
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Developing a second order accurate level-set method
for solving the one-dimensional Stefan problem

A thesis submitted to the
Delft Institute of Applied Mathematics and Applied Physics

in partial fulfillment of the requirements

for the degree of

Bachelor of Science
in

Applied Mathematics and Applied Physics

by

Corné Verburg

Delft, Nederland
November 5, 2021

BSc thesis Applied Mathematics and Applied Physics

Developing a second order accurate
level-set method for solving the
one-dimensional Stefan problem

Corné Verburg

Delft University of Technology

Supervisors

prof. dr. ir. C. Vuik (Applied Mathematics)

dr. ir. D. Lathouwers (Applied Physics)

Thesis committee

dr. ir. J. Dubbeldam (Applied Mathematics)

dr. ir. S. Kenjereš (Applied Physics)

November 5, 2021 Delft

Lekensamenvatting
In dit onderzoek wordt gekeken naar het Stefanprobleem. Dit probleem doet zich voor wanneer
we te maken hebben met een vloeistof en een vaste stof van hetzelfde materiaal die met elkaar
in contact komen. In dit geval zal ofwel de vloeistof bevriezen ofwel de vaste stof smelten. Het
Stefanprobleem gaat in op de vraag met welke snelheid dit vries- of smeltproces verloopt en hoe de
temperatuur binnen de vaste stof en de vloeistof is voor verschillende beginsituaties en randvoor-
waarden - bijvoorbeeld een situatie waarbij de randen worden gekoeld, verwarmd of zijn geïsoleerd.
Het is niet altijd mogelijk om de temperatuur en de smeltsnelheid analytisch te beschrijven. In
zo’n geval maken we gebruik van numerieke computermodellen, die een schatting geven van de
oplossing van het Stefanprobleem. In dit onderzoek wordt een nieuwe zogenaamde "level-set-
methode" ontwikkeld en geanalyseerd, die kwadratisch nauwkeurigere oplossingen geeft voor het
Stefanprobleem als de complexiteit van het model lineair wordt verhoogd.

iv

Abstract
This work aims at finding a second order accurate level-set method which solves the Stefan problem
with non-homogeneous Dirichlet boundary conditions in one dimension. The numerical accuracy
of the FTCS-scheme, BTCS-scheme and Crank-Nicolson scheme for the discretization of the heat
equation was considered, as well as the accuracy of the first order Upwind method, Leapfrog method
and the Lax-Wendroff method for the discretization of the advection equation. A level-set method
was developed using a finite volume Crank-Nicolson scheme for the discretization of the moving
boundary. A second order accurate scheme for solving the advection equation was developed using
Lagrange extrapolation polynomials. The moving boundary velocity was estimated using second
order Lagrange polynomials. The developed method was found to be second order accurate for a
specific range of ratios between time step size and spatial step size.

vi

Contents
Introduction 1

Nomenclature 3

1 The Stefan problem 5
1.1 The heat equation . 5
1.2 Stefan problem . 6
1.3 Formulation of the investigated problem . 8

2 Introduction to numerical methods 11
2.1 General idea of partial differential equations . 11
2.2 Finite difference schemes . 12
2.3 Discretizing the heat equation . 13
2.4 Discretizing advection equations . 14
2.5 Lagrange interpolation polynomials . 15
2.6 Error analysis . 16

3 The finite volume method 19
3.1 Fundamental principles of the finite volume method . 19
3.2 Finite volume method applied to the heat equation . 20
3.3 Comparison with other discretization techniques . 21

4 The level-set method 23
4.1 The advection equation . 23
4.2 Theory of the level-set method . 23

5 Choosing numerical schemes for developing a level-set method 27
5.1 Choosing a numerical scheme for solving the heat problem 27
5.2 Choosing a numerical scheme for solving the advection problem 33

6 Discretization 39
6.1 Considered Stefan problem . 39
6.2 Space and time discretization and definitions . 39
6.3 Finding the front velocity and its extension . 40
6.4 Discretization of the advection problem . 43
6.5 Discretization of the heat problem . 44
6.6 Discretizing the numerical error . 46

7 Numerical results and discussion 47
7.1 Heat problem without moving boundary . 47
7.2 Advection problem with analytical velocity . 50
7.3 Stefan problem . 51

8 Conclusion 57

Acknowledgements 59

References 61

Appendix 63

viii

Introduction
One of the most promising and relatively sustainable energy sources is nuclear power. This form of
energy can be generated in several classes of nuclear reactors, such as molten salt nuclear reactors.
In these reactors, one of the key elements is the the so-called freeze-plug. This freeze-plug is a
valve made of frozen salt, meant to melt when it is necessary to drain the core of the reactor. It is
important to understand the melting process which happens at the freeze-plug. If the freeze-plug
melts too fast, the reactor shuts down for no reason. However, if it melts too slow, the safety of
the reactor is in danger. Therefore, an accurate mathematical description of this melting process
is very useful in this situation.

Fortunately, there exist mathematical ways to describe melting processes. Using the heat equa-
tion and certain physical conditions, we can describe by means of partial differential equations how
fast and at which positions a solid is melting. Such a system of partial differential equations in
which phase change plays a role is called a Stefan problem. This physical-mathematical problem
was first introduced by Josef Stefan, a Slovenian physicist in the late nineteenth century. As Ste-
fan found out, in many cases there does not exist an analytical solution to this solid-liquid phase
change problem. Therefore, numerical simulations are often necessary to predict the behaviour of
melting solids.

A well-known class of methods which is often used to solve Stefan problems numerically is the
so-called level-set method. This method used a function which assigns to the points in one phase -
in this work the solid phase - of the Stefan problem the negative distance to the moving boundary
and to the points in the other phase - in this work the liquid phase - the positive distance to the
moving boundary. The position of the moving boundary is therefore implicitly stored in the defini-
tion of the level-set function. Using the advection equation, the evolution of the level-set function,
and therefore also of the moving boundary, can be described. The level-set method needs, as all
numerical methods a certain discretization to be used.

The aim of this thesis is to find a second-order accurate numerical solution to the Stefan prob-
lem with non-homogeneous Dirichlet boundary conditions using the level-set method combined
with the finite volume method. This work is divided into eight chapters. In the chapters 1, 2, 3
and 4 the Stefan problem and the used numerical methods are introduced to the reader to create a
basic understanding of the problem and the solving methods. In chapters 5, 6, 7 and 8 this theory
will be put into practice and the obtained results and conclusions will be presented there.

The report will be presented in the following structure. In Chapter 1 the Stefan problem is
introduced to the reader. It is explained how the heat equation and Stefan condition can be derived
mathematically and how a common Stefan problem is defined. Besides that, the so-called "simi-
larity solution" is presented. The aim of this chapter is to give the reader a good understanding
of the subject of this thesis. Chapter 2 gives an introduction into the used numerical methods.
Concepts like Partial Differential Equations (PDEs), finite difference schemes and error analysis
are introduced in this chapter, and some of the most common numerical schemes such as Backward
and Forward Euler, Crank-Nicolson and Leapfrog are presented here, since these will play a crucial
role in the rest of this work. In Chapter 3, the Finite Volume Method (FVM), which plays a
central role in solving the heat equation, is described. In Chapter 4, information is provided about
the level-set method, a useful mathematical way to implicitly describe the position of the moving
boundary which we have to deal with.

Hereafter, in Chapter 5, the theory is applied on two numerical problems - the heat problem and
the advection problem, in order to select two numerical schemes which are second-order accurate in
space and time. These schemes are used to discretize the Stefan problem with a level-set approach.
This discretization is described in Chapter 6. The results of this discretization are presented in the
following chapter, Chapter 7. Lastly, in Chapter 8, conclusions will be drawn from the results and
the limitations of the developed level-set method will be discussed. Furthermore, some suggestions
for further research will be given.

1

Nomenclature
The following list describes the most important symbols and constants used in this work. Note
that this list is not complete; if other variables are used, they will be introduced in the text.

Variables

F Heat flux [m2/s]

φ Signed distance function [m]

Q Heat [J]

s Position of the moving boundary [m]

T Temperature [K]

t Time [s]

v Velocity of the moving boundary [m/s]

x Position [m]

Model variables

∆t Time step size [s]

∆x Spatial step size [m]

l Length of the domain [m]

M Number of spatial steps [-]

N Number of time steps [-]

s0 Starting position of the moving boundary [m]

tn Time step n [s]

xi Grid point i [m]

Physics constants

α Thermal diffusivity [m2/s]

c Specific heat capacity [J/(kg· K)]

k Thermal conductivity [W/(m·K)]

L Specific latent heat [J/kg]

Spaces

N The natural numbers

R The real numbers

3

1 The Stefan problem
This chapter aims to present the most important concepts which are necessary to understand the
Stefan problem, the main subject of this work. In section 1.1, the heat equation, which plays an
important role in the Stefan problem, will be derived. In the following section (1.2), the Stefan
problem is presented and the Stefan condition is derived. Finally, in section 1.3, the specific Stefan
problem investigated in this work is presented and an analytical solution to this problem is described.

1.1 The heat equation
In this subsection, we will derive the heat equation, which plays an important role in the formulation
of the Stefan problem. The heat equation is a partial differential equation which describes the
diffusion of heat as a function of space and time. We follow the derivation of the problem as
presented in [9].

As we know, heat transport is an important mechanism in physics which is driven by a difference
in temperature between a hotter body and a colder one. To describe the distribution of heat in
space over time, we consider an open and piece-wise smooth region Ω ⊂ Rn with boundary ∂Ω.
Because energy is conserved, we know that the rate of change of the total heat should be equal to
the net flux through the boundary ∂Ω. This leads to the following equations.

ρc
d

dt

∫
Ω

T dV = −
∫
∂Ω

F · ννν dS =

∫
Ω

−∇ · FdV (1.1)

In this equation, ρ is the materials density, c is its specific heat capacity, T is the temperature
function in the region Ω, F is the the flux density and ννν is the unit normal vector pointing outwards.
The last equality is derived using Gauss’s theorem under the condition that the flux density function
F is continuously differentiable on the domain Ω. If we assume that the temperature distribution
T and its temporal derivative Tt = ∂T

∂t exist and are continuous, we can use Leibniz’ rule for
differentiation under the integral sign, which leads to the following equality.

ρc

∫
Ω

∂T

∂t
dV =

∫
Ω

−∇ · F dV (1.2)

Now we want to rewrite this function in a more useful form. To do this, we first introduce an
important theorem in analysis. A proof of this theorem can be found in [9].

Theorem 1.1. Let f : Ω→ R be a function such that f ∈ C(Ω), where Ω ∈ Rn. If
∫
V
f dV = 0

for all test volumes V ⊂ Ω, then f ≡ 0 on Ω.

Now, we write equation 1.2 in the following form:∫
Ω

(ρc
∂T

∂t
+∇ · F) dV = 0 (1.3)

But then we see that we can apply theorem 1.1 to the equation in the integral. This leads to
the following equation, where we abbreviated ∂T

∂t as Tt.

Tt = − 1

ρc
∇ · F (1.4)

So, in order to know how the temperature changes over time, we need to express F as a function
of the temperature in our domain. Luckily, we know that for most materials in usual conditions,
we can apply Fourier’s law, which states that the heat flux is proportional to the negative gradient
of the temperature:

F = −k∇T (1.5)

In this equation, k is the material’s thermal conductivity. Combining the previous equations
1.4 and 1.5, we obtain the following expression for the rate of change of the temperature.

Tt =
1

ρc
∇ · (k∇T) (1.6)

5

This equation can be simplified if we assume that the thermal conductivity k of the material
is constant for all temperatures T . We then obtain

Tt = α∇2T (1.7)

In this equation, we define α = k
ρc . Equation 1.7 is the equation which will be referred to as

the heat equation in the rest of this report.

1.2 Stefan problem
This subsection aims to present the Stefan problem, the subject of research of this work. The Stefan
problem is a so-called "free-boundary problem", because the system contains two sub-domains with
an unknown boundary position between the two sub-domains. A typical Stefan problem has the
following properties: (1) The heat distribution in and the heat transfer between the two phases
can be described by (partial differential) equations, (2) there exists a distinct interface between
the two phases, which are distinguishable from each other and (3) the temperature of the interface
is a priori known. In this report, we will restrict ourselves to the one-dimensional form of this
physics-mathematical problem. In this section, we follow the theory as described in [8].

1.2.1 Problem setting

We consider a one-dimensional closed domain Ω = [0, l], where l is the length of the domain.
Initially, the domain is divided in two parts: one part is in liquid state and the other in solid state.
The position of the interface which separates the two phases is denoted by s(t), so its position is
only a function of the time t. The domain of the liquid phase is denoted by ΩL = [0, s(t)) and
the domain of the solid phase is given by ΩS = (s(t), l]. The temperature at each point x ∈ Ω
at time t ≥ 0 is denoted by T (x, t). Note that the temperature at the interface s(t) is given by
T (s(t), t) = Tm, where Tm is the melting temperature of the solid, which is constant. A graphical
representation of this problem setting is given by Figure 1.

Figure 1: A graphical representation of the solid phase ΩS , the liquid phase ΩL and the evolving boundary
s(t).

In this report, we are interested in how the temperature distribution changes in time, and
especially how the interface moves in time. First of all, we formulate the (one-dimensional) heat
equations for this problem, using Eq. 1.6.

∂T

∂t
(x, t) =

1

ρLcL

∂

∂x
(kL

∂T

∂x
) x ∈ ΩL(t) (1.8)

∂T

∂t
(x, t) =

1

ρScS

∂

∂x
(kS

∂T

∂x
) x ∈ ΩS(t) (1.9)

6

In this equation, ρL, cL and kL denote respectively the density, the specific heat capacity and
the thermal diffusivity of the liquid phase and ρS , cS and kS denote the density, the specific heat
capacity and the thermal diffusivity of the solid phase. In this section, we further assume these
quantities to be constant in time and space. This leads to the following simplification of the heat
equations.

∂T

∂t
(x, t) = αL

∂2T

∂x2
(x, t) x ∈ ΩL(t) (1.10)

∂T

∂t
(x, t) = αS

∂2T

∂x2
(x, t) x ∈ ΩS(t) (1.11)

In this equation, we defined the thermal diffusivities αL = kL
ρLcL

and αS = kS
ρScS

.

1.2.2 The Stefan condition

In order to describe the evolution of the interface position and the heat distribution, we need to
find a condition on the moving boundary. An extensive derivation of this condition can be found
in [9]. In order to find such a condition, we first observe that, because of physical reasons, the
temperature is continuous at the solid-liquid-interface s(t):

lim
x→s(t)+

T (x, t) = lim
x→s(t)−

T (x, t) = Tm (1.12)

We assume that the solid is changing its phase, which means the interface s(t) is moving in
positive x-direction. We expect that T ≥ Tm in the liquid phase and T ≤ Tm in the solid phase.
We consider the interface with area A (for example the interface of a disk) of the moving boundary
at two times: t0 and t1 > t0. Between these two times, a certain amount of solid melts and the
following quantity of heat is released.

Q = A(s(t1)− s(t0))× ρL (1.13)

where Q is the released heat and L is the specific latent heat of the solid and ρ is the density
of the liquid and the solid. This heat is provided by diffusion, because we assume there is no heat
source or sink present. We write Fourier’s law for this problem.

Fi = −ki
∂T

∂x
(1.14)

where Fi denotes the heat flux of the liquid for i = L and the heat flux of the solid for i = S.
kL is the thermal diffusivity of the liquid and kS is the thermal diffusivity of the solid. Since the
heat necessary for phase change must be provided by diffusion, we can write this the following
equation.

Q =

∫ t2

t1

∫
A

[F1 · x̂+F2 · (−x̂)] dAdτ =

∫ t2

t1

∫
A

[−kL∇TL(s(τ), τ) · x̂− kS∇TS(s(τ), τ) · (−x̂)] dAdτ

(1.15)
By equating the two equations found for the released heat, namely Eq. 1.13 and Eq. 1.15,

dividing these equations by t1 − t0 and letting t1 → t0, we find

Lρ
ds

dt
(t) = kS

∂T

∂x
(x, t)|x↓s(t) − kL

∂T

∂x
(x, t)|x↑s(t) (1.16)

This equation is called the Stefan condition on the free boundary. It gives us information about
the velocity ds

dt with which the boundary s(t) is moving in time. Observe that the Stefan condition
is just obtained by studying the implications of energy balance.

7

1.3 Formulation of the investigated problem
In this study, we will consider one specific form of the Stefan’s problem. This problem will be
solved numerically as well as analytically. In this way, we can compare the numerical solutions in
their accuracy and evaluate how suitable the level-set method is for solving this problem. In this
subsection, first we formulate the Stefan problem considered in this work. After this, we give the
analytical solution to this problem.

1.3.1 Investigated Stefan problem

We start the formulation of the investigated problem by making some assumptions in order to
simplify our problem. As described in the previous section, we consider a one-dimensional problem
on the domain Ω = [0, l]. We assume without loss of generality that the temperature of the melting
interface is given by T (s, t) = 0 for all times t > 0. In this report, we only consider system with
non-homogeneous Dirichlet boundary conditions:

T (0, t) = gL(t) t ≥ 0 (1.17)
T (l, t) = gS(t) t ≥ 0 (1.18)

In this equation, gL(t), gS(T) denote time-dependent functions which indicate the temperature
value at respectively the left and the right boundary. Furthermore, we need to make an assumption
about the initial state of the temperatures of the liquid and the solid. In this report, we will assume
that the initial temperature distribution is piece-wise constant. This leads to the following initial
temperature distribution.

T (x, 0) =


TL > 0 if x ∈ ΩL = [0, s(0)) (1.19a)
0 if x = s(0) (1.19b)
TS < 0 if x ∈ ΩS = (s(0), l] (1.19c)

1.3.2 Analytical solution

For most of the boundary functions gL(t), gS(t) the analytical solution to the problem described
above is unknown. However, the analytical solutions to the Stefan problem with infinite or semi-
infinite domain are known. Fortunately, it is known for a fact that if we choose the values of the
solution on the infinite domain at x = 0 and x = l as the non-homogeneous Dirichlet boundary
conditions to the finite-domain problem, the finite-domain solution equals the infinite-domain
solution for each x ∈ Ω. Therefore, we can use the infinite-domain solution to construct a system
with Dirichlet boundary conditions of which we can find the analytical solution.

