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ABSTRACT

During epidemics, decision-making regarding intervention measures faces complex trade-offs.
Interventions targeting indoor venues can mitigate disease spread, since they are associated
with higher infection risk for respiratory pathogens. However, as experienced during the
COVID-19 pandemic, these measures can lead to economic losses, especially in the hospitality
sector. In this study, we propose a hybrid modeling and simulation framework to provide
decision support for reducing the infection risk in indoor venues while maintaining viable
economic activity. Our framework integrates (i) a microscopic pedestrian model for human
movement, (ii) a hybrid simulation model for virus spread and transmission, and (iii) a multi-
criteria decision-making approach to identify the best service options. The framework is
demonstrated for the SARS-CoV-2 infection risk. The restaurant case study results illustrate
that maximizing the distance between seating groups can have a limited effect on the infection
risk. Service duration and service capacity are key determinants of expected economic activity,
but they constitute significant trade-offs: the former has a substantial impact on the infection
risk, and the latter drives the probability of infectious introductions. Our analysis demonstrates
the need for multi-criteria approaches during an outbreak and consideration of the epidemio-
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logical context for operational decision-making, even at an individual venue.

1. Introduction & background

In times of public health crises like epidemics, the
importance of informed decision-making becomes
increasingly evident. From strategic policy formula-
tion to operational implementation, well-designed
decision-making processes can save lives, conserve
time, and ensure the efficient utilization of available
resources. As globally experienced in COVID-19 pan-
demic, decision-makers require readily available tools
to address diverse decision-making challenges
(Panovska-Griffiths et al., 2021), and mathematical
modeling and simulation approaches can strengthen
our pandemic preparedness (Hutton, 2013; Silal, 2021;
Singh & Mathirajan, 2023) by enabling quantitative
assessments of possible responses to such complex
problems.

The challenge of decision-making problems in
the context of disease outbreaks mostly stems
from the complicated trade-offs they include: The
need to control the infections can lead to lock-
downs and stay-at-home orders, which have a
clear impact on income, education, and social
lives (Filipe et al., 2022). During the recent pan-
demic, stakeholders in specific sectors where social
interactions occur, such as hospitality, catering,

food, and entertainment tried to maintain their
financial sustainability by adjusting their operations
while adhering to necessary safety measures like
limiting the occupancy levels and service durations
(Brizek et al., 2021; Gursoy & Chi, 2020; Norris et
al., 2021). For the safe and economically viable use
of public venues in case of epidemics, there is a
need for multi-dimensional and adaptable interven-
tion schemes that consider both public health and
socio-economic impacts (Eryarsoy et al., 2023).
However, what level of interventions is acceptable
—considering both the infection risk safety and
economic sustainability—still remains an unre-
solved question that varies by context and is
affected by different epidemiological scenarios.

In the context of epidemics and pandemics, simu-
lation modeling approaches have been widely used
for different decision-making challenges including
design of social distancing measures (Volpatto et al.,
2023), timing and impact of public health restrictions
(Duggan et al., 2024), understanding the impact of
vaccination policies (Vazquez-Abad et al., 2022),
investigating the influence of behavioral interven-
tions on the spread of the disease for large popula-
tions (de Mooij et al., 2023), supporting local
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decision-makers for pandemic preparedness (Araz et
al., 2011), vaccine prioritization, allocation, and
rationing (B. Y. Lee et al., 2010) and managing supply
chain risks (Ivanov, 2020). In addition to the discrete
event simulations widely used in health system
operations and resource management (Currie et
al., 2020), and system dynamics models typically uti-
lized to capture the population-level spread of the
disease, the use of agent-based models has gained
more attention since they enable researchers to simu-
late individual behavior and interactions (Dunke &
Nickel 2021). Some agent-based modeling studies
have investigated the effects of interventions on
SARS-CoV-2 transmission risk in various social con-
texts (Kerr et al., 2021; Miller et al., 2021; Zhou et
al., 2021), primarily aiming to provide community-
level insights rather than facilitate operational deci-
sion-making. Additionally, hybrid simulation studies
(Brailsford et al., 2019; Mustafee et al., 2025; Nguyen
et al., 2024) that combine different simulation meth-
ods are increasingly common for decision-making in
infectious disease contexts (e.g., Angelopoulou &
Mykoniatis, 2024; Viana et al., 2014) since hybrid
approaches can facilitate a more robust decision-
making process (Kar et al., 2024) in complex health
problems.

In addition to their methodological differences,
these simulation studies show diverse characteristics
in terms of how they approach the trade-offs: the
majority of them focus on a single outcome to
improve, while some of them are more comprehensive
considering multiple objectives (e.g., Alim & Kesen,
2023; Araz, 2013; Dunke & Nickel, 2021). The latter
group utilizes multi-criteria decision-making
approaches, generally focusing on improved design
of population-level intervention policies, such as the
optimal timing of the lockdown policies or the coun-
try-level rollout of mitigation regulations (Chandak et
al., 2020; Chen et al., 2023; Colas et al., 2021; Gillis et
al., 2021). However, understanding the multi-faceted
impacts of these interventions at the scale of an indi-
vidual venue, where the interactions occur between
individuals and hence the infection happens, is crucial.
For the case of SARS-CoV-2, indoor gatherings have
been linked to an eighteen times larger risk of trans-
mission compared to outdoor gatherings (Bulfone et
al., 2021), which indicates the importance of decision
support for intervention design in indoor spaces in
mitigating the infectious diseases caused by respira-
tory pathogens.

To understand the impact of interventions on the
virus transmission dynamics in indoor spaces, diverse
mathematical modeling and simulation approaches
are utilized, and an overview of indoor transmission
models can be found in Atamer Balkan et al. (2024). In
terms of understanding the multidimensionality of the
infection risk in different indoor settings, agent-based

and hybrid simulation models with varying levels of
detail on mobility and the spread of the virus (Islam et
al., 2021; B. Lee et al., 2021; Martinez et al., 2022; Xiao
et al., 2021; Ying et al,, 2021; Zhu et al., 2025) have
contributed to the knowledge base. In addition to
those, many mathematical modeling studies investi-
gate the optimal design of indoor spaces to mitigate
the infection risk, mainly focusing on minimizing the
distance between customers/sitting groups/tables,
since the maximum distance is accepted as an indica-
tor of minimum transmission risk (Bortolete et al.,
2022; Contardo & Costa, 2022; Fischetti et al., 2021;
Moore et al., 2021; Ntounis et al., 2020; Ugail et al,,
2021). However, limited research focused on short-
term operational decision-making problems on how
to operate a particular venue in terms of service
options (e.g., the number of guests allowed, the dura-
tion of the service, the number of shifts) that the venue
managers could implement themselves to manage a
key trade-off: reducing the transmission risk while
maintaining  sustainable = economic  activity.
Addressing this gap, our research questions in this
study are as follows.

e What are the impacts of different service options
on respiratory virus transmission risk in an
indoor venue? (Sections 3.1-3.3)

e How can the best service options be identified
that keep the transmission risk below an accep-
table threshold, while maintaining sufficient eco-
nomic activity? (Section 3.4)

e How does the infection prevalence within a com-
munity impact the set of best service options?
(Section 3.5)

To address these research questions, we propose a
hybrid modeling and simulation framework that
assesses both the transmission risks and the expected
economic activity in conjunction and identifies the set
of best service options for the safe and economically
sustainable use of the space. Our framework uses an
integrated set of mathematical models: (i) an agent-
based, pedestrian mobility simulation model that cap-
tures human activity choices and movement
dynamics, (ii) an integrated hybrid simulation model
that computes the infection risk of each agent, with
agent-based components for virus transmission, and
system dynamics components for the virus spread in
the environment, and (iii) a multi-criteria decision-
making stage to identify the trade-off between the
expected daily economic transactions and the infec-
tion risk. Our framework is applicable to respiratory
pathogens in general that spread through multiple
transmission routes (i.e., aerosols, droplets and sur-
faces). In this paper, we demonstrate its application
using SARS-CoV-2 as a case study. The integration of
models mentioned in (i) and (ii) is titled Pedestrian



Dynamics—Virus Spread model (PeDViS) and is
detailed in Atamer Balkan et al. (2024). PeDViS is
calibrated with respect to human mobility data in
indoor public spaces and utilizes up-to-date virologi-
cal and epidemiological data on SARS-CoV-2. It has
gone through relevant model validation and verifica-
tion stages (Appendix F), and the parametrization and
the sensitivity analysis of PeDVis are presented in
detail in Atamer Balkan et al. (2024).

