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Abstract

As the world increasingly decarbonises, there is an increasing pressure on chemical manu-
facturing to move away from fossil carbon sources. Industrial bioprocesses provide one such
alternative for fossil carbon. Bubble columns as a bioreactor type are particularly well suited
to such large scale applications. However, models of bubble columns, whether based on
design correlations or computational fluid dynamics, have been shown to break down when
air-water systems are replaced with systems containing actual fermentation broth. The addi-
tional broth components can significantly affect interphase mass transfer through e.g. limiting
bubble breakup, which can in turn make or break the economics of a bioprocess [1]. Experi-
mental data on the effects of broth components on the physics in bubble columns is essential
to develop better models. Gathering such data requires experimental methods capable of
penetrating the industrially-relevant but opaque churn-turbulent flows. A promising method
for determining the state of a large section of the bubble field in a bubble column is X-ray com-
puted tomography. The TU Delft X-ray tomography setup seeks to achieve this using three
source-detector pairs capable of capturing X-ray data at high frame rates. However, in order
to be able to apply any experimental technique, it must first be validated and the sources of
and magnitude of its various measurement errors must be quantified.

This thesis uses computational fluid dynamics to validate tomographic reconstruction algo-
rithms. The computational fluid dynamics model was validated using experimental data from
Sanyal et al.[2] Furthermore, this thesis finds ways of improving tomographic reconstructions
through discovering which reconstruction algorithms perform best for different datasets. It was
found that for time-resolved bubble fields, a version of SIRT (Simultaneous Iterative Recon-
struction Technique) with generalised Tikhonov regularisation using the derivative operator
performed best with a NRMSE (Normalised Root Mean Squared Error) of 0.0867 over a base-
line value of 0.1123 using the default SIRT method and an F-score of 0.641 for the binary
classification of air and water. For time-averaged reconstructions of the gas holdup, an SIRT
with standard Tikhonov regularisation with an offset to the mean gas holdup was found to
perform best with a NRSME of 0.0137 over a SIRT baseline of 0.0160. Finally, this thesis
shows the improvement to tomographic reconstructions for an upgraded version of the TU
Delft X-ray tomography setup and provides recommendations for future research on this topic.
It was shown that increasing the number of source-detector pairs to five, leads to significant
improvements in the time-resolved bubble field reconstructions, with a new NRMSE of 0.0617
(-28%) and F-score of 0.823 (+28%).
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1
Introduction

1.1. Bubble columns and fermentation
With the world increasingly transitioning away from fossil fuels, the chemical industry has been
exploring alternative feedstocks and processes in chemical manufacturing. This has led to an
increased research interest in industrial-scale bioprocesses as a way to utilise biogenic feed-
stocks [3, 4]. Bubble columns reactors are well suited to such industrial-scale bioprocesses,
such as syngas fermentation [5]. Often being just a vertical cylindrical tank with a sparger
plate at the bottom, optional internal structures to change the flow characteristics and no mov-
ing parts, these reactors are inexpensive to build and maintain [6, 7]. Additionally, bubble
columns are easy to operate since the gas sparging rate the only operational variable in re-
gards to interphase mass transfer and mixing. This is also the main disadvantage of bubble
columns. Mixing and interphase mass transfer are both dependent on the gas sparging rate
and thus unable to be changed independently. Therefore, the required mixing and interphase
mass transfer rates at scale need to be taken into account during the reactor design phase.

This is easier said than done however. There are many design correlations [8, 9] and Com-
putational Fluid Dynamics (CFD) models [10, 11] available in literature. Yet, these models
tend to have significant errors compared to experimental data on the order of 15% and above
[11]. Furthermore, most models are based on air-water systems, which excludes the effects
of other broth components. These additional broth components can have industrially signifi-
cant effects on interphase mass transfer via inhibiting bubble coalescence [1, 12]. The current
theory underlying this coalescence inhibition by solutes such as salts and fermentation prod-
ucts is the Gibbs-Marangoni pressure [13, 14]. Though other effects are also thought to play
a role [15]. Improved models incorporating the effects of broth components such as Gibbs-
Marangoni pressure on bubble dynamics and flow behaviour would be a valuable contribution
to existing literature.

1.2. Experimental measurement and Computed Tomography
However, a solid foundation of experimental data is essential to develop and validate such im-
proved models. However, gathering data on the flow in bubble columns is difficult. Although
image-based methods work at low gas holdups, they are not useful at high gas holdups or
when using opaque liquids such as fermentation broths with high biomass concentrations [16,
17]. Semi-local measurement of the gas holdup can be achieved via measurement of the
pressure drop across an axial section of the bubble column, although this does not provide
information on individual bubbles [18]. Recent developments in optical fibre probes now allow

1



1.3. Thesis statement 2

for the measurement of phase information over time at individual points in bubble columns.
Using Doppler measurement of the velocity of the interface, the length of the bubble chord
and the velocity of the bubble can be measured to create bubble size and velocity distribu-
tions [19]. However, these fibre probes do influence the local fluid flow to some extent and
can only measure interfaces in a specific direction at one location at the time. Non-invasive
measurement technique capable of determining the local holdup without influencing the fluid
flow. X-ray computed tomography may be able to provide the best of both worlds.

Computed Tomography (CT) is the process of using a penetrating wave, ray or other signal
to image multiple lower dimensional slices of a system and using a computer to reconstruct
the higher dimensional system from these slices. X-ray CT is a particularly useful form of
tomography in both medical and industrial fields. X-ray CT uses the fact that different materials
attenuate X-rays according to the Beer-Lambert law, with the attenuation coefficient being
roughly proportional to density [20]. In the context of bubble columns and other two-phase
systems, CT has been applied to measure the time-averaged local holdup at various points in
the reactor simultaneously [21, 22]. Furthermore, by using Computer Automated Radioactive
Particle Tracking (CARPT) where the motion of radio-tagged particles is tracked over time, the
local instantaneous velocities can be recorded. These can be used to reconstruct the local
time-averaged velocity profile and turbulent kinetic energy, which in turn can be used for CFD
model validation [2, 23, 24].

As stated above, these techniques are effective for gathering time-averaged data. However,
time-resolved data are essential for studying bubble dynamics such as coalescence and break-
up. Recently, Graas et al. have applied the three-angle high frame rate X-ray tomography
setup at Delft University of Technology to reconstruct the time-resolved bubble field in a flu-
idised bed [25]. Work is now being performed to apply this same technique to produce time-
resolved reconstructions of bubble columns using this setup. In order to be able to apply this
new experimental measurement technique, it must be verified that the results produced by
the method align with the ground truth. However, as stated previously, measuring the internal
state of a bubble column is difficult and the measurement techniques have limitations.

Alternatively, rather than attempting to validate the time-resolved CT method using other ex-
perimental measurements, one could attempt to model both the time-resolved CT setup as
well as the bubble column system in order to create a digital twin of the experiment. A CFD
model of an (air-water) bubble column system provides a ground truth to compare with the
CT reconstruction. Assuming that the CFD model can approximate the bubble field inside a
real bubble column to a reasonable degree of accuracy, the errors present in the experimental
reconstructions can be estimated via comparison to this digital twin. In addition, the effects
of modifications and upgrades to the X-ray setup on CT reconstructions may be modelled a
priori in order to determine which changes are most relevant to improving reconstructions.

1.3. Thesis statement
This master thesis seeks to develop and validate a CFD model capable of reproducing bubble
fields in homogeneous bubbly and heterogeneous churn-turbulent bubble columns. Subse-
quently, this thesis seeks to quantify the accuracy and errors of limited-angle CT reconstruc-
tions of such a bubble field for both time-averaged and time-resolved data. Finally, this thesis
will explore methods of improving the accuracy of these CT reconstructions and give recom-
mendations for future experimental CT setups and reconstruction methods.
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1.4. Project outline
In the next chapter, the theoretical background for the CFD model and the tomographic re-
construction algorithm is covered in detail. The limitations and assumptions underlying the
models used are discussed and used to justify the final choices made in model design and
numerical implementation. Next, the model implementation and numerical methods are ex-
plained including the fluid models, system geometries, boundary conditions, etc. for the CFD
model. In addition, the X-ray system and projection geometries for CT are described.

In the following chapter, the results will be described as discussed. First, the CFDmodel is vali-
dated using data from a paper by Sanyal et al.[2] Using both time-resolved and time-averaged
data from the CFD model, CT reconstructions are performed and compared using different
reconstruction algorithms. The errors for these different methods will be quantified using both
the continuous Normalised Root Mean Squared Error and discrete performance measures of
binary classifiers. The effect of increasing the number of projection angles on time-resolved
reconstructions is also explored to show a possible future upgrade path for the TU Delft X-
ray setup. Finally, the assumption of axisymmetry during tomographic reconstruction and its
effect on reconstruction error is examined.



2
Theoretical Background

2.1. Hydrodynamics
The behaviour of fluids at the continuum scale is described by the continuity equation (equa-
tion (2.1)) and Navier-Stokes equation (equation (2.2)). Where ρ is the density, u⃗ is the velocity,
p is the pressure, ν is the kinematic viscosity, f⃗b are the body forces and f⃗s are the surface
forces.

∂ρ

∂t
+∇ · (ρu⃗) = 0 (2.1)

ρ

(
∂u⃗

∂t
+ u⃗ · ∇u⃗

)
= −∇p+ ρν∇2u⃗+ f⃗b + f⃗s (2.2)

A common simplification is the assumption of incompressibility as seen in equations (2.3)
and (2.4), where the density is assumed to be constant and thus the divergence of the ve-
locity field is zero. This assumption holds for low Mach numbers [26, 27].

∇ · u⃗ = 0 (2.3)
∂u⃗

∂t
+ u⃗ · ∇u⃗ = −∇p

ρ
+ ν∇2u⃗+

1

ρ
f⃗b +

1

ρ
f⃗s (2.4)

Most conventional CFD software discretises the Navier-Stokes equation for small fluid do-
mains resulting the Finite Volume method. The continuity and Navier-Stokes equations are
then solved over these finite volumes. However, finding a satisfactory numerical solution
requires significant computational resources to solve the non-linear Navier-Stokes equation
which often requires several iterations per time-step for transient simulations. Therefore, al-
ternative methods such as the Lattice Boltzmann method have become increasingly popular.

2.1.1. Lattice Boltzmann method
For a more complete exploration of the Lattice Boltzmann method and underlying maths and
physics, please refer to The Lattice Boltzmann Method: Principles and Practice by T. Krüger
et al. [28] which will be referenced throughout this section. As mentioned previously, the
Navier-Stokes equation applies at the macroscopic scale where the fluid can be treated as a
continuum. While at the microscopic scale fluids consist of discrete particles interacting via
collisions. Both model descriptions accurately describe the same system at different scales.

4



2.1. Hydrodynamics 5

The Boltzmann equation from statistical mechanics can be used to describe fluid systems at
the intermediate mesoscopic scale; where the probability distribution of the particle positions
and momentums are considered rather than keeping track of the position and momentum of
individual particles [28, ch. 1.2]. Similarly to how the Navier-Stokes equation can be discretised
across several finite volumes, the Boltzmann equation can be discretised across a uniform
lattice of grid points resulting in the Lattice Boltzmann method:

fi(x⃗+ ci∆t, t+∆t) = fi(x⃗, t) + Ωi(x⃗, t) (2.5)

In this equation, fi(x, t) describes the set of probability density distributions of the momentum
and position of the fluid particles. Each component of the momentum distribution in fi(x, t)
streams with velocity ci to the respective lattice points at x⃗ + ci∆t in what is known as the
‘streaming step’. At their destination lattice points, the momentum distributions are relaxed
according to the collision operator Ωi(x⃗, t) in what is known as the ‘collision step’. [28, ch. 3].
Despite statistically describing the movement of discrete particles, it has been shown via the
Chapman-Enskog expansion that the Lattice Boltzmann method indirectly solves the Navier-
Stokes equation [28, ch. 4][29]. Hence, macroscopic fluid variables are tied to the mesoscopic
particle distribution via the moments describing the distribution of fi(x, t). LBM has seen in-
creasing adoption over Finite Volume solvers as it allows for parallelised numerical solving
schemes which take advantage of modern graphical processing unit (GPU) hardware. This is
due to the streaming step being a large linear matrix operation and the collision step being non-
linear but entirely local to the grid cell. Both these steps are very amenable to parallelisation
on the GPU [28, ch. 2.4].

2.1.2. Immiscible two-fluid model
Bubble columns, being two-phase / two-component systems, require some form of tracking the
two phases and method of resolving the interface boundary conditions between them. M-Star
CFD provides the Immiscible Two-Fluid (ITF) model with the High Density Ratio (ITF-HDR)
option for simulating resolved multiphase flows in gas-liquid systems. The ITF-HDR model
implementation in M-Star CFD is based on a paper by Sitompul & Aoki [30]. The ITF model
keeps track of the phases using the phase indicator function ϕ(x⃗, t) across the fluid domain.
The fluid properties are set according to the local value of the phase indicator (equations (2.6)
and (2.7)).

ρf = ρf,1 + ϕ(ρf,2 − ρf,1) (2.6)
νf = νf,1 + ϕ(νf,2 − νf,1) (2.7)

The evolution of the phase-field over time is modelled using a conservative form of the Allen-
Cahn equation shown in equation (2.8), where M and W are the interface mobility and inter-
face width parameters respectively and n⃗ represents the normal vector of the interface [31,
32]. M and W are tied to the lattice grid size and time-step and are set automatically. In real
multiphase systems the interface width in the order of nanometres. One of the limitations of
this phase-field method is that, being a diffuse interface model, the interface width must be
resolved over several grid cells. Despite this limitation, diffuse interface models are capable of
dealing with lattice spacing above the nanometre scale as long as relevant fluid length scales
are larger than the interface width [28, pp. 339-340][32].
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∂ϕ

∂t
+∇ · ϕu⃗ = ∇

[
M

(
∇ϕ−

1− 4
(
ϕ− 1

2

)2
W

n⃗

)]
, n⃗ =

∇ϕ

|∇ϕ|
(2.8)

The surface tension force is implemented as a surface force term in the Navier-Stokes equation
based on the continuum surface force model according to equation (2.9) [31, 33]. The surface
tension force acts normal to the interface and is proportional to the local curvature of the
interface κ.

f⃗σ = σκ∇ϕ (2.9)

κ = ∇ · n⃗ = ∇ ·
(

∇ϕ

|∇ϕ|

)
(2.10)

2.1.3. Turbulence models
The conventional LBM turbulence model is Large Eddy Simulation (LES) with some sort of
sub-grid closure model. In this model, turbulence is divided between the large eddies (a.k.a.
filtered component) which are explicitly modelled and small eddies which are approximated
using sub-grid closure model. M-Star CFD uses LES with the Smagorinsky sub-grid model
for most fluid models [34]. The Smagorinsky sub-grid model assumes isotropic turbulence
at sub-grid eddy sizes, which affects the fluid via an additional turbulent viscosity νt atop the
molecular viscosity νf based on the magnitude of the filtered strain rate tensor S̄. The local
strain rate tensor can be derived directly from the second order moments or cumulants of the
particle distribution function [35].

