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ABSTRACT

We use the Reynolds-averaged Navier–Stokes (RANS) equations with a full Reynolds stress model (RSM) to study the effect of the corner
angle in supersonic corner flow. RANS data are compared to reference direct numerical simulation of fully developed a square duct flow,
which support predictive capability of secondary flows from Stress-x RSM. We then carry out a parametric study by changing the corner
angle in the range h ¼ 45�–135�, focusing on the effect on the mean streamwise and secondary flow. The maximum strength of the second-
ary flows of about 0:015u1 occurs for h ¼ 90�, which is similar to what is found in fully developed square ducts. Secondary eddies have
approximately unit aspect ratio, and they maintain their shape for different corner angles by translating in the direction parallel to the closest
wall. As a result, the position of the vortex center can be described by a simple geometrical transformation of the wall-parallel coordinate.
We find that small corner angles are responsible for locally relaminarization flow at the corner, but otherwise the mean streamwise velocity
profiles transformed according to van Driest following the canonical law-of-the-wall.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0046716

I. INTRODUCTION

Flows past streamwise corners formed by the intersection of two
plates are common in aerospace applications, typical examples being
aircraft wing–body junction, rectangular air intakes, and turbine-hub
flow. Streamwise corner flows are characterized by the presence of sec-
ondary currents in cross-stream planes, which are driven by the nor-
mal and secondary-shear components of the Reynolds stress tensor.23

Hence, they are commonly referred to as turbulent secondary flows, or
corner vortices. Secondary flows typically come in the form of two
counter-rotating eddies, which bring high-momentum fluid from the
edge of the boundary layer toward the corner, with a maximum inten-
sity of about Oð1%u1Þ.19

Turbulent secondary flows were first studied in the low-speed
regime by Prandtl,24 who hypothesized their existence to explain the
bulging of the mean streamwise velocity isolines toward the corner in
square duct flow. Visualizations in support of this hypothesis were first
provided by Nikuradse.19 Bragg1 carried out experiments of boundary
layer flow over a streamwise corner with 90� angle and used the

bulging of the velocity isolines as supporting evidence of secondary
currents, although direct measurement of the cross-stream velocity
components was not possible.

The study of turbulent secondary velocities in spatially develop-
ing corner flows involves additional numerical and experimental chal-
lenges as compared to fully developed noncircular ducts. For this
reason, fully developed turbulent square duct flow is often the pre-
ferred prototype for studying secondary flows, based on the assump-
tion that the structure and intensity of secondary flows is not affected
by boundary layer growth.20 This assumption has generally been con-
firmed by early experimental studies. For instance, Kornilov and
Kharitonov8 reported secondary flow intensity of 2.5–3:5%u1 for cor-
ner flow, as compared to 1–2%ub reported by Gessner and Jones7 for
fully developed square duct flow, where u1 and ub are the free-stream
and bulk flow velocities, respectively.

More accurate measurements of secondary flows have been pos-
sible in recent years owing to direct numerical simulation (DNS) and
access to high-performance computing resources. Pirozzoli et al.23 and
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Modesti et al.17 carried out DNS of the fully developed incompressible
square duct flow and showed that their intensity is 1–2%ub. As a
result, the effect of secondary flows on the primary flow is weak, and
the streamwise flow can be characterized as given by the superposition
of independent wall flows on each side of the duct.