In this study, we showcase the application of our
hybrid model for restaurants. Restaurants, especially
indoor dining, have been identified as one of the high-
est risk settings during COVID-19 pandemic (Fisher
et al., 2020), mostly attributable to the low mask-
wearing rate for eating and drinking, contact for pro-
longed periods of time, possible high occupancy, pos-
sible poor ventilation, and limited adherence to social
distancing rules (Fisher et al., 2020; Li et al., 2021; N.
Zhang et al,, 2021). In this study, we consider the
viewpoint of an indoor venue manager and aim to
make a comparative analysis of the interventions that
are related to operating the restaurant from an indoor
venue manager’s perception. In addition to the rede-
sign of the physical space, we assess the contribution
of different service options (namely, the service dura-
tion, the service capacity, and the service scheme in
our restaurant case) regarding the infection risk and
the expected daily economic transactions. This study
constitutes one of the first investigations of decision-
making at the scale of an individual indoor venue
considering both the economic sustainability and
infection risk safety concerning a respiratory
pathogen.

2. Hybrid model framework

In this section, we introduce our hybrid model that
combines PeDViS with multi-criteria decision-mak-
ing. First, the relevant setting for an indoor venue
(i.e., a restaurant) is introduced (Section 2.1) with
key assumptions related to virus dynamics in the
environment. Then, the Pedestrian Behavior and
Movement module (Section 2.2.1) and QVEmod
module (Section .2) are presented with the assump-
tions about the economic activity in an indoor venue
(Section .3) and the multi-criteria decision-making
approach followed (Section .4). Additionally, the
model validation and verification stages are summar-
ized in Appendix F.

2.1. The setting: Layout and elements of an
indoor venue

Considering human movements and interactions
within an indoor environment, the attributes of the
space include context-based infrastructural elements
(e.g., walls, entrance, exit, kitchen, bar, restroom) and
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Figure 1. Layers in the layout.

movable objects (e.g., tables and chairs) specific to that
setting (i.e., a restaurant in our case study). The layout
of the space can be perceived as a collection of layers
where infrastructural elements and movable objects
are placed, the individuals move and perform actions,
and the virus spread occurs (Figure 1).

In this study, the default layout is rectangular and
carries three layers of information with small units of
grid cells (Figure 2). The human movements and
actions are performed on the mobility layer on a con-
tinuous space, then the mobility information is con-
verted to a discretized space (with grid cell sizes of 0.2
m x 0.2 m), while the virus spread information in the
environment is tracked on the air and the surface
layers (with grid cell sizes of 0.5 m x 0.5 m) (Figure 1).

The virus spread information on the air and surface
layers are used to track the virus transmission routes
between agents and the environment. Virus exposure
by agents occurs by acquiring viral particles via direct
or indirect contact with an infectious individual. The
transmission (i.e., the process of virus exposure which
results in infection) and the spread of respiratory

< —iﬂ,
g

+-
1

‘ r =5

|

Figure 2. An example restaurant setting including the grids on
the mobility layer.
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viruses like SARS-CoV-2 can typically occur through
three routes: (i) droplets (i.e., large viral-laden parti-
cles (size >10um) that fall to the ground rapidly),
(ii) aerosols (i.e., small viral-laden particles
(size <10um) that can remain airborne for a period
of time), and (iii) fomites (i.e., when contaminated
surfaces act as intermediary vectors to cause virus
exposure when individuals touch them) (Atamer
Balkan et al, 2024). In our model, the air layer
includes information for the virus accumulation in
the form of aerosols and droplets, whereas the surface
layer contains the information for fomites.

In many infectious diseases, especially those whose
transmission through surfaces plays a major role such
as Ebola or chickenpox, shared surfaces can be an
important infection transmission route. PeDViS can
also simulate the virus transmission mechanism
through surfaces along with the aerosols and droplets
and is thereby generic in representing all transmission
routes relevant to respiratory pathogens. However, for
the case of COVID-19, evidence shows that the virus
mainly spreads through respiration (Greenhalgh et al.,
2021; Miller et al., 2021; R. Zhang et al., 2020), and
transmission through surfaces is limited (Cheng et al.,
2022; Lewis, 2021; N. Zhang et al., 2021). Experimental
studies have shown that SARS-CoV-2 can be trans-
mitted through the environment (Gerhards et al.,
2023), but this transmission is mostly related to a
build-up of the virus resulting from a prolonged resi-
dence time in a shared environment (i.e., the cumula-
tive deposition of droplets over time), rather than

/1 - Pedestrian Behavior\
and Mobility

Agent-based

Script

1.1 - Activity Choice
and Scheduling

Agent-based
IEEECIES

1.2 - NOMAD: Agent
Movement

y

through high touch surfaces. Therefore, for this parti-
cular simulation, the surface transmission route is
considered only through the main activity areas of
the customers, which are their tables and chairs.

Infrastructural elements and movable objects exist
in two layers: in the mobility layer they define the
constraints for movement (e.g., entrance to the venue
can be done only via the front door); in the surface
layer they act as a medium for virus transmission
between agents (Figures 1 and 2).

The model setup also includes Agents moving
around the space. Each agent can either be a guest or
service personnel, which impacts their activities and
mobility behavior (Section 2.2.1). An agent can either
be infectious (i.e., an individual who can spread the
virus) or susceptible (i.e., an individual who can be
infected if exposed to sufficient virus particles) con-
cerning their infectiousness status with the virus. The
status of an agent (infectious or susceptible) defines
their virus-transmission-related actions during their
visit (e.g., virus emission can only be triggered by an
infectious agent) (Section .2). Additional assumptions
about the model structure are given in Appendix A.

2.2. The hybrid model framework

Our hybrid framework (Figure 3) starts with the
Pedestrian and Mobility module (Section 2.2.1). The
first model in that module, Activity Choice and
Scheduling, transforms user inputs about context, lay-
out and population into personalized activity

Economic

Activity
Calculation

Expected
Economic Activity

2 - QVEmod: Virus Spread, Transmission,
and Infection Risk

2.1 - Virus
Transmission:
Emission, Inhalation,
Contamination
Pickup

2.2 - Virus Spread:
Diffuision,
Deposition, Decay

Best Service
Options

3 - Multi-Criteria
Decision Making

Agent-based
Virus Exposure

2.3 - Infection Risk
Identification

Infection Risk
in the Event

Figure 3. Overview of the hybrid model framework.



schedules (Section .1). The second model, NOMAD:
Agent Movement, uses these schedules to determine
each agent’s movement behavior (Section .2). The
expected Economic Activity Calculations are primarily
based on the time spent at the venue, as determined by
each agent’s entrance and leave times (Section .3). The
following module, QVEmod, simulates how the
respiratory pathogen spreads: it combines an agent-
based model (2.1 - Virus Transmission in Figure 3),
which tracks interactions and virus transmission
between agents (Section 2.1), with a system dynamics
simulation (2.2 - Virus Spread in Figure 3), which
tracks the concentration of the viral particles in the
environment (Section 2.2). Then, the Infection Risk
Identification model calculates each agent’s infection
risk based on viral exposure (Section 2.2.2.3). Finally,
in the Multi-Criteria Decision-Making stage, we eval-
uate the best set of service options considering both
the expected infection risk and economic activity
using Pareto optimality principles (Section .4).
Underneath, a detailed explanation of the modeling
steps is provided.

2.2.1. Pedestrian behavior and mobility

The Pedestrian Behavior and Mobility section of the
framework consists of two parts (Stages 1.1 and 1.2 in
Figure 3). First, the Activity Choice and Scheduling
model determines the order of the activities and activ-
ity locations that an agent visits during the simulation.
Second, the Agent Movement (NOMAD) model simu-
lates the trajectory of agents while navigating through
the restaurant. These two models require (1) the lay-
out of the restaurant, (2) the duration of the simula-
tion, (3) the demand pattern (i.e., how many groups of
customers visit the restaurant during which time
slots), (4) the average service duration (i.e., the average
duration of group visits), (5) the number of service
personnel, (6) the average number of servings per
table (i.e., the average number of times the personnel
visits a group) and (7) the serving neighborhoods (i.e.,
the set of tables that is primarily served by specifically
assigned members of the personnel) as inputs.

2.2.1.1. Activity choice and scheduling. The agent-
based activity choice and scheduling model (1.1 in
Figure 3) schedules the activities for the guests and
the personnel. For each guest, the model creates a
static activity schedule at the start of the simulation
with three mandatory activities: entering the restau-
rant, sitting at the table, and leaving the restaurant.
Next, optional activities are assigned to the itineraries,
such as, visiting the coat rack, visiting the restroom,
and paying at the table or the register. In the activity
scheduler, the entrance time and the visiting duration
of the customers, and the probability of visiting the
restroom introduce variability in agent behavior. For
the personnel, the model creates and assigns the
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relevant activities (i.e., welcoming and distributing
the menus, taking orders, serving orders, receiving
payments, cleaning) dynamically during the simula-
tion. For a detailed description of the activity choice
and scheduling model, the reader is referred to
Sparnaaij et al. (2024).

