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RESEARCH ARTICLE

Infection risk and economic activity trade-offs: decision-making in indoor 
venue operations for pandemic preparedness
Büşra Atamer Balkana, Martijn Sparnaaijb, Dorine Duivesb, Yilin Huangc and Quirine ten Boscha

aInfectious Disease Epidemiology, Wageningen University & Research, Wageningen, The Netherlands; bDepartment of Transport & 
Planning, Delft University of Technology, Delft, The Netherlands; cDepartment of Multi-Actor Systems, Delft University of Technology, 
Delft, The Netherlands

ABSTRACT
During epidemics, decision-making regarding intervention measures faces complex trade-offs. 
Interventions targeting indoor venues can mitigate disease spread, since they are associated 
with higher infection risk for respiratory pathogens. However, as experienced during the 
COVID-19 pandemic, these measures can lead to economic losses, especially in the hospitality 
sector. In this study, we propose a hybrid modeling and simulation framework to provide 
decision support for reducing the infection risk in indoor venues while maintaining viable 
economic activity. Our framework integrates (i) a microscopic pedestrian model for human 
movement, (ii) a hybrid simulation model for virus spread and transmission, and (iii) a multi- 
criteria decision-making approach to identify the best service options. The framework is 
demonstrated for the SARS-CoV-2 infection risk. The restaurant case study results illustrate 
that maximizing the distance between seating groups can have a limited effect on the infection 
risk. Service duration and service capacity are key determinants of expected economic activity, 
but they constitute significant trade-offs: the former has a substantial impact on the infection 
risk, and the latter drives the probability of infectious introductions. Our analysis demonstrates 
the need for multi-criteria approaches during an outbreak and consideration of the epidemio
logical context for operational decision-making, even at an individual venue.
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1. Introduction & background

In times of public health crises like epidemics, the 
importance of informed decision-making becomes 
increasingly evident. From strategic policy formula
tion to operational implementation, well-designed 
decision-making processes can save lives, conserve 
time, and ensure the efficient utilization of available 
resources. As globally experienced in COVID-19 pan
demic, decision-makers require readily available tools 
to address diverse decision-making challenges 
(Panovska-Griffiths et al., 2021), and mathematical 
modeling and simulation approaches can strengthen 
our pandemic preparedness (Hutton, 2013; Silal, 2021; 
Singh & Mathirajan, 2023) by enabling quantitative 
assessments of possible responses to such complex 
problems.

The challenge of decision-making problems in 
the context of disease outbreaks mostly stems 
from the complicated trade-offs they include: The 
need to control the infections can lead to lock
downs and stay-at-home orders, which have a 
clear impact on income, education, and social 
lives (Filipe et al., 2022). During the recent pan
demic, stakeholders in specific sectors where social 
interactions occur, such as hospitality, catering, 

food, and entertainment tried to maintain their 
financial sustainability by adjusting their operations 
while adhering to necessary safety measures like 
limiting the occupancy levels and service durations 
(Brizek et al., 2021; Gursoy & Chi, 2020; Norris et 
al., 2021). For the safe and economically viable use 
of public venues in case of epidemics, there is a 
need for multi-dimensional and adaptable interven
tion schemes that consider both public health and 
socio-economic impacts (Eryarsoy et al., 2023). 
However, what level of interventions is acceptable 
—considering both the infection risk safety and 
economic sustainability—still remains an unre
solved question that varies by context and is 
affected by different epidemiological scenarios.

In the context of epidemics and pandemics, simu
lation modeling approaches have been widely used 
for different decision-making challenges including 
design of social distancing measures (Volpatto et al.,  
2023), timing and impact of public health restrictions 
(Duggan et al., 2024), understanding the impact of 
vaccination policies (Vázquez-Abad et al., 2022), 
investigating the influence of behavioral interven
tions on the spread of the disease for large popula
tions (de Mooij et al., 2023), supporting local 
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decision-makers for pandemic preparedness (Araz et 
al., 2011), vaccine prioritization, allocation, and 
rationing (B. Y. Lee et al., 2010) and managing supply 
chain risks (Ivanov, 2020). In addition to the discrete 
event simulations widely used in health system 
operations and resource management (Currie et 
al., 2020), and system dynamics models typically uti
lized to capture the population-level spread of the 
disease, the use of agent-based models has gained 
more attention since they enable researchers to simu
late individual behavior and interactions (Dunke & 
Nickel 2021). Some agent-based modeling studies 
have investigated the effects of interventions on 
SARS-CoV-2 transmission risk in various social con
texts (Kerr et al., 2021; Müller et al., 2021; Zhou et 
al., 2021), primarily aiming to provide community- 
level insights rather than facilitate operational deci
sion-making. Additionally, hybrid simulation studies 
(Brailsford et al., 2019; Mustafee et al., 2025; Nguyen 
et al., 2024) that combine different simulation meth
ods are increasingly common for decision-making in 
infectious disease contexts (e.g., Angelopoulou & 
Mykoniatis, 2024; Viana et al., 2014) since hybrid 
approaches can facilitate a more robust decision- 
making process (Kar et al., 2024) in complex health 
problems.

In addition to their methodological differences, 
these simulation studies show diverse characteristics 
in terms of how they approach the trade-offs: the 
majority of them focus on a single outcome to 
improve, while some of them are more comprehensive 
considering multiple objectives (e.g., Alım & Kesen,  
2023; Araz, 2013; Dunke & Nickel, 2021). The latter 
group utilizes multi-criteria decision-making 
approaches, generally focusing on improved design 
of population-level intervention policies, such as the 
optimal timing of the lockdown policies or the coun
try-level rollout of mitigation regulations (Chandak et 
al., 2020; Chen et al., 2023; Colas et al., 2021; Gillis et 
al., 2021). However, understanding the multi-faceted 
impacts of these interventions at the scale of an indi
vidual venue, where the interactions occur between 
individuals and hence the infection happens, is crucial. 
For the case of SARS-CoV-2, indoor gatherings have 
been linked to an eighteen times larger risk of trans
mission compared to outdoor gatherings (Bulfone et 
al., 2021), which indicates the importance of decision 
support for intervention design in indoor spaces in 
mitigating the infectious diseases caused by respira
tory pathogens.

To understand the impact of interventions on the 
virus transmission dynamics in indoor spaces, diverse 
mathematical modeling and simulation approaches 
are utilized, and an overview of indoor transmission 
models can be found in Atamer Balkan et al. (2024). In 
terms of understanding the multidimensionality of the 
infection risk in different indoor settings, agent-based 

and hybrid simulation models with varying levels of 
detail on mobility and the spread of the virus (Islam et 
al., 2021; B. Lee et al., 2021; Martinez et al., 2022; Xiao 
et al., 2021; Ying et al., 2021; Zhu et al., 2025) have 
contributed to the knowledge base. In addition to 
those, many mathematical modeling studies investi
gate the optimal design of indoor spaces to mitigate 
the infection risk, mainly focusing on minimizing the 
distance between customers/sitting groups/tables, 
since the maximum distance is accepted as an indica
tor of minimum transmission risk (Bortolete et al.,  
2022; Contardo & Costa, 2022; Fischetti et al., 2021; 
Moore et al., 2021; Ntounis et al., 2020; Ugail et al.,  
2021). However, limited research focused on short- 
term operational decision-making problems on how 
to operate a particular venue in terms of service 
options (e.g., the number of guests allowed, the dura
tion of the service, the number of shifts) that the venue 
managers could implement themselves to manage a 
key trade-off: reducing the transmission risk while 
maintaining sustainable economic activity. 
Addressing this gap, our research questions in this 
study are as follows.

● What are the impacts of different service options 
on respiratory virus transmission risk in an 
indoor venue? (Sections 3.1–3.3)

● How can the best service options be identified 
that keep the transmission risk below an accep
table threshold, while maintaining sufficient eco
nomic activity? (Section 3.4)

● How does the infection prevalence within a com
munity impact the set of best service options? 
(Section 3.5)

To address these research questions, we propose a 
hybrid modeling and simulation framework that 
assesses both the transmission risks and the expected 
economic activity in conjunction and identifies the set 
of best service options for the safe and economically 
sustainable use of the space. Our framework uses an 
integrated set of mathematical models: (i) an agent- 
based, pedestrian mobility simulation model that cap
tures human activity choices and movement 
dynamics, (ii) an integrated hybrid simulation model 
that computes the infection risk of each agent, with 
agent-based components for virus transmission, and 
system dynamics components for the virus spread in 
the environment, and (iii) a multi-criteria decision- 
making stage to identify the trade-off between the 
expected daily economic transactions and the infec
tion risk. Our framework is applicable to respiratory 
pathogens in general that spread through multiple 
transmission routes (i.e., aerosols, droplets and sur
faces). In this paper, we demonstrate its application 
using SARS-CoV-2 as a case study. The integration of 
models mentioned in (i) and (ii) is titled Pedestrian 
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Dynamics—Virus Spread model (PeDViS) and is 
detailed in Atamer Balkan et al. (2024). PeDViS is 
calibrated with respect to human mobility data in 
indoor public spaces and utilizes up-to-date virologi
cal and epidemiological data on SARS-CoV-2. It has 
gone through relevant model validation and verifica
tion stages (Appendix F), and the parametrization and 
the sensitivity analysis of PeDVis are presented in 
detail in Atamer Balkan et al. (2024).