ν = νf + νt (2.11)
νt = (Cs∆x)2S̄ (2.12)

However, the ITF-HDR model does not use an explicit sub-grid turbulence model like the
Smagorinsky model [35]. Rather it relies on modelling turbulence implicitly via Implicit Large
Eddy Simulation (ILES). ILES is based on tuning the numerical diffusion of momentum in the
solver to act as a form of turbulent viscosity approximating a sub-grid closure model. Fur-
thermore, the ITF-HDR model has an optional velocity filter to improve numerical stability at
high Reynolds number, which also acts as an additional source of viscosity [30]. It should be
noted that these sources of numerical viscosity are determined heuristically and do not have a
physical justification as opposed to the Smagorinsky sub-grid model; although the Smagorin-
sky model is also not without its detractors [36]. Besides, the relaxation rates and velocity
filter are coupled to the grid sizing and time step, which may lead to additional grid and time
step dependence. Therefore, the turbulence model should be validated against other models
and/or experimental data to validate that accurate turbulent energy dissipation is achieved.

2.2. Lagrangian bubble dynamics
An alternative to capturing resolved bubbles using the immiscible two-fluid model is the Euler-
Lagrange approach of modelling bubbles. Specifically, M-Star CFD implements the convec-
tional Discrete Particle Model (DPM) using the Particle Centroid Method (PCM) of fluid cou-
pling [34]. In this model gas bubbles are treated as Lagrangian point masses moving through
a continuous Eulerian liquid phase. The movement of gas bubbles is determined by numeri-
cally integrating the momentum balance over time (equation (2.13)). The fluid forces affecting
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the gas bubbles can be either be one-way coupled, thus only affecting the particle, or two-way
coupled using Newton’s third law as described in equation (2.14), affecting both the particle
and the fluid. Since gravity is an external force affecting both fluid and particles separately, it
is not included in the two-way coupling.

F⃗p,i = mp,i
du⃗p,i
dt

= F⃗GB,i + F⃗M,i + F⃗P,i + F⃗D,i + F⃗L,i (2.13)

F⃗f = −
∑
i∈x⃗

(
F⃗M,i + F⃗P,i + F⃗D,i + F⃗L,i

)
(2.14)

The advantages of this method include lower resolution requirements for fluid simulation since
the interface does not have to be grid-resolved. Therefore, bubbles smaller than the grid size
can be captured accurately. Additionally, forces can be excluded if they do not significantly
affect the dynamics of the system which can speed up computation.

The disadvantages of this method are the fact that the forces affecting the particles have to be
defined explicitly, often according to empirical correlations. One has to verify that the chosen
empirical model is applicable for the given conditions as a model developed for e.g. laminar
conditions may not be valid when extrapolated to turbulent conditions. Similar verification is
required for bubble break-up and coalescence models as explored in section 2.2.2.

Furthermore, as explained in detail by Ling et al. [37], the assumptions underlying the particle
force models such as the drag, lift and pressure gradient forces may not be valid when using
a PCM-based particle implementation. PCM-based particle models only expose the fluid pa-
rameters for the grid cell containing the particle centroid. Generally, for the assumptions of
particle force models to be fully valid, the local fluid velocity unperturbed by the particle are
required since these forces act close to the interface. The local fluid velocity does approximate
this unperturbed state in cases where particle diameter is an order magnitude smaller than the
grid cell (dp << ∆x) However, in cases where the particle diameter approaches the grid cell
size (dp ∼ ∆x), the two-way coupling will cause the fluid velocity to become perturbed by the
particle. This effect will be further exacerbated when the particle diameter exceeds the grid
cell size (dp > ∆x) as the particle forces will be applied to only a single grid cell containing
the particle centroid despite the actual particle and associated force coupling being distributed
over several grid cells. On top of this, the model describing the lattice Boltzmann fluid in which
the Lagrangian particles move is based on the assumption that the volume fraction of particles
is also low.

Ling et al. [37] propose two solutions to this issue: either only performing one-way fluid-to-
particle coupling for low Lagrangian particle mass fractions in resolved simulations with fluid-
particle conversion, or using a customGaussian kernel for applying two-way coupling between
a particle andmultiple fluid cells. In either case, the local fluid velocity is decomposed into local
unperturbed fluid velocity and a particle contribution, which can then be acted on independently.
Only the first method is implemented in M-Star CFD via one-way fluid-to-particle coupling.

2.2.1. Forces
The following section explores the models which may be used for each of the force terms. One
notable exclusion from the momentum balance in most Euler-Lagrange models is the Basset
force due to difficulty of implementation and high-computational requirements. The Basset
history force represents the viscous effects in the boundary layer near the particle interface
which delay the response to acceleration of the particle relative to the surrounding fluid [38]
[39, pp. 19-20]. Despite its exclusion from the momentum balance in equation (2.13), research
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by Muniz & Sommerveld appears to show that Basset force is the most important interfacial
force in bubble columns after drag and added mass over short timescales [40].

Gravity & Buoyancy forces
The gravity and buoyancy force can be combined into one net force by taking the weight of
the bubble and subtracting the weight of the displaced fluid as described by equation (2.15).

F⃗GB =
mpg(ρp − ρf )

ρp
(2.15)

Pressure gradient force
The pressure gradient force is effectively equivalent to the buoyancy force, arising from the
hydrostatic pressure gradient, and the pressure swings arising from fluid acceleration [39]. M-
Star’s implementation of the pressure gradient force is somewhat opaque as the buoyancy
force is computed separately as shown above, though equation (2.16) is provided in the doc-
umentation.

F⃗P = −Vp∇p (2.16)

Virtual mass effect
As derived by Odar et al. [41, 42], the virtual mass (also called added mass) force results from
inertia of the displaced fluid surrounding the particle. When the particle accelerates relative
to the surrounding fluid, the fluid near the interface of the particle must also be accelerated
in accordance with the interface boundary condition. This manifests as a force opposing the
acceleration relative to the fluid due to the inertia of the fluid near the interface. The virtual
mass force is particularly relevant when modelling gas bubble in liquid as the inertia of the
low-density gas bubble is far exceeded by the inertia of the surrounding fluid.

F⃗M =

(
2.1− 0.132

0.12 +A2
c

)
Vpρf

˙⃗uf − ˙⃗up
2

(2.17)

Ac =
|u⃗f − u⃗p|2

dp| ˙⃗uf − ˙⃗up|
(2.18)

Drag force
The drag force as described by equation (2.19) results from the difference in velocity between
the bubble and the surrounding fluid. The default drag force model for all Lagrangian parti-
cles used in M-Star CFD is the Brown and Lawler drag force coefficient [43] as described by
equation (2.20).

F⃗D = CDA⊥
1

2
ρf |u⃗f,p|u⃗f,p =

π

8
CDd

2
pρf |u⃗f − u⃗p|(u⃗f − u⃗p) (2.19)

CD =
24

Rep
(1 + 0.15Re0.681p ) +

0.407

1 + 8710
Rep

(2.20)

However, using the Brown and Lawler model for bubble dynamics assumes perfectly spher-
ical bubbles. To account for deformed bubbles, an alternative model is required. The drag
correlations by Tomiyama account for deformed bubbles under a wide range of conditions
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(10−2 < Eo < 103, 10−3 < Rep < 105) in air-water systems [44]. Furthermore, Tomiyama de-
veloped separate drag correlation based on different levels of water contamination. The cor-
relation for the drag coefficient in fully contaminated systems as described by equation (2.21)
is most applicable to the system being simulated.

CD = max

[
24

Rep
(1 + 0.15Re0.687p ),

8

3

Eo

Eo+ 4

]
(2.21)

If a fully Lagrangian bubble representation is chosen, an addition of a correction factor may be
necessary at higher gas holdups to account for bubble-bubble interactions in swarms. When
the larger bubble structures are resolved, effects such as the wake entrainment may be cap-
tured implicitly [11, 45, 46]. Additional research is required to determine the necessity of drag
corrections in such hybrid models.

Lift force
The lift force, also called the Saffman force, is a transverse force which arises in shear flows
as a result of particle rotation. The default lift force model used by M-Star CFD is based on
Saffman’s derivation as described in equation (2.22).

F⃗L = 1.61d2pρf

√
νf
|ω⃗f |

[(u⃗f − u⃗p)× ω⃗f ] (2.22)

However, like the default drag model, this model applies for rigid spherical particles. Tomiyama
derived lift correlations for bubbles using a modified Eötvös number (Eod) as calculated using
equation (2.24), where the diameter used is the length of the bubbles major axis [47]. The
bubble major axis size can calculated using the empirical correlation based on the unmodified
Eötvös number in contaminated systems (equation (2.25)) [48].

F⃗L = CLρfVp(u⃗f − u⃗p)× ω⃗f (2.23)

CL =


min [0.288 tanh (0.121Rep), f(Eod)] Eod ≤ 4

f(Eod) 4 < Eod ≤ 10

−0.27 10 < Eod

(2.24)

f(Eod) = 0.00105Eo3d − 0.0159Eo2d − 0.0204Eod + 0.474

dH = dp
3
√

1 + Eo0.757 (2.25)

However, it should be noted that the Tomiyama lift correlations where developed significantly
higher Morton numbers (−5.5 < log Mo < −2.8) than occur in air-water systems (log Mo ≈
−11) and are only strictly valid for a limited range of Eötvös numbers (1.38 < Eo < 5.74). De-
spite these limitations, the correlations have seen broad application in CFD modelling outside
of these original conditions.
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2.2.2. Bubble breakup & coalescence
There are several proposed physical mechanisms and empirical models for fluid particle breakup
and coalescence. These models have been reviewed extensively by Liao and Lucas [49, 50].
They conclude that for both phenomena, mechanistic models are preferable over empirical
models. According to the 2009 review, the turbulent eddy collision breakup model is by far
the most popular model with the most available literature. Coalescence models on the whole
are more varied in their approaches. In terms of applicability to fermentation bubble column,
the film drainage model has the advantage of including parameters for modelling the effect of
electrolytes on bubble coalescence [13, 51, 52].

Breakup
The breakup criteria of a gas bubble can be defined using the dimensionless Weber number,
which describes the ratio between the inertial forces on the bubble and the surface tension
(equation (2.26)) [53]. Break-up occurs when a critical Weber number is reached and the
disruptive inertial forces exceed the restorative force of surface tension [17, 54].

We =
ρf |u⃗|2dH

σ
(2.26)

In the turbulent eddy collision breakupmodel, the |u⃗|2 can be substituted by the mean turbulent
velocity u′ using the relation (u′)2 = C(εd)

2
3 where the constant C has experimentally been

determined to be 2.0 [54–56]. Since theWeber number is dimensionless, this constant is often
subsumed into the Weber number, leading to the definition of the Weber number described in
equation (2.27)

We =
ρfε

2
3d

5
3

σ
(2.27)

Experiments performed by Mast and Takors [17] have derived a critical Weber number for
a bubble column by fitting CFD data to experimentally determined bubble size distributions.
They arrive at a value of Wec = 6.1 using a minimum time between consecutive breakup
events of 30ms. However, the system studied in theMast and Takors system is a homogenous
system with little to no bubble-bubble interactions, which is required in order to use optical
methods. Prince and Blanch [52] derive a value of Wec = 4.5 for turbulent gas-liquid flows
based on the maximum stable bubble size expression provided by Bhavaraju et al [57].

After breakup the sizes of resulting daughter bubbles are not uniform. The bubble sizes re-
sulting from breakup can be modelled by randomly sampling a daughter bubble distribution
(DSD), which provides the probability density function for a given daughter bubble size (dj)
given a parent bubble size (di). Liao and Lucas [49] reviewed several DSD models and con-
cluded that: ”The M-shape daughter bubble distribution is most reasonable.” Mast and Takors
[17, 58] also apply an M-shaped DSD based on the work by Lehr et al. [59] as described in
equation (2.28) in their models, though their implementation of this model appears flawed as
discussed in appendix A. This results in overestimation of symmetrical bubble break-up, which
in turn may have affected the Wec estimate since it is determined by the fitting of the bubble
size distributions to experimental data.
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DSD(dj , di) =
1√
πfV

exp

{
−9

4

[
ln

(
2

2
5
djρ

3
5 ε

2
5

σ
3
5

)]2}

1 + erf

{
3
2

[
ln

(
2

1
15

diρ
3
5 ε

2
5

σ
3
5

)]} , fV =
d3j
d3i

(2.28)

Coalescence
The default coalescence model in M-Star CFD is the criticial Reynolds number model based
on a paper by Boshenyatov [60, 61]. M-Star specifically applies the correlation for turbulent
bubble systems with lowWeber numbers (Re > 100,We < 1). In this model, pair-wise collision
are either a coalescence event where (Pc = 1) or a bounce (Pc = 0) based on the bubble pair
Reynolds number Rec (equations (2.29) to (2.32)). Where Ui,j is relative bubble velocity and
di,j is the harmonic mean of the bubble diameters. Additionally, the M-Star CFD coalescence
model limits the maximum bubble size at which coalescence takes place to 10mm.

Pc =

{
0 Rec < 40

1 Rec ≥ 40
(2.29)

Rec =
Ui,jdi,j
νf

(2.30)

Ui,j =

∣∣∣∣(u⃗i − u⃗j) · (x⃗i − x⃗j)

|x⃗i − x⃗j |

∣∣∣∣ (2.31)

di,j =
2didj
di + dj

(2.32)

A search of English language scientific literature does not yield independent validation of this
model, except indirectly through M-Star mass transfer predictions in turbulent STRs [62–67].
Furthermore, the maximum coalescent bubble size parameter was shown to have a significant
effect on the bubble size distribution, despite this limit having no apparent physical basis. This
coalescence limiting may lead to non-physical accumulation of bubbles with sizes close to the
maximum coalescent bubble size [65]. This hints at a possible overprediction of coalescence
when using the critical Reynolds model when such an upper coalescence limit is not applied.
Conversely, the complete exclusion of a coalescence model in turbulent STRs leads to a +50%
overprediction of mass-transfer, which can be explained by the higher relative interfacial area
of smaller bubbles [62].

