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Omdat de sneiheid van bepaalde scheepstypen in de laatstejaren
aanzienlijk is toegenomen, wordt thans een verbeterd inzicht
gevraagd in die factoren die van belang zijn voor het behouden
van de snelheid.

indien immers voor een zekere vorm van zeetransport een ge-
wenste snelbeid is vastgesteld, dan is het, juist indien deze hoog
is, van essentieet belang dat deze ,,geïnstalleerde" snelheid zo
goed mogelijk wordt benut. Hiermede wordt dus bereikt dat ook
de reisduur optimaal kan zijn.

De hoofdoorzaak van verstoringen die resulteren in een toe-
name van de reisduur is het gedrag van het schip onder invloed
van de externe omstandigheden zee en wind.

Indien voor een type schip de vaartkarakteristieken bekend
zijn, d.w.z. het responsiegedrag qua snelheid en bewegingen in
gegeven zeetoestanden, is voor een bepaalde reis met optimaal
routeren na te gaan. welk traject kan leiden tot de kortste reis-
duur.

Toen dan ook naar aanleiding van het proefschrift van
Dr. C. de Wit: ,,Mathematical treatment of optimal ocean ship
routeing' goede informatie beschikbaar kwam om nader op van
belang zijnde problemen in te gaan. is hem gevraagd de resul-
taten van liet proefschrift voor een rapport te bewerken.

in principe gaat de gegeven methode uit enerzijds van de reeds
genoemde vaartkarakteristieken inclusief de begrenzingen door
extreme verschijnselen en/of wensen van de gezagvoerder, ander-
zijds van golf-, stroom- en windverwachtingen van meteorolo-
gische stations voor het te bevaren gebied met begin- en aart-
komsthaven. Met een computerprogramma worden op basis van
deze gegevens voor halve dagen tijdfronten berekend, waarmede
een plot van het kortstdurende traject moglijk wordt. In ver-
band met de relatieve betrouwbaarheid van golf- en windvoor-
spellingen voor langere duur zullen de berekeningen van het
kortstdurende traject regelmatig, bijvoorbeeld elke dag. met de
bereikte positie als uitgangspunt herhaald moeten worden.

Het spreekt vanzelf dat waar de gezagvoerdcr uiteindelijk de
verantwoordelijkheid voor het schip heeft, een dergelijke routeer-
begeleiding slechts als een advies kan dienen.

Vooral your de hogere snetheden mag verwacht worden dat
een routeermethode in tijdwinst zal resulteren met daarnaast
enige bijkomende voordelen zoals minder stormschade en meer
zekerheid betreffende de te verwachten tijd van aankomst.

I-lET NEDERLANDS SCHEEPSSTUDIECENTRUM mo

Because of the important increase in speeds for some types of
ships, a better insight will be required in those factors that have
an influence on the sustained speed.

if for a certain form of seatransportation the required speed
has been decided and especially if this is high, it will be of the
utmost importance that the "installed" speed can he made as
good as possible in order to obtain optimal voyage time.

The main cause of disturbances resulting in an increase in
voyage time is the behaviour of the ship as influenced by the
external conditions waves and wind.

Where for a certain type of ship the sailing characteristics are
known i.e. the response behaviour for speed and motions in
given seastates it will be possible to construct the least time track
with the aid of optimal routeing.

When with Dr. de Wit's thesis "Mathematical treatment of
optimal ocean ship routeing" valuable information came avail-
able to consider important problems involved, the author has
been requested to prepare the subject report.

In principle the method starts firstly with the sailing charac-
teristics mentioned including limitations caused by extreme
dynamic phenomena and/or the master's requirements, and
secondly with the availability of reliable wave, current and wind
forecasts for the sailing region including starting and destination
point. With the aid of a computer program the timefronts for
12 hour sailing can be computed of which a plot for the least
time track can be constructed. Because of the relative reliability
of waves and wind forecasts for longer periods, the computations
for the least time track should be regularly repeated, for instance
each day, with the position reached as a new starting point.

It will be self-evident that because of the master's responsibility
for the ship, the routeing should only serve as an advice.

Especially for the higher ship speeds it may be expected that
routeing may result in a time gain, besides some other gains such
as less storm damage and a better predictability of the expected
time of arrival.
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LIST OF SYMBOLS

A Starting point (fig. la)
Sea wave amplitude

A Amplitude of ship motion
B Point of destination (fig. la)
EQ Equator (fig. 2a)
F Wind fetch (fig. 4.la)
G Navigating region (fig. la) (also: ship's centre of gravity)
H Significant wave height (fig. 4.Ia)
H(t) Region of all points that can be reached at time t, starting from a certain point (fig. 3.2a)
L Geographical longitude of p (2 transformed to sphere) (fig. 2a)
N0 East-West curvature radius in the centre of G
O Origin of system of axes
P Arbitrary point of G (ship's position) (fig. 2a)
P, North Pole (fig. 2a)
R Radius of sphere
S Intersection of old and new equator (fig. 2a)
S(t) Boundary of H(t), "time front" (fig. 3.2a)
SK Skew equator
T Significant wave period (fig. 4.la)
U Wind velocity (fig. 4.la)
X, Y System of axes
a Timefront gradient direction (fig. 5.2a)
c Sea current velocity
d Distance (fig. 5.lb)
ds0 Length of a line element on earth
dsk Length of the chart mapping of a line element on earth
f Ship's velocity
k Scale factor
r Distance from O (fig. 3.5a)
s Ship's velocity with respect to the water
t Time (in fig. 4.la wind duration)
ta Starting time
tb Time of arrival
e Velocity

Velocity in O (fig. 3.5a)
Vr Velocity at distance r from O (fig. 3.5a)
x, y Co-ordinates on XY-system
F Extremal (fig. 3.2b)
cc Ship's course (fig. la)
y Skew longitude of P (fig. 2a)

Skew latitude of P (fig. 2a)
Wind direction or mean wave direction

2 Geographical longitude of P (on ellipsoid)
North-South curvature radius in the centre of G

r Time
Geographical latitude of P (on ell!psoid)
Initial direction (fig. 3.4a)

Ji Geographical latitude of P (transformed to sphere) (fig. 2a)
Gradient ofS(t) in P (fig. 3.3a)

note I Symbols A, B, C, D, M, N, Q, R, S, Tare also used to indicate points in various figures
note 2 (t) indicates a function of time e.g. cc(I)
note 3 Vectors are underlined e.g. c, f



I Introduction

The following data are assumed to be known: (see
figure Ia)

I. A region G, part of the Atlantic or Pacific Ocean,
restricted by the need of a depth of at least 40
fathoms. In this region, the starting point A and
the destination B are given, as well as the starting
time t.

2. The maximum ship's speed, taking normal safety
considerations into account, in all points of G and
at all times t ? ta This assumption implies, that
one has full quantitative knowledge of

the direction and rate of the sea current, assum-
ed stationary for a time stretch, exceeding the nor-
mal trip's duration by some 30%;

the sea conditions, specified by the significant
wave height and direction at all times t e ta and

the ship's perform.ance in sea waves - wind
waves or swell - also possibly determined by wishes
of the ship's master.

+
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OPTIMAL METEOROLOGICAL SHIP ROUTEING
by

Dr. C. DE WIT

Summary

The author of this report was assigned to investigate the mathematical aspects of meteorological ship routeing by Prof. Dr. R. Tim-
man of the Delft University of Technology. The assignment was accomplished in 1968, resulting in a doctor's thesis, entitled
"Mathematical Treatment of Optimal Ocean Ship Routeing" [I]. This report describes the outlines of this dissertation.
The first section contains the problem statement as well as some notational conventions.
In order to avoid metric difficulties, the navigated region G is to be mapped conformally onto a plane, keeping the scale alteration
as small as possible. Section 2 gives a curse treatment of the most important mappings that fit this purpose.
In the 3rd section the minimal time problem is discussed as an application of Pontryagin's optimal control theory. The concept of a
timefront is introduced and some attention is given to possible structure complications of these fronts. Also modifications of the
general theory, in the event that part of a trajectory should coincide with the boundary of the region G, are briefly mentioned.
Section 4 cursely treats wave preoiction methods and the determination of a ship's behaviour in sea waves.
In the 5th section the computer program to evaluate the least time track is described and the results of a practical application are
exhibited. The consequences of data incertainties and the practical use of the treated method are briefly discussed.
The two appendices contain mathematical treatments of the general minimal time problem and of the minimal time problem with
co-ordinate restrictions.

Fig. la. G: navigating region; A: starting point; B: destina-
tion; a(s): course a as a function of the time t; Sa:
starting time; t: arrival time.