2.2.1.2. NOMAD: Agent movement. The agent-
based movement model in our hybrid framework
(1.2 in Figure 3) is an existing microscopic pedestrian
simulation model called NOMAD (Campanella,
2016). The NOMAD model computes the route and
operational movement dynamics of each pedestrian in
the restaurant. The routes are computed such that an
agent will choose the shortest route to their destina-
tion whilst keeping a comfortable distance to all
obstacles.

The operational movement dynamics of the agents
are governed by the so-called social forces. The equa-
tions governing the operational movement dynamics
of each pedestrian are provided in Appendix B. The
walking behavior of the population is assumed to be
homogeneous in movement aspects, except for the
desired walking speed, which is drawn from a normal
distribution for each agent.

The pedestrian behavior and mobility model out-
puts detailed data on the movements and activities of
all agents. For each agent, the position is recorded
every 0.1 seconds resulting in a detailed trajectory
per agent. These outputs are converted into the inputs
of the QVEmod: Virus Spread, Transmission, and
Infection Risk Identification model in the form of a
script for each agent after the conversion of the time
step from 0.1seconds to a user-defined value
(default =30seconds). A simplified example script
for one agent is provided in Appendix C.

2.2.2. QVEmod: Virus spread, transmission, and
infection risk

Given the context-based infrastructural elements,
objects, layout, and the agent-based script and routing
information, how would a respiratory pathogen
spread in an indoor venue and transmit between
agents if one of the agents were infectious? We
approach this question with a hybrid simulation
model (QVEmod) integrating (1) an agent-based
simulation tracking the interaction of each agent
with the virus (Stage 2.1 in Figure 2) and (2) system
dynamics simulation tracking the virus spread in the
environment (Stage 2.2 in Figure 2). These two simu-
lations run simultaneously with the same time steps
(i.e., 30 seconds), feeding each other information in
each time step.

The processes modeled in QVEmod are summar-
ized here and detailed in Appendix D. A causal loop
diagram showing the relationships between the pro-
cesses in QVEmod and the viral particles in the
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environment is provided in Appendix E. After the
run is concluded, the infection risk in this event for
each agent is calculated (Stage 2.3 in Figure 3) as
one of the primary outputs of our framework.

2.2.2.1. Agent-based simulation for virus transmis-
sion. The agent-based module of QVEmod simulates
the virus transmission-related processes performed by
agents throughout the simulation. At the start of the
simulation, one agent is randomly assigned as infec-
tious, and the rest of the visitors are labeled as suscep-
tible; this constitutes the main source of randomness
in QVEmod. As the infectious agent enters the space,
two biological processes are triggered:

o With virus emission, the infectious agent emits
viral particles to the air within aerosols and dro-
plets (Egs. A7 and A8).

e During surface contamination, the infectious
agent touches and contaminates the surfaces
within their reachable area with a surface con-
tamination rate (Eqs. A9 and A10).

After the infectious agent enters the space, the model
starts calculating the interactions of the susceptible
agents with the virus via these two processes:

o With virus inhalation, the susceptible agents are
exposed to the virus via the viral particles in
aerosols and droplets in the air layer (Eqs. A1l
and A12).

o During virus pickup from the surfaces, the suscep-
tible agent can touch contaminated surfaces and
pick up the virus onto their hands with a virus
pick-up rate, and then transfer them to their
facial membranes (Eqs. A13, A14 and A15).

As aresult of these biological processes, the susceptible
agents get exposed to the virus. The virus exposure
amount of each susceptible agent is calculated for each
route: virus exposure via aerosols, droplets, and
fomites.

2.2.2.2. System dynamics simulation for virus spread
in the environment. While the agent-based module
triggers and calculates the biological processes
performed by the agents, the system dynamics
module dynamically tracks the concentration of
virus particles within the environment. The stock
variables in the module represent the virus accu-
mulation in each grid cell (x,¥): Vaerosois (%,¥),
Varoplets (%,9), and  Viomires (x,y). In addition to
the agent-based processes explained above, there
are three agent-independent flow variables in the
environment.

e The viral particles in the environment follow an
exponential decay and lose their infectivity in
time with virus decay rates for aerosols and dro-
plets (Eqs. A19 and A20).

¢ Different from the virus decay in aerosols and
fomites, the particles in droplets fall onto surfaces:
they are transferred from grid cell (x, y) in the air
layer to grid cell (x,y) in the surface layer with a
droplet deposition rate. The droplet deposition pro-
cess is much faster compared to the decay process,
so any decay in droplets is ignored (Eq. A21).

e The virus particles in the air layer diffuse into
their neighborhood grid cells in x and y direc-
tions with diffusion rates for aerosols and dro-
plets (Eqs. A22 and A23).

As a result of the flows triggered by the biological
processes of agents and other virus-spread-related
processes in the environment, the virus contamination
state of each layer, for each grid (x,y) and for each
time step, is calculated (Figure 4) (Egs. A24, A25 and
A26). The details of the calculations are provided in
Appendix D.

2.2.2.3. Infection risk identification. After the agent-
based and system dynamics simulation runs are com-
pleted, the model uses the agent-based virus exposure
information and quantifies the infection risk for each
susceptible agent via the exponential dose-response
relationship (Nicas, 1996).

S S
_ ES gerosols(T) ; E dmplets(T) L Efomitﬂs(T) (1)
PS — 1 —e Kaerosols kdmplets kfomites

Here, P* is the probability of infection for susceptible
agents, where Esaerosols(T)’ Esdroplets(T)’ and Esfomites(T)
are the accumulated virus exposure amounts for the
susceptible agent s via each route at the end of the
simulation duration, T Kaerosols> Kdropiets a0d Kfomires are
the route-specific exposure parameters (Popa et al.,
2020; Atamer Balkan et al., 2024). The details of expo-
sure calculations are provided in Appendix D.

Then the infection risk of the event is calculated by
summing up the infection risk for each agent s € S. This
summation represents “the expected number of second-
ary infections given the introduction of one infectious
agent”, and hence it corresponds to what we will refer to
as the reproduction number attributed to this
event, R, ent-

=S

Revent = Z (2)

s=1

2.2.3. Economic activity

The expected economic activity in an event or a
day, which is the expected revenue in our example,
depends on the visit characteristics of the guests.
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Figure 4. States, inflows, and outflows for the example of aerosol-induced virus contamination in grid cell (x,y), Vaerosols (X,¥), in
the air layer (shown as V(a)(x,y)) (agent-triggered flows are shown as color-filled, whereas the environment-related flows have

no fill color.)

The primary input to the expected economic activ-
ity is assumed to be the time spent by each guest in
a venue. We assume that the expected payment of
each guest ¢ € E(pay),, is an increasing function
of their visiting time (Figure 5). The time spent by
each guest in the venue is calculated from the
agent-based script showing the entrance and leave
time of each agent. Then, the expected revenue,
E(rev), is the sum of the expected payment col-
lected from each agent.

60

50

40

E(pay)g
w
o

20

10

0.5hrs 1hr

1.5hrs

=G
E(rev) = 3 E(pay), )
g=

Acknowledging that the revenue functions would
vary from one venue to another, our framework is
flexible to allow any revenue function based on
decision makers’ preferences. Here, we use an illus-
trative function for the expected payment per guest
(Figure 5) to demonstrate the operationalization of
the model.

2 hrs 2.5hrs 3hrs

Figure 5. lllustrative function for the expected payment per guest based on visit duration.
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Even though it is illustrative, the shape and para-
meters of the function in Figure 5 are chosen to be
appropriate to the context, where (i) it is a piecewise
linear function that initially has an increasing and
then a decreasing slope, aiming to mimic the rela-
tionship between time spent by the customer and
the courses ordered in a restaurant (e.g., starting
with a snack or starter, then ordering one or two
main courses, then a dessert, a drink etc.), and (ii)
the output values of the function are in line with the
recent statistics in the European setting (i.e., the
Netherlands for our case), where an inexpensive
meal per person starts from €10 and goes up to
€60 in a mid-range restaurant (Numbeo, accessed
May 31, 2025). This is consistent with our expected
payment per guest function in Figure 5 where a
person is expected to pay €8 for a 0.5-hour visit
and €58 for a 3-hour visit.