An alternative to the critical Reynolds model is the film drainage model as it has been well-
studied in literature [50]. It has previously been adapted to Euler-Lagrange simulations in
work by Sommerfeld [68]. The film drainage model is based on the comparison of time scales
of coalescence and contact between two bubbles. Bubbles coalesce if the contact time scale
is longer than the coalescence time and vice versa. The coalescence time has several regimes
depending on the bubble rigidity and contact interface mobility, which in turn depend on bub-
ble size and the presence of surfactants [50, 69]. Considering the applicability to tap water
as opposed to pure water and considering future applications using fermentation broth, the
models pertaining to immobile and partially mobile interfaces are the most relevant to this
research. Lee et al. [70] developed a model for partially mobile interface using a surface
immobility parameter which has to determined empirically. Alternatively, there is the Oolman
and Blanch model [51] using surface tension gradient / Gibbs-Marangoni pressure which can
be determined experimentally or modelled [14, 71].
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2.3. Computed tomography
In X-ray tomography, an object of interest is placed in the beam path of an X-ray source and
detector. The object absorbs and scatters a fraction of X-rays emitted from the source in a
process called attenuation. The detectors measure the intensity of the surviving fraction of
X-rays after traversing the object. The detector measures the intensity in terms of detector
counts, which is proportional to the number of photons hitting a detector pixel. The surviving
fraction of X-rays a.k.a. the attenuation can then be determined by comparing the detector
counts with and without the object in the beam path [20]. Modern detectors can output high-
resolutions images with each pixel corresponding to a separate beam path which allows for
rapid parallel data gathering.

The attenuation of a monochromatic X-ray beam I
I0

along beam path l is described by Beer-
Lambert’s law along the beam path (equation (2.33)). The intensity of the attenuated X-ray
beam I is equal to the initial intensity I0 multiplied by the attenuation coefficient µ integrated
along the beam path, where η describes the position along the beam. Tomography is the
inverse problem of reconstructing the value of the attenuation coefficient µ at each point of the
object given the attenuation along numerous beam paths [20, 72].

I

I0
= exp

(
−
∫
l
µ(η)dη

)
⇔ I = I0exp

(
−
∫
l
µ(η)dη

)
(2.33)

2.3.1. Mathematics behind tomography
In the following section, the mathematics behind computed tomography will be explained to
level of detail judged to be relevant to the current research questions. Therefore, detailed
mathematical proofs will be foregone in favour of a more concise explanation of the topics.
For a detailed exploration of the derivations in this section, please refer to chapter 6 in Com-
puted Tomography: From Photon Statistics to Modern Cone-Beam CT by T.M. Buzug [20]
and the entirety of Computed Tomography: Algorithms, Insight, and Just Enough Theory by
P.C. Hansen et al. [72] which will both be referenced throughout this section.

Equation 2.33 can be linearised by taking the logarithm of the attenuation (equation (2.34)).
The attenuation coefficient integral can subsequently be discretised according to equation (2.35),
where the product of the local attenuation coefficient µi and the path length along that local sec-
tion of the beam path∆η is summed along the entire beam. The discretised forward projection
of the object to an X-ray image can then be represented as a linear system (equation (2.36)).

ln

(
I

I0

)
= −

∫
l
µ(η)dη (2.34)

ln

(
I0
I

)
=
∑
i∈l

µi∆η (2.35)

b = Ax (2.36)

In this system, the object vector x contains the local attenuation coefficients ui for the object.
The image vector b contains the total linearised attenuation ln

(
I0
I

)
along the various beam

paths. The system matrix A represents the projection the object space to the image space; it
is a real-valued positive matrix which maps the contribution of the local attenuation coefficient
of each entry in the object vector x along the respective beam paths to the total linearised
attenuation in b (equation (2.38)) [20, pp. 203–205] [73]. In other terms, the linear operation
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Ax represent forwards projection with the adjointATb representing simple backprojection [72,
pp. 167–171].

x =


µi

µi+1
...

µN

 , A =


ai,j ai+1,j . . . aN,j

ai,j+1 ai+1,j+1 . . . aN,j+1
...

... . . . ...
ai,M ai+1,M . . . aN,M

 , b =


ln

I0,j
Ij

ln
I0,j+1

Ij+1

...
ln

I0,M
IM

 (2.37)

A ∈ RN×M
+ , x ∈ RN

+ , b ∈ RM
+ (2.38)

In an ideal case, the problem in equation (2.36) is well posed and one can just take the matrix
inverse of A to calculate x. In practice, the CT inverse problem is effectively always ill-posed.
A problem is considered ill-posed when it does not meet all of the Hadamard criteria [74]
shown below. The nonexistence of a solution is due to the presence of noise, which leads to
an inconsistent linear problem. For example, if one imagines three affine planes intersecting
at one point in space, any perturbation due to noise to any of the three planes would result in
the point no longer intersecting all the planes. The non-uniqueness of the solution is due to
the fact that tomography systems are almost always underdefined a.k.a. the matrix has fewer
rows than columns. For example, if one imagines two affine plane intersecting, there is now
a line of infinite length where they are equal to each other. The final criterium is difficult to
explain. How this criterium and the others can be addressed using the least-squares method
and regularisation is explained in detail in appendix B.

Hadamard’s criteria

1. A solution exists; for the image vector, there exist a object vector which solves the prob-
lem.

2. The solution is unique; for the image vector, there exist only one associated object which
solves the problem.

3. The solution is stable; for a large or small change in the image vector, there is a propor-
tional change in the object vector.

2.3.2. Iterative reconstruction algorithms & Regularisation methods
As shown in the previous section and appendix B, solving the CT system directly via matrix
inversion is unfeasible due to the ill-posed nature of the problem. Combined with the fact that
the system matrix is often sufficiently large and sparse that its explicit storage is unfeasible,
other solving methods are required. Iterative methods can address these issues by iteratively
approaching a solution without needing to directly compute the matrix inverse. No storage of
the explicit system matrix is required as these algorithms only rely on vector matrix multipli-
cation. Additionally, iterative methods can provide a degree of implicit regularisation which
limits the effect of noise at lower iterations [73, 75]. Furthermore, iterative methods can read-
ily incorporate several explicit regularisation methods, such as generalised Tikhonov or total
variation regularisation [20, 72, 76]. Finally, iterative reconstruction algorithms can apply box
constraints to the reconstructed object vector by simply clipping the minimum and maximum
values after each iteration, more formally known as projection onto a convex set [72, p. 221].

Simultaneous Iterative Reconstruction Technique
TheSimultaneous Iterative Reconstruction Technique (SIRT) and associated algorithms known
as SIRT-like methods were developed by Gilbert in 1972 [77]. These methods solve the geo-
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metrically weighted least-squares problem according to the distance each ray travels through
the object (equation (2.39)). The weighting is determined by taking the inverse of the row sums
of system matrix A. Rays that traverse through more of the object can therefore accept pro-
portionally higher residuals and vice versa [73]. This prevents the algorithm from preferentially
changing the voxels with a higher number of traversing rays. Additionally, box constraints can
be applied via iterative projection PB of the reconstruction onto a convex set B through clip-
ping the data to the maximum and minimum allowed values (equation (2.40)). This provides
superior reconstructions by constricting the solution space [72, fig. 11.14].

argmin
x

1

2
∥Ax− b∥2R (2.39)

argmin
x∈B

1

2
∥Ax− b∥2R (2.40)

To describe the iterative notation of SIRT, the two diagonal matrices R and C are required.
These matrices contain the inverse of the row and column sums of A along their diagonals
respectively. The R matrix is used to apply the previously described geometric weighting.
The C matrix is used as a diagonal preconditioning matrix. The final iterative notation of
the unconstrained and box constrained versions of SIRT is shown below (equations (2.44)
and (2.45)).

R = diag

(
1∑
j aij

)
(2.41)

C = diag

(
1∑
i aij

)
(2.42)

(2.43)

x(k+1) = x(k) + λCATR
(
b−Ax(k)

)
(2.44)

x(k+1) = PB

[
x(k) + λCATR

(
b−Ax(k)

)]
(2.45)

The preconditioning matrix C is chosen as such because it guarantees convergence for any
arbitrary initial object vector x0. SIRT is a form of Richardson Iteration which converges when
the condition in equation (2.46) is met [78, pp. 181–187]. This convergence condition is based
on the maximum eigenvalue σ2

max of CATRA. The maximum eigenvalue a.k.a. spectral
radius of a non-negative matrix is bounded by its row sums. Since all entries inA are positive,
RA and CAT are non-negative and stochastic, where stochastic refers to all row sums being
equal to unity. Therefore, for 0 < λ < 2 SIRT will converge, though λ = 1 tends to be used by
convention [73, 75].

0 < λ <
2

σ2
max

(2.46)

However, while SIRT attempts to converge to a least-squares solution, it does not necessarily
converge to the minimum-norm least-squares solution xLS in underdetermined systems. The
minimum-norm least-squares solution refers to the solution with the smallest ∥x∥ which satis-
fies the least-square solution. The advantage of the minimum-norm least-squares solution is
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that it has no components in the null space of the system matrix and hopefully all components
of the solution can be attributed to the data [79, pp. 32-33]. The initial guess x0 can affect
the solution to which SIRT converges. However, when using a null vector as the initial guess,
SIRT will converge to the minimum-norm least-squares solution [75].

Additionally, while SIRT addresses issues of ill-posedness via implicit regularisation, it does
come with the problem of semiconvergence. Semiconvergence refers to the error compared to
ground truth decreasing during initial iterations but this error increasing during later iterations
by fitting to the noise rather than signal [80]. This is shown experimentally in appendix C.1.
Therefore, when implementing SIRT for noisy data, a stopping rule is required to stop the algo-
rithm when the solution ceases to improve compared to the ground truth. One such stopping
rule for constrained problems is the Discrepancy Principle, where the algorithm is halted once
the squared norm of the residual ∥b −Ax(k)∥22 is lower than or equal to the squared norm of
the error vector ∥e∥22. For implementation of the Discrepancy Principle the noise is assumed to
be Gaussian and its standard deviation must be quantified [72, pp. 234-235]. This assumption
of Gaussian noise is not always appropriate for tomographic data, which tends to be mostly
Poisson distributed since photon emission, scattering and detection are stochastic Poisson
processes [20, ch. 2.6]. When the intensity (number of counts) is high enough, the central
limit theorem can be applied to assume a Gaussian distribution [72, pp. 49–52]. An additional
‘safety factor’ η of e.g. 1.02 can be applied to stop the algorithm slightly early to account for
inaccuracies in the estimate of the error vector, resulting in using η∥e∥22. Other stopping rules
are covered by Hansen et al. in their 2021 paper [81]. Do note that in experimental setups
there are additional sources of error which can affect noise such as dead pixels and beam
hardening effects which must be taken into account as well.

Standard Tikhonov regularisation
Standard Tikhonov regularisation solves the issue of underdetermined systems by adding an
a priori assumption of normality to the underlying object data. This assumption is applied by
minimising x for ∥Ix∥22 according to the regularisation weighting factor α which is proportional
to the variance of the Gaussian prior [72, pp. 256–260]. This method of explicit regularisation
does not suffer from semiconvergence, removing the need for a stopping rule. The Tikhonov
regularised least-squares problem will converge to xT ik,LS . The performance of standard
Tikhonov regularisation depends on whether the distribution of data in the object vector is
close to normal. If the entries of the object vector are not normally distributed, as is the case
in binary systems such as bubble columns, poor performance is to be expected.

argmin
x

∥Ax− b∥22 + α ∥x∥22 (2.47)

argmin
x

∥∥∥∥( A√
αI

)
x−

(
b
0

)∥∥∥∥2
2

(2.48)

Applying standard Tikhonov regularisation to SIRT results in the following iterative notation.
The projection onto a convex set can be applied in the same way as when using SIRT as
shown below (equation (2.50)).

x(k+1) = x(k) + λCATR
(
b−Ax(k)

)
− αλCx(k) (2.49)

x(k+1) = PB

[
x(k) + λCATR

(
b−Ax(k)

)
− αλCx(k)

]
(2.50)
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Generalised Tikhonov regularisation
Standard Tikhonov regularisation may not be an appropriate technique when the entries in
the object vector are not normally distributed. However, Tikhonov regularisation can be gen-
eralised to apply the normal prior distribution to the gradient of the data, which may be used to
enforce the smoothness of a solution (equation (2.51)). Any appropriate linear operator can
be used in place of ∇, however, in this case the gradient / derivative operator is used since
reducing gradients leads to a smoother and less noisy solution [72, p. 261]. The gradient
operator can be approximated using the central finite-difference in each dimension.

argmin
x

∥Ax− b∥22 + α ∥∇x∥22 (2.51)

Applying generalised Tikhonov regularisation to SIRT results in the following iterative notation
(equations (2.52) and (2.53)). Notice that the gradient operator ends up as the Laplace opera-
tor in the iterative notation. Using the central finite-difference approximation of the gradient, a
finite-difference approximation of the Laplacian can be constructed. The Laplacian of x is cal-
culated each iteration to apply the Tikhonov regularisation. As an example, the heat equation
should provide a degree of intuition on how this works; the Laplacian smooths out the object
vector over increasing iterations in the same way that diffusion and conduction smooth out
the concentration and temperature profiles over time. Projection onto a convex set works the
same as before (equation (2.54)).

x(k+1) = x(k) + λCATR
(
b−Ax(k)

)
− αλC∇T∇x(k) (2.52)

x(k+1) = x(k) + λCATR
(
b−Ax(k)

)
+ αλC∇2x(k) (2.53)

x(k+1) = PB

[
x(k) + λCATR

(
b−Ax(k)

)
+ αλC∇2x(k)

]
(2.54)

Total variation regularisation & the Chambolle-Pock algorithm
One downside of generalised Tikhonov regularisation of the gradient is that it always provides
a smooth solution. While this assumption is reasonable for time-averaged data, time resolved
data has regions of air and water with a discrete rather than a smooth boundary. This can
be addressed by taking the 1-norm of object vector gradient rather than the 2-norm (equa-
tion (2.55)). The advantage of the 1-norm is that it penalises steep slopes in the object-vector
less severely than 2-norm leading to a piece-wise smooth solution rather than an L2 smoothed
solution.

argmin
x

∥Ax− b∥22 + α ∥∇x∥1 (2.55)

However, solving the TV regularised problem cannot rely on traditional methods based on
gradient decent as the gradient of the 1-norm is not smooth. Therefore, one can either use a
smooth approximation of the 1-norm or an algorithm capable of convergence with non-smooth
gradients such as the Chambolle-Pock (CP) algorithm.