In the high-speed regime, flows over streamwise corners have been
extensively studied for their relevance in supersonic air intakes3,4 and
for their propensity to promote laminar-to-turbulent transition.28 Davis
and Kerlick4 and Davis and Gessner3 investigated supersonic developing
adiabatic flow at inlet Mach numberM1 ¼ u1=c1 ¼ 3:91 (where c1
are the free-stream sound speed) and unit Reynolds number Re1=m
¼ u1=�1 ¼ 1:8� 106=m (where �1 is the free-stream kinematic vis-
cosity). No significant compressibility effect on the secondary flows was
reported, and it was found that the wall-normal van Driest-transformed
velocity profiles still follow the universal law-of-the-wall. Morajkar
et al.18 carried out experiments of supersonic corner flow using particle
image velocimetry, basically confirming the findings of Davis and
Kerlick.4 Modesti et al.16 carried out direct numerical simulation of
developed flow in an isothermal square duct up to bulk Mach number
Mb ¼ ub=cw ¼ 3 (where cw is the speed of sound at the wall) and
showed that secondary flows are not affected by compressibility as the
cross-flow is largely subsonic. Those authors also showed that, in the
supersonic regime, the streamwise flow can be viewed as the superposi-
tion of four concurrent walls; hence, classical compressibility transforma-
tions5,31 can be extended to multiple walls. As for the effect of Reynolds
number on secondary flow intensity, DNS data of incompressible and
supersonic square duct flow seem to suggest a scaling with the bulk flow
velocity,16,23 at least within the limited Reynolds number range affordable
by DNS. On the contrary, incompressible and supersonic Reynolds-
averaged Navier–Stokes (RANS) with eddy-viscosity models and experi-
ments13,29 seem to suggest scaling with the friction velocity.

Although a considerable amount of work has been carried out
for secondary flows in fully developed and in corner flows, only a few
studies have considered the effect of the corner angle, most limited to
the low-speed regime. Eckert and Irvine6 carried out experiments in
fully developed incompressible triangular ducts with corner angle
11:5� and reported laminar flow close to the corner. Daschiel et al.2

carried out a direct numerical simulation of triangular ducts with cor-
ner angles 11:5� and 4�, finding laminar flow in the proximity of sharp
corners, resulting in a lower friction as compared to ducts with the
same hydraulic diameter. Raiesi et al.25 carried out DNS of fully devel-
oped skewed ducts and also reported laminar flow at sharp corners.

In this study, we consider supersonic flow in a streamwise-
aligned corner for free-stream Mach number M1 ¼ 2:95, and unit
Reynolds number Re1=m ¼ 8:095� 106. We have carried out RANS
simulations by changing the corner angle in the range h ¼ 45�–135�

to elucidate the effects on the mean streamwise flow and on the spatial
development of the secondary flows.

II. NUMERICAL STRATEGY
A. Numerical method

Streamwise corner flow is here numerical analyzed using the
Reynolds-averaged Navier–Stokes as physical model. It is well known
that classical linear eddy-viscosity models have intrinsic problems in
capturing secondary flows,30 which is due to the anisotropy turbulence
in the corner.21 This problem can be circumvented through the use of
nonlinear constitutive relations.15 The quadratic constitutive relation

(QCR) shows potential ability in capturing secondary flow,29 although
there is still a gap between the predicted result and the experiment.12

In this study, we use the Reynolds stress model of Wilcox33 (Stress-x
RSM). Yang et al.34 carried out RANS simulations of a supersonic
square duct using the Stress-x RSMmodel and confirmed its ability to
accurately reproduce secondary flows. The RSM model involves a
solution of the transport equation for the Reynolds stress tensor,

@
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where q and l are the fluid density and dynamic viscosity, respec-
tively; p is the pressure; and ui is the velocity components. Reynolds
decomposition is used, where the overline denotes ensemble averages
and the prime superscript fluctuations thereof. The Reynolds stress
transport equations are not closed, and terms like DT;ij; /ij, and eij
require modeling.

The turbulent diffusion term is modeled after a standard linear
eddy-viscosity ansatz,9

DT;ij ¼ @

@xk

lt
rk

@u0iu0j
@xk

 !
; (2)

where rk ¼ 0:82, and the eddy viscosity is determined from
lt ¼ �qk=x, with the turbulence kinetic energy k and the specific dissi-
pation ratex obtained from the baseline k–xmodel.14,33

