
Embedded Software

Orchestrating Mixed-Criticality
Melody
Reconciling Energy with Safety for Mixed-Criticality
Embedded Real-Time Systems

Sujay Narayana

M
as

te
ro

fS
cie

nc
e

Th
es

is

Orchestrating Mixed-Criticality
Melody

Reconciling Energy with Safety for Mixed-Criticality
Embedded Real-Time Systems

Master of Science Thesis

For the degree of Master of Science in
Embedded Systems

at Delft University of Technology

By
Sujay Narayana

August 28, 2015

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD Delft

The Netherlands

The work in this thesis was supported by Embedded Software Department, TU Delft
and was carried out at Computer Engineering and Networks group of Department
of Information Technology and Electrical Engineering, Swiss Federal Institute of
Technology (ETH), Zurich. Their cooperation is hereby gratefully acknowledged.

Copyright c© Embedded Software, Delft University of Technology and
Computer Engineering and Networks Group, ETH Zurich
All rights reserved.

Delft University of Technology
Dept. of Software and Computer Technology

The undersigned hereby certify that they have read and recommend to the
Faculty of Electrical Engineering, Mathematics and Computer Science for

the acceptance of a thesis entitled

Orchestrating Mixed-Criticality Melody :
Reconciling Energy with Safety for Mixed-Criticality

Embedded Real-Time Systems

by

Sujay Narayana

in partial fulfillment of the requirements for the degree of
Master of Science Embedded Systems

Dated: August 28, 2015

Chairman:
Prof. dr. K.G. Langendoen

Supervisor (TU Delft):
Dr. R. Venkatesha Prasad

Supervisor (ETH Zurich):
Prof. Dr. Lothar Thiele

Committee member:
Dr. ir. Fernando Kuipers

Abstract

Embedded systems are getting into various domains of our daily life as well as
in many of the highly sophisticated large systems, such as air planes, military
tanks, rockets, satellites. These large systems consist of many modules that are
executing umpteen number of tasks semi-independently. However, not all tasks
have the same levels of priority and/or criticality. One way is to design individual
systems with dedicated processors to avoid the dependency as proposed by the
industry. However, mixed-criticality notion helps to enhance system performance,
and reduce system cost, size, and weight. The idea is to integrate functionalities
of different safety criticality levels into a common computing platform. Further,
the energy consumption of these systems should also be taken into account. While
there are many algorithms under the broad umbrella of scheduling - preemptive,
non-preemptive, etc., – solutions that jointly minimize both static and dynamic
energy consumption in mixed-criticality systems on multi-cores under partitioned
scheduling are, hitherto, not addressed in depth.

To reconcile the conflicting requirements of safety and energy: (i) we formulate a
general energy minimization problem; (ii) we provide an analytical optimal solu-
tion on unicore systems and a corresponding low-complexity heuristic and (iii) we
provide energy-aware mapping techniques based on our unicore solutions on multi-
cores. Effectiveness in energy reduction is demonstrated for our solutions through
extensive simulations with synthetic task sets.

Table of Contents

List of Notations vii

Acknowledgements ix

1 Introduction 2
1.1 Mixed-Criticality revisited . 3
1.2 Mixed-criticality scheduling . 5
1.3 Motivation and Problem statement . 7
1.4 Contribution . 9
1.5 Thesis Outline . 10

2 Related Work 12
2.1 Scheduling . 12
2.2 Multi-core Mapping . 14
2.3 Energy minimization . 15

3 System Model 18
3.1 Mixed-Criticality Task Model . 18
3.2 Power Model and DVFS . 19
3.3 Mixed-Criticality Scheduling . 20
3.4 Scheduling and Energy Minimization 22

4 Motivational Example and Problem Definition 24
4.1 Motivational Example . 24

4.1.1 Unicore . 25
4.1.2 Multi-core . 26

4.2 Problem Formulation . 27
4.2.1 Unicore problem . 27
4.2.2 Energy-Aware Mapping . 29

iv Table of Contents

5 Unicore Optimal Solution 30
5.1 KKT Conditions . 30
5.2 Optimal Solution Using KKT Conditions 31
5.3 Optimality Condition in fχi . 32
5.4 Optimality Condition in x . 34
5.5 Simplified Energy Objective . 36
5.6 KKT Conditions for Simplified Objective 37
5.7 Optimal Solution . 38

5.7.1 Extreme case (fLO
LO = fLO

HI = fHI
HI = fmin) 39

5.7.2 Equilibrium case (xLBopt = xopt = xUBopt) 39
5.8 Heuristic Solution . 39

6 Energy Minimization on Multi-cores 42
6.1 Overview of Existing Methods . 42
6.2 Baruah’s method . 43
6.3 Gu’s method . 43
6.4 Energy Minimized Mixed-Criticality Mapping (EM3) 44
6.5 Isolated Mixed-Criticality Mapping Method (IM3) 45

6.5.1 Conditions for LO criticality tasks 45
6.5.2 Conditions for HI criticality tasks 45
6.5.3 Algorithm . 46

7 Evaluation 50
7.1 Experimental Setup . 50
7.2 Evaluation on Unicore . 51

7.2.1 Impact of Weight Factors . 51
7.2.2 Static energy saving . 52

7.2.3 Impact of C(HI)
C(LO) Ratio . 53

7.3 Evaluation on Multi-core . 53
7.3.1 Impact of Number of Cores . 54
7.3.2 Impact of Weight Factors . 55
7.3.3 Impact of Task Utilization . 56

7.4 Validation . 56

8 Conclusion and Future Work 58
8.1 Conclusion . 58
8.2 Future Work . 59

9 Publications 60

A Proofs 62
A.1 Schedulability conditions for EDF - VD with DVFS strategy 62

Bibliography 66

List of Figures

1.1 Mixed-criticality task set scheduled under EDF 6
1.2 Mixed-criticality task set scheduled successfully 6

3.1 Mixed-criticality task set scheduled under EDF-VD 22

4.1 Energy dissipation with different mode weights 25
4.2 Comparison of normalized energy consumption with different mapping

techniques on multi-core . 26

5.1 Bounds of x . 35
5.2 LO mode and HI mode energy as a function of fHI

HI 39
5.3 Different cases to check in Algorithm 2 40

7.1 Impact of weight factors on energy minimization 51
7.2 Static energy saving . 52
7.3 Impact of the ratio between C(HI) and C(LO) on energy minimization 53
7.4 Comparison of normalized energy consumption with different mapping

techniques . 54
7.5 Comparison of normalized energy consumption with different number of

cores . 54
7.6 Impact of weight factors on energy minimization 55
7.7 Impact of task utilization on energy minimization 56

vi List of Figures

List of Notations

τ Mixed criticality task set mapped on unicore or multi-core.
χ Criticality level, χ ∈ {LO , HI}.
Ci(χ) WCET of task τi in χ criticality mode.
Ti Minimum inter-arrival time of task τi.
fb Frequency at which WCETs Ci(χ) are calculated.
[fmin , fmax] Processor frequency range within which DVFS can be employed.
fχi Frequency of task τi in χ mode.
fχ2
χ1 Frequency at which all χ1 criticality tasks can be executed in

χ2 mode.
fχ2
χ1 opt

Optimum frequency at which all χ1 criticality tasks can be
executed in χ2 mode.

fχ2
χ1 min

Minimum required frequency at which all χ1 criticality tasks
must be executed in χ2 mode so that the taskset is schedulable.

Uχ2
χ1 χ2 mode utilization of all χ1 criticality tasks.

Eχ Total normalized energy of the system in χ mode.
wχ χ mode weight factor.
x Deadline shortening factor in the EDF-VD algorithm.
[x̂LB , x̂UB] Maximum feasible range of x.
[xLB , xUB] Lower and upper bound of x.
[xLBopt , xUBopt] Optimal lower and upper bound of x.
xopt Optimal x at which the energy consumption is minimum.
JaKc min(a, c).
JaKc max(a, c).
Ps Normalized static power.
α Activity factor which is constant for a processor.
β Dynamic power dissipation capacitance of a processor.
m Number of cores in the processor.

Acknowledgements

The work presented in this thesis was carried out at Swiss Federal Institute of
Technology (ETH, Zurich) with support from the Embedded Software group of TU
Delft.

Firstly, I wholeheartedly thank Prof. Dr. Lothar Thiele for providing me an oppor-
tunity to work under his guidance at Computer Engineering group, ETH Zurich.
I am grateful to him for his support in getting insights into this new topic. I am
indebted to him for giving me time and for the discussions I had with him.

I express my gratitude to Dr. R. Venkatesha Prasad who has been supporting me
as more than a supervisor all the way through. He has also been my guide, support
and motivation for many of my courses and project works. Saying just “Thanks”
would not be sufficient as I owe him much more.

My special thanks to Ir. Pengcheng Huang and Ms. Georgia Giannopoulou for
their valuable inputs at each step of my thesis work at ETH Zurich.

I would like to extend my thanks to Ir. Vijay S. Rao for helping me in various ways
during my stay at Delft.

Furthermore, I would also like to acknowledge my parents and my friends who have
always kept me motivating during my entire study period.

Finally, I would appreciate the support from IDEA League committee for providing
me the scholarship with the agreement to work at ETH Zurich.

Delft, University of Technology Sujay Narayana
August 28, 2015

Chapter 1

Introduction

In recent days, most of the computer systems currently built in areas such as avion-
ics, automotive industry, medical and robotic applications are mixed-critical [1] –
they contain complex functionalities for different safety-criticality levels. Mixed-
criticality is the concept of integrating applications with different criticality levels
(safety1, mission, real-time, non real-time) on a single computational platform. For
instance, in real-time systems such as Unmanned Aerial Vehicles (UAV), there
are safety-critical functionalities (stabilization) and mission-critical applications
(surveillance). When these tasks fail there are different consequences based on
their criticality levels. Thus it is important to consider the requirements of these
tasks based on their criticality levels. We explain many aspects of mixed criticality
systems in the sequel below.

The applications are consolidated into common computing platforms to further im-
prove scalability, increase reliability, enhance system performance, and reduce sys-
tem cost, size, and weight. The emergence of such mixed-criticality systems, while
increasing market competitiveness of their developers, pose tremendous challenges
in terms of analyzing and certifying system properties like timing and safety [2].
This is largely due to the fact that sharing resources among different criticality
levels could lead to mutual interferences jeopardizing their properties which could
have been certified otherwise under no resource sharing [3]. For example, if a low
criticality task occupies a shared resource for excessive amount of time, being it
the processor, bus, memory or IO, the execution of a high criticality task could
be greatly impacted, leading to missed deadlines and jeopardizing system safety.
To ensure timing safety, there arises a need for proper scheduling techniques that
can guarantee the execution of high criticality tasks within their deadlines. In
recent years, many scheduling techniques for mixed-criticality systems have been
proposed [1].

1Here the notion of safety is that the tasks must be completed within the given hard deadline.
Now on, Criticality here means safety criticality unless explicitly mentioned otherwise.

1.1 Mixed-Criticality revisited 3

One of the main reasons for mixing tasks together on a single platform is to mini-
mize system energy. Battery operated devices such as pacemakers, UAVs and satel-
lites may be mixed-critical and energy becomes a main concern in these devices.
However, energy reduction should not trade-off timing safety of high critical tasks.
Handling mixed-criticality system is already difficult and we are adding one more
dimension to this – energy. The main goal of this thesis is to minimize energy on
such systems without violating timing safety and schedulability of the system. We
propose an optimal solution and also a low complexity heuristic to minimize energy
on mixed-criticality systems. With one of our multi-core mapping techniques, we
also show that almost the same amount of energy can be saved even without mixing
tasks on a processor core. The overview of this chapter is as follows: In Section 1.1,
we discuss the background of mixed-critical systems and what is certification in the
mixed-criticality systems. In Section 1.2, we explain with an example, why schedul-
ing is an important problem in mixed-criticality system. Section 1.3 describes the
motivation for this research and our contributions are listed in Section 1.4. Finally,
the outline of this report is presented in Section 1.5.

1.1 Mixed-Criticality revisited

In the current decade, it has become a common trend in real-time embedded sys-
tems to integrate multiple applications on a common platform. Devices such as
Unmanned Aerial Vehicles (UAV), which operate in proximity to large civilian pop-
ulations, must guarantee safety along with their mission objectives [4, 5]. In such
systems, the criticality level of the system in terms of functionality can be divided
into two groups:

• Safety-critical: This group involves the applications that are performed
to ensure safe operation of the system. For instance, tasks such as flight
control and stability, actuation and power system control in avionics and UAVs
fall under safety-critical operations. To operate such devices over civilian
locations, they must be certified for flight critical functionalities by statutory
Certification Authorities (CA). Safety systems can be further classified as fail-
safe and fail-operational. A system is fail-safe if it can reach a safe state in
case of failures such that no harm is caused to other devices or personnel (e.g.,
a train that can be stopped during emergency). A system is fail-operational
if no safe state can be reached in case of a system failure (e.g., a rocket losing
its stability). Such systems must always be reliable, robust and be able to
take decisions immediately to ensure safety. In this thesis, we refer to fail-
operational systems.

• Mission-critical: Tasks that perform mission related operations such as
navigation, video surveillance and weapons management in UAVs, external
communication and entertainment systems in flights, driving comfort features
such as reverse/backing aid, power steering and night vision fall under mission
critical functionalities. These applications are also validated against comple-
tion of tasks within predefined deadlines but are not necessarily certified as
rigorously as safety-critical applications.

4 Introduction

For the integration of mixed-criticality system on a single computational platform,
the safety-critical tasks should be certified properly to promise timing safety: these
tasks are expected to complete their execution within their specified deadlines.
Currently the certification of mixed-criticality system is done in two steps [1]:

• Non-safety-critical certification: System designers (developers) analyze
both safety and non-safety-critical jobs and estimate their Worst Case Execu-
tion Times (WCETs), i.e., the time taken by a task to complete its execution
in worst case scenarios. With the measured WCET, the system designers
determine if both the low and high critical jobs are correctly executed within
their deadlines. However, the certification process is less rigorous than CA’s
certification process on safety-critical tasks, especially for WCET estimation.
The WCETs proposed by system developers are termed as LO WCETs (which
is followed in the literature).

• Safety-critical certification: Safety-critical applications are always cer-
tified by Certification Authorities (CA). Since the tasks involved are of high
criticality levels, CAs apply complex methods to analyze them, and they make
some assumption on their WCETs. To ensure safety, CAs tends to be very
conservative and the WCET estimations are more pessimistic than those the
system designer would specify. With such WCETs, the high criticality tasks
are always expected to complete their execution within their deadlines. The
WCETs proposed by CAs are termed as HI2 WCETs.

The presence of two WCETs for a safety-critical task makes the system scheduling
difficult as the task may switch between LO WCET or HI WCET at any time.
Also, the system is unaware of random overruns, when the task may execute in
its LO WCET or HI WCET. Considering only HI WCET during scheduling may
underutilize the system and only LO WCET may fail to guarantee timing safety.

To evaluate the safety of mixed-criticality systems, several certification standards
exist for major industries like automotive and avionics. Few of them are:

• ARINC 653 (Avionics Application Standard Software Interface) is a software
standard for safety-critical Real-Time Operating Systems in avionics depart-
ment. The standard mainly relies on partitioning system where applications
with different criticality levels are temporally isolated [6, 7].

• DO-178B is one of the standards in Airborne Systems and Equipment Cer-
tification used by the U.S. Federal Aviation Administration (FAA) for the
certification of commercial airplanes. The standard allows up to five criti-
cality design assurance levels A (very high critical level) to E (least critical
level), namely [8]:
Level A - Catastrophic: Very high critical level because failures may cause a
flight crash and the consequences are fatal, affecting lives.

2The notations LO and HI are used here adhering to the convention in the literature on mixed-
criticality systems.

1.2 Mixed-criticality scheduling 5

Level B - Hazardous: High critical level, failures have a negative impact on
safety. The flight has to be landed immediately else, causes fatal injuries
among the passengers.

Level C - Major: Significantly critical, but failure has a lesser impact than
Hazardous level. Failure may cause discomfort to passengers.

Level D - Minor: Less critical applications whose failure is noticeable but may
cause little inconvenience for passengers.

Level E - No Effect: Failure has no effect on the safety of aircraft or passengers.

• Automotive Open System Architecture (AUTOSAR) is a software standard
for certifying safety-critical applications in automotive domain [9]. The stan-
dard is used to certify different subsystems and ECU software in the automo-
tive industry.

The certification process is very tedious as even the least critical components have to
be certified at the highest criticality level sometimes because of resource sharing and
interdependency among tasks. When tasks with different criticality levels execute
on the same platform, there may exist the interference of low criticality tasks on
high criticality tasks. Hence, certification of safety according to industrial standards
is a great challenge to guarantee interference freeness among tasks. As an easy way,
industry prefers isolated system where tasks with different criticality levels are not
mixed on a processor. Though energy, cost and resources increase due to multiple
processors, timing safety is ensured.