With these available data, one can attempt to deter-
mine the following quantities:

The ship's course as a function of time - =(t) -
so that the ship, starting from A at a time t0, arrives
at B at a time th. This arrival time t is obviously
later than t0. Furthermore it can be stated, that
b depends on the choice of the navigating func-

tion x(t). In view of the fact, that ships have prac-
tically always succeeded to reach B after a finite
time, it is sensible to assume, that there is a collec-
tion of navigating functions {(t)}, meeting the
needs that were mentioned before.
The optimal navigatrng function °(t), i.e. the
navigating function that generates a minimal arrival
time tb

Although this problem statement may be mathemati-
cally correct, it looks rather unflexible from a practical
seaman's viewpoint. The evaluation of the least time
track, also indicated as the optimal track, can only be
executed with the aid of a large memory computer.
Such a machine would be quite unfit to be used effi-
ciently on board a merchant ship. Thus the optimal
track would have to be evaluated at some shore com-
puting centre.

The trouble now is, that the ship's master is primarily
responsible for the ship's safety, so that he can merely
be advised to take a certain route. Such a routeing
advice should not be given without a rather extensive
explanation, based on weather and wave predictions.

Working that way and revising the routeing advices
day by day, the possibility of a discrepancy between
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expected and actual ship's performance is not just
academic. This means, that ship routeing has to be
accompanied by an extensive mutual exchange of
information between ship and shore station. Only
when collaborating with good mutual respect and
understanding, a significant result can be expected
from ship routeing.

As for the mathematical notations in this report, the
following conventions were adopted.

Whenever a scalar, like the time t or the angle p, or
a vector, like the position vector x, needs to be marked
by means of some index or letter, this mark is always
put right below, like t, , . Vectors are denoted by
underlined letters, like x,f, I'.

As for vector components, the indices will be placed
in the right top, if the vector is a "column vector" in
matrix calculus or "contravariant" in tensor calculus:
x = (x',x2).

If we are dealing with a row vector (in matrix cal-
culus) or a covariant vector (in tensor calculus), the
component indices are placed below: çli = (J'14'2).

The notation p : = q stands for the assignment to
give the variable p the value of the expression q. For
example, after the sequence a: = 0; a : = a+ 1;
a: = a+cos(a); the variable a has the value I +cos(l)r=
1.55....

A frequently used notation in this report is of the
type

x : = a(b)c

This means, that x is consecutively given the values a,
a+b, a+2b etc. until either x exceeds c if b - the step
width - is positive, or until x becomes less than c in the
event that b is negative.

2 Co-ordinate system

All evaluations regarding positions, directions and
distances to be made good could be carried out on the
geoid itself, sufficiently approximated by the Hayford
ellipsoid. However, since the curvature of the earth is
dependent of the position as well as the direction,
while the meridian convergence depends on the lati-
tude, a direct use of the ellipsoid co-ordinates Ç) (geo-
graphical latitude) and ) (longitude) would imply
needlessly elaborate computational techniques.

A first simplification can be obtained by making a
conformal mapping of the ellipsoid onto a sphere with
radius R = \/(gØNØ), where and N0 are the North-
South and East-West curvature radii in the centre of G
respectively.

This way the spherical mapping no longer has the
disadvantage of a variable curvature, while the distance

scale is practically equal to unity over a wide latitude
range. The co-ordinates (q,, )L) on the ellipsoid are thus
transformed to co-ordinates (&, L) on the sphere [2, 3].

The disadvantage of meridian convergence can only
be removed by mapping a part of the sphere confor-
mally onto a flat plane.

The Royal Dutch Weather Bureau, to be indicated
from here on by the abbreviation K.N.M.1. (Koninklijk
Nederlands Meteorologisch lnstituut), adopted a polar
stereographic projection of the earth's surface for all
kinds of weather maps, so that it was quite natural to
use this projection for ship routeing as well. The length
of a line element on earth

dSa = ..J(R2dfr2+r2dL2)

now has a position-dependent proportion to the length
of the mapping of this element

dsk = ,J(dx2+dy2),

that is dsk = k x dSa, where k is the scale in a point with
co-ordinates (x, y) In a polar stereographic mapping
this scale k depends on the spherical latitude by
k = k0 sec2 (7r/4JJ/2) [3].

Between 300 and 500 Northern latitudes this scale
alters about 17. As a result of this rather considerable
scale alteration the mapping of a spherical great circle,
which can be taken to be the spherical mapping of a
geodesic line on the ellipsoid surface, becomes a curved
line with a curvature, that can not be neglected for
practical purposes. This means that a polar stereo-
graphic projection does not give a quite "natural"
picture of the situation.

Fig, 2a. The sphere represents the spherical mapping of the
earth ellipsoid.
P: North Pole; EQ: equator; p,L: latitude and longi-
tude of P with respect to the equator and the Green-
wich meridian; SK: skew equator; )',ó: skew longtiude
(relative to S) and skew latitude (relative to SK) of P.



A projection, that meets the requirements of being
conformal as well as having a very slight scale altera-
tion is the Kahn projection.

As a result of the practically constant scale a straight
line segment between two points in this chart can be
taken with good accuracy to be the mapping of the
metrically shortest distance between these points.

This projection is obtained by enclosing the region
G - which has a length/width ratio of about 4:1 - by
four mutually perpendicular great circles (see figure
2a) [2].

Taking the central great circle about parallel to the
longest frame lines, one can think of this great circle
as an oblique equator. The intersection S of the old and
the new equator can be adopted as reference point for
the oblique longitude y, while the great circle distance
from a point P to the skew equator, measured along a
skew meridian, is the new latitude ô. The new equator
and meridians are now conformally mapped by means
of the well known Mercator projection.

Taking the central great circle mapping as the
X-axis and the mapping of an arbitrary skew meridian
as the Y-axis, the mapping equations are

x = k0R(yy0),

y =k0Rln(tgô+secô)

and the scale factor becomes

k = k0 cosh(y) = k0 sec ô.

This factor k has to be taken into account when
making distance computations.

3 Mathematical theory of optimal ship routeing

3.1 Indicatrix

From an arbitrary point P(x,y) of the region G and for
an arbitrary time t t one can plot the ship's velocity
vector for all possible - and admissible - values of the
ship's course . (See figure 3.Ia). For this polar velocity
curve the name "original velocity indicatrix" is

adopted [I].
As a preliminary remark it should be stated that the

ship's velocity, denoted by dx/dt, is a vector valued
function of the position co-ordinates x1 and x2, the
course and the time t:

or written componentwise

-_=f(xt,x2,,t) for i = 1,2

Fig. 3.1 a. The original ship's velocity indicatrix for comparitively
low waves, corresponding to a wind velocity 5
(Beaufort scale).
P: ship's position; e: sea current; r: ship's speed
relative to water; a: ship's course; 9: wind direction;
f: ship's speed made good.

The vectorf is composed of two vectors:f = ç+.
Here c denotes the sea current, with a relatively small

scalar value and approximately constant with respect
to time. So ç = (c1, c2) with c only dependent of the
position co-ordinates x' and x2.

The ship's propagation speed with respect to water t
can be seen as a vector with a length s, depending on
the significant wave height H and also varying with the
ship's course relative to the mean wave direction i1.
As the quantities H and & vary with position and time,
s is implicitely dependent of the position, the time and
the course .

Mathematically stated: s = (s', s2) with

s1 = s(x',x2,,t)cos and s2 = s(xt,x2,x,t)sin.

The components off can now be written as

fi = s(x',x2,,t) sin (iir/2)+c(x1,x2)
for ¡=1,2

We shall now discuss the various possibilities for the
original velocity indicatrix.

In comparatively low waves the ship can proceed in
all courses practically with the same speed, at least
with maximal propeller speed.

The ship's speed s will be minimal for c = 9, i.e. for
waves coming in from ahead. When the waves come in
from one of the beams, so = 9 ±2t12, s will be
somewhat greater, while s is maximal for = .9+ir.

For other values of the value of s can be taken so
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that the velocity indicatrix becomes an ellipse (see
figure 3.la).

In this case it can be remarked that for the majority
of merchant ships s is considerably greater than c. This
implies that it is possible to make headway from P into
all directions.

When the waves are higher, the problems arise. Both
practical experience and shipbuilding laboratory in-
vestigations have revealed, that there is a sector of for-
bidden, i.e. non feasible courses, corresponding with
sea waves coming in from about two to to six points (the
compass card of 3600 is divided into 32 points, so
I point = i 1°) aft the beam. These courses are un-
desirable, as they may cause unwanted phenomenae
like too heavy rolling and an inclination to unstable
yawing oscillations.

For these waveheights, a ship's original velocity
indicatrix may become like shown in figure 3.lb.

Fig. 3.lb. The original velocity indicatrix of an ocean ship in
higher waves, wind speed 8 Beaufort.