In this study, we showcase the application of our 
hybrid model for restaurants. Restaurants, especially 
indoor dining, have been identified as one of the high
est risk settings during COVID-19 pandemic (Fisher 
et al., 2020), mostly attributable to the low mask- 
wearing rate for eating and drinking, contact for pro
longed periods of time, possible high occupancy, pos
sible poor ventilation, and limited adherence to social 
distancing rules (Fisher et al., 2020; Li et al., 2021; N. 
Zhang et al., 2021). In this study, we consider the 
viewpoint of an indoor venue manager and aim to 
make a comparative analysis of the interventions that 
are related to operating the restaurant from an indoor 
venue manager’s perception. In addition to the rede
sign of the physical space, we assess the contribution 
of different service options (namely, the service dura
tion, the service capacity, and the service scheme in 
our restaurant case) regarding the infection risk and 
the expected daily economic transactions. This study 
constitutes one of the first investigations of decision- 
making at the scale of an individual indoor venue 
considering both the economic sustainability and 
infection risk safety concerning a respiratory 
pathogen.

2. Hybrid model framework

In this section, we introduce our hybrid model that 
combines PeDViS with multi-criteria decision-mak
ing. First, the relevant setting for an indoor venue 
(i.e., a restaurant) is introduced (Section 2.1) with 
key assumptions related to virus dynamics in the 
environment. Then, the Pedestrian Behavior and 
Movement module (Section 2.2.1) and QVEmod 
module (Section .2) are presented with the assump
tions about the economic activity in an indoor venue 
(Section .3) and the multi-criteria decision-making 
approach followed (Section .4). Additionally, the 
model validation and verification stages are summar
ized in Appendix F.

2.1. The setting: Layout and elements of an 
indoor venue

Considering human movements and interactions 
within an indoor environment, the attributes of the 
space include context-based infrastructural elements 
(e.g., walls, entrance, exit, kitchen, bar, restroom) and 

movable objects (e.g., tables and chairs) specific to that 
setting (i.e., a restaurant in our case study). The layout 
of the space can be perceived as a collection of layers 
where infrastructural elements and movable objects 
are placed, the individuals move and perform actions, 
and the virus spread occurs (Figure 1).

In this study, the default layout is rectangular and 
carries three layers of information with small units of 
grid cells (Figure 2). The human movements and 
actions are performed on the mobility layer on a con
tinuous space, then the mobility information is con
verted to a discretized space (with grid cell sizes of 0.2  
m × 0.2 m), while the virus spread information in the 
environment is tracked on the air and the surface 
layers (with grid cell sizes of 0.5 m × 0.5 m) (Figure 1).

The virus spread information on the air and surface 
layers are used to track the virus transmission routes 
between agents and the environment. Virus exposure 
by agents occurs by acquiring viral particles via direct 
or indirect contact with an infectious individual. The 
transmission (i.e., the process of virus exposure which 
results in infection) and the spread of respiratory 

Figure 1. Layers in the layout.

Figure 2. An example restaurant setting including the grids on 
the mobility layer.
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viruses like SARS-CoV-2 can typically occur through 
three routes: (i) droplets (i.e., large viral-laden parti
cles (size >10um) that fall to the ground rapidly), 
(ii) aerosols (i.e., small viral-laden particles 
(size <10um) that can remain airborne for a period 
of time), and (iii) fomites (i.e., when contaminated 
surfaces act as intermediary vectors to cause virus 
exposure when individuals touch them) (Atamer 
Balkan et al., 2024). In our model, the air layer 
includes information for the virus accumulation in 
the form of aerosols and droplets, whereas the surface 
layer contains the information for fomites.

In many infectious diseases, especially those whose 
transmission through surfaces plays a major role such 
as Ebola or chickenpox, shared surfaces can be an 
important infection transmission route. PeDViS can 
also simulate the virus transmission mechanism 
through surfaces along with the aerosols and droplets 
and is thereby generic in representing all transmission 
routes relevant to respiratory pathogens. However, for 
the case of COVID-19, evidence shows that the virus 
mainly spreads through respiration (Greenhalgh et al.,  
2021; Miller et al., 2021; R. Zhang et al., 2020), and 
transmission through surfaces is limited (Cheng et al.,  
2022; Lewis, 2021; N. Zhang et al., 2021). Experimental 
studies have shown that SARS-CoV-2 can be trans
mitted through the environment (Gerhards et al.,  
2023), but this transmission is mostly related to a 
build-up of the virus resulting from a prolonged resi
dence time in a shared environment (i.e., the cumula
tive deposition of droplets over time), rather than 

through high touch surfaces. Therefore, for this parti
cular simulation, the surface transmission route is 
considered only through the main activity areas of 
the customers, which are their tables and chairs.

Infrastructural elements and movable objects exist 
in two layers: in the mobility layer they define the 
constraints for movement (e.g., entrance to the venue 
can be done only via the front door); in the surface 
layer they act as a medium for virus transmission 
between agents (Figures 1 and 2).

The model setup also includes Agents moving 
around the space. Each agent can either be a guest or 
service personnel, which impacts their activities and 
mobility behavior (Section 2.2.1). An agent can either 
be infectious (i.e., an individual who can spread the 
virus) or susceptible (i.e., an individual who can be 
infected if exposed to sufficient virus particles) con
cerning their infectiousness status with the virus. The 
status of an agent (infectious or susceptible) defines 
their virus-transmission-related actions during their 
visit (e.g., virus emission can only be triggered by an 
infectious agent) (Section .2). Additional assumptions 
about the model structure are given in Appendix A.

2.2. The hybrid model framework

Our hybrid framework (Figure 3) starts with the 
Pedestrian and Mobility module (Section 2.2.1). The 
first model in that module, Activity Choice and 
Scheduling, transforms user inputs about context, lay
out and population into personalized activity 

Figure 3. Overview of the hybrid model framework.
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schedules (Section .1). The second model, NOMAD: 
Agent Movement, uses these schedules to determine 
each agent’s movement behavior (Section .2). The 
expected Economic Activity Calculations are primarily 
based on the time spent at the venue, as determined by 
each agent’s entrance and leave times (Section .3). The 
following module, QVEmod, simulates how the 
respiratory pathogen spreads: it combines an agent- 
based model (2.1 – Virus Transmission in Figure 3), 
which tracks interactions and virus transmission 
between agents (Section 2.1), with a system dynamics 
simulation (2.2 – Virus Spread in Figure 3), which 
tracks the concentration of the viral particles in the 
environment (Section 2.2). Then, the Infection Risk 
Identification model calculates each agent’s infection 
risk based on viral exposure (Section 2.2.2.3). Finally, 
in the Multi-Criteria Decision-Making stage, we eval
uate the best set of service options considering both 
the expected infection risk and economic activity 
using Pareto optimality principles (Section .4). 
Underneath, a detailed explanation of the modeling 
steps is provided.

2.2.1. Pedestrian behavior and mobility
The Pedestrian Behavior and Mobility section of the 
framework consists of two parts (Stages 1.1 and 1.2 in 
Figure 3). First, the Activity Choice and Scheduling 
model determines the order of the activities and activ
ity locations that an agent visits during the simulation. 
Second, the Agent Movement (NOMAD) model simu
lates the trajectory of agents while navigating through 
the restaurant. These two models require (1) the lay
out of the restaurant, (2) the duration of the simula
tion, (3) the demand pattern (i.e., how many groups of 
customers visit the restaurant during which time 
slots), (4) the average service duration (i.e., the average 
duration of group visits), (5) the number of service 
personnel, (6) the average number of servings per 
table (i.e., the average number of times the personnel 
visits a group) and (7) the serving neighborhoods (i.e., 
the set of tables that is primarily served by specifically 
assigned members of the personnel) as inputs.

2.2.1.1. Activity choice and scheduling. The agent- 
based activity choice and scheduling model (1.1 in 
Figure 3) schedules the activities for the guests and 
the personnel. For each guest, the model creates a 
static activity schedule at the start of the simulation 
with three mandatory activities: entering the restau
rant, sitting at the table, and leaving the restaurant. 
Next, optional activities are assigned to the itineraries, 
such as, visiting the coat rack, visiting the restroom, 
and paying at the table or the register. In the activity 
scheduler, the entrance time and the visiting duration 
of the customers, and the probability of visiting the 
restroom introduce variability in agent behavior. For 
the personnel, the model creates and assigns the 

relevant activities (i.e., welcoming and distributing 
the menus, taking orders, serving orders, receiving 
payments, cleaning) dynamically during the simula
tion. For a detailed description of the activity choice 
and scheduling model, the reader is referred to 
Sparnaaij et al. (2024).

