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To facilitate the development of future shoulder endoprostheses, a long term load profile of the shoulder
joint is desired. A musculoskeletal model using 3D kinematics and external forces as input can estimate
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the mechanical load on the glenohumeral joint, in terms of joint reaction forces. For long term ambu-
latory measurements, these 3D kinematics can be measured by means of Inertial Magnetic Measurement
Systems. Recording of external forces under daily conditions is not feasible; estimations of joint loading
should preferably be independent of this input. EMG signals reflect the musculoskeletal response and can
easily be measured under daily conditions. This study presents the use of a neural network for the
prediction of glenohumeral joint reaction forces based upon arm kinematics and shoulder muscle EMG.
Several setups were examined for NN training, with varying combinations of type of input, type of
motion, and handled weights. When joint reaction forces are predicted by a trained NN, for motion data
independent of the training data, results show a high intraclass correlation (ICC up to 0.98) and relative
SEM as low as 3%, compared to similar output of a musculoskeletal model. A convenient setup in which
kinematics and only one channel of EMG were used as input for the NN's showed comparable predictive
power as more complex setups. These results are promising and enable long term estimation of shoulder
joint reaction forces outside the motion lab, independent of external forces.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In the process of developing future endoprostheses for the
shoulder, information on the mechanical loading of the shoulder is
essential. Ideally, this information embraces a long term load
profile of the shoulder joint under daily living conditions. The
glenohumeral joint reaction force represents the resultant of
muscle forces and passive forces like ligament strain working on
the shoulder joint, rendering it into a natural candidate for the
indication of mechanical loading.

Under laboratory conditions shoulder joint moments and
reaction forces have been estimated with a large scale muscu-
loskeletal model for a variety of tasks [Delft Shoulder and Elbow
Model, DSEM, (van der Helm, 1994a,, 1994b)], using upper extre-
mity 3D kinematics and external force as input. If load profiles are
to be recorded under daily conditions, these input variables have
to be measured ambulatory.

It has been shown that Inertial Magnetic Measurement Systems
(IMMS) are an adequate candidate for the ambulatory measurement
anical Engineering, Faculty of
niversity of Technology, The

Vries).
of upper extremity kinematics (Cutti et al., 2008,; de Vries et al., 2010).
Although external force can be measured under laboratory conditions,
long term ambulatory recordings should preferably be independent of
the complex measurements of external force.

Several alternative methods in the determination of the
mechanical loading of the shoulder joint under daily conditions
exist. Westerhoff et al. (2009) used instrumented endoprostheses,
enabling the direct measurement of JRF-GH under daily condi-
tions. Despite interesting results, this method is rather invasive,
limited to a small group of patients who opt for a shoulder joint
replacement, and therefore will render only a small sample size for
research. Besides that, for a more detailed load profile, additional
measurement of movements or actions resulting in higher loads at
the endoprosthesis is required. As in EMG driven models, EMG
signals reflect the musculoskeletal response and can easily be
measured under daily conditions. Several studies have used EMG
combined with other variables as input for neural networks in the
prediction of kinematics or kinetics. Sepulveda et al. (1993)
demonstrated the potential of neural networks in predicting joint
angles and joint moments from EMG in human gait; Hahn and
O'Keefe (2008) trained neural networks to predict sagittal plane
joint moments during normal gait; Liu et al. (1999) used neural
networks muscle force prediction from EMG; mapping of EMG to
joint angles (Cheron et al., 2003; Shrirao et al., 2009), and the
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Fig. 1. A fully equipped subject, with four sensor modules on sternum, humerus,
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prediction of net moments around the elbow joint based on EMG
(Song and Tong, 2005). Kingma et al. (2001) compared a linked
segment model, an EMG driven model, and a neural network
approach in the prediction of spinal loading. Isokinetic knee torque
as predicted by a neural network using EMG, joint kinematics and
several other variables showed higher accuracy than a forward
stepwise regression model (Hahn, 2007). Luh et al. (1999) showed
that moments around a single joint axis can be estimated by a
neural network (NN), using segment kinematics and surface EMG
as inputs.