The ultimate goal of certification in mixed-criticality systems is to assure the ex-
ecution of tasks with different criticality levels in the system without jeopardizing
safety/security guarantees. In many applications such as rockets and missiles, some
systems may undergo multiple sets of certification tests to ensure additional safety.
This gives rise to task scheduling problem as there will be more than one WCET
for high criticality tasks, one provided by system designers and another by CAs. In
next section, we describe with an example, why scheduling mixed-criticality tasks
is not as simple as that of normal real-time systems.

1.2 Mixed-criticality scheduling

In literature, we find many techniques and algorithms to schedule tasks in real-
time systems [10, 11]. In 1973, Liu and Layland presented an optimal scheduling
technique called Rate Monotonic (RM) to schedule fixed priority periodic real-
time tasks [12]. Earliest Deadline First (EDF) is one of the efficient and optimal
algorithm for dynamic scheduling of preemptive periodic and aperiodic tasks [13].
In EDF, priority for execution is assigned to a job with the earliest deadline, during
run-time. EDF has 100% processor utilization factor as it can schedule any task set
with system task utilization (sum of the value of each task’s WCET divided by its
period) less than or equal to 1. However, EDF is designed for single WCET tasks
and is not aware of random overruns that can occur in mixed-criticality systems.

6 Introduction

τ Criticality T (ms) C(LO) (ms) C(HI) (ms)
τ1 LO 4 2 2
τ2 HI 6 1 5

Table 1.1: A mixed-criticality taskset

We show with an example, why most efficient techniques such as EDF may fail in
scheduling mixed-criticality systems.

Figure 1.1: Mixed-criticality task set scheduled under EDF

Figure 1.2: Mixed-criticality task set scheduled successfully

Example 1. Let us consider a mixed-criticality task set τ to be implemented on
a preemptive uniprocessor. The system is comprised of dual-criticality tasks: one
low (LO) criticality task τ1 and one high (HI) criticality task τ2. τ2 is subject to
certification whereas τ1 not. The considered tasks with their low and high criticality
WCETS and arrival time periods are listed in Table 1.1. Ci(LO) is the WCET
estimated by the developer and Ci(HI) by CAs. We assume that all tasks initially
release jobs at time zero and have the deadlines equal to their respective periods.
Let us employ EDF to schedule the tasks as shown in Figure 1.1.

Let us assume that the system starts in nominal mode (LO criticality mode) where
both low and high criticality tasks are executed with their nominal WCETs. At
time zero, since τ1 has the earliest deadline of 4ms, it gets to execute first accord-

1.3 Motivation and Problem statement 7

ing to EDF test. It completes execution at 2ms and then τ2 starts executing. The
process continues until 14ms where both the tasks complete their execution within
their respective deadlines. At time 14ms, τ2 starts executing its third job. Since τ2
is of high criticality level, let us assume that it cannot complete its execution within
its low criticality WCET of 1ms. Therefore, at 15ms, the system shows high criti-
cality behaviour (HI criticality mode) where τ2 executes for extra C2(HI)−C2(LO)
workload i.e, 4ms. This requires τ2 to execute until 19ms but it has already missed
its deadline at 18ms. Hence, the system scheduled using EDF fails certification.

On the other hand, if we prioritize high criticality task even in nominal scenario
when tasks do not overrun, then τ2 would meet their deadlines even under the
worst-case scenarios estimated by the Certification Authority. This is shown in
Figure 1.2. However, the job released by low criticality task τ1 at 12ms fails to
execute within its deadline but without affecting the safety. Thus, we achieve the
goal of mixed-criticality system by ensuring safety even if we put low criticality task
in jeopardy. Therefore, to promise safety, most of the scheduling algorithms drop
tasks with a criticality level less or equal to present executing task that overruns
its nominal WCET.

Example 1 clearly shows that the requirements in mixed-criticality cannot be com-
pletely addressed using EDF. This is because, EDF assumes that all tasks are
equally critical, so do the other traditional scheduling techniques such as RM. This
gives rise to important and interesting scheduling problems in the mixed-criticality
system.

In next sections, we discuss briefly about processor energy, motivations for this
thesis work and our contributions.

1.3 Motivation and Problem statement

Much of the existing and growing literature on mixed-criticality systems targets
functional requirements such as scheduling and resource management [1]. However,
to our best knowledge, non-functional properties like energy consumption are not
explored much. In battery operated mixed-criticality devices such as drones, robots
and medical gadgets, energy minimization is more prominent to minimize power
costs. The energy issue is an active area of research with the goal of extending the
battery life of these portable consumer devices. The power consumption in modern
processors can be divided into two categories: Dynamic power and Static power.

1. Dynamic power: Dynamic power consumption is caused due to the switch-
ing activity of transistors, and charging and discharging of capacitors in pro-
cessors when tasks are executed. This power is proportional to the supply
voltage and frequency at which the tasks are executed [14, 15]. Dynamic
Voltage and Frequency Scaling (DVFS) is a common way of reducing dy-
namic power consumption in real-time systems and is followed from past two
decades [14, 16, 15]. The basic idea of the DVFS strategy is to trade off
performance for power consumption by lowering the operating voltage and

8 Introduction

frequency of the processor, thereby extending the task execution time. How-
ever, the task deadline should be still met.

2. Static power: Static power is leakage power in the circuit which exists
even in the absence of any CMOS switching activity. Static power can be
minimized by shutting off the processor cores when there are no tasks exe-
cuting [17, 18]. Even though static power consumption is comparatively less
than dynamic power consumption in previous process technology nodes, this
is not true anymore. As the CMOS technology level in processor design re-
duces, the static power accounts more of the total power (up to 44 % in 50 nm
technology) [19, 20].

In this paper, we address the energy reduction of mixed-criticality systems without
violating the timing safety. With continuous shrinking of circuit footprint, the
issue of operating temperature and the battery operated nature of many electronic
systems, energy saving is becoming a prominent issue [21]. Unfortunately, so far,
there are only a few results such as [22] that addresses energy in mixed-criticality
systems. This is the strong motivation for this research followed by the following
rationale:

1. Energy minimization: The total energy of the system is the sum of both dy-
namic and static energy and are to be minimized. Since static energy also has
almost equal weight as dynamic energy, there is a need for minimizing static
energy along with dynamic energy. There are tremendous works in literature
where energy-aware scheduling is performed on real-time systems using online
or offline DVFS. However, energy minimization in mixed-criticality systems
is not explored much.

2. Energy minimization vs Scheduling: Proper scheduling is necessary and
energy minimization is important in mixed-criticality systems. To guarantee
safety, the high criticality tasks should execute as fast as possible so that they
can still meet their deadlines even if they overrun their low criticality WCETs.
On the contrary, DVFS minimizes energy by stretching task execution time
by lowering the execution frequency. Therefore, the conflicts between energy
minimization and guaranteeing safety have to be carefully handled so that
both energy minimization and safety are achieved.

3. Trade-offs between nominal and critical mode: To guarantee safety,
speeding up the overload of the system such that high criticality tasks can
still meet their deadlines is intuitive. This even helps in reducing nominal
energy consumption. This problem has already been addressed by Huang
et.al. in [23]. However, energy minimization in the overrun mode is also
important as the system can continue in overrun mode for a long duration. It
becomes unclear in this case to speedup the execution to guarantee safety: the
task can complete more workload in nominal mode by increasing execution
frequency such that more slack is available in overrun mode to guarantee safety
and to reduce overload energy; or save nominal energy by speeding up extra
workload if the system is active for less time in overrun mode. Hence, there

1.4 Contribution 9

exists a trade-off between energy consumptions in both modes subjecting to
safety constraint, making the overall energy minimization problem complex.

4. Energy aware scheduling on multi-cores: Multi-core is an emerging
technology and are widely used in mobile real-time systems such as smart
phones, tablets, and laptops. Multi-cores deliver a higher throughput at lower
power consumption than unicores. With safety as objective, many researchers
have proposed scheduling algorithms and task mapping techniques for multi-
core platform [1, 24, 25] in mixed-criticality systems. However, there is hardly
any work done in terms of energy. The energy problem on multi-cores is even
more complex than on unicores. There are many factors to be considered
that add extra effort in case of multi-cores: choosing the optimal number
of cores for execution as more cores lead to increase in static energy and
fewer number of cores forces to increase execution frequency, in turn, dynamic
energy; selecting energy-aware bin packing techniques [26, 27, 28]; scheduling
paradigms (global or partitioned) in terms of energy [29, 30], etc.

5. Isolation and energy minimization: Though mixed-criticality notion re-
duces cost and size of the system, traditional isolation methods are preferred
in the industry to guarantee safety [31]. According to this standard, tasks
with different criticality levels are not mixed on the same processor core.
This prevents the interference of low criticality tasks on high criticality tasks.
However, it has not been explored yet, how good to “mix” or “isolate” tasks
on different cores when it comes to energy minimization.

Hence, the overall energy minimization problem on unicore and multi-core in mixed-
criticality systems is important and challenging. Even the energy issue on the
dual-criticality and uniprocessor system is unsolved yet. This strongly motivated
us to put our efforts in this work where we minimize the energy consumption of
mixed-criticality systems without violating the timing safety of highly critical tasks.

1.4 Contribution

In this work, we address energy minimization problem in mixed-criticality systems
and our contributions are many folds:

• We formulate a general energy minimization problem on both unicore and
multi-cores and propose an optimal solution while considering system safety
and mutual interferences among different criticality levels.

• As opposed to the state of the art where energy saving is considered only in
nominal mode, we consider energy minimization in both nominal and overrun
scenarios.

• We also reduce static energy consumption considerably in unicore and multi-
cores using DVFS and also by switching the processor into sleep mode when
it is idle. In addition, we adjust the number of active cores to reduce leakage
power consumption in multi-cores.

10 Introduction

• We present a computationally attractive heuristic with comparable perfor-
mance to the optimal solution on unicore and multi-cores.

• We propose an energy efficient multi-core mapping technique extending our
unicore solution to judiciously explore the energy savings on multi-cores in
mixed-criticality systems.

• We additionally provide an energy-aware isolated mapping technique for multi-
cores where the tasks with different criticality levels are not mixed as preferred
by the industry.

• We evaluate our approach by considering a realistic Flight Management Sys-
tem (FMS) application on unicore platform.

• We conduct extensive simulations to evaluate energy-aware mapping tech-
niques on multi-cores. We also demonstrate with our results that both map-
ping methods – “mixing of tasks” and “maintaining isolation” almost save
same amount of energy.

1.5 Thesis Outline

The rest of the article is structured as follows: In Chapter. 2, we discuss the relevant
literature with respect to this thesis. In Chapter. 3 we describe the system model
and in Chapter. 4 we present a convex problem formulation of the energy minimiza-
tion problem. In Chapter. 5 we propose an optimal analytical solution and a simple
heuristic to fulfill the energy minimization objective. We present different energy
efficient multi-core mapping techniques in Chapter. 6 and evaluate our model in
Chapter. 7. Finally we conclude in Chapter. 8.

Chapter 2

Related Work

The real-time research community has contributed many techniques for handling
interferences in mixed-criticality systems [32, 33, 2]. It is interesting to see that all
the techniques proposed so far share a common concept - to have multiple system
models on different criticality levels and to enforce asymmetric interference among
those levels [1]. In particular, the worst-case-execution-time (WCET) of all tasks
is measured at all criticality levels, with the one at a higher criticality level being
more pessimistic. At runtime, whenever any task exceeds its execution time on
a certain criticality level, only tasks with higher criticality levels are guaranteed
thereafter. In other words, high criticality tasks are allowed to interfere with low
criticality level tasks (e.g., terminating them). However, the other way is forbidden.
Many conventional scheduling techniques (e.g., fixed-priority, EDF, TDMA) have
been extended to the mixed-criticality context. In this chapter, we list few relevant
works done in the field of mixed-criticality systems. First, we discuss the important
works done on scheduling, followed by mapping mixed-criticality tasks on multi-core
and energy minimization.

2.1 Scheduling

In the literature, we find many scheduling algorithms for executing tasks in a mixed-
criticality system.

• The concept of mixed-criticality was introduced in 2007 by Vestal of Honeywell
Aerospace [34]. He extended Audsley’s fixed priority real-time scheduling the-
ory to verify mixed-criticality systems, focusing on unicore. Vestal proved that
traditional algorithms such as Rate Monotonic and Deadline Monotonic were
not optimal for mixed-criticality systems. The proposed technique mainly
used Response Time Analysis to ensure timing safety.

• Vestal’s work was improved by Baruah et al., [35] in 2008 using response-time
analysis for fixed-priority scheduling of a sporadic task model. They also

2.1 Scheduling 13

conducted a thorough study of system feasibility and prove that EDF fails
when criticality levels are introduced in real-time systems even if there exists
a feasible solution.

• S. Baruah et al., proposed an effective scheduling algorithm called Own Criti-
cality Based Priority (OCBP) [36] that extends Audsley’s priority-based real-
time scheduling approach. OCBP algorithm selects a task and first assigns
it with a current level priority. If the task is schedulable, then it is moved
to next higher priority. If the task is not schedulable, then another feasible
task is assigned with the current priority level. When no task is schedulable
at current priority level or when all the tasks are assigned with priorities, the
algorithm terminates. The authors show that OCBP is better in terms of
speedup factor among all the fixed-job-priority algorithms for non-recurrent
task set. They also demonstrate that OCBP is optimal in terms of speedup
factor and significantly better in performance than conventional approaches.

• A dynamic scheduling algorithm called Criticality Based Earliest Deadline
First (CBEDF) was proposed by T. Park [37] in 2011. CBEDF comprises of
two sub-algorithms: one to locate empty slack in offline mode and another to
schedule tasks during runtime. The algorithm maintains two task queues: one
for safety-critical and another for non-safety-critical tasks. First, the critical
tasks are scheduled offline using their WCETs. Next, the non-safety tasks are
inserted into the available slacks. Finally, the scheduling is performed during
runtime. The authors also proved that CBEDF dominates Baruah’s OCBP.

• Pellizzoni et. al. [38] proposed a reservation-based approach, providing iso-
lation guarantees in mixed-criticality systems. The approach is similar to
Platform Based Design [39] which distinguishes functional and physical iso-
lation to deal with data exchange and system resource sharing. Petters et.
al. [40] also addressed issues in mixed-criticality systems and proposed tem-
poral isolation based scheduling technique. However, the approach was not
energy aware and also relies on over provisioning system resources.

• In 2012, Baruah et. al. proposed a simple and efficient algorithm called
EDF-VD (Earliest Deadline First - Virtual Deadlines) for scheduling mixed-
criticality tasks. The idea is to set earlier deadlines (virtual deadlines) for
tasks on different criticality levels so that a higher-criticality task finishes
its low criticality workload early and save time for its extra workload. The
authors also show that the algorithm has a speedup factor of 4

3 and can
schedule 4

3 times faster than any optimal clairvoyant algorithm can.

• Ekberg and Yi [41] used demand bound approach to analyze the constrained
deadline tasks scheduled by the EDF-VD. The tasks on different criticality
levels are set with the virtual deadlines depending on the demand bound of
the tasks. Similar to EDF-VD, all low criticality tasks are abandoned when
the system switches to overload mode.

• Easwaran improved Ekberg and Yi’s method for dual-criticality systems by
suggesting a new demand-based schedulability test. This test was an improved

14 Related Work

version of Ekberg’s model. Easwaran also introduced deadline tightening
strategy for high criticality tasks in his improved test.

2.2 Multi-core Mapping

We find many real-time task scheduling algorithms for the multi-core platform in
literature [42, 43, 44] out of which Partitioned [45, 30] and Global scheduling [29]
algorithms are widely used. In global scheduling, a task may be executed on differ-
ent processors (or processor cores) and in partitioned scheduling, the assignment of
a task is fixed to a particular processor. Because of their simplicity and efficiency,
partitioned scheduling algorithms are preferred than global scheduling. This even
holds true for mixed-criticality systems as partitioned scheduling can provide isola-
tion and reduce interference between tasks with different criticality levels.

• In 2009, Anderson et al., discussed mapping and scheduling of mixed-criticality
tasks in the context of multi-processor platform [46]. The authors addressed
five different criticality Level A (very high critical) to E (very low critical).
The tasks were mapped on available processor cores using different techniques:
Tasks with Level A are scheduled statically (cyclic executive); Level B tasks
using partitioned preemptive EDF; Level C and D with global preemptive
EDF; and global best-effort for Level E tasks.

• Li and Baruah combined EDF-VD with global scheduling algorithm fp-EDF [47]
to schedule mixed-criticality tasks on multi-processor platform. Evaluations
indicated that combination was inefficient for globally partitioned systems.

• Baruah.et al., also extended EDF-VD on the multi-core platform using par-
titioned mapping [24]. The mapping is done in two steps: First, all the high
criticality tasks are mapped on different cores using First-Fit bin packing [26]
technique. In the second stage, all low criticality tasks are mapped on avail-
able cores using the First-Fit method. Finally, EDF-VD is used to schedule
tasks on each core. This approach showed better performance in terms of
schedulability as compared to fp-EDF, and reduced the number of processor
cores used for execution.

