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ABSTRACT

Transitioning from fossil fuels to sustainable and green energy sources in mobile appli-
cations is a difficult challenge and demands sustained and highly multidisciplinary efforts
in R&D. Liquid organic hydrogen carriers (LOHC) offer several advantages over more con-
ventional energy storage solutions, but have not been yet demonstrated at scale. Herein we
describe the development of an integrated and compact 25 kW formic acid-to-power sys-
tem by a team of BSc and MSc students. We highlight a number of key engineering chal-
lenges encountered during scale-up of the technology and discuss several aspects
commonly overlooked by academic researchers. Conclusively, we provide a critical outlook
and suggest a number of developmental areas currently inhibiting further implementation
of the technology.
© 2019 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications
LLC. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

challenged by a relatively slow development of efficient, safe,
and scalable storage solutions for gaseous hydrogen |[5,6].
Containment strategies such as compression and liquefaction

Molecular hydrogen produced from renewable energy is an
attractive alternative to current fossil fuels. Hydrogen gener-
ation technology has matured significantly over the past de-
cades and is now capable of rapid and highly localized
production of clean H, from renewable energy sources, e.g.,
electricity or biomass [1—-3]. Besides momentarily unfavorable
economics and underdeveloped infrastructure, the practical
implementation of the hydrogen economy [4] is significantly
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offer attractive volumetric and gravimetric energy densities at
cost of significant efficiency losses, while metal-hydrides
typically are too heavy for mobile applications and
frequently exhibit unfavorable loading/unloading kinetics
[7-9].

In 2012 Laurenczy, Beller, and co-workers demonstrated a
highly reversible hydrogen storage system based on Ru-
catalyzed formic acid (de)hydrogenation, which was
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appropriately named a ‘hydrogen battery’ [10]. The proposed
technology utilized formic acid as a liquid hydrogen carrier
thatin the presence of a catalyst could be readily decomposed
to produce gaseous H, with CO; as the sole by-product, thus
effectively serving as a hydrogen carrier material that in the
presence of molecular hydrogen can be converted back to the
formic acid (HCOOH, FA) liquid organic hydrogen carrier. The
‘hydrogen battery’ approach based on reversible CO,
hydrogenation-dehydrogenation enables carbon-neutral
hydrogen storage in FA and may play a pivotal role in a
future hydrogen economy provided that the required (cata-
lytic) technology can be developed [11—13]. So far a wide range
of homogeneous and heterogeneous catalytic systems for
both formic acid decomposition and hydrogenation of carbon
dioxide to FA have been reported [14—23]. Despite its low
gravimetric hydrogen density of 4.4 wt% (compared to 12.6 wt
% for its common alternative methanol), the hydrogenation of
CO; to FA can be accomplished at relatively low temperature
and allows for complete atom efficiency [24]. Based on this
approach one can envisage automotive applications wherein
gasoline is replaced by formic acid and cars are outfitted with
fuel cell technology (either Direct Formic Acid Fuel Cells
(DFAFC) [25,26] or hydrogen fuel cells, Fig. 1). Pure formic acid
is corrosive and has a significantly increased flash point
compared to gasoline, resulting in relatively facile handling
and thus warrants only minor modifications to current
infrastructure. These attractive properties combined with
recent developmental leaps in catalytic (de)hydrogenative
chemistry of CO, to FA renders formic acid an attractive fuel
for future automotive applications [27]. Scale-up of catalytic
systems demonstrated thus far is associated with a number of
yet unresolved engineering challenges that are rarely
addressed in the open literature.

Several years ago our group hosted a project for under-
graduate students who demonstrated this concept at a mini-
ature scale and ultimately successfully powered a 600 mW
model car. This work led to the founding of Team FAST: an
independent and multidisciplinary team of BSc and MSc stu-
dents at Eindhoven University of Technology, working to-
wards a 25 kW power system to serve as a range-extender for a
full-scale hydrogen-powered city bus. Afterwards Team FAST
[28] transitioned into start-up company DENS [29] (Dutch En-
ergy Solutions) and is actively bringing formic acid power
generators to market.