These results inspired us to investigate a NN approach in the
direct prediction of the glenohumeral joint reaction force under
unconstrained daily conditions, based on ambulatory obtainable
variables like body segment kinematics and EMG. Inertial Mag-
netic Measurement Systems (IMMS) enable the long term ambu-
latory measurement of 3D upper extremity kinematics in an
almost unlimited measurement volume. Developments in the past
decade resulted in truly wearable EMG measurement equipment.
With these two systems available all the necessary information
can be collected ambulatory.

One major question remains open: are neural networks indeed
able to learn the complex relationship between upper extremity
kinematics and muscle activity patterns to predict glenohumeral
joint reaction force, for the irregular, unconstrained humeral
motion under daily conditions?
forearm and hand, and 13 channels of surface EMG.
2. Methods

One healthy subject (age 29 years, stature 180 cm, weight
78 kg), with no history of shoulder dysfunction, was invited to
participate in this pilot study, after consulting a local ethical
committee. After explanation of the goal and procedures of the
study, informed consent was signed.

Training data for the NN method were generated by performing
several series of pre-described upper extremity movements while
holding a variety of known masses in the hand, as described in
more detail in Section 2.3. Upper extremity 3D kinematics and
EMG were measured, external forces on the hand were calculated
by multiplying the known mass by measured acceleration. This
approach produced both input for the musculoskeletal model
(kinematics and external force) and the NN method (kinematics
and EMG), all ambulatory measureable. The target for training of
the NN, glenohumeral joint reaction force, was calculated using a
musculoskeletal model (DSEM). After sufficient training, the NN
should be able to predict glenohumeral joint reaction forces using
only 3D kinematics and EMG.

To examine a NN method being successful in the prediction of
the joint reaction forces under daily conditions, the influence of
the following factors has been studied:

1. The type of movements that should be performed; Activities of
Daily Living (ADL) or Random Movements;

2. The type of input needed for the NN;

a. 3D kinematics and surface EMG of 13 muscles of the upper
extremity;

b. Upper extremity 3D kinematics and the EMG of the medial
Deltoid, which was considered to be most active during
mentioned tasks;

3. Variation of external weights, should the range of weights used
for training cover the external forces exerted during ADL
movements; or stated differently, how good is a trained NN in
intra- and extrapolating?
2.1. Kinematics

Four IMMS were attached to a bus master (MT-X sensors and a
XM-B-3 bus master, Xsens Technologies, Netherlands), operating
at 50 Hz. The XSens MT-manager software (v1.5.0, SDK v3.1) was
used for logging; the implemented Kalman filtering (Roetenberg
et al., 2005) was set at the “human scenario”. As depicted in Fig. 1,
IMMS were attached on sternum, humerus, forearm and hand.

Sensor to segment calibration was performed following de
Vries et al. (2010). Orientation estimations of clavicle and scapula
were based on the regression equations by de Groot and Brand
(2001). The required initial orientation of clavicle and scapula was
measured using a scapula locator, adapted from van Andel et al.
(2009). One extra sensor unit was aligned to the local reference
frame of an adjustable tripod. Two of the three pivots could be
translated in the plane of the scapula locator and were placed on
the respective bony landmarks of the scapula to measure initial
orientation. Kinematic data from the segments were expressed in
the reference frame of the DSEM model, with the positive X-axis
from left to right, positive Y-axis vertical upwards, and positive Z-
axis pointing backwards.

2.2. EMG

Thirteen muscles around the shoulder joint were selected for
the recording of surface EMG, see Table 1. Bi-polar Ag/AgCl elec-
trodes were placed following the guidelines proposed by Hermens
and Freriks (1997). EMG data were sampled at 1000 Hz, digitally
filtered with a first order high pass filter at 16 Hz and recorded
(Biotel 99, Glonner, Planegg, Germany). Offline, EMG signals were
rectified and smoothed (unidirectional low pass 2nd order But-
terworth filter at 3 Hz) to obtain smooth rectified EMG envelopes
(srEMG) in an attempt to have a resemblance in envelope shape
close to muscle force output (Olney and Winter, 1985).

2.3. Experimental protocol

Two types of datasets were generated. During the first series of
six measurements, labeled as RND (random), the subject
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performed random upper extremity movements for one minute
each, holding a known mass (0, 0.5, 1.0, 1.5, 2.0, or 2.5 kg). The
subject was instructed to cover the complete range of motion over
all degrees of freedom, and to vary movement speed from slow to
moderately fast.