As customary in most classical Reynolds stress models, the dissi-
pation tensor is modeled as using the local isotropy hypothesis,

eij ¼ 2
3
ð�qeþ �qeM2

t Þ dij; (3)

where e is the pseudo-dissipation,Mt ¼
ffiffiffiffiffi
2k

p
=�c is the turbulent Mach

number, and�c is the local sound speed.26

Correct modeling of the pressure–strain term is crucial for cap-
turing secondary flows, because/ij redistributes energy across the nor-
mal Reynolds stresses, and this Reynolds stress anisotropy is one of
the mechanisms responsible for secondary flows.15 Herein, the pres-
sure–strain tensor is modeled after Wilcox,33

/ij ¼ � 9
5
�qb�RSMx u0iu0j �

2
3
dijk

� �
� â0 Pij � 1

3
Pkkdij
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3
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� �
; (4)

with model constants â0 ¼ 213=275; b̂0 ¼ 54=275; ĉ0 ¼ 136=275.
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As in the standard k–x model,33 b�RSM ¼ b�fb� is a correction
factor given by

b� ¼ 0:09
4=15þ Ret=12ð Þ4
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 !
1þ 3

2
F Mtð Þ

� �
; (5)

where Ret ¼ ðqkÞ=ðlxÞ is the turbulent Reynolds number,
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The modeled pressure–strain tensor (4) requires the term
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and the mean rate-of-strain,

Sij ¼ 1=2
@�uj

@xi
þ @�ui

@xj

 !
: (8)

We numerically solve the RANS equations using a density-based
coupled-implicit algorithm with Roe Riemann solver, whereby the
Minmod limiter is used to reconstruct the conserved variables at the
left and right cell interfaces. As customary for compressible flows, in
the following we also use Favre averages (ew ¼ qw=�q).

B. Simulation Setup

Figure 1 shows a sketch of the computational setup for the
streamwise corner flow. We carry out a parametric study changing the
corner angle between h ¼ 45�–135� in steps of 15�, for given free-
stream Mach number and unit Reynolds number, namelyM1 ¼ 2:95
and Re1=m ¼ 8:095� 106. The computational domain is a circular
cylindrical sector with streamwise length Lx=dmax ¼ 92:9, where dmax

is the boundary layer thickness at the outflow, estimated using the
empirical turbulent boundary layer thickness27

ds ¼ 0:37x=Re1=5x : (9)

The domain is divided into a corner zone and a buffer zone, as shown
in Fig. 1(b). The corner zone has a diamond shape, with side length
Lc ¼ 2dmax= sin h inside which the mesh is refined, whereas the mesh is
much coarser in the outer buffer zone and the total radius is Lb ¼ 8Lc.
As for the boundary conditions, we use nonreflecting conditions at the
far field and no-slip adiabatic conditions at the wall. At the inflow, we
consider a uniform flow and set the turbulence intensity to
I ¼ 0:1%u1. The inflow turbulence is assumed to be isotropic; thus,gu0iu0j ¼ 0. The normal Reynolds stress component fu02 ¼fv02 ¼ fw02

¼ 2=3k, where turbulence kinetic energy k ¼ 3=2ðu1IÞ2. The specific
dissipation ratex ¼ q1k=l1ðlt=l1Þ�1, where the turbulent viscosity
ratio lt=l1 is set to 10 for typical external flow.

C. Verification and validation

A preliminary assessment of the RANS model has been carried
out for the case of fully developed flow in a square duct, for which

DNS data are available, both for subsonic flow, and for supersonic
flow. Subsonic reference DNS data23 have bulk Mach number
Mb ¼ 0:2, bulk Reynolds number Reb ¼ 2qbubh=lw ¼ 40 000 (where
h is the duct half side length, and qb and lw are the bulk density and
dynamic viscosity at the wall, respectively), and friction Reynolds
number Re�s ¼ hu�s=�

�
w ¼ 1055, where u�s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s�w=q�w

p
is mean the

friction velocity, s�w and ��w are the mean wall shear stress and kine-
matic viscosity, the asterisk denoting averaging along the duct perime-
ter. The supersonic reference DNS case16 is at Mb ¼ 1:5; Reb
¼ 14 600, corresponding to friction Reynolds number Re�s ¼ 507. We
carried out RANS simulations of these two reference cases on a mesh
with 121� 121 grid points in the cross-stream plane and we impose a
uniform body force driving the flow in the streamwise direction, thus
matching the friction Reynolds number of the corresponding DNS. As
a result, RANS simulations have bulk Mach numbers Mb ¼ 0:20 and