The details of how the CP algorithm works are considered well beyond the scope of this thesis.
Such details can be found in the original 2010 paper by Chambolle and Pock describing their
method [82]. The implementation used in this work is based on the GitHub repository by Pierre
Paleo showing the implementation of the CP algorithm in Python [83].
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TV-regularisation is also possible in 4D (3 spatial and 1 temporal dimension) as shown in
work by Boigné et al. This can reduce the effects of motion artifacts and may be interesting
research direction to explore in future [84]. However, it is considered beyond the scope of this
thesis due to the absence of motion blur in simulated data, difficulty of implementation and
high computational resource requirements.



3
Model development & Methods

3.1. System description
The bubble column models are based on the dimensions of and conditions present in the
experimental bubble column designed by Rik Volger at the TU Delft. First, a half-scale model
capable of being run on a desktop GPU (NVIDIA GeForce RTX 4090 24GB) was developed for
testing and model development. The full-scale model was developed based on this half-scale
model to be run on the DelftBlue supercomputer GPU partition (NVIDIA Tesla A100 80GB)
[85]. Two different gas debits set in different flow regimes (bubbly / turbulent) were simulated
based on available experimental data of the Volger column. This results in four different cases
as shown in table 3.1. Volumetric data is collected over the time range of 5 s to 15 s.

Table 3.1: Simulation case descriptions

# Case name Gas debit us Diameter Fill height
1 Volger half-scale bubbly 8.1 Lmin−1 1.7 cms−1 0.100m 0.40m
2 Volger half-scale turbulent 22 Lmin−1 4.6 cms−1 0.100m 0.40m
3 Volger full-scale bubbly 30 Lmin−1 1.7 cms−1 0.192m 0.80m
4 Volger full-scale turbulent 80 Lmin−1 4.6 cms−1 0.192m 0.80m

18
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3.1.1. Model geometries
Full-scale column

(a) Full-scale column geometry (b) Half-scale column geometry

Figure 3.1: Bubble column geometries: Note that axial measurements are taken from top of sparger plate.

Figure 3.1a shows the full-scale column model geometry which is based of the dimensions
on the Volger bubble column (table 3.2). The simulated domain of the bubble column can be
reduced compared to the experimental column. The experimental column is designed with
coalescence inhibition compounds in mind which can significantly increase holdup [15]. Since
this thesis only covers air-water systems, the simulated domain can be cropped safely down
to only cover the top 0.90m for a fill level of 0.80m.

According to scale-up criteria proposed by Wilkinson et al. [86], the fill level is insufficient to
generalise the gas holdup for larger scales. Wilkinson et al. state that a diameter to unex-
panded fill level aspect ratio of at least 5 is required in order for the gas holdup to be scale
independent, while this aspect ratio in the current geometry is only 4. The other two Wilkin-
son criteria are met, as the column diameter exceeds 15 cm and the sparger hole diameter
exceeds 1mm to 2mm. While increasing the fill level to 1m would resolve this limitation, this
is would necessitate a reduction in grid resolution which would lead to more severe underres-
olution of the sparger plate geometry as explained in sections 3.3.1 and 3.4. Therefore, the
fill level was kept at 0.80m.

The perforated sparger plate has a triangular pitch of 40mm with a hole diameter of 3mm and
a thickness of 5mm. During experiments, seven of the 19 holes in the sparger plate were
sealed to prevent excessive weeping. Therefore, the sparger plate model was adjusted to
align with the experimental setup (figure 3.2a). This results in an overall sparger open area
of 0.3%. The centre of the top of the sparger plate is defined as the system origin, with the
Y-axis being the axial direction of the column and the X- and Z-axes being radial directions.
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Table 3.2: Volger bubble column and sparger dimensions.

Dimension
Full column height 1.70 m
Lower section column height 1.20 m
Simulated column height 0.90 m
Column internal diameter 0.192 m
Water fill height 0.80 m
Sparger hole diameter 3 mm
Sparger hole pitch 40 mm
Sparger open area 0.3%

(a) Dimensions of the sparger plate.

z
x

(b) Labels of the inlet boundary conditions, coloured
according to resolved area. Red: 48% orange: 56%, yellow:

64% (table 3.7).

Figure 3.2: The full-scale Volger column perforated sparger plate: dimensions and inlet labels.
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Half-scale column
Figure 3.1b shows the half-scale column model geometry. The height and diameter are about
half that of the full-scale column, resulting in column height of 0.45m with a fill height of 0.40m
and a diameter of 0.10m. The upper section of the sparger box was included to check whether
pressure and velocity fluctuations occur within. Significant pressure and velocity fluctuations
below the sparger plate may result in differences in the mass-flow between sparger holes,
which would require the inclusion of a sparger box model in the full-scale simulation in order
to capture these effects.

As with the full-scale geometry, the half-scale geometry does not conform to the Wilkinson
scale-up criteria in relation to fill level / diameter aspect ratio [86]. Additionally, the column
diameter criterion is also not met, being under 15 cm. Hence, slug flow may occur when simu-
lating the half-scale geometry at high superficial gas velocities and the gas holdup distribution
is not scale independent.

The half-scale sparger is based on the centre of the full-scale sparger plate. The sparger is
not scaled in order to assure similar initial bubble sizes since this depends strongly on sparger
geometry. Specifically, hole diameter and to a lesser extent the gas flow rate per hole affect
the bubble size distribution in both experimental measurements and theoretical derivations
[87, 88]. Only the centre 7 holes fall within the column domain. While four of these holes are
sealed in the full-scale column, these holes are unsealed in the half-scale simulation in order
to provide a more uniform sparging profile compared to only having 3 holes. The resulting
sparger open area is 0.6%, twice the value of the full-scale column. Therefore, the gas flow
rate per sparger hole is lower, which will in turn affect the bubble size distribution. In hindsight,
sealing 3 holes along the outer ring may have resulted in more comparable spargers between
the full- and half-scale columns. The resulting sparger is shown in figure 3.3.

zx

Figure 3.3: The half-scale column perforated sparger plate dimensions.

3.1.2. Physical parameters
The cylindrical column wall and sparger plate are made of polycarbonate and stainless steel
respectively. Contact line forces at both the column wall and the sparger were enabled since
absence of these forces appears to lead to bubble adherence to the wall and the sparger
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orifices. This in turn leads to excessive jetting in the near-sparger region. The contact angles of
these materials were estimated based on literature data (table 3.3). The physical parameters
are based on air-water properties at ambient conditions for both the Euler-Lagrange model
and Immiscible Two-Fluid model (table 3.4).

Table 3.3: Material contact angles used for contact line forces.

Material Contact angle Reference
Polycarbonate 82° (rounded to 80°) [89]
Stainless steel 74.2° (rounded to 75°) [90]

Table 3.4: Physical properties used in the ITF and EL models based on air-water at ambient conditions.

Property Symbol Value Unit Source
Density liquid ρf,1 1000 [kgm−3] [53, p. 106]
Density gas ρf,2, (ρp) 1.2 [kgm−3] [53, p. 114]
Kinematic viscosity liquid νf,1 1 × 10−6 [m2 s−1] [53, p. 119]
Kinematic viscosity gas νf,2 1.5 × 10−5 [m2 s−1] [53, p. 115]
Physical speed of sound gas cf,2 347 [ms−1] [53, p. 116]
Reference pressure - 101325 [Pa] [53, p. 15]
Surface tension σ 0.072 [Nm−1] [53, p. 119]

3.2. Solver information & Fluid models
All simulations were performed using M-Star CFD version 3.11.41 (stable) to solve the incom-
pressible Navier-Stokes equations using the lattice Boltzmann method (see section 2.1.1).
The two-phase flow is modelled using the ITF-HDR model (see section 2.1.2). Resolved air
bubbles below a critical diameter are converted to Lagrangian particles via fluid-particle con-
version and are modelled according to the Lagrangian bubble model described in section 3.5.

The ITF-HDR model fluid solver is based on the cumulant lattice Boltzmann method as devel-
oped by Geier et al. as opposed to the default Multiple Relaxation Time (MRT) model used in
M-Star [35]. In cumulant-based methods, the probability distributions of the Boltzmann equa-
tion are described by their cumulants rather than their moments, which has several advantages
as described in detail by Geier et al. such as improved Galilean invariance [91]. Rather the
D3Q19 discretisation used for explicit LES by M-Star CFD, the cumulant-based method relies
on D3Q27 discretisation. The details of the cumulant lattice Boltzmannmethod are considered
beyond the scope of this thesis and can be found in the papers by Geier et al.[35, 91]

Water, being a liquid, is assumed to be incompressible at the conditions in the bubble column.
Air, being a compressible gas, requires analysis of the static and dynamic pressure involved
to assume pseudo-incompressibility. The maximum hydrostatic pressure of 0.8m water on
the sparger plate is 7848Pa, which is about 7.7% of the reference atmospheric pressure.
Therefore, compressibility due to hydrostatic pressure is assumed to be negligible. Likewise,
the compressibility of air as a result of dynamic pressure can be estimated using the physical
Mach number as defined in equation (3.1). Air can be considered pseudo-incompressible for
low Mach number flows (Ma < 0.3) [26, 27].

Ma =
|uf,2|
cf,2

< 0.3 (3.1)
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The Mach number needs to be determined for each case individually, since the Mach number
depends on the velocities of the fluid which in turn depend on the sparging rate. During start-
up several peaks in max velocity are observed. These peak are excluded since they are
transient and do not occur after the flow is developed. All cases meet the criterium set in
equation (3.1) except for case 4, the full-scale turbulent case. However, looking at the velocity
field in detail shows that these velocities only occur in a few grid cells near the inlets. Hence,
the assumption of incompressibility near the sparger inlets is incorrect. This may result in
inaccuracies in the fluid dynamics in the near-sparger region. Additional analysis would be
required to study whether these compressibility effects significantly affect the results outside
the near-sparger region. Since case #4 is not available at time of writing, these results are not
included anyway.

Table 3.5: Maximum Mach numbers per case for t > 5 s.

# Case name Max. velocity Ma

1 Volger half-scale bubbly 35.2ms−1 0.101
2 Volger half-scale turbulent 79.6ms−1 0.229
3 Volger full-scale bubbly 46.8ms−1 0.135
4 Volger full-scale turbulent 149ms−1 0.429

3.3. Discretisation
3.3.1. Grid independence
Performing a rigorous grid-independence study on this model is difficult, since the LBM is gen-
erally performed on a uniform grid and a certain minimum resolution is required to resolve
the holes in the sparger plate. At these resolutions, computation times already become pro-
hibitive for multiple simulations at scales where reliable validation data is available. Hence,
the maximum feasible resolution was chosen for the full-scale geometry given the available
resources on the DelftBlue supercomputer and the allotted project time. For the half-scale
geometry, the maximum resolution was chosen given the available (V)RAM resources on the
NVIDIA GeForce RTX 4090. The resulting grid resolutions are shown in table 3.6.

The Fluid-Particle conversion diameter is set to four grid cells in accordance with Ling et al.[37]
as was discussed at the start of section 2.2. Below this diameter bubbles become underre-
solved. Hence why fluid parcels are converted into Lagrangian particles. The resulting diam-
eter of Fluid-Particle conversion dp,FPC for each case is shown in table 3.6. The diameter of
particle to fluid conversion dp,PFC is set such that the spherical volume is 5% higher than the
volume corresponding to the Fluid-Particle conversion diameter.

Table 3.6: Grid sizing and diameters for Fluid-Particle and Particle-Fluid conversion between the ITF and EL
models.

Case # Lattice resolution ∆x dp,FPC dp,PFC

1 224 × 1202 × 224 0.446mm 1.786mm 1.815mm
2 224 × 1202 × 224 0.446mm 1.786mm 1.815mm
3 360 × 1696 × 360 0.533mm 2.133mm 2.168mm
4 360 × 1696 × 360 0.533mm 2.133mm 2.168mm



3.4. Boundary conditions 24

3.3.2. Time-step independence
When using the LBM, a time-step is chosen such that the fluctuation in the Lattice-Boltzmann
density remain below about 1%. Fluctuation in the LB density can lead to inaccuracies and
divergence of the model, since this LBM implementation assumes a constant density under
fluid incompressibility. For LBM, a Courant number below 0.10 based on the maximum refer-
ence velocity (umax) has been found to assure stable simulations [92]. It should be noted that
in stirred systems, the maximum reference velocity is generally known a priori as it equivalent
to the tip speed of the impeller. Since the maximum fluid velocity in a bubble column is hard to
predict due to the chaotic movements of bubbles and interfaces, an adequate time-step was
found iteratively and adjusted until it matched the numerical stability criterion (equation (3.2)).
Plots of the lattice Boltzmann density over time for cases #3 and #4 can be found in appendix D:
figure D.1.

Co =
umax∆t

∆x
< 0.1 (3.2)

3.4. Boundary conditions
All walls and the sparger plate have no-slip boundary conditions applied. These boundaries
are of the grid-aligned half-way bounce-back type. In the half-scale column, the bottom of the
sparger box is set as a uniform velocity inlet boundary condition and the sparger is included as
an internal geometry. In the full-scale column, the bottom side of the sparger holes are each
set as a uniform velocity inlet boundary condition such that the volumetric inflow aligns with
experimental measurements. Due to resolution limitations, these inlet boundary conditions
are quite underresolved (table 3.7). The meshing algorithm in M-Star CFD is ‘greedy’, in the
sense that when a grid cell intersects any part of a solid geometry, it is considered a no-slip
boundary. Due to keeping the sparger hole diameter constant between the half-scale and
full-scale geometries, this underresolution is not significant for the half-scale simulations. The
top of the column is a gas pressure outlet boundary condition set at the reference pressure
(table 3.4).

Table 3.7: Degree of inlet resolution in the full-scale column.
Labelled according to figure 3.2b.

Inlet labels Grid cells Resolved area [m2 / %]

Inlet 0 14 3.98 × 10−6 / 56%
Inlet 1 14 3.98 × 10−6 / 56%
Inlet 2 16 4.55 × 10−6 / 64%
Inlet 3 12 3.41 × 10−6 / 48%
Inlet 4 16 4.55 × 10−6 / 64%
Inlet 5 14 3.98 × 10−6 / 56%
Inlet 6 14 3.98 × 10−6 / 56%
Inlet 7 16 4.55 × 10−6 / 64%
Inlet 8 16 4.55 × 10−6 / 64%
Inlet 9 12 3.41 × 10−6 / 48%
Inlet 10 16 4.55 × 10−6 / 64%
Inlet 11 16 4.55 × 10−6 / 64%
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3.5. Lagrangian bubble model
Using the theoretical background explored in section 2.2, a Langrangian bubble model was de-
veloped based on the M-Star CFD discrete particle model (DPM). Particles are created using
fluid particle conversion for fluid droplets with a diameter smaller than 4∆x. One-way particle
centroid method (PCM) coupling is applied from the fluid to the particles, since the particles
represent less than 10% of the total holdup. All forces from the momentum balance shown in
equation (2.13) are included except for the pressure gradient force, resulting in equation (3.3).