Mathematically, this open or non-convex indicatrix
means, that the classical calculus of variations, appli-
cable in the case of a closed and convex indicatrix, can
no longer be used. Fortunately, this variation calculus
was extended essentially by Pontryagin. His theory
concerns variation calculus with steering parameter
restrictions and it can be applied to this particular
case.

To make the application plausible, the concept of
"öt-position-indicatrix" has to be introduced.

Take a time interval t > O an.d small enough to be
able to assume the ship's speed/to be a function of the
central position x0 and of the starting time t within
a circle with radius 2S0f3t around that centre and for
times between t0 and t0 + 2öt (s0 is the unrestricted
ship's speed). This has to express, that in a small
enough subregion of the event space {x, t} f can be
assumed to be only dependent of the course .

So dxt/dt =f'(x01,x02,c,t0) in this small area.
The 5t-position-indicatrix can now be constructed

by plotting the vectors föt from P for all admissible
values of . We thus obtain an elliptic curve with
interruptions.

Let M and N be the bordering points of such a

Fig. 3. Ic. The effective Or-position indicatrix.
P: ship's position at time t; PO: current shift from
time t to time t0+öt; s1òt, 520f: boundary vectors of
the forbidden course sector MON; C: point of the
straight line segment MN; CM/CN = A/(1 A).

restricted sector, corresponding with ship's speeds s1
and s2 (see figure 3.lc).

lt is then possible to reach an arbitrary point C of
the straight line segment MN by tacking between the
courses to reach M and N.

In figure 3.lc, let MC/CN = 2/(l 1). One can now
reach C from P by taking the ship's speed 52 from
time t to t0+2ôt and then tacking from s2 to s1.

The original 5t-position-indicatrix can now be re-
placed by its convex closure, for which the name
"effective t-position-indicatrix" seems suitable. This
effective indicatrix generally consists of two elliptically
curved arcs, connected by two straight line segments.
In this case it can as well be stated, that the stream
vector c is always and everywhere small enough for P
to be located inside its own effective indicatrix.

Thus we can base further considerations on the fact,
that always and everywhere in G it is possible to make
headway into all directions.

3.2 Set of reachable points, timefronts, extremals

For a given starting point A and starting time ç. let us
think of the set of all points, that can be reached at a
given time t > t0. This set of reachable points will be
denoted by H(t) [5]. It may be remarked, that every
point of this set can generally be reached in more than
one way, depending on the choice of (r), with
ta 'r t.

The boundary of such a reachable region is defined
as the timefront 51'(t). This boundary curve can be



Fig. 3.2a. H(t): region of reachable points at time t, starting
from A at time ta; S(t): boundary of H(t), called
"timefront".

seen as the collection of extreme points, that can be
ultimately reached at a time t (see figure 3.2a).

After these introductions, a few important implica-
tions have to be mentioned.

Lemma 3.2cc

Let C be a point of timefront S(t). Then the time t,
at which C is reached from A, is minimal.

To prove this lemma, suppose there is a time t' < t,
at which C is reachable from A. In that case C would
be a point on the boundary or inside the set of reach-
able points H(t').

Referring to the considerations in 3.1 about the
effective position indicatrix it now follows, that H(t)
is everywhere wider than H(t'), because t is later
than t'. So points of H(t') become undoubtedly inner
points of H(t). Thus it is impossible for a point C
of H(t') to lie on the boundary of a larger region
H(t). The assumption, that a boundary point of
H(t) could be reached from A at an earlier time t' is
thus leading to a contradiction and it cannot be true.
This proves lemma 3.2cc.

A trajectory, starting in A at a time t, that leads the
ship to a boundary point of S(t), will be called an
extremal. A fundamental property of extremals is
stated by the next lemma.

Lemma 3.2ß

If the curve AB is an extremal from A to B, with
starting time t,, and time of arrical tb' then every subarc
of rAB is an extremal as well.

C(t)

A(ta)
B(tb)

Fig. 3.2b. r: extremal from A to B; t(,: starting time; ti,: arrival
time; C(t): position on r at time t, with ta < t < tb

For an explanation of this lemma, consider figure 3.2b.
The lemma says, that for an arbitrary point C of an

extremal rAB, passed at a time t, this point cannot be
reached from A at an earlier time than t. It also states,
that, if the ship starts at C at a time t, the subarcrCB
of F. is an extremal.

To illustrate the proof of these two statements, let us
start with the last one. lfF8 is not an extremal, then B
could be reached from C at an earlier arrival time
ti,'. This contradicts the optimality of ti, as an arrival
time from A at time tu.

To prove the first part F is an extremal one can
introduce the concept of "set of initial points" H(t),
corresponding to the common arrival point B at the
given arrival time ti,. The boundary of such a set H(t),
denoted by S(t), has a property, which is analogous
to lemma 3.2cc:

The starting time t from a point of S(t), the
boundary of H(t), is maximal to arrive in B at time ti,.

Working with this concept and assuming TAC to be
no extremal then leads once more to a contradiction
regarding the extremality of FAB.

In principle it is now possible to give a constructive
solution of the optimal track problem (see figure 3.2c).

S(t,+1 2l)

S+(t,+ld)

12h)

S(tb)

/
B

Sf(t*)

Fig. 3.2e. S*(ta± 12h): Timefront for a time, 12 hours after the
starting time t,2; S(ta+ Ici): timefront for one day
after the start; t = ta+k x 1211, where k is a positive
integer.

Taking 12h time steps, one can construct the 12"-
position-indicatrix from A, which can be seen as a
first guess of the timefront S(t,,+ 12"). The condi-
tions at the boundary may be somewhat different from
those in A on account of position as well as time differ-
ences, so one could apply corrections to these boundary
points in accordance with these differences.

Accepting this corrected curve as the timefront
S(tu+ 12"), one could construct 12"-position-
indicatrices from the points of this first timefront and
correct these on account of changes in time and posi-
tion.

Taking these corrected indicatrices for granted, one
can construct their envelope, which is the timefrorit
S(t) for t = This procedure could be
repeated, until the destination B becomes an inner or

11
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possibly a bordering point of H+(t*), while B lies out-
side H+(t*.. l2h) The optimal arrival time tb could
then be estimated by linear interpolation. The optimal
track could be constructed by executing the same proce-
dure, except for the fact, that we now have to "start"
in B and "proceed" with decreasing time until A is
reached.

The disadvantage of this procedure is, that it is
rather elaborate and hardly fit to be programmed.

The enveloping procedure can be avoided by making
a more effective use of lemma 3.2ß, i.e. "an extremal
goes from timefront to timefront".

3.3 Pontrvagin's Maximum Principle

Starting in P on timefront S(t), the lane between
S(t) and S(t+5t), with ¿it positive but rather small,
has to be covered in the fastest possible way. See figure
3.3a. Let 4i(t) be the gradient vector of S (t) at P, then
the velocity f in P has to be selected so that its pro-
jection on 4'(t) has a maximal length.

ttindicatrix of P

/S(t) S4(t+t)

Fig. 3.3a. S'(t), S(t+dt): timefronts for times r and r±òr,
with Oh < òt < 1h; P =fr: total ship's optimal
displacement in the time interval (t, t+öt); V.': gradient
vector of 5f(t) in P.

Therefore the optimal course °(t) has to be selected
so that the innerproduct (',f) is maximal [4].

This is Pontryagin's Maximum principle. The en-
veloping procedure can now be replaced by a much
simpler construction, exhibited in figure 3.3b.

Given P on S(t), draw the normal in P on S(t)
- i.e. the line perpendicular to the tangent to S(t)

S (t)

Fig. 3.3b. S(t): timefront for time t; ': timefront's gradient
in P; ç: sea current vector;s: ship's speed vector
relative to water; f: total ship's speed.
The elliptic curve is the ship's effective velocity
indicatrix.

in P - and construct the indicatrix of P. Take a line
parallel to the timefront tangent in P and shift it until
it "touches" the indicatrix, meaning that it has only
one common point with the indicatrix, all other points
lying on the "P-side" of that touching line. This
touching point is the point of S(t+5t) that cor-
responds with P on S(t).

3.4 Principles to construct the optimal track

Revising the procedure, mentioned at the end of 3.2,
we can now describe the construction of a timefront
S(t+t) from a (supposed to be) given timefront
S(t):

Take a number of points of S(t) with sufficiently
small subsequent distances. Determine the time-
front gradient directions in these points and take
optimal ¿it-steps, applying the maximum principle.
Correct these steps on account of changes in time
and position.
Then one has a collection of points, through
which a smooth curve can be laid, that is to
represent the new timefront S(r+c5t).

This procedure has the disadvantage of being rather
elaborate. lt so seems sensible to investigate the pos-
sibility of constructing just a few extremals not time-
frontwise, but one by one, with which one could
attempt to hit the destination B.