In the second series of four measurements the subject was
asked to mimic Active Daily Living (ADL) tasks with a mass (0, 0.2,
0.5 and 1.0 kg) in the right hand for 10 s each. These tasks con-
sisted of brushing teeth, combing hair, perineal care, washing the
axils and eating.
2.4. Data analysis

Inspired by the overview of Schollhorn (2004), for the type of
data in this experiment a three layer feedforward network was
constructed, with a hidden layer of 20 cells. From input to hidden
layer a tangent sigmoid transfer function was used, from hidden to
output layer a linear transfer function. The number of inputs
depended on the stage of analysis:

� Stage 1: 36 input cells were used using segment 3D kinematics
(orientation for all segments; forearm acceleration and angular
Table 1
Muscles selected for the recording of surface EMG.

1 M. Trapezius ascendens
2 M. Trapezius transversa
3 M. Trapezius descendens
4 M. Deltoideus anterior
5 M. Deltoideus medial
6 M. Deltoideus posterior
7 M. Latissimus dorsi
8 M. Infraspinatus
9 M. Serratus anterior
10 M. Pectoralis major, pars Sternalis
11 M. Pectoralis major, pars clavicularis
12 M. Triceps, caput longum
13 M. Biceps, caput longum

Fig. 2. (A) Schematic of the procedure used to train a neural network with back propagat
phase, known external forces are required as one of the inputs for the musculoskeletal m
hand]). The comparison of neural network output and its target (calculated by the musc
implemented in the Matlab neural network toolbox which was used for the constructi
independent dataset with the network, and compare its prediction with results as calcu
velocity as measured with the IMMS) and 13 channels of upper
extremity muscle srEMG;.

� Stage 2: 24 input cells were used based on kinematics and
srEMG of the medial Deltoid.

The output layer consisted of three cells to predict the joint
reaction force at the glenohumeral joint. Neural networks were
trained using Matlab's Neural Network Toolbox (Matlab R2012a,
NN toolbox V7.0.3). Network training was epoch based for a
maximum of 500. A Levenberg–Marquard backpropagation algo-
rithm with a momentum of 0.8 at a learning rate of 0.05 was
applied. To prevent overfitting, training was stopped when inter-
nal validation failed to decrease for 10 successive iterations,
usually at around 250–300 epochs of the complete dataset (mul-
tiple trials) used as input. The training procedure is schematized in
Fig. 2A.

Validation of the method comprises the comparison of time
series of joint reaction force as predicted by the neural network
versus calculated with the musculoskeletal model as depicted in
Fig. 2B. The Intra-Class Correlation was chosen as a measure for
the resemblance of these two time series (NN and musculoskeletal
model) and calculated per condition. Since the ICC is a relative
measure of reliability, the Standard Error of Measurement (SEM)
was calculated to obtain an absolute index of reliability in the
same units as the measurement (Weir, 2005). To enable compar-
ison among different conditions SEM values were expressed as a
percentage of the range of the signal (SEM_rel).

The initialization of a neural network comprises random
weight assignment to all internal connections, followed by train-
ing; when repeated this might lead to different behavior and
performance of these networks. Therefore, for each test condition
10 individual networks were initialized, trained and externally
validated by simulating the trained NN with an independent
dataset, not used for training. From these 10 individually trained
neural networks, the neural network producing the lowest
SEM_rel was considered the best performing network.

Several combinations of input type, movement type, and
weight ranges were examined during this validation, as depicted
ion in predicting joint reaction forces at the glenohumeral head. During the training
odel (Exerted Force¼[known mass in the hand] times [measured acceleration of the
uloskeletal model), and the update of internal parameters of the neural network is
on and training of this procedure. (B) Validation was performed by simulating an
lated with the musculoskeletal model.



Table 2
Results of simulation with a trained NN in predicting JRF-GH, Relative SEM for the several conditions tested. Each cell contains Relative SEM values of the best performing NN
of 10 individually trained. Left column depicts which set of EMG (13 channels, or just one), and what type of motion trials were used for NN training; ADL type, ADL and RND,
or only RND. Each row depicts what type of motion trial was simulated (ADL type, or RND), with a low (interpolation) or Heavy Weight (extrapolation). Simulation took place
with measurement trials not used in the training of the NN.

