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Abstract—Research in human-robot interaction (HRI) often
puts emphasis on either the cognitive level or on the physical
level. In a scenario, where a robot physically guides a person to
perform a complex series of tasks (e.g., a patient making tea),
information is exchanged on the cognitive level and forces/torques
are exchanged on the physical level, continuously. Such a con-
tinuous co-adaptive interaction between both agents and the
environment requires the robot to be anticipating, proactive, and
able to react flexibly to the user’s intentions and situation context.
The unification of sequential cognitive situation modeling and
continuous robotic movement control is a challenge currently
missing a conceptual framework. We conceptualize strategies on
how to connect models of physical HRI and models of cognitive
HRI, depending on the level of assistance provided by the robot
system, from mere warnings of dangerous situations (level 1)
to on-body continuous movement guidance (level 4). In this,
we consider the requirements for the robot to be aware of the
interaction environment and have a dynamic representation of
the individual user. Our conceptual framework is intended to
spark discussions and formalize assistance approaches with the
aim to integrate cognitive and physical human-robot interaction
approaches for anticipatory assistance in continuous dynamic
tasks.

Index Terms—human-robot interaction, cognitive modeling

I. INTRODUCTION
Robots are becoming more common in the industry, health-

care, and people’s households, where they directly interact
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with and provide assistance to humans. Existing human-robot
interaction (HRI) research usually focuses either on interac-
tions on the cognitive level (cHRI; e.g., social interactions) or
on the physical level (pHRI; e.g., physical interactions with
robotic assistive devices; [1]). However, regardless of the type
of assistive device (robotic arm or wearable device), real-life
HRI is often embodied interaction (Figure 1). This involves
both information exchange on the cognitive level (e.g., [2]) and
force exchanges on the physical level (e.g., [3]) at the same
time. To improve the quality of HRI and develop robots that
can facilitate humans better in daily life, particularly in tasks
where the human receives continuous support [4] through a
complex sequence of actions, it is important to consider how
these two types of interactions align within the specific task
environment, and how the alignment differ among individuals.

Different from sequential support, where the robot waits for
the human to complete actions and then decides how to support
them, continuous support emphasizes proactive capabilities
where the robot can already anticipate and be ready to support
the human in time [4]. For example, for a robotic assistive
device that supports patients with motor control impairments
in their daily activities such as tea making, it is crucial that
the robot can anticipate risky events (e.g., spilling hot water)
and warn or assist the user along with their actions seamlessly
(Figure 3). We will follow this example application scenario
for the rest of the paper.

In such real-life HRI, on the cognitive level, the interaction
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Fig. 1. Example of an embodied human-robot interaction: Here a robotic
arm collaboratively making tea with the person. Such a task involves both
cognitive interaction and force exchange on the physical level.

requires the human agent and the robotic agent to adapt to
each other through inferring intentions, predicting actions, and
selecting actions accordingly given the environment [S]—[8].
On the physical level, the interaction requires the human agent
and the robotic agent to align their movements and interactive
forces given the common goal. Therefore, we believe that
HRI research needs to go beyond the current hardware (e.g.,
motors and sensors) and software (e.g., image processing and
user motion decoding) development for robots. We postulate
that it is necessary to develop unified models of cognitive
and physical HRI for the robots to have a representation of
the individual user and a shared representation of the task
environment with the user [6].

This unified representation poses a theoretical challenge
that requires: 1) a cognitive model that traces and anticipates
the individual sequences of decisions and events, and 2)
an approach that adapts to the individual specification such
as variations of movements and distortions estimated by a
neuromusculoskeletal model. In addition, both models need
to be online-updated with multi-modal sensor data from the
human user, such as eye-tracking and motion capture data to
provide continuous support.

In this paper, we propose our perspective to address this
theoretical challenge by presenting a theoretical framework
for creating such a unified HRI model for the robotic agent.
Our framework incorporates the cognitive model and the
neuromusculoskeletal model of the individual human agent
and anticipates the task situation as it evolves for the individual
(Figure 2). We also discuss how such a unified HRI model
can vary depending on levels of interactions, assistance, or
individual differences within the application scenario intro-
duced above, where a robot assists motor-impaired individuals
in making tea (Figure 3).

II. RELATED WORK

A. Existing work

Researchers in HRI are already developing systems towards
providing continuous support, even though different termi-
nologies have been used. From current work that emphasizes

the need for continuous support in HRI, we identify two
major aspects: prediction of action plans and sequences for
anticipatory HRI, and creating continuous support through
providing smooth interaction methods.