FIG. 1. (a) Sketch of the simulation setup and (b) computational mesh in a cross-
stream section. h is the corner angle, Lx is the streamwise length of the computa-
tional box, and M1 is the free-stream Mach number. The cross section is a circular
sector with radius Lb, and the mesh is refined within a distance Lc from the corner.
Nc and Nb are the number of mesh points in the corner zone (Lc) and the buffer
zone (Lb � Lc), respectively.
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Mb ¼ 1:55, corresponding to bulk Reynolds numbers Reb ¼ 40 567
and Reb ¼ 15 200, respectively.

Figure 2 shows the mean streamwise eu=u�s and cross-stream
velocities ev=ub for the subsonic [(a) and (c)] and for the supersonic
[(b) and (d)] flow cases, compared with DNS data. In Figs. 2(a) and
2(b), the wall distance is normalized by the mean viscous length scale,
d�v ¼ ��w=u

�
s . Not unexpectedly, RANS correctly predicts the existence

of mean velocity profiles with nearly logarithmic variation with the
wall distance. It is certainly less expected that the Stress-x RSM model
is also capable of predicting the distribution and the intensity of the
secondary motions, with a local error of no more than 10%. The cross-
stream velocity contours shown in Fig. 3 further indicate that RANS is
capable of predicting with good accuracy the topology and the inten-
sity of the secondary motions; hence, it is also a good candidate to
study the case of developing corner flow.

Having validated the model for fully developed flow, the mesh
parameters for RANS of corner flows have been decided based on a
grid convergence study, in which we have carried out at fixed corner
angle (h ¼ 60�), using three meshes whose parameters are listed in

Table I. The computed streamwise and cross-stream velocity profiles
at the station Rex ¼ 1:618� 106 are shown in Fig. 4. Here and else-
where, the “+” superscript denotes quantities made nondimensional
with respect to the local wall units, namely local friction velocity
us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sw=qw

p
, and local viscous length scale, dv ¼ �w=us. Following

the analysis of Modesti et al.,16 we apply the classical van Driest veloc-
ity transformation in the direction normal to the closest wall (say y), at
all x and z locations,

uDðx; y; zÞ ¼
ðy
0

�qðx; g; zÞ
�qwðx; zÞ

	 
1=2 @eu
@g

ðx; g; zÞdg; (10)

where �qwðx; zÞ is the mean density at the wall. The van Driest effective
velocity profile at Rex ¼ 1:618� 106 away from the corner (see Fig. 4)
is in good agreement with reference DNS data32 at matching free-
stream Mach and Reynolds numbers, regardless of the mesh resolu-
tion. In Fig. 4(b), we also show the mean velocity profiles along the
corner bisector as a function of the radial distance from the corner
s=s0, where s0 is the distance at which the radial velocity componentevr

FIG. 2. Fully developed flow in a square duct: mean streamwise velocity profiles along the wall bisector [(a) and (b)], and mean cross-stream velocity [(c) and (d)] at
z=h ¼ �0:75 (solid), z=h ¼ �0:25 (dashed). h is the half of the duct side length. The left column [panels (a) and (c)] shows a subsonic case at Re�s ¼ 1055, and the right
column [panels (b) and (d)] shows a supersonic case at Re�s ¼ 507. The bulk Mach numbers are Mb ¼ 0:2; Mb ¼ 1:5 for DNS and Mb ¼ 0:20; Mb ¼ 1:55 for RANS.
Symbols refer to DNS16,23 and lines to present RANS simulations.
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changes sign. Good agreement of results obtained with the various
meshes is again observed, and the magnitude of the secondary flow is
about 1:5%u1. All simulations predict the secondary flow to be con-
fined within the boundary layer, with velocity pointing toward the cor-
ner, whereas outside the boundary layer cross-stream velocities change
sign due to concurrent growth of the boundary layers on the side walls.
Although the results obtained with Mesh B and Mesh C are nearly
coincident, some minor difference is observed on Mesh A regarding
the secondary flow. Hence, in an attempt to balance computational
cost and fidelity, all simulations hereafter reported are carried out on
computational meshes with the same number of points as Mesh B.