2.2.1.2. NOMAD: Agent movement. The agent- 
based movement model in our hybrid framework 
(1.2 in Figure 3) is an existing microscopic pedestrian 
simulation model called NOMAD (Campanella,  
2016). The NOMAD model computes the route and 
operational movement dynamics of each pedestrian in 
the restaurant. The routes are computed such that an 
agent will choose the shortest route to their destina
tion whilst keeping a comfortable distance to all 
obstacles.

The operational movement dynamics of the agents 
are governed by the so-called social forces. The equa
tions governing the operational movement dynamics 
of each pedestrian are provided in Appendix B. The 
walking behavior of the population is assumed to be 
homogeneous in movement aspects, except for the 
desired walking speed, which is drawn from a normal 
distribution for each agent.

The pedestrian behavior and mobility model out
puts detailed data on the movements and activities of 
all agents. For each agent, the position is recorded 
every 0.1 seconds resulting in a detailed trajectory 
per agent. These outputs are converted into the inputs 
of the QVEmod: Virus Spread, Transmission, and 
Infection Risk Identification model in the form of a 
script for each agent after the conversion of the time 
step from 0.1 seconds to a user-defined value 
(default = 30 seconds). A simplified example script 
for one agent is provided in Appendix C.

2.2.2. QVEmod: Virus spread, transmission, and 
infection risk
Given the context-based infrastructural elements, 
objects, layout, and the agent-based script and routing 
information, how would a respiratory pathogen 
spread in an indoor venue and transmit between 
agents if one of the agents were infectious? We 
approach this question with a hybrid simulation 
model (QVEmod) integrating (1) an agent-based 
simulation tracking the interaction of each agent 
with the virus (Stage 2.1 in Figure 2) and (2) system 
dynamics simulation tracking the virus spread in the 
environment (Stage 2.2 in Figure 2). These two simu
lations run simultaneously with the same time steps 
(i.e., 30 seconds), feeding each other information in 
each time step.

The processes modeled in QVEmod are summar
ized here and detailed in Appendix D. A causal loop 
diagram showing the relationships between the pro
cesses in QVEmod and the viral particles in the 
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environment is provided in Appendix E. After the 
run is concluded, the infection risk in this event for 
each agent is calculated (Stage 2.3 in Figure 3) as 
one of the primary outputs of our framework.

2.2.2.1. Agent-based simulation for virus transmis
sion. The agent-based module of QVEmod simulates 
the virus transmission-related processes performed by 
agents throughout the simulation. At the start of the 
simulation, one agent is randomly assigned as infec
tious, and the rest of the visitors are labeled as suscep
tible; this constitutes the main source of randomness 
in QVEmod. As the infectious agent enters the space, 
two biological processes are triggered:

● With virus emission, the infectious agent emits 
viral particles to the air within aerosols and dro
plets (Eqs. A7 and A8).

● During surface contamination, the infectious 
agent touches and contaminates the surfaces 
within their reachable area with a surface con
tamination rate (Eqs. A9 and A10).

After the infectious agent enters the space, the model 
starts calculating the interactions of the susceptible 
agents with the virus via these two processes:

● With virus inhalation, the susceptible agents are 
exposed to the virus via the viral particles in 
aerosols and droplets in the air layer (Eqs. A11 
and A12).

● During virus pickup from the surfaces, the suscep
tible agent can touch contaminated surfaces and 
pick up the virus onto their hands with a virus 
pick-up rate, and then transfer them to their 
facial membranes (Eqs. A13, A14 and A15).

As a result of these biological processes, the susceptible 
agents get exposed to the virus. The virus exposure 
amount of each susceptible agent is calculated for each 
route: virus exposure via aerosols, droplets, and 
fomites.

2.2.2.2. System dynamics simulation for virus spread 
in the environment. While the agent-based module 
triggers and calculates the biological processes 
performed by the agents, the system dynamics 
module dynamically tracks the concentration of 
virus particles within the environment. The stock 
variables in the module represent the virus accu
mulation in each grid cell x; yð Þ: Vaerosols x; yð Þ, 
Vdroplets x; yð Þ, and Vfomites x; yð Þ. In addition to 
the agent-based processes explained above, there 
are three agent-independent flow variables in the 
environment.

● The viral particles in the environment follow an 
exponential decay and lose their infectivity in 
time with virus decay rates for aerosols and dro
plets (Eqs. A19 and A20).

● Different from the virus decay in aerosols and 
fomites, the particles in droplets fall onto surfaces: 
they are transferred from grid cell x; yð Þ in the air 
layer to grid cell x; yð Þ in the surface layer with a 
droplet deposition rate. The droplet deposition pro
cess is much faster compared to the decay process, 
so any decay in droplets is ignored (Eq. A21).

● The virus particles in the air layer diffuse into 
their neighborhood grid cells in x and y direc
tions with diffusion rates for aerosols and dro
plets (Eqs. A22 and A23).

As a result of the flows triggered by the biological 
processes of agents and other virus-spread-related 
processes in the environment, the virus contamination 
state of each layer, for each grid x; yð Þ and for each 
time step, is calculated (Figure 4) (Eqs. A24, A25 and 
A26). The details of the calculations are provided in 
Appendix D.

2.2.2.3. Infection risk identification. After the agent- 
based and system dynamics simulation runs are com
pleted, the model uses the agent-based virus exposure 
information and quantifies the infection risk for each 
susceptible agent via the exponential dose–response 
relationship (Nicas, 1996). 

Here, Ps is the probability of infection for susceptible 
agent s, where Es

aerosols Tð Þ, Es
droplets Tð Þ, and Es

fomites Tð Þ
are the accumulated virus exposure amounts for the 
susceptible agent s via each route at the end of the 
simulation duration, T. kaerosols, kdroplets and kfomites are 
the route-specific exposure parameters (Popa et al.,  
2020; Atamer Balkan et al., 2024). The details of expo
sure calculations are provided in Appendix D.

Then the infection risk of the event is calculated by 
summing up the infection risk for each agent s ∈ S. This 
summation represents “the expected number of second
ary infections given the introduction of one infectious 
agent”, and hence it corresponds to what we will refer to 
as the reproduction number attributed to this 
event, Revent . 

2.2.3. Economic activity
The expected economic activity in an event or a 
day, which is the expected revenue in our example, 
depends on the visit characteristics of the guests. 

6 B. ATAMER BALKAN ET AL.



The primary input to the expected economic activ
ity is assumed to be the time spent by each guest in 
a venue. We assume that the expected payment of 
each guest g ∈ EðpayÞg , is an increasing function 
of their visiting time (Figure 5). The time spent by 
each guest in the venue is calculated from the 
agent-based script showing the entrance and leave 
time of each agent. Then, the expected revenue, 
E revð Þ, is the sum of the expected payment col
lected from each agent.

Acknowledging that the revenue functions would 
vary from one venue to another, our framework is 
flexible to allow any revenue function based on 
decision makers’ preferences. Here, we use an illus
trative function for the expected payment per guest 
(Figure 5) to demonstrate the operationalization of 
the model.

Figure 4. States, inflows, and outflows for the example of aerosol-induced virus contamination in grid cell x; yð Þ, Vaerosols x; yð Þ, in 
the air layer (shown as VðaÞðx; yÞ) (agent-triggered flows are shown as color-filled, whereas the environment-related flows have 
no fill color.)

Figure 5. Illustrative function for the expected payment per guest based on visit duration.
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Even though it is illustrative, the shape and para
meters of the function in Figure 5 are chosen to be 
appropriate to the context, where (i) it is a piecewise 
linear function that initially has an increasing and 
then a decreasing slope, aiming to mimic the rela
tionship between time spent by the customer and 
the courses ordered in a restaurant (e.g., starting 
with a snack or starter, then ordering one or two 
main courses, then a dessert, a drink etc.), and (ii) 
the output values of the function are in line with the 
recent statistics in the European setting (i.e., the 
Netherlands for our case), where an inexpensive 
meal per person starts from €10 and goes up to 
€60 in a mid-range restaurant (Numbeo, accessed 
May 31, 2025). This is consistent with our expected 
payment per guest function in Figure 5 where a 
person is expected to pay €8 for a 0.5-hour visit 
and €58 for a 3-hour visit.

2.2.4. Multi-criteria decision-making
In our hybrid model framework, we identify the best 
set of alternatives for operational decisions with multi- 
criteria decision-making. The best set of alternatives is 
defined as the set of non-dominated feasible options, 
and the goal is to provide the non-dominated set to the 
decision makers. As explained above, for each setting 
and scenario, the results of the expected Revent and 
E revð Þ are obtained and serve as objective functions, 
where the objectives are to minimize the expected 
Revent and maximize E revð Þ. For each of these two 
objective function values, there are constraints that 
define their feasible regions:

● For the expected Revent, we assume that decision 
makers define a static risk threshold for the 
expected number of secondary infections per 
day/event, and the service options above that 
threshold are not acceptable,

● For the venue to run in an economically sustain
able way, there is a minimum required revenue to 
be obtained per day. So, only the service options 
that have E revð Þ above the minimum required 
revenue are accepted as feasible.