In order to construct the subsequent points of one
single extremal, it is obvious that the value of the time-
front gradient, to be indicated by the vector 4i, is

needed to be able to select the proper course ct by
means of the maximum principle. Fortunately it can be
asserted that there are mathematical means to evaluate
the change of this vector 4i with time, when following
an extremal.

One can now construct one single extremal from A
by taking a fair estimation for the mitaI value of ti,.
(See figure 3.4a). Assuming this initial 4' to have a unit
length, this starting gradient becomes /'(ta) = (cos0,
sinq,0), where q, is the angle of fr(ta) with the X-

-±-- Q0

B lo

Fig. 3.4a. For various initial direction Po of ', extrernals are
constructed, until B is approximately hit by a specimen.



direction. The problem of finding the proper AB-
extremal now seems to be to select p0 properly. This
could be done by means of a well known and frequently
used procedure called "trial & error", as shown in
figure 3.4a.

Starting with a first guess for ç,, this may produce
an extremal, that passes North of B. Then q can be
replaced by q0 - 10 and the corresponding extremal
could be constructed. This scanning could continue,
until B is enclosed by two tracks with intitial gradient
directions ç and q' 10. The proper could then
be fairly estimated by means of linear interpolation.

However this method is inadequate for solving the
present problem. The cause of this is, that there may
be more than one "extremal", that can be traced by
means of this trial & error procedure. In the next para-
graph this possibility of the occurrence of more than
one solution will be shown by means of an example.

3.5 Absolute and relative extremals

Consider the velocity field y = (y cos, u sin), with
- 2+ 2)/2y = 2e X shown in figure 3.5a.

The velocity y has the minimal value I for x = y = O.
Furthermore, on a circle around the origin O with
radius r the velocity has the constant scalar value

= 2_e_r2/2.

/

Fig. 3.5a. y0: velocity in O = 2e° = 1; vr: velocity at distance
r from O = 2e'2/2;

3 oo

1.99 2

A(-

Fig. 3.5e. The origin of a concave dent in a timefront, when
passing a velocity minimum.
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r 0.5 1 2

Vr 1.12 1.39 1.86

Fig. 3.5b. Complete figure of timefronts and extremals with
start in A (-3,0). The velocity indicatrix is a circle,
the scalar velocity is a monotonously increasing
function of r = (x2+y2)+.

Starting at (-3,0) it is now possible to construct
extremals by numerical means for various initial
values c of the course . This was done for =
= 70°(0.5°)70°. The total result is shown in figure
3.5b.

This figure shows that the timefronts have reverse
points and a double point, after the origin is passed [6].
This phenomenon will now be briefly explained.

The velocity indicatrix for this case is a circle with
radius 2_e_'2, where r is the distance to O. It will
now be clear, that the timefronts, starting as almost
circular convex curves, will become less curved near
the X-axis as time increases. Thinking of a timefront
S(t+5t) to originate from S(t) as the envelope of
ôt-position indicatrices, drawn from all points of



o

Fig. 3.5d. The formation of reverse points and double points
in timefronts. The three circles thorugh Q have
approximately equal radii. Their centress are P*. P
and ** respectively.

St(r), it is also clear, that the timefronts get a concave
dent near the X-axis, like shown in ligure 3.5c.

In figure 3.5d one can see, how the concave partPPP is compressed to one point Q after a time t.

After this, the timefront parts that correspond to
extremals, passing North and South of O, start to over-
lap each other. The sector of reverse points of time-
fronts T*QT* envelopes the "extremals" to points of
the rear parts, like R*RR**.

1f B is located inside a sector like TQT**, there are
three solutions, i.e. three AB-extremals. This is shown
in figure 3.5e.

In this figure, B is located on the timefronts S(tb)
- fully drawn -, on S(t,,') - dashed curve - and on
S(t,,") - dotted curve. lt is clear that t,, < t,, < t,,",
so that the trajectory, that takes the ship from A to B
at a time t,, is the proper extremal.

In view of this phenomenon, it is obviously necessary
to delete those parts of a timefront S(t), that are
not part of the boundary of H(t). We also see, that
the timefronts have to be constructed as extensively as
possible.

Fig. 3.5e. The destination B is reached by three "extremals",
all constructed by local application of the maximum
principle. P is the absolute extrema!, with t,, as the
corresponding arrival time. I" is a relative extrema],
arrival time te,'. meaning that the arrival time t,,' is only
minimal, when considering trajectories that pass
South of the velocity minimum. I" is no real extrema!
at all, not even a local one.

So far the extremals and timefronts were only con-
sidered in the event that they were located entirely
inside G, the navigating region. Obviously, timefront
arcs, that are located outside of G, are to be deleted.
This deleting may however lead to the possibility, that
B cannot be reached by following a common extremal.
Figure 3.6a shows, that this possibility can very well
occur.

sub
ext re mais

extremals

Fig. 3.6a. Free and isoperimetric extrema!s. I' is the bordering
specimen of a family of free extremals. P, touches
the boundary of G at R). The dashed drawn sub-
extremals start in R as boundary arcs of G. Sooner
or later they leave this boundary again, proceeding
from then on as extrema]s inside of G.

The extremal T0 touches the boundary of G at R0.
Assume the corresponding time to be t0. Then the arc
ofT0 past R0 forms an undesired limit for H(t) for
t > t0, as it is impossible to construct extremals on
the other side ofT0, because they would have arcs out-
side of G. The solution to this problem is rather simple:

In R0 we can follow a certain stretch of the boundary
curve and then let the extremal go its normal way to
the inside of G again. These trajectories are called sub-
extremals. They are to be constructed to such an extend
that the corresponding timefronts reach as far as the
boundary of G.

The mathematical analysis, that is the basis of this
solution, is rather complicated. Besides, the indicated
principle is not rigorously followed in the practical
numerical construction of the extremals. Therefore,
these mathematical details are omitted here. However,
in Appendix II, interested readers can find the deriva-
tion of this "revised maximum principle".

4 Practical data

4.1 Wave prediction

Briefly stated, there are two fundamentafly different
mathematical models as a basis for wave prediction
techniques [7].

The Sverdrup-Munk theory adopts the concept of
a "Significant wave", defined as an elementary sine-
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Fig. 4.la.
Graphs to determine significant
height H and period T of wind-
generated sea waves from wind
velocity U and either duration r or
fetch F.

wave, that is supposed to represent the entire sea wave
pattern, as far as the energy density is concerned, while
the phase speed equals the average of these speeds of
all the sea wave components.

In spite of the fact, that this assumption meets some
mathematical objections, the results of the computa-
tions, based on this theory, are fairly in accordance
with practice, as far as the prediction of wind generated
sea waves is concerned.

1f the wind has blown in a certain area during a time
t with a wind velocity U, while the wind fetch F is
known, then t, L! and F determine the "significant wave
height", which can be defined as the average wave-
height of the highest .- part of a large number (about
1000) of waves.

This determination of the significant wave height
can be done by means of a nomogram, like shown in
figure 4.la.

This graphical aid is a reprint from [8], a very handy
and practical booklet.

The investigations of ship's performances in sea

Fig. 4.lb. Nomogram, based on the Neumann spectrum, to
determine the significant wave height of wind gen-
erated sea waves as a function of the wind speed and
the wind duration. For instance, a wind speed of 28
knots and a wind duration of 12 hours can generate a
sea wave pattern with an average height of 11 feet.
To see this, project the intersection of the 28-knots-
line and the 12-hours-line on the vertical scale. In a
similar diagram, tile wave height can be determined
as a function of the wind speed and the wind fetch.
Denoting these heights by d and Hf, the significant
wave height, predicted by the Pierson-Neumann
model, becomes the minimum of Hd and H1.

waves are practically all based on a stochastical sea
wave model, designed by Pierson. The sea is assumed
to be perfectly chaotic, while the total sea wave pattern
is seen as a linear combination of waves of various fre-
quencies (fro.m O to cc) and directions (from ir/2 to
m/2 with respect to the mean wind direction). A spec-
tral function S, depending on the frequency o. and the
direction relative to the mean wind direction 9» gives
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the probability distribution of the energy of waves in
a frequency-direction element with value (o-, 9) and
with band widths Ao- and A9.

The designation of a suitable spectral energy distri-
bution function S(o-, &) was first done by G. Neumann
in 1952.

Using this Neumann spectrum, one can compose a
nomogram, shown in figure
borrowed from [9].

Comparison of these
the Neumann spectrum,
give satisfactory results.

After Neumann's first
have been made to improve this wave energy spectrum.
So far, the best result was booked in 1965 by Mosko-
witz. The Pierson-Moskowitz model has also turned

swell.

4.2 S/up's performance data

The analysis and prediction of a ship's behaviour in a
given sea wave pattern has turned out to be a very
difficult problem.

