

Delft University of Technology

Commands as AI Conversations

Spinellis, Diomidis

DOI
10.1109/MS.2023.3307170
Publication date
2023
Document Version
Final published version
Published in
IEEE Software

Citation (APA)
Spinellis, D. (2023). Commands as AI Conversations. IEEE Software, 40(6), 22-26.
https://doi.org/10.1109/MS.2023.3307170

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MS.2023.3307170
https://doi.org/10.1109/MS.2023.3307170

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

22	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E

Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

ADVENTURES CODEADVENTURES IN CODE Editor: Diomidis Spinellis
dds@aueb.gr

THE IMPRESSIVE ADVANCES in
generative artificial intelligence (AI),
made possible by large foundation
models, are driving all sorts of com­
panies to integrate AI capabilities
into their products and services. How
can we do the same for the tools we
use as developers? What are the
possible approaches? What does such
integration entail from an engineer­
ing perspective?

There’s certainly a need for AI help.
I often struggle to remember the pre­
cise incantation that a command-line
tool requires and, judging from highly
voted posts on StackOverflow I regu­
larly encounter, I see I’m not the only
one. Graphical user interfaces help
here, but in terms of capabilities and
efficiency, they’re often no match for
their command-line siblings. Chat­
GPT is also very helpful, but drafting
prompts with appropriate context
and copy–pasting its answers to the
command line seems wasteful. What
would be ideal would be a GitHub
Copilot-like app for command-line
interface (CLI) tools. Here we’ll see
the design and construction of such a
system, called ai-cli. It’s available as
open source software from GitHub

at https://github.com/dspinellis/ai-cli.
When installed and run, it allows writ­
ing natural language prompts directly
on the command line of many (un­
modified) command-line tools, such
as the Bash shell, diverse structured
query language (SQL) front-ends, the
gdb debugger, and the bc calculator.
The press of a hotkey will tap into
OpenAI’s generative pretrained trans­
former (GPT) model and insert into
the editing buffer an executable com­
mand derived from the prompt.

Talking With AI
How can we convert a natural lan­
guage prompt into an executable
command? Many vendors of large lan­
guage models offer them both through

interactive web sessions, such as Chat­
GPT, and through an application pro­
gramming interface (API). Here we’ll
see OpenAI’s API, but others are quite
similar. Accessing the API involves
making an HTTP request with JSON
data specifying the prompt for which
the user wants an AI response. To pro­
vide conversation context, the prompt
can consist of several messages, each
corresponding to one of three roles:
the user role, containing the human
user’s requests; the assistant role, con­
taining the OpenAI’s responses; and
a system role specifying the overall
direction for the conversation, for ex­
ample “Talk to me as if I’m five years
old.” Providing the context with each
request means that OpenAI’s back end

Commands as
AI Conversations
Diomidis Spinellis 

Digital Object Identifier 10.1109/MS.2023.3307170
Date of current version: 1 December 2023

©
S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

/S
T

O
C

K
-A

S
S

O

mailto:dds@aueb.gr
https://orcid.org/0000-0003-4231-1897

ADVENTURES IN CODE

	 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE � 23

doesn’t need to maintain discussion
state and also offers more flexibility to
the API user. Other parameters spec­
ify the model to use (e.g., GPT 3.5 or
GPT 4) and a sampling “temperature”,
which controls the randomness of the
provided response. API access authori­
zation is handled out-of-band through
the HTTP authorization header and a
“bearer” token, a secret key that Ope­
nAI provides to each API’s user.

In our case an API request might
be as follows:

{
  “model”: “gpt-3.5-turbo”,
  “temperature”: 0.7,
  “messages”: [
   {“role”: “system”, “content”: “You are an
assistant who provides executable commands for
the bash command-line interface.”},
    {“role”: “user”, “content”: “List files in
current directory”},
   {“role”: “assistant”, “content”: “ls”},
   {“role”: “user”, “content”: “How long has
the computer been running?”}
}

In practice, ai-cli’s “system” prompt
also contains instructions that disable
explanations and provide textual an­
swers as comments. Furthermore, the
“messages” array starts with three
canned program-specific user-assistant
exchanges that provide multishot
priming to the AI model, continues
with previously typed commands to
provide context, and finally ends with
the actual user prompt.

If no error occurs, the response is
quite simple, with the “content” part
being what we’re after.

