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A Least Squares Database Approach for
SAR Interferometric Data

Stefania Usai

Abstract—This paper presents a least squares (LS) approach
for the retrieval of a temporal deformation sequence from a set
of interferometric synthetic aperture radar images. The method
uses a database of interferograms spanning different long- and
short-term intervals, and by solving all the deformations as a
unique LS problem provides a chronologically ordered sequence,
i.e., a picture of the development of the deformation pattern in
time. The approach is illustrated in detail and discussed with
respect to both the results of its application on a case study and
to possible alternative methods.

Index Terms—Ground displacements, least squares methods,
synthetic aperture radar (SAR) interferometry.

I. INTRODUCTION

DESPITE being a relatively new technique, differential syn-
thetic aperture radar (SAR) interferometry (D-InSAR) [1],

[2] is already widely used for the measurement of deformations.
There are several examples of its application for the measure-
ment and modeling of fast displacements such as those due to
earthquakes and volcanic events [3], [4]. In the case of slow de-
formations, however, the efficacy of this technique is seriously
limited by temporal decorrelation [5], [6]: interferometric com-
binations (also calledinterferograms) on intervals of more years
are in most cases degraded to such a point that it is practically
impossible to retrieve unambiguous information from them. The
alternative solution for long-term application is then to consider,
instead of one single interferogram, a series of shorter term ones
and sum them up to span the desired interval. Because a partic-
ular area is not necessarily imaged whenever it is visible, and
because baseline limitations do not always allow to obtain the
desired interferometric combinations, it is in general rather dif-
ficult to obtain interferograms on consecutive time intervals. In
fact, in most cases the generated interferograms do extend over
partially overlapping time intervals. The problem then arises
how to order the information from all these intervals to give a
deformation history.

This paper describes a method to solve this problem, and
more in general to enhance the feasibility of SAR interferom-
etry for deformation studies. In this least squares (LS)-based ap-
proach, a set of interferometric images is merged to give a time
series describing the temporal evolution of the deformations.
The method, by using the redundancy of information contained
in temporally overlapping interferograms, additionally allows
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to reduce the effects of both processing errors and decorrelation
noise. Finally, because it allows a dense temporal sampling of
the displacements, it constitutes a new tool for their geophysical
modeling and study.

The paper is organized as follows. After a description of the
procedure followed to generate an interferometric database in
Section II, the LS approach is explained in Section III. Sec-
tion IV illustrates the results of the application of this method in
the Phlegrean Fields area, while Section V is devoted to the dis-
cussion of the approach, not only with respect to the results of
the case study but also in the more general context of the current
research in SAR Interferometry and of its applications. Finally,
conclusions on the presented research and recommendations for
future work are given in Section VI.

II. I NTERFEROMETRIC ANDPOSTINTERFEROMETRIC

PROCESSING

The proposed approach can be applied on a generic set of
interferometric deformation images of the same area. With the
term “interferometric deformation images” it is intended that
the interferograms have been unwrapped, the topographic com-
ponent of the signal subtracted, and that the unwrapped phase
values are referred to the same zero deformation point and con-
verted in deformations values along the line-of-sight direction.
The LS procedure is, therefore, independent from the interfero-
metric processing itself, and in this sense it can be interpreted as
an interferometric postprocessing step. Nonetheless, when cre-
ating a database for the purpose of applying this approach, it is
advisable to follow a slightly adapted procedure for the inter-
ferometric processing. The procedure, described in detail in [7],
consists basically in coregistering all the SAR images to a same
database master prior to interferogram formation. The advan-
tage is that the resulting interferograms are all matching among
each other at the subpixel level, which allows to merge them
directly in the form of unwrapped absolute phase values (con-
verted in centimeters, if desired). In this way, there is no need
to apply geocoding, a processing step which constitutes an ad-
ditional error source for input data to the LS adjustment.

The input to the LS procedure is thus a set of such interfer-
ometric deformation images, all matching at the subpixel level
and showing the absolute deformation, in phase or centimeter
units, along the satellite line-of-sight direction.

