighbors (kNN) 0.580
Decision Tree (C4.5 algorithm) 0.717
Support Vector Machines (SVM) 0.651
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Fig. 1. Probability density functions of the fouost informative features to determine the drivaegary.
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Fig. 2. Confusion Matrices of each method usingthe? frequencies. Legend:
F- Father, M-Mother, Y-Young Driver, O-others.

V. DISCUSSION

The informative feature set uncovered by the IGndd
surprising. They suggest that the families behaxegarding
the use of their vehicle follow sonseasonalitiesvery close
to the regularities of the human behavior. Suchiuleegies are
usually based on some commuter trips where the pair
origin/destination is the same on a daily basissgisome
specific time of the day [49]. Some examples coblkl
commuter trips from home to a work place, a spediip to
school or grocery performed by a given family membe
many cases, it is reasonable to assume that sathrdevalues
(i.e. departure time and trip’s origin and desima} can be
known even before the trip starts — which highlight
possibility of performing ampriori driver identification .

This insight is key to illustrate the contributiaf our
predictive model: more than completing the missing
identification data produced by other identificatimmethods
based on the driver behavior (such as the facegniibon

that p(ACCcys > ACCpLyr) > 0.5 (by analyzing the areas ones), it carimprove their accuracy. The idea is to reduce

below the lines), it is not possible to compute significance uncertainty
level of such hypothesis using the current results.

around the outputs of behavior-based
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identification methods by providing aapriori likelihood of
who might be driving the car even before its engiterts.
However, the validity of such hypothesis requiresa world
validation to be claimed as so. The apriori driddentification
is problematic when driving behavioral characterss{speed,
acceleration) are combined with trip-based inforamatto
identify the driver category of a shared vehicle dmne
recently by [5]. However, such information of dnieehavior
can be used after a trip is initiated to enhaneeptiedictability
power. For example, a driver is first identifiedsbd on the
trip information as done in this study, and aftee trip is
initiated the identification is re-examined andidated based

8

on the added attributes of the unique driving beirav
characteristics of the specific driver.

The PC (i.e. previous category) is, by far, thesmo
informative feature on the present dataset — whisb follows
the abovementioned regularities of the familieshdeor.
However, it also uncovers strong dependencies leetvirgps
regarding its driver. Such dependencies betweenesegs of
trips are common in many transportation problenee,($or
instance, the Bus Bunching issues in [50]. A gawsight on
its impact is depicted in Table VII, where the fesof testing
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Fig. 3. Probability density functions of the acayraf the five learning methods used throughoutheifamilies.

the induction learners on same dataset but exauttis PC
are displayed.

variable. The NB also assumes the abovementiormidtital
independence between the features — which may iexjita

IG is a simple metric which provides insights ore thlower accuracy.

contribution of an individual feature on reducirg tentropy
about a given target variable (i.e. driver identfion).
However, it disregards the dependencies that nliglih place
between features (e.g. the trip’s origin/destimratinay also
have some dependency on the departure time). Coaisty
it cannot be faced as a pure rank of the most nndtive
features since it only addresses the relationskipvden each
individual feature and its target variable. Suclarelateristic
comprise one of the main limitation of this methddg. 5
displays a pairwise scatterplot to compare
interdependences among the present feature spaca.fist
glance, the features seem quite uncorrelated amacty other.
However, the authors want to highlight that suclalgsis
should be conducted in any dataset (prior to thmicgiion of
any supervised learning task as we are performenghly).
The LMT and C4.5 are the methods which presenbtst
accuracy on the present dataset. It is well-kndvaet SVM is
mainly a binary classifier and therefore, the dyabf its
results may degrade along with the incensement hef
cardinality’s (number of possible output labels)toé target

However, the authors want to highlight that all hoets but
kNN present a good predictive capacity (i.e. ACG.65). The
low performance of KNN may be explained on its gty
to parameter changes (such as the number of naighpo