• A novel and a different approach for scheduling multi-criticality tasks on multi-
cores was provided by Kritikakou et al., [48]. The aim was to decrease the
interference of low criticality tasks due to shared memory and bus. The
execution times of high criticality tasks are monitored until a point when
further interference cannot be tolerated. In situation of high interference,
the low criticality tasks are abandoned to guarantee the certification of high
criticality tasks.

• Giannopoulou et al., [3] use partition and time-triggered approach to schedule
mixed-criticality applications on resource sharing multi-core systems. In this
approach, only tasks with same criticality level can access the multi-processor
bus at any point of time. This helps to reduce interference and ensure safety

2.3 Energy minimization 15

since lower criticality tasks are not allowed to execute simultaneously along
with high criticality tasks.

• C. Gu .et al., [49] propose a new variant of multi-processor scheduling al-
gorithm that is based on Ekberg and Yi’s single core approach [41]. Task
mapping is achieved in two steps: first all high criticality tasks are allocated
on cores using Worst-Fit, followed by low criticality tasks using the First-
Fit. Finally, Ekberg’s algorithm is used to schedule tasks on each core. Since
Worst-Fit tries to distribute the slack on available cores evenly, the high crit-
icality tasks are circulated on available cores. However, the LO criticality
tasks are loaded on the first available core, thus decreasing the interference
on HI criticality tasks.

• Mixed-criticality scheduling upon varying-speed multi-processors was addressed
by Z. Guo et al., in [50]. They construct a linear program (LP) based on
scheduling conditions. The program implements processor-sharing approach
and according to its solution, the mixed-criticality tasks are scheduled on
multi-processors.

• G. Liu et al., present a novel method called MinLoad algorithm [51] for
scheduling mixed-criticality parallel jobs. The idea is to decompose paral-
lel tasks into sequential tasks and map them into different processors. The
jobs on all the processors are executed in parallel, thus achieving intra-task
parallelism.

• Recently, a fault-tolerant scheduling algorithm for mixed-critical applications
on multi-processor platforms was presented by M. Bagheri and G. Jervan [52].
The authors suggest a framework to handle both computation and inter-task
communication in NoC-based multi-processors. They also propose a mixed-
criticality scheduling method that can ensure safety even in the presence of
transient faults.

2.3 Energy minimization

Energy-efficient scheduling has been an active research topic in the past decade.
There are many excellent techniques proposed such as DVFS for single and multi-
processor systems. Most of them are for general real-time systems where all tasks
are considered to be equally critical. However, there are few explorations done in
terms of mixed-criticality system and energy minimization.

• An approach is presented in [53] to trade the deadline missing of low criticality
tasks with the energy savings on multi-cores while deadlines of high criticality
tasks are always guaranteed. The authors propose a power-aware scheduling
algorithm called LPDPM-MC for mixed-criticality systems, based on LPDPM
algorithm.

• M. Volp et al., [54] discuss and demonstrate how energy handling can lead to
failures in ensuring mixed-criticality safety. They consider a real-time scenario

16 Related Work

and show that handling of energy can lead to safety violations and can be
avoided only when energy becomes equal resource as time. They also discuss
the energy threats and re-evaluate scheduling techniques such as OCBP for
energy budget.

• A method to minimize energy for unicore mixed-criticality systems is pre-
sented in [22], while respecting system reliability and timing requirements.
Rather than treating energy as an optimization goal, the situation when en-
ergy supply is going down is handled. Focus on the energy utilization in high
criticality tasks is advocated while allowing deadline misses of low criticality
tasks.

• Huang et al., proposed an energy efficient algorithm [23] to minimize the
energy consumption for the nominal scenario where tasks do not overrun. An
optimal solution for the unicore system is proposed in this regard at the cost
of increased energy consumptions for other system scenarios.

As described above, most of the proposals discuss about scheduling mixed-criticality
tasks on unicore and multi-cores. While energy minimization is achieved by [53, 22,
23], either they concentrate energy reduction in only one of the criticality modes
or trade-off energy for timing guarantee. Of these works, Huang’s work [23] is the
closest to our work where a solution for saving dynamic energy in nominal mode is
proposed.

Chapter 3

System Model

In this chapter, we first define the mixed-criticality system and power model used
in our work. In Section 3.1, we describe our task model that is based on tradi-
tional mixed-criticality assumptions in literature. We then discuss the power model
adopted in our work in Section 3.2. In Section 3.3, a mixed-criticality scheduling
technique (EDF-VD) employed to fulfill the requirements of certifiability is dis-
cussed with an example. Finally, we employ energy minimization strategy (DVFS)
to EDF-VD, which is described in Section 3.4.

3.1 Mixed-Criticality Task Model

We consider a mixed-criticality task set τ containing n independent sporadic tasks
τ1, τ2,τn to be scheduled on m identical preemptive processors. The relative
deadline and minimum inter-arrival time of task τi are denoted as Di and Ti, re-
spectively. Tasks have implicit deadlines, i.e. ∀τi, Di = Ti. A task can release an
infinite number of jobs separated by its minimum inter-arrival time. We consider
two-criticality levels in our model: each task τi is associated with a safety critical-
ity level χi, being either High (HI) or Low (LO). To ensure safety, HI criticality
tasks are more conservative than LO criticality tasks. As a result, WCETs of HI
criticality tasks are more pessimistic than that of LO criticality tasks. To further
improve resource efficiency, the state-of-the-art assumption [1] is to measure task
WCETs on all criticality levels

1. For any HI criticality task τi, it has a LO criticality WCET Ci(LO) and a
more pessimistic HI criticality WCET Ci(HI).

2. A LO criticality task τi is not allowed to overrun its LO criticality WCET
Ci(LO).

3.2 Power Model and DVFS 19

Based on the above model, resource efficiency is achieved through dynamic resource
management:

• The methodology is to start the system execution with LO mode where all
tasks execute according to their LO criticality WCETs.

• If any HI criticality task overruns its LO criticality WCET, then the system
switches to HI mode and all LO criticality tasks are dropped to guarantee HI
criticality WCETs for HI criticality tasks.

However, the system can switch back to LO criticality mode at any time when
there are no pending tasks available for execution. We do not discuss this scenario
since it is beyond the scope of this work. Notice that, on a multi-core platform,
the mixed-criticality mode switch can be performed locally by assuming partitioned
scheduling [30] or globally by assuming global scheduling [29].

For notational convenience, we define Uχ2
χ1 for χ1 , χ2 ∈ {LO,HI} as follows:

Uχ2
χ1 =

∑
τi∈τ∧χi=χ1

Ci(χ2)
Ti

. (3.1)

Uχ2
χ1 is defined as the total utilization of all χ1 criticality tasks with their χ2 criti-

cality WCETs, on all cores. For instance, ULO
HI denotes the utilization of HI criti-

cality tasks with their LO criticality WCETs (LO mode behavior of HI criticality
tasks). We further define τχ as the χ criticality tasks present in task set τ where
χ ∈ {LO , HI}.

Other notations: For ease of presentation, we use JaKc to represent min(a, c) and
JaKc to represent max(a, c).

3.2 Power Model and DVFS

In this paper, we adopt a popular power model presented in [55, 56]. Assuming a ho-
mogeneous multiprocessor platform, the total power consumption of any processor
is formulated as

P (f) = Ps + Pd = Ps + β · fα,

where P (f) is the total power consumed and Ps stands for the static power con-
sumption due to leakage current. f is the frequency at which the processor executes
tasks and β ·fα represents the dynamic power consumption (Pd) caused by switching
activities, where α and β are circuit dependent positive constants. An assumption
is made in [57, 58] that α ≥ 2. Hence dynamic power of the system is a convex
increasing function. In order to minimize dynamic energy, the working frequency
can be decreased by means of DVFS. However, with reduced frequency the leak-
age energy is increasing as it takes longer to finish a job. Thus, there is a critical
frequency fcrit below which energy-wise it is not beneficial to reduce1. For any job

1More details on fcrit can be found in [59]

20 System Model

with workload of nc clock cycles, [59, 56] shows that the critical frequency can be
obtained as follows,

d(ncf · Ps + nc
f · β · f

α)
df

= 0

⇔fcrit = α

√
Ps

β · (α− 1) .
(3.2)

As a result, we assume in this paper that the hardware platform is DVFS enabled
and can execute with any frequency between fmin and fmax, where fmin ≥ fcrit. To
simplify presentation, we assume fmax is normalized to 1 and fb is the frequency
on which task WCETs are measured without employing DVFS such that fmin ≤
fb ≤ fmax. Notice that applying DVFS strategy changes actual WCETs of tasks: a
task’s χ criticality WCET becomes Ci(χ)fb

f
while running at frequency f .

In our system model, we consider only dynamic and static power for minimization.
However, there is power consumption due to shared components such as processor
caches, shared memory and buses in multi-core platform which we do not count as it
is not in the scope of our work. Hence, the total power consumption of a multi-core
is obtained by summing up the total power consumption of individual cores. To
save static power, we switch the processor core to idle/sleep mode when no tasks
are executed. For simplicity, we assume that sleep mode power is zero2 and do not
consider the active to idle (and vice-versa) mode switching time overheads.3

3.3 Mixed-Criticality Scheduling

For mixed-criticality multi-core scheduling, either global scheduling [29] or parti-
tioned scheduling [30] can be applied. In this paper we focus on the latter. Since
mixed-criticality scheduling is strongly NP-hard even for simple task models on a
uniprocessor [30], we particularly study the integration of energy decisions into a
well-known approach – the partitioned EDF-VD scheduling [24].

For partitioned EDF-VD, HI criticality tasks are first mapped to all processors fol-
lowed by mapping of LO criticality tasks. During this process, First-Fit bin packing
is used for mapping while system utilization factors on each core are set to admit
feasible local schedules [24]. After mapping tasks onto processors, scheduling on
each processor follows EDF-VD [32]. In EDF-VD, the deadlines of all HI criticality
tasks are shortened by a multiplication factor x (0 ≤ x ≤ 1) in LO mode, thus
prioritizing their executions and leaving enough time until their actual deadlines to
accommodate extra executions (overrun). Intuitively, a smaller x causes increased
system utilization in LO mode but decreasing system utilization in HI mode as more
jobs are finished in LO mode. Consequently, it will affect system schedulability in
both LO and HI modes. Let us relax our notation and assume task set τ is run on
a unicore. The following results from [32] limits the feasible range of x.

2The sleep mode power is not zero in practice as the processor should be ON, and be able transit
to active mode again. However, sleep mode power is constant independent of execution frequency.

3The switching time overheads can be included in WCETs of the tasks.

3.3 Mixed-Criticality Scheduling 21

Theorem 1. To guarantee system schedulability on a unicore under EDF-VD, x
must be set in the following range,

0 < ULO
HI

1− ULO
LO
≤ x

x ≤
s

1− UHI
HI

ULO
LO

{1
.

(3.3)

Proof. This follows from (3) and Theorem 2 in [32].

Once the deadlines of HI criticality tasks are shortened, then scheduling is per-
formed as follows:

1. The system starts with LO mode and all LO criticality tasks are scheduled
under EDF, with their actual deadlines equal to their periods (Ti).

2. All HI criticality tasks are executed with their modified deadlines (T̂i = x ·Ti).

3. If any HI criticality task fails to execute within its nominal WCET, then the
system immediately enters into HI criticality mode and all HI criticality tasks
are executed with their actual (unmodified) deadlines. All LO criticality tasks
are suspended henceforth.

For better understanding of the EDF-VD test, let us consider the same task set
mentioned in Example 1 and schedule it using EDF-VD on a unicore.

Example 2. As a first step, let us calculate the task utilization in both LO and
HI criticality modes. Then, we find the feasible range of x to shorten the deadlines
of HI criticality tasks, and finally schedule the task set.

Step 1: Using (3.1), we can calculate task utilization in different modes as:

ULO
LO =

∑
τi∈τ∧χi=LO

Ci(LO)
Ti

= 2
4 = 1

2

ULO
HI =

∑
τi∈τ∧χi=HI

Ci(LO)
Ti

= 1
6

UHI
HI =

∑
τi∈τ∧χi=HI

Ci(HI)
Ti

= 5
6

Step 2: Using (3.3), we can calculate the bound for x:

0 <
1
6

1− 1
2
≤ x ≤

1− 5
6

1
2

≤ 1

⇐⇒ x = 1
3

22 System Model

Figure 3.1: Mixed-criticality task set scheduled under EDF-VD

Note: We obtained x = 1
3 = constant. However, when x is bounded, fixing x with

the least possible value ensures more safety as HI criticality tasks get more priority
because of shortened deadlines.

Step 3: The deadlines of all HI criticality tasks are shortened by x:

∀τi ∈ χi = HI, T̂i = x · Ti

⇐⇒ T̂2 =
(1

3

)
· 6 = 2

Step 4: The task is scheduled under EDF as shown in Figure 3.1. Assuming that
the 3rd job of τ2 overruns its nominal WCET, we observe that τ2 meets its deadline,
thus guaranteeing safety.

3.4 Scheduling and Energy Minimization

Now, let us apply energy minimization technique DVFS on EDF-VD so that execu-
tion frequency of tasks can be changed to ensure safety as well as conserve energy.
Essentially, Theorem 1 states that there is a lower bound on x, below which the
LO mode will not be schedulable. Similarly, an upper bound exists, beyond which
the HI mode will not be schedulable. However, notice that with DVFS, the system
utilization factors are modified, and the test as specified in Theorem 1 needs to be
performed with the scaled utilization factors. Hence with Theorem 1, we can get a
new schedulability condition for the EDF-VD test, by scaling task utilizations with
execution frequency.

Corollary 1. For a task set τ scheduled by EDF-VD on a unicore. Assume that
with DVFS, task τi has frequency fχi in χ system mode, then the feasible range of
x is,

0 < ŨLO
HI

1− ŨLO
LO
≤ x ≤

t
1− ŨHI

HI
ŨLO

LO

|1

(3.4)

3.4 Scheduling and Energy Minimization 23

where
Ũχ2
χ1 =

∑
τi∈τχ1

C̃i(χ2)
Ti

,

C̃i(LO) = Ci(LO)fb
fLO
i

, ∀τi ∈ τ

C̃i(HI) = Ci(LO)fb
fLO
i

+ (Ci(HI)− Ci(LO))fb
fHI
i

, ∀τi ∈ τHI

Notice that, according to Corollary 1, with increasing fχi , ∀τi, the lower bound of
x after DVFS does not increase while the upper bound does not decrease as all
utilization factors decrease. Thus, we know for any possible DVFS strategy, x must
be within the absolute respective bounds where fχi = fmax, ∀τi. We denote the
lower and upper bounds in this case as x̂LB , x̂UB ∈ [0 , 1], respectively.

Chapter 4

Motivational Example and
Problem Definition

In this chapter, we provide a motivational example and describe the problem def-
inition. In Section 4.1, with a concrete example we explain the need for energy
minimization and analyze the factors that affect the energy consumption in uni-
core and multi-core. We then present a convex problem formulation of the energy
minimization problem in Section 4.2.

4.1 Motivational Example

τ χi Ti Ci(LO) Ci(HI)
τ1 HI 40 4 12
τ2 HI 75 6 18
τ3 HI 40 3 9
τ4 LO 100 6 6
τ5 LO 80 5 5

Table 4.1: A mixed-criticality taskset

Minimizing only LO mode or only HI mode energy is not appropriate as the system
might switch between modes at any time. To indicate the importance of energy
minimization in a particular mode, we define weight factors wLO and wHI for LO
and HI modes respectively, where wLO , wHI ∈ [0 , 1], wLO = 1 − wHI. The weight
factors are the percentages that the system operates in LO and HI modes. As
discussed in Chapter 1, we also include static energy minimization in our problem.
Let us consider an example to show the impact of weight factors and static energy
in minimizing energy on mixed-criticality systems. First, we consider a unicore
platform to analyze the problem and explain the need for energy minimization in

4.1 Motivational Example 25

Figure 4.1: Energy dissipation with different mode weights

both LO and HI modes. Then, we map the tasks on multi-core to evaluate the effects
of First-Fit and Worst-Fit mapping techniques in minimizing energy on multi-cores.

Example 3. The considered tasks are shown in Table 4.1. The task set is schedu-
lable on a uniprocessor according to the EDF-VD test with base frequency fb = 0.9.
The processor is capable of DVFS in the range [fmin, fmax] = [0.5, 1] and we consider
α = 2 and β = 0.8 [58, 59]. Assuming the normalized static power Ps = 0.2 [58], we
calculate the normalized total energy dissipation of the system with different mode
weights wLO and wHI.

4.1.1 Unicore

We consider 3 strategies to demonstrate the impact of weight factors and static
energy on energy minimization on a unicore:

• Strategy A: Without DVFS, where all tasks are executed with base fre-
quency fb.

• Strategy B: With DVFS, where only dynamic energy is optimized (set Ps =
0 during optimization). The optimal frequencies are calculated using the
algorithm that we present in Section. 5.8 and finally total energy is calculated
as the weighted sum of static and dynamic energy in both the modes.