As a first step, the correctness of the absolute deformations is
checked by iteratively computing linear combinations of inter-
ferograms [7]. The phase value chosen as reference in a cer-
tain interferogram could in fact be biased, causing a shift of
the whole deformation pattern. Interferogram-related biases are
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Fig. 1. (Top) Histogram of a linear combination of three interferograms
forming a closed loop. Onx axis are represented the deformations in
centimeters. The maximum is clearly shifted with respect to zero, indicating
the presence of a bias. (Bottom) Same histogram after the correction for a bias,
which in this case was estimated at 0.5 cm.

mainly caused by phase-unwrapping errors, due to the presence
of decorrelation noise between the reference point or area and
other parts of the imaged scene. They can be detected and at
the same time estimated by combining the deformation maps
forming what can be called a “closed loop” in time.

Supposing to have three interferograms , , and
taken at subsequent days, , and , the linear combination

of the absolute deformation values for each
pixel in the three interferograms should give in principle as a
result zero

(1)

where is the absolute deformation expressed in length units
(centimeters), and ( ) are the coordinates of a certain pixel.

Due to the presence of noise in the three interferograms, a
noise caused by all different effects and which can be assumed
to be random, the linear combination of the deformation values
will not be overall zero. An histogram of its values, however,
should show anyway a clear maximum around the zero value,
as for example in the upper plot of Fig. 1. It is intuitive that if
one of the interferograms is biased, for example if

(2)

then (1) will take the form

(3)

which means also that the histogram of the values of the linear
combination will be centered in , as depicted on the lower plot
of Fig. 1. One can, therefore, check for the presence of a bias by
considering an histogram of a linear combination of interfero-
grams, and take the value at its maximum as an estimate of this
bias. Notice that to determine the exact value of the maximum,
it is necessary to compute the distribution a certain number of
times, shifting each time the bin edges.

Of course, assessing which one among, , and
has to be corrected is not always straightforward. Most of the
times this can be determined by comparing each of the three
interferograms with more other interferograms, forming other
“closed loops”: it can be expected that a biased interferogram
will cause biases in all the loops where it is considered and can
therefore be identified quite easily. Moreover, knowing the ex-
pected deformation in the area, for example from other survey
methodologies, can help to identify the interferograms giving
plausible deformation values. These can thus be taken as the
“good” ones and considered as a starting set of reliable interfer-
ograms to which all the others can be compared with the his-
togram method. Eventually, if the biases are estimated and sub-
tracted correctly, the interferograms should be consistent as a
whole set. This can be assessed again by checking that all the
possible closed loop combinations of the interferograms give an
histogram centered on zero.

III. LS SOLUTION COMPUTATION AND TESTING

The input for the LS adjustment is a set of
interferometric deformation maps, generated fromSAR

images taken at the days . The day corre-
sponding to the first image is taken as reference and the defor-
mations at each of the other days relative to this day
are found as solutions of the problem [7]–[9]

(4)

with and given above, where in the element has not
been considered. In (4), is thea priori covariance matrix of
the observations; is the variance and the cofactor matrix.
Since an unweighted LS approach is used,(and thus ) is
assumed to be the unit matrix, and .

In the system matrix , each row corresponds to an interfer-
ogram, while the columns correspond to the days. For interfer-
ogram the values (on row ) are all zero except
at columns and , where they are respectively1 and 1, the
sign being determined by the interferometric difference.

The unweighted LS solution of (4) is straightforward

(5)

(6)

In order to determine the quality of the solution, an overall
model test is applied during the LS computation. The overall
model test of a dataset gives a measure of the discrepancy be-
tween data and used model and is defined as [10]

(7)

with the least squares residual vector. In the interferometric
case it can be reasonably assumed that, in absence of systematic
errors, the residuals relative to the set of values assumed by the
same pixel in all the interferograms are normally distributed. In
this case the test statistic has a Fisher distribution with degrees of
freedom and . For each pixel, the determined solution
was tested against such a distribution within a 95% confidence
level. As it will be shown also in Section IV for the considered
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case study, failing of this test can be considered as an indicator
of systematic effects, which invalidate the basic assumption of
a normal distribution of the residuals.