Renewable )

electricity

In this work, we describe the important engineering chal-
lenges encountered by Team FAST/DENS during scale-up of
R&D-scale technologies available in the open literature. We
discuss several aspects commonly overlooked by academic
researchers and highlight critical developmental areas
currently hindering implementation of the described
technology.

Reaction and process development

Process development was started with a series of laboratory-
scale experiments to gain valuable insight into critical reac-
tion parameters of the catalytic system, i.e., lifetime stability,
catalytic activity, and selectivity for carbon dioxide and
hydrogen. The latter is especially important considering the
low tolerance of hydrogen fuel cells for strong adsorbents
such as carbon monoxide that may be formed upon formic
acid dehydrogenation and ultimately cause slow degradation
of the fuel cell [30]. A small-scale 25 W model car was devel-
oped for testing and marketing purposes and was named
Formauto Junior (Fig. 2).

The first explored catalyst candidate was an isolated and
exceptionally active ruthenium lutidine-derived pincer com-
plex developed in our group [31]. The RuPNP catalytic system
(Scheme 1) is capable of low temperature (65 °C) reversible FA
(de)hydrogenation in presence of organic bases NEt; and DBU.
The very high intrinsic activity of this system potentially
would allow reduction of equipment sizing and thus drive
down the equipment and operational costs. Continuous-flow
experiments (i.e., dosage of formic acid at constant rate
while measuring gas evolution) quickly revealed a number of
difficulties associated with scale-up of a mobile technology
based on RuPNP. Despite highly attractive catalytic activity in
DMF/NEt; solution, neither the ligand nor the isolated com-
plex is available commercially at sufficient scale, nor could it
be generated in-situ from relatively cheap and easily obtain-
able ruthenium precursors as these are predominantly Ru™
salts. In solution RuPNP was found to be highly air sensitive
and it quickly lost activity when used in the model car
wherein rigorous air exclusion was much more challenging
than in a small laboratory reactor. At this stage it was decided
that RuPNP was not suitable for scale-up and alternative op-
tions were explored.

Fig. 1 — Schematic overview of carbon-neutral implementation of FA-energy storage technology.
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Fig. 2 — Formauto Junior: proof-of-concept 25 W model car
for testing and marketing purposes.

Driven mainly by the economical and engineering consid-
erations, focus then shifted towards an in-situ generated Fe
catalyst jointly developed by the groups of Beller and Lau-
renczy (Scheme 1) [32]. Major advantages of this system are
that it does not rely on noble metals and its very high activity
in propylene carbonate (PC), which is regarded a nontoxic and
environmentally benign solvent with low vapor pressure [33].
Its low volatility is particularly attractive for mobile applica-
tions operated at around 100 °C as it significantly reduces
power requirements for condensation of volatilized solvent
and consequently directly impacts system cooling duty and
overall efficiency. Use of non-toxic and abundant iron in
combination with a green and low-energy solvent would
present considerable sustainability benefits and increase the
attractiveness of the technology with the general public and
potential investors. Unfortunately, subsequent studies
quickly identified that the particular catalyst is unstable to-
wards water and/or dissolved chloride ions commonly
encountered in commercial grade formic acid and it conse-
quently deactivated over the course of about a week in the
model car.

High catalytic activity was deprioritized as lack thereof
could be compensated through late-stage engineering. Suit-
ability of an aqueous in-situ catalytic system consisting of
ruthenium trichloride hydrate metal precursor and TPPTS

ligand was investigated (Scheme 1) [34—36]. At the time this
particular catalyst had been in operation for over a year at EPF
Lausanne and had been demonstrated to be highly robust
[34—36]. Sufficient catalytic activity was found while achieving
impressive stability. Advantageously, this system is stable in
air, robust, can be readily prepared in-situ from commercially
available components at reasonable cost, and shows high
selectivity towards H, and CO, without detectable CO by-
product. The relatively high cost of the ruthenium active
component compared to cheaper and more abundant iron are
effectively offset by the exceptionally high catalyst stability,
which potentially would allow long-term operation of the
hydrogen generation system without the need for continuous
addition of fresh catalyst to retain the desired H, output.