III. SECONDARY FLOWS

We first focus on the effect of h on the secondary flows. To
extract the vortex shape and position, we use the Liutex vortex detec-
tion method.10,11 The local vortex axis r is defined as,

$u � r ¼ krr; (11)

where $u is the velocity gradient tensor, and kr is its real eigenvalue.
The vortex intensity is,

R ¼ x � r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � rÞ2 � 4k2ci

q
; (12)

where x is the vorticity vector, and kci is the imaginary part of the first
complex eigenvalue of $u.

Figure 5 shows the isosurfaces of Liutex vortex magnitude R for
h ¼ 120�, which highlight both the corner vortices and leading-edge
structures. We also recall that in open corner flow there are no shocks,
except for the weak shocks emanating from the leading edge, and
therefore, the isosurfaces of the corner vortices are smoother than in
closed air intakes.34

Figure 6 shows the vortex center (red line) for h ¼ 120� together
with the vortex magnitude R at four cross-stream planes, highlighting
the growth of the vortices as the boundary layer grows downstream. In
the following, we use the cross-stream plane D in Fig. 6, corresponding
to Rex ¼ 4:86� 106, for the analysis of the mean flow statistics.

FIG. 3. Fully developed flow in a square duct: contours of mean cross-stream velocity.
Contour levels are shown between �0:016 � ev=ub � 0:016, in intervals of 0.002
(dashed lines denote negative values). The left column [(a) and (c)] shows a subsonic
case at Mb ¼ 0:20 (a), Mb ¼ 0:2 (c), Re�s ¼ 1055, and the right column [(b) and (d)]
shows a supersonic case at Mb ¼ 1:55 (b), Mb ¼ 1:5 (d), Re�s ¼ 507. Panels [(a) and
(b)] correspond to RANS, and panels [(c) and (d)] correspond to DNS.16,23

TABLE I. Mesh parameters for the grid refinement study at h ¼ 60�. Nx, Nc, and Nb
are the number of grid points in the streamwise direction, the corner zone, and the
buffer zone, respectively. Dgþw is the maximum wall-normal mesh spacing, excluding
the leading-edge region.

Mesh Nx Nc Nb Ntotal Dgþw

A 211 61 15 1:17M 0.89
B 281 81 20 2:78M 0.68
C 351 101 25 5:42M 0.54

FIG. 4. Grid sensitivity study for h ¼ 60�: mean velocity profiles at Rex ¼ 1:618� 106. (a) Inner-scaled effective velocity profiles away from the corner, compared with DNS data of flat plate
boundary layer from Ref. 32 at matching free-stream conditions, M1 ¼ 2:95 and Re1=m ¼ 8:095� 106. The friction Reynolds number is Res ¼ 367:9 for RANS and Res ¼ 361:4 for
DNS data. (b) Streamwise velocity (eu) and velocity along the corner bisector (ev r ) as a function of the radial distance from the corner s. s0 is the radial distance at whichev r changes sign.
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The cross-stream flow topology is sketched in Fig. 7. Corner
flows must be embedded inside the boundary layer, and for symmetry
reasons, they cannot cross the vortex bisector. As a consequence, their
distance from the closest wall (say yvc) should be proportional to the
local boundary layer thickness, and assuming (as is the case) that their
core has O(1) aspect ratio, their distance from the corner (say zvc)
should be inversely proportional to the corner angle. This expectation
is confirmed from Fig. 8, where we show the vortex center coordinates
as a function of Rex and scaled with the local boundary layer thickness
d far from the corner. We find in fact that wall distance of the vortex
center does not depend on h. On the other hand, we note the signifi-
cant effect of the corner angle on the distance from the corner, which
suggests that the vortex moves away from it as h becomes smaller. In
summary, we estimate that the vortex center coordinates at a given
streamwise station should scale as