{
  “id”: “chatcmpl-
7m1tRm1A8uAUPC174mQsjx4ql2n14”,
  “object”: “chat.completion”,
  “created”: 1691681377,
  “model”: “gpt-3.5-turbo-0613”,

  “choices”: [
   {
    “index”: 0,
    “message”: {
     “role”: “assistant”,
     “content”: “uptime”
    },
    “finish_reason”: “stop”
   }
 ],
  “usage”: {
   “prompt_tokens”: 167,
   “completion_tokens”: 1,
   “total_tokens”: 168
  }
}

(The usage tokens are important
because they determine the API’s
use cost. At the time of writing, the
OpenAI “GPT 3.5-Turbo” model with
4,000 tokens context is priced at
US$0.0015 per 1,000 prompt tokens
and US$0.002 per 1,000 completion
tokens. Tokens are common words
or parts of less common ones.)

Examining Alternatives
Now imagine the task of adding AI
help to a large set of command-line
tools. The work can be simplified
by developing a suitable component.
However, this still needs to be inte­
grated with each tool. If the tools
were developed by a single company,
its managers could plan the task
and ask developers to implement it
within a (typically overoptimistic)
deadline. In the open source world
things are more interesting. One
possibility is to wait for each tool
maintainer to add such functional­
ity, but this can take a lot of time
because many tool maintainers are
volunteers with little available free
time. A more attractive alternative
is to somehow make the change in a
central location, so that all tools will
automatically pick it up.

A few decades ago, this location
would have been between the oper­
ating system and each command-line
tool. Operating systems offer a line-
editing capability, so extending this
with a shortcut key offering AI help
would instantly make this facility
available to all programs accepting
input from a terminal line-by-line.
Sadly, operating systems were slow
and conservative in enhancing their
line-editing prowess. For exam­
ple, the only editing functionality
that the Unix or Linux kernel of­
fers is the ability to erase an entire
line or the last entered character or
word. To address this shortcoming,
individual programs developed their
own more sophisticated line-editing
functionalities. Many gradually ad­
opted a library, GNU Readline and
its Berkeley Software Distribution
(BSD)-licensed Editline alternative,
for handling command-line input
editing. Consequently, extending
Readline with AI help seems like a
good choice.

As Readline does not offer a plu­
gin mechanism, extending it involves
modifying its source code. This,
however, requires cumbersome co­
ordination with its maintainers and
operating system distributors for in­
tegrating the changes. Besides, it’s
not clear that Readline should include
such a heavyweight component; its
manual page already comments “It’s
too big” in the “Bugs” section. In­
stead, an approach we can adopt is
to write code that gets loaded when
a program gets run and sets up Read­
line to provide AI help.

Tickling the Dragon’s Tail
In the 1940s American scientists de­
veloped a suicidally risky method
for assessing the critical mass of nu­
clear material. It involved removing
the spacers between two vertically

ADVENTURES IN CODE

24	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

stacked half-sphere neutron reflec­
tors, and then using a screwdriver as
a wedge to keep them apart. While
a scientist manipulated the screw­
driver to slowly bring one part closer
to the other, a Geiger counter mea­
sured the increasing radiation. The
procedure was called tickling the
dragon’s tail and, as you can well
imagine, one time it didn’t end well.

Externally changing the func­
tionality of a running program is
a similarly delicate operation. The
program, its runtime libraries, and
the operating system maintain tons
of state associated with its opera­
tion: open handles, statically al­
located buffers, signal handlers,
memory pools, dynamically loaded
libraries, CPU and device registers.
All of these can be easily messed up
when manipulating a program’s state,
causing it to misbehave or crash.

To avoid interference, we need to
minimize the possibilities for it. This
means programming as close as pos­
sible to the operating system and the
hardware. For example, a write call
through the operating system in­
terface will be atomically executed,
while a similar operation through
an input–output library will be typi­
cally buffered in uncontrollable ways.
Consequently, the most appropriate
programming language for such tasks
is C, which has a minimalist and
ringfenced runtime environment.

Although C has earned its place
in the history books, nowadays it’s
rarely the best programming lan­
guage choice. For user-facing appli­
cations, it’s more appropriate to use
development frameworks and their
corresponding languages, such as
Java, C#, and JavaScript. For per­
formance-critical tasks, well-crafted
modern C++ can be just as efficient
(on the margin) in terms of memory
requirements and execution speed as

C, while also being a lot more pow­
erful. For many more other data
mangling tasks one can be orders of
magnitude more productive by using
Unix command-line tools or Python
scripts. However, for the require­
ments of ai-cli, C fit like a glove.