• Strategy C: With DVFS, considering both static and dynamic energy for
optimization. The optimal frequencies are calculated using the algorithm
which we present in Section. 5.8 and finally total energy is calculated as the
weighted sum of static and dynamic energy in both the modes.

In strategies (B) and (C), we consider energy saving in both LO and HI mode
modeled with the weighted sum of LO and HI mode energy. The expected energy
consumptions are listed in Figure 4.1.

Indeed, it is evident from the results we obtained that better energy saving can be
achieved by employing DVFS (Strategies B and C as compared to Strategy A). To

26 Motivational Example and Problem Definition

Figure 4.2: Comparison of normalized energy consumption with different mapping
techniques on multi-core

demonstrate the importance of weight factors, let us consider the task utilization,
expected energy outcome and the weight factors into account at first. Note that in
the considered task set, UHI

HI >
(
ULO

LO + ULO
HI

)
. Hence the system is more active in

HI mode as compared to LO mode, thus increasing the dynamic power in HI mode.
With this notion, if wLO = wHI, one can easily predict that more preference has to
be given for minimizing HI mode energy. However, if wLO � wHI , giving higher
priority to minimize HI mode energy is not optimal as the system operates in LO
mode most of the times. This is clear from the plot that energy consumption is less
when wLO ≥ wHI. Thus, weight factors provide the freedom to assign priority to
energy saving in a particular mode.

However in Strategy C, static energy is also considered in the energy minimization
problem. We observe in the plot that Strategy C performs better in energy mini-
mization as compared to Strategy B. In Strategy B, the energy objective is unaware
of the static energy, thus aiming to find a solution that depends only on dynamic
energy consumption. On the contrary, in Strategy C, both the static and dynamic
energy together are minimized by applying DVFS. Thus, the overall energy mini-
mization becomes a complex problem that not only depends on the utilization of
tasks but also the mode weights and static energy consumption.

4.1.2 Multi-core

To analyze how mapping policy affects the energy consumption on multiple cores,
we first consider two existing mapping techniques presented by S. Baruah et al. [24]
(Baruah’s method hereafter) and C. Gu et al.[49] (Gu’s method hereafter). Then, we
present a new energy efficient mapping technique namely EM3. In Baruah’s method,
both LO and HI criticality tasks are mapped on cores using the First Fit (FF)
mapping technique which favors schedulability. In Gu’s method, all HI criticality
tasks are mapped using the Worst Fit (WF) and all LO criticality tasks are mapped
using the FF technique. In EM3 method, both HI and LO criticality tasks are
mapped using WF. These three methods are explained in detail in Chapter 6.

4.2 Problem Formulation 27

Let us consider the same task set listed in Table 4.1 on multi-core. Tasks are mapped
using Baruah’s method, Gu’s method, and EM3 method separately. Finally, DVFS
is applied on all cores (described in Chapter 6) in all the above methods. The
normalized total energy of the system for different mode mapping methods and
weights is shown in Figure 4.2. We observe in the plot that for all combinations
of wLO and wHI, Baruah’s mapping method has maximum energy consumption,
followed by Gu’s method. The consumption is the least in EM3 among all the
methods. Though Baruah’s mapping method aims at the usage of minimal cores
and schedulability, it does not favors energy minimization. The reason is that FF
does not balances the task utilization between the available cores but load the first
available core. Thus, increasing utilization in a core restrains the frequency reduc-
tion, therefore increasing the energy exponentially. Since Gu’s method employs WF
for mapping HI criticality tasks, the tasks are evenly distributed on all available
cores, thus facilitating frequency reduction. EM3 is efficient in saving energy as WF
technique is used for mapping both LO and HI criticality tasks. Thus, mapping
technique plays an important role in saving energy on a multi-core.

With a motivational example, we have demonstrated why weight factors, static en-
ergy and mapping techniques should be considered in energy minimization problem.
With these insights, we present the problem formulation for energy minimization
objective.

4.2 Problem Formulation

We divide the multi-core mixed-criticality energy minimization problem into two
objectives. First, we have to find an energy-aware task-to-processor mapping. After
this, energy is minimized on individual cores assuming the EDF-VD scheduling.
The first step, in fact, depends on the second one, since we should find mappings
that best explore the energy saving potential of the unicore DVFS techniques. For
this reason, we first solve DVFS scheduling under EDF-VD for unicore and then
we extend the work for multi-cores. However, notice that the energy minimization
problem on unicore has already been studied in [23] where only one system scenario
(LO mode) is considered and only dynamic energy consumption is reduced. In this
paper, we remove the limitations in [23] by considering energy minimization in both
LO and HI modes and by including static energy while optimizing total energy. We
also extend the work to multi-cores.

4.2.1 Unicore problem

Let us consider first, the energy minimization problem on a unicore. We use τ to
denote the task set on one processor. To apply DVFS, the essential problem is to
assign each task with a frequency to run in each criticality mode, such that energy is
minimized while mixed-criticality real-time guarantees are satisfied. Let us denote
the frequency for task τi ∈ τ in mode χ as fχi , where χ ∈ {LO , HI}. To consider
energy minimization for both system scenarios, we have to define a proper energy
objective taking into account energy consumptions in both LO and HI modes. To

28 Motivational Example and Problem Definition

this end, we express the importance of minimizing LO mode energy with a weight
factor wLO, similarly wHI for HI mode, where, wLO, wHI ∈ [0, 1], wLO = 1 − wHI.
Notice that we do not pose any restriction on how to obtain wLO and wHI. In
practice, one could set them as the percentage that the system operates in LO
and HI modes. Indeed, they can be set just as simple relative weight factors that
express the relative importance to minimize energy in both modes. The formulation
is general in the sense that if wLO = 1∧wHI = 0, we minimize the LO mode energy,
and if wLO = 0.5∧wHI = 0.5, we then minimize the average energy consumption in
both modes. Now for one hyper-period in LO mode, we represent the normalized
total energy consumption in a hyperperiod Πτi∈τTi (the actual energy consumption
divided by the hyper-period length) as:

ELO = wLO ·
∑
τi∈τ

Ci(LO)
Ti

· fb
fLO
i

· (Ps + β · (fLO
i)α). (4.1)

Similarly, we normalize the system energy consumption in a hyper-period in HI
mode (Πχi=HITi) as:

EHI = wHI ·
∑
τi∈τHI

Ci(HI)
Ti

· fb
fHI
i

· (Ps + β · (fHI
i)α). (4.2)

Thus, our goal is to minimize the system energy across both criticality modes:

E = ELO + EHI (4.3)

Energy should be minimized while satisfying the mixed-criticality real-time require-
ments. Now, to apply DVFS to save energy, we need to ensure that (4.3) is mini-
mized while (3.4) is satisfied. With reformatting and constraint transformation, we
can formulate our unicore energy minimization as a convex program.

Theorem 2. The unicore energy minimization problem can be formulated as a
convex program as follows,

min E = ELO + EHI (4.4)

s.t. ŨLO
HI
x

+ ŨLO
LO ≤ 1 (4.5)

xŨLO
LO + ŨHI

HI ≤ 1 (4.6)
x ∈ [x̂LB , x̂UB] (4.7)
∀τi , ∀χ , fχi ∈ [fmin , fmax] (4.8)

According to our problem formulation and (4.1), in order to minimize energy in LO
mode we can reduce fLO

i . However, this increases system utilization in LO mode
and decreases free slack available until any HI criticality task’s actual deadline when
mode switch happens. Thus, to maintain the schedulability in HI mode, fHI

i has
to be increased thereby jeopardizing HI mode energy consumption. Hence, there
is always a trade-off between energy saving in LO and HI modes, where the inten-
sion is to minimize the weighted sum of energy in both modes. Moreover, though
the convex formulation suggests practical algorithms [60] can be applied to solve
the optimization problem, we will theoretically investigate the energy dependency
across different modes in the later chapters.

4.2 Problem Formulation 29

4.2.2 Energy-Aware Mapping

Assuming partitioned scheduling in this paper, the next problem is to find energy
efficient mapping of tasks onto multi-core processors, such that by applying unicore
DVFS locally on each processor, the total energy consumed by all tasks on all
cores is minimized. Multi-cores are more energy efficient than equivalent unicore as
multiple cores can execute the same tasks simultaneously but with lower execution
frequencies. The leakage power can be adjusted by suitably selecting the number
of active cores. Leakage power is a linear function of execution frequency and
dynamic power is a cubic function [61]. Thus, the ratio of static power to the
dynamic power increases as frequency decreases. Therefore, if the number of active
cores is increased, then leakage power may start dominating. This energy trade-
off makes the problem different than in unicore where only one core is available.
Hence, it is necessary to choose an optimal number of cores and implement a good
mapping procedure where both dynamic and static power is reduced and also safety
is guaranteed.

Chapter 5

Unicore Optimal Solution

We investigate in this chapter, an optimal solution for the mixed-criticality energy
minimization problem on a unicore. Since we have a convex formulation (4.4)−(4.8),
we first apply the Karush-Kuhn-Tucker (KKT) optimality conditions [62] to find
optimal frequencies fχi . To perform this, we first explain in Section 5.1, what
are KKT conditions. Then, we apply KKT conditions for our problem which is
described in Section 5.2. One can solve our energy minimization problem using KKT
conditions but the complete solution by KKT incurs great computation complexity.
Hence, we do not use KKT conditions to find the optimal solution but only to
demonstrate the complexity of the problem. However, we use KKT conditions to
derive a reduced search space for our problem which is explained in Section 5.3 and
Section 5.4 in detail. This allows us to develop an optimal solution and an efficient
heuristic that are explained in Section 5.7 and Section 5.8 respectively.

5.1 KKT Conditions

Karush-Kuhn-Tucker (KKT) conditions are the first order conditions for a solution
to be optimal in non-linear programming. KKT conditions were named after Harold
W. Kuhn, and Albert W. Tucker who published their work in 1951. The KKT
approach allows both equality and inequality constraints in a problem unlike the
method of Lagrange multipliers that is subject to only equality constraints [63].

KKT conditions: Let us consider the general optimization problem of the form

minimize f(x)
s.t. hi(x) = 0 ∀i = 1, ..., n

gj(x) ≤ 0 ∀j = 1, ...,m

where hi(x) and gj(x) are the equality and inequality constraints for a continuous
function f(x) respectively.

5.2 Optimal Solution Using KKT Conditions 31

Theorem 3. According to the KKT conditions [62], when the objective function
is convex and the constraints are affine, then a global minimal solution x∗ exists
when

∇xf(x∗) +
n∑
i=1

λi∇xhi(x∗) +
m∑
j=1

µj∇xgj(x∗) = 0

s.t. hi(x∗) = 0 ∀i = 1, ...n
gj(x∗) ≤ 0 ∀j = 1, ...m

µjgj(x∗) = 0 ∀j = 1, ...m
µj ≥ 0 ∀j = 1, ...m

5.2 Optimal Solution Using KKT Conditions

Since the cost function (4.4) in our energy minimization objective is convex, we can
apply Theorem 3 to find the optimal solution. Hence our objective with variables
fχi , ∀τi, ∀χ and x and constraints (4.5) - (4.8) can be written in terms of KKT
conditions as

∇f,x

(
(ELO + EHI) + µ1

(
ŨLO

HI
x

+ ŨLO
LO − 1

)
+µ2

(
xŨLO

LO + ŨHI
HI − 1

)
− µ3 (x− x̂LB) + µ4 (x− x̂UB)

−
∑

τi∈τLO

(
µ̌LO
i

(
fLO
i − fmin

)
− µ̂LO

i

(
fLO
i − fmax

))
−
∑
τi∈τHI

(
µ̌HLi

(
fLO
i − fmin

)
− µ̂HLi

(
fLO
i − fmax

))

−
∑
τi∈τHI

(
µ̌HI
i

(
fHI
i − fmin

)
− µ̂HI

i

(
fHI
i − fmax

)))
= 0

(5.1)

s.t. µj ≥ 0 ∀j = 1, ..., 4 ;

µ1

(
ŨLO

HI
x

+ ŨLO
LO − 1

)
= 0 ; µ2

(
xŨLO

LO + ŨHI
HI − 1

)
= 0 ;

µ3 (x− x̂LB) = 0 ; µ4 (x− x̂UB) = 0 ; (C1)

∀τi ,
∑

τi∈τLO

(
µ̌LO
i

(
fLO
i − fmin

)
+ µ̂LO

i

(
fLO
i − fmax

))
= 0 ; (C2)

∑
τi∈τHI

(
µ̌HI
i

(
fHI
i − fmin

)
+ µ̂HI

i

(
fHI
i − fmax

))
= 0 ; (C3)

∑
τi∈τHI

(
µ̌HLi

(
fLO
i − fmin

)
+ µ̂HLi

(
fLO
i − fmax

))
= 0 (C4)

where ELO and EHI are represented by (4.1) and (4.2) respectively.

32 Unicore Optimal Solution

To obtain the solution, in each of the complementary slackness equations µigi(x) =
0, at least one of the two factors µi and/or gi(x) must be 0. Withm such conditions,
there would potentially be 2m possible cases (such as µi = 0 or gi(x) = 0) to
consider. Thus, if there are |τLO| LO-criticality tasks and |τHI| HI-criticality tasks in
the system, then we have 4 constraints to be considered from (C1), 2|τLO| constraints
from (C2), 2|τHI| from (C3) and 2|τHI| constraints from (C4) for solving (5.1). This
would lead to 22|τLO|+4|τHI|+4 possible cases in order to find optimal solution. This
leads to exponential complexity which is impractical to solve. Hence, we proceed
towards the in-depth analysis of the energy minimization problem and optimality
conditions so that search space can be reduced. To simplify the problem, first we
use KKT conditions to find optimality condition in fχi . We then investigate if the
simplified objective can be efficiently solved using KKT conditions.

5.3 Optimality Condition in fχi

Considering only LO mode energy and only dynamic energy consumption, Huang,
et al., proved that the expected energy consumption is minimum when all tasks
of the same criticality level share the same frequency in each mode [23]. Now, we
generalize this result to consider in addition static energy consumption and energy
in both HI and LO modes. We proceed to prove this using the KKT optimality
conditions.

Theorem 4. For the unicore mixed-criticality energy minimization problem as
specified in Theorem 2, in an optimal solution, all tasks of same criticality level
share the same frequency in each mode, i.e.,

∀τi ∈ τLO, f
LO
i = fLO

LO

∀τi ∈ τHI, f
LO
i = fLO

HI

∀τi ∈ τHI, f
HI
i = fHI

HI

Proof. At first, let us consider only HI mode energy and show that all HI-criticality
tasks should share same execution frequency in HI-mode in an optimal solution.
Similarly, the same can also be proven for LO mode energy as the energy objective
for LO and HI mode is similar.
Considering only two HI criticality tasks τi and τj in the system, we prove using
KKT conditions that they share same execution frequency. By induction, it is
evident that the result should also hold for ’n’ tasks in the system.
We denote HI mode utilization of task τi and τj as ui and uj respectively such that
ui = Ci(HI)

Ti
and uj = Cj(HI)

Tj
.

Hence, from (4.3), we can write HI mode energy dissipation as

EHI = wHI

(
ui

fb
fHI
i

(
Ps + β(fHI

i)α
))

+wHI

(
uj

fb
fHI
j

(
Ps + β(fHI

j)α
)) (5.2)

5.3 Optimality Condition in fχi 33

For the lowest energy solution, (5.2) should be minimized. Let ui+j be the allowed
HI criticality utilization in the system. fHI

i and fHI
j are the variables which are to be

decided while applying DVFS subject to ui fbfHI
i

+uj fb
fHI
j

≤ ui+j so that schedulability

of the system is not violated. We find the optimal frequencies fHI
i and fHI

j using
Karush-Kuhn-Tucker (KKT)[62] conditions. The HI-mode energy minimization
objective for KKT conditions can be written as:

minimize (5.2)

s.t ui
fb
fHI
i

+ uj
fb
fHI
j

≤ ui+j (5.3)

Adjoining the inequality constraint (5.3) with energy objective by considering KKT
multiplier (µ), (5.2) is minimized when

∇(fHI
i ,fHI

j)EHI + µ∇(fHI
i ,fHI

j)g
(
fHI
i , fHI

j

)
= 0 (5.4)

subject to
g
(
fHI
i , fHI

j

)
= ui

fb
fHI
i

+ uj
fb
fHI
j

≤ ui+j ; (5.5)

µg
(
fHI
i , fHI

j

)
= 0 i.e, µ

(
ui

fb
fHI
i

+ uj
fb
fHI
j

− ui+j

)
= 0;

and µ ≥ 0
(5.6)

Solving (5.4) further, ∂ĒHI
∂fi
∂ĒHI
∂fj

 =
(

0
0

)
(5.7)

⇔ wHIfb(−uiPs(fHI
i)−2 + uiβ(α− 1)(fHI

i)α−2) + µfb(ui(fHI
i)−2) = 0

⇔ β(α− 1)(x)α = Ps −
µ

wHI

⇔ fHI
i =

(
Ps − µ

wHI

β(α− 1)

)1/α

(5.8)

and

⇔ wHIfb(−ujPs(fHI
j)−2 + ujβ(α− 1)(fHI

j)α−2) + µfb(uj(fHI
j)−2) = 0

⇔ β(α− 1)(y)α = Ps −
µ

wHI

⇔ fHI
j =

(
Ps − µ

wHI

β(α− 1)

)1/α

(5.9)

From (5.8) and(5.9), we obtain fHI
i = fHI

j for which (5.2) is minimized. Hence, both
the tasks share same execution frequency. By induction, this holds true even when
there are more than two HI criticality tasks in the system. Hence all HI criticality

34 Unicore Optimal Solution

tasks in a tas kset share same execution frequency in HI mode behavior. Similarly,
it can be proved that all LO criticality tasks in LO mode behaviours share same
execution frequency and all HI criticality tasks in LO mode behaviours share same
execution frequency.