Anticipatory human-machine interaction focuses on the
machine’s ability to predict mental states of their users in
order to understand users’ intentions, goals, and needs [9].
This allows the machine to anticipate user actions and provide
proactive supports at the appropriate moment. Anticipation
can be realized through using mental models and interaction
context or situations for systems to dynamically build up
expectations of intentions and goals [9].

One core aspect of the machine’s ability to anticipate is
to perceive, understand, and predict the user’s intentions and
actions. This can be achieved through both rule-based and
data-driven approaches [10]. Rule-based approaches focus on
semantic reasoning. For example, Enriched Semantic Event
Chain framework has been applied to represent dynamic
spatial relationships between objects and the manipulating
agent [11], [12]. Data-driven approaches often require a large
amount of training data for action recognition and prediction
for the robot to perceive and reason about the environment.

However, both approaches in real-life HRI often require the
robotic system to interpret and incorporate multi-modal data
of the user and the interaction scenario. For example, robotic
systems can monitor the user’s gaze for intent prediction,
and proactively collaborate with the user according to its
predictions [13]-[17]. Some robotic systems have also been
developed to learn about the interactive situation directly
through affordance-based reasoning (e.g., [18]). In such sys-
tems, the robot can predict and anticipate actions based on its
recognized object and situation affordances.

To provide continuous support, the robotic system also
needs to plan and generate adaptive actions [19]-[21]. Cur-
rently, this is often achieved via joint planning for collabora-
tion and interaction primitives [22]. In addition, large language
models (LLMs) have also been implemented in the HRI
framework [23] for semantic planning and generating low-
level actions. We provide more background on models for
cognitive and physical HRI in the next section.

B. Models of cognitive and physical human-robot interactions

Research in recent years has already implemented the
idea of combining cognitive and physical planning for robot
task planning in human-robot collaborations. This includes
avoiding interfering human movements in the task space
through planning with learned human motion trajectories [24],
using human-aware control-based methods for a collaborative
task where the human and the robot complete a mosaic
together [25], etc. In addition, there is also work focusing
on the robot’s cognitive task planning for robot learning [26]
and moving trajectory planning for the robot to deal with
uncertainty in the HRI environment [27]. However, to provide
humans with task assistance that requires the robot to antici-
pate the human and involves force exchanges (either directly or
through an object that the human and the robot carry jointly),
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a great challenge still remains: the robot not only needs to
detect and monitor individual user’s long-term (e.g., making
tea) and short-term intentions (e.g., picking up a mug) and the
user’s capabilities in order to determine the required assistance
in the joint task, but also need to do so in real time.

Recent work in cognitive science and HRI provides the
background to develop unified models of HRI for robotics that
have a representation of the human, provides a possibility to
interface models of cHRI and pHRI for personalized HRI [6],
and maintains awareness of the task situation.

On the cognitive level, the robotic agent needs to understand
the intentions of the human agent and align its strategy with
that of the human agent. This process could be achieved
with forward (generative) models and/or inverse models [5].
Modeling approaches include connectionist models such as
neural networks [28], Bayesian models [29], and cognitive
architectures (e.g., ACT-R, [30]-[34], SOAR, [35], EPIC, [36],
EPAM, [37]). Forward (generative) models of human planning
and decision making can help to make predictions of human
choices and behaviors given the human agent’s task goal and
the current state as inputs. These models can be informed
by the framework of computational rationality [38], [39] and
benefit from rational analysis [5], where the human agent’s
individual cognitive bounds and environmental bounds are
considered in models of human decisions.

Besides forward models, inverse models can also be useful
when the robotic agent needs to approach the goal of value
alignment [40], [41] through inferring the human’s intentions,
goals, or beliefs given observations of human behaviors and
decisions as inputs (e.g., through theory of mind; [42]-[44]).
These models could be particularly helpful when the ability to
anticipate [45] is needed by the robotic agent in more complex
tasks where the robotic agent needs to predict future states
of the human agent and the environment. Anticipation may
seem to be more relevant to cognitive interactions than to
physical interactions [46], but for anticipation, information
is needed from the physical level as well (e.g., action pre-
diction based on eye-gaze, [46], goal inference based on
behaviors, [47], communications through forces in human-
robot collaborations [48]—[50]).