Graphs of ship's speeds in sea waves with various
heights for waves coming in from ahead, from one of
the beams or from astern have been pLiblished for a
variety of types of ships. Examples are shown in
figure 4.2a.

21
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out to be the the prediction ofbest possible design for

wave predictions, based on
with practical data, did not

estimation, several attempts

following

beam

head

beam

following

beam

head

head

Fig. 4.2a. Maximum speed graphs for three types of ships,
experimentally determined by the U.S. Naval Oceano-
graphic Office. For example, for the C2-type freighter
with a normal speed of 15.5 knots, in waves with 20
feet significant height the quantities d1, d2 and d3

see 5.2become; d1 = 1211 X 13 knots = 156 miles
d2== 12"xll.5knots==l38miles

= l2' x 9.8 knots = II 7.6miles

They were practically all based on experimental data,
revealed by practical experience [10]. Their reliability
is far from optimal. In the Netherlands this problem
has been and is still being worked on rather vigourously
by a group of naval architects, attached to the Ship-
building Laboratory of the Delft University of Tech-
nology and directed by Gerritsma. A brief summary
of the results of the research work will now be given
[11, 12, 13, 14,15,16].

The chaotic sea wave pattern is seen as a composi-
tion of mutually independent elementary sine-
waves with various frequencies, wave-heights and
directions. For the energy probability distribution
the Pierson-Moskowitz spectrum is adopted.
The various ship's movements also are linear com-
positions of elementary harmonic oscillations. The
most important ship movements are:
pitching: oscillations about a thwartships axis

through the ship's gravity centre G,
rolling: oscillations about a longships axis

through G.
heaving: vertical shifting of G,
swaying: thwartships shifting of G.

For a given elementary sinewave with a given ampli-
tude and apparent frequency o-° it is possible to evaluate
the input values of all the movements mentioned above.

There are various methods to determine the ship's
responses to these inputs. A response is characterized
by two numbers, the first of which is the amplitude
ratio H = A,/A, with A, = the real amplitude of
pitching, heaving etc. and Ag = the sea wave input
amplitude, while the second one is the phase lag e of
the real movement with respect to the sea input.

The amplitude ratios and phase lags appear to be
fairly well independent of the input amplitudes and
they only depend upon the input frequencies.

The quantities H(o-°) can be used to determine the
pitch, heave, roll and sway spectra by simply multi-
plying the corresponding wave input spectra Ag(o-*)
by H(o-°).

(Note that the amplitude probability distribution is
given as a function of the true frequency o-, so that it
is necessary to transform this to a function of the appa-
rent frequency o-, according to o-° = o-+ o-2s/g, where s
is the projection of the ship's speed on the wind direc-
tion.)

The phase lag e plays an important part in the esti-
mation of the ship's speed decrease. It is also impor-
tant, when questions like the coincidence of pitch and
heave are considered.

Thus the knowledge of these frequency responses
open the possibility for
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evaluation of the ship's resistance and
evaluation of the probability, that some undesired
phenomenon occurs, like too much variance in the
accelerations in the ship's fore and aft parts,
slamming or shipping green water.

It is also possible to evaluate the ship's speed, at which
one of these phenomenae has an occurrence probability
less than a desired maximum.

Briefly stated, the ship's performance can be deter-
mined by sea conditions as well as by a set of wishes
of the ship's master. The occurrence of sectors of for-
bidden courses, mentioned in 3.1, can be made plaus-
ible by considering the following facts:

The apparent frequency of waves, that come in
from aft the beam, is rather low. The ship may be
sort of caught in a wave trough for a couple of
minutes. On account of the small midships draught
the couple to decrease a possible list of some 200
or 30° may be very small or even zero on account
of the small metacentric height. As a result, the
ship maintains a considerable list for quite a while.
This phenomenon has been frequently experienced
on merchant ships, going some 25 knots.
The low apparent wave frequency may cause the
ship's stern to be lifted from the still water level for
quite a while. This may result in bad steering condi-
tions and heavy yawing.
The roll-generating torque can have a periodic cern-
ponent with a period that is favourable to lead the
ship to a steady state of constant rolling, i.e. con-
stant in amplitude. For practically all kinds of
cargo, stowed either classically or in big load units,
this rolling resonance can bring ship and cargo into
an uncontrollable situation.

5 Program to evaluate the optimal track

5.1 Oceanographic, meteorological and ship's
performance data

In the polar stereographic projection or in the Kahn
projection of the concerned area an X- and Y-axis are
assumed and the mapping near the origin of a stretch
of 150 or 200 nautical miles is taken as a length unit.
Points with integer co-ordinates are taken as data grid
points. Thus the sea current and wave data are intro-
duced as a two-dimensional array, like sxr, syr, hzr,
hrx, hry, tzr [0:18, 3:5].

In the arrays sxr [i.j] and syr [i,j] the values of the
ocean current x- and y-components are read, taking
l2' as a time unit. The arrays hzr [i,!] and tzr [i,/] are
to contain the significant wave heights and the mean
directions that these waves come from.

Q(h-1, k)O - - -

T(h, k+1)
9

D

P(h,- e - -o- - - O R(h+1. k)
A I B

C

¿
S(h, k-1)

Fig. 5ta. Grid points P, Q. R. S, Tand in-between points A, B.
C, D to explain the computation of the partial
derivatives hrx and hry of the sea wave height hzr
with respect to x andy.

The grid of points with integer co-ordinates is dense
enough to get a fair representation of the sea current
components and of the wave direction, if interpolated
linearly between grid values.

The wave data can be taken from wave prediction
charts, constructed by the K.N.M.I. routeing office.
A program for semi-automatic copying of these data
is being prepared, as well as a program to determine
wave data from wind velocity, duration and fetch.

The quantities hrx [i,j] and hry [i,j] stand for the
increases of the significant wave height in the X- and
Y-directions respectively.

Considering a point P (fig. 5.la) with integer co-
ordinates (h, k) and the neighbouring points Q (h - 1, k),
R(h+l,k), S(h,k-1) and T(h,k+l), we can take the
in-between points:

17

between P and Q, co-ordinates (h-4,k),
between P and R co-ordinates (h + 3-, k),
between P and S, co-ordinates (h, k -3-) and
between P and T, co-ordinates (h, k + 4).

Denoting the waveheights in A, B, C and D by h0, hh, h
and hd, the waveheight increments are now defined by

hrx[h,k] = hbh0 and hry[h,kJ = hdhC.

These quantities had to be introduced to prevent small
areas of high waves from being neglected by linear inter-
polation. As for the ship's performance data, there are
five quantities to determine the 121'-position indica-
trix, denoted by d1, d2, d3, and 4'2. Their signifi-
cance is illustrated in figure 5.lb.

d5: ship's distance, made good in 12 hours with wind
and waves coming in from astern,
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Fig. 5.lb. This figure shows an example of the 12h effective
position indicatrix. The notations are explained in the
text of this paragraph.

ship's l2hdistance with wind and waves coming
in from one of the beams,
ship's 12'-distance with wind and waves coming
in from ahead.

If G1 is the windward border of one of the sectors of
course constraints, then is the angle between the
line, perpendicular to the indicatrix tangent at G1 and
the wind direction.

Let G2 be the leeward border of that sector. Draw a
line in G2, that touches the indicatrix there and then
draw the line in G2, that is perpendicular to this tan-
gent. This last line niakes an angle J'g2 with the wind
direction.

These indicatrix parameters are computed by means
of linear interpolation between grid values, stored in
the array elements d [1:3, 0:30] and cospsig [1:2, 0:30].

As for d[h,k] h and k are integers with I h 3

und O k 30 - the first index (h) indicates that the
wind comes in from astern (1), abeam (2) or ahead (3).
The second index (k) refers to a waveheight of k/2
meters. The array cospsig h.k contains the values of cos

with i = 1,2 for waveheights of 0(0.5)15 meters.

5.2 Evaluation of the subsequent timefronts

Let the co-ordinates of a number of points of a time-
front S, for a time t = ta+JX 12h, be known. These
co-ordinates are denoted by x and y. The number
of points is about 40. If the distance between two sub-
sequent points is more than 40 nautical miles, then a
point on the middle of the corresponding segment is

Fig. 5.2a. The timefront is known by the location of the discrete
points (I), (2) etc. The gradient in a vertex, like (1), is
taken to be perpendicular to the segment (l)-(2). For
other points, the gradient's direction is approximated
by the direction of the bissectrix of the perpendiculars
to the line segments from the point in question to the
two neighbouring points.

added. This is executed by a procedure, called "verfijn".
The timefront gradient direction (a) can now be eval-
uated, like shown in figure 5.2a.

This is executed by a procedure, called "normaal".
With the co-ordinates x0, Yo and the value of a the

first estimation of the optimal l2'-step can be eva-
luated. This happens by calling the procedure "opti-
step". Briefly stated, this procedure works as follows.