From Theorem 4, we can simplify the energy objective (4.1) and (4.2) as follows:

ELO =wLO · fb · ULO
LO · (Ps/fLO

LO + β · (fLO
LO)α−1)

+ wLO · fb · ULO
HI · (Ps/fLO

HI + β · (fLO
HI)α−1)

EHI =wHI · fb · UHI
HI · (Ps/fHI

HI + β · (fHI
HI)α−1)

(5.10)

Theorem 4 serves in reducing the schedulability conditions represented in (3.4) for
the EDF-VD with DVFS strategy. We now derive new schedulability conditions on
the way to our energy minimization problem.

Theorem 5. Using Corollary 1 and Theorem 4, the feasible range of x in the
EDF-VD test after employing DVFS strategy can be formulated as:

x ≥
ULO

HI (τ)
fLO

HI

1− ULO
LO (τ)
fLO

LO

(5.11)

x
ULO

LO (τ)
fLO

LO
+ (fHI

HI − fLO
HI)

fLO
HI

ULO
HI (τ)
fHI

HI
+ UHI

HI (τ)
fHI

HI
≤ 1 (5.12)

Proof. We follow the same procedure as in Baruah’s EDF-VD algorithm [32] to-
wards deriving the schedulability conditions in x but with scaled utilization factors.
We derive new schedulability conditions on the way to our energy minimization
problem. Detailed proof is provided in (A.1).

5.4 Optimality Condition in x

We continue to derive the necessary conditions in x for any unicore DVFS strategy
to be optimal. According to Theorem 4, let us denote the frequencies in an optimal
solution as fLO

LO opt, f
LO
HI opt and f

HI
HI opt. Let us further define K, L and M as follows:

K =
∑
χi=HI

Ci(LO)fb
Ti

,

L =
∑

χi=LO

Ci(LO)fb
Ti

,

M = 1−
∑
χi=HI

(Ci(HI)− Ci(LO))fb
TifHI

HI opt
, (5.13)

5.4 Optimality Condition in x 35

Figure 5.1: Bounds of x

With Corollary 1, we derive the lower and upper bounds for x in an optimal solution
as,

xLBopt =

ULO
HI

fLO
HI opt

fb

1− ULO
LO

fLO
LO opt

fb
=

K/fLO
HI opt

1− L/fLO
LO opt

(5.14)

xUBopt =

u

w
v

1− ULO
HI

fLO
HI opt

fb −
UHI

HI−U
LO
HI

fHI
HI opt

fb

ULO
LO

fLO
LO opt

fb

}

�
~

1

=
t
M −K/fLO

HI opt
L/fLO

LO opt

|1
(5.15)

Now, we consider choosing the optimal deadline scaling factor xopt and establish
the following necessary condition for any optimal solution to exist. A pictorial
representation of bounds of x is made in Figure 5.1.

Theorem 6. An optimal solution to our unicore problem as formulated in Theo-
rem 2, exists in two cases:

1. When fLO
LO = fLO

HI = fHI
HI = fmin i.e., at the extreme case.

2. When xLBopt = xopt = xUBopt, i.e., at equilibrium.

Proof. To ensure system schedulability, it must follow that xLBopt ≤ xopt ≤ xUBopt
(see Corollary 1). From (5.14) and (5.15), we notice that fLO

LO opt and/or fLO
HI opt

can be decreased by increasing xLBopt and decreasing xUBopt, thus minimizing LO
mode energy1. Similarly, fHI

HI opt can be decreased by decreasing xUBopt to save
energy consumption in HI mode. As a result, as long as task frequencies are not
minimal and xLBopt 6= xUBopt, we can reduce either LO mode frequencies or HI mode
frequencies to bring the lower and upper bounds on x closer. This process can only
stop if (i) all the frequencies are already lowered to fmin or, (ii) xLBopt = xUBopt.

1Notice that fmin ≥ fcrit and reducing frequency is always beneficial in saving both static and
dynamic energy.

36 Unicore Optimal Solution

Notice that Theorem 6 generalizes a similar condition in [23], where only dynamic
energy in LO system mode is considered. Using Theorem 6 and the optimality
conditions in fχi and x, we now simplify our objective (5.10) to ease the adoption of
KKT conditions. This is presented in next section. With results in Section 5.3 and
Section 5.4, we now reduce the complexity of the objective, our approach is to find
the inter-relations among frequencies fLO

LO opt, f
LO
HI opt and fHI

HI opt. We then reduce
our problem to a minimization problem in a two-dimensional space.

5.5 Simplified Energy Objective

From Theorem 6, we have at equilibrium, xLBopt = xopt = xUBopt ≤ 1. In addition,
we can prove that in such a case, we can remove the J·K operation when computing
the upper bound on x: If xLBopt = xUBopt < 1, this is apparent. Otherwise,
xLBopt = xUBopt = 1, we can derive that,

xUBopt =

u

w
v

1− ULO
HI

fLO
HI opt

fb −
UHI

HI−U
LO
HI

fHI
HI opt

fb

ULO
LO

fLO
LO opt

fb

}

�
~

1

≤

u

w
v

1− ULO
HI

fLO
HI opt

fb

ULO
LO

fLO
LO opt

fb

}

�
~

1

= 1.

(5.16)

Thus, from (5.14) and (5.15), we have

K/fLO
HI opt

1− L/fLO
HI opt

= xopt =
M −K/fLO

HI opt
L/fLO

LO opt

, (5.17)

⇔
K/fLO

HI opt +M −K/fLO
HI opt

1− L/fLO
LO opt + L/fLO

LO opt

= xopt,

⇔ xopt = M.

Hence, at equilibrium, xLBopt = xopt = xUBopt = M , where M is a function of
fHI

HI opt as defined in (5.13). Furthermore, due to the equilibrium condition, we can
establish a relation between fLO

HI opt and f
LO
LO opt.

M =
M −K/fLO

HI opt
L/fLO

LO opt

⇔ fLO
HI opt = K

M.(1− L/fLO
LO opt)

.

(5.18)

Thus, through (5.18), we represent fLO
HI opt as a function of fLO

LO opt and f
HI
HI opt (andM

is a function of fHI
HI opt). As a result, we finally reduce our problem to a continuous

5.6 KKT Conditions for Simplified Objective 37

optimization problem in a two-dimensional space. Substituting (5.18) in (5.10), we
get the final simplified energy objective as

ELO = wLOfbU
LO
LO

(
Ps

fLO
LO opt

+ β(fLO
LO opt)

α−1
)

+wLOfbU
LO
HI

PsM(1− L
fLO

LO opt

)

K
+ β

 K

M

(
1− L

fLO
LO opt

)

α−1

EHI = wHIfbU
HI
HI

(
Ps

fHI
HI opt

+ β(fHI
HI opt)

α−1
)

E = ELO + EHI

(5.19)

This objective is still convex but simplified to two-dimensional space with the re-
duced number of constraints. Hence we apply KKT conditions to find the optimal
solution.

5.6 KKT Conditions for Simplified Objective

From Theorem 6 , it is straight forward to check if the optimal solution exists in
extreme case. When the solution exists at equlibrium, we can apply KKT condi-
tions to solve the problem. Since the objective is now two-dimensional with fLO

LO opt

and fHI
HI opt as variables, we first proceed to find fLO

LO opt , f
HI
HI opt and x using KKT

conditions and then fLO
HI opt can calculated using (5.18).

The new objective with reduced search space for the KKT conditions can be written
as

minimize (5.19)
s.t. xopt = M ; xopt ≥ xLBopt ; xopt ≤ xUBopt ;

fLO
LO ≥ fmin ; fLO

LO ≤ fmax ; fHI
HI ≥ fmin ; fHI

HI ≤ fmax.

Considering Lagrange’s constant λ1 and converting the inequality constraints to
Lagrangian form using KKT multipliers (µi), we can formulate the conditions as

∇f,x
[
(ELO + EHI) + λ1 (xopt −M)− µ1

(
xopt − xLBopt

)
+µ2

(
xopt − xUBopt

)
− µ3(fLO

LO − fmin) + µ4(fLO
LO − fmax)

−µ5(fHI
HI − fmin) + µ6(fHI

HI − fmax)
]

= 0

s.t. xopt = M ; µ1
(
xopt − xLBopt

)
= 0 ;

µ2
(
xopt − xUBopt

)
= 0 ; µ3(fLO

LO − fmin) = 0 ;
µ6(fLO

LO − fmax) = 0 ; µ5(fHI
HI − fmin) = 0

µ6(fHI
HI − fmax) = 0 and µi ≥ 0 ∀i = 1, ..., 6

where ELO and EHI are represented by (5.10), and xLBopt and xUBopt are represented
by (5.14) and (5.15) respectively.

38 Unicore Optimal Solution

Algorithm 1: Finding optimal fLO
LO , fLO

HI and fHI
HI

input : τ , fb, fmin, fmax, wLO and wHI
output: fLO

LO opt, f
LO
HI opt, f

HI
HI opt, xopt

if System feasible when fLO
LO = fLO

HI = fHI
HI = fmax according to Corollary 1 then

if System feasible when fLO
LO = fLO

HI = fHI
HI = fmin according to Corollary 1

then
1.fχ2

χ1 ← fmin ∀χ1∀χ2;
else

2. According to (5.13) and (5.18), reduce the energy objective given by
Theorem 2 into a function of fLO

HI and fHI
HI ;

3. Solve the two-dimensional continuous optimization problem with
constraints that fmin ≤ fχ2

χ1 ≤ fmax ∀χ1∀χ2, obtain fLO
LO opt and f

HI
HI opt;

4. Set fLO
HI opt according to (5.18) and xopt according to (5.17);

return Success;
end

else
return Failure;

end

Thus, we obtain KKT conditions with reduced complexity as compared to (5.1).
However, even this simplified conditions are computationally intense because of six
inequality constants (µ1 − µ6). This leads to 64 cases which are to be considered
to find optimal frequencies. Hence, we do not use convex solvers such as KKT
conditions to solve our energy minimization problem. Rather, we develop a simple
algorithm with the insights from simplified energy objective to find the solution to
our unicore problem.

5.7 Optimal Solution

Note that, if the objective is only to save LO mode energy as in [23], then fixing fHI
HI

to fmax would be optimal. Intuitively we can see that this would relax the system
operation in LO mode. In other words, the upper bound on x is maximized, giving
more room for reducing LO mode task frequencies to increase the lower bound on
x. However, when reducing HI mode energy fHI

HI is also the objective, the problem
becomes more complex as energy consumptions in both modes are dependent and
need to be minimized together. Based on this observation and the established
optimality conditions, we now present our proposed algorithm. We propose our
optimal solution as shown in Algorithm 1. Before finding optimal frequencies, we
first need to check whether the system is feasible (by assuming maximum frequency
fmax). This is done according to Corollary 1. If feasible, then the solution exists in
two optimal cases as suggested by Theorem 6.

5.8 Heuristic Solution 39

Figure 5.2: LO mode and HI mode energy as a function of fHI
HI

5.7.1 Extreme case (fLO
LO = fLO

HI = fHI
HI = fmin)

In the extreme case, i.e., when all the mode frequencies are set to fmin, we just need
to check the system schedulability in such an extreme case. This is straight forward
to verify with Corollary 1. Thus, we will concentrate on the other possibility, i.e.,
the equilibrium case.

5.7.2 Equilibrium case (xLBopt = xopt = xUBopt)

In this case, our first approach is to solve a two-dimensional optimization problem
(5.19) to find the optimal frequency assignment. However, in general, it is difficult
to obtain a closed form solution that is not bound to any specific task set. This
is mainly due to mathematical complexity of the final reduced objective function.
Therefore, one has to resort to numerical solutions to solve the two-dimensional
continuous optimization problem. Hence, we proceed to present a simple heuristic
to solve the problem when the solution exists in the equilibrium condition.

5.8 Heuristic Solution

According to (5.10), we observe that, with increasing fHI
HI , the HI mode energy con-

sumption increases at a higher rate. This is due to the fact that the first and second
order differential of EHI with respect to fHI

HI is positive. Furthermore, we observe
that the LO mode energy ELO decreases as fHI

HI increases. The reason is that under
this case, as HI mode frequency is increased, the LO mode becomes more relaxed
where frequencies can be reduced for energy saving. Hence the first order differen-
tial of ELO with respect to fHI

HI is negative. Furthermore, as fHI
HI gets larger, the LO

mode frequencies would eventually converge to fmin, thus minimizing ELO. Hence,
the rate at which ELO drops will decrease or the second order differential of ELO
is non-negative. The above observations are clear if we consider the same example
from Table 4.1 and plot ELO and EHI as a function of fHI

HI . This is demonstrated in

40 Unicore Optimal Solution

Figure 5.3: Different cases to check in Algorithm 2

Algorithm 2: Simple heuristic to find the solution in equilibrium case
input : τ , fb, fmin, fmax, wLO and wHI
output: fLO

LO opt, f
LO
HI opt, f

HI
HI opt, xopt

1. Determine the feasible range of fHI
HI according to the Corollary 1;

2. If E′ is non-negative at the smallest feasible fHI
HI , set this as fLO

HI opt;
3. If E′ is non-positive at the biggest feasible fHI

HI , set this as fLO
HI opt;

4. If the above does not hold, we do a binary search to find the fHI
HI where E′ = 0,

set it as fLO
HI opt;

Figure 5.2. Furthermore, since ELO is decreasing while EHI is increasing, there is
a trade-off between LO and HI mode energy consumptions. Therefore, there exists
an fHI

HI in between fmin and fmax, which leads to the minimum overall energy. Our
goal is to find such fHI

HI which we achieve using a simple heuristic solution.

We now present our heuristic to solve the two-dimensional problem (5.19) when the
solution exists at equilibrium. The steps are listed in Algorithm 2. Let us denote
E′LO and E′HI as the first order differential of LO and HI mode energy with respect
to fHI

HI , respectively. We have E′ = E′LO + E′HI. Let the feasible range of fHI
HI be

[fHI
HImin , fmax] where fHI

HImin is the minimum HI mode frequency required to ensure
HI mode schedulability of τ . It is calculated by fixing fLO

LO opt = fLO
HI opt = fmax in

(5.18) and can be formulated as:

fHI
HImin = UHI

HI − ULO
HI

1− K
fmax−L

(5.20)

5.8 Heuristic Solution 41

If there exists an optimal fHI
HI within the range, then it can be in one of these three

cases as shown in Figure 5.3:

Case 1: If E′ is always increasing, then the solution exists when fHI
HI opt = fHI

HImin,
being the lowest energy point.

Case 2: If E′ is always decreasing, then the solution exists when fHI
HI opt = fmax,

being the lowest energy point.

Case 3: If the above cases does not hold, then there exists a stationary point in
E′ for which E′ = 0. Such minimal energy location of fHI

HI in the range
can be found using binary search.

Thus, we have a simple heuristic to find the mode frequencies when the solution
exists at equilibrium.

Chapter 6

Energy Minimization on
Multi-cores

Now, we extend the unicore energy efficient algorithm presented in the previous sec-
tion, to multi-cores. We consider the same energy objective represented in (5.19)
for multi-cores. This chapter is organized as follows: Firstly, we examine two exist-
ing bin packing techniques for mapping tasks on multi-cores and analyze if they are
energy-aware. This is detailed in Section 6.2 and Section 6.3. In Section 6.4, we pro-
pose an energy minimized multi-core mapping technique called Energy Minimized
Mixed-Criticality Mapping Technique (EM3) where tasks with different criticality
are mixed on a core. Finally, an energy-aware mapping method called Isolated
Mixed-Criticality Mapping Method (IM3) is presented in Section 6.5 where the
tasks with different criticality levels are isolated.

Minimizing the dynamic energy consumption by adapting parameters such as fre-
quency in multi-core is not as straight-forward as that of the unicore case. When
a task set has to be scheduled on a multi-core, few questions arise when energy
reduction is considered : (i) how to map the tasks onto available cores? (ii) at
what frequencies the tasks have to be executed on each core? (iii) what is the op-
timal number of active cores to be used such that the total energy is minimized?
To understand the problem on multi-core and to answer these questions, we con-
sider the same example presented in Section. 4.1 and analyze two existing mapping
techniques - Baruah’s method and Gu’s method.