Considering the two objective functions and their 
feasible regions, we define the Pareto frontier of non- 
dominated options as follows:

A solution X is said to dominate the other solution 
Y, if both the following conditions are true:

(1) The solution X is no worse than Y in both the 
expected Revent and E revð Þ.

(2) The solution X is strictly better than Y in at least 
one objective, either the expected Revent or E revð Þ.

For a given set of options, a pairwise comparison is 
made using the above definition and whether one 
point dominates the other is established. All points 
which are not dominated by any other member of the 
set are called the non-dominated options (Deb, 2011).

3. Results

The use of our hybrid model framework is demon
strated with an application for a restaurant case. We 
investigated the impact of four sets of operational deci
sions on the expected revenue and the risk of infection 
in an indoor restaurant setting: redesign of physical 
space (Section 3.1), average service duration (Section 
3.2), service capacity (i.e., number of guests served in 
one day) (Section 3.3), and service scheme (i.e., combi
nations of (i) average service duration, (ii) service capa
city, and (iii) the number of shifts) (Section 3.4).

Additionally, we investigated the impact of the fol
lowing uncontrollable factors: (i) the infectious agent 
being a guest or service personnel (Section 3.1) and 
(ii) the infection prevalence within the community 
(Section 3.4 and 3.5).

The simulation experiment settings and the 
assumptions for the restaurant case study are:

● Seating capacity of 48 people, corresponding to 
12 tables with 4 chairs each (Figure 6(a) for the 
Base layout).

● Fixed opening and closing hours, corresponding 
to 4 hours a day.

● All guests are scheduled to arrive at specific time 
slots, as would happen when using reservations.

● The restaurant can serve for one shift or multiple 
shifts a day, which is explicitly stated in relevant 
experiment settings.

● The number of servings to tables by the staff is pro
portional to the average service duration (i.e., a 
service staff visits a table every 30 minutes on 
average).

● Considering the time required for staff activities 
for each table and guest group, the number of 
service staff is proportional to the number of guests 
in a shift. (i.e., 2 service staff for 24 guests, 3 service 
staff for 36 guests, 4 service staff for 48 guests).

● Unless otherwise stated, it is assumed that a sin
gle guest is infectious during each experiment.

● In each simulation experiment, we generated 
120 replications (5 for mobility behavior × 24 
for the assignment of the infectious agent), 
which was calculated to correspond to an aver
age relative error of 5% in mean infection risk 
and expected revenue at 95% confidence level 
(Law, 2007).
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3.1. Impact of redesign of physical space

Redesigning the physical space by rearranging the 
distance between seating groups is one of the non- 
pharmaceutical interventions implemented during the 
recent COVID-19 pandemic, especially in the hospi
tality sector (CDC Center for Disease Control and 
Prevention, 2020; Wang et al., 2021; WHO World 
Health Organization, 2020). Rather than proposing 
the optimal layout for a particular restaurant, the 
aim of the simulation experiments in this section is 
to present a comparative analysis for the impact of 
different extreme layout settings on the infection risk. 
In these simulation experiments, we used a fixed ser
vice scheme (one shift, average service duration of 2  
hours, service capacity of 48 people) and investigated 
the impact of four distinct layout settings:

● Base Layout: A setting with arbitrarily placed 
tables, in which the distance between two prox
imate chairs in different seating groups are at 
least 1.5 meters (Figure 6(a)).

● Random Layout: Tables are randomly placed using 
a random number generator, taking into account 
that the location of each table and its chairs do not 
overlap within the available space (Figure 6(b)).

● Risky Layout: This can be considered as the 
worst-case setting (from an epidemiological 
point of view), in which the tables are positioned 
close to each other as one large group, imitating a 
group event (Figure 6(c)).

● Optimal Layout: This can be considered as the 
best-case setting for the given number of tables 
and chairs and the dimensions of available space 
(Figure 6(d)). To find the optimal layout, we 
solved the optimization problem of maximizing 
the minimum distance between any two tables 
(Bortolete et al., 2022; Fischetti et al., 2021; 
Ugail et al., 2021). The model follows a similar 
structure to the “circle packing” problem pre
sented in Bortolete et al. (2022), where one table 
and four chairs around it define the size of the 
circle. The model is solved on the discretized 
space and constraints the locations of tables and 
chairs (i) to be within the space, (ii) not to overlap 
with each other, (iii) not to overlap with the 
infrastructural elements in the venue, (iv) to be 
integers representing the grid cells. It should be 
noted that, here there are only a few infrastruc
tural elements and a simple layout to demon
strate the impact of layout settings on the 

a Base Layout  b Random Layout 

c Risky Layout d Optimal Layout 

Figure 6. (a) Base Layout. (b) Random Layout. (c) Risky Layout. (d) Optimal Layout.
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infection risk; but for a case where other decora
tions, furniture or obstacles are a part of the 
physical space, the circle packing problem can 
easily be reconfigured to accommodate these 
constraints.

In these experiments, we investigated the impact of 
four layout settings under two scenarios (i) the infec
tious agent is a guest, and (ii) the infectious agent is 
personnel (Figure 7), since the design of physical space 
can affect contact structures in different ways for 
guests and personnel.

Recall that Revent represents the expected, average 
number of secondary infections, given that one of the 
agents is infectious. In Figure 7, the risky layout indi
cates the highest number of secondary infections, 
whereas the optimal layout leads to the lowest. While 
optimizing the layout relative to the base case has a 
minor effect, the risky layout is associated with 2.7- 
times and 1.8-times higher transmission risk figures 
with respect to base case in Guest and Personnel sce
narios, respectively. Overall, in these experiments, the 
number of secondary infections caused by guests is 
found to be 3.5 times higher on average than that of 
personnel. The main reason behind this difference is 
that Revent is based on the agents’ behavior while present 
in the service area. In the simulation, personnel enter 
the service area only when a task is assigned to them: 
here, the average time that a guest spends within the 
service area is 120 minutes, whereas it is 32 minutes for 
one service personnel. Infections that may occur in the 
kitchen area or elsewhere are thus not considered here. 
The expected revenue values do not differ between 
settings and scenarios, as the number of guests and 
the average service time are the same in all experiments.

3.2. Impact of service duration and service 
capacity

Contact duration and occupation density in indoor 
spaces are associated with the SARS-CoV-2 transmis
sion risk (Bazant & Bush, 2021; Koh et al., 2020; Miller 
et al., 2021; Tang et al., 2020). In these simulation 
experiments, we investigated the impact of average 
service duration and service capacity on the infection 
risk, the number of secondary infections, Revent, and 
the expected revenue, E revð Þ, for the following settings 
(Figure 8): 

● Base layout (Figure 6(a))
● Average service duration: 0.5 - 3 hours, with 

0.5 hours increments
● Service capacity: 24, 36, 48 people
● Two scenarios: (i) all guests enter the venue at the 

same time slot (like a scheduled event) (Figure 8), 
(ii) guests in different groups (i.e., different 
tables) enter the venue distributed over time 
slots (Table 1)

The simulation experiments in scenario (i) show that 
the number of secondary infections increases as the 
number of guests increases, but only when the service 
duration is longer than 1.5 hours (Figure 8). 
Additionally, the increasing impact of service duration 
on Revent is more evident than the impact of the num
ber of guests. This observation is due to a “circle of 
influence” around the infectious individual, which has a 
similar extent irrespective of the total number of guests 
but does enlarge with the visit duration: Recall that 
Revent is the sum of the infection risk of all susceptible 
agents. Here, we define wevent insideð Þ as “the 

Figure 7. Revent and E revð Þ outcomes for different layout settings.
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percentage of Revent covering the susceptible agents 
sitting within 1.5-meters of the infectious individual”. 
In these experiments, the average of wevent insideð Þ is 
found to be between 75%-89% under different set
tings. That is, the major portion of the risk stays within 
the social group of the infectious agent, and the influ
ence of the number of visitors turns out to be limited.

The average revenue increases in both the service 
capacity and the service duration. As the service time 
increases, the contribution of service capacity becomes 
more evident, since the expected revenue is defined as 
an increasing function of the service time.

Changing the entrance behavior from (i) entrance 
at the same time slot to (ii) entrance distributed over 
time slots shows a consistent but small contribution 
(Table 1): in all the experiment settings, Revent is smal
ler in the distributed scenario (4.7% on average, range 
of 0.5%–12.4%). Revent decreasing in (ii) can be 
explained by the reduced overlapping visiting time of 

the guests due to the definition of the scenario. The 
difference being limited between (i) and (ii) is also 
related to the circle of influence: by definition, guests 
sharing the same table enter the restaurant at around 
the same time, and the major portion of the risk is still 
within 1.5-meters of the infectious individual. 
Consequently, the contribution of scenario (ii) in miti
gating the infection risk is found to be limited.

The revenue does not exhibit a difference between 
these two scenarios since scenarios do not have an 
impact on service duration and service capacity.