Reintroduction of water as the reaction medium implied
solving challenges originating from unacceptable boil-off
rates and high cooling duties caused by the high gas flow
from the reactor. The use of alternative high-boiling solvents
was evaluated. The screening included common organic sol-
vents such as ethylene glycol, DMSO, propylene carbonate,
and aqueous mixtures thereof, but neither produced sufficient
activity under the selected conditions. Considering the
impressive performance reported for Ru catalysts in ionic
liquids [37], 1-ethyl-3-methylimidazolium acetate was syn-
thesized and tested, with short experiments at small scale
resulting in acceptable performance. Under more realistic
conditions, however, solvent degradation led to formation of
volatile amines and thus proved incompatible with the sen-
sitive fuel cell downstream [38].

The aqueous Ru TPPTS in-situ catalyst developed by Lau-
renczy and co-workers is capable of promoting FA dehydro-
genation at 90 °C and high autogenous pressures, which are
highly desirable when targeting fuel cell applications to both
offset the reduced hydrogen partial pressure in gas mixtures
and to obtain increased cell potentials as described by the
Nernst equation [39,40]. The team therefore focused on
exploring the operation of this catalyst system at elevated
pressure to concomitantly provide solutions for a number of
associated engineering challenges. High gas-dissolution rates
resulted in extensive foaming in small-scale tests, but was
virtually absent in the pressurized and larger reactor. Opera-
tion at 10—15 bar sufficiently diminished water vaporization to

| AN
PPh
N7 2 0;\3 p ,sfgo
|
(Bu)P—Ru—P(‘Bu); ONa NaO
H G C Ph,p” N P"ppn, NaO\S
o) 0™y
TPPTS
RuPNP Fe(BF4),  H,O RuCl; - xH,O
Pidko[31] Beller/Laurenczy[32] Laurenczy[34-36]

Scheme 1 — Catalysts evaluated in this work for scale-up viability.
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acceptable levels and reduced estimated continuous heating
duties from ~35 kW to just over 1 kW. Pressurization
furthermore afforded an attractive reduction of equipment
size, which at maximum capacity consumes approximately 11
of neat >95% FA per minute and consequently produces a
large quantity of ~1300 N1 gas per minute (H, + CO,) to prevent
bottlenecking the 25 kW hydrogen fuel cell. Efficient G/L sep-
aration is accomplished upstream to the fuel cell with a
cyclone separator, effectively reducing reaction mixture los-
ses and controlling residual gaseous formic acid levels to an
estimated 10 parts per billion.

Additional engineering was required for successful inte-
gration of the commercial fuel cell system. Most modern fuel
cells remain highly sensitive to traces of carbon monoxide and
thus demand very high purity hydrogen (<10 ppm CO), while
maximum allowed levels for carbon dioxide are typically
much less strict. In sharp contrast to the original research
[34—36] studies where the CO by-product was not formed in
significant quantities, the tests on the scaled-up system pro-
duced up to 200 ppm CO with levels decreasing at higher
temperatures, suggesting possible involvement of the water-
gas-shift reaction. Two possible solutions were therefore
envisaged, namely; (i) selective CO oxidation, or (i) CO
methanation. Preferential catalytic oxidation (PROX) to carbon
dioxide generally operates at temperatures below 200 °C and
requires a co-feed of air or O, as the oxidant [41,42]. Catalytic
methanation [43—45] relies only on H, as the reductant, and
was therefore deemed the most attractive technology for
implementation. Methanation was selected despite higher
temperatures required (~230 °C) and concomitant emission of
methane, which is a highly potent greenhouse gas [46]. After
methanation the stripped and cleaned gas-stream gets hu-
midified before entering the PEM fuel cell to protect the Nafion
polymer membrane and ensure efficient operation. An
afterburner-system was integrated downstream of the fuel
cell to remove residual methane and unconverted hydrogen
and enabled some degree of heat recovery before the effluent
is exhausted to the atmosphere.

reactor to the required 90 °C. Operation at 80 °C would have
facilitated improved heat integration and thus overall system
efficiency, but could not be realized due to maximum pro-
ductivity constraints of the selected catalytic system.