Suppose we consider the Stefan problem with infinite domain Ω = R. Furthermore, we assume
for the sake of simplicity that the latent heat is equal to L = 1 and that the thermal conductivity α
is constant in space and time. As initial conditions we choose the same initial conditions as for the
finite-domain problem, but we extend the constant temperatures into the infinite domains. The
system of equations which we want to satisfy for this analytical solution is given by the following
equations.

8

The liquid region −∞ < x < s(t)

Tt = αLTxx, Heat equation for the liquid region,
T (0, t) = TL > 0, Boundary condition, t ≥ 0

T (x, 0) = TL, Initial condition
The free boundary x = s(t)

st = kSTx|x↓s(t) − kLTx|x↑s(t) Stefan condition
s(0) = s0, Initial position of the melting interface
T (s(t), t) = 0, Dirichlet condition at the interface
The solid region s(t) < x <∞
Tt = αSTxx, Heat equation for the solid region
T (x, 0) = TL < 0 For all t, x ≥ s(t)

A complete derivation of the solutions of the Stefan problem for this domain is given in for
example [6]. We find here that for Ω = R, the position of the interface is given by the following
equation.

s(t) = s(0) + 2λ
√
t (1.20)

The λ in this equation is given by the solution of the following equation.

λ =

√
kS√
πL

TS

erfc(λ√
kS

)
exp

(
−λ

2

kS

)
+

√
kL√
πL

TL

2− erfc(λ√
kL

)
exp

(
−λ

2

kL

)
(1.21)

The temperature distribution for the infinite-domain problem is given by the following equation.

Tsim(x, t) =


− TLerfc(λ/

√
kL)

2− erfc(λ/
√
kL)

+
TLerfc((x− s(0))/2

√
kLt)

2− erfc(λ/
√
kL)

x ∈ ΩL(t) (1.22a)

0 x = s(t) (1.22b)

TS −
TSerfc((x− s(0)/2

√
kSt)

2− erfc(λ/
√
kS)

x ∈ ΩS(t) (1.22c)

The solution to the infinite-domain Stefan problem is often called the similarity solution. Using
this solution, we can construct the non-homogeneous Dirichlet boundary conditions for our finite-
domain problem, namely:

gL(t) = Tsim(0, t) t ≥ 0 (1.23)
gS(t) = Tsim(l, t) t ≥ 0 (1.24)

9

In the following Figure 2, the temperature profiles of the similarity solution at different times is
shown in the domain Ω = [0, 1] with problem parameters as described in the caption. Note that we
can observe a clear jump in temperature gradient around the moving boundary (which is located
at T = 0).

Figure 2: Temperature profiles of the similarity solution at times t = 0, t = 0.005, t = 0.01, t = 0.05 and
t = 0.1 on the domain Ω = [0, 1]. As parameters for the model, we chose TL = 0.53, TS = −0.1, s0 =
0.5, ρ = 1, L = 1, kL = kS = 1

However, to find the accuracy of the numerical solutions to the Stefan problem, we will not
compare the temperature profiles of the analytical and numerical solutions, but the evolution of
the moving boundary s(t). The boundary moves in one dimension following a square root function,
as can be seen in Figure 3.

Figure 3: Position of the moving boundary over time. As parameters for the model, we chose again
TL = 0.53, TS = −0.1, s0 = 0.5, ρ = 1, L = 1, kL = kS = 1

10

2 Introduction to numerical methods
Many physical processes are described by partial differential equations. There exist several meth-
ods to find explicit analytical solutions to these equations. However, for most partial differential
equations, there does not exist an explicit solution. When this is the case, numerical methods are
often useful to approximate the solutions. The aim of this chapter is to describe the most important
ideas behind numerical analysis and to introduce some of the most common numerical methods,
which also will be used later on in this report. In section 2.1 the idea of discretizing an equation
is presented. In the following section 2.2, some useful numerical methods will be discussed. In
section 2.5, Lagrange interpolation, a useful method for finding values in between known values is
described. Finally, the concept of numerical errors is described in 2.6.

2.1 General idea of partial differential equations
Before we turn our attention to numerical methods, we introduce some definitions. We based this
section on [10]. When we consider a differential equation involving derivatives with respect to one
single independent variable, we call it a ordinary differential equation. The order of an ordinary
differential equation is equal to the order of the highest derivative of the dependent variable with
respect to the dependent variable.

A differential equation which contains partial derivatives with respect to two or more inde-
pendent variables is called a partial differential equation (PDE). A general classification of partial
differential equations is given by the classification based on the discriminant. Suppose that f is a
function of x, y and its second and first order partial derivatives are denoted by fxx, fyy, fxy, fx, fy.
Then we can write the general second order non-homogeneous partial differential equation of this
function as

Afxx +Bfxy + Cfyy +Dfx + Efy + Ff = G (2.1)

Then, the classification of PDEs based on the sign of the discriminant is given as follows.

1. If B2 − 4AC > 0, the PDE is called hyperbolic.

2. If B2 − 4AC = 0, the PDE is called parabolic.

3. If B2 − 4AC < 0, the PDE is called elliptic.

The importance of this classification is that it is closely related to the propagation of the charac-
teristics of a PDE. Characteristics are the "path" of the solution domain along which information
(the function value) propagates.

Approximating the solution of a partial differential equation can be done in several ways. The
finite difference method and the finite volume method, two of the most common methods, are
shortly described below.

1. Finite difference methods. This method solves a partial equation by discretizing the
domain into a discrete finite difference grid and approximating the partial derivatives by
finite difference approximations (as discussed in the following subsection), substituting these
approximations in the PDE to obtain a discrete algebraic equation and solving the resulting
algebraic system for the dependent variable.

2. Finite volume method. The finite volume method shows a lot of similarities with the finite
difference method: the domain is discretized into a finite number of grid points. However, in
the finite volume method, not the value of the function at each grid point is approximated,
but the value of a volume integral around the discretized grid points. More information on
this method can be found in the chapter about the finite volume method.

11

2.2 Finite difference schemes
The most well-known way to approximate the solution of a partial differential equation is the finite
difference method. For this method, we discretize the domain into a finite number of gridpoints.
The general idea of a finite difference method follows from the definition of the derivative of a
smooth function f at the point x ∈ R

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
(2.2)

So, if we choose a small but finite distance ∆x, we see that the quotient after this limit gives
a good estimate of the derivative . The error of this estimate (i.e. the difference between the
estimated value and the real function value) can be found using a Taylor expansion (assuming the
function satisfies all conditions to make such an expansion)):

f(x+ ∆x) = f(x) + ∆x
f ′(x)

1!
+ ∆x2 f”(x)

2!
+ · · ·+ ∆xn

f (n)(x)

n!
+R(n)(x) (2.3)

We see that in this equation the remainder term Rn(x) and the higher order terms are small
because of the term ∆xn. Therefore, we can approximate the first derivative as

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O(∆x) (2.4)

We see that the difference between the "real" solution and the given approximation is of order
O(∆x). We say therefore that this estimate is first order accurate. Similarly, a method of which the
error is O(∆x2), is called a second order method and so on. Higher derivatives can be approximated
in a similar way. The methods which will be mentioned in the following subsections can all be
derived in this way.

2.2.1 Spatial derivatives

In the Stefan problem, we need several finite difference schemes. First of all, we need to estimate
the second spatial derivative of the temperature in order to solve the heat equation. Furthermore,
we need to estimate the first derivative with respect to the spatial coordinate to implement the
Stefan condition. Schemes often used to approximate the first spatial derivative are the forward
and backward differences (O(∆x)) and the central difference method (O(∆x2)). Which of these
methods is the best to use, depends on the situation. The central differences scheme gives the
most accurate results, but in some situations (for example the moving boundary in the Stefan
condition), we can only use forward or backward differences.

f ′(x) ≈ f(x+ ∆x)− f(x)

∆x
Forward difference,O(∆x) (2.5)

f ′(x) ≈ f(x)− f(x−∆x)

∆x
Backward difference,O(∆x) (2.6)

f ′(x) ≈ f(x+ ∆x)− f(x− h)

2∆x
Central difference,O(∆x2) (2.7)

We also can use a second-order backward or forward scheme to approximate the first derivative.
These approximations are especially useful if the data at one side of the point in which we want
to approximate the derivative is not usable. This happens for example in the Stefan problem
when we are close to the moving phase boundary: because of the phase change (and the jump in
temperature derivative which corresponds to this change), central-difference methods will give bad
results then.

f ′(x) ≈ −f(x+ 2∆x) + 4f(x+ ∆x)− 3f(x)

∆x
Forward difference,O(∆x2) (2.8)

f ′(x) ≈ 3f(x)− 4f(x−∆x) + f(x− 2∆x)

2∆x
Backward difference,O(∆x2) (2.9)

12

An often used method to estimate the second order spatial derivative is given by the following
equation

f ′′(x) ≈ f(x+ ∆x)− 2f(x) + f(x+ ∆x)

∆x2
Centered difference,O(∆x2) (2.10)

2.3 Discretizing the heat equation
In this section we will consider the discretization of the simplified heat equation. This equation
plays an important role in the Stefan problem, since it describes the way in which temperature
evolves over time. Recall that the simplified version / where we assume that the thermal conduc-
tivity is α = 1 of this equation was given by

∂T

∂t
=
∂2T

∂2x
. (2.11)

Discretizing this equation can be done in roughly three ways. First of all, we can use an
explicit method (i.e. a method in which the function value at time tn+1 depends explicitly on the
function value at time tn). The second option is using an implicit method (a system of equations
that needs to be solved to find the value at time tn). The advantage of an explicit method is
the lower computational power that is needed. However, explicit methods are limited by the CFL
condition (which is discussed in next subsection). An implicit method on the other hand takes more
computational power but does not have a time step restriction. The third choice for discretizing
the heat equation by finite differences is using a combination of an implicit and an explicit method.
In this way, we can combine the advantages of both methods in one method.

An explicit discretization of the heat equation is given by

Tn+1
i − Tni

∆t
=
Tni+1 − 2Tni + Tni−1

∆x2
(2.12)

Note that time is discretized here with a forward difference (Forward Euler) scheme and space
with a central-difference scheme. This equation is therefore second order accurate in space and
first order accurate in time.

An implicit discretization of the heat equation is given by the following equation. This equation
is now discretized using a backward scheme in time and a central difference scheme in space, which
makes this equation implicit. This method is also second order accurate in space and first order
accurate in time.

Tn+1
i − Tni

∆t
=
Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

∆x2
(2.13)

Another example of an often used method to solve the heat equation, which is second order
accurate in both space and time, is the Crank-Nicoloson method. This method combines the
implicit and explicit method.

Tn+1
i − Ti

∆t
=

1

2
(
Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

∆x2
+
Tni+1 − 2Tni + Tni−1

∆x2
) (2.14)

The Crank-Nicolson method is a special form of the so-called θ-method. In this method, the
parameter θ ∈ [0, 1] determines the "ratio" between the explicit backward and the implicit forward
scheme. This scheme is given by

Tn+1
i − Ti

∆t
= θ

Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

∆x2
+ (1− θ)

Tni+1 − 2Tni + Tni−1

∆x2
(2.15)

Note that for θ = 0 this scheme equals the explicit discretization of the heat equation. For
θ = 1/2 the θ-method gives the Crank-Nicolson scheme and for θ = 1 we see that it reduces to the
implicit discretization of the heat equation.

13

2.4 Discretizing advection equations
In this section, we will consider the discretization of the one-dimensional linear advection equation.
This equation describes the motion of a given conserved quantity which moves with a certain
velocity v. The advection equation is given by

∂u

∂t
+ v

∂u

∂t
= 0 (2.16)

where u(x, t) describes the conserved quantity. In this section we will consider three methods
often used to solve this method: the Upwind method, the Lax-Wendroff method and the Leapfrog
method.

2.4.1 Upwind method

In the solving process of the advection equation, it is very useful to include the direction of
propagation of the advection term into the method. Suppose we discretize the domain in a finite
number of grid points xi. If we consider a grid point xi in the investigated domain, there are two
directions with respect to this grid point: left and right. Suppose that the velocity v is positive.
Then, the direction of advection is towards the right. In that case we call the left side of the grid
point the upwind side and the right side the downwind side. In the case that the velocity v is
negative, we call the left side the downwind side and the right side the upwind side.

Upwind schemes are numerical methods which change their discretization depending on the
direction of propagation. For example. the first order upwind scheme is given by

un+1
i − uni

∆t
+ v

uni − uni−1

∆x
= 0 for a > 0 (2.17)

un+1
i − uni

∆t
+ v

uni+1 − uni
∆x

= 0 for a < 0 (2.18)

This is often simplified by introducing the definitions a+ = max(a, 0), a− = min(a, 0) and
u−x =

un
i −u

n
i−1

∆x , u+
x =

un
i+1−u

n
i

∆x . Then we can write

un+1
i = uni −∆t[v+u−x + v−u+

x] (2.19)

In order to increase the spatial accuracy of this method, more data points can be used to
approximate the spatial derivative. A second-order upwind scheme is given by the following equa-
tions:

u−x =
3uni − runi−1 + uni−2

2∆x
(2.20)

u+
x =

−uni+2 + 4uni+1 − 3uni
2∆x

(2.21)

In order to be stable, the upwind method has to satisfy the CFL-condition. This condition states
basically that information propagated from a certain grid point should not be further propagated
than to its direct neighbours. We can express this in a formula as follows

|v∆t

∆x
≤ 1| (2.22)

2.4.2 Lax-Wendroff method

The second method considered in this report is the Lax-Wendroff method, which is second order
accurate in space and time. This method is a so-called multi-step method. First, we approximate
the value of the function u(x, t) at half time steps. After this, we use the central difference
method to approximate the spatial derivative using central differences. This leads to the following
equations.

14

u
n+1/2
i−1/2 =

1

2
(uni + uni−1) +

v∆t

2∆x
(uni − uni−1) (2.23)

u
n+1/2
i+1/2 =

1

2
(uni + uni+1) +

v∆t

2∆x
(uni+1 − uni) (2.24)

un+1
i = iji −

v∆t

∆x
(u
n+1/2
i+1/2 − u

n+1/2
i−1/2) (2.25)

We can rewrite this scheme as follows:

un+1
i =

α

2
(α+ 1)uni−1 + (1− α2)uni +

α

2
(α− 1)uni+1 (2.26)

where α = v∆t
∆x . This method is stable if α ≤ 1 (or equivalently: v ≤ ∆x

∆t . Note that the
numerical solution given by the Lax-Wendroff method is exactly equal to the analytical solution
whenever α = 1. This can be easily seen when we realize that the solution to the linear advection
equation is given by u(x, t) = u0(x− at), where u0(x) is the initial solution at t = 0.

2.4.3 Leapfrog method

The last numerical method which we will discuss is the Leapfrog method. This is a second order
accurate method for time as well space.

We apply this method to the advection equation. The Leapfrog method for this problem is
obtained if we insert a central difference approximation of the temporal derivative and a central
difference approximation for the spatial derivative into the advection equation. This leads to the
following equation

un+1
i − un−1

i

2∆t
= v

uni+1 − uni−1

2∆x
(2.27)

This method is stable whenever v∆t
∆x ≤ 1. Note that this system is a two-level scheme, which

means that we need the information from two different time steps (n and n − 1) to obtain the
solution for step n+ 1.

2.5 Lagrange interpolation polynomials
Finite difference methods give an approximation of the function value at the gridpoints. If we want
to approximate the function value on a point somewhere in between these grid points, we can use
the Lagrange interpolation polynomial. This is the polynomial of lowest degree that assumes at
each grid point xi the corresponding function value yi.

Given data values yi at the locations x1, x2, . . . , xn, the Lagrange interpolation polynomial
based on the first j + 1 function values ui = u(xi), i = 0, 1, . . . , j is given by:

pj(x) =

j∑
i=0

Li,j(x)yi, j = 0, 1, . . . , n (2.28)

In this equation, we have:

Li,j =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xj)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xj)
(2.29)

Using this polynomial, we can approximate the function value somewhere between the data
points. Furthermore, we can approximate the derivative of the function at this point by taking the
derivative of the polynomial. Also note that the Lagrange polynomial can be used for extrapolation
(i.e. approximating values which lie outside the given data range). Something important to note in
this case is that constructing a higher order polynomial does not necessarily lead to better results,
since higher-order polynomials often lead to larger oscillations.

15

2.6 Error analysis
In order to be able to compare the different numerical solutions of the heat equation, we need to
find a measure for the error of each numerical method. Error analysis is important since it tells
us where the errors come from and what we should work on to reduce them and also because it
allows us to compare different numerical schemes. In this subsection, we will first take a look at
consistency. After this we will consider stability and we will conclude with a description of the
concept of convergence.

2.6.1 Consistency

We start with the definition of consistency.

Definition 2.1 (Consistency). Let FT = τ be a partial differential equation and let FA∆x,∆tT = τ
be a numerical scheme. We say that a numerical scheme is consistent if the discrete numerical
equation tends to the exact differential equation:

FT −FA∆x,∆tT −→ 0 as ∆x,∆t −→ 0 (2.30)

A concept which can be really useful in showing consistency of a numerical method is the
(local) truncation error. The (local) truncation error τn is defined as the error in approximating
differential operators and PDEs by discrete representations like finite differences. This error is
given by

τ(x, t) = FAT (x, t) (2.31)

where FA is the approximation to the differential equation and T (x, t) is an exact solution to
the problem. This error can be analyzed by applying a Taylor expansion. For example, the local
truncation error for the forward Euler method combined with the central difference method applied
to the heat equation (also known as the FTCS-method) is given by the following derivation

τ(x, t) =
T (x, t+ ∆t)− T (x, t)

∆t
− T (x−∆x, t)− 2T (x, t) + T (x+ ∆x, t)

∆x2
(2.32)

=
∂T

∂t
(x, t)− ∂2T

∂x2
(x, t) +

∆t

2

∂2T

∂t2
− ∆x2

12

∂4T

∂x4
+ . . . (2.33)

=
∆t

2

∂2T

∂t2
− ∆x2

12

∂4T

∂x4
+ . . . (2.34)

So, we see that the for the truncation error for this numerical scheme it holds that τ(x, t) =
O(∆t) +O(∆x2). This means that, when the time step and spatial step size go to 0, then we also
know that the local truncation error goes to zero. This means that the numerical scheme in this
example is consistent.

