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Abstract

A comprehensive understanding of shippers’ preferences can help transport freight forwarders
create targeted transport services and enhance long-term business relationships. Nevertheless,
limited research examined the benefit of considering shippers’ preferences in the decision-making
of synchromodal transport planning and the collection of relevant data is still not straightforward.
This research proposes an innovative framework to learn shippers’ preferences in synchromodal
transport operations and optimize transport services accordingly. A preference learning method
is developed to capture shippers’ preferences through pairwise comparisons of transport plans.
In order to model the underlying complex nonlinear relationships and detect heterogeneity in
preferences, artificial neural networks are employed to approximate shippers’ utility for a specific
plan. Based on the learned preference information, a synchromodal transport planning model with
shippers’ preferences (STPM-SP) is proposed, with the objectives of minimizing the total trans-
portation cost and maximizing shippers’ satisfaction. An Adaptive Large Neighborhood Search
algorithm is developed for solving this optimization problem. This algorithm takes into account the
two different objective functions and searches for Pareto solutions to the planning problem. A case
study is conducted based on the European Rhine-Alpine corridor to demonstrate the feasibility
and effectiveness of the proposed methodological framework. Basic discrete choice models, binary
logit models, are used as benchmarks for preference learning and the synchromodal transport plan-
ning model without preferences (STPM) is used as the benchmark for planning. The results show
that the proposed preference learning method has better predictive power than the baseline model,
achieving higher accuracy and lower variation. With the consideration of shippers’ preferences,
STPM-SP can significantly increase shippers’ satisfaction with transport services. Scenarios with
different types of preferences are tested and results show that the average of maximum improve-
ments in satisfaction reached 37.76%. This research contributes to learning shippers’ preferences in
the transport operation process and highlights the importance of incorporating these preferences
into the decision-making process of synchromodal transport planning.
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Chapter 1

Introduction

The aim of this research is to propose a theoretical framework for the integration of sychromodal
transport planning and shippers’ preference learning. In this chapter, the motivation and the
framework of this thesis are discussed. Section 1.1 introduces the background information about
the sychromodal transport. Section 1.2 describe the research questions. The research contribution
is presented in Section 1.3. The scope and structure of this thesis are shown in Section 1.4.

1.1 Research background

Synchromodal transport is an emerging concept in logistics that evolved from intermodal trans-
port [2, [3, 4]. It enables the flexibility to switch between available transport modes or routes [5],
and can substantially reduce transportation costs, increase transportation efficiency, and promotes
emissions reductions for the transport process. As the organizer and service provider of the trans-
port system, freight forwarders respond to shippers’ requests for transport, formulate transport
plans, and assign transport tasks to carriers [6]. The objectives of synchromodal transport opera-
tion commonly stem from the perspective of freight forwarders, such as minimizing total transport
cost [T}, [7], total transport time [R], resource use [§], and CO5 emissions [9]. As the customers of
the transport system, shippers play a key role in the real-world operation of transport systems. A
comprehensive understanding of shippers’ preferences would help freight forwarders create custom-
ized and targeted services that enhance customer satisfaction and loyalty. This would potentially
lead to increased transport demand, higher revenue, and benefit long-term business relationships
[10). However, only a few researchers investigated the incorporation of shippers’ preferences into
the synchromodal transport operation [111 [12].

There are still challenges regarding the acquisition and modeling of shippers’ preferences. The
traditional methods for studying shippers’ preferences are commonly based on survey data. For
example, shippers are asked to rate various transport attributes using a predefined scale of im-
portance. However, this method has its limitations, including hypothetical biases and challenges
associated with large-scale data collection. The hypothetical nature of the survey may lead to
responses that do not accurately reflect shippers’ true preferences in practical situations. It could
also be difficult for shippers simultaneously assess various attributes of transport services and pre-
cisely describe to what extent they value a specific attribute. In addition, discrete choice models
have been used to explore shippers’ attitudes and behaviors [13| [14] [I5]. As a statistical-based
method, discrete choice models require prior knowledge of utility to predefine the relationships
between variables. The capacity of models can be restricted if the real preferences are not aligned
with the model settings. With the advance of data collection techniques, it is important to invest-
igate the preference learning methods that can leverage large datasets and automatically capture
the complex relationships directly from data.

To this end, this thesis develops a foundational framework for integrating synchromodal trans-
port planning and preference learning to capture shippers’ preferences in the transport process
and enable freight forwarders to make more informed decisions. This framework can serve as the
foundation for the user-oriented synchromodal transport services that freight forwarders provide
services while simultaneously learning from shippers’ preferences. It emphasizes the data collec-
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CHAPTER 1. INTRODUCTION