6.1 Overview of Existing Methods

In this section, we describe Baruah’s and Gu’s method for multi-core mapping.

6.2 Baruah’s method 43

6.2 Baruah’s method

The mapping procedure followed in Baruah’s method is briefly introduced here. In
this method, tasks are mapped onto multiple cores using the First-Fit task allocating
technique where a task is assigned to immediately available core. The process is
executed in two phases:

• First, all HI criticality tasks sorted with decreasing utilization are assigned to
processors using the FF such that the cumulative HI criticality utilization in
each processor is less than 3/4 (It follows from [32] that, task system that is
clairvoyant schedulable on a speed 3/4 processor is scheduled by the EDF-VD.
Hence, HI criticality utilization ≤ 3/4).

• In the second phase, all LO criticality tasks sorted with decreasing utilization
are assigned to processors using the FF such that the cumulative LO criticality
utilization in each processor is less than 3/4.

When the mapping is successful, the tasks on each core are scheduled independently
with EDF-VD scheduling algorithm [32]. The energy comparison between Baruah’s
method, Gu’s method and EM3 is shown in Figure 4.2. Baruah’s method does not
consider energy minimization while mapping but aims at schedulability. Hence,
each nonempty core holds maximum possible utilization, thus, loading the core and
increasing the execution frequency. Therefore, the energy consumption is at its
worst when FF technique is used for mapping.

6.3 Gu’s method

In this method, first, all HI criticality tasks are mapped onto multiple cores using
the Worst-Fit allocating technique. When it is the turn for assigning LO criticality
tasks in the second phase, the tasks are mapped using the FF technique. Though
Gu’s method also favors schedulability, it performs better than Baruah’s method in
terms of energy. The reason is that the HI criticality tasks are distributed over all
the available cores, thus providing more slack to decrease the execution frequency
on each core.

Note: We slightly modify both Baruah’s and Gu’s method for a fair comparison
with the proposed methods, EM3 and IM3: If a core contains only LO criticality
tasks while assigning tasks in the second phase, we ensure that the cumulative sum
of utilization of tasks does not exceed 1 instead of 3/4. In such cases, the tasks on
that core are scheduled using EDF as there is only one criticality level. Furthermore,
we also switch the processor to sleep mode when it is idle.

Hence, the results motivate us to use WF technique for mapping both LO and HI
criticality tasks on multi-core, with energy minimization as our goal. With this
notion, we present a new energy efficient multi-core mapping procedure for mixed-
criticality tasks where the WF technique is used for bin packing.

44 Energy Minimization on Multi-cores

6.4 Energy Minimized Mixed-Criticality Mapping (EM3)

EM3 makes use of the WF technique to allocate both LO and HI criticality tasks
on multiple cores. Utilizing all the available cores for mapping may not be optimal
as each core contributes its static energy for total energy consumption. Therefore,
we apply a simple heuristic to identify the number of cores to be used for mapping
the tasks. In this approach, first we find the optimal number of active cores for
mapping. Then, we map the tasks on cores using the WF technique. Finally, DVFS
is employed on all cores using the unicore solution presented in (5.8) and tasks are
scheduled using EDF-VD.

The procedure followed in EM3 is as follows: If m is the total number of cores
available, then for all possible values of integer n, such that 2 ≤ n ≤ m, tasks
are mapped onto n cores using the WF technique. Since our solution for energy
minimization employs the EDF-VD for scheduling, we ensure that the cumulative
χ criticality utilization of tasks in each processor does not exceed 3/4. However, if a
core contains tasks with only single criticality level, we ensure that the cumulative
sum of utilization does not exceed 1. Finally, the tasks on each core are scheduled
using EDF-VD. The heuristic is carried out in 3 phases:

• In the first phase, all HI criticality tasks are allocated onto n cores using the
WF method, with their decreasing utilization. We ensure that the cumulative
HI criticality utilization of tasks on each core does not exceed 3/4. If there are
any HI criticality tasks left for mapping, then n is incremented by 1 such that
n ≤ m and the first phase is repeated. If n > m, then mapping is terminated,
declaring failure.

• In the second phase, all LO criticality tasks are allocated on n cores using
the WF method. If there exists a HI criticality task on the core, then we
ensure that the cumulative LO criticality utilization of tasks in each core does
not exceed 3/4; else 1. If no tasks are left for allocation, then mapping is
completed and we proceed to next step; else n is incremented by 1 such that
n ≤ m and the first phase is executed again. If n > m, then mapping is
terminated, declaring failure.

• Finally, DVFS strategy is applied for tasks on each core using the heuristics
presented in Section. 5.8 and all tasks are scheduled using EDF-VD. However,
if there is any core with only χ criticality tasks present, then traditional EDF
is applied.

The total energy of the system is calculated using (5.10) for all possibilities of n.
The number of cores n for which the total energy is minimum is the optimal number
of cores to be used for mapping.

Though EM3 shows significant amount of energy saving, tasks with different crit-
icality levels are mixed and HI criticality tasks always face interference from LO
criticality tasks. Traditional isolated partitioning is still used in industry to avoid
task interference and guarantee safety. In isolated partitioning, the tasks with dif-
ferent criticality levels are not mixed on a core. This also eases the scheduling as

6.5 Isolated Mixed-Criticality Mapping Method (IM3) 45

each core contains only single criticality tasks and conventional algorithms such
as EDF can be used. Supporting isolated mapping, we present another mapping
procedure where tasks with different criticality levels are not mixed on a core and
show that the energy consumption is almost same as that in EM3. We call this
method as “Isolated Mixed-Criticality Mapping Method”.

6.5 Isolated Mixed-Criticality Mapping Method (IM3)

In this method, we provide complete isolation between tasks with different criticality
levels. Hence, all LO criticality tasks are mapped onto l cores, and all HI criticality
tasks are mapped onto h cores such that 2 ≤ (l + h) ≤ m. Since LO and HI
criticality tasks are isolated, the LO criticality tasks can be scheduled using the
EDF. However, EDF cannot be employed for HI criticality tasks as the system
shows both LO and HI mode behaviors. Therefore, we apply EDF-VD test on HI
criticality tasks.

Before presenting our algorithm (Section. 6.5.3), we first define the energy model
and schedulability conditions for both LO and HI criticality tasks (Section. 6.5.1
and Section. 6.5.2).

6.5.1 Conditions for LO criticality tasks

The energy objective formulated in (5.10) holds for LO criticality tasks but can be
simplified because ULO

HI = UHI
HI = 0 in l cores. It should be noted that the weight

factors can be neglected in the case of LO criticality tasks as there is no mode
switching. However, for a fair comparison with EM3, we consider weight factor
in our energy objective and it will not affect the optimal frequencies. Thus, the
simplified power model for tasks on each core i , ∀i ∈ {1,l} can be formulated
from (5.10) as:

Ei = wLO · fb · ULO
LO · (Ps/fLO

LO i + β · (fLO
LO i)

α−1) (6.1)

The objective is to minimize Ei, on each core i.

The necessary condition for EDF is: ULOLO ≤ 1. To save energy, we can utilize the
available slack on each core i by decreasing the frequency to the possible minimum.
Hence, the schedulability condition after employing DVFS changes to ULOLO

fLOLO
≤ 1 or,

in other words, fLOLO = ULOLO . Therefore, we set the execution frequency of tasks on l
cores equal to their LO criticality utilization, i.e., ∀i ∈ {1,l} , (fLOLO opt)i = ULOLO i.

6.5.2 Conditions for HI criticality tasks

Since the system has nominal and overload mode in the case of HI criticality tasks,
there exists two frequencies: one for LO mode behavior and another for HI mode
behavior. With this notion, the energy objective on each core j, ∀j ∈ {1,h} can
be formulated as:

46 Energy Minimization on Multi-cores

Ej = wLO · fb · ULO
HI j · (Ps/f

LO
HI j + β · (fLO

HI j)
α−1)

+wHI · fb · UHI
HI j · (Ps/f

HI
HI j + β · (fHI

HI j)
α−1)

(6.2)

Therefore, the objective is to save both LO mode energy and HI mode energy of
HI criticality tasks depending on task utilization and weight factors, i.e., minimize
Ej , ∀j ∈ {1,h}.

For all HI criticality tasks to be schedulable on each core j the necessary condition
in the EDF-VD can be written as,

ULO
HI j
fLO

HI j
+

(UHI
HI j − U

LO
HI j)

fHI
HI j

≤ 1 (6.3)

Now, to minimize energy, we can decrease fLO
HI j and/or f

HI
HI j until (6.3) equalizes to

1, or until fmin is reached. Hence, in an optimal solution,

(fLO
HI opt)j =

u

ww
v

ULO
HI j

1−
(UHI

HI j−U
LO
HI j)

(fHI
HI opt)j

}

��
~

fmin

(6.4)

Thus, we have inter-relations between LO and HI mode frequencies in an optimal
solution.

6.5.3 Algorithm

The pseudocode of our approach is presented in Algorithm 3 and the algorithm is
as follows: Alike EM3, we find the optimal active cores to be used for scheduling in
IM3. We apply a simple heuristic to identify the optimal l and h such that the total
energy consumption is at the minimum. Once l and h are known, the χ criticality
tasks are allocated using the WF technique in decreasing utilization order. Finally,
EDF is employed to schedule LO criticality tasks and EDF-VD for HI criticality
tasks. We ensure that, the cumulative sum of LO criticality utilization on l cores
and the cumulative sum of HI criticality utilization on h cores does not exceed 1.
The steps involved are as follows:

1. First, we find the minimum cores (l′ for LO criticality tasks and h′ for HI
criticality tasks) required for successful scheduling. Therefore, we set l′ =⌈
ULOLO

⌉
and h′ =

⌈
UHIHI

⌉
. If (l′+h′) > m, then terminate the mapping process

and declare failure; else, set l = l′ and h = h′, and proceed to step 2.

2. Allocate all LO criticality tasks onto l cores and all HI criticality tasks onto h
cores using the WF technique, ensuring that the cumulative sum of LO criti-
cality utilization on l cores and the cumulative sum of HI criticality utilization
on h cores does not exceed 1.

6.5 Isolated Mixed-Criticality Mapping Method (IM3) 47

Algorithm 3: Task mapping using IM3 for finding optimal frequencies for each
core
input : τ , fb, fmin, fmax, m, wLO and wHI
output: (fLO

LO opt)i, (fLO
HI opt)i, (fHI

HI opt)i, (fLO
LO opt)j , (fLO

HI opt)j , (fHI
HI opt)j , l , h

Set l′ =
⌈
ULO

LO

⌉
and h′ = dUHI

HI e;
if (l′ + h′) ≤ m then

Set l = l′ and h = h′;
�Set 4 = {} (Empty list of set of m cores);
while l ≤ m− h′ do

while h ≤ m− l′ do
if l + h > m then

break;
else

Allocate all LO and HI criticality tasks onto l and h cores
respectively using the WF;
if No tasks are left for mapping then

Add the set of l , h cores to 4 with list index (l , h);
end

end
h = h+ 1;

end
l = l + 1;

end
for all list items (set of cores) in 4 do

Calculate optimal frequencies for tasks in each core using heuristics
presented in (6.5) and find total energy of the system;

end
The list item in 4 with lowest total energy is the optimal mapping and so the
optimal frequencies for each core.
Set the corresponding (fLO

LO opt)i, (fLO
HI opt)i, (fHI

HI opt)i , l, ∀i ∈ [1 , l];
Set the corresponding (fLO

LO opt)j , (fLO
HI opt)j , (fHI

HI opt)j , h, ∀i ∈ [1 , h];
return Success;

else
return Failure;

end

3. DVFS strategy is applied for LO criticality tasks on l cores as described in
Sec 6.5.1 and they are scheduled using EDF algorithm.

4. Similarly, DVFS is applied for HI criticality tasks residing on h cores. We
find the optimal frequencies (fLO

HI opt)j and (fHI
HI opt)j using a simple heuristic

that is similar to the unicore solution, presented in Section. 5.8. First, we
find the minimum required HI mode frequency (fHI

HImin)j for the task set to
be schedulable on core j. This is done by fixing fLO

HI j = fmax in (6.3) as,

48 Energy Minimization on Multi-cores

(fHI
HImin)j =

u

v
(UHI

HI j − U
LO
HI j)

1− (
ULO

HI j
fmax

)

}

~

fmin

(6.5)

Then, for all values of fHI
HI j ∈ [(fHI

HImin)j , fmax], with a small increment ∆,
the total energy is calculated. The fHI

HI j for which the total energy is minimum
is the optimal HI mode frequency and the corresponding (fLO

HI opt)j is found
using (6.4).

5. Repeat steps 2 to 4 for all combinations of l ∈ [l′, m−h′] and h ∈ [h′ , m− l′]
and compute the total energy of the system. The values of l and h for which
the total energy calculated in step 5 is minimum, is the optimal number of
active cores and so, the corresponding frequencies.

The advantage of IM3 is that the tasks with different criticality levels are com-
pletely isolated and are scheduled on a multi-core processor. Though EM3 gives
better results, the energy difference between EM3 and IM3 is comparatively less.
EM3 is better for resource constraint systems where tasks with different criticality
levels communicate with each other. IM3 can be a suitable method where complete
isolation is required which are most likely preferred by the industry.

Chapter 7

Evaluation

We first evaluate our unicore solution with a task set from real-time Flight Man-
agement System (FMS), and later multi-core mapping techniques with extensive
simulations using synthetic task sets. We demonstrate energy savings and the ef-
fect of various parameters on energy minimization. We also compare our approach
against existing Bin packing techniques – Baruah’s and Gu’s method. Though these
techniques do not focus on energy and are not the same as what we have proposed
they are the closest in the current literature.

τ Criticality Ti(ms) Ci(LO) (ms) Ci(HI) (ms)
τ1 HI 5000 15 21
τ2 HI 200 18 25
τ3 HI 1000 16 22
τ4 HI 1600 20 28
τ5 HI 100 18 26
τ6 HI 1000 17 24
τ7 HI 1000 15 21
τ8 LO 1000 100 100
τ9 LO 1000 80 80
τ10 LO 1000 140 140
τ11 LO 1000 100 100

Table 7.1: FMS task set

7.1 Experimental Setup

For unicore, we conduct experiments using an FMS task set, listed in Table 7.1.
The task set consists of seven HI criticality tasks and four LO criticality tasks.
In all the experiments on unicore, we assume that the processor is DVFS capable

7.2 Evaluation on Unicore 51

with [fmin , fb , fmax] = [0.5 , 0.8 , 1] and has capacitance factor β = 0.8. In all the
simulations, we consider Ps = 0.2 and α = 2, unless it is otherwise mentioned.

To evaluate the mapping techniques on multi-core, we implement a task generator
using Mathematica to generate 100 random feasible task sets. Each task set consists
of 80 − 100 mixed criticality tasks that sum up to a total LO or HI criticality
utilization of 3.0. The number of LO and HI criticality tasks in each task set was
varying as it was generated randomly . We assume that each core is DVFS capable
with [fmin , fb , fmax] = [0.4 , 0.85 , 1]. We fix Ps = 0.3, α = 2, β = 0.8, wLO =
wHI = 0.5 and consider 6 cores in all the cases unless it is otherwise mentioned.
The normalized total energy consumption that we present for multi-core is the sum
of normalized energy on each core.

7.2 Evaluation on Unicore

First, we apply our proposed solution to the FMS task set on a unicore. We explain
in this section, the effects of different parameters on the expected minimal energy.

7.2.1 Impact of Weight Factors

First, we show the importance of weight factors in energy minimization. We cal-
culate the normalized total energy dissipation in the system with different mode
weights wLO and wHI for α = 2 , 3 , 4.

Figure 7.1: Impact of weight factors on energy minimization

The results are shown in Figure 7.1. As we see in the plot, the minimal expected
energy increases with wLO. This is because, the LO mode utilization is higher than
the HI mode utilization

(
ULO

LO + ULO
HI > UHI

HI

)
in the considered task set. Therefore,

when the system is active in LO mode for excessive amount of time both the static
and dynamic energy increases. However, if we consider the case where ULO

LO +ULO
HI <

52 Evaluation

UHI
HI , the energy consumption decreases with increase in wLO. Thus, weight factors

make a big difference in reducing energy and enables us to set weightage to particular
mode for energy saving. Hence, they are the main decision makers in our energy
minimization problem. Furthermore, we observe that the energy consumption of
the system decreases when α is increased. However, α is a constant fixed for any
processor.

7.2.2 Static energy saving

We continue to show the static energy savings that we can achieve with our proposed
algorithms. We calculate the static energy saving for different LO mode weights
and Ps in the range 0.1− 0.3, in increments of 0.05.