3.3. Impact of service schemes

A service scheme is identified as a combination of (i) 
average service duration, (ii) service capacity, and (iii) 
number of shifts in a day. Considering (i) and (iii) 
simultaneously constraints the solution space based on 
working hours: e.g., if the venue is open for 4 hours, 

Figure 8. Revent and E revð Þ outcomes for changing service duration and service capacity levels in scenario (i) guests enter the venue 
at the same time slot.

Table 1. Reventin (i) entrance at the same time slot and (ii) entrance distributed over time slots scenarios, and the percent decrease 
in Revent from (i) to (ii).

0.5 hrs 1 hr 1.5 hrs

24 ppl 36 ppl 48 ppl 24 ppl 36 ppl 48 ppl 24 ppl 36 ppl 48 ppl

Revent in (i) 0.21 0.22 0.20 0.42 0.44 0.46 0.67 0.70 0.74
Revent in (ii) 0.20 0.21 0.19 0.41 0.41 0.41 0.64 0.64 0.66
% decrease 3.7% 6.5% 7.8% 4.3% 6.5% 8.0% 4.6% 8.4% 10.8%

2 hrs 2.5 hrs 3 hrs

24 ppl 36 ppl 48 ppl 24 ppl 36 ppl 48 ppl 24 ppl 36 ppl 48 ppl

Revent in (i) 0.89 0.92 1.00 1.09 1.15 1.25 1.28 1.36 1.45
Revent in (ii) 0.87 0.92 0.87 1.07 1.10 1.17 1.26 1.34 1.41
% decrease 2.2% 0.5% 12.4% 1.8% 4.4% 5.8% 1.8% 1.8% 3.1%
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serving in 3 shifts with an average service duration of 
1.5 would not be an option.

We selected a set of feasible service scheme options 
for the following experiments and investigated their 
impact on the expected number of infections and the 
expected revenue (Figure 9): 

● Combinations of service durations and the num
ber of shifts: 3 shifts of 1-hour duration, 2 shifts 
of 1.5 hours duration, 1 shift of 3 hours duration 
(assuming the restaurant still runs 4 hours in 
total but with short breaks between the shifts).

● Service capacity: Changing from 24 to 144 people 
(note that the service capacity is the total number 
of visitors accepted as the summation of all shifts 
in a day. For example, 144 people in the 3-shift 
case indicates 144/3 = 48 people are accepted 
during each shift).

Resonating with the previous experiments (Figure 
8), the number of guests does not significantly 
impact the risk when the service duration in each 
shift is shorter (i.e., 1 hour) (Figure 9). However, as 
the duration gets longer, the circle of influence starts 
growing: on average, wevent outsideð Þ increases from 
13% (in 1-hour shifts) to 20% (in 3-hour shifts), 
where wevent outsideð Þ is 1 � wevent insideð Þ. 
Consequently, for longer service durations, Revent 
increases with the increasing number of guests. As 
the revenue function implies, expected revenue exhi
bits an increasing trend with the number of guests 
(Figure 9). Due to the piecewise linear structure of 
the expected payment function, the contribution of 
one unit of service capacity differs in each service 

scheme option. The highest expected revenue is 
generated in 2 shifts × 1.5-hour option, with a 
full service capacity of 48 people in each shift 
(48 × 2 = 96 people in total).

From the operational point of view, one of the key 
questions would be: “Are there any service schemes 
that perform better than the others in terms of both 
the infection risk and the expected economic activ
ity?”. To interpret this question, we compare the aver
age performance of these schemes based on our two 
criteria: Revent and E revð Þ (Figure 10).

In these two criteria, the set of non-dominated 
(ND) solutions (i.e., a solution where none of the 
two criteria can be improved in value without degrad
ing the other) are particularly shown with larger sym
bols and indicated by the ND mark and the resulting 
Revent values. By definition, all ND service options 
either have a lower risk or a higher revenue result 
compared to other options. One observation here is 
that the ND solution set consists of every 3-shift × 1- 
hour setting as well as a single 2-shift × 1.5-hours 
setting with a service capacity of 96 people. It should 
be noted that the identified ND solutions are not 
global but specific to the set of predefined service 
scheme options.

3.4. How to operate the venue: Identifying the 
Pareto frontier for the best set of service options

Up to now, we have investigated the impact of opera
tional decisions on the infection risk and expected 
revenue, given that the condition of one of the agents 
is infectious. However, when the prevalence of the 

Figure 9. Revent and E revð Þ outcomes for different service schemes.
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infection in a community is considered, a more exten
sive service capacity with more visitors implies a 
higher chance of infectious introductions to the 
venue. Therefore, we incorporated the “probability of 
an agent in the event being infectious”, p � inevent, into 
the calculations to obtain the expected number of 
secondary infections in the event.

p � inevent is tightly connected to the term infec
tion prevalence, p � in, which is the proportion of 
infectious individuals in the community at a time. 
In our experiments, we calculated p � inevent as a 
function of p � in, indicating “the proportion of 
infectious individuals who do not have severe 
symptoms so that they can show up in a social 
space”. In our example, p � inevent is taken as 
1.5% (prevalence of COVID-19 infections in 
January 2022) (Buitrago-Garcia et al., 2020; CBS 

Netherlands, 2022; RIVM Rijksinstituut voor 
Volksgezondheid en Milieu, 2022) (calculations 
are available in Appendix H). Then, along with 
the expected revenue, the expected infection risk 
(i.e., the expected number of secondary infections) 
for each service scheme is calculated as follows 
(Figure 11):

As mentioned previously, we assume that there is a 
Minimum Required Revenue for this social venue to 
continue its operations sustainably. Similarly, we 
assume that there is a risk threshold, Maximum Risk, 
that the decision makers consider as the upper limit 
for the expected number of secondary infections 

Figure 10. Average Revent and E revð Þ outcomes for different service schemes, highlighting ND service options.

Figure 11. E infection riskð Þevent and E revð Þ outcomes for different service schemes, highlighting ND service options.
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(Figure 11). The shaded, lower right part of the solu
tion set constitutes the feasible region for acceptable 
service options, below the risk threshold and above the 
required minimum revenue. Among the feasible ser
vice options, ND solutions constitute the Pareto-opti
mal solutions, i.e., the Pareto frontier, which are 
highlighted with larger-sized points.

After the feasibility conditions and p � inevent are 
incorporated into the decisions, the set of ND solu
tions has changed (Figure 11). Compared to Figure 10, 
ND set size decreased to three, where most of the 3 
shifts × 1-hour options are left out and new 2 shifts × 
1.5-hours options are included. This response is 
because the expected infection risk depends on the 
number of guests, and a larger group of service scheme 
solutions were excluded because they are outside the 
feasible solution space.

3.5. The impact of infection prevalence in the 
population

In this section, we investigate the impact of infection 
prevalence values on the feasible service scheme 
options. As outlined above, the infection prevalence 
in the population is a dynamic variable that can take 
different values throughout a pandemic. Since it 
directly affects the probability of an infectious guest 
in a venue, the feasible set of service schemes changes 
with the infection prevalence. To demonstrate its 
impact, we calculated the performance of service 
schemes for two different infection prevalence values: 
a lower and higher p � inevent with −50% and + 50% 
change to its base value of 1.5%, respectively 
(Figure 12).

When the prevalence is low (Figure 12(a)), the set 
of feasible solutions enlarges, and the size of ND 
service options increases to six. In that case, the deci
sion maker has a larger window of opportunity to select 
among the best service schemes for their business. On 
the other hand, the number of feasible options 
decreases to one when the prevalence rises (Figure 12 
(b)), and the window of opportunity starts to close. For 
even larger prevalence values, there would eventually 
be no feasible solution anymore, i.e., it would be either 
too risky or too costly to run the venue.

4. Discussion

In this study, we (i) investigated the impact of opera
tional decisions on the transmission risk of a respira
tory pathogen and the expected economic activity in 
indoor venues and (ii) illustrated how to identify the 
best set of service options to run the business both 
safely and sustainably for the case of SARS-CoV-2. To 
achieve this, we built a hybrid modeling and simula
tion framework incorporating human activity and 
virus spread in indoor venues with multi-criteria deci
sion-making. We performed simulation experiments 
featuring a restaurant and examined the impact of 
different service decisions. The results illustrate that 
while some seating arrangements can substantially 
increase the infection risk, the mitigating impact of 
optimizing the layout can be limited. Service duration 
and service capacity are determinants of the expected 
economic activity, but they constitute a significant 
trade-off for the infection risk: the service duration 
has a substantial impact on the infection risk, and the 
service capacity drives the probability of infectious 

Figure 12. (a) Lower infection prevalence case p � inevent = 0.75%. (b) Higher infection prevalence case p � inevent = 2.25%.
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introductions. The analysis shows that the best service 
options critically depend on the infection prevalence 
in the community, highlighting that the epidemiolo
gical context should be considered in decision-making 
at the individual venue scale. For a given revenue 
function, our framework can support decision makers 
in identifying the best service options to run the venue 
both safely and sustainably.