The operation of ai-cli relies heav­
ily on shared libraries. These are a
feature of modern operating systems
that allow diverse programs to share
functionality, such as a language’s
runtime support, compression, graph­
ics capabilities, cryptography, or (you
guessed it) line editing. These librar­
ies contain compiled native code and
are loaded on-demand (dynamically)
when a program that uses them gets
executed. By being shared among
multiple programs they save the disk
space that would be required for
having their code individually (stati­
cally) linked to each program. In a
modern Debian GNU/Linux operat­
ing system distribution, about 600
programs share 160 MB of library
code, which would otherwise require
1.9 GB if it was linked individually to
each one of them. Some systems even
have processes share among them
their library code as it is loaded on
main memory, resulting in additional
RAM savings.

The ai-cli code attaches to the
editing part of command-line tools
through mechanisms associated with
shared libraries. The first is the LD_
PRELOAD environment variable.
Environment variables are key-value
pairs maintained by the operating
system and stored in the memory im­
age of each running process. They
can be set by the shell and are in­
herited when a parent process ex­
ecutes a child one. They are used for
passing arbitrary information down
the process tree: things ranging
from the path in which commands
are searched to the user’s preferred

editor. The LD_PRELOAD environ­
ment variable instructs the code that
loads shared libraries to load one or
more additional libraries before run­
ning each program. It is often used
for debugging and instrumentation.
In our case this is used to load the ai-
cli code together with each program.

The second mechanism used for
attaching ai-cli to external pro­
grams is a compiler extension quali­
fier “__attribute__((constructor))”
that can be associated with C and
C++ functions. When the dynamic
library linker encounters functions
compiled with this qualifier in a
shared library, it transfers control to
them before executing the program’s
main function. In the case of ai-cli,
its initialization function is marked
in this way. When it gets executed,
it uses the API of the dynamic loader
library to see if the program is linked
with Readline and can therefore be
extended with AI help functional­
ity. If so, it creates a new Readline
function that provides AI help and
binds it to corresponding keystrokes
(“Ctrl-X A” by default).

Refining
The development of ai-cli faced some
important unknowns. Could Ope­
nAI’s API provide plain and ap­
propriate executable commands as
suggestions? Could ai-cli’s code hook
onto another program and manipulate
its Readline interface to add AI help?
The first question’s answer was ob­
tained with a 25-line Python program
that talked to OpenAI through Py­
thon’s requests API, allowing experi­
mentation with prompts and answers
in the way that would be later imple­
mented in C. The second answer came
through a 40-line proof-of-concept C
program that attached itself to other
command-line programs and hooked
to their Readline API. This code

ADVENTURES IN CODE

	 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE � 25

provided a fixed response (“The an­
swer to … is 42”) to lines starting with
“ai”. You can find that code in the
ai-cli repository’s first commit. Little
remains from that code, but it dem­
onstrated that a generic AI assistant
for arbitrary command-line programs
was indeed viable.

Many elements of ai-cli’s opera­
tion need to be configured at runtime.
Therefore, the next step involved add­
ing a flexible and structured configu­
ration file format and the ability
to read multiple configuration files.
The investment quickly paid back,
because configuration ended up cover­
ing facets ranging from the employed
model and the sampling temperature
to per program multishot prompts,
keystroke mappings, and the Ope­
nAI API key.

ai-cli is quite small in terms of
code size. In addition to the config­
uration code (249 lines), the other
major elements of ai-cli are its ini­
tialization code for adding key bind­
ings to Readline (123 lines), code
that assembles the JSON for the
OpenAI API requests and parses the
response (218 lines), and some func­
tions that support the safe handling
of memory and character strings
(282 lines). The main difficulty was
not churning out the required code
but understanding and addressing
various subtle issues.

Dynamically attaching to third-
party programs turned out to be trick­
ier than what the proof-of-concept
program demonstrated. The linking
would fail with unresolved global
variable references if the third-party
program lacked the libraries ai-cli
was using, such as libcurl used for
making the OpenAI HTTP requests.
This happened because, although
it’s easy and efficient to dynamically
patch function calls at runtime, it’s
more cumbersome and inefficient to

do this for arbitrary global variable
references. Consequently, dynamic
linking does not offer this function­
ality. The problem was addressed by
dynamically obtaining the variables’
memory addresses through the dy­
namic linker API. Thankfully, with C
it’s trivial to access data based on its
memory address by using a pointer.