A. LS Solution Update via Recursive Estimation

One of the drawback of LS methods is that, in general, the
solution has to be recomputed whenever new data are added to
the existing database. This is however not necessary if, as in the
interferometric case, the data can be assumed to be uncorrelated.

Suppose represents the data used for the computation of
the most recent solution, say with the standard unweighted LS
procedure of (5) and (6)

(8)

(9)

Assuming that a newly acquired set of data with corre-
sponding covariance matrix has to be added to the solution,
the new LS problem to be solved is now

(10)

The new (updated) estimate ofis then given, in the unweighted
LS case , by [11]

(11)

and the associated variance is

(12)

B. Addition of Data by Linear Interpolation

When one or more interferograms are added to the dataset,
they can be used to update the solution only if they can be con-
nected to the existing set of interferograms. In other words, at
least one of a set of interferograms formed with newly acquired
images has to be a combination with a preexisting image, in
order to give a unique solution. This has to be true for each dis-
joint subset added; otherwise the system matrixbecomes a
block diagonal matrix, and the normal matrix is singular.
The necessity of having always at least one joint interferogram
is not such a strong limitation as it could appear at a first sight.
It is often possible to form at least one interferogram by com-
bining one newly acquired image with the preexisting ones in
the database, especially if this is already rather large. If, how-
ever, no such interferogram can be generated, a “simulated” de-
formation image can be generated from the preexisting solution
and inserted together with the new subset to compute the up-
dated solution. The simulated deformation image is computed,
at one of the dates of the subset to be added, by linear interpo-
lation of the solution at its nearest dates of the preexisting set.

The subset is joined to the preexisting set by interpolating
only at one date. Joining the subset by interpolation at all the
dates of the new dataset would also be possible, but it would
lead to the necessity of introducing weighting. In this case, in
fact, the (different) length of the time interval considered for the
interpolation at each date should be taken into account. Also, the
distance of the estimated point to the limits of the interval should

Fig. 2. European Remote Sensing (ERS) satellite amplitude image of the
Neapolitan area (Italy). The Vesuvius volcano is recognizable on the right
side of the image. The inset box indicates the area of the Phlegrean Fields
considered for the computation of the LS solution.

be considered in weighting, as the reliability of the estimation
increases passing from the center of the interval to one of its
extremes.

Of course, connecting two disjoint sets in this way means
assuming a linear trend of the deformations within the time in-
terval considered for the interpolation, an assumption whose
validity is dependent on the terrain deformation history and on
the length of the time interval itself. For this reason, therefore, it
is advisable to choose always the shortest interval for the inter-
polation, and connect the new subset to the existing one where
the temporal sampling is densest.

Finally, it has also to be pointed out that addition by inter-
polation might be necessary only temporarily: as newer images
are added to the dataset in fact, the chance to be able to connect
directly two previously disjoint sets increases.

IV. PHLEGREAN FIELDS TEST CASE

The proposed approach has been applied to measure the ter-
rain displacements in the period 1993–1999 at the Phlegrean
Fields (Naples, Italy). This densely populated, highly hazardous
area in the Vesuvius volcanic complex is known to be subject
to alternating phases of uplift and subsidence. After two major
crisis in the years 1969–1972 and 1982–1984, which caused a
total maximum uplift of about 3.5 m [12], this constantly mon-
itored area is in the course of the last years mostly subsiding,
at a rate of a few millimeters per month. However, short-term
uplift episodes still occur, accompanied by seismic events: the
last deformation inversion took place between March and July
2000, with a total maximum uplift of 4 cm [13]. A SAR inten-
sity image of the Phlegrean Fields is shown in Fig. 2. The set of
20 ERS-1 and ERS-2 SAR images considered for this study is
listed in Table I. The images are labeled in chronological order,
with “day numbers”: considering the deformation rate, Tandem
images have been assumed to contain the same deformation
information and therefore correspond to the same day. Fig. 3