tion within the transport system and improves services based on the preferences of shippers. A
preference learning model is proposed to estimate shippers’ preferences from their actual decisions
on transport services. Based on the artificial neural network architecture, the proposed preference
learning method is capable of modeling non-linear relationships within the decision-making pro-
cess, as well as distinguishing heterogeneity among different shipper classes. Rather than relying
on hypothetical responses, the preference information is derived from actual choices made by ship-
pers on their transport plans. A synchromodal transport planning model considering shippers’
preferences is established to propose transport solutions, solved by This research develops a syn-
chromodal transport planning model with shippers’ preferences (STPM-SP), with two objectives
of minimizing the total cost and maximizing the shippers’ satisfaction. The model is solved using
a modified heuristic algorithm based on the Adaptive Large Neighborhood Search (ALNS) pro-
posed by Zhang et al. (Z2022synchromodal). By combining preference learning and synchromodal
transport planning, shippers’ preferences can be identified during the process of transport opera-
tions and used to inform the next round of transport planning. The proposed model can provide
win-win solutions for both shippers and freight forwarders, leading to better resource utilization
and service quality for the synchromodal transport system.

1.2 Research questions

The main research question of this thesis is how to learn shippers’ preferences in the process of
transport operation and provide better transport services accordingly. To address the main re-
search question, specific research sub-questions (RQ) are presented as follows:

RQ@ 1: How to learn shippers’ preferences from their rankings on alternatives of transport
plans?

Considering shippers’ rankings on transport plans collected during the transportation, the task
is to learn shippers’ preferences and find out how shippers evaluate the transport plans. Section
[2.2] introduces how shippers’ choices on transport plans are collected and how the data can be
used in preference learning. A preference learning method based on artificial neural networks is
developed to capture shippers’ preferences and predict shippers’ satisfaction with new transport
plans.

RQ@ 2: To what extent the true preferences can be captured from the ranking data?

Using the preference learning method to capture underlying preferences, the task is to evaluate
the prediction capacity and explanation ability of the preference learning method. The true pref-
erence and the learned preference will be compared to understand to what extent the information
is captured by the proposed model. The performance of the proposed learning model will be
evaluated together with the baseline model using the criteria introduced in Section [3.3

RQ 3: How to incorporate preferences into synchromodal transport planning?

Section discusses the importance of incorporating shippers’ preferences into synchromodal
transport planning. With shippers’ preference information, the research problem is to propose
transport solutions to respond to shipping requests respecting the constraints with the objectives
to minimize the cost and maximize shippers’ satisfaction. A synchromodal transport planning
model with shippers’ preferences is developed in Section [3.2]

RQ 4: To what extent the transport services can be improved according to the learned pref-
erences?

Considering the same set of requests and transport resources, the question is how the (near)
optimal solutions, proposed by the traditional transport planning model and preference-based
transport planning model, could be different in terms of transport cost and user satisfaction. To
address the research question, the transport services proposed by the synchromodal transport
planning model with and without shippers’ preferences will be comparatively analyzed.

2 Integrated Synchromodal Transport Planning and Preference Learning



CHAPTER 1. INTRODUCTION

1.3 Research contribution

This thesis presents a methodology for the integration of synchromodal transport planning and
shippers’ preference learning, which can capture shippers’ preferences in the transport process and
optimize the transport services accordingly. The optimization model for synchromodal transport
planning problem is based on the planning model proposed by Zhang et al. [4]. This research
contributes to the literature in the following aspects:

Contribution 1: proposing a fundamental framework for the integration of synchromodal trans-
port planning and shippers’ preference learning.

The research on synchromodal transport operation has broadly considered the benefits and in-
terests of freight forwarders (i.e. freight forwarders and carriers) [IL [I6]. This research explores the
potential improvement of transport services by incorporating the shippers’ preferences. A limited
number of studies have utilized preference information in the synchromodal planning process. In
comparison to the work of Shao et al., Zhang et al.[I1 [I2], this research focuses on the integration
of the learning process and the planning process, utilizing the shippers’ preference information
(revealed preferences) generated in transport operations to inform the decision-making of freight
forwarders.

Contribution 2: proposing a data-driven learning method to capture shippers’ preferences and
comparatively exploring the abilities of the statistical-based method and the data-driven method
in preference learning.

This research designs a process to collect shippers’ feedback, which can be used to capture
shippers’ preferences in their actual decision-making process, resulting in a more accurate pref-
erence reflection compared to the traditional hypothetical survey. This research also examines
the statistical-based and data-driven preference learning model performance with different sample
sizes, and variable relationships, and gains insights into the reasons for their respective perform-
ance.

1.4 Thesis overview

As shown in Figure this research proposes a fundamental framework for synchromodal trans-
port planning with shippers’ preference learning, enabling the freight forwarder to assign services
to shippers and learn shippers’ preferences simultaneously. The synchomodal transport planning
method and the preference learning method are combined to improve the transportation pro-
cess. Sychomodal transport planning solves the transport planning problem considering requests,
vehicles, terminals, and time schedules. For each request, the shipper will rank alternative trans-
port plans based on their actual preferences, which is used as feedback for preference learning
and transport planning. The learned preferences will be incorporated into the planning process
to enhance the level of service and increase shipper satisfaction.

.