Simulation modeling studies have been utilized to 
address various decision-making challenges in disease 
outbreak management and pandemic preparedness 
(Currie et al., 2020; Singh & Mathirajan, 2023). 
Among these challenges, operational decision-making 
at individual venues is crucial, given that contact and 
transmission between individuals primarily occur in 
these spaces, particularly indoors, which are associated 
with higher infection risks for respiratory pathogens. 
However, the impact of interventions is not clear at 
the individual venue scale due to the diverse charac
teristics of these spaces and the activities therein. We 
contribute to the existing literature with a hybrid 
model incorporating (i) pedestrian behavior and 
mobility, (ii) virus transmission dynamics in indoor 
spaces, and (iii) multi-criteria decision-making con
sidering the economic indicators. Different from the 
multi-criteria approaches used in investigating SARS- 
CoV-2 mitigation strategies at the population level 
(Chandak et al., 2020; Chen et al., 2023; Colas et al.,  
2021; Gillis et al., 2021), we focused on identifying the 
best set of operational decisions that can be taken at an 
individual space.

In our simulation experiments, we evaluated the 
service decisions based on the infection risk and 
expected economic benefit for a given revenue func
tion. With the assumption of a single infectious intro
duction, we found that the service schemes with the 
shortest service duration and the highest number of 
shifts constitute the major portion of the non-domi
nated solution set. Again, in that case, we found that 
(i) the service capacity drives the revenue substantially 
but not the infection risk caused by a single infected 
individual, (ii) the service duration has a more sub
stantial impact on this infection risk when compared 
to the impact of service capacity, (iii) the contribution 
of scheduling the entrance of guests distributed over 
time slots instead of letting them enter the space 
around the same time is small. These findings are 
related to the circle of influence around the infectious 
person, i.e., the perimeter around an infectious person 
within which they can expose others to the virus. This 
circle enlarges with the visit duration because of the 
build-up of aerosolized virus particles in the environ
ment. Contrarily, this perimeter is not affected by the 
service capacity, nor are there, in this setting, more 
guests within the perimeter. However, increasing the 
service capacity does result in more infectious intro
ductions. Accordingly, instead of a single infectious 

agent, we incorporated the probability of infectious 
introductions to an event and calculated the expected 
infection risk. When incorporating the probability of 
infectious introductions, we find that the service capa
city creates a considerable trade-off between the 
expected infection risk and revenue. Yet, this relation
ship crucially depends on the infection prevalence in 
the community. Overall, the level of infection preva
lence defines our feasible and non-dominated solution 
set for the best service options. For the fixed level of 
service capacity, we also analyzed the impact of dis
tinct behavioral patterns of individuals: infectious 
agent being a guest or personnel. The shorter duration 
of contacts elicited by personnel corresponds to sub
stantially lower risks of successful virus transmission, 
highlighting the importance of accounting for the 
duration of individual contacts when assessing infec
tion risks in a space. However, it should be noted that 
the infection risk in the model is based on the inter
actions in the service area, and infections related to 
personnel that may occur in the kitchen area or else
where are not considered in the results. Finally, while 
optimizing the physical rearrangement of the service 
area is often looked at for reducing infection risks, we 
find limited additional benefit in this specific setting 
while trying to keep the overall capacity (i.e., the total 
number of seats and tables) unaffected.

The generalizability of these results is subject to 
certain limitations, and future research would deliver 
additional research and practical implications. The 
model requires detailed parametrization related to 
biological processes (e.g., virus emission, environmen
tal decay, diffusion rate, etc.) of the respiratory patho
gen in question. Even for the special case of SARS- 
CoV-2, many parameters related to characterizations 
of the virus are still inconclusive in literature, are hard 
to measure empirically, or vary by setting or virus 
variant. With a series of sensitivity analyses, model 
results are shown to be robust to some level of uncer
tainty (Atamer Balkan et al., 2024). Even though a 
formal calibration could not be conducted due to a 
lack of reference data sets, the infection risk para
meters (i.e., dose–response curve parameters) were 
chosen such that the distribution of outbreak sizes 
was in line with epidemiological observations from 
similar social settings during the initial stages of the 
COVID-19 pandemic (Adam et al., 2020). The model 
parameters will be updated as new evidence becomes 
available in the field. The scope of this paper is indoor 
venues of a particular service sector, such as restau
rants, bars, and cafes. In ongoing research, the frame
work is being applied to other social environments, 
such as retail and educational settings. Despite these 
limitations, general findings on the positive relation 
between time expenditure and the perimeter at which 
infections can take place, are expected to be general
izable across a range of settings, particularly those 
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where agents are relatively stationary (e.g., theatre/ 
auditorium, classrooms, office spaces).

Owing to the modular setup of PeDViS, it can be 
used to characterize the infection risks in other types 
of indoor spaces, and the model can be adapted to 
different SARS-CoV-2 variants and other respiratory 
pathogens, as explained in Appendix I. PeDViS can 
also support decision-making for the mitigation stra
tegies considering other non-pharmaceutical inter
ventions, such as the use of masks and ventilation 
(Atamer Balkan et al., 2024). In future research, the 
model will be configured to different types of indivi
dual heterogeneities, including infectiousness, vacci
nation status, and test result. In doing so, we will be 
able to incorporate various vaccination- and/or test- 
based entry restriction policies into the model.

This study contributes to our understanding of the 
impact of operational decisions in indoor venues on 
the respiratory pathogen transmission risk and the 
expected economic activity. Our hybrid framework 
combines behavioral and epidemiological models 
with economic indicators constituting a considerable 
example of interdisciplinary hybrid modeling study. 
With the help of the modular nature of these models, 
the framework can readily be extended to different 
settings, activities, and revenue functions and can be 
applied to different respiratory pathogens. In all, the 
hybrid framework can help policymakers and social 
venue partners make informed decisions to run 
indoor social spaces safely and sustainably.
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Appendices

Appendix A. Additional Assumptions of the Model

Queuing: In terms of activities and mobility, the queuing behavior of agents are not considered in this paper, even though the 
model framework is capable of incorporating it. Our project team conducted an empirical study to assess the nature of queuing 
behavior in small and middle-sized restaurants, and found out that the queues in the restaurants typically consist of no more 
than 2 people and the waiting time at the coat rack and pay register is within 20-50 seconds. Since such short duration contacts 
are not associated with significant infection risks (Ying & O’Clery, 2021), these short queues are not considered in this paper. 

Mitigation tools: Regarding respiratory virus transmission, mitigation tools such as table dividers, sneeze guards and plastic 
barriers between tables can also be considered relevant objects, but they are not included in this particular paper since their use 
was not a typical intervention in the Netherlands during the recent COVID-19 pandemic.

Appendix B. Agent-Based Movement Model (NOMAD) Equations

The following set of equations governs the movement of each pedestrian in NOMAD: 

d
dt
~pi tð Þ ¼~vi tð Þ (A1) 

d
dt
~vi tð Þ ¼~ai tð Þ (A2) 

~ai tð Þ ¼ ~af ;i tð Þ þ~ao;i tð Þ þ~aa;i tð Þ þ~� (A3) 

~af ;i tð Þ ¼
~ddes;i � vdes;i � ~vi tð Þ

τ
(A4) 

~ao;i tð Þ ¼ � aw
X

o2O
~ei;o

1 if 0< di;o �
dshy

2

2 1 � di;o
dshy

� �
if dshy

2 < di;o � dshy

0 otherwise

8
><

>:
(A5) 

~aa;i tð Þ ¼ � a0
X

j2A
~ei;j � e

� di;j=r0 (A6) 

Each time step, NOMAD updates the position of each pedestrian based on the acceleration of the pedestrian by integrating the 
acceleration twice using an Euler scheme (equations A1 and A2). The acceleration itself is computed using so-called social 
forces. Equation A3 presents the three forces that govern the acceleration and with that the movement. These are the following 
force (~af ;i) that ensures the agent follows their preferred route to their destination, the object repulsions force (~ao;i) that 
ensures agents avoid obstacles, and the agent repulsion force (~aa;i) which ensures agents avoid collisions with other agents. ~� is 
the fluctuation term which simulates the natural fluctuation in the agents’ movements. Equation A4 shows that the agent tries 
to match their current velocity (~vi tð Þ) with their desired velocity (~ddes;i � vdes;i) which is composed of their desired direction 
(~ddes;i) determined by the routing floor field and their desired speed (vdes;i). The τ parameter determines how strongly an agent 
reacts to any straying from their preferred velocity whereby the smaller the value of τ, the stronger the reaction. Equation A5 
presents the force that acts upon an agent when they come close to one or more obstacles. If the distance between the agent and 
the closest point on an obstacle (di;o) is smaller than or equal to the shy away distance (dshy), the pedestrian will experience a 
social force from this obstacle. The closer the pedestrian is to the obstacles, the larger the force. The relative strength of this 
force, compared to the other forces, is determined by the parameter aw. ~ei;o is the vector pointing from the agent to the closest 
point on the obstacle. The interaction between agents is governed by equation A6. For each agent in the set of other agents in 
the neighborhood (A), an agent experiences a repulsive force. The smaller the distance between the agent (di;j), the larger the 
force whereby r0 governs how strongly an agent responds to this distance. The parameter a0 determines how strong this 
agent’s repulsion force is compared to the other forces. ~ei;j is the vector pointing from the agent to the other agent.
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Appendix C. Example Agent-Based Script

This script indicates that the agent41 enters the venue at time 49 with the starting location of x:85, y:71, then by time 50, the 
agent moves in the direction x:39, y:-42, then stays in this location, and finally leaves the space at time 316.