2.6.2 Stability

A problem that every mathematician has experienced in numerical modelling is that errors in
numerical solutions can become uncontrolled. Therefore, an important notion in numerical analysis
is the notion of stability, which means that the difference between the computed solution and the
analytical solution of the discrete equation should be bounded for given spatial step size ∆x when
time tn goes to infinity. In a formal definition:

Definition 2.2 (Stability). Let Tni be the numerical solution of the partial differential equation
given by FT = τ at position xi and for time step tn. Let the spatial step size ∆x and the number
of spatial steps M be fixed. We say that a numerical scheme is stable if for all n ∈ N:

(∆x

M∑
i=1

|T (xi, t
n)− Tni |2)1/2 <∞ (2.35)

16

Note that we used the L2-norm in this definition. However, we could also use other norms, for
example the following (we show the L1-, L2- and Linf -norms).

||en||1 = ∆x

M∑
i=0

|eni | (2.36)

||en||2 = (∆x

M∑
i=0

|eni |
2
)1/2 (2.37)

||en||∞ = max
0≤i≤M

|eni | (2.38)

where eni = T (xi, t
n) − Tni . The error ||en|| is known as the global truncation error (or "dis-

cretization error"). A necessary condition for the stability of an explicit scheme is developed by
Courant, Friedrichs and Lewy. The CFL-condition states that it is a necessary condition for the
numerical solution of a PDE that the distance which is travelled of information has to be lower
than the distance between two grid points. Mathematically, this can be expressed as follows

v
∆t

∆x
≤ 1 (2.39)

where v is the "advection" velocity of the solution. If an explicit numerical scheme satisfies the
CFL-condition, then it is stable. However, note that this is not yet enough proof for convergence,
a concept which will be discussed in the following subsection.

2.6.3 Convergence

First, we give a definition of convergence.

Definition 2.3 (Convergence). A numerical scheme is called convergent if the difference between
the computed solution Tni and the exact solution T (xi, t

n) (i.e. the error eni = T (xi, t
n) − Tni)

vanishes when ∆x,∆t vanish:

lim
∆t,∆x→0

|eni | (2.40)

for fixed values of the position xi and the time step tn

This is the most important property of a numerical scheme, but difficult to verify directly for
a given scheme. However, the definitions of stability and consistency, which were shown in the
previous sections, are much easier to derive. The equivalence theorem of Lax states that, if a
numerical scheme is consistent and stable, then it is convergent.

17

3 The finite volume method
The purpose of any numerical method is to create a solvable system of algebraic equations which
corresponds to the partial differential equations which determine the system. The finite volume
method is a certain way of discretizing a partial differential equation which is based on discretizing
the integral form of the governing equations over each control volume. An important implication
of this approach is that quantities such as energy and mass are conserved for the finite volume
method. The aim of this chapter is to describe this method, its use and its applications for the
Stefan problem. In order to do so, in section 3.1 the fundamental principles of the finite volume
method are presented. In section 3.2 we apply the finite volume method to the heat equation. In
the last subsection of this chapter 3.3, we compare the finite volume method with other numerical
methods such as the finite difference method.

3.1 Fundamental principles of the finite volume method
Before introducing the most important definitions and concepts for the finite volume method, we
mention some of the most useful properties of this method [3]: (1) it can be used on arbitrary
geometries, for example unstructured and structured grids, (2) it leads to robust schemes and (3)
the numerical fluxes are locally conserved (i.e the numerical flux from one cell to its neighbour
cell is conserved). Especially this last property makes the finite volume method very useful for
problems where flux (of mass, heat or energy) plays a role.

Now, we will explain some theory of this method. We follow the theory from [4]. We consider
a conservation law of the form

ut(x, t) +∇ · F = f(x, t) (3.1)

In this equation, u is the conserved equation, F is some function denoting the transport mech-
anism of the quantity u and f expresses the "source term", the extra production of u for example
due to chemical reactions. The flux function F is usually a function of the conserved quantity
u(x, t), in the heat equation this term is p.e. given by Fourier’s law F(x, t) = −∇u(x).

The conservation law in the cited form is the expression of conservation of the quantity u in
a certain, infinitesimal domain. This equation is equivalent to a form where we integrate over a
certain temporal and spatial domain:∫

K

u(x, t2)dx−
∫
K

u(x, t1) +

∫ t2

t1

∫
∂K

F(x, t) · nK(x)dγ(x)dt =

∫ t2

t1

∫
K

f(x, t) (3.2)

In this equation, K is an arbitrary chosen sub-domain, t1, t2 are arbitrary times and nk(x) is
the unit normal vector to the boundary of K at point x, pointing outward to K. dγ(x) is the
integration symbol for the (d− 1)−dimensional Haussdorf measure on the considered boundary.

3.1.1 Time discretization

Now, we investigate the time discretization for finite volume methods. We choose, for the sake
of simplicity, a constant time step ∆t ∈ R≥0. We start at time t0 = 0. There are two ways to
discretize the conservation law for time.

1. We can use a space-time finite volume discretization. This is done by integrating the con-
servation law over a time interval and over a space control volume. This leads to a temporal
discretization.

2. The second way to implement temporal discretization is to substitute a time finite difference
scheme into the conservation equation for the time derivatives. For example, an Forward
Euler scheme could be used to estimate the term ut by ut ≈ un+1−un

∆t . Other, implicit and
higher-order schemes could also be used.

19

3.1.2 Space discretization

In order to create a spatial discretization of the conservation law, we introduce a mesh T of the
domain Ω of R, the investigated domain. We choose our mesh in such a way that the closure of
our domain, Ω̄, is equal to the union of the closures of the control volumes: Ω̄ =

⋃
K∈T K̄. In this

equation, each element K ∈ T is an open subset of Ω and is called a control volume.
We integrate our conservation law over each cell K of the mesh T . We use the forward Euler

time discretization to obtain∫
K

un+1 − un

∆t
dx+

∫
∂K

F(x, tn) · nK(x)dγ(x) =

∫
K

f(x, tn)dx (3.3)

The last step which is necessary in order to obtain a finite volume scheme, is applying a finite
difference approximation to the heat flux term across the boundary of the control volumes. In
order to do so, define K|L = K̄ ∩ L̄, with K,L ∈ T . Note that this definition does not include the
boundaries of Ω. Then, the exchange of the quantity between K and L

∫
K|LF(x, tn) ·nK(x)dγ(x)

in the time interval [Tn, tn+1) is approximated by some quantity FnK,L, which is a function of unM
(for explicit methods) or unn+1 (for implicit methods) or of both (for semi-implicit methods).

3.2 Finite volume method applied to the heat equation
One of the most important equations in the Stefan problem is the heat equation. This equation
involves heat flux and therefore we expect good results when solving this equation using the finite
volume method. In this subsection, we derive the finite volume discretization of the (simplified)
one-dimensional heat equation. In this derivation, we consider constant time step size ∆t and
spatial step size ∆x. Recall that the heat equation in one dimension (with heat diffusivity α = 1)
is given by

∂T

∂t
− ∂2T

∂2x
=
∂T

∂t
− ∂

∂x

∂T

∂x
= 0. (3.4)

If we reconsider the standard definition of a conservation law, we see that in this equation
u(x, t) = T (x, t), F(x, t) = −Tx(x, t) and f(x, t) = 0. So, if we integrate this equation over a
certain spatial domain K = [xi−1/2, xi+1/2] (with midpoint xi) and temporal domain [tn, tn+1],
with spatial step size ∆x and time step size ∆t we obtain∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂T

∂t
dxdt−

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂2T

∂x2
dxdt = 0 (3.5)

We can interchange the integrals, which leads to the following expression for the left hand side
of Equation 3.5. ∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂T

∂t
dxdt =

∫ xi+1/2

xi−1/2

∫ tn+1

tn

∂T

∂t
dtdx. (3.6)

This expression can be evaluated using the fundamental theorem of calculus

∫ xi+1/2

xi−1/2

∫ tn+1

tn

∂T

∂t
dtdx =

∫ xi+1/2

xi−1/2

T (x, t)|t
n+1

tn dx =

∫ xi+1/2

xi−1/2

T (x, tn+1)− T (x, tn)dx. (3.7)

Now, observe that we can approximate the average temperature over a grid cell by the following
expression

T̂i(t) =
1

∆x

∫ xi+1/2

xi−1/2

T (x, t)dx (3.8)

where T̂i(tn) denotes the approximation of the average temperature in gridcell i at time t = tn.
Using this definition, we can simplify the integral expression in Equation 3.7 further to

20

∫ xi+1/2

xi−1/2

T (x, tn+1)− T (x, tn)dx = ∆x(T̂ni − T̂ni) (3.9)

where T̂ni is the approximation of the average temperature at time tn and position xi.
The other part of equation 3.5 can also be simplified under the assumption that the temperature

in a control volume is constant over the whole control volume. This assumption becomes more
valid for smaller step sizes ∆x and it leads to the following equation:∫ tn+1

tn

∫ xi+1

xi

∂2T

∂x2
dxdt =

∫ tn+1

tn

∫ xi+1

xi

∂

∂x
(
∂T

∂x
)dxdt. (3.10)

Using the fundamental theorem of calculus, this equation can again be simplified to∫ tn+1

tn

∂T

∂x
|xi+1/2
xi−1/2

dx =

∫ tn+1

tn

∂T

∂x
(xi+1/2, t)−

∂T

∂x
(xi−1/2, t)dt (3.11)

We see that this equation simply is the difference in heat fluxes through the right and left
boundary of our control volume integrated over time. In order to find a numerical scheme, we
want to estimate the fluxes. This can be done using an explicit or implicit forward and backward
difference scheme. In this case, we use an explicit central difference scheme

∂T

∂x
(xi+1/2, t) =

Tni+1 − Tni
∆x

(3.12)

∂T

∂x
(xi−1/2, t) =

Tni − Tni−1

∆x
(3.13)

We use the second-order approximation that the average temperature in a gridcell is equal to
the temperature in the center of the gridcell: Tni = T̂ni . Filling this in the computed approximation
in the integral form of the conservation law yields

∆x(T̂n+1
i − T̂ni) =

∫ tn+1

tn

T̂ni+1 − T̂ni
∆x

−
T̂ni − T̂ni−1

∆x
dt (3.14)

which can be further simplified by evaluating the integral, which leads to

T̂n+1
i − T̂ni

∆t
=
T̂ni+1 − T̂ni + T̂ni−1

∆x2
(3.15)

Observe that this discretization seems to be equal to the FTCS finite difference discretization
over the same grid. However, in the finite volume method equation, T̂ni is not the exact temperature
in a gridpoint (as it is in the FCTS), but the average temperature over a volume cell. This is a
fundamental difference with the finite difference method. However, for this specific problem, both
methods give the same results. Note that this may be different for other forms of the heat problem
or other discretizations of time and space.

3.3 Comparison with other discretization techniques
The finite volume method differs significantly from other numerical methods such as the finite
difference method or the finite element method. In this section we will restrict ourselves mainly
to the differences between the finite difference methods and the finite volume method. For listing
these differences, we used the theory in [3].

1. Meaning of the results. The first and most important difference between finite difference
methods and the finite volume method is the interpretation of the results. Finite difference
methods predict discrete values of the unknown, and the values of the unknown between the
grid points has to be imagined by the user (for example by interpolation). The idea of the
finite volume method on the other hand does not compute discrete unknown values, but the
average value of a conserved variable within the chosen control volumes. Therefore, it gives
a solution for the whole domain, not only for the discretization points.

21

2. Differential versus integral form. The finite difference method is based on a chosen grid
where at each grid point one unknown variable has to be computed by solving one equation.
Derivatives of this unknown are estimated by finite differences, which are found by Taylor
expansions. Finite volume methods, on the other hand, use the integral form of an equation,
which they solve by applying the divergence theorem.

3. Conservation of unknown quantity. One of the main advantages of the finite volume
method is that it is a conserving method, i.e. the solution is conserved. The total value of a
certain quantity over a control volume remains equal to the start quantity plus or minus the
flux of this quantity after a certain time. This is especially useful when modelling physical
problems where conservation laws play a role.

4. Discontinuities. Finite difference methods often have have problems whenever disconti-
nuities in the solution arise. The finite volume method can deal much better with discon-
tinuities, especially when the mesh is chosen in such a way that the discontinuities occur
on the boundaries of a grid cell. This has to do with the fact that finite volume methods
use the integral form of conservation laws, where finite difference methods make use of the
differential (weaker) form of the same laws.

5. Implementation of boundary conditions. Note that for Neumann boundary conditions,
the finite volume method is a very natural choice, since this method used the in-going and
outgoing flux to update the average value of a grid cell. The Neumann boundary conditions
give an exact value for the flux at the boundaries. Similarly, for Dirichlet boundary con-
ditions, finite difference methods are often a more natural choice, since the exact value at
the boundary grid points is known in this case. In order to implement Neumann boundary
conditions in a finite difference method or Dirichlet boundary conditions in a finite volume
method, inter- or extrapolations have to be made, which can lead to more numerical errors.

22

4 The level-set method
One of the most important things to deal with in the Stefan problem is the moving boundary. Be-
cause of the temperature derivative discontinuity, the unknown values around the moving boundary
need a special treatment. Globally, we can divide the methods to solve the Stefan problem in (1)
front-tracking methods, which compute the interface position explicitly at each time step and (2)
implicit methods, in which the position is implicitly stored in some alternative way. One of the most
well-known implicit methods is the level-set method, which is further investigated in this chapter.
In section 4.1, the advection equation, which plays an important role in the level-set method, is
discussed. In the following section 4.2, the general idea of the level-set method is discussed and a
step-by-step implementation of the method is given.

4.1 The advection equation
In this section, we describe some theory which is necessary to understand the advection equation,
an important equation in the level-set method. We base this section mainly on the work of Chen
et al. [2]. We describe the theory of advection equations in the context of a level-set function in
one dimension. Let Ω = R be the domain and define the initial level-set function as follows.

φ(x, 0) =


|x− s0| if x < s0 (4.1a)
0 if x = s0 (4.1b)
−|x− s0| if x > s0 (4.1c)

where s0 ∈ R is the initial value of the level-set. Note that this position is a simple straight
line with negative slope −1, which crosses the x-axis at x = s0. This function gives an implicit
description of the position of the point s0. We store the value where the level-set function is zero
in the zero level-set Γ(t) = {x ∈ R : φ(x, t) = 0}. Note that this set (for a one-dimensional level-set
function) contains only one value, which we call s(t). Note that we can differentiate the level-set
function at position s(t) with respect to time t and that this derivative equals 0 (since φ(s(t)) = 0
by definition of s(t)). Using the chain rule, we find

∂φ

∂t
(s(t), t) +

ds

dt
(t)
∂φ

∂x
(s(t), t) = 0 (4.2)

Defining the velocity of the zero level-set as ds
dt (t) = v(t), we can write this as

∂φ

∂t
+ v(t)

∂φ

∂x
= 0 (4.3)

This is the general form of a one-dimensional advection equation: the equation that governs the
motion of a scalar field. Note that the advection velocity of the level-set function depends on the
time: it is not constant. This is the partial differential equation which will be considered in this
report for describing the evolution of the level-set function over time. If we can find the velocity
v(t) and we know how the level-set function looks at time t, we can use this advection equation
to find the temporal derivative φt which can be used then to update the level-set function to the
next time step.

4.2 Theory of the level-set method
In this section, we shortly discuss the most important concepts and ideas behind the level-set
method. This method provides a means for solving moving boundary Stefan problems, such as
the Stefan problem. We will lay out this method applied to the Stefan problem step by step here,
mostly following the level-set method presented in [2].

1. Construction of level-set function. We start by constructing an initial level-set function,
which gives the distance of an arbitrary x ∈ Ω = R to the interface s(t), which has initial
position s(t0) = s0. Therefore, the level-set function is initialized as follows.

23

φ(x, 0) =


|x− s0| if x < s0 (4.4a)
0 if x = s0 (4.4b)
−|x− s0| if x > s0 (4.4c)

This function is called the level-set function, since it assigns a value of 0 to x if x = s(t0)
and otherwise a non-zero value. We want to update this function in such a way that this
function equals 0 whenever x = s(t), so φ(s(t), t) = 0∀t ≥ t0. So, the zero level-set of the
function φ(x, t) is the interface s(t). The idea of the level-set method is to move the position
of the level-set with a certain time-dependent speed v(t) and to update the values of the
temperature T (x, t) using the value of the zero level-set. In this way, it is not necessary to
explicitly track the front, which makes it easier to apply this method to more-dimensional
problems.

2. Updating the level-set function Using the Stefan condition and the temperature distri-
bution T (x, t) at time t, we can compute the velocity with which the front moves:

v(t) =
ds

dt
= Tx|x↓s(t) − Tx|x↑s(t), x ∈ Γ(t), Stefan condition (4.5)

However, this condition only provides us with the velocity at the moving boundary. We want
to update the level-set function on the whole domain. Therefore, we need to extend the
found front velocity v(t) from Γ to Ω. This is done by finding a continuous extension F (x, t)
of the front velocity. This continuous extension can for example be found by solving

∂F

∂τ
(x, τ) + S(φ(x, t)

∂φ

∂x
(x, t))

∂F

∂x
(x, τ) = 0 (4.6)

where S is the sign function and τ is some time step not necessarily related to the main
time step(see [8]). Another option which only works in one-dimensional problems is taking
F (x, t) = v(t): we simply set the velocity extension on the whole domain Ω equal to the
velocity at the front. Note that both velocity extensions satisfy the advection equation:

∂φ

∂t
+ F (x, t)

∂φ

∂x
= 0 (4.7)

By using the fact that we can compute ∂φ
∂x since we know what φ(x, t) is at each time step and

substituting the extended velocity F (x, t), we can update the level-set function by solving
this equation.