yfitðxÞ ¼ a dsðxÞ; (13a)

zfitðxÞ ¼ a dsðxÞ= tan ðh=bÞ; (13b)

which accounts for boundary layer growth as given from Eq. (9) and
for change in the opening angle. Fitting RANS data shows that appro-
priate values of the fitting constants are a ¼ 0:24; b ¼ 4:75. Figure 9
shows the coordinates of the vortex center scaled with respect to the
predictions of Eq. (13). Significant deviations from the expected scal-
ing are only observed for h ¼ 45�, as the flow in the corner region

tends to stay laminar, and for h ¼ 135�, at which corner vortices tend
to be weaker, approaching the case of flat plate boundary layer.

Figure 9 supports our initial conjecture that corner vortices
should have essentially unit aspect ratio; hence, their shape should be
roughly independent of h. To further check this assumption, in Fig. 10
we show isolines of the vortex magnitude, corresponding to
R ¼ 0:5u1=‘1 (where ‘1 is the unit length scale) at Plane D, for differ-
ent values of h. As anticipated, we observe that the vortex core is dis-
placed in the direction parallel to the bottom wall.

The strength of the secondary motions is quantified in Fig. 11,
which shows the maximum value of the cross-stream velocity modulusevmax, as a function of Rex . We find that the latter property ranges up
to about 0:015u1, which is consistently with the value found in fully
developed square duct flow.23 In the range of flow parameters under
scrutiny, we find that the secondary flow intensity is nearly indepen-
dent of the Reynolds number, supporting the results of previous
RANS simulations and experiments.13,29 We further note that evmax

FIG. 7. Sketch of the corner vortex in the cross-stream plane. The red star symbol
indicates the vortex center, h is the corner angle and h=b the angle at which the
vortex center lies, with b ¼ 4:75. d is the local boundary layer thickness away
from the corner.

FIG. 8. Wall-normal (yvc, 4) and wall-parallel (zvc, h) coordinates of corner vortex
center as a function of Rex , for different corner angles. d is the local boundary layer
thickness away from the corner. The arrow indicates increasing corner angle h.

FIG. 6. Contours of vortex intensity (12) at four cross-stream planes, A: Rex
¼ 1:214� 106, B: Rex ¼ 2:427� 106, C: Rex ¼ 3:641� 106, and D:
Rex ¼ 4:86 �106 and isosurfaces of the vortex intensity, for h ¼ 120�. The red
lines indicate the vortex centers.

FIG. 5. Three-dimensional view of corner vortex structures for h ¼ 120�.
Isosurfaces of the vortex strength R ¼ 0:5u1=‘1 are colored with the streamwise
component of the Liutex vector, Rx [see Eq. (12)], and ‘1 is the unit length scale.
Rx > 0 corresponds to clockwise vortex rotation.
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varies significantly with the corner angle, being minimum for
h ¼ 135� and h ¼ 45�. In the former case, this occurs because the
flow approaches a flat plate boundary layer state, in which secondary
eddies are not present, and in the latter because the flow tends to stay
laminar for small corner angles. Furthermore, the amplitude of the
cross-stream velocity change is different. When the angle decreases
from h ¼ 90�, the cross-stream velocity decreases less than when the
angle increases. So the velocity distributions are similar for h ¼ 75�

and h ¼ 90�.