Appendix D. Virus Spread and Transmission Model (QVEmod) Equations (adapted from Atamer 
Balkan & Chang et al., 2024)

Virus Emission: The virus emission rate that infectious agent i shed into the air per time is distributed over aerosols 
(ri

emission� aerosols) and droplets (ri
emission� droplets) (Eq. A7 and A8). Here, ω represents the unit emission rate at which a typical 

infectious individual i emits virus in unit time (i.e., one hour in our case) under half-time breathing and talking condition. η 
represents the proportion of pathogen excreted to hands, therefore 1 � ηð Þ represents the proportion emitted to the air. pj 
represents the proportion of viruses emitted in the form of aerosols and droplets, where the two proportions (paerosols, pdroplets) 
add up to 1. The virus emission calculation is triggered only for the grid cell x; yð Þ in which the infectious agent is at time t; 
otherwise, it is 0. 

ri
emission� aerosols x; y; tð Þ ¼ ω 1 � ηð Þpaerosols (A7) 

ri
emission� droplets x; y; tð Þ ¼ ω 1 � ηð Þpdroplets (A8) 

Surface Contamination: An infectious individual is assumed to contaminate the surfaces they frequently touch (e.g., tables and 
chairs they use) within their reachable distance. The rate of surface contamination in grid cell x; yð Þ by the infectious 
individual i is defined by the touching frequency (γ), transfer efficiency (θ), and the ratio of finger pads surface relative to 
the reachable surface area (π) (Eq. A9). Vi

hand is initialized at t=0 as a proportion of emission rate ω, where η represents the 
proportion of pathogen excreted to hands (Eq. A10). 

ri
contamination x; y; tð Þ ¼ Vi

hand tð Þγθπ 

Vi
hand tð Þ ¼ Vi

hand 0ð Þ ¼ ωη 
Virus Inhalation: The virus inhalation rates in the form of aerosols and droplets by the susceptible individual s 
(rs

inhalation� aerosols, rs
inhalation� droplets) are defined by the airborne viruses accumulated in the air in grid cell x; yð Þ that the 

susceptible agent is present at time t (Vaerosols x; y; tð Þ, Vdroplets x; y; tð Þ), the unit inhalation rate of the individual (ρ) and the grid 
cell volume (L) (Eq. A11 and A12). 

rs
inhalation� aerosols x; y; tð Þ ¼ Vaerosols x; y; tð Þ

ρ
L (A11) 

rs
inhalation� droplets x; y; tð Þ ¼ Vdroplets x; y; tð Þ

ρ
L (A12) 

Virus Pick-up from the Surfaces: The virus transfer from contaminated surfaces to hands occurs when a susceptible individual 
s touches the contaminated surfaces in grid cells x; yð Þ within their reachable distance. Similar to the surface contamination 
process, the virus pick-up rate (rs

pick� up) is defined by the virus accumulated on surfaces in grid cell x; yð Þ at time t 
(Vfomites x; y; tð Þ), the touching frequency (γ), transfer efficiency (θ), and the ratio of finger pads relative to the reachable 
surface area (π) (Eq. A13 and A14). As the virus transfer from surfaces to hands occurs, it is assumed that the virus 
accumulates in each susceptible agent’s hands, Vs

hand (Eq. A15). 

rs
pick� up x; y; tð Þ ¼ Vfomites x; y; tð Þγθπ (A13) 

rs
pick� up tð Þ ¼

P

x;y
rs

pick� up x; y; tð Þ (A14) 

"name": "agent41", 
            "script": { 
                "49": { 
                    "type": "enter", 
                    "x": 85, 
                    "y": 71, 
                }, 
                "50": { 
                    "type": "move", 
                    "x": 39, 
                    "y": -42, 
                }, 
                "316": { 
                    "type": "leave" 
                } 
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Vs
hand t þ Δtð Þ ¼ Vs

hand tð Þ þ rs
pick� up tð ÞΔt (A15) 

Virus Exposure: For each susceptible agent s, the accumulated virus exposure via aerosols and droplets, Es
aerosols Tð Þ and 

Es
droplets Tð Þ, are calculated by the summation of the inhaled amount of viruses up to time T (Eq. A16 and A17). The exposure 

from fomites route up to time T, Es
fomites Tð Þ, is calculated as a proportion of viruses on hands that are assumed to be 

transferred from hands to facial membranes, ε (Eq. A18). 

Es
aerosols Tð Þ ¼

Pt¼T

t¼0

P

x;y
rs

inhalation� aerosols x; y; tð Þ (A16) 

Es
droplets Tð Þ ¼

Pt¼T

t¼0

P

x;y
rs

inhalation� droplets x; y; tð Þ (A17) 

Es
fomites Tð Þ ¼

PT

0
Vs

hand tð ÞεΔt (A18) 

Virus Decay: Viral particles are assumed to decay exponentially in the environment, the rates of which vary in aerosols and on 
different surface materials. Virus-laden aerosols lose infectivity at a constant rate while floating in the air, and the air change 
rate (ACH) indoors has an increasing impact on their decay. The aerosols decay (rdecay� aerosols) and fomites decay (rdecay� fomites) 
equations for grid cell x; yð Þ at time t are identified as exponential decay functions where μaerosols and μfomites represent the unit 
decay rate of viruses in aerosols and on fomites respectively (Eq. A19 and A20). 

rdecay� aerosols x; y; t;Δtð Þ ¼ Vaerosols x; y; tð Þ 1 � e� μaerosolsΔt� ACHΔtð Þ (A19) 

rdecay� fomites x; y; t;Δtð Þ ¼ Vfomites x; y; tð Þ 1 � e� μfomitesΔt� �
(A20) 

Droplet Deposition: Viral-laden droplets can fall onto surfaces through sedimentation and can accumulate on the surfaces as 
fomites. The rate of viruses transferring from droplets onto fomites (rdeposition) for cell (x,y) at time t is defined by the unit 
deposition rate of viral-laden droplets (μdroplets) (Eq. A21). 

rdeposition x; y; tð Þ ¼ Vdroplets x; y; tð Þμdroplets (A21) 
Diffusion: The diffusion of the virus-laden particles in the air is defined by two-dimensional diffusion equations for aerosols 
and droplets. It is assumed that all particles are well-mixed in the volume of the grid cell, and they diffuse in x; yð Þ directions 
(Eq. A22 and A23) (“aerosols” and “droplets” are abbreviated as “a” and “d” respectively). Here, Δx and Δy represent the length 
unit of the cell (both 0.5m in the default), and D is the diffusion coefficient, indicating the unit diffusion rate per time. 

rdiffusion� aerosols x; y; tð Þ ¼ D Va x� Δx;y;tð ÞþVa xþΔx;y;tð ÞþVa x;y� Δy;tð ÞþVa x;yþΔy;tð Þ� 4Va x;y;tð Þð Þ

ΔxΔy (A22) 

rdiffusion� droplets x; y; tð Þ ¼ D Vd x� Δx;y;tð ÞþVd xþΔx;y;tð ÞþVd x;y� Δy;tð ÞþVd x;yþΔy;tð Þ� 4Vd x;y;tð Þð Þ

ΔxΔy (A23) 
Virus Contamination States: In each time step Δt, Vaerosols is decreased by the inhaled amount by the susceptible agents in grid cell 
x; yð Þ, updated by the diffused amount of particles, decreased by the decay of viruses and increased by the virus emission if there 

exists an infectious agent in cell x; yð Þ at time t (Eq. A24). Similarly, Vdroplets is decreased by the inhaled amount by the susceptible 
agents in grid cell x; yð Þ, updated by the diffused amount of particles, decreased by the deposition of viruses from air layer to 
surface layer, and increased by the virus emission if there exists infectious agent in cell x; yð Þ at time t (Eq. A25). In the surface 
layer, is decreased by the picked-up amount by the susceptible agents within the reachable distance to grid cell x; yð Þ, increased by 
the deposition of viruses from air layer to surface layer, decreased by the decay of viruses on the surfaces and increased by the 
virus contamination if there exists an infectious agent within the reachable distance to grid cell x; yð Þ at time t (Eq. A26). 