3. Re-initialization of the level-set function. Using continuous extensions, it can happen
that the signed distance function is no longer a distance function. In this case, the function
has to be re-initialized such that φ(s(t), t) = 0 still holds and the spatial derivative of the
function equals ∂φ

∂x = −1 for all x ∈ Ω. Fortunately, we can relatively easy compute an exact
signed distance function fulfilling these two conditions by iterating the following equation,
with S denoting the signed distance function and τ a fictitious time step,

∂φ

∂τ
(x, τ) = S(φ(x, t))(1−

∣∣∣∣∂φ∂x (x, τ)

∣∣∣∣) (4.8)

until steady-state is reached. This steady-state function fulfills both of our conditions: it is a
signed-distance function with negative slope −1 and it crosses the x-axis at position x = s(t).

4. Updating the temperature. The last important step in the level-set method is to update
the values of the temperature T (x, t). We perform this step after moving the signed-distance
function with extended velocity F (x, t) and re-initializing it to an exact signed distance

24

function. In order to update the temperature, we basically need to solve the heat equations
over the whole domain Ω. We can use the re-initialized signed distance function to find out if a
point x is close to the interface s(t). If this is the case, we use interpolation to approximate the
double derivatives Txx of the temperature. For points far away from the moving interface, we
solve the heat equation using a standard numerical method (finite difference or finite volume
schemes with central differences).

The described level-set method can be summarized in the following steps.

1. Set the initial values for the temperature T (x, t) and define the signed distance function
φ(x, t).

2. Compute the extended velocity field F (x, t), which is the continuous extension of the velocity
v(t) = st, which can be computed using the Stefan condition.

3. Update the distance function by using the function φt + Fφx = 0. The zero level-set of the
equation φ gives the new interface position.

4. Re-initialize φ in order to make it an exact signed distance function again.

5. Find the temperature field T (x, t,) by discretizing the heat equation. For points far from the
interface, solve the heat equation by using an implicit centered differences numerical method.
For points close to the interface, approximate T by interpolating from the points at one side
of the surface (with the same phase), using φ.

6. Repeat steps 2 through 5 to update the values of φ and T .

Note that we only described the level-set method in terms of exact partial differential equations.
We did not yet choose a discretization of time and space. The discretization of the described level-
set method is introduced in Chapter 7. Before we describe the discretization, we will first consider
several numerical schemes applied to the advection equation and the heat equation, in order to be
able to choose the most suitable numerical scheme to solve the heat and the advection sub-problems
in the Stefan problem.

25

5 Choosing numerical schemes for developing a level-set method
The main goal of this work is to reach second order accuracy in solving the Stefan problem with the
level-set method. In order to reach this accuracy, we need to choose numerical schemes which are
sufficiently accurate. In this section, we investigate several numerical schemes to solve the advection
problem and the heat problem. In the first part of this chapter, 5.1, we consider the heat problem,
which is important when updating the temperature in the Stefan problem. In the second and last
section 5.2 of this chapter, we consider numerical schemes for solving the advection problem. This
problem has to be solved numerically if we want to describe the evolution of the moving boundary
in the Stefan problem.

5.1 Choosing a numerical scheme for solving the heat problem
First of all, we want to discretize the temperature update procedure in the level-set method in
such a way that we obtain second order accuracy as well in space as in time. In this chapter
we will only deal with a heat problem with fixed boundaries - in contrary to the Stefan problem,
where the moving boundary is a characteristic part of the problem - in order to be able to make
a good comparison between several methods for solving the heat problem. We compare three
numerical schemes which are often used to solve the heat problem: the FTCS scheme (Forward
Time, Centered Space), the BTCS-scheme (Backward Time, Centered Space) and the Crank-
Nicolson method.

In order to make a fair comparison between these three schemes, we use a one-phase heat
problem of which the analytical solution is known. Note that we do not use the Stefan problem here,
since we have to take the moving boundary into consideration then, which largely complicates the
problem and makes it more difficult to compare the different numerical methods in their accuracy.
Therefore, we consider a one-dimensional box parallel to the x-axis of length L with its left side
at x = 0. The box is filled with a certain material with density ρ, thermal conductivity k and
specific heat capacity c. The material has an initial temperature distribution T (0, t) and in the
whole domain, the material is in the same phase, so we do not have to deal with phase changes.
This situation is sketched in the following picture.

Figure 4: Graphical representation of the represented problem

For the boundaries x = 0, x = L, we consider in the homogeneous Dirichlet boundary conditions:
T (0, t) = T (L, t) = 0. In physics, this corresponds to a system where the temperature at the
boundary is kept fixed at T = 0.

The thing we are interested in and which we want to find is the distribution of the temperature
in the rod after a certain time t > 0, so we want to find T (x, t), given the initial condition T (x, 0)
and the boundary conditions. We simplify the problem by choosing ρ = k = c = L = 1 which
leads to the following problem to solve:

27

PDE:
∂T

∂x
=
∂2T

∂x2
0 < x < 1

IC: T (x, 0) = f(x) 0 ≤ x ≤ 1

BC (Dirichlet): T (0, t) = T (1, t) = 0 t > 0

An analytical solution to this described problem is given in [1] by

T (x, t) =

∞∑
n=1

Bn sin(nπx) exp
(
−n2π2t

)
(5.1)

where the Bn are given by

Bn = 2

∫ 1

0

sin(nπx)f(x)dx. (5.2)

In this work, we will furthermore assume for the sake of simplicity that the initial temperature
is given by 1 on the whole domain: f(x) = T (x, 0) = sin(πx). This assumption allows us to
simplify the previous expressions by using orthogonality of sinuses to the following:

T (x, t) = sin(πx) exp
(
−π2t

)
. (5.3)

A plot of this analytical solution is shown in Figure 5. We see that in the beginning, the
temperature is, as we initialized it, a sine function. As we expect, after a long time the temperature
profile is approximately equal to zero.

Figure 5: Analytical solution of the homogeneous Dirichlet problem for different times t, with t ∈
{0.0, 0.01, 0.02, 0.04, 0.05, 0.1}

Now that we have defined the problem we want to solve numerically, we discretize our spatial
domain Ω = [0, 1] with a uniform spatial grid into M grid points, i.e. ∆x = 1/M, xi = (i −
1/2)∆x, i = 1, . . . ,M . We also choose a temporal uniform discretization with time step ∆t, so
tn = n∆t, n = 0, . . . , N . We will now consider the mentioned numerical schemes. First we look at
the FTCS-scheme, then we consider the BTCS-scheme and finally we present the Crank-Nicolson
scheme. We start our models at t = 0 and we compare the numerical error of these schemes at
time tN = 0.1. Recall that the numerical L2-error of the temperature profile at time t = tN is
given by

||en||2 = (∆x

M∑
i=1

|eni |
2
)1/2 (5.4)

with eni = T (xi, t
n)− Tni .

28

5.1.1 FCTS-scheme

The first method which is considered is the Forward Euler method (for time discretization) com-
bined with the central difference method (for spatial discretization). This method is theoretically
first order accurate in time and second order accurate in space. The discretized (simplified) for
points in the domain heat equation given by

Tn+1
i − Tni

∆t
=
Tni+1 − 2Tni + Tni−1

∆x2
(5.5)

Note that this method is explicit. This expression describes a numerical scheme in the inner
points of the domain. However, we have to find a way to implement the boundary conditions at
x = 0 and x = 1. At the boundary x = 0, we know that T = 0 for all n since we have to deal with
homogeneous Dirichlet boundary conditions. Therefore, we can write the following condition for
the average of the virtual point Tn0 and T 1

n :

T (0, t) ≈ Tn0 + Tn1
2

+O(∆x2) = 0 (5.6)

which leads to the condition Tn0 = −Tn1 . In a similar way, we can derive for the other boundary
that TnM+1 = −TnM . Using this boundary conditions and the expression for the other points, we
see that we can evaluate the temperature at time step t = tn+1 by solving the following matrix
equation. Note that this method is explicit and that we have to satisfy the stability condition
∆t

∆x2 ≤ 1/2 in order to get convergent, stable solutions.


Tn+1

1

Tn+1
2
...

Tn+1
M−1

Tn+1
M

 =


1− 3 ∆t

∆x2
∆t

∆x2 0 0 0
∆t

∆x2 1− 2 ∆t
∆x2

∆t
∆x2 0 0
. . .

0 0 ∆t
∆x2 1− 2 ∆t

∆x2
∆t

∆x2

0 0 0 ∆t
∆x2 1− 3 ∆t

∆x2




Tn1
Tn2
...

TnM−1

TnM

 (5.7)

Having computed the numerical scheme to solve the heat equation for the described problem,
we can fix the number of spatial steps at some number and vary the number of time steps to observe
how the numerical L2-error behaves as a function of time step size. This is shown in Figure 7a. We
can also fix the number of time steps and vary the number of spatial steps to observe the numerical
L2-error as the number of spatial step size. This is shown in Figure 7b.

(a) Numerical error at time t = 0.1 for fixed number of
spatial steps M = 100 and varying time step size.

(b) Numerical error at time t = 0.1 for the FTCS-
scheme for fixed number of time steps N = 25000, 50000
and N = 100000 and a varying spatial step size.

Figure 6: Numerical error of the numerical solution to the homogeneous Dirichlet problem for the FTCS-
scheme as a function of the spatial step size and as a function of the temporal step size.

We see in Figure 7b that the method is clearly second order accurate in space. The blue line
for M = 25000 becomes constant after M = 160 spatial steps. This can be explained by the fact
that the numerical error due to the fixed number of time steps becomes the dominant error here,
and since this error is fixed, the numerical error becomes constant. In Figure 7a, we see that

29

the numerical error as a function of the number of time steps becomes approximately constant
for N ≥ 16000. This constant numerical error is probably the fixed numerical error due to fixed
spatial step size. It would be interesting to consider larger numbers of spatial steps than M = 100.
However, note that the stability condition ∆t/∆x2 ≤ 1/2 in that case requires that the number
of time step sizes will increase quadratic. This will make that the error due to time step size will
decrease faster then the error due to spatial step size, which will make it even more difficult to
compare the numerical error due to spatial step size to the numerical error due to time step size.
This effect makes it impossible to investigate the numerical error due to time step size separately
from the spatial step size. Therefore, we have to draw our conclusions on the small segment
between N = 2000 and N = 8000. We see that the numerical error converges here with first order
accuracy.

Having considered the FCTS-method, we can conclude that this method is indeed first order
accurate in time and second order accurate in space. Advantage of this method is that it is explicit
(which means that the computational time is low compared to implicit methods). On the other
hand, the fact that it is an explicit method makes that we have to satisfy the stability condition
∆t/∆x2 ≤ 1/2, which makes that we have to choose our time step very small in order to obtain
stable solutions. Furthermore, if we want to develop a second order method for the Stefan problem,
it does not seem to be handy to use first-order accurate methods.

30

5.1.2 BTCS-scheme

Next, we consider the BTCS-scheme as solution for the Stefan problem, a method which is first
order accurate in time and second order accurate in space. A big advantage of this method
compared to the Forward Euler method is that this method is unconditionally stable. However,
since it is an implicit method, this method takes more computing power.

The discretized heat equation for the Backward Euler Method is given by

Tn+1
i − Tni

∆t
=
Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

∆x2
(5.8)

The boundary conditions for the Dirichlet problem imply that Tn1 = −Tn0 (we do not show the
derivation of this equation, since it is very similar to the derivation of the boundary conditions
for the FTCS-scheme). Therefore, the matrix equation we have to solve in order to find the
temperature for the following time step is given by

Tn1
Tn2
...

TnM−1

TnM

 =


1 + 3 ∆t

∆x2 − ∆t
∆x2 0 0 0

− ∆t
∆x2 1 + 2 ∆t

∆x2 − ∆t
∆x2 0 0
. . .

0 0 − ∆t
∆x2 1 + 2 ∆t

∆x2 − ∆t
∆x2

0 0 0 − ∆t
∆x2 1 + 3 ∆t

∆x2




Tn+1

1

Tn+1
2
...

Tn+1
M−1

T+1
M n

 (5.9)

The numerical error (in the L2-norm) at time t = 0.1 for this BCTS-method is shown in Figure
7, where in 7a the spatial step size is fixed and the temporal step size varied. In Figure 7b, the
time step size is fixed and the spatial step size is varied.

In Figure 7, we see in the first place that the BTCS-scheme appears to be first order accurate
in time: it follows the ideal first order almost perfectly for the investigated range of time steps.
Furthermore, we see that it also appears to be second order accurate in space. However, since the
numerical error due to time step size is relatively big compared to the spatial numerical error, we
see that the numerical error as a function of the number of spatial steps becomes constant - it
attains the value of the fixed numerical error due to time step size.

So, concluding about this method, we saw that the BTCS-scheme is second order accurate in
space and first order accurate in time. Furthermore, a big advantage of this method is that we do
not have to satisfy stability conditons like we had to for the FTCS-scheme. This compensates for the
extra time necessary to solve matrix equations (instead of simply solving matrix multiplications,
what we had to do to solve the FTCS-scheme). However, since the scheme is only first order
accurate in time, it does not seem to be the best starting choice for our level-set method if we want
to reach second order accuracy.

(a) Numerical error at time t = 0.1 for the BTCS-
scheme for fixed spatial step M = 200, 400 and M = 800
and a varying time step size. Note that the blue and or-
ange line are almost completely covered by the green
line.

(b) Numerical error at time t = 0.1 for the BTCS-
scheme for fixed number of time steps N = 5000, 10000
and N = 20000 and a varying spatial step size.

Figure 7: Numerical error of the numerical solution to the homogeneous Dirichlet problem for the BTCS-
scheme as a function of the spatial step size and as a function of the temporal step size.

31

5.1.3 Crank-Nicolson scheme

The last scheme used to solve the heat equation considered in this report is the Crank-Nicolson
scheme. This scheme is a so-called semi-implicit scheme and it is second order accurate in as well
space as time. It is, just as the BTCS-scheme, an implicit method and it is therefore unconditionally
stable. The discretized heat equation for this method is given by

Tn+1
i − Tni

∆t
=

1

2∆x2
((Tn+1

i+1 − 2Tn+1
i + Tn+1

i−1) + (Tni+1 − 2Tni + Tni−1)) (5.10)

We can solve this equation for new temperatures in terms of old temperatures as follows.

− αTn+1
i−1 + (2 + 2α)Tn+1

i − αTn+1
i−1 = αTni−1 + (2− 2α)Tni + αTni+1 (5.11)

where α = ∆t
∆x2 . Applying the Dirichlet boundary conditions, which is not shown since this

derivation is done in a similar way for the FTCS- and BTCS-scheme, we find the following matrix
equation.


2 + 3α −α 0 0 0
−α 2 + 2α −α 0 0

. . .
0 0 −α 2 + 2α −α
0 0 0 −α 2 + 3α




Tn+1
0

Tn+1
1

...
Tn+1
M−1

Tn+1
M

 =


α(2− 3α)Tn

1 + αTn
2

αTn
1 + (2− 2α)Tn

2 + αTn
3

...
αTn

M−2 + (2− 2α)Tn
M−1 + αTn

M

αTn
M−1 + (2− 3α)Tn

M

 (5.12)

Note that the vector on the right hand side is known, as well as the M ×M -matrix on the
left hand side. Therefore, we need to solve this matrix equation in order to find the temperature
at the next time step. This method gives also very accurate results for small time and space step
sizes. In Figure 8 , the numerical accuracy of the CN-scheme (Crank-Nicolson scheme) is presented.

In Figure 8, we see that this method seems to be second order accurate. For as well space as
time, the numerical error follows the ideal second order line (until it reaches a constant numerical
error, which is probably caused by the fixed time step size). This confirms the theory that this
method is of second order accuracy for as well space as time. In the continuation of this report, we
will therefore use the Crank Nicolson scheme to solve the heat equation, since this method gives a
good, second order accurate base for solving the temperature update part of the Stefan problem.

(a) Numerical error at time t = 0.1 for the CN-scheme
for fixed spatial step M = 200, 400 and M = 800 and a
varying time step size. Note that the blue and orange
line are almost completely covered by the green line.

(b) Numerical error at time t = 0.1 for the CN-scheme
for fixed number of time steps N = 5000, 10000 and
N = 20000 and a varying spatial step size.

Figure 8: Numerical error of the numerical solution to the homogeneous Dirichlet problem for the CN-
scheme as a function of the spatial step size and as a function of the temporal step size.

32

5.2 Choosing a numerical scheme for solving the advection problem
Now that we have established which method to use for solving the heat equation, we want to
consider several methods for solving the advection equation and to compare these methods in their
accuracy. In this section, we will respectively consider the upwind method, the Leapfrog method
and the Lax-Wendroff method.

We compare them for their accuracy in solving the following differential equation

∂u

∂t
+ v(x, t)

∂u

∂x
= 0. (5.13)

This is the general form of a one-dimensional advection equation: the equation that governs the
motion of a scalar field, in the case of the level-set method we use it to update the signed distance
function. In this section however, we will test the three methods on another numerical problem,
which is given below.

In order to solve the problem, we need to choose a certain initial condition u(x, 0) = u0(x).
The analytical solution to the problem is given then by u(x, t) = u0(x− vt) [7]. In this report, we
will consider the initial condition given by

u0(x) =


0 0 ≤ x ≤ 1 (5.14a)

sin4(π
x− 1

x− 5
) 1 < x < 5 (5.14b)

0 5 ≤ x ≤ 10 (5.14c)

on the domain Ω = [0, 10] with constant velocity v(x, t) = 1. As boundary conditions we choose
the periodic boundary conditions. In Figure 9, the analytical solution is shown at t = 4.0. Note
that the solution to the advection equation is simply given by the initial condition shifted to the
right with a distance vt: we have u(x, t) = u0(x−vt). In this section, we will compare the solutions
obtained by the first order Upwind method, Lax-Wendroff method and the Leapfrog method with
the analytical solution at time tN = 4.0. We discretize the domain with a uniform spatial grid into
M grid points, with ∆x = 1/(M − 1) and xi = (i − 1)∆x, i = 1, . . . ,M . The numerical error at
t = tN time is given by

||en||2 = (∆x

M∑
i=1

|eni |
2
)1/2 (5.15)

with eni = T (xi, t
n)− Tni .

Figure 9: Analytical solution of the advection problem with periodic boundary conditions at time t = 4.0.