Cognitive interactions are connected to physical interactions
through action selections and sensory feedback about the
agent’s own state and the changes in the environment. In these
physical interactions, the robotic agent needs to determine the
appropriate assistive force in order to align actions with each
human agent. Therefore, on the physical level, the robotic
agent is potentially required to have a representation of the
human agent’s sensory-motor control loop that can be adapted
to individual users.

The dynamics of the human motor system can be predicted
by models of the “sensorimotor loop” [51]. Sensorimotor
forward models estimate state and context given the motor
command and the previous state as input [51], [52]. Inverse
models contribute to motor planning [53], [54] and the genera-
tion of desired trajectories given the state, context, and task as
inputs [55]. Such representations potentially link higher-level

cognition to more detailed motor programs and explain the
generation of motor commands [51]. These models therefore
provide an important theoretical foundation for interfacing
models of cognitive and physical HRI.

One possibility of unifying cognitive states and physical
interactions is through the predictive processing framework
[56] (e.g., Free Energy Principle [57]). For example, Kahl
et al. [58] present a computational model of an autonomous
agent with an active self-image with ideas based on the Free
Energy Principle [57]. Their model addresses the challenge of
unifying higher-level cognition and lower-level sensorimotor
control while providing the autonomous agent with situational
awareness [58]. Although [58] focus on modeling a single
autonomous agent and their model does not include detailed
motor command program, we believe that their conceptual
framework can inform our goal of creating unified models
of cHRI and pHRI.

Our theoretical framework implements a cognitive archi-
tecture on the cognitive level, providing a higher level of
transparency for explainable connections between the cogni-
tive level’s predictions and the physical’s commands during the
interaction. In addition, its structured representations provide
us the benefit to make use of concepts in a flexible manner.
We will illustrate this further in the next section.

III. THEORETICAL FRAMEWORK

We propose a theoretical framework to bring together pHRI
and cHRI (Figure 2). In this framework, both the human agent
and the robotic agent are modeled with a cognitive layer and
a sensorimotor control layer, or a physical layer. The robotic
agent’s cognitive and physical layers correspond to those of
the human agent. The robotic agent’s cognitive layer is im-
plemented as a cognitive architecture, which can be interfaced
with models of the human agent’s sensorimotor system (such
as a neuromuscularskeletal model) on the physical layer. This
framework concerns the control architecture of the robotic
agent, which is to be distinguished from the hardware.

We further postulate that the robotic agent needs a model
representation of the human’s cognitive and sensorimotor layer
to adequately select and execute collaborative or assistive
actions.

Our envisioned application of such a framework is to de-
velop unified models of HRI to provide better interaction with
and assistance to the human agent. During the interaction, on
the cognitive layer, having a full representation of the human
agent’s cognitive processes and directly simulating human
behaviors in the task could be extremely computationally
expensive. Therefore, in practice, we propose that it could be
sufficient for the robotic agent to understand the task goals and
anticipate the human agent’s actions and the situation or the
interaction environment in order to provide assistance adapted
to individual users in potentially risky or dangerous situations.

To achieve such anticipation and situation awareness, as
stated above, it is important for the robot to have a represen-
tation of the individual user, and for the robotic agent and the
human to have a shared representation of the task [6]. Usually
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Fig. 2. A theoretical framework to connect models of pHRI and cHRI. In this framework, both of the human agent and the robotic agent have a cognitive
layer and a physical layer (to be distinguished from the hardware). The robotic agent’s cognitive layer is implemented as a cognitive architecture, which can
be interfaced with models of the human agent’s sensorimotor system on the physical layer.

cognitive models of individuals show cognitive processes in
a well controlled experiment. In an anticipatory cognitive
model representing the individual user for the robot, we focus
on receiving information from the particular human subject,
such as eye-gaze to some AOI or some specific action. The
model interprets what this means regarding a shared task
representation, situation understanding, the user’s cognitive
state, and the user’s next possible action or decision. This
anticipatory model type is some kind of more abstract model
of the individual in a dynamic situation in which several
decisions are made which have an influence on the situation
and the environment (similar to model tracing, see [59] for an
example).

In addition, knowledge of the human agent’s skills is also
important, as different individuals may have different reper-
toire of movements. With such information, the robotic agent
can keep track of task information, goals, and select actions
adapted to the human agent. Potentially, through this process
of action selection and robot state feedback, the robotic agent’s
cognitive layer can be interfaced with its physical layer. For
example, as the robot’s cognitive layer makes a decision
on what action to take (e.g., reach a specific location), a
“motor command” is given to the robot’s physical layer. In
turn, the robot’s state and what it senses from the interaction
environment are given to its cognitive layer as a “sensory
feedback”.