2.2.4. Multi-criteria decision-making

In our hybrid model framework, we identify the best
set of alternatives for operational decisions with multi-
criteria decision-making. The best set of alternatives is
defined as the set of non-dominated feasible options,
and the goal is to provide the non-dominated set to the
decision makers. As explained above, for each setting
and scenario, the results of the expected R, and
E(rev) are obtained and serve as objective functions,
where the objectives are to minimize the expected
Reyenr and maximize E(rev). For each of these two
objective function values, there are constraints that
define their feasible regions:

e For the expected Reyens, we assume that decision
makers define a static risk threshold for the
expected number of secondary infections per
day/event, and the service options above that
threshold are not acceptable,

e For the venue to run in an economically sustain-
able way, there is a minimum required revenue to
be obtained per day. So, only the service options
that have E(rev) above the minimum required
revenue are accepted as feasible.

Considering the two objective functions and their
feasible regions, we define the Pareto frontier of non-
dominated options as follows:

A solution X is said to dominate the other solution
Y, if both the following conditions are true:

(1) The solution X is no worse than Y in both the
expected Ree,r and E(rev).

(2) The solution X is strictly better than Y in at least
one objective, either the expected Rgyens Or E(rev).

For a given set of options, a pairwise comparison is
made using the above definition and whether one
point dominates the other is established. All points
which are not dominated by any other member of the
set are called the non-dominated options (Deb, 2011).

3. Results

The use of our hybrid model framework is demon-
strated with an application for a restaurant case. We
investigated the impact of four sets of operational deci-
sions on the expected revenue and the risk of infection
in an indoor restaurant setting: redesign of physical
space (Section 3.1), average service duration (Section
3.2), service capacity (i.e., number of guests served in
one day) (Section 3.3), and service scheme (i.e., combi-
nations of (i) average service duration, (ii) service capa-
city, and (iii) the number of shifts) (Section 3.4).

Additionally, we investigated the impact of the fol-
lowing uncontrollable factors: (i) the infectious agent
being a guest or service personnel (Section 3.1) and
(ii) the infection prevalence within the community
(Section 3.4 and 3.5).

The simulation experiment settings and the
assumptions for the restaurant case study are:

e Seating capacity of 48 people, corresponding to
12 tables with 4 chairs each (Figure 6(a) for the
Base layout).

¢ Fixed opening and closing hours, corresponding
to 4 hours a day.

o All guests are scheduled to arrive at specific time
slots, as would happen when using reservations.

o The restaurant can serve for one shift or multiple
shifts a day, which is explicitly stated in relevant
experiment settings.

o The number of servings to tables by the staff is pro-
portional to the average service duration (i.e., a
service staff visits a table every 30 minutes on
average).

e Considering the time required for staff activities
for each table and guest group, the number of
service staff is proportional to the number of guests
in a shift. (i.e., 2 service staff for 24 guests, 3 service
staff for 36 guests, 4 service staff for 48 guests).

e Unless otherwise stated, it is assumed that a sin-
gle guest is infectious during each experiment.

e In each simulation experiment, we generated
120 replications (5 for mobility behavior x 24
for the assignment of the infectious agent),
which was calculated to correspond to an aver-
age relative error of 5% in mean infection risk
and expected revenue at 95% confidence level
(Law, 2007).
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3.1. Impact of redesign of physical space

Redesigning the physical space by rearranging the
distance between seating groups is one of the non-
pharmaceutical interventions implemented during the
recent COVID-19 pandemic, especially in the hospi-
tality sector (CDC Center for Disease Control and
Prevention, 2020; Wang et al., 2021; WHO World
Health Organization, 2020). Rather than proposing
the optimal layout for a particular restaurant, the
aim of the simulation experiments in this section is
to present a comparative analysis for the impact of
different extreme layout settings on the infection risk.
In these simulation experiments, we used a fixed ser-
vice scheme (one shift, average service duration of 2
hours, service capacity of 48 people) and investigated
the impact of four distinct layout settings:

e Base Layout: A setting with arbitrarily placed
tables, in which the distance between two prox-
imate chairs in different seating groups are at
least 1.5 meters (Figure 6(a)).

¢ Random Layout: Tables are randomly placed using
a random number generator, taking into account
that the location of each table and its chairs do not
overlap within the available space (Figure 6(b)).

e Risky Layout: This can be considered as the
worst-case setting (from an epidemiological
point of view), in which the tables are positioned
close to each other as one large group, imitating a
group event (Figure 6(c)).

e Optimal Layout: This can be considered as the
best-case setting for the given number of tables
and chairs and the dimensions of available space
(Figure 6(d)). To find the optimal layout, we
solved the optimization problem of maximizing
the minimum distance between any two tables
(Bortolete et al., 2022; Fischetti et al., 2021;
Ugail et al.,, 2021). The model follows a similar
structure to the “circle packing” problem pre-
sented in Bortolete et al. (2022), where one table
and four chairs around it define the size of the
circle. The model is solved on the discretized
space and constraints the locations of tables and
chairs (i) to be within the space, (ii) not to overlap
with each other, (iii) not to overlap with the
infrastructural elements in the venue, (iv) to be
integers representing the grid cells. It should be
noted that, here there are only a few infrastruc-
tural elements and a simple layout to demon-
strate the impact of layout settings on the
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infection risk; but for a case where other decora-
tions, furniture or obstacles are a part of the
physical space, the circle packing problem can
easily be reconfigured to accommodate these
constraints.

In these experiments, we investigated the impact of
four layout settings under two scenarios (i) the infec-
tious agent is a guest, and (ii) the infectious agent is
personnel (Figure 7), since the design of physical space
can affect contact structures in different ways for
guests and personnel.

Recall that R, represents the expected, average
number of secondary infections, given that one of the
agents is infectious. In Figure 7, the risky layout indi-
cates the highest number of secondary infections,
whereas the optimal layout leads to the lowest. While
optimizing the layout relative to the base case has a
minor effect, the risky layout is associated with 2.7-
times and 1.8-times higher transmission risk figures
with respect to base case in Guest and Personnel sce-
narios, respectively. Overall, in these experiments, the
number of secondary infections caused by guests is
found to be 3.5 times higher on average than that of
personnel. The main reason behind this difference is
that R,,., is based on the agents’ behavior while present
in the service area. In the simulation, personnel enter
the service area only when a task is assigned to them:
here, the average time that a guest spends within the
service area is 120 minutes, whereas it is 32 minutes for
one service personnel. Infections that may occur in the
kitchen area or elsewhere are thus not considered here.
The expected revenue values do not differ between
settings and scenarios, as the number of guests and
the average service time are the same in all experiments.

Optimal Base

Guest Personnel Guest Personnel

o i j ;

25
2.0
15

1.0 =

E(nr of secondary infections | 1 agent is infectious)

:
-

0.5

(event)

;

{

0.0

Figure 7. Reyent and E(rev) outcomes for different layout settings.

3.2. Impact of service duration and service
capacity

Contact duration and occupation density in indoor
spaces are associated with the SARS-CoV-2 transmis-
sion risk (Bazant & Bush, 2021; Koh et al., 2020; Miller
et al.,, 2021; Tang et al, 2020). In these simulation
experiments, we investigated the impact of average
service duration and service capacity on the infection
risk, the number of secondary infections, Reyens, and
the expected revenue, E(rev), for the following settings
(Figure 8):

¢ Base layout (Figure 6(a))

e Average service duration: 0.5 - 3 hours, with
0.5 hours increments

e Service capacity: 24, 36, 48 people

e Two scenarios: (i) all guests enter the venue at the
same time slot (like a scheduled event) (Figure 8),
(ii) guests in different groups (i.e., different
tables) enter the venue distributed over time
slots (Table 1)

The simulation experiments in scenario (i) show that
the number of secondary infections increases as the
number of guests increases, but only when the service
duration is longer than 1.5hours (Figure 8).
Additionally, the increasing impact of service duration
on R,y is more evident than the impact of the num-
ber of guests. This observation is due to a “circle of
influence” around the infectious individual, which has a
similar extent irrespective of the total number of guests
but does enlarge with the visit duration: Recall that

Reyent 1s the sum of the infection risk of all susceptible
agents. Here, we define W (inside) as “the
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A E(rev)
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Personnel
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Figure 8. Reyene and E(rev) outcomes for changing service duration and service capacity levels in scenario (i) guests enter the venue

at the same time slot.

percentage of R,.,; covering the susceptible agents
sitting within 1.5-meters of the infectious individual”.
In these experiments, the average of Weyen(inside) is
found to be between 75%-89% under different set-
tings. That is, the major portion of the risk stays within
the social group of the infectious agent, and the influ-
ence of the number of visitors turns out to be limited.

The average revenue increases in both the service
capacity and the service duration. As the service time
increases, the contribution of service capacity becomes
more evident, since the expected revenue is defined as
an increasing function of the service time.