The system is highly responsive to changes in formic acid
mass flow rate and accommodates changes within seconds to
a minute. This is in contrast to the small-scale laboratory
experiments, which frequently took several minutes to reach
steady state in outlet gas flow rate without flow-stabilization
from the back-pressure regulator. At start-up there is no for-
mic acid present in the reactor and the catalyst readily con-
verts all FA fed until input/output steady state is reached.
When the catalyst is saturated it is critical to actively and
precisely control formic acid conversion rates (i.e.,, to not
overfeed) to prevent build-up of formic acid in the reactor
caused by the bottlenecked catalytic system. This undesirable
situation is easily and effectively prevented by selecting
operating conditions away from the maximum to ensure
sufficient headspace. Accurate temperature control within
several °C of effluent gas flows is critical and must remain
stable to prevent cathode/anode misbalances in the fuel cell,
which could damage the equipment by short-circuiting and
excessive wearing.

Results of a steady-state FA-dosage experiment in the up-
scaled FA-to-power system are shown in Fig. 6. The reactor
contents were pre-heated to a reaction temperature of 110 °C
before addition of FA was started to ensure immediate start of
the dehydrogenation reaction. As described, virtually instan-
taneous response in gas evolution rates was observed upon
both increasing and decreasing FA feed flowrates. Quantita-
tive steady-state conversion of formic acid was achieved with
a total Ru-loading of 0.695 mol, resulting in a steady-state
turnover frequency (TOF) of 484 h~'. Minor oscillations are
observed in measured effluent gas flows after the back-
pressure regulator, which are introduced by the PID-
controller actively managing reactor temperature. Full sys-
tem shutdown is achieved minutes after FA-dosage is
stopped.

System overview, start-up, and operation

The integrated system is shown in Figs. 3 and 4 and sche-
matically depicted in Fig. 5. As previously described, the
overall system is operated in such a manner to not endanger
or bottleneck the sensitive and expensive fuel cell. Formic acid
is pumped from the storage tank and converted into carbon
dioxide and hydrogen gas in a continuously stirred tank
reactor (CSTR). Excess water and formic acid is condensed out
and returned to the reactor system. The gaseous stream is
stabilized by a backpressure regulator (BPR) and is fed to the
catalytic methanation reactor for CO removal, humidified, and
subsequently converted into electricity in the fuel cell.
Remaining gases predominantly consisting of carbon dioxide
are exhausted to the atmosphere.

A fuel cell bypass is available to accommodate heating of
the reactor with hot gases and thus decrease electric heating
demands when required. Cold start-up of the system can be
performed using electricity stored in batteries or with residual
hydrogen in the system, requiring ~500 Nl H, to heat the

Remaining challenges

Laboratory-scale experiments are customarily performed
with high purity formic acid (>95%). In contrast, large-scale
commonly demands utilization of technical grade chemicals
due to the unfavorable economics of high quality feeds and
possibly restricted availability at scale. As previously dis-
cussed, pronounced catalyst deactivation was observed for
the Fe-system due to impurities present even in commercial
>99% pure FA. The particular chemistry and reactor configu-
ration does not readily facilitate separation or concentration
of the catalytic liquid phase, thus necessitating pure and
highly concentrated FA. Utilization of 85% formic acid leads to
continuous dilution of the catalyst solution and volume build-
up by the high water content, ultimately causing the reactor to
overflow. Furthermore, use of 85% formic acid reduces energy
density and overall system efficiency. Although economically
attractive, this approach significantly decreases time between
turnarounds and increases operational cost. Viable engineer-
ing solutions may be developed to remove water from the
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Fig. 3 — Integrated 25 kW formic acid-to-power system.

solution, e.g., use of solvent-selective nanofiltration [47,48] or
implementation of a highly selective heterogeneous formic
acid dehydrogenation catalyst [49—51]. Such improvements
would greatly reduce barriers hindering widespread adoption
of FA-based on-board hydrogen storage systems.

CO, capture and storage (CCS) is required to establish true
carbon-neutral operation. Implementation of onboard CCS,
however, remains highly challenging due to the prohibitive
energy requirements of gas compression and large spatial
footprint of amine-based CO,-adsorbents, both of which are
particularly problematic for mobile applications. However,
opportunities remain for localized capture at highly concen-
trated point sources and centralized collection of
400—600 ppm atmospheric carbon dioxide [52—55]. While

currently challenging, technological breakthroughs may
enable sufficiently dense storage and close the carbon cycle
for regenerative liquid organic hydrogen carrier (LOHC) energy
storage systems [56—61].