Vaerosols x; y; t þ Δtð Þ ¼ Vaerosols x; y; tð Þ �
X

s
rs

inhalation� aerosols x; y; tð ÞΔt

þ rdiffusion� aerosols x; y; tð ÞΔt � rdecay� aerosols x; y; t;Δtð Þ þ ri
emission� aerosols x; y; tð ÞΔt

(A24) 

Vdroplets x; y; t þ Δtð Þ ¼ Vdroplets x; y; tð Þ �
X

s
rs

inhalation� droplets x; y; tð ÞΔt

þ rdiffusion� droplets x; y; tð ÞΔt � rdeposition x; y; tð ÞΔt þ ri
emission� droplets x; y; tð ÞΔt

(A25) 

Vfomites x; y; t þ Δtð Þ ¼ Vfomites x; y; tð Þ �
X

s
rs

pick� up x; y; tð ÞΔt

þ rdeposition x; y; tð ÞΔt � rdecay� fomites x; y; t;Δtð Þ þ ri
contamination x; y; tð ÞΔt

(A26) 
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Appendix E. Causal Loop Diagram (CLD) for the relationships between the processes in QVEmod 
and the viral particles in a grid cell (x,y)

Appendix F. Model Verification and Validation

Model verification and validation were conducted as integrated stages of the simulation modeling process. In the initial phases 
of the project, the workshops carried out with the social venue owners and domain experts have contributed to the conceptual 
model validation. In the further stages, the model verification was iteratively conducted for each section of the model, testing 
if the computer models represent the conceptual model and if the model software performs as it intends. In line with the model 
verification steps, we conducted structural validity tests (Barlas, 1996) such as dimensional consistency tests (i.e., checking 
whether the right-hand side and left-hand side of each equation in QVEmod is dimensionally consistent) and extreme 
condition tests (i.e., checking if an extreme condition results in anticipated behavior (e.g., what if there were only one guest but 
several service personnel)). For the integrated hybrid model, integration error tests have been conducted to select the best value 
for delta time, Δt, considering the rate of the processes in the model (e.g., for a given grid cell size, Δt should be small enough 
to capture the airflow between grid cells). Then, we performed the scenario verification and operational validation tests for 
the model in an integrated manner. The behavior of the activity choice and scheduling model has been studied and face 
validation has been performed (Sparnaaij et al., 2024). The NOMAD model has been extensively calibrated and validated in 
the context of general walking behavior of pedestrians (Campanella et al., 2009; Campanella et al., 2014; Campanella, 2016). 
Face validity of the virus spread and exposure calculations has been assessed by means of workshops with virologists and 
epidemiologists. Then, for the integrated hybrid model, a series of sensitivity analysis has been conducted, especially for the 
parameters related to virus characteristics and biological and physical processes (Atamer Balkan & Chang et al., 2024). Due to 
a lack of reference observational and complete data sets, a formal statistical validity test was not possible. Yet, the route-specific 
exposure parameters kaerosols, kdroplets and kfomites in the dose-response function (Eq.1), which are generally hard to quantify 
even with experiments (Watanabe et al. 2010; Callaway 2020), were aligned using the available empirical data, so that the 
model outputs are in line with real-world observations. Specifically, the base case restaurant simulation scenario in Atamer 
Balkan and Chang (2024) is considered and those values for kaerosols, kdroplets and kfomites that provided the best agreement 
(Revent ¼ 0:81Þ with the observed SARS-CoV-2 outbreak clusters in similar social settings reported in Adam et al. (2020) 
(Revent ¼ 0:80) are selected. The sensitivity of model results to these assumptions is presented in Atamer Balkan and Chang 
(2024). The simulations should thus be considered to represent the case for the wild-type SARS-CoV-2 virus, although 
adaptations to other respiratory viruses can be made provided sufficient empirical support. 

Appendix G. Simulation Run Time

For these experiments, the simulation running time is 10-12 minutes for each replication of Pedestrian Behavior and Mobility 
model and 0.5 minutes for each replication of QVEmod on a computer having a configuration of 2.3 GHz 8-Core Intel Core i9 
processor and 16 GB 2667 MHz DDR4 memory. 

Figure A1. CLD for virus spread and transmission processes in QVEmod. (Agent-triggered variables are shown with light blue, 
whereas the environment-related variables are shown with dark blue.)
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Appendix H. Infection Prevalence and p � inevent

Infection prevalence represents the proportion of infectious individuals within a community. For our example case, we refer to 
the infection prevalence in the Netherlands around late January 2022, just after when the restaurants were reopened and 
allowed to be open until 22:00 on January 26, 2022.
After this regulation went into effect, the 7-day average number of confirmed cases in the Netherlands changed between 
54,710 - 67,495 from January 26 to January 31, with an average of 60,197 (RIVM Coronavirus Dashboard, accessed on May 
2022, URL: https://coronadashboard.government.nl/landelijk/positief-geteste-mensen). We assume that the number of actual 
cases is twice the number of confirmed cases. On average, we assume that an infected person can stay infectious for 7 days. The 
population of the Netherlands during this period was projected to be 17,597,607 (CBS Netherlands, accessed on May 2022, 
URL: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37230ned/table). Then, the average infection prevalence is calculated 
as follows: 

infection prevalence ¼ p � in ¼ 60; 197� 2� 7ð Þ=17; 597; 607 ¼ 4:8%

However, for our calculations, we need p � inevent , the “the proportion of infectious individuals who do not have severe 
symptoms so that they can show up in a social space”. That is, they are either asymptomatic (i.e., do not show symptoms) with 
a chance of 20% (Buitrago-Garcia et al., 2020) or they are symptomatic, but they are at the first phase (i.e., first day) of their 
infectious period and do not have severe symptoms: 

infection prevalence in social spaces ¼ p � inevent ¼ p � in� 0:2� 7=7ð Þ þ 0:8� 1=7ð Þð Þ¼ 1:5%

Appendix I. Adaptability of PeDViS to Other Indoor Spaces and Respiratory Pathogens

Owing to the modular setup of PeDViS, it can be used to characterize the infection risks in other types of indoor spaces with 
different human movement and behavior characteristics. For the agent movement, NOMAD is a general-purpose pedestrian 
simulation model and applicable across diverse contexts. It is thus not specific to restaurants but can be applied to various 
indoor spaces like office spaces (Deijkers, 2022) as well as outdoor events such as festivals (Wang, 2021). To tailor NOMAD to 
specific settings, one needs to define the relevant infrastructure. This entails specifying the location of all obstacles, activities, 
and points of entry and exit for pedestrians. For instance, for the case of a supermarket or store (demonstrated in Figure A2), 
the layout needs to be modified to accommodate relevant infrastructural elements (Section 2.1), particularly store racks as 
‘obstacles’ so that neither the agents nor the viral particle can move through the racks. Additionally, it is necessary to define the 
pedestrian profile parameters (Section 2.2.2.1) for characterizing the pedestrian walking behavior, representing differences in 
population and behavior between, for example, an office space and a retail store.

Figure A2. Visual representation of an example 10x10 m2 retail store, with eight store racks, one register for payment (on the left) 
and doors for entry and exit (on the bottom)
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The activity choice and scheduling module, on the other hand, requires larger adaptation when applied in different contexts. 
Currently, the model features a tailor-made activity choice and scheduling module for both customers and personnel in a 
restaurant environment (Section 2.2.1.1). For any other context, one must either input a predefined activity schedule for each 
pedestrian (or pedestrian group) or implement an existing or a new activity choice and scheduling module tailored to the 
specific context. Deijkers (2022) and Wang (2021) demonstrate the application of the latter approach for office environments 
and festival grounds, respectively. For example, in a supermarket context, a different activity choice and scheduling behavior 
for the customers (and personnel) is required. The basic behavior would include customers entering the supermarket, walking 
to N different locations within, waiting there for a short time to get their products from the racks, proceeding to the check-out, 
queueing if necessary, waiting at the pay register to simulate the check-out process, and exiting the supermarket.

The model can also be adapted to different SARS-CoV-2 variants and other respiratory pathogens by adjusting relevant 
model parameters. In Atamer Balkan and Chang et al. (2024), the data requirements and analyses needed to parameterize and 
calibrate the model for the wild-type SARS-CoV-2 virus are outlined. Adapting to other variants or respiratory pathogens 
requires careful consideration of the core mechanisms that underlie differences in transmission potential. For instance, 
subsequent SARS-CoV-2 variants often outcompete earlier variants by being more successful at evading the immune response. 
In QVEmod, the altered susceptibility of the recipient host (i.e., probability of acquiring infection upon exposure) is captured 
in the dose-response relationship (Eq.1, Section 2.2.3.3). To incorporate a change in the susceptibility of individuals, the 
functional form of the dose-response curve (Eq.1, Section 2.2.3.3) and its parameters can be readjusted. Other indicators for 
biological mechanisms could also underlie the difference in transmission between respiratory pathogens (or variants of the 
same pathogen), including the parameters reflecting the virus emission characteristics of the infectious individuals (Section 
2.2.2.1), and virus spread-related parameters in decay, deposition, and diffusion processes (Section 2.2.2.2). Consultation with 
experts in virology and immunology is important for the correct interpretation of the experimental data used to inform these 
mechanisms. Lastly, insofar as epidemiological data is available on (the distribution of) outbreak clusters in indoor settings, 
these could be used to validate model outcomes. In doing so, one ensures that the implemented changes at the level of virus- 
host and virus-environment interactions indeed result in the observed epidemiological patterns. 
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