Changing the entrance behavior from (i) entrance
at the same time slot to (ii) entrance distributed over
time slots shows a consistent but small contribution
(Table 1): in all the experiment settings, Reye, is smal-
ler in the distributed scenario (4.7% on average, range
of 0.5%-12.4%). Reyens decreasing in (ii) can be
explained by the reduced overlapping visiting time of

the guests due to the definition of the scenario. The
difference being limited between (i) and (ii) is also
related to the circle of influence: by definition, guests
sharing the same table enter the restaurant at around
the same time, and the major portion of the risk is still
within 1.5-meters of the infectious individual.
Consequently, the contribution of scenario (ii) in miti-
gating the infection risk is found to be limited.

The revenue does not exhibit a difference between
these two scenarios since scenarios do not have an
impact on service duration and service capacity.

3.3. Impact of service schemes

A service scheme is identified as a combination of (i)
average service duration, (ii) service capacity, and (iii)
number of shifts in a day. Considering (i) and (iii)
simultaneously constraints the solution space based on
working hours: e.g., if the venue is open for 4 hours,

Table 1. Reentin (i) entrance at the same time slot and (i) entrance distributed over time slots scenarios, and the percent decrease

in Reyene from (i) to (ii).

0.5 hrs 1 hr 1.5 hrs
24 ppl 36 ppl 48 ppl 24 ppl 36 ppl 48 ppl 24 ppl 36 ppl 48 ppl
Revent in (i) 0.21 0.22 0.20 0.42 0.44 0.46 0.67 0.70 0.74
Revent in (ii) 0.20 0.21 0.19 0.41 0.41 0.41 0.64 0.64 0.66
% decrease 3.7% 6.5% 7.8% 4.3% 6.5% 8.0% 4.6% 8.4% 10.8%
2 hrs 2.5 hrs 3 hrs
24 ppl 36 ppl 48 ppl 24 ppl 36 ppl 48 ppl 24 ppl 36 ppl 48 ppl
Revent in (i) 0.89 0.92 1.00 1.09 1.15 1.25 1.28 1.36 1.45
Revent in (ii) 0.87 0.92 0.87 1.07 1.10 1.17 1.26 1.34 141
% decrease 2.2% 0.5% 12.4% 1.8% 4.4% 5.8% 1.8% 1.8% 3.1%
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Figure 9. Reyen: and E(rev) outcomes for different service schemes.

serving in 3 shifts with an average service duration of
1.5 would not be an option.

We selected a set of feasible service scheme options
for the following experiments and investigated their
impact on the expected number of infections and the
expected revenue (Figure 9):

e Combinations of service durations and the num-
ber of shifts: 3 shifts of 1-hour duration, 2 shifts
of 1.5 hours duration, 1 shift of 3 hours duration
(assuming the restaurant still runs 4 hours in
total but with short breaks between the shifts).

e Service capacity: Changing from 24 to 144 people
(note that the service capacity is the total number
of visitors accepted as the summation of all shifts
in a day. For example, 144 people in the 3-shift
case indicates 144/3 =48 people are accepted
during each shift).

Resonating with the previous experiments (Figure
8), the number of guests does not significantly
impact the risk when the service duration in each
shift is shorter (i.e., 1 hour) (Figure 9). However, as
the duration gets longer, the circle of influence starts
growing: on average, Wevent (Outside) increases from
13% (in 1-hour shifts) to 20% (in 3-hour shifts),
where Wevent (OUtside) is 1 — Weyent (inside).
Consequently, for longer service durations, Reyen:
increases with the increasing number of guests. As
the revenue function implies, expected revenue exhi-
bits an increasing trend with the number of guests
(Figure 9). Due to the piecewise linear structure of
the expected payment function, the contribution of
one unit of service capacity differs in each service

scheme option. The highest expected revenue is
generated in 2 shifts x 1.5-hour option, with a
full service capacity of 48 people in each shift
(48 x 2 = 96 people in total).

From the operational point of view, one of the key
questions would be: “Are there any service schemes
that perform better than the others in terms of both
the infection risk and the expected economic activ-
ity?”. To interpret this question, we compare the aver-
age performance of these schemes based on our two
criteria: R,yens and E(rev) (Figure 10).

In these two criteria, the set of non-dominated
(ND) solutions (i.e., a solution where none of the
two criteria can be improved in value without degrad-
ing the other) are particularly shown with larger sym-
bols and indicated by the ND mark and the resulting
Reyent values. By definition, all ND service options
either have a lower risk or a higher revenue result
compared to other options. One observation here is
that the ND solution set consists of every 3-shift x 1-
hour setting as well as a single 2-shift x 1.5-hours
setting with a service capacity of 96 people. It should
be noted that the identified ND solutions are not
global but specific to the set of predefined service
scheme options.

3.4. How to operate the venue: Identifying the
Pareto frontier for the best set of service options

Up to now, we have investigated the impact of opera-
tional decisions on the infection risk and expected
revenue, given that the condition of one of the agents
is infectious. However, when the prevalence of the
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Figure 10. Average Re,en: and E(rev) outcomes for different service schemes, highlighting ND service options.

infection in a community is considered, a more exten-
sive service capacity with more visitors implies a
higher chance of infectious introductions to the
venue. Therefore, we incorporated the “probability of
an agent in the event being infectious”, p — ineyent, into
the calculations to obtain the expected number of
secondary infections in the event.

P — iNeyent is tightly connected to the term infec-
tion prevalence, p — in, which is the proportion of
infectious individuals in the community at a time.
In our experiments, we calculated p — ineyen: as a
function of p —in, indicating “the proportion of
infectious individuals who do not have severe
symptoms so that they can show up in a social
space”. In our example, p — inewent is taken as
1.5% (prevalence of COVID-19 infections in
January 2022) (Buitrago-Garcia et al., 2020; CBS

Minimum Required Revenue

1.5

1.0
Maximum Risk

Netherlands, 2022; RIVM Rijksinstituut voor
Volksgezondheid en Milieu, 2022) (calculations
are available in Appendix H). Then, along with
the expected revenue, the expected infection risk
(i.e., the expected number of secondary infections)
for each service scheme is calculated as follows
(Figure 11):
E(infection risk),,,,, = E(# of secondary infections)

event event

= Revent X P — iMeyent X service capacity (4)

As mentioned previously, we assume that there is a
Minimum Required Revenue for this social venue to
continue its operations sustainably. Similarly, we
assume that there is a risk threshold, Maximum Risk,
that the decision makers consider as the upper limit
for the expected number of secondary infections
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(Figure 11). The shaded, lower right part of the solu-
tion set constitutes the feasible region for acceptable
service options, below the risk threshold and above the
required minimum revenue. Among the feasible ser-
vice options, ND solutions constitute the Pareto-opti-
mal solutions, i.e., the Pareto frontier, which are
highlighted with larger-sized points.

After the feasibility conditions and p — ineyen are
incorporated into the decisions, the set of ND solu-
tions has changed (Figure 11). Compared to Figure 10,
ND set size decreased to three, where most of the 3
shifts x 1-hour options are left out and new 2 shifts x
1.5-hours options are included. This response is
because the expected infection risk depends on the
number of guests, and a larger group of service scheme
solutions were excluded because they are outside the
feasible solution space.

3.5. The impact of infection prevalence in the
population

In this section, we investigate the impact of infection
prevalence values on the feasible service scheme
options. As outlined above, the infection prevalence
in the population is a dynamic variable that can take
different values throughout a pandemic. Since it
directly affects the probability of an infectious guest
in a venue, the feasible set of service schemes changes
with the infection prevalence. To demonstrate its
impact, we calculated the performance of service
schemes for two different infection prevalence values:
a lower and higher p — ineyenr With —50% and + 50%
change to its base value of 1.5%, respectively
(Figure 12).
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When the prevalence is low (Figure 12(a)), the set
of feasible solutions enlarges, and the size of ND
service options increases to six. In that case, the deci-
sion maker has a larger window of opportunity to select
among the best service schemes for their business. On
the other hand, the number of feasible options
decreases to one when the prevalence rises (Figure 12
(b)), and the window of opportunity starts to close. For
even larger prevalence values, there would eventually
be no feasible solution anymore, i.e., it would be either
too risky or too costly to run the venue.

4. Discussion

In this study, we (i) investigated the impact of opera-
tional decisions on the transmission risk of a respira-
tory pathogen and the expected economic activity in
indoor venues and (ii) illustrated how to identify the
best set of service options to run the business both
safely and sustainably for the case of SARS-CoV-2. To
achieve this, we built a hybrid modeling and simula-
tion framework incorporating human activity and
virus spread in indoor venues with multi-criteria deci-
sion-making. We performed simulation experiments
featuring a restaurant and examined the impact of
different service decisions. The results illustrate that
while some seating arrangements can substantially
increase the infection risk, the mitigating impact of
optimizing the layout can be limited. Service duration
and service capacity are determinants of the expected
economic activity, but they constitute a significant
trade-off for the infection risk: the service duration
has a substantial impact on the infection risk, and the
service capacity drives the probability of infectious
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Figure 12. (a) Lower infection prevalence case p — inevent = 0.75%. (b) Higher infection prevalence case p — ineyent = 2.25%.



introductions. The analysis shows that the best service
options critically depend on the infection prevalence
in the community, highlighting that the epidemiolo-
gical context should be considered in decision-making
at the individual venue scale. For a given revenue
function, our framework can support decision makers
in identifying the best service options to run the venue
both safely and sustainably.