F⃗p,i = mp,i
du⃗p,i
dt

= F⃗GB,i + F⃗M,i + F⃗D,i + F⃗L,i (3.3)

The pressure gradient force is excluded because the radial pressure gradients are minor com-
pared to other forces. The drag and lift forces calculated based on the correlations developed
by Tomiyama et al. [44, 47]. The buoyancy, gravity and virtual mass forces are included based
on M-Star CFD’s default implementations [34]. Bubble breakup is modelled according to the
modified Mast & Takors critical Weber number model as shown in appendix A. A critical Weber
number of 6.1 is used [17]. Bubble coalescence is modelled according to an M-Star implemen-
tation of the Euler-Lagrange version of the film drainage model based on work by Sommerfeld
et at. which was based on work by Prince & Blanch [52, 68]. The M-Star implementation of
the Sommerfeld model is shown in appendix A.

3.6. Computed tomography
Tomographic reconstruction methods were implemented using the ASTRA toolbox [93, 94].
The usage of the ASTRA toolbox simplifies the implementation of reconstruction techniques
suited to specific problems. In short, the ASTRA toolbox constructs the system matrix A (see
section 2.3) as a linear operator based on the spatial geometry of the tomography setup and
provides the backend for computing matrix-vector products with A and AT . Furthermore, the
ASTRA toolbox provides several built-in implementations of common (reconstruction) algo-
rithms, including FBP and SIRT.

3.6.1. Spatial projection geometry
The source-detector pairs are uniformly distributed in the angular direction around the bubble
column at constant radial distances (figure 3.4). The detector specification are based on the
CMOS detectors of the TU Delft experimental setup [25]. These data combined in table 3.8
where the detector-origin distances are described from the centre of the detector plane. The
volume output rate of the CFD simulation is set to 22Hz to align with experimental frame rates.

The volume outputs of the CFD simulation are converted to a density field for forward projection
based on the ITF gas volume fraction φf2,ITF , which is equivalent to the value of the phase
indicator function ϕ, and EL gas volume fraction φp according to equations (3.4) and (3.5).
The grid cells that lie above and below the field of view of the X-ray setup in the axial direction
are excluded to improve performance. The density of grid cells outside the cylindrical fluid
domain are set to zero. Attenuation arising from the column wall is neglected. It should be
noted that some effects present in experimental data such as motion blur and a non-point X-
ray source are not present in simulated data. Motion blur and a larger focal spot would result in
smoother transitions in density between phases. However, due to limitations in the ITF model,
the air-water interfaces have a diffuse interface width of around four grid cells [30]. In order
to very roughly approximate, these interface were kept diffuse to roughly approximate these
smoothing effects. For two-phase systems were these blurring effects are not significant, a
threshold may be applied to the density field to define interface rather than keeping it diffuse.
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Source 1

Detector 1

Detector 2

Source 2

Source 3

Detector 3

BC

Figure 3.4: Schematic of the X-ray setup. Diagram by Sam den Hartog, reproduced with permission.

Table 3.8: Virtual X-ray setup geometry specifications: Bubble column

Detector specifications Dimension
Resolution 1548 × 1524
Pixel spacing 0.2mm/pixel
Frame rate (max. 200Hz) 22Hz

X-ray setup geometry
Radial source-origin distance 0.940m
Radial detector-origin distance 0.275m
Axial source-origin distance 0.450m
Axial detector-origin distance 0.450m
Number of angles 3
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φf2 = φf2,ITF + (1− φf2,ITF )φp (3.4)
ρ = φf2(ρf2 − ρf1) + ρf1 (3.5)

For the 3D Shepp-Logan phantom, the following projection geometry is used (table 3.9). The
detector and X-ray setup geometry are set to include the entire phantom. The phantom is gen-
erated using the ASTRA toolbox function data3d.shepp_logan in a 256 × 256 × 256 volume
geometry. A noise level of 2% is used which is approximately the noise level in the experimen-
tal setup. The background intensity value I0 used in the add_noise_to_sino function is set to
20,000 to achieve the correct noise level for the Shepp-Logan phantom.

Table 3.9: Virtual X-ray setup geometry specifications: Shepp-Logan phantom.

Detector specifications Dimension
Resolution 256 × 256
Pixel spacing 1.5 pixel

X-ray setup geometry
Radial source-origin distance 768
Radial detector-origin distance

√
512

Number of angles 379

3.6.2. Reconstruction geometry
The reconstruction geometry is set based on the resolution of the CFD simulation output and
its relation to the projection geometry. Only a subsection of the CFD simulation is intersected
by the cone beam. Hence, the volume geometries used for forward projections and recon-
structions are cropped to the axial section of the CFD simulation which is intersected by any
cone beam. The volume geometry is further cropped to the voxels intersected by all three cone
beams when calculating the reconstruction error and plotting reconstructions (figure 3.5).

Detector

Source

Figure 3.5: Schematic of the axial cropping of the volume geometry. Red line: cropping applied for forward
projection and backward projection. Blue line: cropping applied for calculated error and plotting reconstructions.

Base diagram by Sam den Hartog, reproduced with permission.

Outside the cylindrical simulation domain, the box constraints are not applied and the density is
set to zero. In order to prevent issues when determining gradients for the SIRT+dT algorithm,
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the boundary voxel on the outside of the simulated domain is set to the same value as the
bordering voxel. If two voxels border the boundary voxel, themaximum value of the two is used.
A similar boundary condition ought to be applied for the TVmin algorithm when calculating the
total variation, but this was not implemented due to time constraints.

3.6.3. Sinogram noise level
Poisson noise is applied to the sinogram in order to approximate the noise level found in the
experimental setup. The experimental setup’s noise level was determined by taking the data
from a stationary column measurement and determining the normalised root mean square
error (NRMSE) compared to the time-averaged sinogram b̄ according to equation (3.6). Since
no gas is sparged into the column, all variance in the X-ray measurement can be assumed
to be the result of photon and detector noise. The noise measurement was taken over 10
seconds resulting in 220 samples which should provide a good estimate of b̄.

NL =
∥e∥2
∥b̄∥2

=
∥b− b̄∥2
∥b̄∥2

(3.6)

Based on this measurement the setup noise level of each time stepNLs is 2%. This noise level
was reproduced in the virtual setup using the ASTRA toolbox using the add_noise_to_sino
function, which takes a background intensity I0 as an input. A background intensity value
of 10,000 was found to produce a similar noise level of around 2% for the simulated bubble
columns.
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Results

4.1. CFD Model validation
In order to validate the results produced by the CFD model developed in chapter 3, results
are compared to experimental data. However, experimental data on the hydrodynamics of the
Volger bubble column is limited. Therefore, simulations were compared to literature data by
Sanyal et al. on a bubble column with similar dimensions at similar superficial gas velocities.
Due to time constraints, the results of case #3 are limited to the time range of 5 s to 10 s and
the results of case #4 are unavailable at time of writing. The half-scale results from cases #1
and #2 are available in their entirety over the 5 s to 15 s time range.

Before outputting any fluid variables, the flow is allowed to the develop. The condition for
flow development was based on a stabilisation of the fluid kinetic and potential energy which
occurred after 5 s (see appendix D: figure D.2).

4.1.1. Literature comparison to Sanyal et al.
The geometry of the Sanyal column is taken from the 1999 paper by Sanyal et al, the di-
mensions of which are shown in table 4.1 [2]. The main differences between the Sanyal and
Volger (see table 3.2) bubble columns are related to the sparger plate geometry. The Sanyal
column’s perforated sparger plate has approximately 330 holes based on the sparger hole
diameter and open area, compared to only 12 holes in the Volger sparger plate. Note that
the hole diameter reported in the paper by Sanyal et al. (0.33 mm) contradicts the number
provided by Kumar (0.5 mm) [cf. 95, p. 112]. The open area of Volger sparger plate (0.3%) is
three times that of the Sanyal sparger (0.1%). While the sparger geometry does influence the
overall flow in the bubble column, the effects outside the near-sparger region are on the order
of ±10%. Therefore, these differences are assumed to be negligible [95, 96]. One exception
being the regime transition from bubble flow to churn-turbulent, which is strongly influenced
by the sparger geometry with less uniform spargers generally transitioning at lower superficial
velocities. These effects have been explored in detail in a review by Ruzicka et al. [97]. Due
to the Volger sparger plate being less uniform compared to the sparger plate of the Sanyal col-
umn, the transition to the heterogenous regime is expected to take place at lower superficial
gas velocities. The fill height of the Volger column is lower. In all other regards, the Sanyal
and Volger geometries are similar.

Initially, an attempt was made to simulate the Sanyal column using a uniform inlet boundary
condition at the sparger plate. This resulted in an annular flow pattern which is not observed

29
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experimentally. The resolution required to capture the Sanyal sparger geometry is prohibitively
high in terms of computational resources. Therefore, simulation of the Sanyal geometry using
the CFD model developed in this thesis for direct comparison with experimental data was not
possible. However, due to the similarities in geometry, the Sanyal and simulated Volger bubble
columns were compared directly.

Table 4.1: Sanyal bubble column and sparger plate dimensions reproduced from Sanyal et al. (1999) [2].

Dimension
Column height 1.20 m
Column internal diameter 0.190 m
Fill height (us = 0.02m s−1) 1.045 m
Fill height (us = 0.12m s−1) 0.950 m
Sparger hole diameter 0.33 mm
Sparger open area 0.1%

Sanyal et al. performed measurements on the Sanyal column using a combination of X-ray
CT and CARPT at superficial velocities of 0.02 ms−1 (homogeneous bubble regime) and 0.12
ms−1 (heterogeneous churn-turbulent regime) [2, 24, 95]. However, reproducing the high
superficial velocity of 0.12 ms−1 in the simulated Volger column is computationally unfeasible.
Therefore, only the results for the lower superficial velocity of 0.02 ms−1 can be quantitatively
compared with the simulated data. However, the Sanyal churn-turbulent case can be used as
an upper bound for the Volger churn-turbulent case in holdup, velocities and turbulent kinetic
energy.

Holdup profiles
The gas holdup profile of the Sanyal column was determined experimentally using CT at a
height of 53 cm above the sparger plate [95]. However, Sanyal et al. do caution that: ‘Unfortu-
nately, the experimental data for gas holdup at this condition were not of the highest accuracy.’,
when referring to the holdup measurements taken at a superficial velocity of 0.02 ms−1 [2].

As noted in section 3.1.1, the current CFD simulations do not conform to the scale-up criteria
by Wilkinson et al.[86] Therefore, the gas holdup of both the half- and full-scale columns are
not generalisable for larger scale bubble columns. Despite the diameter under 15 cm, slug flow
was not observed for the half-scale column even at the higher superficial velocity of 4.6 cms−1.

The holdup profiles will be compared on the flatness of the holdup profile and the average
holdup over the column. Compared to the experimental holdup data at low superficial gas ve-
locities (case #1 / case #3), the holdup in the simulation is underestimated for both the full and
half scale columns (figure 4.1). Sanyal et al. also reported a lower holdup profile in their CFD
simulations [2]. As mentioned previously, the experimental data for the lower us (2.0 cms−1)
were considered inaccurate by Sanyal et al. This indicates a possible overestimation of the
holdup in this experimental data. Additional experimental measurement of the (mean) holdup
in the Volger column could be used as verification of this conjecture. The holdup profile is more
flat for the full-scale than the half-scale column results. This may be explained due the bound-
ary layer near the wall taking up a larger section of the dimensionless radius in the half-scale
column.

The half-scale simulation at the higher superficial gas velocities (case #2) shows a higher
holdup and a more parabolic holdup profile. Assuming that the experimental data at us =
2.0 cm s−1 is overestimated, the holdup profile lies between the two experimental measure-
ments. Considering that the experimental churn-turbulent case can be considered an upper
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(a) Half-scale column (case #1 / case #2) at Y = 26.5 cm over 5 s ≤ t ≤ 15 s.

(b) Full-scale column (case #3) at Y = 53 cm over 5 s ≤ t ≤ 10 s.

Figure 4.1: Comparisons of holdup profiles between the Sanyal column and half- / full-scale Volger columns.
Note that Epx. data Sanyal BC us = 0.02 cm s−1 are considered inaccurate and therefore are plotted with

transparency.
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bound on holdup and that holdup increases when increasing the sparging rate, the results for
this case are line with theoretical expectations.

Therefore, the holdup profiles generated by the current model can be considered valid within
the limitations of the available data. Additional comparision to experimental holdup data from
the Volger column collected using pressure probes could be used in future as additional vali-
dation of the mean holdup.
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Axial velocity profiles
Instantaneous fluid velocities were measured in the Sanyal column using CARPT [2, 24].
CARPT allows for measurement of the local fluid velocity near the tracked particles. By mea-
suring over the course of several hours, a representative sample of these instantaneous veloci-
ties can be taken over the fluid domain. Consequently, instantaneous velocities can be divided
into a mean time-averaged velocity component u⃗ and a fluctuating velocity component u⃗′ via
Reynolds decomposition [98] (equation (4.1)).

u⃗ = u⃗+ u⃗′ (4.1)

Reynolds decomposition is performed likewise on the velocities in the simulations. The exper-
imentally measured axial component of the time-averaged velocity is compared to the simula-
tion results (figure 4.2).

Examined features of the velocity profile are the overall shape of the profile, the cross-over
point where themean axial velocity becomes zero and themaximum /minimum axial velocities.
Starting with the simulation data from the half-scale column (case #1 / case #2) in figure 4.2a,
the velocity profiles of the experimental Sanyal and simulated Volger columns match closely
for the bubbly regime in all previously described features except for a slight underprediction
of the minimum axial velocity. For the churn-turbulent regime, the velocity profile lies firmly
between the measurements by Sanyal. A small underprediction is once again observed near
the minimum axial velocities.

The simulation results from the full-scale column (case #3) in figure 4.2b show a strong de-
viation from the measured velocity profile in the Sanyal column. Plotting the time-averaged
axial velocity across the axial slice shows that the upwards plume is deviated in the negative
X direction. This coincides with the more resolved inlets on the negative X side of the bubble
column as shown in figure 3.2b.