The robot’s physical layer can include representations of the
human agent’s sensorimotor system (e.g., [52]), particularly
when detailed models of the human’s movement trajectories
and interactive forces are necessary for the robot to estimate
the precise support needed. The robotic agent may also benefit
from learning representations based on interaction primitives
on the physical layer, which can potentially improve the
robot’s flexibility and adaptivity for its physical interactions
with the human [22].

In the following sections, we propose one method to in-
terface the robot’s cognitive layer with its physical layer—by

implementing the robot’s cognitive layer as an ACT-R model.
We then use our application example where a human agent
and an assistive robotic agent interact in a tea-making task to
further illustrate different levels of assistance by the robotic
agent.

A. Requirements for interfacing cognitive layer and physical
layer

To interface the robot’s cognitive layer and physical layer,
we need to consider how information about both agents’ states
and information from the interaction environment can be taken
into account, and how the cognitive layer’s model output can
serve as the physical layer’s model input. For example, the
cognitive level may determine that the goal of the human is
to lift and move an object from an initial position to a desired
position and that support is needed for this action. It gives the
initial position and desired final position to the physical layer
model.

The robot’s physical layer contains a model representation
of the human’s sensorimotor control system. Upon receiving
the humans starting position and estimated final position the
sensorimotor model predicts the human’s movement trajectory
and desired assistive force [52], [55], [60], [61]. It may also
consider electrophysiological data (e.g., data from EEG or
EMG [62]). With target position, desired final pose for the
robot, and desired assistive force, inverse kinematics and
dynamics can be applied to develop a motor plan for the
robotic agent [63].

We propose that one possible implementation of the robotic
agent’s cognitive layer can be an ACT-R cognitive archi-
tecture [30], a prominent type of cognitive architecture that
provides a theory of the structure of the human mind with
a certain level of abstraction [64]. First, ACT-R’s modular
structure allows us to provide the robotic agent’s cognitive
layer with a representation of the task knowledge, the ability
to process information about both agents’ states and the
environment for situation awareness, and potentially even the
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ability to learn [34]. Second, its structure provides a possibility
to interface the robotic agent’s cognitive layer with models
of the human’s neuromusculoskeletal system or interaction
primitives [22] on the robotic agent’s physical layer.

For exmaple, the ACT-R model predicts the next most likely
action based on its internal state and multimodal sensor input,
e.g., eye-gaze information. The neuromusculoskeletal model
then receives the current state of the arm (from kinematic sen-
sors) and the next most likely action (e.g., putting the tea bag
into the cup). From this information, the neuromusculoskeletal
model predicts the natural movement and proprioceptive feed-
back about the movement and about contact with objects in the
environment. If deviations from this predicted movement are
recognized, they will be classified as “impaired movements”
or “alternative actions”, as an input for the ACT-R model.

Multimodal data can be processed in real time based on
robotic software architectures, such as Robot Operating Sys-
tem ROS2. Sensor Fusion is possible based on Kalman-Filter
approaches. Recent developments in biomechanical simulation
engines have massively reduced the compute time such that
real-time predictions become possible [65], [66]

In our example where a human is making tea with the help
of a robotic assistive device, we assume that the task-specific
knowledge such as the task goal (making tea), task constraints
(injury prevention), object locations, and the potential steps
involved is given to the cognitive model of the robotic agent,
possibly as chunks in the declarative memory module. The
robotic agent does not necessarily know the exact details of
how to make tea, but rather the crucial sub-tasks such as
”boiling water” and put hot water in the mug”. As the human
agent performs sequences of actions (e.g., pour water in the
kettle), the task situation changes. By processing information
about the interaction environment (e.g., via the visual module
of the architecture) such as whether the water in the kettle
is hot, the robotic agent becomes aware of the state of the
task situation possibly by modifying the values of chunks in
the imaginal buffer of the architecture (e.g., the value for
whether the water is hot is changed to “yes”). Then, the
robotic agent can make predictions about the human agent’s
following action. If there is potential danger such as when
the water has been boiled and there are tea leaves in the mug,
the robotic agent may predict that the human agent is likely to
pour hot water into the mug next and that there is a possibility
of spilling hot water. If appropriate, the cognitive model can
select and initiate an action to support the human agent. If
this requires physical human-robot interaction, the support will
be determined by considering the sensorimotor model of the
human and her/his impairment.