756 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 4, APRIL 2003

TABLE I
ERS SCENES OF THEPHLEGREAN FIELDS CONSIDERED FOR THEGENERATION

OF THE DATASET. THE SCENESALL HAVE FRAME NO. 2781. THE FOURTH

COLUMN SHOWS THE DAY NUMBER, I.E., THE SERIAL NUMBER,
ASSIGNED TO THEIMAGE (SEE ALSO TEXT)

represents the temporal extension of the 43 interferometric de-
formation maps generated and is actually the graphical repre-
sentation of the system matrix. The topographic component
to be subtracted was estimated by using a digital elevation model
from the Italian Military Geographic Institute1 with a spatial res-
olution of 1 arcsec in both latitude and longitude and a height
accuracy of about 10–20 m. The zero-deformation phase value
was taken as the mean value of the phases comprised within a
square of size 0.004in a zone of no deformations.

The majority of the interferometric deformation maps
resulted to be already consistent with respect to the closed-loop
test. Only a couple of them turned out to be slightly biased,
in most cases of only a few millimeters. Even for these small
biases, however, correction resulted in a better consistence of
all the deformation images with each other, as it was assessed
at the end of the correction procedure by checking once again
the histograms of all the possible closed loop combinations.
The deformation sequence resulting from the least squares
adjustment is shown in Fig. 4. The deformations are represented
in centimeters and relate to the date corresponding to the first
image acquired, i.e., February 8, 19931 . The images have
been masked for the sea in the lower part, while the sparse
masked areas on the land are those where, due to the presence
of decorrelation noise, the deformations could not be resolved.
The deformations are consistent with the results from the GPS
and leveling surveys performed periodically in the area [12],
[14]. The subsidence, as seen along the radar line-of-sight, has
a radial pattern centered on the east part of the city of Pozzuoli.
Here the ground deformation is maximal, with a subsidence
from February 1993 to April 1999, as measured from the inter-
ferometric data, of about 22.5 cm in the slant range direction,
with a standard deviation estimated at the level of 0.4 cm. The

1Courtesy of IREA-CNR.

Fig. 3. Set of interferograms generated from the ERS dataset of Table I and
used for the LS adjustment. The time spans are depicted as horizontal bars on a
linear scale.

mean subsidence rate is of the order of about 0.3 cm/month,
quite in agreement with the expected value from leveling data
of 0.4 cm/month, although variations in the deformation rate are
detected. Fig. 5 shows the values measured in the LS solution
of Fig. 4 at the maximum subsidence point, which corresponds
also to the region of maximum deformation according to the
leveling results [14]. The error bars depicted in Fig. 5 represent
the standard deviation computed, for each point, on a 611
window centered on the maximum deformation point. The
addition of more interferograms and the computation of the
solution at three additional days give a solution that seems to
confirm the results of [9]. While the period June 1993–March
1995 remains still uncovered by the InSAR data, considerable
variations in the subsidence rate apparently occur from 1995
to 1999. The plot shows in fact three periods of relatively slow
subsidence, in the first half of 1995 and of 1997, and from the
end of 1998 to April 1999. In between these periods, subsidence
seems to occur at an increased rate. The plot seems also to
suggest that in January 1997 the deformation even changed its
sign: however, the size of the error bars adds a considerable
uncertainty to this results. Indeed, the very slow subsidence
measured with leveling in this period also fits within these
error bars. Notice that the set of interferograms ,
which are a combination of the SAR images corresponding to
the set of days (4, 6, 9, 14, 15), was added to the first 36
interferograms by interpolation. This was necessary because
the presence of extremely large baselines did not allow to form
interferograms by combining one image from a day of the set
given above with one corresponding to the remaining days.
In other words, the two sets of interferograms are disjoint.
As already explained in Section III-B, in order to be able to
obtain a unique solution a “simulated” interferogram has to be
generated that connects the two sets. The preliminary solution
obtained by adjustment of the first block was, therefore, used
to generate the simulated interferometric deformations between
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Fig. 4. Resulting deformations (in centimeters) at the 14 considered dates with respect to February 8, 1993.
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Fig. 5. Maximum subsidence values as measured from the solution of Fig. 4.
The standard deviation values in the plot are computed on a 6� 11 window
centered on the maximum deformation point.