IV. STREAMWISE VELOCITY

In order to gain a qualitative impression for the effect of corner
angle variation on the primary, streamwise flow, in Fig. 12 we show
velocity contours in the cross-stream plane D, along with cross-stream
velocity vectors. Secondary flows come in the form of counter-rotating
eddies bringing high-momentum fluid from the bulk, high-speed flow
toward corners to compensate for reduced momentum. As a conse-
quence, the boundary layer is distorted, and the velocity isolines tend
to have a bulge near the corner, with the reduction in velocity at the
outer edge of the corner eddies owing to the return, off-wall motion.
Corner eddies have an influence on the distribution of the local fric-
tion coefficient, Cf ¼ 2sw=ðq1u21Þ, which is shown as a function of
z=d in Fig. 13(a). For corner angles h ¼ 90�–135�, the friction coeffi-
cient is nearly uniform away from corners, as it is expected to be.

FIG. 10. Isolines of vortex intensity R¼ 0.5 at plane D (Rex ¼ 4:86� 106): (a)
untransformed coordinates and (b) shifted by the vortex center,
zc ¼ z � zvc; yc ¼ y � yvc .

FIG. 11. Maximum of the cross-stream velocity as a function of Rex for different
corner angles.

FIG. 9. Wall-normal (a) and wall-parallel (b) coordinates of the vortex center, normalized with respect to the predictions of Eq. (13), for various corner angles.
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Moving toward the corner, Cf is obviously reduced, to a greater extent
in the case of small corner angles, as a consequence of the previously
noted tendency of the flow to stay laminar. A bulge in the Cf distribu-
tion is also observed at a distance increasing as h is reduced narrower,
which is associated with the outer boundary of the corner vortex. In
fact, rescaling the z coordinate by zfit yields near perfect collapse [see
Fig. 13(b)].

Further evidence for relaminarization flow occurring at small
corner angles is provided in Fig. 14, which shows profiles of the
Reynolds shear stress �qgu0v0=swfp at all wall-parallel coordinates z,
where swfp is the wall shear stress away from the corner. Profiles at
z < zvc are shown in red, and those at z > zvc in gray. We note a sig-
nificant reduction in the turbulent shear stress as h decreases, particu-
larly for h ¼ 45� and h ¼ 60�, consistently with the previously noted
reduction of the friction coefficient for those cases.

Based on the above observations, in Fig. 15 we attempt to quantify
the effect of the corner angle on the mean streamwise velocity distribu-
tion, by reporting the van Driest transformed velocity profiles for
Rex ¼ 4:86� 106, at all z, up to the corner bisector. Velocity profiles
taken at z < zvc are shown in red, and those at z > zvc in gray. For cor-
ner angles h ¼ 75�–135� [panels (c)–(g)], the velocity profiles show a
great deal of universality irrespective of the distance from the corner,
closely matching the distributions found in flat plate boundary layers at
matching Mach and Reynolds number.22 This interesting finding fur-
ther strengthens claims made about the robustness of the law-of-the-
wall, also outside the strict limits of its applicability.23 However, a clear
departure from universality is observed for h ¼ 45� and h ¼ 60� [pan-
els (a) and (b)], at which the velocity profiles in the region occupied by
the corner vortex (z < zvc) clearly overshoot the log law, which again is
a clear symptom of locally relaminarization flow.

FIG. 13. Friction coefficient Cf ¼ 2sw=ðq1u21Þ as a function of the wall-parallel coordinate at plane D: (a) as a function of z=d and (b) as a function of ðz � zfitÞ=d. d is the
boundary layer thickness away from the sidewall, and zfit is the coordinate of the fitted vortex center.

FIG. 12. Mean streamwise velocity contours (upper semi-corner) and cross-stream velocity vectors (lower semi-corner) at plane D for different corner angles (a) h ¼ 45�, (b)
h ¼ 60�, (c) h ¼ 75� , (d) h ¼ 90�, (e) h ¼ 105�, (f) h ¼ 120�, and (g) h ¼ 135�. Velocity contours are shown in the range 0 � eu=u1 � 1 in intervals of 0.05. Velocity vec-
tors are shown every eighth mesh point in each direction.
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V. CONCLUSIONS