33

5.2.1 Upwind method

The first method considered is the first order upwind method. This method is first order accurate
in time and also first order accurate in space and it is an explicit scheme. This scheme is given by

un+1
i − uni

∆t
=


−v

uni − uni−1

∆x
if vni > 0 (5.16a)

−v
uni+1 − uni

∆x
if vni < 0 (5.16b)

where v is assumed to be constant (as is the case in our problem). In other words: if the
solution propagates to the left, the values on the right hand side of the solution are used to
compute its propagation and vice versa for propagation to the right. Introducing the definitions
amax = max(a, 0) ∆t

∆x and amin = min(a, 0) ∆t
∆x , we can write

un+1
i = amaxu

n
i−1 + (1 + amin − amax)uni − aminuni+1 (5.17)

Using periodic boundary conditions, we know that un1 = unM+1, so u
n
1 = amaxu

n
M + (1 + amin−

amax)un1 − aminun2 and we can find a similar expression for the other boundary. This leads to the
following matrix.



u
n+1
1

u
n+1
2

.

.

.
u
n+1
N

− 1

u
n+1
N


=



1 + amin − amax −amin 0 . . . amax
amax 1 + amin − amax −amin . . . 0

0

. . .
. . .

. . . 0
0 0 amax 1 + amin − amax amin

−amin 0 0 amax 1 + amin − amax





un
1

un
2

.

.

.
un
N − 1

un
N


(5.18)

This scheme is stable if the following CFL-condition is satisfied.

v∆t

∆x
≤ 1 (5.19)

Having derived the system of equations which should be solved, we can compute the numerical
accuracy of this method. To find the numerical accuracy, we choose the temporal step size as a
linear function of the spatial step size: ∆t = a∆x (or, in other words: we keep the CFL-number
fixed at a). If the scheme is first order accurate in as well space and time, we see that the numerical
error is of order

O(∆x) +O(∆t) = O(∆x) +O(a∆x) = O(∆x) (5.20)

so by only showing the numerical error as a function of the number of spatial steps, we would
be able to see if this method is indeed first order accurate in space and time. In Figure 10, the
numerical error is shown as a function of the number of spatial steps, where the time step size is
chosen as ∆t = a∆x, with a ∈ {1/4, 1/2}.

Figure 10: Numerical error at t = 4.0 for the Upwind Method. The time step is chosen as ∆t = a∆x, with
a ∈ {1/2, 1/4}, as shown in the legend.

34

In Figure 10, we see that this method is indeed (almost) first order accurate in space and time.
What is also good to note is that this method can lead to numerical diffusion (a mismatch in
phase between the analytical and numerical solution) and numerical dispersion (damping of the
amplitude) when a 6= 1. This last effect is clearly visible in Figure 11, where the numerical and
the analytical solutions are shown for a = 1/8 and a = 1/2.

(a) a = 1/8,M = 400 (b) a = 1/2,M = 400

Figure 11: Numerical and analytical solutions to the periodic boundary conditions advection problem for
a = 1/2 and a = 1/8, both for M = 400 spatial steps.

In Figure 11, we see that the numerical dispersion decreases when we increase a. For a = 1, the
solution to the upwind method equals the analytical solution, so there will be no dispersion at all
for a = 1. To conclude, we see that the first order Upwind method is first order accurate in space
and time. Furthermore, this method shows strong effects of numerical dispersion and numerical
diffusion for low values of a, which makes it less useful for solving the advection problem.

5.2.2 Leapfrog method

The next method we investigate is the Leapfrog method. This is a method which is second order
accurate in as well space as time and therefore promising for this report. The Leapfrog method
uses the values at the previous two timesteps to estimate the value of u at the next time step: it
is a so-called multi-step method. This can be expressed in the following equation.

un+1
j = un−1

j − α(unj+1 − unj−1) (5.21)

where α = v∆t
∆x . This method is stable if α ≤ 1. Note that this scheme is a two-level-scheme,

so we need the values of the timesteps n and n − 1 to get the value of n + 1. A big advantage of
the Leapfrog method is that there is theoretically no amplitude dissipation. The matrix equation
using the given equation can be expressed as follows.

un+1
1

un+1
2
...

un+1
M−1

un+1
M

 =


un−1

1

un−1
2
...

un−1
M−1

un−1
M

+


0 −α 0 · · · 0 0 α
α 0 −α · · · 0 0 0

. . .
0 0 0 · · · α 0 −α
α 0 0 · · · 0 −α 0




un1
un2
...

unM−1

unM

 (5.22)

Again, we investigate the numerical accuracy of this method by plotting the error as a function
of the spatial step size, where the time step size is given by ∆t = a∆x for different values of a.
The Leapfrog does not give the analytical result for a = 1 (as we saw for the upwind method). On
the contrary, it becomes more accurate for smaller CFL-numbers. This can be observed in Figure
12. For a = 1, we see a sort of little "dip" after the peak and around x = 0, while for a = 1/8 the
function is much smoother.

35

(a) a = 1/8,M = 200 (b) a = 1,M = 200

Figure 12: Numerical and analytical solutions to the periodic boundary conditions advection problem for
a = 1 and a = 1/8, both for M = 200 spatial steps.

Now, we show the numerical error as a function of the spatial step size in Figure 13. We see
that the numerical error is initially of second order for all values of a. However, after a certain
number of spatial steps, it seems to become first order accurate. For small values of a, for example
a = 1/128, we see that the method is second order accurate for the whole investigated range of
spatial steps. So, a big disadvantage of the Leapfrog method is that the ratio between temporal
and spatial step size has to be small in order to get second order accurate results, which leads to
large calculation times.

Figure 13: Numerical error at t = 5.0 for the Leapfrog Method. The time step is chosen as ∆t = a∆x,
with a ∈ {1/2, 1/8, 1/32, 1/128}, as shown in the legend.

5.2.3 Lax-Wendroff method

The third and last method for solving the advection equation considered in this report is the Lax-
Wendroff method, which is second order accurate in space and time. This method is a so-called
multi-step method. First, we approximate the value of the function u(x, t) at half time steps.
After this, we use the central difference method to approximate the spatial derivative using central
differences. This leads to the following equations.

u
n+1/2
i−1/2 =

1

2
(uni + uni−1) +

v∆t

2∆x
(uni − uni−1) (5.23)

u
n+1/2
i+1/2 =

1

2
(uni + uni+1) +

v∆t

2∆x
(uni+1 − uni) (5.24)

un+1
i = uni −

v∆t

∆x
(u
n+1/2
i+1/2 − u

n+1/2
i−1/2) (5.25)

36

Using the periodic boundary conditions, we can write this system as the following matrix
equation.


un+1

1

un+1
2
...

un+1
M−1

un+1
M

 =


1− α2 α

2 (α+ 1) 0 0 α
2 (α− 1)

α
2 (α− 1) 1− α2 α

2 (α+ 1) 0 0
.

0 0 α
2 (α− 1) 1− α2 α

2 (α+ 1)
α
2 (α+ 1) 0 0 α

2 (α− 1) 1− α2




un1
un2
...

unM−1

unM

 (5.26)

where α = v∆t
∆x . This method is stable if α ≤ 1 (or: v ≤ ∆x

∆t . An advantage of this method
with respect to the upwind method is that the diffusion and dispersion effects for this method are
relatively small. Note that the numerical solution given by the Lax-Wendroff method is exactly
equal to the analytical solution whenever α = 1.

Figure 14: Numerical error at t = 5.0 for the Lax-Wendroff method. The time step is chosen as ∆t = a∆x,
with a ∈ {1/2, 1/8, 1/32}, as shown in the legend. The orange line (∆t = ∆x/8) is completely covered by
the green line (∆t = ∆x/32)

.

We show the numerical error again as function of the spatial step size, with the temporal step
size chosen as ∆t = a∆x, for some different (positive) values of a in Figure 14. We see that this
method is second order accurate in space and time, just as expected from the theory. Furthermore,
an advantage of this method is that the accuracy of the method is not so dependent on the value
of the ratio a as we saw for the Leapfrog method. For all investigated numbers a, we see that
the Lax-Wendroff method gives second order accurate solutions. Therefore, we will choose this
numerical method as point of departure for solving the advection problem while developing our
level-set method.

37

6 Discretization
In the previous chapters, the Stefan problem was defined and the level-set method was introduced. In
this chapter, we will apply this theory in order to develop a discretization of the level-set method for
the Stefan problem. In section 6.1, the Stefan problem considered in this work is shortly formulated
for the sake of clarity. In the following section, 6.2, a discretization of the spatial and temporal
domain is given. Furthermore, an discretization of the temperature and the signed distance function
is defined. After this, in section 6.3, the procedure the find the velocity of the moving boundary is
described. Using this velocity, in section 6.4, we describe a discretization of the procedure to solve
the advection problem for the moving boundary numerically. In section 6.5, we describe how the
heat problem is discretized. Lastly, in section 6.6, it is explained how the numerical error in this
work was computed.

6.1 Considered Stefan problem
This section briefly summarizes the Stefan problem considered in this work for the sake of clar-
ity. We consider the Stefan problem with non-homogeneous Dirichlet boundary conditions on the
domain Ω = [0, l]. The Dirichlet boundary condition imposed to the temperature T (x, t) is the
(time-dependent) temperature of the similarity solution at boundaries. These boundary condi-
tions are chosen in order to be able to make a good comparison between numerical and similarity
solutions. We consider the Stefan problem with the following initial condition:

T (x, 0) =


TL > 0 if x ∈ ΩL = [0, s(0)) (6.1a)
0 if x = s(0) (6.1b)
TS < 0 if x ∈ ΩS = (s(0), l] (6.1c)

where TL, TS are constant and s(0) denotes the position of the moving boundary at time t = 0.
Using this initial condition and the boundary conditions, we can formulate the problem shortly as
follows. We use the definitions αL = kL

ρLcL
and αS = kS

ρcS
.

The liquid region 0 ≤ x < s(t)

Tt = αLTxx, Heat equation for the liquid region,
T (0, t) = T

ana,L(t), Boundary condition, t ≥ 0

T (x, 0) = TL > 0, Initial condition
The free boundary x = s(t)

ρLst = kSTx|x↓s(t) − kLTx|x↑s(t) Stefan condition
s(0) = s0, Initial position of the melting interface
T (s(t), t) = 0, Dirichlet condition at the interface
The solid region s(t) < x ≤ l
Tt = αSTxx, Heat equation for the solid region
T (l, t) = Tana,S(t), Boundary condition, t ≥ 0

T (x, 0) = TS < 0 For all t, x ≥ s(t)

In these equations, Tana,L and Tana,S denote the values of the similarity solution at respectively
x = 0 and x = l. Note that the similarity solution is known, so we do not have to make any
estimates to find the values of this boundary condition. In the other part of this chapter, we will
formulate the discretizations necessary to solve this problem numerically.

6.2 Space and time discretization and definitions
In this section, we discretize the equations which play a role in the Stefan problem. However, we
first start with a discretization of time and space. In all of our computations, we take the domain

39

Ω = [0, l]. We choose a uniform fixed grid with constant grid size ∆x. Therefore, we set ∆x = 1/M ,
where M is the total number of gridpoints on the grid. We also use a constant time step ∆t and
a total number of timesteps N . In the rest of the sections, we take the following definitions:

xi = (i− 1/2)∆x, i = 1, . . . ,M

Ki = [(i− 1/2)∆x, (i+ 1/2)∆x], i = 1, . . . ,M

tn = n∆t, n = 0, . . . , N

sn = s(tn), n = 0, . . . , N

φni = φ(xi, t
n), i = 1, . . . ,M, n = 0, . . . , N

Tni = T (xi, t
n), i = 1, . . . ,M, n = 0, . . . , N

T̂ni =
1

∆x

∫ xi+1/2

xi−1/2

T (x, tn)dx, i = 1, . . . ,M, n = 0, . . . , N

Furthermore, we define the grid point at the left side of the moving boundary as xj . Note that
the position of this grid point is a non-constant function of time. A schematic representation of
the grid is given in Figure 15.

Figure 15: A graphical representation of the used discretized grid. The moving boundary position s(t) is
shown as a dashed line.

Note that the points x1 and xM do not coincide with the boundaries x = 0 and x = l: they are
1
2∆x apart from the boundaries.

6.3 Finding the front velocity and its extension
The first quantity we need to estimate, is the velocity of the moving boundary v(t) = ds

dt . This
velocity is simply given by the Stefan condition:

ρL
ds

dt
= kS

∂T

∂x
|x↓s(t) − kL

∂T

∂x
|x↑s(t). (6.2)

However, if we want to apply this condition, we need an estimate for the first derivatives of the
temperature with respect to the spatial coordinate x. We estimate this derivative using one-sided
second degree Lagrange polynomials. Before we give this polynomial, we introduce the coefficients
r1 and 2, which show the distance between the point xj and the moving boundary and are given
by the following definition:

r1(tn) =
φnj
∆x

= 1− r2(tn), (6.3)

40

where φnj is the value of the signed distance function in the point x = xj at time t = tn.
Note that these coefficients can be computed numerically, using the numerical values of the signed
distance function φ. In Figure 16 it is shown graphically what the coefficients r1 and r2 denote.

Figure 16: Graphical representation of the coefficients r1 and r2. Note that these coefficients multiplied
with the spatial step size ∆x are equal to the distance from the grid point xj to the moving boundary
s(t). Also note that, since s(t) is time-dependent, also xj and the coefficients r1, r2 are time-dependent
variables.

If the moving boundary is more than 1
3∆x away from the grid point xj (i.e. r1 ≥ 1/3), we

approximate the temperature around the boundary with the following Lagrange polynomial. Note
that the third term of the approximating polynomial disappears because we assumed that Tm = 0.

PL(x)(tn) = Tnj−1

(x− xj)(x− sn)

(xj−1 − xj)(xj−1 − sn)
+ Tnj

(x− xj−1)(x− sn)

(xj − xj−1)(xj − sn)

= Tnj−1

(x− xj)(x− sn)

(1 + r1)∆x2
− Tnj

(x− xj−1)(x− sn)

r1∆x2

(6.4)

For the case that the moving boundary is closer than 1
3∆x to the moving boundary (i.e. r1 <

1/3), we do not use the grid point xj to construct the Lagrange polynomial, since the fact that
the boundary and xj are close to each other could lead to large inaccuracies in our Lagrange
polynomial. Instead of the point xj , we therefore use xj−2 in the construction of the polynomial,
which leads to the following equation.

PL(x)(tn) = Tnj−2

(x− xj−1)(x− sn)

(xj−2 − xj−1)(xj−2 − sn)
+ Tnj−1

(x− xj−2)(x− sn)

(xj−1 − xj−2)(xj−1 − sn)

= Tnj−2

(x− xj−1)(x− sn)

(2 + r1)∆x2
− Tnj

(x− xj−2)(x− sn)

(1 + r1)∆x2

(6.5)

In Figure 17, we see the Lagrange polynomial for some specific Stefan problem. At the solid
side, the Lagrange polynomial is computed in a similar way as for the liquid side. Note that this
Lagrange polynomial is of second order, so it is part of a quadratic curve. However, since the
interval at which we look is very small, it looks like a linear function.

41

Figure 17: A graphical representation of the Lagrange polynomials around the moving boundary at time
t = tn. The boundary is positioned at sn ≈ 0.61 and is represented by the black cross point. The empty
circles represent the numerically computed temperature values in the grid points xj−2, xj−1, xj, xj+1, xj + 2
and xj+3 (from left to right). The dashed line shows the Lagrange polynomial on the liquid side, computed
from the points xj−1, xj and sn (since r1 > 1/3 here). The dash-dotted line shows the Lagrange polynomial
computed from the grid points sn, xj+1, xj+2 (since r2 > 1/3).

If we take the first derivative with respect to x of the approximation Lagrange polynomials,
we obtain the following estimate for the temperature gradient in the moving boundary from the
liquid side for r1 ≥ 1/3:

P ′L(sn)(tn) = Tnj−1

sn − xj
(1 + r1)∆x2

− Tnj
sn − xj−1

r1∆x2
(6.6)

For r1 < 1/3, we find:

P ′L(sn)(tn) = Tnj−2

sn − xj−1

(2 + r1)∆x2
− Tnj−1

sn − xj−2

(1 + r1)∆x2
(6.7)

A similar derivation for the temperature gradient at the solid side of the moving boundary
leads to the following approximation for r2 ≥ 1/3

P ′S(sn)(tn) = −Tnj+1

sn − xj+2

r2∆x2
+ Tnj+2

sn − xj+1

(1 + r2)∆x2
(6.8)

and for r2 < 1/3, we find

P ′S(sn)(tn) = −Tnj+2

sn − xj+3

(1 + r2)∆x2
+ Tnj+3

sn − xj+2

(2 + r2)∆x2
(6.9)

Using these approximations, we can use the Stefan condition. We estimate the moving boundary
velocity vn at time t = tn using the previous equations as follows:

vn =
1

L
(kLP

′
S(sn)− kSPLl(sn)) (6.10)

This velocity is the velocity at the moving boundary. To find a velocity extension to the whole
domain Ω, we need to find a continuous extension of this velocity which gives the front velocity as
output at the position of the front. In this work, we take this continuous extension to be simply the
constant function F (x, tn) = vn, x ∈ Ω. Note that this extension is very elegant in one dimension.
However, if we want to solve the Stefan problem in more dimensions, this extension is not directly
applicable.

42

6.4 Discretization of the advection problem
In this section, we will derive a numerical procedure which can be followed to solve the advection
problem. In order to solve the advection equation, we need the continuous extension of the moving
boundary velocity. This velocity describes how fast the level-set function φ(x, t) moves. We will
show that the second order accurate Lax-Wendroff method applied to the one-dimensional signed
distance function reduces to an explicit, first order scheme which only involves time step size. Using
this scheme as a base, we will construct a second order accurate scheme by the means of Lagrange
polynomials.

Suppose that we apply the Lax-Wendroff method to the advection equation φ(x, t). This explicit
method first approximates, given the advection velocity vn, the function at time t = tn+1/2. Then,
by using the central differences method, the temperature at time t = tn+1 can be approximated.
We can express this in the following equations:

φ
n+1/2
i−1/2 =

1

2
(φni + φni−1) +

vn∆t

2∆x
(φni − φni−1) (6.11)

φ
n+1/2
i+1/2 =

1

2
(φni + φni+1) +

vn∆t

2∆x
(φni+1 − φni) (6.12)

φn+1
i = φni −

vn∆t

∆x
(φ
n+1/2
i+1/2 − φ

n+1/2
i−1/2) (6.13)

This scheme can also be written as

φn+1
i =

α

2
(α+ 1)φni−1 + (1− α2)φni +

α

2
(α− 1)φni+1 (6.14)

where α = vn∆t
∆x is the CFL-number for the advection problem. This method is stable for α ≤ 1.

