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Offshore wind energy shows potential to 
become one of the main energy suppliers

 Demand for energy 
continues to increase

 Offshore wind energy
 More steady wind flow and 

average wind speed is higher 
than onshore
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 Demand for energy 
continues to increase

 Offshore wind energy
 More steady wind flow and 

average wind speed is higher 
than onshore

 Cost of energy (€/kWh) 
should be decreased
 Structural optimization design
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Optimize structural design of the support 
structure

 Support structure one of the 
main cost items

 In order to optimize one 
should have confidence in the 
outcome of calculation 
procedures 

3Introduction   Approach   Modeling   Results   Conclusions and recommendations



Thesis objective

‘‘Investigate the validity and conservatism 

4Introduction   Approach   Modeling   Results   Conclusions and recommendations



Thesis objective

‘‘Investigate the validity and conservatism 
of the current calculation procedures 

4Introduction   Approach   Modeling   Results   Conclusions and recommendations



Thesis objective

‘‘Investigate the validity and conservatism 
of the current calculation procedures 

for offshore wind turbine support structures 

4Introduction   Approach   Modeling   Results   Conclusions and recommendations



Thesis objective

‘‘Investigate the validity and conservatism 
of the current calculation procedures 

for offshore wind turbine support structures 
and propose improved procedures 

4Introduction   Approach   Modeling   Results   Conclusions and recommendations



Thesis objective

‘‘Investigate the validity and conservatism 
of the current calculation procedures 

for offshore wind turbine support structures 
and propose improved procedures 

based on these findings.”
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Design cycle for offshore wind turbine 
support structure

Introduction   Approach   Modeling   Results   Conclusions and recommendations 9

Foundation designer (FD) Turbine designer (TD)

Integrate foundation model
in aero-elastic model

Run aero-elastic simulation
(and adjust tower design)

Extract interface loads/displacements 
between tower and foundation

(Adjust) design foundation

Run simulation

Apply interface loads/displacements 
on detailed foundation model

6

5

1 2

3

4



Design cycle for offshore wind turbine 
support structure

Introduction   Approach   Modeling   Results   Conclusions and recommendations 9

Foundation designer (FD) Turbine designer (TD)

Integrate foundation model
in aero-elastic model

Run aero-elastic simulation
(and adjust tower design)

Extract interface loads/displacements 
between tower and foundation

(Adjust) design foundation

Run simulation

Apply interface loads/displacements 
on detailed foundation model

6

5

1 2

3

4



Reduction of foundation to lower 
computation costs

 Reduce large number of DoF
into smaller set of generalized 
DoF
 Size(ũ) << size(u)
 Lower computation costs
 Approximation of exact 

solution
 Reduction basis contains 

limited number of deformation 
shapes

 Only accurate if
 Spectral convergence
 Spatial convergence 
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Reduction methods

Guyan reduction
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Reduction methods

Craig-Bampton reduction
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Reduction methods

Augmented Craig-Bampton reduction
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Impact on fatigue damage results

 Offshore wind turbine 
exposed to cyclic loading

 Fatigue is one of the main 
design drivers

 Impact of error in the 
reponse on the accuracy 
of the fatigue damage 
results
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Monopile versus Jacket
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Eigenfrequency OWT model
[Hz]

Foundation
ωfree [Hz]

Foundation
ωfixed [Hz]

1st 0.30 6.73 42.8

Eigenfrequency OWT model
[Hz]

Foundation
ωfree [Hz]

Foundation
ωfixed [Hz]

1st 0.27 1.06 4.09



Wind, wave and operational loads

 Wind loads
 Random load, wide frequency 

spectrum
 Excite frequencies up to 7 Hz
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 Wind loads
 Random load, wide frequency 

spectrum
 Excite frequencies up to 7 Hz

 Wave loads
 Wave frequencies are generally 

lower
 Excite frequencies up to 0.5 Hz

 Operational loads
 Rotation frequency of the rotor 

(1P)
 Blade passing frequency (3P)
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Accuracy of quasi-static post-processing
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Expansion of reduced response

 Response detailed foundation model obtained by expanding the 
reduced response of the foundation

 Only accurate if model converges spectrally and spatially
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Spectral convergence
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Spectral convergence

Introduction   Approach   Modeling   Results   Conclusions and recommendations 22

Relative difference eigenfrequencies of reduced OWT model

Frequency [Hz]



Introduction   Approach   Modeling   Results   Conclusions and recommendations 23

Relative energy difference of expanded response

Expansion of reduced response 

Excitation frequency [Hz]



Introduction   Approach   Modeling   Results   Conclusions and recommendations 23

Residual correction

Expansion of reduced response 

Excitation frequency [Hz]

Relative energy difference of expanded response



Expansion of reduced response 
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Post-processing analysis with reduced 
foundation in complete OWT model
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Post-processing analysis with Craig-
Bampton reduced foundation in OWT model
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Fatigue damage - Jacket
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Fatigue damage - Jacket
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Conclusions
 Following aspects tend to influence the accuracy of the 

calculation procedures:
 The characteristics of the structure

 First fixed and free interface eigenfrequency
 Qs FC significantly underestimates fatigue damage for jacket

 Use of a reduced foundation model in complete OWT model
 Spectral and spatial convergence
 Residual correction improves accuracy fatigue damage results

 Post-processing method
 Dynamic post-processing provides accurate fatigue damage results 

despite errors in interface loads/displacements
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Recommendations
 Apply the different calculation procedures in BHawC with 

different load cases
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Recommendations
 Apply the different calculation procedures in BHawC with 

different load cases
 Set up clear guidelines for spatial convergence
 Error estimation methods

 Determine an efficient and accurate calculation 
procedure for more complex models

 Validate results with real OWTs and loads
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Fatigue damage computation

Response Stresses SN-curve Fatigue damage



Force versus displacement controlled

 Force controlled approach

 Displacement controlled approach

fwave g

fwave ub



Relative energy difference quasi-static 
analysis



Interface loads - Monopile



Interface loads - Jacket



Guyan reduced jacket in complete OWT 
model



Augmented Craig-Bampton reduction
1. External load represented by a spatial and temporal part

1. Quasi-static response and orthogonalize w.r.t. fixed interface vibration 
modes

2. Orthonormalize w.r.t. each other

1. Construct reduction basis



Augmented Craig-Bampton reduced jacket 
in complete OWT model



Facts wind energy

Wind turbine Household

 Power capacity
 3 MW

 Energy production
 6 – 7,5 GWh per year
 Serves ± 2000 households

 Average household
 2,2 persons

 Energy usage
 3500 kWh per year



Requirement for calculation procedures

Detailed foundation in OWT 
model

Reduced foundation in OWT model

Expansion If spectrally and spatially converged

Force controlled

Dynamic If spectrally and spatially converged

Quasi-static If ωfree >> max(ωext) If spectrally and spatially converged
If ωfree >> max(ωext)

Displacement controlled

Dynamic If spectrally and spatially converged

Quasi-static If ωfree >> max(ωext) If spectrally and spatially converged
If ωfree >> max(ωext)

✔

✗
✔

✔
✔
✔

✔
✔

✔

✔
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