We use the Stress-x RSM to investigate the effect of corner angle
in supersonic flows over streamwise corners, focusing on both the
streamwise and secondary flow. Although RSM is known to improve
the prediction of the Reynolds stress anisotropies, comparison with
high-Reynolds number DNS data is much more scarce as compared to
linear and nonlinear eddy-viscosity models. This is due to the notori-
ous numerical issues of RSM as compared to eddy-viscosity models,
namely numerical instabilities, lack of convergence, and, of course,
additional computational cost, owing to the numerous transport

equations. For this reason, we carried out extensive validation of the
turbulence model using recent DNS data of subsonic and supersonic
fully developed square duct flow. We find that the Reynolds stress
model accurately captures both the mean streamwise and secondary
flow with errors smaller than 10% with respect to reference DNS data.
Therefore, the Stress-x RSM is also a good candidate to study the flow
over streamwise corners and the spatial development of secondary
flows for different corner angles.

We observe that corner vortices are confined by the boundary
layer thickness dsðxÞ in the wall-normal direction and therefore their

FIG. 15. Van Driest-transformed mean streamwise velocity [uþD , see (10)] as a function of wall-normal coordinate, y
+. Profiles are plotted at all wall-parallel coordinates z, up

to the corner bisector, for different corner angles (a) h ¼ 45�, (b) h ¼ 60�, (c) h ¼ 75�, (d) h ¼ 90�, (e) h ¼ 105�, (f) h ¼ 120�, and (g) h ¼ 135�. Square symbols denote
DNS data of Pirozzoli and Bernardini22 for supersonic flat plate boundary layer at friction Reynolds number Res ¼ 500 and free-stream Mach number M1 ¼ 3.

FIG. 14. Reynolds shear stress profiles �qfu0v0=swfp as a function of wall-normal coordinate, y+. Profiles are plotted at all wall-parallel coordinates z, up to the corner bisector,
for different corner angles (a) h ¼ 45�, (b) h ¼ 60�, (c) h ¼ 75�, (d) h ¼ 90�, (e) h ¼ 105�, (f) h ¼ 120�, and (g) h ¼ 135�. swfp is wall shear stress away from the corner.
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distance from the closest wall does not depend on the corner angle,
but only on dsðxÞ.

On the other hand, their distance from the corner depends on h
and, decreasing the corner angle, the vortices move away from the cor-
ner in the direction parallel to the closest wall. Hence, the position of
the vortex center can be described by a simple translation of the wall-
parallel coordinate. The spanwise translation of the corner vortices can
be traced back to the tendency of the vortex core to remain approxi-
mately isotropic, and therefore, the vortex maintains a unit aspect
ratio.

The scaling of the secondary flow intensity with the Reynolds
number is an unsettled topic, as DNS data23 suggest scaling with the
bulk flow (or free-stream) velocity, whereas RANS29 data at higher
Reynolds number support scaling with the friction velocity. The pre-
sent data show independence of the secondary flow intensity from the
Reynolds number, in agreement with previous RANS, although DNS
data at higher Reynolds number would be necessary to fully support
this scaling.

As for the effect of the corner angle on the secondary flow inten-
sity, we find variations up to 50%. We observe the strongest secondary
flow intensity (	 0:015u1) for h ¼ 90�, whereas the weakest
(	 0:01u1) is observed for h ¼ 45� and h ¼ 135�, the former because
the flow close to the corner tends to stays laminar, the latter because
the flow approaches a flat plate boundary layer.

Analysis of the friction coefficient and the turbulent shear stress
shows that for small corner angles the flow tends to stay laminar in the
region between the corner and the vortex center. Excluding this rela-
minarization flow region, the flow can be characterized as the superpo-
sition of two independent walls and the van Driest velocity profiles up
to the corner bisector follow the canonical law-of-the-wall. RANS data
show that the outer flow structure is rather insensitive to local varia-
tions of the wall-shear stress. Although the robustness of the outer
layer similarity is a well-known feature of wall turbulence over com-
plex wall patterns, such as roughness, this is certainly less obvious for
the case of multiple walls and these findings contribute to strengthen-
ing the validity of the law-of-the-wall for complex geometries.
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