A particularly attractive concept for the widespread dis-
tribution of FA with possible integrated CCS was recently
proposed by Miiller and co-workers to enable hydrogen-
powered mobile applications at high pressures of >700 bar
while circumventing typical mechanical compression losses
[62]. In their vision high pressure H, is produced at fuel sta-
tions via FA dehydrogenation systems capable of operating
under very high autogenous pressures, e.g., Laurenczy's Ru
TPPTS system [34—36] and Kawanami's Ir-complex [63].
Beneficially, on-site carbon capture can be integrated to
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Fig. 4 — Implementation of 25 kW system in full-scale hydrogen powered city bus.

prevent its emission to the atmosphere and thus close the all-
important carbon balance. Thus, green synthesis of FA re-
mains highly desirable and several pathways are currently
under development, e.g., production from biomass [64,65] and
various strategies based on hydrogenation technology
[66—70].

Lastly, economic viability remains a major hurdle for the
wide-spread utilization of the FA-based hydrogen storage
systems in mobile applications because of the excessively high
CAPEX and OPEX investments currently required for the tech-
nology described herein. Team FAST/Dutch Energy Solutions
(DENS) estimates a total upfront system cost of €100.000, with
the fuel cell system approximately contributing 10% and the
noble metal catalyst roughly 1%. Following the economic

Exhaust

Humidification

Liquid reflux
Cooled gas

Liquid reflux
Formic Acid Formic Acid
Storage Tank;

Dehydrogenation
Reactor

Formic acid

H,+CO,

! Condenser <

evaluation reported by Eppinger and Huang [27], a COF value
(TOF normalized catalyst cost) of 2.2 is found for the described
catalytic system [71]. The reduction of two orders of magnitude
compared to Eppinger and Huang's calculation (COF = 384 for
Ru(H,0)s(tos), and TPPTS) at $250.000/mol) is achieved by
substitution of the Ru-precursor with widely available
RuCl;-xH,0 and purchasing chemicals in bulk. Besides catalyst
cost, formic acid availability and price remain critical. In this
regard DENS has set a price target for 99% formic acid at €400/
$450 per ton to enable economically viable operation at current
European energy prices. Disruptive novel and highly efficient
synthetic routes are required for such a significant cost
reduction, again highlighting the critical role of R&D in
bringing new and sustainable energy technologies to market.
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Fig. 5 — Flow diagram for 25 kW formic acid-to-power system.
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Fig. 6 — Steady-state test in 25 kW standalone system at
110 °C with 0.695 mol Ru. TOF = 484 h™*.

Conclusion

Formic acid was employed as a liquid organic hydrogen carrier
to power a 25 kW integrated and compact formic acid-to-power
system to power a full scale city bus or serve as a standalone
carbon-neutral electricity generator. A detailed post-mortem
engineering analysis returned several key engineering chal-
lenges encountered during scale-up of the technology
described herein. CO present at ppm-levels was successfully
removed from the gas stream by methanation, a strategy we
believe is generally applicable and allows less-selective, yet
highly stable and active dehydrogenation catalysts to become
attractive candidates for fuel-cell applications. High intrinsic
catalytic activity was found to have little impact on the viability
of the developed technology, whereas availability and stability
of the utilized catalytic solution were found to be of critical
importance for the realization of an onboard formic acid
dehydrogenation system. In fact, catalytic activity of the sys-
tem presented herein is three orders lower compared to the
most active Ru and Ir systems available in open literature, yet
its high stability renders scale-up feasible. Critical hurdles to-
wards commercial and practical implementation were identi-
fied to be availability, purity, and price of the required formic
acid feedstock, aspects not commonly addressed by academic
researchers. Successful introduction and operation of catalytic
FA decomposition systems requires the availability of highly
pure FA feeds to avoid continuous dilution of liquid phase,
which is not readily concentrated onboard. Tolerance of the
catalytic solution towards potential inorganic and organic
contaminations present in the feed is key towards ensuring
long-term catalytic stability and ultimate commercial viability
of the formic acid-to-power technology described herein.
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