Now, we use some handy properties of the one-dimensional signed distance function to simplify
this expression. First, note that the spatial derivative of φ(x, t) can be easily derived to be

∂φ

∂x
(x, t) = −1 (6.15)

for all x ∈ Ω, t ≥ 0. This can simply be seen from the fact that the one-dimensional signed
distance function is a linear function. But, in that case, we also know that the numerical forward,
backward and centeal differences estimates for the derivative are exactly equal to the analytical
derivative of φ(x, t), i.e.:

φni+1 − φni−1

2∆x
=
φni+1 − φni

∆x
=
φni − φni−1

∆x
= −1 (6.16)

We also know that the second spatial derivative of the signed distance function equals 0. For the
central difference approximation of the second spatial derivative, it also holds that this numerical
estimate exactly equals 0, since φ(x, t) is a linear function:

φni−1 − 2φni + φni+1

∆x2
= 0 (6.17)

We can rewrite the Lax-Wendroff scheme:

α2

2
(φni−1 − 2φni + φni+1) + φni −

α

2
(φni+1 − φni−1) = φn+1

i (6.18)

We recognize in this form the central differences approximation of the first and second deriva-
tives. Substituting the also-known exact values for this points, we obtain the following simplified
scheme:

φn+1
i = φni + ∆tv(tn) (6.19)

This scheme is first order accurate in time. Note that the error due to the spatial step size ∆x
has disappeared: the whole numerical error is a function of ∆t. So, what we have shown is that the
Lax-Wendroff method applied to a linear function like the signed distance function simply reduces

43

to a first order accurate scheme of which the numerical error only depends on the time step size.
However, in this work we attempt to reach second order accuracy. Therefore, we need at least a
second order accurate method to solve this equation. We do this by using a weighted velocity to
update φ(x, t):

φn+1
i = φni +

∆t

2
(v(tn) + v(tn+1)) (6.20)

Note that this is an implicit scheme. The problem of this scheme is that we don’t know the
velocity at time t = tn+1. Therefore, we need to make an estimate of this velocity. This can be
done by constructing a second order Lagrange polynomial which estimates the velocity:

P2(t) ≈ vn−2 (t− tn−1)(t− tn)

(tn−2 − tn−1)(tn−2 − tn)
+ vn−1 (t− tn−2)(t− tn)

(tn−1 − tn−2)(tn−1 − tn)
+ vn

(t− tn−2)(t− tn−2)

(tn − tn−2)(tn − tn−1)
(6.21)

If we fill in t = tn+1 in this equation, we find the following estimate of vn+1:

vn+1 ≈ vn−2 − 3vn−1 + 3vn (6.22)

Using this estimate of vn+1, we find the following scheme for updating the advection equation
for n ≥ 2.

φn+1
i = φni +

∆t

2
(vn−2 − 3vn−1 + 4vn) (6.23)

For t = t0 and t = t1, this scheme is not applicable. For these time steps, we can simply use
the first order accurate scheme φn+1

i = φni +∆tv(tn). Another option for t = t1 is to estimate vn+1

with a first order Lagrange polynomial. In the Results, we will investigate if the derived method
indeed leads to second order accurate results.

The described method leads to a procedure where re-initialization of the signed distance function
is not necessary, since all points in the domain are linearly shifted with velocity vn. Therefore, in
this case we do not need a re-initialization procedure. However, note that this may be necessary
when we want to extend this method to higher dimensions.

6.5 Discretization of the heat problem
The last procedure which needs to be performed to solve the Stefan problem, is updating the heat
equation (with taking in consideration the Stefan condition at the moving boundary). In this
section, we will derive the procedure to update this equation numerically.

The heat equation in the grid points in the interior of the domain is discretized using a Crank-
Nicolson scheme, since this numerical method is second order accurate in space and time. For the
gridpoints next to the moving boundary, we use a Lagrange polynomial to estimate the temperature
in these gridpoints. We call these gridpoints xj and xj+1. The Crank Nicolson for equation for
j = 2, . . . , j − 1 and j + 2, . . .M − 1 is given by

T̂n+1
i − T̂ni

∆t
=
ki
2

(
T̂n+1
i+1 − 2T̂n+1

i + T̂n+1
i−1

∆x2
+
T̂ni+1 − 2T̂ni + T̂ni−1

∆x2
) (6.24)

where ki denotes the thermal diffusivity, which is equal to kL in the liquid domain and kS in
the solid domain. Rewriting this equation and introducing αi = ki∆t

∆x2 leads to:

− αiT̂n+1
i+1 + (2 + 2αi)T̂

n+1
i − αiT̂n+1

i−1 = αiT̂
n
i+1 + (2− 2αi)T̂

n
i + αiT̂

n
i−1 (6.25)

At the boundary points x1, xM , we have to apply the Dirichlet boundary condition. In order
to do so, we introduce the virtual points x0 = − 1

2∆x and xM = l+ 1
2∆x. We know that the value

of the boundary x = 0 at time t = tn is equal to gL(tn) := T (0, tn). Therefore, we can estimate

T̂n1 + T̂n0
2

= gL(tn) +O(∆x2) (6.26)

Using this, we can express T̂n0 in terms of known variables:

44

T̂n0 = 2gL(tn)− T̂n1 +O(∆x2) (6.27)

Filling this in in the Crank-Nicolson scheme, we obtain

T̂n+1
1 − T̂n1

∆t
=
kL
2

(
T̂n+1

2 − 3T̂n+1
1 + 2gL(tn+1)

∆x2
+
T̂n2 − 3T̂n1 + 2gL(tn)

∆x2
). (6.28)

We can write this expression to a form with all known terms at the right hand side and all
unknown terms at the left hand side. Note that we know the values of gL(tn) and gLtn+1) since
this function is a known boundary condition.

− αT̂n+1
2 + (2 + 3α)T̂n+1

1 = αT̂n2 + (2− 3α)T̂n1 + 2αgL(tn) + 2αgL(tn+1) (6.29)

A similar estimate and derivation yields the following expression for the right boundary

− αT̂n+1
M−1 + (2 + 3α)T̂n+1

M = αT̂nM−1 + (2− 3α)T̂nM + 2αgS(tn) + 2αgS(tn+1) (6.30)

where gS(tN) = T (l, tn).
Now, we have to estimate the temperature in points close to the moving boundary. In order

to find these values, we use Lagrange polynomials to estimate the second spatial derivative. Using
quadratic Lagrange polynomials and the assumption that the melting temperature at the moving
boundary is given by Tm = 0, we estimate the temperature around the moving boundary from the
left side as

T (x, tn) ≈ Tnj−1

(x− xj)(x− sn)

(xj−1 − xj)(xj−1 − sn)
+ Tnj

(x− xj−1)(x− sn)

(xj − xj−1)(xj − sn)
(6.31)

Taking the double derivative of this equation and using the definitions of r1 and r2, we can
write

Txx(x, tn) ≈
2Tnj−1

(∆x)2(1 + r1)
−

2Tnj
(∆x)2r1

(6.32)

Using this estimate for the double derivative, we find the following discretization for the heat
equation by applying the Backward Euler method:

T̂n+1
j − T̂nj

∆t
= kL(

2T̂n+1
j−1

(∆x)2(1 + r1)
−

2T̂n+1
j

(∆x)2r1
) (6.33)

which is equivalent to

T̂nj = (1 +
2kL∆t

r1∆x2
)T̂n+1
j − kl∆t

∆x2

2

1 + r1
T̂n+1
j−1 (6.34)

For the grid point next to the moving boundary at the right hand side, we find in a similar way

T̂nj+1 = (1 +
2ks∆t

r2∆x2
)T̂n+1
j+1 −

ks∆t

∆x2

2

1 + r2
T̂n+1
j+2 (6.35)

Combining the estimate for the boundary conditions and the discretized heat equation, this
leads to the following matrix equation:

AT̂n+1 = Rn (6.36)

with

45

A =



2 + 3αL −αL
−αL 2 + 2αL −αL

. . .
− 2αL

1+r1
1 2αL

r1
1 + 2αS

r2
− αS

1+r2
. . .
−αS 2 + 2αS −αS

−αS 2 + 3αS


(6.37)

and T̂n+1 = (T̂n+1
1 , T̂n+1

2 , . . . , T̂n+1
M−1, T̂

n+1
M)T . Finally, Rn is given by

Rn =



αLT̂
n
2 + (2− 3αL)T̂n1 + 2αLgL(tn) + 2αLgL(tn+1)

αLT̂
n
3 + (2− 2αL)T̂n2 + αLT̂

n
1

...
T̂nj
T̂nj+1
...

αS T̂
n
M + (2− 2αS)T̂nM−1 + αS T̂

n
M−2

αS T̂
n
M−1 + (2− 3αS)T̂nM + 2αSgS(tn) + 2αSgS(tn+1)


(6.38)

6.6 Discretizing the numerical error
Having defined a procedure to solve the Stefan problem numerically, we want to be able to find out
how accurate this method is. We do this by comparing the numerical and the analytical solution
for the moving boundary position for different numbers of time and spatial steps. In order to do
so, we have to choose some time step t = tN at which we compare the numerical error. Suppose
we fix the number of time steps at N , which means that ∆t = tN−t0

N . Than the numerical L2-error
due to spatial step size at time step t = tN is given by

error due to spatial step size =
1√
N

(

N∑
n=0

sn)1/2 (6.39)

where sn denotes the numerical solution to the Stefan problem at time t = tn. The formula for
the numerical error due to time step size looks exactly similar. By storing the numerical error for
different values of the numbers of space and step sizes, we can investigate how the numerical error
changes. In this work, we strive for second order accuracy. This means that the numerical error will
decrease in a quadratic way when we linearly decrease the number of time steps or the number of
spatial steps. However, if we fix the number of time stepsN and decrease the number of spatial steps
M , we will see that the numerical error reaches a certain limit. This limit is the numerical error
caused by the fixed number of time steps N . A similar problem occurs when we fixM and vary N .
To avoid this problem, we can choose the time step size as a linear function of the spatial step size,
∆t = a∆x, with a ∈ R>0. If the numerical solution is second order accurate then for as well space
as time, we then have that the error is of order O(∆x2)+O(∆t2) = O(∆x2)+O(a2∆x2) = O(∆x2).
Therefore, the error will continuously decrease in this case with second order if we vary the number
of spatial steps.

46

7 Numerical results and discussion
In this chapter, the results of the discretization of the Stefan problem as described in the previous
chapter are presented. In the first section (7.1), we investigate the accuracy of the developed method
for the heat problem without moving boundary. In the following section (7.2), we consider the
accuracy of the developed method for the advection problem with given analytical velocity function.
In the last section of this chapter, (7.3), we solve the Stefan problem with the described level-
set method and we investigate the accuracy of this solution to find out if it reaches second order
accuracy.

7.1 Heat problem without moving boundary
In this section, we consider the Crank-Nicolson scheme introduced in the previous chapter as
solution for the heat equation with non-homogeneous Dirichlet boundary conditions. Note that
we do not yet consider the heat problem with moving boundary (the Stefan problem) here - first
we test our level-set method on a heat problem without phase transitions with fixed boundaries,
where the boundary temperature is prescribed by the similarity solution to the Stefan problem.
We choose as domain Ω = [0, 0.5], for the thermal diffusivities we take kL = kS = 1 and we also
let L = ρ = 1. As initial temperature distribution, we choose T 0

i = Tsim(xi, t = 0.001), with
Tsim(x, t) the similarity solution. As parameters for this solution, we choose s0 = 0.55, TL = 0.53
and TS = −0.1. Note that in our domain, the whole domain Ω is in liquid phase for all times
t ≥ 0, since the moving boundary moves to the right in the chosen Stefan problem and the initial
position of the moving boundary is right to our domain. For the sake of clarity, we give the Crank
Nicolson scheme for the inner boundary points i = 2, . . . , i = M − 1 again:

− αiT̂n+1
i+1 + (2 + 2αi)T̂

n+1
i − αiT̂n+1

i−1 = αiT̂
n
i+1 + (2− 2αi)T̂

n
i + αiT̂

n
i−1 (7.1)

At the boundary points x1, xm, we use the Dirichlet boundary conditions to find the following
equation for the left boundary x = x0:

− αT̂n+1
2 + (2 + 3α)T̂n+1

1 = αT̂n2 + (2− 3α)T̂n1 + 2αgL(tn) + 2αgL(tn+1) (7.2)

For the right boundary, we find

− αT̂n+1
M−1 + (2 + 3α)T̂n+1

M = αT̂nM−1 + (2− 3α)T̂nM + 2αgS(tn) + 2αgS(tn+1)

(7.3)

Since the moving boundary velocity is positive, the moving boundary goes to the right direction.
Therefore, the phase of the domain Ω stays liquid for all times t ≥ t0 = 0.001. Since we want to
start with a smooth function at our initial time step, we start our calculations at t0 = 0.001 and
we calculate the evolution of the temperature between t = 0.001 and t = 0.1 for different numbers
of spatial and temporal step sizes. We compare the numerical error for several simulations at time
t = 0.1. In this whole chapter, we will compare the numerical solutions at this time. Note that
the numerical L2-error of the Crank-Nicolson scheme at this time is given by

||e||2 =
1√
M

(

M∑
i=1

(TNi − Tsim(xi, t = tN))2)1/2 (7.4)

where TNi is the numerical solution at time t = tN = 0.1.
In Figure 18, we show the analytical solution of the described problem at times t = 0.001, t =

0.01, t = 0.03, t = 0.06, t = 0.1. We see that the temperature for all these times is positive, so we
indeed do not have to deal with the moving boundary in this domain for these times.

47

Figure 18: Analytical temperature profiles at times t = 0.001, t = 0.01, t = 0.03, t = 0.06, t = 0.1.

Using the given error formula, we can calculate the numerical error for different numbers of
time steps N . In Figure 19, we see the numerical error of the temperature distribution at t = 0.1
as a function of the number of time steps with the number of spatial steps fixed at M = 200,
M = 400, M = 800 and M = 1600.

Figure 19: Log-log plot of the numerical error of the numerical solution to the heat problem as a function
of the number of spatial steps. The numbers of time steps were fixed at N = 200, N = 400, N = 800 and
N = 1600.

We see that this error is second order for lower numbers of time steps (N < 100): it follows
the ideal second order line in this case. However, we see that the numerical error reaches a certain
limit for each fixed number of spatial steps M . How larger the fixed number of spatial steps is,
how smaller this limit is. This is probably caused by the fact that the (fixed) numerical error due
to spatial step size is predominant for larger numbers of time steps: the numerical error due to the
time step size becomes negligible with respect to the numerical error due to spatial step size.

We can also plot the numerical error as a function of the number of spatial steps. This plot is
shown in Figure 20 for fixed numbers of time steps (namely N = 5000, N = 10000 and N = 20000).

48

Figure 20: Log-log plot of the numerical error of the numerical solution to the heat problem as a function
of the number of spatial steps. The numbers of spatial steps were fixed at M = 250,M = 500,M = 1000
and M = 2000.

In Figure 20, we see that the numerical error due to the spatial discretization follows the ideal
second order for all investigated numbers of spatial steps. Therefore, we can conclude that the
numerical error due to time step size for N ≥ 5000) appears to be negligible compared to the
spatial numerical error for N ≤ 1600.

The last plot we make in this section is a plot where the time step size is given as a linear
function of ∆x, i.e.: ∆t = a∆x, with a ∈ R≥0. If the given scheme is indeed of second order
accuracy, which is indicated by the previous plots, we should also see second order convergence in
this plot, since we have then that the following holds for the numerical error

O(∆x2) +O(∆t2) = O(∆x2) +O(a2∆x2) = O(∆x2) (7.5)

In Figure 21, we see the numerical error as a function of the spatial step size, where the time
step size is also chosen as a linear function of the spatial step size (∆t = a∆x). We see that the
numerical error is of second order for both values of a. Since we chose the time step as a linear
function of the spatial step size, it seems to be very plausible that this method is second order
accurate, as we expected since the Crank-Nicolson is second order accurate in time and space.

Figure 21: Log-log plot of the numerical error of the numerical solution to the heat problem as a function
of the number of spatial steps. The time step was chosen as ∆t = a∆x, with a ∈ {1/4, 1/2}.

49

7.2 Advection problem with analytical velocity
In this section, we will investigate the advection problem and the accuracy of the developed method
to solve this problem. We consider it separately from the Stefan problem. In order to do so, we
consider the advection problem with given analytical velocity of the moving boundary v(t). Note
that this velocity for the Stefan problem is analytically given by the temporal derivative of the
position of the moving boundary s(t):

v(t) =
ds

dt
=

d

dt
(s(0) + 2λ

√
t) =

λ√
t

(7.6)

Recall that the numerical scheme used to solve the advection problem in this work is given by

φn+1
i = φni +

∆t

2
(vn−2 − 3vn−1 + 4vn) (7.7)

where vn denotes the velocity at time t = tn. In the numerical Stefan problem, we know
that the velocities vn, vn−1 and vn−2 are numerical estimates. However, in this section we use
the analytical boundary velocity to compute these values (this is done in order to compare the
advection problem separate from the heat problem). Note that the used scheme is not dependent
of the spatial step size ∆x, so we don’t expect that the spatial step size influences the numerical
error. To check this hypothesis, we show the numerical error as a function of the number of spatial
steps in Figure 22.

Figure 22: Log-log plot of the numerical error of the numerical solution to the heat problem as a function
of the number of spatial steps. The number of time steps was fixed at N = 10000.

We indeed see in Figure 22 that the accuracy of our numerical solution to the advection problem
is not dependent on the spatial step size: this error stays constant for different numbers of spatial
steps. Now, we want to check the temporal accuracy of this numerical scheme. In Figure 23, we
show the numerical error as a function of the time step size for fixed spatial step size. Recall
that the numerical scheme in 7.7 is, as derived in the previous chapter, theoretically second order
accurate in time. Note that it does not make sense to plot for more than one number of spatial
steps M , since we just saw that the numerical error does not depend on the spatial step size.
Therefore, it suffices to fix the number of spatial steps at, let’s say, M = 100. This leads to the
results presented in Figure 23.