The current components sx and sy, the waveheight
hz and the wave direction tz are estimated by
linear interpolation between grid values.
The indicatrix parameters d1, d2, ci3, 'i and !g2
are determined by linear interpolation, using hz as
the determining variable.
The entire l2hstep has the components dx and dy.
The first assignments to get these components are:
"dx : = sx" and "dv: = sy".

Looking back at figure 5.lb we now take the point
with co-ordinates (x10 +sx,y0 +sy) as the origin and
rotate the axes, so that the wind direction tz is the new
X-djrectjon. The timefront's normal direction now
is t/i = a r:. Now an ellips is constructed through the
points with local co-ordinates (d1,0), (0,d2) and
(d3,0). For a given value of' the optimal l2hdisp1ace_
ment, which is the displacement with the longest pro-
jection on the t'-direction, can now be computed. The
displacements dx' and dy' with respect to the local axes
now have to be transformed back to the above men-
tioned amounts dx and dy.

Remembering that the sea current was already
accounted for, we have to give the assignments

dx:= dx+dx'xcos(tz)dy'xsin(rz);

dy:= dy+dx'xsin(tz)+dv'xcos(tz);

This completes the optistep procedure.



The co-ordinates of the points of the first estimation
of S1 . denoted by S+1, are denoted byx1 and y1.

After reading in new sea wave data for the time
= 12h, the procedures "normaal" and "op-

tistep" are repeated, giving new displacements dx and
dy. These displacements are computed for the positions
of the points of S+ with co-ordinates (x1, y). The
co-ordinates of the "corrected" points of S, ,

denoted by x12 and Y2' are obtained by giving the
assignments

x2:= (x1+x10+dx)/2;

Y12 : = (y +y0+dy)/2;

5.3 Tirnefront revision

The navigated region G is scanned by a collection of
extremals, which start in A with a 400 wide sector.
After each timefront evaluation there are four reviding
procedures to be applied.

I. "rand": Points outside of G are deleted.
"schoonmaak" and
"ontlussen": With these tests, points of S± , that
are no bordering points of the set of reachable
points H1 , are deleted, being irrelevant for
further evaluations.
"verfijn": This procedure, already mentioned in 5.2,
takes care of a sufficiently dense net of extremals,
with which the area is scanned.

In order to explain the procedures "schoonmaak" and
"ontlussen", consider figures 5.3a and 5.3b.

In 5.3a the points with numbers 14, 15, 16, 17 and
18 have to be deleted. This is done, by checking if a
timefront segment here the segment 13-14 - has an
intersection with any following segments. In this case
the timefront chord 18-19 intersects the 13-14 chord
and the points with numbers greater than 13 and less
than 19 are deleted as a result. Point nr. 19 gets number
14 etc.

(12)

(13)

(19): = (14)

(20): = (15)

(21) = (16)

Fig. 5.3a. The occurrence of overlapping of a timefront is

frequently met after passing a region with compara-
tively high waves. Rear echelon points are deJected,
being no part of the boundary of

si
Sj+ 1

(1.0)

(2,0)

(3.0)

(4,0)

(5.0)

(6,0)

(7,0)

(2.2): = (1,2)

(3,2): = (2,2)

(4,2): = (3,2)

(5,2): = (4,2)

(7,2): = (5,2)

(8.0) (8.2): = (6,2)

Fig. 5.4a. The destination B is found to lay outside of F12, while
being an inner point of The timefront com-
puting procedure now stops and the optimal track
from A to B can he determined.

19

(9,0)
(9.2):= (7,2)

Fig. 5.3b. As timefronts are built up by straight line segments
between discrete points, the occurrence of one single
rear echelon point is also possible, especially near the
timefront's vertices. Being not part of S11, they also
have to be deleted.

Another possible situation to occur ¡s shown in figure
5.3b. This situation is checked for by seeing if the
extension of a segment from (x,0, v) to (x1.,, yj2)
has an intersection with any of the segments between
two consecutive points of

It is necessary to maintain an accurate bookkeeping
of the numbers that are deleted by the procedures
"ontlussen" and "schoonmaak", while the computing
program must also include a recording of the new
numbers, brought in by the refinement procedure
"verfijn". These numbering mutations are stored in
two arrays, nu [h, j] and mu [h,j]. These arrays are
used, when the destination B ¡s overwashed by a time-
front and the indices of the consecutive points of the
optimal track have to be traced back.

5.4 Determination of the optimal trajectory and the
time gain

The passage of B is checked for by a procedure called
"fuik". To explain this procedure, consider the revised

B

Q'0iL
d
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read sea current and initial wave data in grid points; read ship's performance data; read start- & endpoint's
co-ordinates; compute great circle grid course; compute predicted first 12h great circle step;

for a: -: 25 ( I )- -15 relative to direction AB compute predictcd first 12h optisteps;

compute corrected first great circle step; compute a from predicted points of first timefront; compute corrected
first 12h optisteps; plot first tirnefront and first great circle position; j: --

false

false

false

read wave data in grid points for 1,-H 2h:

t
compute predicted Jth 12h great circle step; compute a from corrected (j l)th timefront; compute predictors
of /th 12h optisteps;

concerning the (j_1)th tirncfront: a,,: = first value of a; a1: last value of a;

tinie front
passed Newfoundland Bank

for first time

true for a: = a0+1°(I°)a0+15° compute predicted/tb 12h
optistep from upper bound of (j I )th timefrorit;

true for a: = a1 15 (I°)a1 I compute predicted 12h
optistep from lower bound of (j l)th timefront

true tora: = ai IS (I )a1l° compute predicted Jth 12h
optistep from lower bound of (j_1)th timefront

read wave data for time t,,+/ < 12h; compute corrected jth great circle step; compute a from predicted points
ofjth timefront; compute corrected Jth 12h optisteps; plot jth timefront and jth great circle position;

determine indices of points of track at subsequcnt
timefronts; plot the least time track;

end
Fig. 5.5a. Flow chart of the program to compute the least time track.

(9)

(16)

= (5)

true
(15)

(17) delete irrelevant points and add new points,
where needed;

(IO)

(12) (I 3)

(14)

(1)

2)



timefront S and the unrevised timefront S1 . First
the index is determined of the point of S, that is clo-
sest to B. This index value is assigned to the integer
variable i. Let us denote this point by P0 and the
corresponding point of S1 by Q10. Let the distance
from P.0 to Q.0 be d. We can now say, that B is covered
by H1+ j, if the projection of P10B onto P10

Q-0
is not

greater than cl.
As soon as this is found to be true, the arrival time

and the points of the optimal track can be determined.
A fair idea about the time gain of the optimal track

can be obtained by comparing it with the time, needed
for the same ship to pass the same composition of
obstacles, when steering a great circle's course.

5.5 Flow chart of the program to compute the least
time track

See fig. 5.5a on page 20.

5.6 An application to practice

The computing program, corresponding to the flow
chart of the preceding paragraph, was applied to a
fictive merchant ship with a service speed of 15+ knots
and a set of performance graphs, taken frpm figure 4.2a.
The sectors of forbidden courses were taken in ac-
cordance with data, that were gathered by the K.N.M.[.
routeing office from practical experience. The ship was
supposed to sail from Bishop Rock to Nantucket
Shoals, starting on March 1st 1967, 0h GMT.

¿ON 50N 8OW

The result of the computation is shown in figure 5.6a.
The timefronts in this figure are marked S05, S1, S15

etc. For example S35 is the timefront for March 4th,
12h GMT.

The arrows near the timefronts refer to the sea waves,
i.e. wind generated waves when fully drawn and swell
when drawn dashed. The numbers near the arrows
give the waveheights in meters. The optimal track is the
fully drawn curve, composed of straight line segments
from timefront to timefront. Possible small course
alterations and tacking manoeuvres are not indicated,
being a matter in wich the ship's master is autonomous.

The dotted line is the great circle track, on which the
positions after 05d, cl I 5d etc. are marked by crosses.

Regions of iceberg danger near Newfoundland and
Nova Scotia were taken into account by simulating
extremely high waveheights in the grid points near by.

5.7 Considerations regarding data incertainties and
practical use

As noted before, the reliability of weather predictions
can be taken inversely proportional to the time last
ahead, the prediction is given for. This means, that the
least time track, constructed on the basis of weather
and sea estimations for a time, from O to 8 days ahead,
can only be taken as a real extremal for the next one or
two days to come. A change in the predicted data
would mean, that the track has to be revised, If a ship
would thus follow a day-by-day corrected extrema!,

¿o-w 20W

60'W 5. W 1.' W 30 N 30W 20W 10W

Fig. 5.6a. Result of the computation of an optimal track from the English Channel to the U.S. East coast. The least time track
(fully drawn) is seen to avoid areas of extremely high waves and it also shows the advantages of making for the leeward side
of Newfoundland as soon as possible.