Simulation ADL Simulation ADL Simulation RND Simulation RND
Training Light Weights Heavy Weights Light Weights Heavy Weights

3D Component X Y Z X Y Z X Y Z X Y Z

Kinematics, 13 channels EMG
ADL
ICC 0.91 0.97 0.97 0.86 0.96 0.93
SEM_rel 11 5 6 8 4 6

ADL&RND
ICC 0.93 0.95 0.95 0.85 0.94 0.94 0.93 0.94 0.96 0.89 0.91 0.88
SEM_rel 10 7 7 9 5 7 8 6 6 7 5 9

RND
ICC 0.83 0.86 0.91 0.91 0.93 0.94 0.90 0.92 0.86
SEM_rel 19 14 12 11 7 7 7 4 9

Kinematics, 1 channel EMG
ADL
ICC 0.88 0.98 0.95 0.88 0.95 0.93
SEM_rel 13 4 7 7 5 6

ADL&RND
ICC 0.94 0.98 0.96 0.88 0.95 0.95 0.92 0.94 0.93 0.86 0.94 0.84
SEM_rel 9 3 6 7 5 6 10 6 7 8 4 10

RND
ICC 0.84 0.88 0.90 0.90 0.96 0.95 0.89 0.93 0.88
SEM_rel 21 13 13 11 5 7 7 4 9

W.H.K. de Vries et al. / Journal of Biomechanics 49 (2016) 73–7976
in Table 2. For the conditions with the label “Light Weights” the
trials with 0.2 kg weight was excluded from training of the neural
networks and subsequently used for simulation with the trained
NN. These “Light Weights” conditions served as a test case for the
performance of the NN while interpolating. For the conditions
with the label “Heavy Weights” the trials with the heaviest weight
(for ADL movements 1.0 kg, for Random Movements 2.5 kg) were
excluded from training and subsequently simulated by the trained
NN. As such, these “Heavy Weights” conditions served as a test
case for NN performance while “extrapolating”.
3. Results

The neural networks showed good convergence during train-
ing, meaning that the neural networks were able to learn the
relationship between input and target (preferred output for the
training dataset). Over all conditions, for the best performing
network the ICC values ranged from 0.98 to 0.83, whereas the
SEM_rel varied from 3% to 21%, between NN-predictions and cor-
responding output from the musculoskeletal model. For the best
performing NN of each conditions these ICC and the SEM_rel are
depicted in Table 2.

Results from stage 1, (3D kinematics and 13 channels of EMG)
for ADL type movements indicate that performance was best when
NN were trained with ADL type movement trials and external load
within the training range, resulting in a SEM_rel of 11%, 5% and 6%,
for the x, y and z dimensions respectively. Initially it was assumed
that RND type movements would cover the complete range of
motion of the upper extremity, and thus would deliver a generally
trained NN, for “any” type of motion. However, the combination of
ADL and RND type movements as training dataset for the network
did not improve performance in predicting joint reaction forces for
ADL type movements, raising the SEM_rel to 10%, 7% and 7%.
When using only RND type movements as training data, the per-
formance of NN in predicting joint reaction forces for ADL type
movements decreased further to SEM_rel values of respectively
19%, 14% and 12%. On the contrary, when predicting joint reaction
forces for RND type movements using RND, or a combination of
RND and ADL type movements as training data sets for the NN,
SEM_rel values ranged between 6% and 11%, strengthening the
notion that NN should be trained with task specific data.

NN predictions for ADL type movements performed with
higher weights than those used for the training of the NN resulted
in SEM_rel values ranging from 4% to 9% for ADL type motion, and
4% to 11% for RND type motion. These results indicate that even in
extrapolation, the neural network approach remains consistent in
its predictive power.

Results from the second stage, in which segment kinematics
and just one single channel of EMG served as input for the NN,
show similar results as stage one, where 13 channels of EMG were
used. These results show the potential of the NN approach with an
appealing simplicity in equipment needed: The ambulatory mea-
surement of shoulder joint reaction forces, with one sensor
per segment, and only one channel of EMG.