Fig. 6. Location of the pixels (depicted in black) that failed the overall model
test.

days 1 and 4 (February 8, 1993 and July 26, 1995). The dis-
placement map (which could be added as to the scheme
of Fig. 3) was computed with linear interpolation of the solu-
tions obtained at days3 and 5. Of course, linear interpola-
tion should be avoided as much as possible in a case like that
of the Phlegrean Fields, whose deformation history teaches us
that variations and even sudden inversions in the ground move-
ments can always occur. The interpolation has, however, been
applied on a four-month interval on a period, i.e., from April
to August 1995, when no particular events were registered and
subsidence seemed to proceed at a constant rate [14]. Even if a
linear approximation has been used, therefore, for these reasons
it can still be considered a reasonable assumption. Fig. 6 shows
the position of the pixels that did not pass the overall model
test. The majority of them are located in correspondence of to-
pographic features, like the craters to the north of Pozzuoli, in
the upper central part of the image, or the Posillipo hills, at its
lower right side (see also the topography as shown in the inten-
sity image of Fig. 2). This suggests the presence of a signal due
to residual topography.

V. DISCUSSION

The LS method has several advantages with respect to
retrieving the deformations by analyzing each interferogram
singularly. The use of a database of interferograms permits
a cross-check on the consistence of their deformations re-
sults with respect to biases, as shown with the so-called
“closed-loop” test. Solving all the deformations as a unique
least squares problem provides then a chronologically ordered
sequence, i.e., a picture of the development of the deformation
pattern in time, even if no direct interferograms between
subsequent dates are available, either because the area has not
been imaged or because the baseline is too large. Moreover, by
applying the least squares, it is possible to reduce the effects
of interferometric processing errors, which can be considered
different (thus independent) in each interferogram. Notice that
the same is not true for image-related errors, like for example
atmospheric disturbances. If one image carries such an error,
in fact, this will show up in two of the interferograms in (1)
with different sign and will therefore be canceled out. The
closed-loop test is thus not sensitive to such an error.

If the LS method on one hand does not provide a method
to detect or subtract atmospheric artifacts, on the other hand
because it merges several interferograms it allows to average
them out at least partially. In fact, because atmospheric artifacts
are image-related, it is reasonable to assume that interferograms
computed from two tandem pairs, although spanning practically
the same interval, are totally independent. Therefore, the pro-
posed approach has also in this respect an additional advantage
with respect to considering isolated interferograms. Of course,
algorithms to detect atmospheric artifacts can always be added,
as for example was done in [15] by using a method derived from
the Permanent Scatterers approach [16], [17]. The same is true
for topographic errors, which the testing procedure presented in
this paper certainly helps to detect.

The fact that the proposed implementation of the LS proce-
dure requires coregistration of all the images on the same master
might be seen as a limitation of this approach. This is, however,
not such a strict constraint, as the experience with ERS data sug-
gests that up to baselines of about 600 m a good coregistration is
possible. The coregistered image cannot be used in combination
with the master, but it will form short baseline interferograms
with other slaves. Moreover, as already stressed above, image
coregistration on a common master is not strictly necessary for
the implementation of this approach: the LS procedure can in
fact be applied also on interferograms geocoded as usual on the
desired reference system.

The presented approach is very similar to the singular value
decomposition (SVD) approach of [15] and [18]. The method
applies SVD on the same problem, reformulated however in
terms of deformation mean velocities instead of deformation
values (see (14) in the Appendix). This allows to connect dis-
joint subsets of interferometric maps without the need of the
linear interpolation procedure explained in Section III-B.

In principle, SVD is more effective than least squares because
it offers a way to find an approximate mathematical solution
to a singular problem. Its “best” solution is, in fact, the min-
imum norm projection in the row space of the problem matrix.
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By formulating a problem with SVD, however, one poses cer-
tain implicit conditions, which are expressed by a number of
equations equal to the dimension of the null space of the un-
determined problem. Unfortunately these equations, although
they allow to solve the problem correctly from the mathematical
point of view, might express conditions that are unreasonable or
even unacceptable from the physical point of view.

This is indeed what happens in the interferometric case when
SVD is applied to minimize the norm of the mean velocities.
As it is shown in the Appendix, this can give oscillations in the
estimated mean velocities which have no physical justification.