Simulation modeling studies have been utilized to
address various decision-making challenges in disease
outbreak management and pandemic preparedness
(Currie et al., 2020; Singh & Mathirajan, 2023).
Among these challenges, operational decision-making
at individual venues is crucial, given that contact and
transmission between individuals primarily occur in
these spaces, particularly indoors, which are associated
with higher infection risks for respiratory pathogens.
However, the impact of interventions is not clear at
the individual venue scale due to the diverse charac-
teristics of these spaces and the activities therein. We
contribute to the existing literature with a hybrid
model incorporating (i) pedestrian behavior and
mobility, (ii) virus transmission dynamics in indoor
spaces, and (iii) multi-criteria decision-making con-
sidering the economic indicators. Different from the
multi-criteria approaches used in investigating SARS-
CoV-2 mitigation strategies at the population level
(Chandak et al., 2020; Chen et al., 2023; Colas et al.,
2021; Gillis et al., 2021), we focused on identifying the
best set of operational decisions that can be taken at an
individual space.

In our simulation experiments, we evaluated the
service decisions based on the infection risk and
expected economic benefit for a given revenue func-
tion. With the assumption of a single infectious intro-
duction, we found that the service schemes with the
shortest service duration and the highest number of
shifts constitute the major portion of the non-domi-
nated solution set. Again, in that case, we found that
(i) the service capacity drives the revenue substantially
but not the infection risk caused by a single infected
individual, (ii) the service duration has a more sub-
stantial impact on this infection risk when compared
to the impact of service capacity, (iii) the contribution
of scheduling the entrance of guests distributed over
time slots instead of letting them enter the space
around the same time is small. These findings are
related to the circle of influence around the infectious
person, i.e., the perimeter around an infectious person
within which they can expose others to the virus. This
circle enlarges with the visit duration because of the
build-up of aerosolized virus particles in the environ-
ment. Contrarily, this perimeter is not affected by the
service capacity, nor are there, in this setting, more
guests within the perimeter. However, increasing the
service capacity does result in more infectious intro-
ductions. Accordingly, instead of a single infectious
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agent, we incorporated the probability of infectious
introductions to an event and calculated the expected
infection risk. When incorporating the probability of
infectious introductions, we find that the service capa-
city creates a considerable trade-off between the
expected infection risk and revenue. Yet, this relation-
ship crucially depends on the infection prevalence in
the community. Overall, the level of infection preva-
lence defines our feasible and non-dominated solution
set for the best service options. For the fixed level of
service capacity, we also analyzed the impact of dis-
tinct behavioral patterns of individuals: infectious
agent being a guest or personnel. The shorter duration
of contacts elicited by personnel corresponds to sub-
stantially lower risks of successful virus transmission,
highlighting the importance of accounting for the
duration of individual contacts when assessing infec-
tion risks in a space. However, it should be noted that
the infection risk in the model is based on the inter-
actions in the service area, and infections related to
personnel that may occur in the kitchen area or else-
where are not considered in the results. Finally, while
optimizing the physical rearrangement of the service
area is often looked at for reducing infection risks, we
find limited additional benefit in this specific setting
while trying to keep the overall capacity (i.e., the total
number of seats and tables) unaffected.

The generalizability of these results is subject to
certain limitations, and future research would deliver
additional research and practical implications. The
model requires detailed parametrization related to
biological processes (e.g., virus emission, environmen-
tal decay, diffusion rate, etc.) of the respiratory patho-
gen in question. Even for the special case of SARS-
CoV-2, many parameters related to characterizations
of the virus are still inconclusive in literature, are hard
to measure empirically, or vary by setting or virus
variant. With a series of sensitivity analyses, model
results are shown to be robust to some level of uncer-
tainty (Atamer Balkan et al, 2024). Even though a
formal calibration could not be conducted due to a
lack of reference data sets, the infection risk para-
meters (i.e., dose-response curve parameters) were
chosen such that the distribution of outbreak sizes
was in line with epidemiological observations from
similar social settings during the initial stages of the
COVID-19 pandemic (Adam et al., 2020). The model
parameters will be updated as new evidence becomes
available in the field. The scope of this paper is indoor
venues of a particular service sector, such as restau-
rants, bars, and cafes. In ongoing research, the frame-
work is being applied to other social environments,
such as retail and educational settings. Despite these
limitations, general findings on the positive relation
between time expenditure and the perimeter at which
infections can take place, are expected to be general-
izable across a range of settings, particularly those
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where agents are relatively stationary (e.g., theatre/
auditorium, classrooms, office spaces).

Owing to the modular setup of PeDViS, it can be
used to characterize the infection risks in other types
of indoor spaces, and the model can be adapted to
different SARS-CoV-2 variants and other respiratory
pathogens, as explained in Appendix I. PeDViS can
also support decision-making for the mitigation stra-
tegies considering other non-pharmaceutical inter-
ventions, such as the use of masks and ventilation
(Atamer Balkan et al., 2024). In future research, the
model will be configured to different types of indivi-
dual heterogeneities, including infectiousness, vacci-
nation status, and test result. In doing so, we will be
able to incorporate various vaccination- and/or test-
based entry restriction policies into the model.

This study contributes to our understanding of the
impact of operational decisions in indoor venues on
the respiratory pathogen transmission risk and the
expected economic activity. Our hybrid framework
combines behavioral and epidemiological models
with economic indicators constituting a considerable
example of interdisciplinary hybrid modeling study.
With the help of the modular nature of these models,
the framework can readily be extended to different
settings, activities, and revenue functions and can be
applied to different respiratory pathogens. In all, the
hybrid framework can help policymakers and social
venue partners make informed decisions to run
indoor social spaces safely and sustainably.
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Appendices
Appendix A. Additional Assumptions of the Model

Queuing: In terms of activities and mobility, the queuing behavior of agents are not considered in this paper, even though the
model framework is capable of incorporating it. Our project team conducted an empirical study to assess the nature of queuing
behavior in small and middle-sized restaurants, and found out that the queues in the restaurants typically consist of no more
than 2 people and the waiting time at the coat rack and pay register is within 20-50 seconds. Since such short duration contacts
are not associated with significant infection risks (Ying & O’Clery, 2021), these short queues are not considered in this paper.

Mitigation tools: Regarding respiratory virus transmission, mitigation tools such as table dividers, sneeze guards and plastic

barriers between tables can also be considered relevant objects, but they are not included in this particular paper since their use
was not a typical intervention in the Netherlands during the recent COVID-19 pandemic.

Appendix B. Agent-Based Movement Model (NOMAD) Equations

The following set of equations governs the movement of each pedestrian in NOMAD:

d. -
—p,(t) = V(¢ Al
5t = (o) (a)
950) = a0 (a2)
- vilt) = a;
dt
di(t) = dpa(t) + dos(t) + daa(t) + € (A3)
(;i es;i * es;i _‘i t
dri(t) = = Vd; ) (A4)
1 if 0< dy, < 22
a0:1'(1’) = —ay Za:o 2(1 — ji:a) if dszhy < di;o S dshy (AS)
0c0 sy .
0 otherwise
d;.i
Zia;,-(t) = —day Z E,j ‘e J/ro (A6)
jeA

Each time step, NOMAD updates the position of each pedestrian based on the acceleration of the pedestrian by integrating the
acceleration twice using an Euler scheme (equations Al and A2). The acceleration itself is computed using so-called social
forces. Equation A3 presents the three forces that govern the acceleration and with that the movement. These are the following
force (dy,;) that ensures the agent follows their preferred route to their destination, the object repulsions force (d,) that
ensures agents avoid obstacles, and the agent repulsion force (d,,;) which ensures agents avoid collisions with other agents. £is
the fluctuation term which simulates the natural fluctuation in the agents’ movements. Equation A4 shows that the agent tries

to match their current velocity (¥;(t)) with their desired velocity (Eil{es;i - Vdes;i) Which is composed of their desired direction

(c_i'desj,») determined by the routing floor field and their desired speed (v4;;). The T parameter determines how strongly an agent
reacts to any straying from their preferred velocity whereby the smaller the value of 7, the stronger the reaction. Equation A5
presents the force that acts upon an agent when they come close to one or more obstacles. If the distance between the agent and
the closest point on an obstacle (d;,,) is smaller than or equal to the shy away distance (ds;y), the pedestrian will experience a
social force from this obstacle. The closer the pedestrian is to the obstacles, the larger the force. The relative strength of this
force, compared to the other forces, is determined by the parameter a,,. €;, is the vector pointing from the agent to the closest
point on the obstacle. The interaction between agents is governed by equation A6. For each agent in the set of other agents in
the neighborhood (A), an agent experiences a repulsive force. The smaller the distance between the agent (d;;), the larger the
force whereby ry governs how strongly an agent responds to this distance. The parameter gy determines how strong this
agent’s repulsion force is compared to the other forces. & is the vector pointing from the agent to the other agent.
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Appendix C. Example Agent-Based Script

"name": "agent4l",
"script": {
"49": |
"type": "enter",
"x": 85,
"y": 71,
}l
"50": {
"type": "move",
"x": 39,
"y": =42,
}l
"316": |
"type": "leave"

This script indicates that the agent41 enters the venue at time 49 with the starting location of x:85, y:71, then by time 50, the
agent moves in the direction x:39, y:-42, then stays in this location, and finally leaves the space at time 316.