Fig. 3A shows data of a NN, trained with ADL type movements,
and simulating an independent ADL type movement while holding
a Light Weight (0.2 kg) in the hand. Movements performed were
brushing teeth, combing hair, perineal care, washing axils and
eating (bringing hand to mouth). NN prediction overshoot can be
observed at the peaks in the references signal, and a certain offset
for some parts of the trial. In Fig. 3B, showing results for NN
trained with kinematics and one channel of EMG, predicting joint
reaction forces for Heavy Weight trials of RND movement, devia-
tions can be observed at the peaks in the signal, where NN do
predict lower values than the joint reaction force as calculated by
the musculoskeletal model. However, the distribution of the joint
reaction force over time, as predicted with the neural network
method, shows good correspondence with the reference signal,
and allows for an initial estimation of shoulder joint loading
over time.



Fig. 3. Depict time series, and distributions of glenohumeral joint reaction forces, from both NN predictions (black lines) and the musculoskeletal model (gray lines), the
latter being the reference signal. (A) Results from a NN with kinematics, sensor data and 13 channels of EMG as input, trained on ADL type movement, predicting LowWeight
ADL type movement. (B) Results from a NN with kinematics, sensor data and only one channel of EMG as input, trained on RND type movement, predicting a Heavy Weight
RND type movement.
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4. Discussion

The intention of the current experiment was to evaluate the
neural network approach as a reliable and practical method, to
enable a long-term estimation of joint reaction forces under daily
conditions using ambulatory obtained data. A practical method
should have an appealing simplicity concerning the amount of
equipment used and preparation time needed. Aiming at such
simplicity, neural networks were trained for several conditions.
Two types of movements were used, mimicking Activities of Daily
Living, and RandomMovements. Furthermore, two groups of input
parameters were examined; kinematics and 13 channels of EMG;
kinematics and one channel of relevant EMG. NN predictions of
glenohumeral joint reaction forces were referenced against a
musculoskeletal model. Although there is room for improvement,
results were promising and relevant influences to the predictive
power of the method have been identified.

Fig. 3A indicates the performance for conditions where neural
networks were trained using ADL type kinematics and full EMG as
input, predicting ADL type movements with a light load. Almost
same results were obtained for the Heavy Weight condition. When
trials with RND type movement were added to the training data
set, predictive power decreased a little. When using only RND type
movement in training, and predicting ADL type movement, pre-
dictive power decreased further, as can be noticed from Table 2.
This was unexpected, since it was initially assumed that the
addition of more variation to the training data set of the NN should
result in a “better” prediction of the NN. This suggests that training
data for the NN should be focused to the type of movement of
interest. It also questions the reliability of the neural network
prediction for activities not included in the training of the neural
networks. The ongoing challenge of proper handling of unforeseen
actions in the application of the described ambulatory method has
at least two theoretical solutions. The first solution is applying a
two step approach. A first phase is aggregating a catalog of per-
formed motions or ADL during a full day, which can be used in the
second phase (another day) to produce training data for the neural
network (subject is asked to perform activities from the catalog).

A second solution is postponing the collection of training data
to the end of a full day of measurements. From the collected data a
top 5 (or top 10) of performed movements is selected for the
measurement of training data for the neural networks. For both
solutions a proper classification method should be available to
aggregate such a activity catalog.

The use of 13 channels of upper extremity EMG is not a con-
venient setup for ambulatory measurements. For the sake of a
practical setup Stage 2, with only one channel of EMG, was
introduced and examined. The fact that results from Stage
2 simulations corresponded well with results from Stage 1, this
suggests that this setup is favorable for ambulatory measurements.

In the current experiment data from only one subject was
analyzed. For this specific subject a neural network is trained to
learn the individual complex relation between 1) measured EMG
and kinematics and 2) joint reaction force. Although for a specific
activity a gross resemblance in muscle activity over subjects exists,
the aforementioned dedicated relation has to be defined per
subject. Based on results from the literature (Song and Tong, 2005;
Liu et al., 1999), where for multiple subjects neural networks were
trained to learn the relation between e.g. EMG, kinematics and
joint moments, it was assumed that neural networks are able to
establish these relations for different subjects, and therefore dif-
fering signals. Future research will address neural networks ability
to deal with inter-subject variability for the ADL tasks described.
The appealing concept of training a general neural network on
pooled data from several subjects can than also be addressed.
Glenohumeral joint reaction force as estimated by the muscu-
loskeletal model was used as target signal in the training of NN,
and as reference for comparison. Model estimations of muscle
activity have been qualitatively validated against EMG patterns
(van der Helm, 1994a,, 1994b); estimations of glenohumeral joint
reaction force have been quantitatively validated recently against
in vivo measured joint reaction forces (Nikooyan et al., 2010). For
dynamic tasks up to 90° of humeral elevation values were com-
parable, although peak forces were underestimated by the model;
for higher angles a deviation in force direction was observed, and
for force exerting tasks an underestimation of the models JRF was
found. Possibly this behavior of the musculoskeletal model results
in an inconsistent training set, thereby disturbing the learning
process of the NN method, resulting in the observed differences.
Potentially the application of a NN method to in vivo measured JRF
might show better correspondence, thereby expanding opportu-
nities in obtaining a general load profile of the shoulder.