We see that this error is indeed second order accurate in time. However, note that in this
section we used the exact value of the boundary velocity v(t) to fill in the scheme in 7.7. The big
question after this section is if the numerical accuracy of this method will also be of second order
when we use an estimation of the boundary velocity instead of the analytical velocity.

50

Figure 23: Log-log plot of the numerical error of the numerical solution to the heat problem as a function
of the number of time steps. The number of spatial steps was fixed at M = 100.

7.3 Stefan problem
In this section, we present and discuss the results of the presented numerical method for solving
the Stefan problem. The method described in Chapter 6 will be used to discretize the problem.
This method is shortly summarized by the following: a second-order Lagrange polynomial is used
to estimate the front velocity. After this, the signed distance function is updated with this velocity
by solving the advection problem. Using the updated signed distance function, we update the
temperature distribution in our domain with a Crank-Nicolson scheme for inner boundary points.
For points close to the boundary, we use Lagrange polynomials to find the updated values.

We solve the Stefan problem in this work on domain Ω = [0, 1]. As parameters for the prob-
lem, we choose initial boundary position s(0) = 0.5. For the sake of simplicity, we make some
assumptions about the material’s properties: we assume that they are constant in time and space.
For the materials density, we choose ρ = 1, for the thermal diffusivities we choose kL = kS = 1
and we also let L = 1. As initial temperature distribution, we choose the similarity solution at
t = 0.001, with initial parameters TL = 0.53 and TS = −0.1. We compare the numerical solution
with the analytical (similarity) solution at t = 0.1 using the error formula given in Equation 7.4.
The analytical temperature profile at several times including t = 0.1 is shown in Figure 24, as well
as the similarity solution for the position of the moving boundary.

(a) Temperature profiles of the analytical solution at
times t = 0, t = 0.005, t = 0.01, t = 0.05 and t = 0.1.

(b) Numerical error at time t = 0.1 for the FTCS-scheme
for ∆t = 2.5 · 10−5 and a varying spatial step size.

Figure 24: Similarity solution. In the left figure, temperature profiles at several times are shown. In the
right figure, we position of the moving boundary is shown as a function of time. The parameters used to
create these figures are Ω = [0, 1], TL = 0.53, TS = −0.1, s0 = 0.5, ρ = 1, L = 1, kL = kS = 1.

First of all, we show the numerical error of this method as a function of the number of spatial
steps for fixed numbers of time steps. This relation is shown in Figure 25.

51

Figure 25: Log-log plot of the numerical error of the numerical solution to the heat problem as a function
of the number of spatial steps. The number of time steps was fixed at N = 5000, N = 10000, N = 20000.

We see in this figure that the numerical error is approximately decreasing with second order
for numbers of spatial steps between M = 10 and M = 320. For larger numbers of spatial steps,
we see that the numerical error decreases further with second order for N = 20000 time steps, but
that it stabilizes for N = 10000 time steps and for N = 5000 we even see that the numerical error
increases. Later on, we will discuss possible causes for this behaviour, which only occurs when
the time step size is relatively big compared to the spatial step size. Now, we take a look at the
numerical error as a function of the number of time steps. This is shown in Figure 26.

Figure 26: Log-log plot of the numerical error of the numerical solution to the Stefan problem as a function
of the number of time steps. The numbers of spatial steps were fixed at M = 200,M = 400 and M = 800.

In Figure 26, we see that numerical error due to time step size is showing some non-trivial
behaviour: for example when we look at the error for M = 800 spatial steps, we see that this error
is of first order until we reach N = 800, then the error starts decreasing (approximately) following
the ideal second order. We also observe that the numerical errors for M = 200,M = 400 seem to
converge to a constant, fixed error limit. Possibly, this could be the limit of the fixed numerical
error due to spatial step size. Something which could eventually explain the behaviour shown
in Figure 26 is that the numerical model shows oscillatory behaviour when the time step size is
relatively small compared to the spatial step size (which corresponds to the left half of Figure 26).
In Figure 27, we show the numerically computed velocity versus the velocity computed using the
similarity solution (namely v(t) = ds

dt = λ√
t
) between times t = 0.001 and t = 0.006. Furthermore,

the distance between the grid point xj and the numerical position of the moving boundary sn is
shown by means of the (shifted) coefficient r1.

52

(a) M = 500, N = 1000 (b) M = 500, N = 2000

(c) M = 500, N = 4000 (d) M = 500, N = 8000

Figure 27: Numerical and analytical velocity as a function of time. M is equal for all figures: M = 500.
The blue line represents the analytical solution of the boundary velocity v(t), the dashed orange line
represents the numerical solution. The (4 upwards shifted) coefficient r1 is shown in green.

In Figure 27, we see that for M = 500, N = 1000 the estimate of the boundary velocity is
oscillating a lot. For larger values of the number of time steps N , the oscillation decreases and
we see that for N = 8000 the oscillation is no longer visible. Note that the largest oscillations
always occur when the coefficient r1 is close to a "jump" from 1 to 0, in other words: when the
moving boundary is close to the grid point xj or xj+1. For r1 ≥ 1/3 and r2 ≥ 1/3, we use different
Lagrange polynomials to estimate the boundary velocity than for the cases r1 > 1/3 and r2 > 1/3
(we do not include the points xj and xj+1 in the first case). This could possibly lead to less
accurate estimates for the velocity. The could be one of the causes for the oscillations shown in
Figure 27.

(a) M = 500, N = 2000 (b) M = 1000, N = 2000

Figure 28: Numerical and analytical velocity as a function of time. M is equal for all figures: M = 500.
The blue line represents the analytical solution of the boundary velocity v(t), the dashed orange line
represents the numerical solution. The (4 upwards shifted) coefficient r1 is shown in green.

53

In Figure 28, we plot the boundary velocity as a function of time for two values of spatial
steps M (M = 500,M = 1000) and constant number of time steps N . What we see is that the
number of oscillations is much higher for the case where M = 1000. What we also observe is
that the number of ’jumps’ of r1 goes from 6 to 14. This is expected, since the number of grid
points is doubled, which means that the moving boundary passes approximately twice as many
grid points xj . However, this doubling of grid points apparently also leads to more oscillations in
the estimation of the velocity. If we want to compute with higher spatial accuracy therefore, we
do need to take into consideration that the number of time steps also must be increases; otherwise
our solution will become less accurate instead of more accurate. That oscillations in the boundary
velocity lead to larger inaccuracies in the position of the moving boundary can easily be seen in
Figure 29.

(a) Analytical and numerical velocity of the
moving boundary for M = 100, N = 50.

(b) Analytical and numerical position of the
moving boundary for M = 100, N = 50

Figure 29: Comparison of numerical and analytical solution to the Stefan problem for M = 100, N = 50.
In the left figure, the velocity of the moving boundary is shown. In the right figure, the position of the
moving boundary is plotted. Observe that at the times where larges oscillations in velocity occur (for
example when t = 0.01), also oscillations in the moving boundary position are clearly visible.

So, reconsidering the behaviour of the numerical solutions to the level-set method when the
time step size is small compared to the spatial step size, we came to the following observations.

1. The numerically computed boundary velocity, which makes use of Lagrange polynomials,
shows large oscillations for high numbers of spatial steps M combined with low numbers of
time steps N . These oscillations mainly occur when the moving boundary is in the proximity
of grid points xj or xj+1.

2. The amount of oscillations increases when the number of spatial steps is increased. This is
explainable by the fact that for higher numbers of spatial steps, more grid points xj will be
passed by the moving boundary. Since oscillations occur mostly when the boundary passes
a grid point, more grid points will lead to more oscillations.

3. For a fixed number of spatial steps, the oscillations will decrease when the number of time
steps is increased. The procedure to find the boundary velocity is not dependent of the time
step size ∆t. However, the time step is important for the update of the temperature T (x, t)
and the signed distance function φ(x, t), and both of these functions are used in the velocity
estimate.

So, an important thing to consider when using the developed level-set method is which ratio
between time step and spatial step should be chosen in order to avoid too large oscillations (since
these will influence our numerical accuracy a lot). It is useful to figure out what the ratio between
the time step size and spatial step size is where oscillations are negligible. In the ideal case, this
ratio is linear (i.e. ∆t = a∆x, a ∈ R≥0), because this would mean that, if our level-set method is
second order accurate, we can in our simulation simply choose the time step size as a fraction of
the spatial step size, and this would lead to second order accurate results.

54

Having considered temporal and spatial accuracy of our level-set method, we now want to
consider the case where we choose the temporal time step as a function of the spatial step size:
∆t = a∆x, with a ∈ R≤0. If our solution to the Stefan problem is second order accurate in as
well space as time, we would expect that the numerical error as the function of the spatial step
size would decrease with second order if we choose the time step as a linear function of the spatial
step, since we have that

O(∆x2) +O(∆t2) = O(∆x2) +O(a2∆x2) = O(∆x2). (7.8)

In Figure 30 we show the numerical error of our level-set method for different values of a
(a = 1/50, a = 1/100, a = 1/200 and a = 1/400). The first thing we note is that the developed
level-set method seems to follow the ideal second order for lower numbers of spatial steps. However,
each of the shown lines starts to converge to a certain constant numerical error (for a = 1/100,
this happens for example approximately after M = 160, and for a = 1/200 it starts to converge
after M = 640).

Figure 30: Log-log plot of the numerical error of the numerical solution to the Stefan problem as
a function of the number of spatial steps. The time step was chosen as ∆t = a∆x, with a ∈
{1/50, 1/100, 1/200, 1/400}.

Figure 30 shows interesting behaviour of our level-set model. If the numerical error converges
to a constant, this means that our model does not become more accurate after a certain number of
spatial steps: it does not further converge then, it is not even first order accurate - if the temporal
or spatial error component was first order accurate, we would expect that the numerical error
would follow the ideal first order line. One of the things which could maybe explain this constant
numerical error is the oscillations in the velocity we discussed before. As we saw before, the error
due to oscillations in the boundary velocity increases as the number of spatial steps increases.
If this increasing oscillation error cancels out the decreasing error (caused by decreasing spatial
step size) after a certain number of spatial steps, this could explain the results in Figure 30. To
investigate this hypothesis, we show the numerical and analytical boundary velocity for a = 1/50
for M = 80,M = 160,M = 320 and M = 640 in Figure 31.

What we see in Figure 31 is that the influence of oscillations increases when the number of
spatial steps M increases: in Figure 31a, we only see some small deviations from the analytical
solution, while we see in Figure 31d many oscillations around the analytical solution. Since the
spatial and temporal step size decrease, we expect that the Crank-Nicolson scheme and the scheme
used to solve the advection equation will give more accurate solutions. However, as shown before,
the numerical error becomes approximately constant after a certain number of spatial steps M .
The increase in oscillatory behaviour of the boundary velocity estimate (which leads to increased
numerical error) for larger numbers of spatial steps could cancel out the decrease in numerical error
because of more accurate Crank-Nicolson and advection estimates.

55

(a) a = 1/50,M = 80 (b) a = 1/50,M = 160

(c) a = 1/50,M = 320 (d) a = 1/50,M = 640

Figure 31: Numerical and analytical velocity as a function of time. a is equal for all figures: a = 1/50
while the number of spatial steps M is varying. The blue line represents the analytical solution of the
boundary velocity v(t), the dashed orange line represents the numerical solution. The (4 upwards shifted)
coefficient r1 is shown in green.

So, summarizing the results where ∆t was a linear function of the spatial step, we can say that
the influence of oscillations in the boundary velocity seems to play an important role here. The
linear relation between time step size and spatial step size (∆t = a∆x) is apparently not sufficient
to avoid these oscillations, since we still see here that the number of oscillations increases when
the number of spatial steps increases. However, if we choose the value of a small enough (for
example a = 1/400), the role of oscillations in the boundary velocity estimate is negligible for the
whole investigated range of spatial steps (10 ≤M ≤ 1280) and we see that the developed level-set
method is approximately second order accurate for such small values of a.

Further research however is needed to establish the relation between the oscillations in the
boundary velocity, the time step size ∆t and the spatial step size ∆x. In the first place it would be
interesting to get to know more about conditions under which this oscillatory behaviour happens.
Clearly, it is not sufficient to choose ∆t as a linear small fraction of ∆x, since oscillations will still
be found then for large numbers of spatial steps. Further research could make clear if there exists
a relation of the form ∆t = a∆x2 or some other polynomial relation between ∆t and ∆x which
avoids large oscillations like we saw in this work.

Furthermore, future studies could look into alternative ways of estimating the moving boundary
velocity. It seems to be the case that the estimation of this velocity is one of the biggest causes of
the fact that our developed model is not completely of second order for certain numbers of spatial
steps. Therefore, trying out other estimation procedures which involve extrapolation, like cubic
splines, higher order Lagrange polynomials or Taylor polynomials, could be worth investigating.

Lastly, future research could focus on the question how to extend this method to more dimen-
sions. The level-set method is because of its implicit nature relatively easy to extend to 2 or 3
dimensions. However, for higher dimensions, re-initialization of the signed distance function and
the continuous extension of the velocity (which in this work was just chosen as a constant function)
will need to be further considered before they can be extended to higher dimensions.

56

8 Conclusion
The purpose of this work was to develop a second order accurate level-set method to solve the
two-phase Stefan problem with non-homogeneous Dirichlet boundary conditions. To do so, first
the Stefan problem was described and analyzed. After this, a general introduction was given into
numerical methods, the finite volume method and the level-set method. Using this knowledge,
a level-set approach to the Stefan problem was described. In this approach, the Crank-Nicolson
method was used to solve the heat equation. Lagrange polynomials were used to solve the heat
equation around the moving boundary and to find the velocity of this boundary. Subsequently,
the developed method was tested on its numerical accuracy in time and space.

Before testing the accuracy of the developed level-set method on the Stefan problem, the method
was tested in two different parts. First, the accuracy of the temperature update procedure was
investigated. It turned out that the developed level-set method was second order accurate in space
and time when applied on a heat problem without moving boundary. This was expected, since
the used level-set approach is basically a (second-order accurate) Crank-Nicolson scheme when
applied to heat problem without moving boundary. Secondly, the procedure used to update the
level-set function (the signed distance function) was considered. It appeared that the scheme used
to solve the advection equation was second order accurate in time and independent of spatial step
size when applied to a signed distance function with given velocity function. After this, the de-
veloped level-set method as a whole was applied to the Stefan problem. It was shown that the
numerical estimate of the moving boundary velocity shows more oscillations and therefore becomes
less accurate for high numbers of spatial steps. Increasing the number of time steps decreases the
oscillations. All together, the developed level-set method showed second order accurate behaviour
if the time step size was small compared to the spatial step size.

This study numerically solved the Stefan problem using a level-set approach. Where the goal
was to reach second order accuracy, this goal is not fully achieved. To reach higher accuracy, this
study recommends three things. In the first place, it seems to be promising to better investigate
the estimation procedure of the moving boundary velocity. In this study, second order Lagrange
polynomials were used to estimate this quantity. However, this method possibly caused large
oscillations in the numerical solution when the moving boundary was close to a grid point. There-
fore, alternative extrapolation procedures like cubic splines are worth considering. Secondly, this
study recommends further research to the oscillatory behaviour of the estimation procedure of the
moving boundary velocity, since this behaviour seems to be closely related to the non-converging
behaviour of the numerical error for large numbers of spatial steps. What the relation is between
time step size, spatial step size and oscillations in the moving boundary velocity estimate is a
subject that deserves further study. Lastly, for the extension of the developed level-set method to
higher dimensions, more research is needed. Especially the re-initialization of the signed distance
function and the extension of the front velocity are things which are not easily extendable to more
dimensions, but which will first need to be analyzed in further studies.

57

Acknowledgements
First and foremost, I would like to thank my first supervisor Prof. Dr. Ir. Kees Vuik and my
second supervisor Prof. Dr. Ir. Danny Lathouwers for their feedback on my work. Each time I
faced problems with the developed method or the sometimes inexplicable results, they asked me
insightful questions which really helped me to find the errors in the developed method and to
interpret the results. They helped me developing the project into a research direction I enjoyed
and it is because of them that I am planning to continue my studies in the direction of numerical
analysis. Furthermore, I would like to thank my housemates for lending an ear when I got stuck on
some difficult piece of theory or when the Python model showed other results than I expected. I
think my housemates have seen more temperature profiles and moving boundary plots in the past
few months then they will ever see again. Lastly, I would like to thanks my parents, brothers and
sisters for hearing my bachelor project stories every weekend I was at home. I could not have done
this project without you.

59

References
Betounes, D. (1998). The 1-D Heat Equation. Partial Differential Equations for Computational
Science, 35–51. doi: 10.1007/978-1-4612-2198-2_3

Chen, S., Merriman, B., Osher, S., & Smereka, P. (1997). A simple level set method for solving
Stefan problems. Journal of Computational Physics, 135 (1), 8–29.

Eymard, R., Gallouët, T., & Herbin, R. (2000a). Finite volume methods. Handbook of numerical
analysis, 7 , 713–1018.

Eymard, R., Gallouët, T., & Herbin, R. (2000b). Finite volume methods. Handbook of numerical
analysis, 7 , 713–1018.

Gupta, S. (2018). Chapter 1 - the Stefan problem and its classical formulation (Second ed.;
S. Gupta, Ed.). Amsterdam: Elsevier. doi: https://doi.org/10.1016/B978-0-444-63581-5.00001-4

Hill, J. M. (1987). One-dimensional Stefan problems: an introduction (Vol. 31). Longman Sc &
Tech.

Holmes, M. (2010). Introduction to numerical methods in differential equations. , 127–154.

Javierre, E., Vuik, C., Vermolen, F., & van der Zwaag, S. (2006). A comparison of numerical
models for one-dimensional Stefan problems. Journal of Computational and Applied Mathematics,
192 (2), 445-459. doi: https://doi.org/10.1016/j.cam.2005.04.062

Jonsson, T. (2013). On the one-dimensional Stefan problem: with some numerical analysis..