Figure 7.2: Static energy saving

The static energy of the system after applying our energy minimization algorithm
is shown in Figure 7.2. It is evident from the plots that for all possibilities of wLO,
static energy is saved. For instance, 32% of static energy is saved for the considered
task set when wLO = 0 and Ps = 0.3. However, the amount of energy saved is not
constant. Since HI mode utilization is less than that of LO mode in the system,
there is more slack available for decreasing frequency in HI mode. Hence, when the
system is more active in HI mode, both the static and dynamic energy consumptions
are saved in a balanced way. Furthermore, as wLO increases, the system is active
in LO mode for excessive amount of time. Thus, it becomes more important now
to save energy in LO mode. However, the LO mode utilization is comparatively
higher than that of HI mode. Therefore, more weightage is given to save dynamic
energy consumption as it is the cubic function of frequency and static energy is a
linear function1. Thus, the static energy reduction decreases as wLO increases in
the considered task set.

1it should be noted that decreasing frequency increases static energy

7.3 Evaluation on Multi-core 53

7.2.3 Impact of C(HI)
C(LO) Ratio

To analyze the impact of the extra workload, we consider λ = C(HI)
C(LO) ≥ 1. We also

set wLO = 0.2 and wHI = 0.8. When λ = 1, then there is no extra overhead as
the HI criticality tasks would never exceed their LO criticality utilizations. With
λ > 1, there is always a safety concern for HI criticality tasks as HI mode WCET
increases.

Figure 7.3: Impact of the ratio between C(HI) and C(LO) on energy minimization

Figure 7.3 shows the total energy at different values of λ, in the range 1 − 2.275.
As we see, with increased extra workload, the minimal expected energy increases.
This is because, the HI mode utilization increases when λ is increased. It should
also be noted that wHI > wLO, which means that the system is active in HI mode
for a longer duration. The trend with increasing energy stops at λ = 2.275, after
which the system becomes infeasible even when we set the frequencies to fmax.
Furthermore, we also observe that, as α increases, more energy is saved.

7.3 Evaluation on Multi-core

Experiments were conducted to study the effects of various factors on the energy
consumption on multi-cores. The results obtained by simulating the random task
sets on multi-core platform with existing bin packing methods and our proposed
methods are shown in Figure 7.4. We observe in the plots that EM3 method saves
energy considerably compared to the other mapping techniques (36% more saving
than Baruah’s and 24% more than Gu’s method). The energy saving in IM3 is
almost the same as that of EM3 (6% less than EM3). In EM3, the tasks are
distributed on all active cores, whereas in IM3, LO and HI criticality tasks are
distributed over l and h cores respectively. Hence, the distribution of LO and HI
criticality tasks may not be balanced, thus loading l or h cores depending on the
task utilization in particular mode. However, in case of EM3, which allows less

54 Evaluation

Figure 7.4: Comparison of normalized energy consumption with different mapping
techniques

slack for decreasing execution frequencies, the maximum χ criticality utilization on
each core is 3/4. In IM3, since the maximum LO criticality utilization allowed on l
cores, and the sum of LO and HI criticality utilization allowed on h cores is 1, the
execution frequencies can be adjusted more freely.

7.3.1 Impact of Number of Cores

The number of active cores selected for mapping plays an important role in mini-
mizing the energy. We continue to present the impact of number of cores on energy
minimization.

Figure 7.5: Comparison of normalized energy consumption with different number of
cores

The outcome of our experiment with different number of cores (4 to 10) is shown
in Figure 7.5. It is evident from the plots that the energy consumption in Baruah’s
method is constant in all the cases because it employs FF method to allocate both
criticality level tasks. Since all the tasks can be scheduled using 4 available cores,

7.3 Evaluation on Multi-core 55

FF packs all the tasks in 4 cores, thus increasing the mode frequencies. Consider-
ing Gu’s method, only LO criticality tasks are mapped using FF, whereas the HI
criticality tasks are distributed on all the available cores as much as possible. This
contributes in saving HI mode energy and therefore, the energy consumption is less
compared to Baruah’s method. On the contrary, EM3 method uses WF to map all
the tasks, thus saving energy in both the modes depending on the weight factors.
IM3 shows its worst performance when the number of cores available (cores = 4) is
almost the same as that of total utilization of tasks (3). However, IM3 saves more
energy if the number of cores is increased up to an extent (cores = 7) as the tasks
can be evenly distributed. Further increase in the number of cores does not help
because the optimal mode frequencies in all the cores are already at fmin. When
the number of cores is increased, the total static energy consumption of the system
also increases.

Figure 7.6: Impact of weight factors on energy minimization

7.3.2 Impact of Weight Factors

Weight factors are the main decision makers that provide the preference for energy
saving in a certain mode. We execute the random task sets for different mode
weights and the obtained results are shown in Figure 7.6. Our energy minimization
objective (5.10) depends on the weighted sum of respective mode frequencies and
their weights. Hence, for all possibilities of wLO ∈ [0 , 3] in steps of 0.2, EM3
always shows the best performance in saving energy and IM3 follows it with a small
difference. FF always consumes more energy being the worst in the considered
mapping techniques. We notice in the plots that as wLO increases, the total energy
consumption also increases. This is because the LO mode utilization is higher
in the generated task set. Hence, when LO mode gets more weight, the energy
consumption depends on LO mode utilization of both LO and HI criticality tasks
unlike HI mode energy where only UHI

HI and wHI are considered. On the contrary,
when UHI

HI � ULO
HI + ULO

LO , then the total energy decreases as LO mode weight

56 Evaluation

increases.

Figure 7.7: Impact of task utilization on energy minimization

7.3.3 Impact of Task Utilization

It is trivial that, increasing utilization increases the execution times of tasks, thus
keeping the system to be active for a longer duration. In the experiments, the
total utilization of tasks for each task set was increased from 0.2 to 3 in steps of
0.2. In all the cases, we fix wLO = 0.8 and wHI = 0.2 and four number of cores.
When the utilization of the task set is very low, then no matter what bin packing
method we use (FF or WF), all the tasks execute at fmin in both the modes. This
follows up to an extent (0.4 in our case) depending on the number of LO and HI
criticality tasks in the system and also weights. Further increase in the utilization
forces FF technique to fill all tasks in the same core as much as possible, whereas
WF distributes them on all available cores, thus saving energy. We observed that,
the energy saved by employing EM3 and IM3 was same when the total utilization
was until 1.4. Beyond 1.4, the energy consumption was comparatively more in IM3
than EM3.

7.4 Validation

In all the simulations that we performed, we used our unicore heuristic to find the
mode frequencies. To validate our optimal solution and heuristic, we used “NMini-
mize” function of Mathematica with our energy objective and scheduling constraints
as input to the function. We compared the solution provided by NMinimize and
our approaches for the FMS task set with the same parameters considered in Sec-
tion 7.2.1. We observed that the optimal frequencies calculated by NMinimize and
the one computed by our optimal solution are the same. However, in some cases we
obtained a maximum difference of 0.00085%2 between the optimal frequencies and
the one calculated by our heuristic. This difference is negligible as even the latest
processors do not support DVFS with such frequency variations.

2Total energy was calculated for all values of feasible fHI
HI with increments of 0.001

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Embedded systems are making inroads into our daily lives. These systems need
to execute various tasks that are having different levels of priorities and criticality
within a single such system or in the larger integrated system of systems. Thus
scheduling tasks on processors where they have different levels of criticality is an
important issue. Further, ensuring timing safety and at the same time minimizing
energy consumption in battery operated mixed-criticality systems have been a con-
cern. This thesis considered mixed criticality systems that try to ensure safety as
well as minimize energy. The real-time research community and industry have pro-
posed many techniques to tackle the safety issues. However, there is not much work
in the literature, concentrating on energy efficiency of these mixed criticality sys-
tems. This necessitates dedicated investigations into this class of mixed criticality
problems owing to recent developments of technology.

In this thesis, we explore the energy minimization possibilities in these systems and
provide an optimal solution for the problem. We also propose a low-complexity
heuristic for reducing energy consumption in these systems and show that as high
as 36% of the total energy can be saved. Unlike existing solutions, we minimize both
static and dynamic energy consumption and also save energy in both LO and HI
mode behaviors of the system. However, the main issues arise when saving energy.
Several important questions in this regard were addressed in this report pertaining
to saving energy.

In this work, we studied the factors that affect the energy consumption of mixed
criticality tasks on unicore and multi-cores. We proposed weight factors to trade-
off energy saving between different criticality levels. We apply the widely used
energy conservation technique DVFS on the EDF-VD scheduling technique to save
energy and also to guarantee timing safety. We demonstrate that, the problem is
convex and solvers such as KKT conditions can be used to find the optimal solution.
However, KKT conditions lead to high computational complexity and therefore, we

8.2 Future Work 59

provide an/the optimal energy saving algorithm and also a low-complexity heuristic
since the optimal computation is NP-hard.
We also extended the work to multi-cores by proposing two energy aware mapping
techniques: one with mixing different criticality tasks together which are efficient
for resource constraint devices; and another without mixing tasks with different
criticality levels, thus providing complete isolation as preferred by the industry.
We show that, using our isolated mapping technique, significant energy saving (6%
less than non-isolated method in our simulations for a particular task set) can be
achieved without jeopardizing system safety. We validate our proposed techniques
by considering an FMS task set and also with extensive simulations. We also show
that the solution provided by our heuristic is very close to the optimal solution and
is negligible (maximum difference of 0.00085% between the optimal frequencies and
the frequencies calculated by our heuristic). We believe that the proposed energy
saving technique is implementable (with few other considerations such as overheads
introduced by DVFS) as the modern processors and micro-controllers are facilitated
with DVFS capability.

8.2 Future Work

Possibly this is the beginning of new class of scheduling solutions focused jointly on
energy and time criticality. The present work, though has shed light on many im-
portant issues and has provided insights, much more investigations are still needed.
The work here ccan be improved in many ways. We enlist some of them here:

• We considered EDF-VD scheduling technique in our energy minimizing prob-
lem. However, the optimal solution and heuristic can be generalized indepen-
dent of scheduling techniques chosen.

• We consider only two criticality levels - LO and HI in our problem. The
solution that we provided can be extended to multi-level mixed-criticality
systems where tasks with more than two criticality levels are considered.

• Further improvement in minimizing energy in HI mode can be achieved once
the jobs executing in both LO and HI mode completes their execution (in this
case, the HI mode utilization can be stretched to 1 using DVFS as the LO
criticality tasks are abandoned).

• The extra overheads added because of DVFS need to be handled. The over-
heads can be listed as follows: (i) Frequency scaling timing overhead (DVFS
adds extra timing overhead in the processor to change the execution frequen-
cies which can be added to WCET of tasks, but not straight forward), (ii)
dynamic power reduction overheads (dynamic power does not change abruptly
but gradually changes when DVFS is applied) and (iii) sleep mode switching
overhead. Extra time is taken to switch the processor from active mode to
sleep mode and vice versa. Moreover, the power change is not abrupt.

The above issues if considered holistically, in our opinion, will lead to important
strides in embedded systems of the future.

Chapter 9

Publications

1. Sujay Narayana, Pengcheng Huang, R Venkatesha Prasad, Lothar Thiele and
Georgia Giannopoulou. Energy and Timliness – Energy Minimization for
Mixed-Criticality Systems on Multi-cores. Submitted to 22nd IEEE Real-
Time Embedded Technology & Applications Symposium (RTAS 2016).

2. Sujay Narayana, Pengcheng Huang, R Venkatesha Prasad, Lothar Thiele and
Georgia Giannopoulou. Energy Minimization for Isolated Mixed-Criticality
Systems on Multi-cores. To be Submitted at ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc’16).

Appendix A

Proofs

A.1 Schedulability conditions for EDF - VD with DVFS
strategy

We consider the same task model and follow the same procedure as in [32] and
present the modified schedulability conditions as follows:

Theorem 7. All the tasks are schedulable in their LO criticality behaviors of τ if

x ≥
ULO

HI (τ)
fLO

HI

1− ULO
LO (τ)
fLO

LO

(A.1)

Proof. If EDF has to schedule all the tasks, then the total lo criticality utilization
has to be less than 1. The deadlines of all HI criticality tasks are shortened by a
multiplication factor x. From the utilization bound result of EDF,

ULO
LO + ULO

HI
x
≤ 1

By applying DVFS strategy on tasks in LO mode, the execution times of tasks are
increased as described in Corollary 1. Hence we can conclude that

ULO
LO
fLO

LO
+ ULO

HI
xfLO

HI
≤ 1

⇔ x ≥
ULO

HI (τ)
fLO

HI

1− ULO
LO (τ)
fLO

LO

A.1 Schedulability conditions for EDF - VD with DVFS strategy 63

Theorem 8. All the tasks are schedulable in their LO criticality behaviors of τ if

x
ULO

LO (τ)
fLO

LO
+ (fHI

HI − fLO
HI)

fLO
HI

ULO
HI (τ)
fHI

HI
+ UHI

HI (τ)
fHI

HI
≤ 1

Proof. Even though τ satisfies condition A.1 in LO criticality behaviours, all the
tasks may not meet their deadlines in HI criticality behaviors of τ . Let us consider
a minimal instance of jobs I that is released by the task set τ where only one task
misses it’s deadline. Since all the tasks satisfy condition A.1, the deadline miss has
to be from a HI criticality task. Let t∗ be the time instant at which a HI criticality
task enters into HI criticality behavior for the first time in the instance I. Let the
earliest release of all the jobs happens at instance 0 and tf be the time instant at
which the deadline is missed by a job. Hence all the tasks in I have deadlines less
than tf ; and executes completely except the one that misses it’s deadline. Let a1
be the release time of a job in I with the earliest release time of all the jobs that
execute in [t∗, tf] and let d1 be it’s deadline. For each i, 1≤ i ≤ n, let ηi be the
amount of execution over the interval [0, tf]. For each i, 1≤ i ≤ n, let ui(χ) be
Ci(χ)
Ti

, the utilization of χ criticality task.

Fact 1. All jobs executing in [t∗, tf] have deadline ≤ tf .

Proof. This follows from [32]

Fact 2. Any LO criticality task τi has

ηi ≤
ui(LO)
fLO
i

(a1 + x(tf − a1)) (A.2)

Proof. The proof provided in [32] still holds in this fact as we only change the
computation time of tasks by changing the execution frequency.

Fact 3. Any HI criticality task τi has

ηi ≤
a1
x

ui(LO)
fLO
i

+ (tf − a1)
(

(fHI
i − fLO

i)
fHI
i

ui(LO)
fLO
i

+ ui(HI)
fHI
i

)
(A.3)

Proof. For any HI criticality task, we consider two cases where τi does not release
any job at or after release time < a1 and when it does.

Case 1 : τi does not release any job at or after a1

We know that a1 is the release time of job that executes in [t∗, tf] with the earliest
release time in I. Hence any HI criticality job released before a1 always executes
in it’s LO criticality behavior. In other words, the job should have completed it’s
execution before t∗. Also, any job with release time ai in I has the modified ab-
solute deadline ≤ ai + x(tf − ai). This is because, since x ≤ 1, and is same for
all the tasks in I, for instance, at x = 1 (maximum value), the modified deadline
≤ tf . This is true for all i in 1 ≤ i ≤ n. Hence it is also true that all jobs have
their absolute modified deadlines ≤ a1 + x(tf − a1). If not, consider some job with

64 Proofs

a modified deadline ≥ a1 + x(tf − a1) and let t′ be the latest instant at which this
job executes. From the assumption made for I, it is evident that all the jobs having
release times greater than t′ also misses the deadline.