50'N

50'N

N
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the entire track will consist of parts, that are extremal
arcs from day to day, but the composition of these
extremal arcs will in general not be an extremal.

It seems rather precarious to make a numerical
estimation of the error, that is made this way. A pos-
sibility to collect statistical data on this matter would
be to simulate ship's crossings in the past, based on
weather and sea predictions that were really made at
that time, and then compare this with the real extremal,
that should have been taken.

As a concluding remark on the efficiency it can be
stated, that the past seven years of experimental ship
routeing did not show a substantial average time gain.
However, the decrease of cases of extremely high
storm damage as well as the better predictability of the
expected time of arrival - an essential figure for ships
that carry general cargo to the North American East
Coast - can be marked as important advantages of this
method of shore-piloted ocean navigation.

For other methods of numerical ship routeing the
references [17, 18, 19, 20] can be consulted.
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Differential equations to construct an extremal

Let [f } be the collection of all extremals from A to a
point of the timefront S(T) with T > t (see figure
A.la). Otherwise stated, {f } is the collection of solu-
tions of dx/dt = f(x,,t) with initial point (ta) =
and x(r) on S(t).

A subcollection C of I' } is formed by a field of
extremals - i.e. a family of extrem.als with no mutual
intersection points except A - with the additional
property, that the timefronts S'-(t) are differentiable
curves, as far as they correspond to extremals of the
C-field. The extremals of C, that cover a subregion
G of H (t), can be characterised by attaching a real
number s to each specimen. Thus the co-ordinates of
a point of G are functions of t and of s: x' = x'(t,$)
with i = 1,2.

Fig. A.la. S '-(T)

The timefronts that correspond to C were assumed
to be differentiable curves, so x(t,$) is partially dif-
ferentiable with respect to s everywhere in Ge, except
of course in the boundary points, where there is only
left or right differentiability.

Let T be an extremal of C with s = s correspond-
ing with the navigating function 0(t). Take two time
instants t1 and t2 so that ta < t1 < t2 T. Let E
intersect the timefronts S(t1) and S(t2) in P1 and P2

respectively, so

x,. = x(t,s0) for i,j = 1,2.

Consider a neighbouring extremal T, also a member
of the C-faniily, generated by the navigating function
;(t). Let Q1 and Q2 be the intersecting points ofT
with S(1) and S'-(t2). Let the s-value ofF be s0+c.
Then we have

= x'(11, s0 +c) for i,j = 1,2.

This situation is exposed in figure A.lb.

APPENDIX i

Fig. A.lb.

S '-(t1)

Fig. A.lc.

The tangent vector, that touches S(t) in a point of
T0, is defined by

x1(t)
0x(t,s0) (i = 1,2) (A.1.1)

so that

s0 + e) = x(t, s) + c5x1(t) + o(e)

where o(e) has the property

o(e)
hm =0.
c-0

As for the two neighbouring extremalsF0 andF it can
be asserted that the velocities at a time r in the points
x(t,s0) off0 and x(r,s0+e) ofF are also "close to
each other", except possibly for the occurence of a
finite number of bending points, i.e.

lirnf(x(t, s0 + e), ;(r), t) = f"(x(t, s0), 0(t), t) (A. 1.3)

almost everywhere on [,î].
A "one-point-exception" to this is shown n figure

A.lc.

S '-'t'/ locus of
Ibending points

(A.l.2)

Suppose e1 > O and e2 < 0, then it is clear that the
velocities f( (t,s0+c), ;(t),i) have different limits for
e 10 and e . 0. These limits are indicated in figure A.lc
asf0(t) and f0(r). May the attention now be con-
centrated on the way, the tirnefront tangent 5x(t)
changes with time along r0. We can put

x(t2, s0 +e) = x(t1, s +e) +f((t, s0 +e), ;(t), t)dt

23
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and

f2

x(t2, s0) = x(t1, s0) +$f(x(t, s0), x0(t), t)dt.
ti

Subtracting this and using (A. 1.2) gives

cöx(t2) - tc5x(t1)+

s0 +c), ;(t), t)f(x(t, 50), 0(t), t)} dt+o(t),

(A.1.4)

where o(t) denotes a vector in R2 with components of
the 0(t)-type. The expression (A.1.4) can be split up in
two ways:

1:
côx(t2) = thx(t1)+I+J +Q(t) (A.1.5)

t2

¡ = $ f(x(t, s0 + t), ;(t), t) f(x(t, s0 + t), 0(t), t)} dt
ti

(A.1.5a)
and

12

i = $ {J(x(s, so +t), 0(t), t) f(x(t, s0), 0(t), t)} dt
ti

(A.1.5b)
2:

tö(t2) = tt3x(tj)+I*+J*+o(t) (A.1.6)

with

f = f {f(x(t, s0), ;(t), t) f(x(t, s0), 0(t), t)} dt

(A.1 .6a)
and

s0 + t), ;(t), t) f(x(t, s0), ;(t), t)} dt

(A. i .6b)

The expressions for J and ,f' can be written as

t2 2

$
afç(t, s0(, 0(t), t)

(x(t, s0 + t) -
ti ¿j=1 ax

x1(t, so))+o(c)} dt,

12 Ç 2 aJ(x(t, s0), ;(t), t)
(x(t, s0 + t) -

axti U=l

tim fit = um ,Ç/t =
t-0

(2 2

$
af((t, s0), c0(t), t)

Öx'(t) dt

öx(i2) = ôx(t1)+limJ/r+limJ/c
c-0 t0

5x(t2) = öx(t1)+limI/t+limf/t
c-'O t-0

Considering (A.t.7) it can be asserted that

[(x(t, se), ;(t), t)f((t, se), 0(t), t)dL=$hm -
lit-0 t

This expression justifies the conclusion that L is almost
everywhere differentiable to the upper bound t2.
Omitting the index, we can now state that dL/dr
exists almost everywhere on [ta,t}.

From (A.1.5a) we see that

= f(x(t, s + t), ;(t), t) f(x(t, s0 + e), 0(t), t)

(A. 1.8)

Remembering the maximum principle and the assump-
tion that ;(t) was an optimal navigating function
- because 'E is an extremat - it is clear that

(fr1,f(x(t, s + t, ;(t), t)) (&1,f(x(t, s + e), 0(t), t)),

where /j is a normal vector to S(t) in x(t,s0+e).
So according to (A.l.8) we have

so for

and for

lim!/t = liml'/t = L.
c-0

e >0: dl/e)
O

(A. 1.7)

Concentrating on I and f, we can conclude from
(A.l.5 &6)that

(A. 1.10)

In view of (A.l.3) we may now conclude that Consideration of J in (A.1.6a) and using the maximum

with Using the (A. ¡ .6a), we can write

O (A.1.9)

- x(t, s0)) + (t)} dt e<0: (,dl/e)<0
(A.1.11)

(Ai .5c)

(A.1 .6c)



conclusion that for

d1/\
> O: (o. )

O (A.1.12)

and for

< O: (
dl/E)

O

Taking ¿ > O and letting descend to zero, which
implies that

L1'
tends to it follows that

/ dL\

while

according to (A.l.10)

(íø J) O in view of(A.l.12).

So for 0 we have (, dL/dt) = O almost every-
where on [fa,t1

For approaching zero from the left, the arguments
are analogous. (A.l.11) gives that dt/dt) O and

(A.l.13) leads to dL/dt) 0. So the over-all-
conclusion is that

(i0,dL/dt) =0 (A.l.l4)

almost everywhere on [ta, r].
Let us now consider the expression (A.l.5c). Dif-

ferentiation to t2 and then omitting the index gives

d(5x)d dL
(hm J/) +dt dt

In regard of (A.l.7) this becomes

d(5x) öf(x(t, s0),0(t), t) dL

dt j=1 dt
+ (Al 15)

For the gradient vector i/(t), which is to be permanent-
ly perpendicular to a timefront, the relation

must hold for all t past ta, so it has to satisfy the re-
quirement

/di d(ö(t))\
dt

,ö(t))+(i(t),
dt

)_0.