Appendix D. Virus Spread and Transmission Model (QVEmod) Equations (adapted from Atamer
Balkan & Chang et al., 2024)

Virus Emission: The virus emission rate that infectious agent i shed into the air per time is distributed over aerosols
(V' emission—aerosols) and droplets (riemission,droplets) (Eq. A7 and A8). Here, w represents the unit emission rate at which a typical
infectious individual i emits virus in unit time (i.e., one hour in our case) under half-time breathing and talking condition. #
represents the proportion of pathogen excreted to hands, therefore (1 — ) represents the proportion emitted to the air. p;
represents the proportion of viruses emitted in the form of aerosols and droplets, where the two proportions (pacrosolss Pdroplets)
add up to 1. The virus emission calculation is triggered only for the grid cell (x, y) in which the infectious agent is at time #;
otherwise, it is 0.

riemissionfaerosals(x7ya t) = w(l - W)puerasols (A7)

riemissionfdruplets(xvy’ t) = w(l - n)pdroplets (AS)
Surface Contamination: An infectious individual is assumed to contaminate the surfaces they frequently touch (e.g., tables and
chairs they use) within their reachable distance. The rate of surface contamination in grid cell (x,y) by the infectious
individual i is defined by the touching frequency (y), transfer efficiency (6), and the ratio of finger pads surface relative to
the reachable surface area () (Eq. A9). Vij,,q is initialized at t=0 as a proportion of emission rate w, where # represents the
proportion of pathogen excreted to hands (Eq. A10).

ricantumination (-x; Y, t) = Vihand(t) )’977

Vihand(t) = Vihund(o) = wy
Virus Inhalation: The virus inhalation rates in the form of aerosols and droplets by the susceptible individual s
(* inhalation—acrosols> T’ inhalation—droplets) are defined by the airborne viruses accumulated in the air in grid cell (x,y) that the
susceptible agent is present at time £ (Vaerosols (X, Y5 t)> Varopiets (%, ¥, £)), the unit inhalation rate of the individual (p) and the grid
cell volume (L) (Eq. A11 and A12).

ﬁinhalationfuerosols (X,)/a t) = Vaerosols (XJ” t) % (Al 1)

rsinhalatiunfdroplets (xvya t) = Vdruplets (XJ’, t) % (Alz)
Virus Pick-up from the Surfaces: The virus transfer from contaminated surfaces to hands occurs when a susceptible individual
s touches the contaminated surfaces in grid cells (x, y) within their reachable distance. Similar to the surface contamination
process, the virus pick-up rate (r*pick—.p) is defined by the virus accumulated on surfaces in grid cell (x,y) at time ¢
(Viomites(x, y, t)), the touching frequency (y), transfer efficiency (), and the ratio of finger pads relative to the reachable
surface area (m) (Eq. A13 and Al4). As the virus transfer from surfaces to hands occurs, it is assumed that the virus
accumulates in each susceptible agent’s hands, V¥j,,q (Eq. A15).

TSpickfup (x7}/7 t) = Vfomites (X7)/7 t)V97T (A13)

rspickfup(t) =X rspickfup(xayv t) (A14)
4
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Vo and (t + At) = Viiana(t) + 1 pick—up (£) At (A15)
Virus Exposure: For each susceptible agent s, the accumulated virus exposure via aerosols and droplets, Er0501(T) and
Esdmplets(T), are calculated by the summation of the inhaled amount of viruses up to time T (Eq. A16 and A17). The exposure
from fomites route up to time T, Esfom,-tes( T), is calculated as a proportion of viruses on hands that are assumed to be
transferred from hands to facial membranes, ¢ (Eq. A18).

t=T

Esaerosols(T) = Z Z rsinhalatiunfaerosols(x’ Y t) (A16)
t=0 x,y
t=T
Esdroplets(T) = Z Z rsinhalation—droplets(xy}/7 t) (A17)
t=0 x,y
T
Esfomites(T) = Z Vshand(t)SAt (A18)
0

Virus Decay: Viral particles are assumed to decay exponentially in the environment, the rates of which vary in aerosols and on
different surface materials. Virus-laden aerosols lose infectivity at a constant rate while floating in the air, and the air change
rate (ACH) indoors has an increasing impact on their decay. The aerosols decay (¥ gecay—aerosois) and fomites decay (*gecay—fomites)
equations for grid cell (x, y) at time t are identified as exponential decay functions where ., and fomites Tepresent the unit

decay rate of viruses in aerosols and on fomites respectively (Eq. A19 and A20).
rdecay—aerosols (x,}/, t, At) = Vaerosols (XJ/, t) (1 - eiy“”"‘””AtiACHm) (A19)

rdecayffomites (X7)/7 ta At) = Vfamites (%)’7 t) (1 - e_yfgmmm) (AZO)
Droplet Deposition: Viral-laden droplets can fall onto surfaces through sedimentation and can accumulate on the surfaces as
fomites. The rate of viruses transferring from droplets onto fomites (¥4eposition) for cell (x,y) at time t is defined by the unit
deposition rate of viral-laden droplets (¢ dmplets) (Eq. A21).

Tdeposition (x7 b2 t) = VdropletS (xvyv t)‘udroplets (A21)
Diffusion: The diffusion of the virus-laden particles in the air is defined by two-dimensional diffusion equations for aerosols
and droplets. It is assumed that all particles are well-mixed in the volume of the grid cell, and they diffuse in (x, y) directions
(Eq. A22 and A23) (“aerosols” and “droplets” are abbreviated as “a” and “d” respectively). Here, Ax and Ay represent the length
unit of the cell (both 0.5m in the default), and D is the diffusion coefficient, indicating the unit diffusion rate per time.

Faiffusion—acrosols (x,}/, t) _ D(V,,(fox“y.,t)JﬁVa(X+Ax“y,t)+Vugi,i/;Ay,t)JrVa(x,erAy,t)fAlVa(xy.,t)) (A22)
Va(x—Ax,y,t)+V, Ax,y,t)+Va(x,y—Ayt)+Va(x,y+Ay,t)—4V(x,y,
rdiffusianfdroplets(xyyy t) = D ValsmAxy )+ Valetdxy )+ dgﬁi’y Y,)+Va(xy+Ay,t) —4Va(x.p,t)) (A23)

Virus Contamination States: In each time step At, Vo505 is decreased by the inhaled amount by the susceptible agents in grid cell
(x,y), updated by the diffused amount of particles, decreased by the decay of viruses and increased by the virus emission if there
exists an infectious agent in cell (x, y) at time ¢ (Eq. A24). Similarly, Viopiers is decreased by the inhaled amount by the susceptible
agents in grid cell (x, y), updated by the diffused amount of particles, decreased by the deposition of viruses from air layer to
surface layer, and increased by the virus emission if there exists infectious agent in cell (x, y) at time t (Eq. A25). In the surface
layer, is decreased by the picked-up amount by the susceptible agents within the reachable distance to grid cell (x, y), increased by
the deposition of viruses from air layer to surface layer, decreased by the decay of viruses on the surfaces and increased by the
virus contamination if there exists an infectious agent within the reachable distance to grid cell (x, y) at time ¢ (Eq. A26).