Application of the neural network method to patient mea-
surements deserve special attention. First of all, the used muscu-
loskeletal model should be adapted to mimic the subjects abilities,
for instance rotator cuff tears should be simulated in the model as
described by Steenbrink et al. (2009). Secondly, if any pathological
adaptation is present in upper extremity muscle activity, a
redundant number of channels of EMG as input for the neural
network should be considered. And thirdly, the type of motion
used for training neural networks should be within the subjects
ability.

To enable the discrimination between the damaging effects of
peak forces versus sustained duration of raised levels of JRF, for a
broad range of movements as encountered under daily conditions,
both levels should be estimated for a longer period of time.
5. Conclusions

Shoulder joint loading in terms of JRF-GH can be estimated by a
NN trained on ambulatory obtainable variables like srEMG and
IMMS data of the upper extremity. The dataset should comprise
sufficient “task specific” training trials. A convenient setup with
IMMS on upper extremity segments and only one channel of
relevant EMG showed comparable results to a setup with IMMS
and 13 channels of EMG.
Conflict of interest statements

The authors disclose any financial and personal relationships
with other people or organizations that could inappropriately
influence (bias) our work. The authors can also state that the study
sponsors had no involvement in the study design, collection or the
decision to submit this manuscript for publication. This manu-
script, including related data, figures and tables has not been
previously published and is not under consideration elsewhere.
Acknowledgments

This research project is conducted within the “Freemotion
Consortium”, and “Fusion Consortium”, which are both granted by
Senter (a delegate of the Dutch Ministry of Economic Affairs).
Senter had no involvement in the study design, collection or the
decision to submit this manuscript for publication.



W.H.K. de Vries et al. / Journal of Biomechanics 49 (2016) 73–79 79
References

Cheron, H., Leurs, F., Bengoetxea, A., Draye, J.P., Destree, M., Dan, B., 2003. A
dynamic recurrent neural network for multiple muscles electromyo graphic
mapping to elevation angles of the lower limb in human locomotion. J. Neu-
rosci. Methods 129, 95–104.

Cutti, A.G., Giovanardi, A., Rocchi, L., Davalli, A., Sacchetti, R., 2008. Ambulatory
measurement of shoulder and elbow kinematics through inertial and magnetic
sensors. Med. Biol. Eng. Comput. 46, 169–178.

de Groot, J.H., Brand, R., 2001. A three-dimensional regression model of the
shoulder rhythm. Clin. Biomech. 16, 735–743.

de Vries, W.H.K., Veeger, H.E.J., Cutti, A.G., Baten, C., van der Helm, F.C.T., 2010.
Functionally interpretable local coordinate systems for the upper extremity
using inertial & magnetic measurement systems. J. Biomech. 43, 1983–1988.

Hahn, M.E., 2007. Feasibility of estimating isokinetic knee torque using a neural
network model. J. Biomech. 40, 1107–1114.

Hahn, M.E., O'Keefe, K.B., 2008. A neural network model for estimation of net joint
moments during normal gait. J. Musculoskelet. Res. 11, 117–126.

Hermens, H.H., Freriks, B., 1997. Seniam 5: The State of The Art on Sensors and
Sensor Placement Procedure for Surface Electromyography: A Proposal for
Sensor Placement Procedure. Roessingh Research & Development, Enschede.

Kingma, I., Baten, C.T.M., Dolan, P., Toussaint, H.M., van Dieen, J.H., de Looze, M.P.,
Adams, M.A., 2001. Lumbar loading during lifting: a comparative study of three
measurement techniques. J. Electromyogr. Kinesiol. 11, 337–345.

Liu, M.M., Herzog, W., Savelberg, H.H.C.M., 1999. Dynamic muscle force predictions
from EMG: an artificial neural network approach. J. Electromyogr. Kinesiol. 9,
391–400.