Working this out and taking account of(A.l.l4 & 15),
we find the components ç& of 4i to change along an
extremal according to

difr1 f(x(t),cc(t),t), (i = 1,2)
1=1 0x

almost everywhere for t t.
Summarizing this, we can say that the construction

of an extremal amounts to the solution of the following
system of differential equations:

Fori = 1,2

dt
=f(x1,x2,,t)

- 2 8f(x1,x2,c,t)-
i IJi

dt ôx

Select within the limits of feasibility so, that it
maximizes the inner product

2

,1(t)J(x', x2, , t).
i= I

The starting conditions for x are: x1(0) = Xa'.
For the adjoint vector 1i no start is given, but the

starting values of ]i have to be so that the above
mentioned system generates a trajectory, that satis-
fies the requirements x(th) = XbZ for some, yet unknown
time tb.
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principle on the extremal r0, leads to the analogous (i(t), x(t)) = O



Modifications in case of co-ordinate restrictions

Let r0 in figure A.2a be an extremal, starting from A
at a time t and let F0 touch the boundary at a point R,
with co-ordinates (x, x), at the time t0. Let the
boundary near R be specified by the equation q(x',x2)
= 0, while points of G have to satisfy the condition
(x1,x2) 0. Suppose the boundary curve near R to

be smooth, so that p(x',x2) is continuously differen-
tiable with respect to xt and x2. We now want to in-
vestigate, what conditions have to be satisfied for an
arc RS of the boundary to be a "sub-extremal", i.e.
the boundary arc RS is a minimal time curve, com-
pared to other curves from R to S with no points out-
side of G.

Otherwise stated, we start at a time t0 with x1(10) =
= X'c (i = 1,2), while ç(x, x) = O. We navigate

according to

= f1(x', X2, t ),

with the position co-ordinates satisfying (x'(t),
x2(t)) O for t > t0. The destination S has co-ordina-
tes (x,x), for which the equality q(x,x) = O holds.

We also assume there is a class F of navigating
functions {(t)} that all take the ship from R to S,
arriving there at a time t.
(N.B. This arrival time t1 depends on the choice of
the navigating function (t)).

Let the steering function &(t) be optimal, so the cor-
responding arrival time in S is minimal. 1f the
boundary arc RS is a sub-extremal, then the solutions
1(t) of the above stated problem satisfy the equality

q((t), 12(t)) = O for t0 t t1.

If (t) is given a small variation 5(t), while
&(t)+&«t) still belongs to class F, this varied naviga-
tor will generate the solutions x' = 1(t)+x1(t) and

we have fori = 1,2:

Fig. A.2a.

=
*

APPENDIX 2

R(t0)
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an arrival time
Substituting

+t1, with 0, will be the result.

XI

t

= X,

= y1,
X1

x

o

= X0,

=
Yo'

X

X

f1

= X1,

=
y2,

li» = G2 f2/f = G1,

The steering equations

= Gi(yl,y2,,x) (A.2.1)

The start and end conditions

y'(x0) = y, y1(x1) =

where y, y and y are fixed and given, while the
arrival time y is variable.

The restriction

q(x,y1) O for all y2, (A.2.2)

while p(x,y1) = O for k = 0,1.

The time that it takes the ship to go from R to Sis equal
to

J(y) = yy = JG2(y',y2,,x)dx (A.2.3)
X0

Denoting the minimal solutions by y1 = (x) and
introducing the abbreviative notations

Gand G,
k Y

the variations y1 and ö have to satisfy the minimal
condition

JÇ) J(j+ôy),
so

X'

J{G2U+5y,+ó;x)G2U,&,x)}dx 0.
XO

This means that the requirement

:{,t1GY+G}dX O (A.2.4)

has to be met with.
The x-derivatives of 5y1 can be found to be

d(öy1)
(A.2.5)

X j=1

The restriction to G, implying the inequality
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(p(x,y1)+z = O (A.2.6)

where it can be remarked that z = O for y' = j(x).
The variations in j1(x) imply slack variations öz(x), so
variation of (A.2.6) gives

= O (A.2.7)

Differentiating this to x and using (A.2.5) gives

qöy' +q'iiG'öy' +
2

+ = Oj1 \dx

Putting

Q = o. = l/Q,

Xi =

the last equation becomes

2

= o
i= i

or

= XJY(Jx)
Considering the minimal time condition (A.2.4), we
can now substitute for and find

{
- aGX1) ri

) } dx
O

(A.2.8)

We now introduce the adjoint vector p = (Pi,P2) by
defining

GaGX = dx +

Before further development, let us consider this

X2 =

d 1 2

=
dpJJ d(ôy)1

Pi
dx jdx (ii' - j I. dx

= {(+ PkGJ)YJ+PJG}
j=i dx k=I

= ±
{(dp

PkGJ)öYJ+
j=i dx k=1

+

this becomes

d'2 \ 2

-( p1yi)= (+ pkGjXdx\i=i / j=i dx k=1

(±
dxj

Now the inequality (A.2.8) can be replaced by

I [
(P.öyJ)+(1_aG2)(th)]dx O,

or

r 2 lxi x1

L'1' I + !)dx ? O, with =
j=1 JXo

1= i

Remembering, that 5y(x0) = O and 5v'(x1) = O, this
leads to

P2Y2(Xi)+P - J --zdx O

0
dx

The requirements 5y2(x1) = 5t1 O and 5z O flOW

mean that P2 O, O and d/dx O.

The last conclusion means, that the "boundary
extremal", for which is positive, tends to a free extre-
mal. As soon as ¡i becomes zero, the boundary con-
ditioi has lost its weight and the extremal can be con-
structed without having to consider the ( O-

restriction for the time being.
Summarizing the result, the variables y, ji and p

have to be solved from the following equations

Gi(yi,y2,c,x)

dp - p1G+jix1+G
x

p(x,y1) = O

G+pq1G p1G = O

Transforming this back to a system wit1 the time as
independent variable and putting

= Pi

= (4''2f2+/'2I)/P

q)(x,y') O, can also be expressed by introducing a With
slack variable z, that has to be non-negative. The in-
equality can then be replaced by the equality



one can find

dx
dt

2

Oui - jicpi)fc = O
i= I

The last expression determines p. This can be geome-
trically explained by means of figure A.2b.
In a point P of the boundary, characterized by

= O, the stream vector c is drawn. The mean
wae vdirection and the significant wave height deter-
mine the ship's velocity inclicatrix.

The gradient vector V is pointed to the outside
of G.

The adjoint vector /í has a direction, so that bare
application of the maximum principle would produce
a velocity vector f, that has a positive inner product

= f(x1 ,x2,cc, t)

= j2 {jf + ji('pjf + fJ)

q(x1,x2) = O

Fig. A.2b.

with V. This would mean a tresspassing into the
prohibited region Gc. Subtraction of pVp from /'
- with p > O - has to deliver a velocity f perpendicular
to Vp. This number p can be found as follows:

Determine the ship's velocity s so that ç+ touches
the boundary.

In the endpoint of s draw the tangent to the indica-
trix. Now the vectors 1' and pV must have equal
projections on this tangent. This determines p, as long
as it is positive. As soon as p becomes zero, the extremal
leaves the boundary and leads to points inside G, with
Q(x',x2) < O.
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PRICE PER COPY DFL. 10,-
M = engineering department S shipbuilding department C = corrosion and antifouling department

Reports
57 M Determination of the dynamic properties and propeller excited

vibrations of a special ship stern arrangement. R. Wereldsma,
1964.

58 S Numerical calculation of vertical hull vibrations of ships by
discretizing the vibration system, J. de Vries, 1964.

59 M Controllable pitch propellers, their suitability and economy for
large sea-going ships propelled by conventional, directly coupled
engines. C. Kapsenberg. 1964.

60 S Natural frequencies of free vertical ship vibrations. C. B. Vreug-
denhil, 1964.

61 S The distribution of the hydrodynamic forces on a heaving and
pitching shipmodel in still water. J. Gerritsma and W. Beukel-
man, 1964.

62 C The mode of action of anti-fouling paints: Interaction between
anti-fouling paints and sea water. A. M. van Londen, 1964.

63 M Corrosion in exhaust driven turbochargers on marine diesel
engines using heavy fuels. R. W. Stuart Mitchell and V. A. Ogale,
I 965.

64 C Barnacle fouling on aged anti-fouling paints; a survey of pertinent
literature and some recent observations. P. de Wolf, 1964.

65 S The lateral damping and added mass of a horizontally oscillating
shiprnodel. G. van Leeuwen, 1964.

66 S Investigations into the strength of ships' derricks. Part I. F. X.
P. Soejadi, 1965.

67 S Heat-transfer in cargotanks of a 50,000 DWT tanker. D. J. van
der Heeden and L. L. Mulder, 1965.

68 M Guide to the application of method for calculation of cylinder
liner temperatures in diesel engines. H. W. van Tijen, 1965.

69 M Stress measurements on a propeller model for a 42,000 DWT
tanker. R. Wereldsma. 1965.

70 M Experiments on vibrating propeller models. R. Wereldsma, 1965.
71 S Research on bulbous bow ships. Part Il. A. Still water perfor-

mance of a 24,000 DWT bulkcarrier with a large bulbous bow.
W. P. A. van Lamrneren and J. J. Muntjewerf. 1965.

72 S Research on bulbous bow ships. Part II. B. Behaviour of a
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