In conclusion, SVD is certainly the “natural extension” of
a Least Squares problem when this is underdetermined, but it
might be necessary to radically change the formulation of the
problem itself in order to have a physically sound solution.

VI. CONCLUSION

A least squares approach for differential InSAR applications
has been presented. With this approach, the least squares in-
version of a database of interferometric deformation images
on short- and long-term interferograms allows to generate a
chronologically ordered sequence describing the evolution of
the deformations in the course of the years. Moreover, the re-
dundancy of the information contained in interferograms ac-
quired on (partially) overlapping time intervals is used to filter
out interferogram-dependent errors and to fill gaps due to tem-
poral decorrelation. In this sense, the LS approach gives consid-
erably better results than the use of single interferograms. The
introduction of statistical testings allows control and quality as-
sessment of the solution: application of a simple overall model
test allowed in the presented case to identify systematic effects
due to residual topography, but in successive implementations
it could be used also for data snooping.

The LS approach was applied to study the terrain displace-
ments in the Phlegrean Fields volcanic area in the period
1993–1999. The results, in good agreement with the expected
deformations from other kind of data, clearly demonstrate
the potentiality of such an InSAR database approach for
geophysical studies and hazard monitoring.

APPENDIX

SVD FORMULATION

Let us consider six consecutive acquisition dates ,
and suppose that interferograms are available on the intervals

, , , and . The corresponding measured
phase differences are respectively, , , and (see
Fig 7). According to [15, Eq. (15)], the SVD problem is then
formulated as follows:

(13)

Fig. 7. Two disjoint sets of interferograms used for the example.

with the unknown mean velocities, also rep-
resented in Fig. 7

Notice that the formulation of the problem in terms of the
deformation velocities is equivalent to the formulation in terms
of the deformation values except for a scale factor, namely the
temporal interval over which each deformation is considered. In
the nonsingular case, therefore, applying the SVD approach on
the deformation rates, or the LS approach on the deformations,
leads to identical results.

The system of equations corresponding to (13) is of the form

(14)

The application of SVD to this underdetermined problem
implies the assumption of an implicit condition, whose cor-
responding equation can be determined by imposing the
orthogonality condition [19]: , with the vector of
the equation coefficients. This leads to the following solution:

(15)

Posing , the implicit condition assumed to solve the
problem is thus

(16)

Equation (16) can lead to odd results. Let us make the very
simple assumption of a constant mean deformation velocity,
which we can assume to be unitary, measured on time intervals
of equal length

(17)

(18)

The problem of (14) in this case takes the form

(19)
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Fig. 8. Comparison of the solutions obtained by applying the LS and SVD
approaches to the proposed example, in the case of a linear constant mean
deformation velocity and equal time intervals. Notice that the shift in they

axis (which represents the amount of deformation) between observed data and
solutions has no significance, as it is applied only for visualization purposes.

where also the “missing” equation (16) has been added. Solving
the system of (19) gives the following vector of mean velocities:

(20)

This solution is illustrated in Fig. 8, where the original problem
and the two examined solutions are shifted with respect to each
other along the axis, which indicates the amount of deforma-
tion, only for the purpose of a better visualization (theaxis
has thus no scale). The picture represents the observed defor-
mations (continuous lines in the low part of the figure) in the
specific case considered, i.e., of a constant deformation velocity.
It is important to remark here that only the deformation values
between two instants, e.g., and , or and , are known.
The mean velocities are computed by dividing the phase differ-
ences by the time interval [e.g., ]. According to the
LS method presented in this paper, the two disjoint sets of inter-
ferograms are connected by interpolation, which in terms of the
representation of Fig. 8 corresponds to shifting, for example, the
value in to match the line between and . The SVD ap-
proach of [15] brings to a different solution, also represented,
in the simplest case, by (20) and in Fig. 8, which is affected by
oscillations generated by the mathematical formulation of the
problem. As for the reason of these oscillations, a first analysis
suggests, as the probable cause, the fact that the chronological
order of the velocities is not taken into account in the solution
of the problem.
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