Luh, J.J., Chang, G.C., Cheng, C.K., Lai, J.S., Kuo, E.S., 1999. Isokinetic elbow joint
torques estimation from surface EMG and joint kinematic data: using an arti-
ficial neural network model. J. Electromyogr. Kinesiol. 9, 173–183.
Nikooyan, A.A., Veeger, H.E.J., Westerhoff, P., Graichen, F., Bergmann, G., van der
Helm, F.C.T., 2010. Validation of the Delft Shoulder and Elbow Model using in-
vivo glenohumeral joint contact forces. J. Biomech. 43, 3007–3014.

Olney, S.J., Winter, D.A., 1985. Predictions of knee and ankle moments of force in
walking from EMG and kinematic data. J. Biomech. 18, 9–20.

Roetenberg, D., Luinge, H.J., Baten, C.T.M., Veltink, P.H., 2005. Compensation of
magnetic disturbances improves inertial and magnetic sensing of human body
segment orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 395–405.

Schollhorn, W.I., 2004. Applications of artificial neural nets in clinical biomechanics.
Clin. Biomech. 19, 876–898.

Sepulveda, F., Wells, D.M., Vaughan, C.L., 1993. A Neural network representation of
electromyography and joint dynamics in human gait. J. Biomech. 26, 101–109.

Shrirao, N.A., Reddy, N.P., Kosuri, D.R., 2009. Neural network committees for finger
joint angle estimation from surface EMG signals. Biomed. Eng. Online 8, 2.

Song, R., Tong, K.Y., 2005. Using recurrent artificial neural network model to esti-
mate voluntary elbow torque in dynamic situations. Med. Biol. Eng. Comput. 43,
473–480.

Steenbrink, F., de Groot, J.H., Veeger, H.E.J., van der Helm, F.C.T., Rozing, P.M., 2009.
Glenohumeral stability in simulated rotator cuff tears. J. Biomech. 42,
1740–1745.

van Andel, C., van Hutten, K., Eversdijk, M., Veeger, D., Harlaar, J., 2009. Recording
scapular motion using an acromion marker cluster. Gait Posture 29, 123–128.

van der Helm, F.C.T., 1994a. A finite-element musculoskeletal model of the shoulder
mechanism. J. Biomech. 27, 551–569.

van der Helm, F.C.T., 1994b. Analysis of the kinematic and dynamic behavior of the
shoulder mechanism. J. Biomech. 27, 527–550.

Weir, J.P., 2005. Quantifying test-retest reliability using the intraclass correlation
coefficient and the SEM. J. Strength Cond. Res. 19, 231–240.

Westerhoff, P., Graichen, F., Bender, A., Halder, A., Beier, A., Rohlmann, A., Berg-
mann, G., 2009. In vivo measurement of shoulder joint loads during activities of
daily living. J. Biomech. 42, 1840–1849.

http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref1
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref1
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref1
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref1
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref1
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref2
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref2
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref2
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref2
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref3
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref3
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref3
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref21
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref21
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref21
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref21
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref21
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref4
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref4
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref4
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref5
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref5
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref5
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref8
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref8
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref8
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref8
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref9
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref9
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref9
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref9
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref10
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref10
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref10
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref10
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref11
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref11
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref11
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref11
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref12
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref12
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref12
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref12
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref13
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref13
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref13
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref14
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref14
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref14
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref14
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref15
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref15
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref15
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref16
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref16
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref16
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref17
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref17
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref18
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref18
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref18
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref18
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref19
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref19
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref19
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref19
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref20
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref20
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref20
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref6
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref6
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref6
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref7
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref7
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref7
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref22
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref22
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref22
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref23
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref23
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref23
http://refhub.elsevier.com/S0021-9290(15)00651-X/sbref23

	Can shoulder joint reaction forces be estimated by neural networks?
	Introduction
	Methods
	Kinematics
	EMG
	Experimental protocol
	Data analysis

	Results
	Discussion
	Conclusions
	Conflict of interest statements
	Acknowledgments
	References