A more perplexing problem was
that arbitrary programs, such as the
Unix man (manual page) command,
would crash when loading ai-cli. Un­
derstanding why the working ai-cli
code would fail when linked with
some specific programs that weren’t
even using it was challenging. In the
end, the mystery was solved through
system call tracing and postmortem
debugging of the crashed programs’

memory images (the so-called core
dumps). It turned out that these
programs set up a secure comput­
ing environment (seccomp) to pro­
tect themselves against attacks that
could be embedded in the untrusted
data they often handled. This envi­
ronment will forcibly terminate a
process if it issues an operating sys­
tem call outside the known small
set of calls the process normally
makes. The initialization of the lib-
curl library issued such a system
call (getrandom), which resulted in
the crash. The solution involved dy­
namically loading the libcurl library
only when ai-cli gets attached to
programs featuring command-line
editing, which may actually make
OpenAI API calls. This reduces the

DEPARTMENT WELCOME

This is the inaugural installment of the “Adventures in Code” column. Although
I see value in passing on knowledge through formal lectures, books, research
articles, and training, I find that storytelling can often be a more engaging and
effective method. It’s one society has used for millennia through oral tradition;
think of Homer’s shipbuilding description in The Odyssey (5.234–253). Based
on this concept, the column’s aim is to share advice as well as classic and
cutting-edge knowledge through personal experiences in code crafting. If you
have a suitable story you’d like to share, drop me an email with a short pitch to
discuss it.

ABOUT THE AUTHOR

DIOMIDIS SPINELLIS is a professor in the Department of Management

Science and Technology at the Athens University of Economics and Business,

Greece, and a professor of software analytics in the Department of Software

Technology at the Delft University of Technology, The Netherlands. He is a

Senior Member of IEEE. Contact him at dds@aueb.gr.

mailto:dds@aueb.gr

ADVENTURES IN CODE

26	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

chance of interference, keeping all
programs happy.

Programming in C can be tricky,
and so some unit tests (228 lines)
helped iron out bugs and gain confi­
dence in the code. The last piece of
code written for ai-cli was the one to
call the OpenAI API. With the Py­
thon prototype at hand, it was the
one with the fewest unknowns. This
turned out to indeed be the case.
When all ai-cli parts were hooked to­
gether, ai-cli gave a correct response
to its first natural language prompt.

In actual use, ai-cli responses to
prompts appear in about one second
and their quality is on par with what
we would expect to get from Chat­
GPT. The overhead of attaching ai-cli

with each process invocation is about
70 ms, negligible for interactive use.

Forging Ahead
The ai-cli program can be extended
in many ways. As it’s an open source
program hosted on GitHub, it’s
easy to contribute enhancements
through pull-requests (Git patches
managed through GitHub’s web in­
terface). The easiest extension is the
addition of more multishot prompts
that can optimize responses for di­
verse command-line tools. This can
be easily done by adding more sec­
tions to its main configuration file.
ai-cli currently supports GNU/Linux
(tested natively on the x86_64 and
armv7l CPU architectures and on

the Windows Subsystem for Linux)
and macOS’s Homebrew ports. Ex­
tending it to work on additional
distributions and operating system
flavors will allow more people to
benefit from it. It would also be in­
teresting to support more large lan­
guage models. The OpenAI interface
is abstracted in a single file and can
easily live side-by-side with various
alternative APIs. An enticing possi­
bility would be to develop one que­
rying a freely available model, such
as Llama-2. This could be hosted on
an organization’s server, simplifying
access for all its users, and opening
the possibility of fine-tuning it for
specific use cases. We certainly live
in exciting times!

IEEE Computer Society
Has You Covered!
WORLD-CLASS CONFERENCES —
Over 189 globally recognized conferences.

DIGITAL LIBRARY — Over 893k articles covering
world-class peer-reviewed content.

CALLS FOR PAPERS — Write and present your
ground-breaking accomplishments.

EDUCATION — Strengthen your resume with the
IEEE Computer Society Course Catalog.

ADVANCE YOUR CAREER — Search new positions
in the IEEE Computer Society Career Center.
NETWORK — Make connections in local Region,
Section, and Chapter activities.

Explore all of the member benefi ts
at www.computer.org today!

Digital Object Identifier 10.1109/MS.2023.3328462

	022_40ms06-adventurescode-3307170