Since the modified deadline of jobs released before a1 has modified deadline ≤
a1 + x(tf − a1), their actual deadlines are ≤ a1

x + x(tf − a1)

Therefore, their cumulative execution requirement

ηi ≤
a1
x

ui(LO)
fLO
i

+ (tf − a1)ui(LO)
fLO
i

(A.4)

Case 2 : τi releases a job at or after a1

Let Ji be the first job with release time ai that is released at or after a1.
In this case, we can consider two scenarios:
Scenario 1 : Ji completes it’s partial execution before t∗ and partial after t∗.
In this scenario, the cumulative execution demand of all jobs of ti is at most

ηi ≤ ai
ui(LO)
fLO
i

+ (tf − ai)
(
ui(LO)
fLO
i

+ ui(HI)− ui(LO)
fHI
i

)
(A.5)

Scenario 2 : Ji starts and completes it’s execution after t∗

In this scenario, the cumulative execution demand of all jobs of ti is atmost

ηi ≤ ai
ui(LO)
fLO
i

+ (tf − ai)
ui(HI)
fHI
i

(A.6)

Since the execution demand presented in A.5 is higher than that in A.4 and A.6,
we can discard conditions A.4 and A.6.
Hence the execution demand for any HI criticality task has the execution demand

ηi ≤
a1
x

ui(LO)
fLO
i

+ (tf − a1)
(

(fHI
i − fLO

i)
fHI
i

ui(LO)
fLO
i

+ ui(HI)
fHI
i

)
(A.7)

Summing up the cumulative demand of all tasks over [0, tf]:

∑
χi=LO

ηi +
∑
χi=HI

ηi

≤
∑

χi=LO

ui(LO)
fLO
i

(a1 + x(tf − a1)) +
∑
χi=HI

a1
x

ui(LO)
fLO
i

+(tf − a1)
(

(fHI
i − fLO

HI)
fHI
i

ui(LO)
fLO
i

+ ui(HI)
fHI
i

)

A.1 Schedulability conditions for EDF - VD with DVFS strategy 65

≤ ULO
LO (τ)
fLO

LO
(a1 + x(tf − a1)) + a1

x

ULO
HI (τ)
fLO

HI

+(tf − a1)
(

(fHI
HI − fLO

HI)
fHI

HI

ULO
HI (τ)
fLO

HI
(τ + UHI

HI (τ)
fHI

HI

)

(Using condition A.1)

≤ a1 + (tf − a1)
(
x
ULO

LO (τ)
fLO

LO
+ (fHI

HI − fLO
HI)

fHI
HI

ULO
HI (τ)
fLO

HI
+ UHI

HI (τ)
fHI

HI

)

It follows from in feasibility of this instance that:

a1 + (tf − a1)
(
x
ULO

LO (τ)
fLO

LO
+ (fHI

HI − fLO
HI)

fHI
HI

ULO
HI (τ)
fLO

HI
+ UHI

HI (τ)
fHI

HI

)
> tf

Taking contrapositive,

x
ULO

LO (τ)
fLO

LO
+ (fHI

HI − fLO
HI)

fHI
HI

ULO
HI (τ)
fLO

HI
+ UHI

HI (τ)
fHI

HI
≤ 1

Bibliography

[1] R. D. A. Burns, “Mixed criticality systems - a review.” www-users.cs.york.
ac.uk/burns/review.pdf, June 2014. Accessed: 14-05-2015.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,” Com-
puters, IEEE Transactions on, vol. 61, pp. 1140–1152, Aug 2012.

[3] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling of
mixed-criticality applications on resource-sharing multicore systems,” in Em-
bedded Software (EMSOFT), 2013 Proceedings of the International Conference
on, pp. 1–15, Sept 2013.

[4] S. Schreiner, K. Gruttner, S. Rosinger, and A. Rettberg, “Autonomous flight
control meets custom payload processing: A mixed-critical avionics architec-
ture approach for civilian uavs,” in Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2014 IEEE 17th International Sympo-
sium on, pp. 348–357, June 2014.

[5] R. Urzi, “A research agenda for mixed-criticality systems.” http:
//www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/RBO-09-130%20Joint%
20MCAR%20White%20Paper%20PA%20approved.pdf.

[6] P. Prisaznuk, “Arinc 653 role in integrated modular avionics (ima),” in Digital
Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th, pp. 1.E.5–
1–1.E.5–10, Oct 2008.

[7] ARINC, “Arinc 653-1 avionics application software standard interface.” http:
//www.arinc.com/,Tech.Rep., June 2003. Accessed: 14-05-2015.

[8] H. Stallbaum and M. Rzepka, “Toward do-178b-compliant test models,” in
Model-Driven Engineering, Verification, and Validation (MoDeVVa), 2010
Workshop on, pp. 25–30, Oct 2010.

www-users.cs.york.ac.uk/burns/review.pdf
www-users.cs.york.ac.uk/burns/review.pdf
http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/RBO-09-130%20Joint%20MCAR%20White%20Paper%20PA%20approved.pdf
http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/RBO-09-130%20Joint%20MCAR%20White%20Paper%20PA%20approved.pdf
http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/RBO-09-130%20Joint%20MCAR%20White%20Paper%20PA%20approved.pdf
http://www.arinc.com/, Tech. Rep.
http://www.arinc.com/, Tech. Rep.

67

[9] AUTOSAR, “Autosar specification v4.2.” OfficialwebsiteoftheAUTOSAR:
http://www.autosar.org/specifications/release-42/, August 2015. Ac-
cessed: 01-08-2015.

[10] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling for
real-time systems. a survey,” Industrial Informatics, IEEE Transactions on,
vol. 9, pp. 3–15, Feb 2013.

[11] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multipro-
cessor systems,” ACM Comput. Surv., vol. 43, pp. 35:1–35:44, Oct. 2011.

[12] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” J. ACM, vol. 20, pp. 46–61, Jan. 1973.

[13] M. Dertouzos, “Control robotics :the procedural control of physical processors,”
in IFIP Congress, 1974.

[14] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital de-
sign,” Solid-State Circuits, IEEE Journal of, vol. 27, pp. 473–484, Apr 1992.

[15] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time systems
on dynamic voltage scaling (dvs) platforms,” in Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA ’07, (Washington, DC, USA), pp. 28–38, IEEE Computer
Society, 2007.

[16] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu
energy,” in Foundations of Computer Science, 1995. Proceedings., 36th Annual
Symposium on, pp. 374–382, Oct 1995.

[17] R. Jejurikar and R. Gupta, “Procrastination scheduling in fixed priority real-
time systems,” SIGPLAN Not., vol. 39, pp. 57–66, June 2004.

[18] Y.-H. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for reducing
leakage power in hard real-time systems,” in Real-Time Systems, 2003. Pro-
ceedings. 15th Euromicro Conference on, pp. 105–112, July 2003.

[19] D. Duarte, N. Vijaykrishnan, M. Irwin, H.-S. Kim, and G. McFarland, “Impact
of scaling on the effectiveness of dynamic power reduction schemes,” in Com-
puter Design: VLSI in Computers and Processors, 2002. Proceedings. 2002
IEEE International Conference on, pp. 382–387, 2002.

[20] H. Hanson, S. Keckler, and D. Burger, “Static energy reduction techniques in
microprocessor caches,” in The University of Texas at Austin, 2003.

[21] C. Stangaciu, M. Micea, and V. Cretu, “Energy efficiency in real-time sys-
tems: A brief overview,” in Applied Computational Intelligence and Informat-
ics (SACI), 2013 IEEE 8th International Symposium on, pp. 275–280, May
2013.

[22] C. Guo, “Empirical study of energy minimization issues for mixed-criticality
systems with reliability constraints,” in The First Workshop on Low-Power
Dependable Computing (LPDC), 2014.

Official website of the AUTOSAR: http://www.autosar.org/specifications/release-42/
Official website of the AUTOSAR: http://www.autosar.org/specifications/release-42/

68 Bibliography

[23] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy efficient dvfs
scheduling for mixed-criticality systems,” in Embedded Software (EMSOFT),
pp. 1–10, Oct 2014.

[24] Baruah, S. and Chattopadhyay, B. and Li, H. and Shin, I., “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, vol. 50, no. 1, pp. 142–177,
2014.

[25] M. Bagheri and G. Jervan, “Fault-tolerant scheduling of mixed-critical appli-
cations on multi-processor platforms,” in Embedded and Ubiquitous Computing
(EUC), 2014 12th IEEE International Conference on, pp. 25–32, Aug 2014.

[26] J. M. López, J. L. Díaz, and D. F. García, “Utilization bounds for edf schedul-
ing on real-time multiprocessor systems,” Real-Time Syst., vol. 28, pp. 39–68,
Oct. 2004.

[27] A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “New strategies for assigning
real-time tasks to multiprocessor systems,” Computers, IEEE Transactions on,
vol. 44, pp. 1429–1442, Dec 1995.

[28] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son, “New strategies for assigning
real-time tasks to multiprocessor systems,” IEEE Trans. Comput., vol. 44,
pp. 1429–1442, Dec. 1995.

[29] H. Li and S. Baruah, “Outstanding paper award: Global mixed-criticality
scheduling on multiprocessors,” in Real-Time Systems (ECRTS), 2012 24th
Euromicro Conference on, pp. 166–175, July 2012.

[30] O. Kelly, H. Aydin, and B. Zhao, “On partitioned scheduling of fixed-priority
mixed-criticality task sets,” in Trust, Security and Privacy in Computing and
Communications (TrustCom), 2011 IEEE 10th International Conference on,
pp. 1051–1059, Nov 2011.

[31] IEC, “Iec 61508 standard.” OfficialwebsiteoftheIEC:http://www.iec.ch/
about/brochures/pdf/technology/functional_safety.pdf, August 2015.
Accessed: 01-08-2015.

[32] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling of
mixed-criticality implicit-deadline sporadic task systems,” in Real-Time Sys-
tems (ECRTS), 2012 24th Euromicro Conference on, pp. 145–154, July 2012.

[33] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient scheduling
of certifiable mixed-criticality sporadic task systems,” in Real-Time Systems
Symposium (RTSS), 2011 IEEE 32nd, pp. 13–23, Nov 2011.

[34] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying de-
grees of execution time assurance,” in Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International, pp. 239–243, Dec 2007.

Official website of the IEC: http://www.iec.ch/about/brochures/pdf/technology/functional_safety.pdf
Official website of the IEC: http://www.iec.ch/about/brochures/pdf/technology/functional_safety.pdf

69

[35] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with mul-
tiple criticality specifications,” in Real-Time Systems, 2008. ECRTS ’08. Eu-
romicro Conference on, pp. 147–155, July 2008.

[36] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable mixed-
criticality systems,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2010 16th IEEE, pp. 13–22, April 2010.

[37] T. Park and S. Kim, “Dynamic scheduling algorithm and its schedulability
analysis for certifiable dual-criticality systems,” in Proceedings of the Ninth
ACM International Conference on Embedded Software, EMSOFT ’11, (New
York, NY, USA), pp. 253–262, ACM, 2011.

[38] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo, and L. Sha,
“Handling mixed-criticality in soc-based real-time embedded systems,” in Pro-
ceedings of the Seventh ACM International Conference on Embedded Software,
EMSOFT ’09, (New York, NY, USA), pp. 235–244, ACM, 2009.

[39] A. Sangiovanni-Vincentelli, “Quo vadis, sld? reasoning about the trends and
challenges of system level design,” Proceedings of the IEEE, vol. 95, pp. 467–
506, March 2007.

[40] S. Petters, M. Lawitzky, R. Heffernan, and K. Elphinstone, “Towards real
multi-criticality scheduling,” in Embedded and Real-Time Computing Systems
and Applications, 2009. RTCSA ’09. 15th IEEE International Conference on,
pp. 155–164, Aug 2009.

[41] P. Ekberg and W. Yi, “Outstanding paper award: Bounding and shaping the
demand of mixed-criticality sporadic tasks,” in Real-Time Systems (ECRTS),
2012 24th Euromicro Conference on, pp. 135–144, July 2012.

[42] A. Srinivasan, P. Holman, J. Anderson, and S. Baruah, “The case for fair
multiprocessor scheduling,” in Parallel and Distributed Processing Symposium,
2003. Proceedings. International, pp. 10 pp.–, April 2003.

[43] F. Kong, W. Yi, and Q. Deng, “Energy-efficient scheduling of real-time tasks on
cluster-based multicores,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, pp. 1–6, March 2011.

[44] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on uniform multipro-
cessors,” in Real-Time Systems Symposium, 2001. (RTSS 2001). Proceedings.
22nd IEEE, pp. 183–192, Dec 2001.

[45] S. Baruah and N. Fisher, “The partitioned scheduling of sporadic real-time
tasks on multiprocessor platforms,” in Parallel Processing, 2005. ICPP 2005
Workshops. International Conference Workshops on, pp. 346–353, June 2005.

[46] J. Anderson, S. Baruah, and B. Brandenburg, “Multicore operating-system
support for mixed criticality,” in Workshop on Mixed Criticality: Roadmap to
Evolving UAV Certification, San Francisco, 2009.

70 Bibliography

[47] S. Baruah, “Optimal utilization bounds for the fixed-priority scheduling of
periodic task systems on identical multiprocessors,” Computers, IEEE Trans-
actions on, vol. 53, pp. 781–784, June 2004.

[48] A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, M. Roy, and F. Vargas,
“Monitoring on-line timing information to support mixed-critical workloads,”
RTSS, WiP, 2013.

[49] C. Gu, N. Guan, Q. Deng, and W. Yi, “Partitioned mixed-criticality schedul-
ing on multiprocessor platforms,” in Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2014, pp. 1–6, IEEE, 2014.

[50] Z. Guo and S. Baruah, “Mixed-criticality scheduling upon varying-speed mul-
tiprocessors,” in Dependable, Autonomic and Secure Computing (DASC), 2014
IEEE 12th International Conference on, pp. 237–244, Aug 2014.

[51] G. Liu, Y. Lu, S. Wang, and Z. Gu, “Partitioned multiprocessor scheduling of
mixed-criticality parallel jobs,” in Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), 2014 IEEE 20th International Conference
on, pp. 1–10, Aug 2014.

[52] M. Bagheri and G. Jervan, “Fault-tolerant scheduling of mixed-critical appli-
cations on multi-processor platforms,” in Embedded and Ubiquitous Computing
(EUC), 2014 12th IEEE International Conference on, pp. 25–32, Aug 2014.

[53] V. Legout, M. Jan, and L. Pautet, “Mixed-criticality multiprocessor real-time
systems: Energy consumption vs deadline misses,” in First Workshop on Real-
Time Mixed Criticality Systems (ReTiMiCS), pp. 1–6, 2013.

[54] M. Volp, M. Hahnel, and A. Lackorzynski, “Has energy surpassed timeliness?
scheduling energy-constrained mixed-criticality systems,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th,
pp. 275–284, IEEE, 2014.

[55] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time systems on
dynamic voltage scaling (dvs) platforms,” in Embedded and Real-Time Com-
puting Systems and Applications, 2007. RTCSA 2007. 13th IEEE International
Conference on, pp. 28–38, Aug 2007.

[56] S. Pagani and J.-J. Chen, “Energy efficiency analysis for the single frequency
approximation (sfa) scheme,” in Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), 2013 IEEE 19th International Conference
on, pp. 82–91, Aug 2013.

[57] A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. Nguyen, and K. Goossens,
“Power minimisation for real-time dataflow applications,” in Digital System
Design (DSD), 2011 14th Euromicro Conference on, pp. 117–124, Aug 2011.

[58] S. Pagani and J.-J. Chen, “Energy efficient task partitioning based on the single
frequency approximation scheme,” in Real-Time Systems Symposium (RTSS),
2013 IEEE 34th, pp. 308–318, Dec 2013.

71

[59] A. Kandhalu, J. Kim, K. Lakshmanan, and R. Rajkumar, “Energy-aware par-
titioned fixed-priority scheduling for chip multi-processors,” in Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2011 IEEE 17th
International Conference on, vol. 1, pp. 93–102, Aug 2011.

[60] Boyd, S. and Vandenberghe, L., “Convex optimization, cambridge university
press, isbn: 9780521833783,” in Cambridge University Press, 2004.

[61] E. Seo, J. Jeong, S. Park, and J. Lee, “Energy efficient scheduling of real-
time tasks on multicore processors,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 19, pp. 1540–1552, Nov 2008.

[62] H. Kuhn and A. Tucker, “Nonlinear programming,” in Second Berkeley Sym-
posium on Mathematical Statistics and Probability, pp. 481–492, University of
California Press, Berkeley and Los Angeles, 1951.

[63] H. Nakayama, H. Sayama, and Y. Sawaragi, “A generalized lagrangian function
and multiplier method,” Journal of Optimization Theory and Applications,
vol. 17, pp. 211–227, 1975.

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Notations
	Acknowledgements

	Main Matter
	Introduction
	Mixed-Criticality revisited
	Mixed-criticality scheduling
	Motivation and Problem statement
	Contribution
	Thesis Outline

	Related Work
	Scheduling
	Multi-core Mapping
	Energy minimization

	System Model
	Mixed-Criticality Task Model
	Power Model and DVFS
	Mixed-Criticality Scheduling
	Scheduling and Energy Minimization

	Motivational Example and Problem Definition
	Motivational Example
	Unicore
	Multi-core

	Problem Formulation
	Unicore problem
	Energy-Aware Mapping

	Unicore Optimal Solution
	KKT Conditions
	Optimal Solution Using KKT Conditions
	Optimality Condition in fi
	Optimality Condition in x
	Simplified Energy Objective
	KKT Conditions for Simplified Objective
	Optimal Solution
	Extreme case (fLOLO = fHILO = fHIHI = fmin)
	Equilibrium case (xLBopt = xopt = xUBopt)

	Heuristic Solution

	Energy Minimization on Multi-cores
	Overview of Existing Methods
	Baruah's method
	Gu's method
	Energy Minimized Mixed-Criticality Mapping (EM3)
	Isolated Mixed-Criticality Mapping Method (IM3)
	Conditions for LO criticality tasks
	Conditions for HI criticality tasks
	Algorithm

	Evaluation
	Experimental Setup
	Evaluation on Unicore
	Impact of Weight Factors
	Static energy saving
	Impact of C(HI)C(LO) Ratio

	Evaluation on Multi-core
	Impact of Number of Cores
	Impact of Weight Factors
	Impact of Task Utilization

	Validation

	Conclusion and Future Work
	Conclusion
	Future Work

	Publications

	Appendices
	Proofs
	Schedulability conditions for EDF - VD with DVFS strategy

	Back Matter
	Bibliography