Therefore, while the mean velocity profiles generated by the current model for the half-scale
geometry can be considered valid, the velocity data produced for the full-scale model is not
valid due to underresolution of the inlets. This may be addressed by rerunning the simulation
using either a higher resolution or an altered geometry (artificially increasing the sparger hole
diameter duringmeshing) for which the greedymeshing algorithm provides less underresolved
inlet geometries.
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(a) Half-scale column (case #1 / case #2) at Y = 26.5 cm over 5 s ≤ t ≤ 15 s.

(b) Full-scale column (case #3) at Y = 53 cm over 5 s ≤ t ≤ 10 s.

Figure 4.2: Comparisons of time-averaged axial velocity profiles between the Sanyal column and half- /
full-scale Volger columns.
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Figure 4.3: Contour plot showing the time-averaged axial velocity in the full-scale column (case #3) at
Y = 53 cm over 5 s ≤ t ≤ 10 s.

Turbulent kinetic energy profiles
As stated in the previous section, both the time-averaged and fluctuating components of the
velocity can be determined using CARPT [2, 24]. The turbulent kinetic energy k can be calcu-
lated from the variance of the fluctuating velocity component (equations (4.1) and (4.2)). The
experimental measurement of the fluctuating velocity component using CARPT is limited by
the response time of the particle to velocity fluctuations in the fluid at frequencies above 20Hz
to 25Hz. This limitation is not present in the simulation results. In the simulation, all deviation
from the time-averaged velocity field over the simulated interval are included in the turbulent
kinetic energy. Therefore, the experimental turbulent kinetic energy is underestimated com-
pared to the simulation.

k =
1

2
Var(u⃗′) =

1

2
(u⃗′ · u⃗′) (4.2)

The turbulent kinetic energy profiles in figure 4.4 are compared based on profile shape and
average energy over the column. Starting with case #1 and case #3, the turbulent kinetic
energy is double the experimental measurement. The energy in experimental data being
lower, but in the same order of magnitude shows close agreement with expectations. The
energy profile for case #1 shows a decline towards the outer wall, while case #3 shows a
more flat profile. This may once again be explained by the boundary layer near the wall
taking up a larger section of the dimensionless radius in the half-scale column. Moving on to
case #2, the turbulent kinetic energy is high, on the same order as the Sanyal churn-turbulent
measurement, despite having only 40% of the superficial velocity. This may be explained
by the non-uniformity of the Volger sparing plate leading to a transition to the churn-turbulent
regime at lower superficial velocities. The highest turbulent kinetic energy occurs in the centre
of the column rather than around the velocity crossover point. Future comparison with case
#4 can provide insight into whether this discrepancy is due to the difference in geometry or
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(a) Half-scale column (case #1 / case #2) at Y = 26.5 cm over 5 s ≤ t ≤ 15 s.

(b) Full-scale column (case #3) at Y = 53 cm over 5 s ≤ t ≤ 10 s.

Figure 4.4: Comparisons of kinetic energy profiles between the Sanyal column and half- / full-scale Volger
columns.
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inherent to the fluid model.

One source of error in the turbulence field can be the velocity filter in the ITF model, which
provides additional viscosity in areas with high velocities in order to preserve numerical stability.
Turbulent fluctuations in velocity can be reduced when such perturbations lead to velocities
exceeding the velocity filter threshold. While the velocity filter can be disabled, doing so leads
to severe numerical instability.

Sanyal et al. discuss the limitations of turbulent kinetic energy as a proxy for the accuracy of
the turbulence model [2]. Although turbulent kinetic energy shows the total magnitude of the
velocity fluctuations across all scales of turbulence, it provides no information on whether the
models accurately captures the velocity fluctuations at any specific scale. Therefore, accurate
reproduction of the turbulent kinetic energy profile does not necessarily imply that the entire
turbulence field is accurately captured. However, an inaccurate reproduction of the turbulent
kinetic energy profile does show that the turbulence field is not accurately captured.

In summary, the turbulent kinetic energy in the homogeneous bubbly cases (case #1 / case
#3) is captured accurately using the current model. However, the turbulent kinetic energy in
the heterogeneous churn-turbulent case (case #2) shows features which deviated from the
experimental results. Without data from case #4, it is not possible to show whether this is due
to the half-scale geometry or an inherent issue with the fluid model.
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4.2. Computed Tomography validation & performance
Four reconstruction algorithms were implemented and compared on performance: SIRT, SIRT
with standard Tikhonov regularisation (SIRT+sT), SIRT with generalised Tikhonov regularisa-
tion using the derivate operator (SIRT+dT) and Total Variationminimisation using theChambolle-
Pock algorithm (TVmin). Furthermore, a new reconstruction algorithm SIRT+sT Offset is de-
rived by shifting the Tikhonov regularisation parameter from SIRT+sT. These methods are
explained in detail in section 2.3.2. How well these different methods perform under idealised
conditions is shown in appendix C.

4.2.1. Time-resolved bubble fields
Time-resolved bubbles field were generated using the CFD simulation developed previously.
Only data from case #3 is used, since data from case #4 is unavailable at time of writing. Apply-
ing the reconstruction algorithms to the time-resolved bubble fields using the three-angle X-ray
geometry (table 3.8) requires finding the appropriate regularisation parameter values. The val-
ues of α of 0.0008 for SIRT+sT / SIRT+dT and 0.15 for TVmin were chosen by minimising
the NRMSE of reconstruction at a noise level of 2%. 250 iterations were found to be sufficient
to achieve good convergence for the SIRT+sT and SIRT+dT algorithms. For the TVmin algo-
rithm, the first 50 pre-iterations are applied using the SIRT+dT algorithms. After which 1000
iterations of the TVmin algorithm were found to be sufficient for convergence. SIRT with the
discrepancy principle stopping rule is included as a baseline for comparison (figure 4.5). The
box constraints are set to the densities of air (minimum) and water (maximum).

(a) Horizontal slice. Left to right: ground truth, reconstruction, difference.

(b) Vertical slice. Left to right: ground truth, reconstruction, difference.

Figure 4.5: SIRT reconstruction using the DP stopping rule of the full-scale transient bubble field (case #3) at
t = 5.545 s. Number of angles = 3, noise level = 2%, iterations = 250.

The reconstruction generated using the SIRT+sT algorithm underestimates the density in the
dense water phase (figure 4.6). This can be explained by Tikhonov regularisation applying
an assumption of normality on the data with a mean at zero. This pushes the higher density
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(a) Horizontal slice. Left to right: ground truth, reconstruction, difference.

(b) Vertical slice. Left to right: ground truth, reconstruction, difference.

Figure 4.6: SIRT+sT reconstruction of the full-scale transient bubble field (case #3) at t = 5.545 s.
Number of angles = 3, noise level = 2%, α = 0.0008, iterations = 250.

(a) Horizontal slice. Left to right: ground truth, reconstruction, difference.

(b) Vertical slice. Left to right: ground truth, reconstruction, difference.

Figure 4.7: SIRT+dT reconstruction of the full-scale transient bubble field (case #3) at t = 5.545 s.
Number of angles = 3, noise level = 2%, α = 0.0008, iterations = 250.
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(a) Horizontal slice. Left to right: ground truth, reconstruction, difference.

(b) Vertical slice. Left to right: ground truth, reconstruction, difference.

Figure 4.8: TVmin reconstruction of the full-scale transient bubble field (case #3) at t = 5.545 s.
Number of angles = 3, noise level = 2%, α = 0.15, SIRT+dT pre-iterations = 50, iterations = 1000.

voxels down, leading to the density underestimation in the water phase. Increasing the regu-
larisation parameter leads to lower noise level, but also increases this underestimation leading
to higher errors. This underestimation limits the value of the regularisation parameter leading
to a significant amount of salt and pepper noise. Furthermore, the reconstruction shows sig-
nificant streaking artefacts in the horizontal slice. This algorithm is therefore unsuitable for the
time-resolved bubble field data.

The reconstruction error can be quantified using the NRMSE between the reconstruction and
the ground truth (table 4.2). This shows that the SIRT+sT algorithm underperforms even the
baseline SIRT algorithm. The reconstruction generated using the SIRT+dT algorithm shows
an improvement over both the SIRT and the SIRT+sT results (figure 4.7), which is reflected
in the NRMSE. As stated in section 3.6.1, the air-water interfaces were left diffuse to emulate
blurring effects from motion blur and a non-point X-ray source present in the experimental
setup. Therefore, the smoothing applied by minimising the gradient in the SIRT+dT algorithm
aligns with the smoothing in the underlying data. It should be noted that the degree of smooth-
ing resulting from the diffuse interfaces in the ITF methods are only a very rough approxima-
tion of these experimental blurring effects. In experimental data, the blurring would likely be
anisotropic and of a different magnitude depending on the velocity of the bubble structures
and geometry of the focal spot in the X-ray source.

Despite improvement over SIRT+sT, there are still significant streaking artifacts present in the
horizontal slice. Furthermore, there are numerous bubble-like artefacts where bubbles overlap
on all three projections. These ‘spurious bubbles’ also increase the reconstructed density of
the true bubbles by effectively spreading out the air phase along a ray over both the true and
spurious bubbles. Such artifacts have also been reported by Graas et al.[25]
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The TVmin reconstruction shows the least visual noise over the reconstruction compared to
SIRT+sT and SIRT+dT (figure 4.8). This is reflected in the reconstruction error, though TVmin
is outperformed slightly bySIRT+dT (table 4.2). The streaking artefacts are reduced compared
to the other algorithms. However, spurious bubbles are still present in the reconstruction
resulting in a similar overestimation of the density the true bubbles. The assumption of a piece-
wise linear function applies quite well to the discrete phases of the bubble field. There may be
some increase in reconstruction error due to the absence of smooth transitions near interfaces.
Furthermore, an underestimation is observed near the outer cylindrical boundary. This is due
to the lack of proper boundary conditions when calculating the total variation referred to in
section 3.6.2. In the current implementation, there is a steep change in density between the
fluid and the area outside the fluid domain which is set to zero. The algorithm converges to a
solution which minimises this steep change, leading to an underestimation near this boundary.

Overall, the SIRT+dT algorithm performs best based on the NRMSE with the TVmin algorithm
being a close second. The performance of the TVmin may be improved by implementing
proper boundary conditions when computing the total variation. Additionally, other methods
for solving the total variation minimisation problem besides the Chambolle-Pock algorithm are
available which may be more performant and may require fewer iterations to converge [72,
pp. 306–311] [99].

Table 4.2: NRMSE of reconstruction: time-resolved full-scale (case #3).

Algorithm Iterations NRMSE Change [%]

SIRT (DP) 18 0.1123 baseline
SIRT+sT 250 0.1428 +27%
SIRT+dT 250 0.0867 -23%
TVmin 1000 0.0955 -11%

4.2.2. Binary classification
NRMSE is a useful measure of error for continuous data. However, a time-resolved immisci-
ble two-phase system is more accurately represented as a binary system. Setting a threshold
for the reconstructed density field allows for the classification of each voxel into either the air
or the water phase. This form of binary classification is applied to the reconstruction by the
SIRT+dT algorithm, since it performed best in time-resolved reconstruction based on NRMSE.
The threshold is chosen such that the mean holdup after binary classification is equal to the
mean holdup of the ground truth. This crossover threshold is chosen since the mean holdup
can be determined experimentally using various alternate methods aside from CT. After ap-
plying the holdup crossover threshold to the reconstruction, the same operation is applied to
the ground truth density field using the threshold of average density of the two phases. A
confusion matrix is constructed to quantify the error in the classification of the reconstruction
(table 4.3). For the purpose of deriving the performance metrics of the binary classifier, the air
phase is considered ‘true’ and the water phase is considered ‘false’.

Table 4.3: Confusion matrix from binary classifier using density threshold: 736 kgm−3.

Classified air Classified water
Actual air TP: 501,686 FN: 280,994
Actual water FP: 280,044 TN: 39,503,724

Numerous performance measures and metrics are available for binary classifiers [100, 101].
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Given that the prevalence of the air phase is two orders of magnitude smaller than that of
the water phase, the relevant statistics are the True Positive Rate (TPR) or recall and the
Positive Predictive Value (PPV) or precision of the binary classifier (equations (4.3) and (4.4)).
The TPR gives the sensitivity of the classifier by showing what percentage of the air phase is
correctly classified as air. The PPV shows the probability of a voxel actually being air, given
that it was classified as such. A Prediction-Recall curve can be constructed by varying the
threshold (figure 4.9). This is preferred over a Receiver Operating Characteristic curve due to
the previously stated difference in prevalence of the phases. At the holdup crossover threshold,
the TPR and PPV are 0.641 and 0.642 respectively. Based on these values, the F1-score can
be calculated by taking the geometric mean of the TPR and PPV, resulting in a score of 0.641
at the chosen threshold level (equation (4.5)).

TPR =
TP

TP + FN
(4.3)

PPV =
TP

TP + FP
(4.4)

F1 = 2
TPR · PPV
TPR+ PPV

(4.5)

To quantify the performance of the binary classifier across all threshold, the Area Under Curve
for the Prediction-Recall curve (AUCPR) can be computed [101], which results in a value of
0.664. This allows for comparison of the performance of binary classifiers irrespective of the
chosen threshold value.

Figure 4.9: Precision-Recall curve over F1-score contours (blue). AUCPR: 0.664, F1-score: 0.641.

4.2.3. Number of angles
In view of exploring possible future upgrade paths for the TU Delft X-ray setup, the effect of
adding two more projection angles for a total of five was studied for time-resolved reconstruc-
tions. Increasing the number of projection angles makes the linear system being solved less
underdetermined and therefore less ill-posed. The projections were once again distributed
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uniformly in the angular direction around the geometry origin. CT reconstructions of the bub-
ble field were created using the best performing algorithms for the three angle case: SIRT+dT
and TVmin.

(a) Horizontal slice. Left to right: ground truth, reconstruction, difference.

(b) Vertical slice. Left to right: ground truth, reconstruction, difference.

Figure 4.10: SIRT+dT reconstruction of the full-scale transient bubble field (case #3) at t = 5.545 s.
Number of angles = 5, noise level = 2%, α = 0.0008, iterations = 250.

Comparing the five angle reconstruction to the three angle reconstruction both visually (fig-
ures 4.10 and 4.11) and by NRMSE (table 4.4), there is marked improvement for both meth-
ods. SIRT+dT does outperform TVmin once again. TVmin does still shows some significant
streaking artefacts, while these are mostly absent from the SIRT+dT reconstructions. Both
algorithms show significant reductions in the number of spurious bubbles.