Vuerosols (x,}/, t+ At) = Vaerosols (x7}/7 t) - Z 7'Sinhalution7aerosols (X, Y, t)At
s

(A24)
+ Tdiffusion—aerosols (XJG t)At — Tdecay—aerosols (xa Y t, At) + rlemissionfuemsols (%)’7 t)At
Vdroplets (%)’7 t+ At) - Vdroplets (xaya t) - Z rginhalationfdmplets (X,y’ t)At
s (A25)
+ rdzjj’usion—droplets (X,)/, t)At - rdeposition (xvy’ t)At + rlemission—droplets (xy}/» t)At
Vfomites (XJ/, t+ At) = Vfomites(xa Y, t) - Z rspiCk*up (x7y> t)At
s (A26)

+ Tdeposition (X,y, t)At - rdecayffomites(xaya £ At) + ricontuminutiun (%)’7 t)At
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Appendix E. Causal Loop Diagram (CLD) for the relationships between the processes in QVEmod
and the viral particles in a grid cell (x,y)
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. 4
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Figure A1. CLD for virus spread and transmission processes in QVEmod. (Agent-triggered variables are shown with light blue,
whereas the environment-related variables are shown with dark blue.)

Appendix F. Model Verification and Validation

Model verification and validation were conducted as integrated stages of the simulation modeling process. In the initial phases
of the project, the workshops carried out with the social venue owners and domain experts have contributed to the conceptual
model validation. In the further stages, the model verification was iteratively conducted for each section of the model, testing
if the computer models represent the conceptual model and if the model software performs as it intends. In line with the model
verification steps, we conducted structural validity tests (Barlas, 1996) such as dimensional consistency tests (i.e., checking
whether the right-hand side and left-hand side of each equation in QVEmod is dimensionally consistent) and extreme
condition tests (i.e., checking if an extreme condition results in anticipated behavior (e.g., what if there were only one guest but
several service personnel)). For the integrated hybrid model, integration error tests have been conducted to select the best value
for delta time, At, considering the rate of the processes in the model (e.g., for a given grid cell size, At should be small enough
to capture the airflow between grid cells). Then, we performed the scenario verification and operational validation tests for
the model in an integrated manner. The behavior of the activity choice and scheduling model has been studied and face
validation has been performed (Sparnaaij et al., 2024). The NOMAD model has been extensively calibrated and validated in
the context of general walking behavior of pedestrians (Campanella et al., 2009; Campanella et al., 2014; Campanella, 2016).
Face validity of the virus spread and exposure calculations has been assessed by means of workshops with virologists and
epidemiologists. Then, for the integrated hybrid model, a series of sensitivity analysis has been conducted, especially for the
parameters related to virus characteristics and biological and physical processes (Atamer Balkan & Chang et al., 2024). Due to
alack of reference observational and complete data sets, a formal statistical validity test was not possible. Yet, the route-specific
exposure parameters Kuerosols> Kdroplets and Kfomires in the dose-response function (Eq.1), which are generally hard to quantify
even with experiments (Watanabe et al. 2010; Callaway 2020), were aligned using the available empirical data, so that the
model outputs are in line with real-world observations. Specifically, the base case restaurant simulation scenario in Atamer
Balkan and Chang (2024) is considered and those values for Kuerosots> Karoplets and Kfomires that provided the best agreement
(Revent = 0.81) with the observed SARS-CoV-2 outbreak clusters in similar social settings reported in Adam et al. (2020)
(Revent = 0.80) are selected. The sensitivity of model results to these assumptions is presented in Atamer Balkan and Chang
(2024). The simulations should thus be considered to represent the case for the wild-type SARS-CoV-2 virus, although
adaptations to other respiratory viruses can be made provided sufficient empirical support.

Appendix G. Simulation Run Time

For these experiments, the simulation running time is 10-12 minutes for each replication of Pedestrian Behavior and Mobility
model and 0.5 minutes for each replication of QVEmod on a computer having a configuration of 2.3 GHz 8-Core Intel Core i9
processor and 16 GB 2667 MHz DDR4 memory.
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Appendix H. Infection Prevalence and p — ingyent

Infection prevalence represents the proportion of infectious individuals within a community. For our example case, we refer to
the infection prevalence in the Netherlands around late January 2022, just after when the restaurants were reopened and
allowed to be open until 22:00 on January 26, 2022.

After this regulation went into effect, the 7-day average number of confirmed cases in the Netherlands changed between
54,710 - 67,495 from January 26 to January 31, with an average of 60,197 (RIVM Coronavirus Dashboard, accessed on May
2022, URL: https://coronadashboard.government.nl/landelijk/positief-geteste-mensen). We assume that the number of actual
cases is twice the number of confirmed cases. On average, we assume that an infected person can stay infectious for 7 days. The
population of the Netherlands during this period was projected to be 17,597,607 (CBS Netherlands, accessed on May 2022,
URL: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37230ned/table). Then, the average infection prevalence is calculated
as follows:

infection prevalence = p — in = (60,197 x 2 x 7)/17,597,607 = 4.8%

However, for our calculations, we need p — i#1eyens, the “the proportion of infectious individuals who do not have severe
symptoms so that they can show up in a social space”. That is, they are either asymptomatic (i.e., do not show symptoms) with
a chance of 20% (Buitrago-Garcia et al., 2020) or they are symptomatic, but they are at the first phase (i.e., first day) of their
infectious period and do not have severe symptoms:

infection prevalence in social spaces = p — iftpyeny = p — in X (0.2 x (7/7) +0.8 x (1/7))= 1.5%

Appendix I. Adaptability of PeDViS to Other Indoor Spaces and Respiratory Pathogens

Owing to the modular setup of PeDViS, it can be used to characterize the infection risks in other types of indoor spaces with
different human movement and behavior characteristics. For the agent movement, NOMAD is a general-purpose pedestrian
simulation model and applicable across diverse contexts. It is thus not specific to restaurants but can be applied to various
indoor spaces like office spaces (Deijkers, 2022) as well as outdoor events such as festivals (Wang, 2021). To tailor NOMAD to
specific settings, one needs to define the relevant infrastructure. This entails specifying the location of all obstacles, activities,
and points of entry and exit for pedestrians. For instance, for the case of a supermarket or store (demonstrated in Figure A2),
the layout needs to be modified to accommodate relevant infrastructural elements (Section 2.1), particularly store racks as
‘obstacles’ so that neither the agents nor the viral particle can move through the racks. Additionally, it is necessary to define the
pedestrian profile parameters (Section 2.2.2.1) for characterizing the pedestrian walking behavior, representing differences in
population and behavior between, for example, an office space and a retail store.
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Figure A2. Visual representation of an example 10x10 m2 retail store, with eight store racks, one register for payment (on the left)
and doors for entry and exit (on the bottom)
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The activity choice and scheduling module, on the other hand, requires larger adaptation when applied in different contexts.
Currently, the model features a tailor-made activity choice and scheduling module for both customers and personnel in a
restaurant environment (Section 2.2.1.1). For any other context, one must either input a predefined activity schedule for each
pedestrian (or pedestrian group) or implement an existing or a new activity choice and scheduling module tailored to the
specific context. Deijkers (2022) and Wang (2021) demonstrate the application of the latter approach for office environments
and festival grounds, respectively. For example, in a supermarket context, a different activity choice and scheduling behavior
for the customers (and personnel) is required. The basic behavior would include customers entering the supermarket, walking
to N different locations within, waiting there for a short time to get their products from the racks, proceeding to the check-out,
queueing if necessary, waiting at the pay register to simulate the check-out process, and exiting the supermarket.

The model can also be adapted to different SARS-CoV-2 variants and other respiratory pathogens by adjusting relevant
model parameters. In Atamer Balkan and Chang et al. (2024), the data requirements and analyses needed to parameterize and
calibrate the model for the wild-type SARS-CoV-2 virus are outlined. Adapting to other variants or respiratory pathogens
requires careful consideration of the core mechanisms that underlie differences in transmission potential. For instance,
subsequent SARS-CoV-2 variants often outcompete earlier variants by being more successful at evading the immune response.
In QVEmod, the altered susceptibility of the recipient host (i.e., probability of acquiring infection upon exposure) is captured
in the dose-response relationship (Eq.1, Section 2.2.3.3). To incorporate a change in the susceptibility of individuals, the
functional form of the dose-response curve (Eq.1, Section 2.2.3.3) and its parameters can be readjusted. Other indicators for
biological mechanisms could also underlie the difference in transmission between respiratory pathogens (or variants of the
same pathogen), including the parameters reflecting the virus emission characteristics of the infectious individuals (Section
2.2.2.1), and virus spread-related parameters in decay, deposition, and diffusion processes (Section 2.2.2.2). Consultation with
experts in virology and immunology is important for the correct interpretation of the experimental data used to inform these
mechanisms. Lastly, insofar as epidemiological data is available on (the distribution of) outbreak clusters in indoor settings,
these could be used to validate model outcomes. In doing so, one ensures that the implemented changes at the level of virus-
host and virus-environment interactions indeed result in the observed epidemiological patterns.
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