The errors uncovered by Fig. 2 also indicate thaterrors
may be due to high-variance of the methods outpeug. (
overfitting of majority class performed by kNN). ®&nown

the

TABLE VII

AVERAGE WEIGHTED ACCURACY WITHOUT PCFEATURE
Method Average Weighted Accuracy
Naive Bayes (NB) 0.637
Logistic Model Tree (LMT) 0.691
k-Nearest Neighbors (kNN) 0.554
Decision Tree (C4.5 algorithm) 0.694
Support Vector Machines (SVM) 0.533
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technique to reduce such variance-type of erragnisemble best parameter setting to employ with each algoriti
learning. To test such hypothesis in the presentext, we common technique to address such issue is a gaidisever
tested a known boosting-based algorithm — Adalj&édst a cross validation procedure conducted with thimitrg set.
The obtained results (using bootstrapping and aicedi A more sophisticated version of this is the segaeMonte
number of trials, i.e.10) are promising: they petht superior Carlo method [53] — where multiple possible combioves of
accuracy of 73.72%. However, it is important toentitat this parameters are tested on a validation data set farithe test
comes in exchange of combining multiple models—sthuwdata (see, for instance, [42]). Regarding a supedviearning
providing no fair comparison to the previous ones. context, the aim of employing a Friedman test igattest if a
Ideally, a study to determine the best algorithmaogiven given method is significantly better than otheregiva specific
supervised learning task should contain two stbps$ were predictive task [52]. Such steps were not incluitetthis study
not followed on this study: a hyperparameter tunamgl a because we are not focused on algorithmic detailsh( as
statistical test (such as the Friedman rank tespraposed by preprocessing/postprocessing tasks and/or significaests)
[52] to evaluate the significance of its resultsheT but on the concept of reusing trip labelled datadditional
hyperparameter tuning stage serves to determinehwhithe source of information regarding the driving ideictition.
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Fig. 5. Scatterplot of the Pairwise combinationalbvailable feature pairs.

VI. CONCLUSIONS

This study aimed at developing and testing an ifieation ~Proposed methodology is recommended to be used as a
methodology when using trip-based data. The maitivation ~ SUPPOrt method to the different identification teclogies
to do it so is to complement the deficiencies af #xisting (€.9- Dallas Key, Face Identification) and not astandalone
IVDR technologies. For this purpose, a ML frameworkmethodology for driver identification. Furthermorehe
including feature evaluation and category idendificn, was assumption, in the proposed methodology, is thattthining
proposed to take advantage of the underlying pettef the data-set is reliable and trustworthy to a certakiemt.
human behavior. Trip-based data collected in Isnaed used Therefore, further research is still needed.
to test the usefulness of the proposed methodology. In order to carry out such future work, possibleediions

The results of this paper provide a first glimpsewhich —are proposed as follows: (1) testing the informatjiained by
are the most promising ML techniques for the agiins of other trip features that were not included in 8tigdy, such as
driver's identification, as well as which travelaferes are route choice, type of roads (rural, urban, suburbamd
deemed to be informative — and thus relevant pfedictive Purpose of the trip; (2) testing unsupervised legn
analytics. A high accuracy was achieved in predictthe approaches to derive the number of driver categasieen it
driver category using basic trip information. THere, the IS not possible to know it apriori; (3) testing theefulness and
authors believe that this methodology is worth eforther accuracy of the methodology on a larger domain haf t
investigated in future studies when using IVDR amikar  drivers’ category. In this study four categoriesravencluded
identification devices. It should be noted, howeeat the {father, mother, young driver, and other}, futuridy can
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include siblings, grandparents, etc.; (4) testinge t [15]
appropriateness of this methodology as a compleraedta
validation technique to the deficiencies of various
identification technologies, such as the iPhotopémticular, [16]
how well this method can work when advanced tedgiek

fails to identify the driver category; (5) invesiinhg the
relationships between family characteristics ande tH17]
importance (IG) of trips’ features. This will pralé insights
for which families the information gained by a sifiectrip
feature will be high and for which it will be lowlhis can
improve the predictive power; (6) testing the pregab
methodology on larger datasets, and (7) explorétiaddl
ensemble learning approaches (such as gradienttitgos
[54]).
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