The SIRT+dT reconstruction was once again used for binary classification using the same
method used in section 4.2.2. The resulting confusion matrix and Precision-Recall curve are
shown in table 4.5 and figure 4.12 respectively. The results from the five-angle case are
compared to the three-angle case in table 4.6. A performance improvement is once again
observed with both the F1-score and AUCPR increasing compared to the three-angle case.

These five-angle results indicates that upgrading the TU Delft setup with two additional projec-
tion angle would allow for a significant improvement in CT reconstructions. Within the current
assumptions, this would allow for the correct classification of about 82% of the air-phase when
using the F1-score as the metric. However, this is an optimistic estimate. The increase in scat-
tering noise from the two additional X-ray sources would probably result in less improvement
in practice. Furthermore, blurring optical effects such as motion blur and X-ray focus are cur-
rently not captured quantitively. Nonetheless, an improvement in CT reconstructions can still
be expected despite these caveats.
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(a) Horizontal slice. Left to right: ground truth, reconstruction, difference.

(b) Vertical slice. Left to right: ground truth, reconstruction, difference.

Figure 4.11: TVmin reconstruction of the full-scale transient bubble field (case #3) at t = 5.545 s.
Number of angles = 5, noise level = 2%, α = 0.15, SIRT+dT pre-iterations = 50, iterations = 1000.

Table 4.4: Comparing the NRMSE of reconstruction for 3 and 5 projection angles: time-resolved full-scale
(case #3).

Algorithm Iterations NRMSE Change
3 angles 5 angles [%]

SIRT+dT 250 0.0867 0.0617 -28%
TVmin 1000 0.0955 0.0779 -18%

Table 4.5: Confusion matrix from binary classifier using density threshold: 696 kgm−3.

Classified air Classified water
Actual air TP: 643,703 FN: 138,977
Actual water FP: 138,282 TN: 39,645,486

Table 4.6: Change in performance metrics of binary classifier between the five- and three-angle cases.

Number of angles TPR PPV F1-score AUCPR
3 0.641 0.642 0.641 0.664
5 0.822 0.823 0.823 0.864

Change [%] +28% +28% +28% +30%
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Figure 4.12: Precision-Recall curve over F1-score contours (blue) for 5 angle case. AUCPR: 0.864,
F1-score: 0.823.

4.2.4. Time-averaged bubble fields
Applying the reconstruction algorithms to time-averaged data once again requires setting
the regularisation constant α. The TVmin algorithm will not be applied to time-averaged re-
constructions, since the edge-preserving features of this algorithm are not advantageous for
smoother time-averaged datasets. The values of α of 0.00035 for SIRT+sT and 0.00085 for
SIRT+dT were found using trial and error to minimise the NRMSE for a noise level of 2% ap-
plied to each time step individually. Assuming that the noise is uncorrelated, the averaged
noise level NL can be approximated using equation (4.6) based on the noise level applied to
each time step NLs and the number of time steps averaged Ns.

NL =
NLs√
Ns

(4.6)

All reconstruction methods show an improvement for the time-resolved data over the time aver-
aged data. As with the time-resolved reconstructions, theSIRT+sT reconstruction (figure 4.13)
does not perform particularly well, showing strong streaking artefacts, salt and pepper noise
and a general underestimation of the reconstructed density. The SIRT+dT reconstruction
shows little to no salt and pepper noise as well as a significant reduction in the streaking arte-
facts shows in the horizontal slice. The SIRT+dT algorithm once again benefits from the rela-
tive smoothness of the underlying data. However, the current time-averaged data still shows
individual bubble structures due. Increasing the time range over which the data is averaged
would likely allow for higher regularisation parameter.

The poor performance of the SIRT+sT method can once again be explained by the central
tendency to zero of the regularisation, which is not appropriate given the distribution of the
underlying data. However, plotting the underlying data as a histogram shows that the time-
averaged data does have a central tendency around the mean holdup (figure 4.15). Using
this knowledge, the minimisation problem can be modified to move the central tendency of the
regularisation terms to the mean holdup value and a new iterative method can be formulated
using the regularisation offset β (equations (4.7) and (4.8)).
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(a) Horizontal slice. Left to right: ground truth, reconstruction, difference.

(b) Vertical slice. Left to right: ground truth, reconstruction, difference.

Figure 4.13: SIRT+sT reconstruction of the full-scale time-averaged bubble field (case #3) over 5 s ≤ t ≤ 10 s.
Number of angles = 3, averaged noise level = 0.19%, α = 0.00035, iterations = 250.

(a) Horizontal slice. Left to right: ground truth, reconstruction, difference.

(b) Vertical slice. Left to right: ground truth, reconstruction, difference.

Figure 4.14: SIRT+dT reconstruction of the full-scale time-averaged bubble field (case #3) over 5 s ≤ t ≤ 10 s.
Number of angles = 3, averaged noise level = 0.19%, α = 0.00085, iterations = 250.
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Figure 4.15: Distribution of the density (case #3) above 850 kgm−3 for the time-averaged data over 5 s ≤ t ≤ 10 s
(for time-resolved, see appendix D: figure D.3).

argmin
x

∥∥∥∥( A√
αI

)
x−

(
b
β1

)∥∥∥∥2
2

(4.7)

x(k+1) =PB

[
x(k) + λCATR

(
b−Ax(k)

)
− αλC

(
x(k) − β

)]
(4.8)

Using this new reconstruction algorithm SIRT+sT Offset, the reconstruction shows no more
salt and pepper noise as the regularisation parameter can now be set higher without leading
to a global underestimation of the density. Additionally, the streaking artefacts observed in the
horizontal slice of both the standard SIRT+sT and SIRT+dT are absent.

Using the NRMSE of reconstruction (table 4.7), the SIRT+sT algorithm is shown to underper-
form the baseline SIRT algorithm, with an error more than twice as high. The SIRT+dT provide
an improvement over the baseline. The SIRT+sT Offset outperforms both the baseline and
SIRT+dT. Considering applicability on experimental data, both the SIRT+dT and SIRT+sT
Offset provide better reconstructions than the baseline. While SIRT+sT Offset outperforms
SIRT+dT, it does require the additional step of determining the mean holdup beforehand. Be-
sides, as shown in figure 4.15, the distribution of densities of the time-averaged data is not
normal. Therefore, other measures for central tendency such as median or mode may pro-
duce better results, though these measures are not measurable using alternate experimental
techniques like fibre-optic or pressure probe.

Table 4.7: NRMSE of reconstruction: time-averaged full-scale (case #3).

Algorithm Iterations NRMSE Change [%]

SIRT (DP) 17 0.0160 baseline
SIRT+sT 250 0.0340 +113%
SIRT+dT 250 0.0144 -10%
SIRT+sT Offset 250 0.0137 -14%

4.2.5. Axisymmetric reconstructions
Previous research using CT reconstruction of cylindrical bubble columns have shown that the
time-averaged hold-up profile is axisymmetric around the centre point [21, 95]. This assump-
tion can be imposed on the CT reconstructions by averaging three time-averaged projections
and their mirror images mirrored along the axial direction. The resulting averaged projection



4.2. Computed Tomography validation & performance 48

(a) Horizontal slice. Left to right: ground truth, reconstruction, difference.

(b) Vertical slice. Left to right: ground truth, reconstruction, difference.

Figure 4.16: SIRT+sT Offset reconstruction of the full-scale time-averaged bubble field (case #3) over
5 s ≤ T ≤ 10 s. Number of angles = 3, averaged noise level = 0.19%, α = 0.004, β = 978 kgm−3

iterations = 250.
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can turned into a sinogram with identical projections along an arbitrary number of angles. Us-
ing this sinogram for reconstruction results in an axisymmetric profile. The half-scale column
in the bubbly regime (case #1) will be used for these reconstructions, since the flow in the full-
scale column simulation is not axisymmetric as shown in section 4.1.1 due to the issues with
the inlet resolution. The SIRT+dT algorithm was used for the reconstructions, with a regulari-
sation parameter of 0.10 and 0.00085 for the reconstruction with and without the axisymmetric
assumptions respectively.

(a) Horizontal slice without axisymmetric assumption. Left to right: ground truth, reconstruction, difference.
Number of angles = 3, α = 0.00085.

(b) Horizontal slice with axisymmetric assumption. Left to right: ground truth, reconstruction, difference.
Number of angles = 379, α = 0.10.

Figure 4.17: SIRT+dT reconstruction of the half-scale time-averaged bubble field (case #1) over 5 s < T ≤ 15 s.
Averaged noise level = 0.19%, iterations = 250.

Comparing the reconstructions with and without the axisymmetric assumption (figure 4.17),
the effect of the assumption is clearly shown by the concentric rings artefacts. The difference
in reconstruction quality is difficult to judge visually. Comparison of the NRMSE shows that the
axisymmetric reconstruction has a 22% higher error than the non-axisymmetric reconstruction.
The higher error in the axisymmetric reconstruction indicates that the assumption of axisym-
metry may not be valid for this system (table 4.8).

In order to determine the degree of axisymmetry, the ground truth and both reconstructions
are binned by radial distance. The variance with each of these radial bins is calculated and the
resulting variances are averaged. This ‘axial variance’ can be plotted against the number of
averaged time steps to determine how many time steps must be averaged in order to assume
axisymmetry of the holdup profile (figure 4.18). The resulting plot shows a linear decrease in
the axial variance when plotted on a log-log scale. The point were the axial variances overlap
can therefore be extrapolated using linear regression. The axial variance of the regular time-
averaged reconstruction is expected to reach parity with the axial variance of the axisymmetric
reconstruction after averaging data over 30 seconds. For the axial variance of the ground truth
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to reach parity with the axisymmetric reconstruction, bubble column data must be averaged
over 60 seconds. Note that the axial variance partially depends on the number of bins Nbins

used when it is calculated as some of the variance arises from the radial direction. Therefore,
these time frames apply when a radial resolution of 50 is required. Based on these results,
guidelines can be formulated as to when axisymmetric reconstructions are suitable to the
underlying data. This comparison between the regular and axisymmetric reconstructions can
also be performed without the need for a ground truth.

Asymmetric reconstructions may be able to produce better reconstructions over longer mea-
surement times. However, over shorter measurement times, they provide little no benefit in
term of error and only hide the non-axisymmetric perturbations of the hold-up profile which
occur over shorter time scales.

Table 4.8: NRMSE of reconstruction: axisymmetric half-scale (case #1).

Algorithm Iterations NRMSE
SIRT+dT 250 0.0124
SIRT+dT (axisymmetric) 250 0.0151

Figure 4.18: Axial variance over the number of averaged time steps. The crossover of ground truth and
reconstruction (axisym) is linearly extrapolated to be after averaging 1289 time steps (58 s). The crossover of

reconstruction and reconstruction (axisym) is extrapolated to be after averaging 647 time steps (29 s).
Nbins = 50.



5
Conclusion & Future Research

This thesis sought to develop and validate a CFDmodel capable of reproducing the bubble field
within the Volger column. Validation via comparison with the paper by Sanyal et al. [2] showed
that half-scale simulations provide an accurate reproduction of the fluid behaviour in regards to
holdup andmean velocity. The turbulent kinetic energy shows some deviation for the half-scale
heterogeneous churn-turbulent regime, but this is hard to prove for sure without experimental
data for this column geometry or comparison with data from case #4. The underresolved
sparger inlets result in the mean velocity profile and the associated velocity field being invalid
for the full-scale column data. This may be addressed by rerunning the simulation using either
a higher resolution or an altered geometry (artificially increasing the sparger hole diameter)
for which the greedy meshing algorithm provides less underresolved inlet geometries. The
absence of the data for case #4 also limits model validation, though this simulation would
suffer from the same underresolution of the inlets as in case #3. Despite these issues, the
holdup and turbulent kinetic energy profiles are accurately captured in case #3.

Additional validation methods to be explored in the future include direct comparison of the
mean hold-up to the experimental Volger column using pressure probes and comparison of
the bubble size distribution using a fibre probe. Rather than using the bubble size distribution
derived from fibre probe data, a direct comparison with the data measured by the fibre probe
(bubble chord length and interface velocity) may be performed [19]. Overall, the validation of
the CFD model shows the limitations of the current bubble column model. The current valida-
tion showed that the model does not accurately represent the experimental bubble column in
full-scale simulations with regards to the velocity profile, although no severe ‘order of magni-
tude’ velocity deviations were observed. Despite this issue, the CFD results were still used for
the validation of tomographic reconstruction techniques.

This thesis sought to quantify the accuracy and errors of limited-angle CT reconstructions
of such a bubble field for both time-averaged and time-resolved data and explore methods
of improving the accuracy of these CT reconstructions and give recommendations for future
experimental CT setups and reconstruction methods. The error of various tomographic re-
construction techniques was compared to the baseline SIRT algorithm using the continuous
Normalised Root Mean Squared Error (NRMSE). Additionally, for time-resolved bubble fields,
the discrete performance statistics of PPV, TPR, F-score and AUCPR were determined for
both three-angle and five-angle CT setups when using the SIRT+dT algorithm.

For time-resolved bubble fields, SIRT+dT and TVmin were shown to be an improvement over
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the baseline SIRT reconstruction algorithm. TVmin is currently outperformed by SIRT+dT both
in terms of error and number of iterations required for convergence. Moving to an alternate
implementation could see the TVmin algorithm outperform SIRT+dT. An improved implemen-
tation may include proper boundary conditions with the non-fluid domain when minimising the
total variation and a faster alternative to the Chambolle-Pock algorithm, such as a differentiable
approximation of the total variation [72, pp. 306–311] [99].

Although these algorithms performed well for the current dataset, generalisation to the ex-
perimental setup is limited. Both due to the limitation in the CFD model as well limitations
in simulating the source of error such as motion blur and a finite focal spot size. Future re-
search could include quantifying the effects of motion blur on reconstruction, especially the
anisotropic blurring effects and possible implementation anisotropic regularisation based on
the SIRT+dT algorithm. There is also the LASSO reconstruction algorithm which produces
sparse CT reconstructions and was not explored in this work [72, pp.263–265]. These sparse
reconstructions may provide improved reconstructions over the baseline SIRTmethod, consid-
ering that the bubbles represent areas of almost zero density. Although the implementation of
a LASSO solver may be comparable in complexity to the implementation of the TVmin solver
based on the Chambolle-Pock algorithm [72, pp.303-304].

For time-averaged bubble fields, SIRT+dT and SIRT+sT Offset were shown to be an improve-
ment over the baseline SIRT reconstruction algorithm. While SIRT+sT Offset outperforms
SIRT+dT, it does require the offset parameter to be determined. Setting this parameter to
the mean holdup was shown to be effective in reducing the reconstruction error significantly.
Other measures of central tendency such as the mode or median were not explored since
there are several methods of experimentally determining the mean holdup independently.