B. Levels of assistance in a tea-making application scenario

Robotic assistive devices are envisioned to provide help
and support patients with motor control impairments, such
as a tremor—possibly due to some neurodegenerative dis-
ease [67]—in their everyday life [68]-[72]. Such an assistive
device can either be a robotic arm or a wearable assistive
device.

When patients experiencing a tremor episode while making
tea, they may accidentally spill hot water and burn themselves.
To prevent such potential injuries, the robotic agent needs to
have an understanding of the task and the human agent, as
well as to anticipate the risky situations.

We categorize the possible assistance that the robotic agent
could provide into four levels. The interaction between the
human agent and the robotic agent becomes more interleaved
and therefore potentially more complicated to realize in each
level. We illustrate the requirements for the robotic agent on
the cognitive layer and on the physical layer in each level in
a tea-making process as shown in Figure 3.

The first level of assistance is to provide the patient with an
alert when there is a potential for danger. While making tea,
the robotic agent needs to be aware when there is hot water
involved (task state) and if the patient shows tremor symptoms
(sensory motor state) to generate appropriate warnings. This
level may not require physical interactions between the human
agent and the robotic agent. For the second level of assistance,
the robotic agent can take over the entire action completely
when the scenario is dangerous—such as pouring hot water
into the tea mug or carrying the mug with hot tea. This level
of assistance does not necessarily involve physical interac-
tions either, yet it involves the robotic agent to send motor
commands” from its cognitive layer to its physical layer.
For the third level of assistance, the robotic agent provides
guidance to the human agent, when necessary—for example,
the robotic agent may guide the human agent to move their
arm on a specific trajectory stably when pouring water. And
for the fourth level of assistance, the robotic agent provides
only the force or support needed during the movements,
collaborating with the human agent. While both of the third
and the fourth levels contain physical interactions between the
human agent and the robotic agent, the latter requires more
detailed understanding of the human agent’s motor system in
order for the robotic agent to estimate the amount of support
to provide without compromising the human agent’s sense of
control (agency).

IV. LIMITATIONS

We also acknowledge several limitations in our framework.
First, our framework provides possibilities of connecting mod-
els of cognitive and physical interactions on a fairly high
and abstract level. Therefore, practical details and feasibility
of implementation still need to investigated further in spe-
cific use cases. Second, developing models for HRI in real-
world scenarios, including our application example, still face
the challenges of accurately interpreting user’s intentions in
unpredictable environments and intricate tasks. This requires
continuous advancements of computational models that can
predict and anticipate human intentions across different con-
texts in real life, and the alignment between those predictions
with models of physical HRI in real time.
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Fig. 3. An example of the process of making tea, and four levels of assistance that the robotic agent can potentially provide, color-coded by the requirement
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V. CONCLUSION

We present a conceptual framework that attempts to inte-
grate models of cognitive and physical HRI through interfacing
a cognitive architecture with a model representing the human
user’s sensorimotor system. According to Wilson’s six views
of embodiment [73], embodied cognition is situated at the
center of what we want to achieve with this framework. We
also discuss how this framework could potentially be applied
to an anticipatory, situation-aware robotic agent providing
the human agent with support that can adapt to different
individuals.

Our approach addresses the adaptation to individual differ-
ences on several aspects. First, with such a unified architecture,
we go beyond anticipating the individual human agent’s goals
and intentions with a cognitive model, and try to also anticipate
their physical behaviors with a neuromusculoskeletal model,
e.g., how movements can change depending on the severeness
of tremor—which will change over time. Second, depending
on how the individual traces of actions and the interaction
dynamics change, our model provides the possibility to predict
step-by-step short-term intentions flexibly given the prediction
of individual long-term intentions. Last but not least, by
emphasizing the shared representation of the task between the
robot and the human, our proposed framework has the poten-
tial to adapt to different individual situation representations.

We claim that the integration of such considerations and
the support of input data from the human agent during the

interaction (e.g., eye-gaze data, motion-tracking data, etc.) are
mandatory for equipping the robot with a good anticipatory
model of the individual. We believe that our concept of
a unified framework provides a theoretical foundation and
will enable novel directions for future human-centered HRI
research and applications.
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