Kumar, M., & Mishra, G. (2011). An Introduction to Numerical Methods for the Solutions of
Partial Differential Equations. , 2011 (November), 1327–1338. doi: 10.4236/am.2011.211186

Roh, W., & Kikuchi, N. (2002). Analysis of Stefan problem with level set method. In 8th
aiaa/asme joint thermophysics and heat transfer conference (p. 2874).

Voller, V., & Cross, M. (1981). Accurate solutions of moving boundary problems using the
enthalpy method. International Journal of Heat and Mass Transfer , 24 (3), 545-556. doi: https://
doi.org/10.1016/0017-9310(81)90062-4

Vuik, C., Vermolen, F., Gijzen, M., & Vuik, M. (2015). Numerical methods for ordinary differential
equations. DAP, Delft Academic Press.

61

Appendix A: Python code
For numerically solving the Stefan problem and all related numerical problems, lots of Python
codes have been generated. The interested reader can access this code via https://github.com/
corne00/StefanProblem.

One of the most important pieces of code, which is used to obtain the relation between the
numerical error and the number of spatial steps M , with ∆t = a∆x is shown below.

1 # Ste fan problem modelled with the l e v e l −s e t method
2

3 ### Import nece s sa ry modules
4 import numpy as np
5 import time as time
6 import matp lo t l i b . pyplot as p l t
7 from sc ipy import i n t e r p o l a t e
8 from sc ipy . s p e c i a l import e r f , e r f c
9 from sc ipy . opt imize import f s o l v e , curve_f i t

10 from sc ipy . i n t e r p o l a t e import lagrange
11 from sc ipy import l i n a l g as l i n a l g
12

13 ### Set s imu la t i on parameters
14 xmin , xmax = 0 . 0 , 1 . 0 # domain
15 tmin , tmax = 0 .001 , 0 . 1 # s t a r t and end time .
16 M_array = np . array ([10 , 20 , 40 , 80 , 160 , 320 , 640]) # numbers o f s p a t i a l s t ep s
17 a_array = np . array ([1/25 , 1/50]) # va lue s o f a (to compute dt = a∗dx)
18 dx_array = (xmax−xmin) /M_array # va lues o f dx
19 e r r o r s = np . z e r o s ((l en (M_array) , l en (a_array)) , dtype = np . double) # e r r o r s
20

21 ### Problem parameters
22 s0 = 0 .5 # i n i t i a l p o s i t i o n o f the moving boundary
23 rho = 1 .0 # mate r i a l s dens i ty
24 L = 1.0 # l a t e n t heat
25 ks , k l = 1 . 0 , 1 . 0 # heat d i f f u s i v i t i e s o f l i q u i d and s o l i d
26 Tl , Ts , Tm = 0 .53 , −0.1 , 0 . 0 #i n i t i a l temperatures
27

28 ### Def ine f unc t i on s
29 de f Transcendental (lam) :
30 """This func t i on i s n e c e s e s s a ry to f i nd the lambda which i s needed to f i nd the

a n a l y t i c a l s o l u t i o n s to the problem"""
31 l e f t = lam
32 r i g h t = np . sq r t (ks) /(np . s q r t (np . p i) ∗L) ∗Ts/ e r f c (lam/np . s q r t (ks)) ∗np . exp(−lam∗∗2/

ks)+np . sq r t (k l) /(np . s q r t (np . p i) ∗L) ∗Tl/(2− e r f c (lam/np . sq r t (k l))) ∗np . exp(−lam
∗∗2/ k l)

33 r e turn r ight−l e f t
34 de f T_analyt ica l (lam , x , t) :
35 """"This func t i on r e tu rn s the temperature at a g iven array o f p o s i t i o n s at a

g iven time . """
36 s = s0 + 2∗lam∗np . sq r t (t)
37 T_ana = np . ones_l ike (x) ∗Tm
38 T_ana = np . where (x<s ,−Tl∗ e r f c (lam/np . sq r t (k l)) /(2− e r f c (lam/np . sq r t (k l)))+Tl∗

e r f c ((x−s0) /(2∗np . s q r t (k l ∗ t))) /(2− e r f c (lam/np . sq r t (k l))) ,T_ana)
39 T_ana = np . where (x>s , Ts − Ts∗ e r f c ((x−s0) /(2∗np . s q r t (ks ∗ t))) /(e r f c (lam/np . s q r t (

ks))) , T_ana)
40 r e turn T_ana
41 de f s_ana ly t i c a l (lam , t) :
42 """This func t i on r e tu rn s the po s i t i o n o f the moving boundary at g iven time """
43 s = s0 + 2∗lam∗np . sq r t (t)
44 r e turn s
45 de f f ind_ve l (Ti , xi , phi , dx) :
46 """This func t i on e s t imate s the v e l o c i t y o f the moving boundary by es t imat ing

the temperature g rad i en t s at both s i d e s o f the boundary and by us ing the
Ste fan cond i t i on """

47 Tgradsol = 0 # i n i t i a l e s t imate f o r the g rad i en t at the s o l i d s i d e
48 Tgradl iq = 0 # i n i t a l e s t imate f o r the g rad i en t at the l i q u i d s i d e
49 j = np . min (np . where (phi <0))−1 # f ind the index o f the g r id po int in f r on t o f

the moving boundary
50 r1 = −(phi [j] / (phi [j+1]−phi [j])) # f i nd the d i s t ance r1 between x_j and the

moving i n t e r f a c e (s − x_j = r1 ∗dx)
51 r2 = (phi [j +1]/(phi [j+1]−phi [j])) # f i nd the d i s t ance r1 between x_{ j+1} and

the moving i n t e r f a c e (x_{ j+1} − s = r2 ∗dx)

63

https://github.com/corne00/StefanProblem
https://github.com/corne00/StefanProblem

52 xs = x i [j] + r1 ∗dx # f i nd po s i t i o n o f the moving boundary
53 # Find a second−order Lagrange polynomial and take i t s d e r i v a t i v e to f i nd the

g rad i en t jump at the moving boundary .
54 pc=1/3
55 i f r1 <= pc :
56 Tgradl iq = np . po lyder (lagrange ([x i [j −2] , x i [j −1] , xs] , [Ti [j −2] , Ti [j −1] ,

Tm])) (xs)
57 e l i f r1 > pc :
58 Tgradl iq = np . po lyder (lagrange ([x i [j −1] , x i [j] , xs] , [Ti [j −1] , Ti [j] , Tm])

) (xs)
59 i f r2 > pc :
60 Tgradsol = np . po lyder (lagrange ([xs , x i [j +1] , x i [j +2]] , [Tm, Ti [j +1] , Ti [j

+2]])) (xs)
61 e l i f r2 <=pc :
62 Tgradsol = np . po lyder (lagrange ([xs , x i [j +2] , x i [j +3]] , [Tm, Ti [j +2] , Ti [j

+3]])) (xs)
63 r e turn (1/L∗(ks ∗Tgradsol − k l ∗Tgradl iq))
64 de f so lve_advect ion (ve l s , phi , M, dx , dt) :
65 """This func t i on s o l v e s the advect ion equat ion f o r the g iven array o f constant

v e l o c i t i e s . I t r e tu rn s the updated advect ion func t i on . """
66 i f l en (v e l s)==1:
67 phi_new = phi + dt∗ v e l s [−1]
68 e l i f l en (v e l s)==2:
69 phi_new = phi + dt /2∗(3∗ v e l s [−1]− v e l s [−2])
70 e l s e :
71 phi_new = phi + dt /2∗(v e l s [−3]−3∗ v e l s [−2]+ 4∗ v e l s [−1])
72 r e turn phi_new
73 de f update_temp (phi , Ti , t , lam , M, dx , dt) :
74 """This func t i on updates the temperature p r o f i l e us ing the va lue s o f the s igned

d i s t anc e func t i on and the prev ious temperature at each g r id po int . This
func t i on used the FVM−CN scheme f o r po in t s away from the boundary . Close to
the boundary , Lagrange i n t e r p o l a t i o n polynomia l s are used to obta in an

es t imate f o r the value c l o s e to the boundar ies us ing a BE scheme . """
75 j = np . min (np . where (phi <0))−1 # f ind the index o f g r i dpo in t in f r on t o f the

moving boundary
76 r1 = −(phi [j] / (phi [j+1]−phi [j])) # f i nd the d i s t ance r1 between x_j and the

moving i n t e r f a c e (s − x_j = r1 ∗dx)
77 r2 = (phi [j +1]/(phi [j+1]−phi [j])) # f i nd the d i s t ance r1 between x_{ j+1} and

the moving i n t e r f a c e (x_{ j+1} − s = r2 ∗dx)
78 A = np . z e ro s ((M,M) , dtype = np . double)
79

80 T0n = T_analyt ica l (lam , xmin , t) # temperature at l e f t boundary at time t_n
81 T0n1 = T_analyt ica l (lam , xmin , t+dt) # temperature at l e f t boundary at time t_{

n+1}
82 TMn = T_analyt ica l (lam , xmax , t) # temperature at r i g h t boundary at time t_n
83 Tmn1 = T_analyt ica l (lam , xmax , t+dt) # temperature at r i g h t boundary at time t_

{n+1}
84

85 f o r i in range (M) :
86 i f i <j :
87 A[i , i] = 2+2∗k l ∗dt /(dx∗∗2)
88 A[i , i +1] = −kl ∗dt /(dx∗∗2)
89 i f i !=0: A[i , i −1] = −kl ∗dt /(dx∗∗2)
90 e l i f i==j :
91 A[i , i] = 1+k l ∗dt /(dx∗∗2) ∗ 2/ r1
92 A[i , i −1] = −kl ∗dt /(dx∗∗2) ∗ 2/(1+ r1)
93 e l i f i==j +1:
94 A[i , i] = 1+ks∗dt /(dx∗∗2) ∗ 2/ r2
95 A[i , i +1] = −ks∗dt /(dx∗∗2) ∗ 2/(1+ r2)
96 e l i f i>j +1:
97 A[i , i] = 2+2∗ks∗dt /(dx∗∗2)
98 A[i , i −1] = −ks∗dt /(dx∗∗2)
99 i f i !=M−1: A[i , i +1] = −ks∗dt /(dx∗∗2)

100 A[0 , 0] = 2+3∗k l ∗dt /(dx∗∗2)
101 A[M−1,M−1] = 2+3∗ks∗dt /(dx∗∗2)
102 Rn = np . z e r o s (M, dtype = np . double)
103 a1 = k l ∗dt /(dx∗∗2)
104 a2 = ks∗dt /(dx∗∗2)
105 f o r i in range (1 , j) :
106 Rn[i] = a1∗Ti [i −1] + (2−2∗a1) ∗Ti [i] + a1∗Ti [i +1]

64

107 f o r i in range (j +1,M−1) :
108 Rn[i] = a2∗Ti [i −1] + (2−2∗a2) ∗Ti [i] + a2∗Ti [i +1]
109 Rn [0] = (2−3∗a1) ∗Ti [0] + a1∗Ti [1] +2∗a1∗T0n +2∗a1∗T0n1
110 Rn[M−1] = a2∗Ti [M−2] + (2−3∗a2) ∗Ti [M−1] + 2∗a2∗TMn + 2∗a2∗Tmn1
111 Rn[j] = Ti [j]
112 Rn[j +1] = Ti [j +1]
113 Ti = np . l i n a l g . s o l v e (A,Rn)
114 r e turn Ti
115 de f pos_s (phi , x i) :
116 """This func t i on r e tu rn s the po s i t i o n o f the moving i n t e r f a c e , us ing the va lue s

o f the s igned d i s t anc e func t i on """
117 j = np . min (np . where (phi <0))−1 # f ind the index o f the g r id po int x_j
118 r1 = −(phi [j] / (phi [j+1]−phi [j]))
119 xs = x i [j] + r1 ∗dx # f i nd po s i t i o n o f the moving boundary
120 r e turn xs
121

122 ### Run the program f o r the g iven numbers o f time− and s p a t i a l s t ep s
123 lam = f s o l v e (Transcendental , 1 . 0) [0] # compute the lambda nece s sa ry to f i nd the

a n a l y t i c a l s o l u t i o n
124

125 f o r Mcount , M in enumerate (M_array) : # go through a l s p a t i a l numbers o f s t ep s
126 f o r acount , a in enumerate (a_array) : # go through a l a ’ s
127 dx = dx_array [Mcount] # f i nd dx
128 dt = a∗dx∗∗1 # f i nd dt
129 pr in t ("dx =" , dx)
130 pr in t ("dt =" , dt)
131 N = round ((tmax−tmin) /dt) # compute the number o f time s t ep s f o r which to

perform the c a l c u l a t i o n a lgor i thm
132 pr in t (" Simulat ion f o r M =" , M, "and a =" , a , " so N =" , N)
133 pr in t ("dt /(dx∗∗2) = " , dt /(dx∗∗2))
134 x i = np . l i n s p a c e (xmin+1/2∗dx , xmax−1/2∗dx , M, dtype = np . double) # s e t a

g r id with x i at the cent e r o f each g r id c e l l Ki
135

136 # I n i t a l i z e t , phi , Ti
137 s = s_ana ly t i c a l (lam , tmin) # f i nd the i n i t i a l boundary po s i t i o n
138 t = tmin # se t i n i t i a l time
139 phi = s − x i # se t i n i t i a l s i gned d i s t ance func t i on
140 Ti = T_analyt ica l (lam , xi , tmin) # se t i n i t i a l temperature d i s t r i b u t i o n
141

142 # Create ar rays in which the s o l u t i o n i s s to r ed
143 ta r ray = np . array ([tmin] , dtype = np . double) # array with t imes
144 snum = np . array ([s] , dtype = np . double) # array with numerica l boundary

po s i t i o n
145 sana = np . array ([s] , dtype = np . double) # array with a n a l y t i c a l boundary

p o s i t i o n s
146 Tnum = np . z e r o s ((N+1, M) , dtype = np . double) # s e t array with numerica l

temperature
147 Tnum[0] = Ti
148 Tana = np . z e r o s ((N+1, M) , dtype = np . double) # s e t array with a n a l y t i c a l

temperature
149 Tana [0] = Ti
150 v e l s = np . array ([] , dtype = np . double)
151

152 f o r t imestep in range (N) :
153 v = f ind_ve l (Ti , xi , phi , dx) ### Step 1 : f i nd the f r on t v e l o c i t y
154 v e l s = np . append (ve l s , v) ### Store v e l o c i t y in an array
155 phi = so lve_advect ion (ve l s , phi , M, dx , dt) ### Step 2 : s o l v e the

advect ion equat ion
156 Ti = update_temp (phi , Ti , t , lam , M, dx , dt) ### Step 3 : s o l v e the heat

equat ion
157 t = t+dt ### Step 4 : update counter
158

159 # Check i f CFL−cond i t i on on advect ion equat ion i s s a t i s f i e d
160 CFL = v∗dt/dx
161 max_CFL = 0
162 i f CFL>max_CFL: max_CFL=CFL
163 i f CFL>1/2: p r i n t ("CFL i s too big . I t i s g iven by : " , CFL, " at t =" , t)
164

165 ### Solve s o l u t i o n s
166 xs = pos_s (phi , x i)

65

167 snum = np . append (snum , xs)
168 sana = np . append (sana , s_ana ly t i c a l (lam , t))
169 ta r ray = np . append (tarray , t)
170 Tnum[t imestep+1] = Ti
171 Tana [t imestep+1] = T_analyt ica l (lam , xi , t)
172

173 # Compute the e r r o r s
174 error_L2 = np . sq r t (1/ l en (snum)) ∗ l i n a l g . norm(snum−sana , ord=2)
175 e r r o r s [Mcount , acount] = error_L2
176 pr in t ("The e r r o r f o r t h i s s imu la t i on i s g iven by" , error_L2)
177

178 ### Plot the numerica l e r r o r as a func t i on o f the s p a t i a l s t e p s i z e
179 i f l en (M_array) >2:
180 f o r acount , a in enumerate (a_array) :
181 p l t . l o g l o g (M_array , e r r o r s [: , acount] , "o−−" , l a b e l= "a = " + s t r (a_array [

acount]))
182 a1 = np . t ranspose (e r r o r s) [0] [0] / (1 /M_array [0])
183 a2 = np . t ranspose (e r r o r s) [0] [0] / (1 /M_array [0] ∗ ∗ 2)
184 a3 = np . t ranspose (e r r o r s) [0] [0] / (1 /M_array [0] ∗ ∗ 3)
185 p l t . l o g l o g (M_array , a1/M_array , "−" , l a b e l=" Id ea l 1 s t order ")
186 p l t . l o g l o g (M_array , a2/M_array∗∗2 , "−" , l a b e l=" Id ea l 2nd order ")
187 p l t . l o g l o g (M_array , a3/M_array∗∗3 , "−" , l a b e l=" Id ea l 3 rd order ")
188 p l t . x l ab e l (r "Number o f s p a t i a l s t ep s ")
189 p l t . y l ab e l ("Numerical L2−e r r o r ")
190 p l t . l egend (prop={ ’ s i z e ’ : 10} , l o c=" best ")
191 p l t . t i t l e ("Numerical e r r o r o f the FVM−CN method as a func t i on o f s p a t i a l

s t e p s i z e ")
192 p l t . show ()

66

	Introduction
	Nomenclature
	The Stefan problem
	The heat equation
	Stefan problem
	Formulation of the investigated problem

	Introduction to numerical methods
	General idea of partial differential equations
	Finite difference schemes
	Discretizing the heat equation
	Discretizing advection equations
	Lagrange interpolation polynomials
	Error analysis

	The finite volume method
	Fundamental principles of the finite volume method
	Finite volume method applied to the heat equation
	Comparison with other discretization techniques

	The level-set method
	The advection equation
	Theory of the level-set method

	Choosing numerical schemes for developing a level-set method
	Choosing a numerical scheme for solving the heat problem
	Choosing a numerical scheme for solving the advection problem

	Discretization
	Considered Stefan problem
	Space and time discretization and definitions
	Finding the front velocity and its extension
	Discretization of the advection problem
	Discretization of the heat problem
	Discretizing the numerical error

	Numerical results and discussion
	Heat problem without moving boundary
	Advection problem with analytical velocity
	Stefan problem

	Conclusion
	Acknowledgements
	References
	Appendix