Applying the axisymmetric assumption may lead to improvement in the reconstructions. How-
ever, this depends on accumulating data over a sufficiently long time frame that the underly-
ing holdup distribution is axisymmetric. Over shorter time frames axisymmetric reconstruction
underperforms the regular time-averaged SIRT+dT reconstruction. However, the longer the
time frame over which data is gathered, the more the underlying assumption of axisymmetry
is valid. The axial variance between the regular reconstruction can be used as a proxy for
the axial variance of the ground truth, although it underestimates the actual axial variance by
about half.

In terms of recommendations, the SIRT+dT algorithm performs best overall for time-resolved
reconstructions and second best for time-averaged reconstructions and is therefore the best
all-round reconstruction algorithm. The SIRT+sT Offset can also be used for time-averaged
reconstructions lest the mean holdup is known. It should be emphasised that the performance
of the explored reconstruction algorithms relies on choosing the right regularisation parameter
value. Although these values can be chosen based on visual inspection of the reconstructions,
additional research on rigorous methods of choosing this parameter for these systems is re-
quired. In terms of future upgrades to the TU Delft X-ray setup, the addition of two additional
source-detector pairs would significantly increase the accuracy of tomographic reconstruc-
tion.
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A
M-Star code review / implementation

A.1. Mast and Takors bubble breakup model
Code from the supplemental materials from ”Novel experimental data-driven bubble breakage
model for universal application in Euler-Lagrange multiphase frameworks” by Yannic Mast and
Ralf Takors (2024). [17].

Modifications

• The usage of double precision floating point numbers for a function evaluated on the
GPU is questionable.

• The sum of the random number ”rand” on line 22 leads to a random number in the range
[0, 0.555], which in turn leads to an over-prediction of symmetric bubble breaks.

• The usage of a constant EDR (line 4) in the DSD is justified in a previous paper of Mast
and Takors by stating: ‘The influence of ε on the original DSD was smaller compared to d,
as indicated by the exponents in [equation (2.28) in section 2.2.2]. The effect of ε on DSD
was therefore neglected entirely by replacing it with a constant.’[58] The modified model
includes a variable ε based on the local variable considering the negligible computational
burden of having it be included.
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Original code
1 double di;
2 double integral[500];
3 double fb;
4 double ep=.65;
5 double st=0.072;
6 double density=1000.0;
7 double We=density*powf(e,.666667)*powf(d_p ,1.6666667)/st;
8

9 if(We>6.1&&tsb_p >.03){
10 doBreakup=true;
11 for (int i=1;i<500;i++){
12 di=d_p*powf(((double)(i)/1000) ,(1.0/3.0));
13 integral[i]=.5641895/((double)(i)/1000)*exp(-9.0/4.0*powf(log(di

*1.319508*powf(ep,(2.0/5.0))*powf(density ,(3.0/5.0))/powf(st
,(3.0/5.0))),2));

14 integral[i]=integral[i]/(1+erf((3.0/2.0*(log(d_p*1.04729*powf(
density ,(3.0/5.0))*powf(ep,(2.0/5.0))/powf(st,(3.0/5.0)))))));

15 }
16 for (int i=1;i<500;i++){
17 integral[i]=integral[i-1]+integral[i];
18 }
19 for (int i=1;i<500;i++){
20 integral[i]=integral[i]/integral[499]/2;
21 }
22 double rn=rand+rand/10+rand/100;
23 int i=1;
24 while (!(rn<integral[i-1])&&(i<500)){
25 i=i+1;
26 }
27 fb=((double)(i)/1000);
28

29 fv=fb;
30

31 }

Modified code
1 //note: since this expression is executed on the GPU, using double precision

floats are not feasible.
2 float di; // daughter bubble diameter [m]
3 float integral[500];
4 const float sigma=0.072; // surface tension [N m-2]
5 const float density=1000.0; // fluid density [kg m-3]
6

7 // calculate dimensionless turbulent Weber number
8 float We=density*powf(e,.666667)*powf(d_p ,1.6666667)/sigma;
9

10 if(We>6.1 && tsb_p >.03){ // When We is larger than 6.1 and no break-up has occured
for more than .03 seconds, enact breakup

11 doBreakup=true;
12 // Calculate the DSD, based on Lehr et al.
13 for (int i=1;i<500;i++){
14 di=d_p*powf(((float)(i)/1000) ,(1.0/3.0));
15 integral[i]=.5641895/((float)(i)/1000)*exp(-9.0/4.0*powf(log(di

*1.319508*powf(e,(2.0/5.0))*powf(density ,(3.0/5.0))/powf(sigma
,(3.0/5.0))),2));

16 integral[i]=integral[i]/(1+erf((3.0/2.0*(log(d_p*1.0472941*powf(
density ,(3.0/5.0))*powf(e,(2.0/5.0))/powf(sigma ,(3.0/5.0)))))))
;

17 }
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18 for (int i=1;i<500;i++){
19 integral[i]=integral[i-1]+integral[i];
20 }
21 for (int i=1;i<500;i++){
22 integral[i]=integral[i]/integral[499]/2;
23 }
24 int i=1;
25 while (!(rand<integral[i-1])&&(i<500)){
26 i++;
27 }
28 fv=((float)(i)/1000);
29 }

A.2. Sommerfeld bubble coalescence model
1 const float Cc = 0.25; // constant for contact time [-]
2

3 const float sigma = 0.072; // surface tension [N m-2]
4

5 const float h0 = 1e-3; // initial film thickness [m]
6 const float hf = 1e-6; // final film thickness [m]
7

8 float un; // normal component collison velocity [m s-1]
9

10 {
11 float dvij_x = vx_p1 - vx_p2;
12 float dvij_y = vy_p1 - vy_p2;
13 float dvij_z = vz_p1 - vz_p2;
14

15 float dxij = x_p1 - x_p2;
16 float dyij = y_p1 - y_p2;
17 float dzij = z_p1 - z_p2;
18

19 un = (dvij_x*dxij + dvij_y*dyij + dvij_z*dzij)*rnorm3df(dxij, dyij, dzij);
20 }
21

22 float Rij = d_p1*d_p2 / (d_p1 + d_p2); // compute harmonic mean radius [m]
23

24 float t_drain = powf(rho * Rij * Rij * Rij / (16 * sigma), 0.5) * logf(h0/hf); //
drainage time [s]

25 float t_cont = Cc * Rij / un; // contact time [s]
26

27 doCoalesce = (t_drain <= t_cont); // Coalescence condition



B
Hadamard Criteria

The Hadamard criteria [74] in the context of our problem can be defined as follows:

1. A solution exists; for the image vector, there exist a object vector which solves the prob-
lem.

2. The solution is unique; for the image vector, there exist only one associated object which
solves the problem.

3. The solution is stable; for a large or small change in the image vector, there is a propor-
tional change in the object vector.

The first Hadamard criterium can be addressed by solving the least-squares problem shown
in equation (B.1) rather than directly solving the linear system, since it provides a solution
even when the system is inconsistent. The least-squares solution xLS is the solution such
that residual vector b−AxLS is minimised and orthogonal to the range of A.

min
x

∥Ax− b∥22 (B.1)

The second criterium becomes relevant when A is underdetermined, since an underdeter-
mined system has infinitely many least-squares solutions. The system matrix A is underde-
termined when the rank of the matrix r is less than the number of columns N . CT problems
are generally rank deficient, especially when using angle-limited data. This can be resolved by
applying additional constraints to the solution through regularisation based on prior knowledge
of the system. Methods of regularisation are explored in detail in section 2.3.2. Methods such
as SIRT converge to the minimum-norm least-squares solution when a null-vector is used as
the initial object vector [75]. The minimum-norm least-squares solution refers to the solution
with the smallest ∥x∥which satisfies the least-square solution. The advantage of the minimum-
norm least-squares solution is that it has no components in the null space of the system matrix
and hopefully all components of the solution can be attributed to the data [79, pp. 32-33]. The
minimum-norm least-squares solution x0

LS is defined as follows (equation (B.2)):

xLS = argmin
x

∥x∥2 subject to ATAx = ATb (B.2)

The third and final criterium can be quantified using the condition number κ. Let x̄ and b̄ be
the ground truth for the object and image vectors and let e be a perturbation (error) vector in
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b (equation (B.3)). The condition number represents the upper bound of by how much a per-
turbation in the image vector b is amplified in the reconstructed object vector (equation (B.4)).
The condition number κ of a problem can be calculated based on the product of the matrix
norms ∥ · ∥ of the matrix A and its inverse A−1 or its Moore-Penrose pseudoinverse if the
matrix is not invertible A†.

Ax̄ = b̄, Ax = b = b̄+ e (B.3)
∥x− x̄∥
∥x̄∥

≤ Cond(A)
∥e∥
∥b̄∥

(B.4)

Cond(A) = ∥A∥∥A−1∥ or ∥A∥∥A†∥ (B.5)

In the L2-norm, the condition number can be calculated based on the maximum and minimum
singular values of the matrix A using Singular Value Decomposition (SVD) (equations (B.6)
to (B.8)). The matrix A is considered ill-conditioned when the condition number is large. This
means that the reconstruction is very sensitive to noise in the image data as is shown in equa-
tion (B.4). If the condition number is infinite or higher thanmachine accuracy, the least-squares
problem is not solvable without regularisation. This also explains why underdetermined matri-
ces are not solvable without regularisation, as rank-deficient matrices have r− n number of 0
valued singular values. Regularisation methods, such as Tikhonov regularisation and the im-
plicit regularisation of iterative methods, address this problem by filtering low singular values
such that the matrix condition improves.

A = UΣV T , A† = V Σ−1UT (B.6)
Σ = diag(σi, σi+1, . . . , σN ), with σi ≥ σi+1 ≥ · · · ≥ σN (B.7)
σmax(A) = σ0, σmax(A

†) = σ−1
N ≡ σ−1

min(A) (B.8)

Cond(A) = ∥A∥2∥A†∥2
= σmax(A) · σmax(A

†)

=
σmax(A)

σmin(A)

(B.9)



C
Shepp-Logan Phathoms

The 3D Shepp-Logan phantom is used to show the performance of the various reconstruction
algorithms under idealised conditions at a high number of projection angles (table 3.9).

C.1. Semiconvergence

(a) Shepp-Logan phantom
ground truth

(b) SIRT reconstruction after
50 iterations.

(c) SIRT reconstruction at
semiconvergence according

to DP (539 iterations).

(d) SIRT reconstruction after
5000 iterations.

Figure C.1: SIRT reconstructions of the central slice of the 3D Shepp-Logan phantom using 379 angles.

The effects of semiconvergence (see section 2.3.2) in the SIRT method was demonstrated
by varying the number of iterations (figure C.1). At lower iterations (figure C.1b), the larger
structures are clearly present but the higher frequency structures are yet to be resolved due
to the implicit regularisation present in the SIRT method. At very high iterations (figure C.1d),
salt and pepper noise appear due to overfitting to high-frequency noise. The discrepancy prin-
ciple stopping rule is applied to find that semiconvergence is reached after approximately 483
iterations (figure C.1c). This can be verified by plotting the Normalised Root Mean Square
Error (NRMSE) of the central slice of the reconstruction over the number of iterations (fig-
ure C.2). Here, the NRMSE is defined as the Euclidean norm of the absolute error over the
Euclidean norm of the ground truth (equation (C.1)) [102]. The reconstruction error decreases
initially but starts increasing after around 850 iterations, while the residual keeps decreasing
monotonically even after 5000 iterations.

NRMSE =
∥x(k) − x̄∥2

∥x̄∥2
(C.1)
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Figure C.2: Illustration of semiconvergence based on the NRMSE of the central slice of the Shepp-Logan
phantom reconstruction.

C.2. Regularised methods
The results produced by the SIRT algorithm can be compared to the reconstructions produced
by SIRT+sT, SIRT+dT and TVmin reconstruction algorithms. These algorithms apply explicit
regularisation. Hence, a regularisation parameter must be set to determine the strength of
the regularisation. Varying the strength of regularisation shows the bias introduced into the
reconstructions by each methods (figure C.3). All methods are run for 500 iterations, except
the TVmin algorithm which is given 5000 iterations since it converges more slowly due to the
different underlying solving algorithm.

Visually, increasing the regularisation parameter reduces the noise in all reconstructions. Look-
ing atSIRT+sT, at high values ofα the yellow outer shell is diminished, since standard Tikhonov
regularisation pushes the distribution of values to a normal distributions centred on zero. SIRT+dT
smooths the edges in the reconstruction, as the algorithm attempts to minimise the gradients
in the image. Compared to SIRT+sT, it leaves the higher attenuation areas at the correct
values, except for the thin structures. The TVmin algorithm conserves edges the best, espe-
cially at high alpha values, but shows artefacts at lower values. This may be an issue with the
implementation of the gradient operator rather than a weakness in the method itself [84].

The reconstruction error can be quantified using the NRMSE between the reconstruction and
the ground truth (table C.1). Although all reconstruction algorithms showed a visual reduc-
tion in noise, only the TVmin algorithm performs well at high regularisation weights. TVmin
performs well on the Shepp-Logan phantom, since minimising the total variation results in a
piecewise function with discrete jumps in the attenuation at edges. The SIRT+sT andSIRT+dT
perform better on phantoms with smoother transitions in attenuation.
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SIRT+sT SIRT+dT TVmin

α = 2.0

α = 0.1

α = 0.005

Figure C.3: Effect of the regularisation parameter α for different reconstruction algorithms.
Number of angles = 379, noise level = 2%, iterations (SIRT+sT / SIRT+dT / TVmin) = 500, 500, 5000.

Table C.1: Tabulated reconstruction errors for the reconstruction algorithms on the 3D Shepp-Logan phantom for
various regularisation weights.

Regularisation Reconstruction algorithms
parameter α SIRT+sT SIRT+dT TVmin

2.0 0.214 0.235 0.109
0.1 0.130 0.141 0.228
0.005 0.125 0.126 0.251



D
Additional figures

D.1. LB density
D.2. Fluid kinetic and potential energy
D.3. Density distribution
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(a) case #3

(b) case #4 (incomplete)

Figure D.1: Lattice Boltzmann density over time.

Figure D.2: Fluid kinetic and potential energy (case #3) in Joule over time. Note that the flow reaches energy
equilibrium after approximately 5 s.
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(a) Time-resolved density distribution. t = 5.545 s.

(b) Time-averaged density distribution. 5 s ≤ t ≤ 10 s.

Figure D.3: Distribution of the densities (case #3) above 850 kgm−3 for the time-resolved and time-averaged
data.
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