‘ ] Feedback [ ’

Figure 1.1: Thesis overview
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CHAPTER 1. INTRODUCTION

1.4.1 Thesis scope

The thesis considers operational-level synchromodal transport planning. In the real transport sys-
tem, there are mainly three stakeholders, a freight forwarder, shippers, and carriers. The freight
forwarder is the operator and the controller of the transport system who collects requests from
shippers and assigns the resources of carriers and routes to these requests. Shippers are con-
sidered to be the customers, and the freight forwarder and carriers are considered to be the service
provider of the system. As the service provider, the roles of carriers and freight forwarders can
be interconnected, therefore, this research specifically focuses on the interaction between freight
forwarders and shippers.

The strategic layout is assumed to be set in advance. Specifically, the existing transport
network, the connections between terminals, the capacity of transportation vehicles, and trans-
portation infrastructure are considered static, which are modeled as constraints in the transport
planning problem. In reality, strategic planning may change due to market conditions, customer
needs, and emerging technologies. The adjustments and modifications of the transport network
and transport infrastructure are not considered in this research.

The transport network used in this research is the European Gateway Services (EGS) network
of Rhine-Alpine corridor [I]. Terminals included ports or hubs for transport operations, which con-
tain the transfer terminals and the origins and destinations of requests. As for transport vehicles,
trucks, trains, and barges are considered. The capacity of each vehicle and the number of each
mode are modeled as limited resources.

The way to collect preference data is to inquire about shippers and collect their ranking results
on transport plans while they interact with a real transport operating system. In this research,
shipper choices are generated based on predefined utility functions, which specify the value that
a simulated shipper assigns to different transport plans. The reasons for utilizing synthetic pref-
erence data, detailed utility calculations, and decision rules are discussed in Section [3.3.2

1.4.2 Thesis structure

The thesis follows the structure as listed below:

e Chapter 2 shows the literature review summarizing the research highlights in relevant fields,
including methodology innovation in choice analysis, shippers’ preference modeling, and
synchromodal transport planning;

e Chapter 3 states the research problems and introduces the proposed methodology for syn-
chromodal transport planning with shippers’ preference learning;

e Chapter 4 presents the evaluation results of preference learning and synchromodal planning
with shippers’ preferences. To evaluate the predictive performance, the learning results of
the proposed preference learning are compared with the results of discrete choice models.
Different scenarios are conducted to investigate the benefits of incorporating shippers’ pref-
erences into synchromodal transport planning.

e Chapter 5 discusses the research methodology and results.

e Chapter 6 summarizes the findings of this thesis and its limitations.

4 Integrated Synchromodal Transport Planning and Preference Learning



Chapter 2

Literature Review

This chapter presents the review methodology and the literature review covering three research do-
mains: shippers’ preference analysis, machine learning in transport choice analysis and intermodal
transport planning.

2.1 Review methodology

The review methodology aims to facilitate an efficient, in-depth, comprehensive literature re-
view related to the field of synchromodal transport planning and shipper preference learning,
and determine how this research can contribute to the current literature. Based on the research
objective, the literature review is structured into three domains: shippers’ preferences, machine
learning in transport choice analysis, and intermodal transport planning. The survey follows a
three-step process, which includes literature searching, literature evaluation, and literature review.

During the literature searching, this survey uses two databases, Web of Science and Scopus.
The initial search is conducted using the most relevant keywords, ‘shippers’ preferences’, ‘machine
learning in choice analysis’, and ‘intermodal transport planning’. The focus is to first locate review
articles to have a ‘roadmap’ of previous research and identify influential works in the field. Then,
the keywords are expanded to include more specific terms, for example, ‘discrete choice model’,
‘artificial neural networks’, ‘synchromodal transport’. The expanded set of keywords is used for
more comprehensive literature searching, with an emphasis on newly published works to ensure
up-to-date information is included.

The second step is the evaluation of the literature with the main task to categorize it into three
categories, highly relevant, relevant, and less relevant for each topic. A significant advantage of
starting from searching review articles is that with the roadmap of existing literature, we can be
more aware of the relevance and influence of searched literature. These categorizations then guide
the literature review process, with greater attention given to the highly relevant articles.

Based on the research roadmap and classification, we can develop an initial framework of the
review, with ideas on the aspects to be analyzed and the key focus of the discussion. For each
part of the research domain, the review of literature starts from the most relevant work. We will
first examine the abstracts of selected articles to gain insights into their contributions and key
highlights. Then, a thorough analysis is conducted including reviewing the methodology and the
main findings. It is crucial to understand both the contributions and limitations of the reviewed
studies to establish their connection to this research. During the literature review progress, ad-
ditional relevant literature may be identified and included to ensure a comprehensive analysis of
the research topic.

Following the aforementioned steps, this survey reviews a range of research works published
from 1973 to 2023, including journal papers, conference articles, and books. The journals that
have the highest relevance to this research are: Transportation Research Part E, Transportation
Research Part C, and Transportation Research Part D. The reviewed literature 109 studies in
total, with 33 studies focusing on shippers’ preferences, 42 studies on machine learning in choice
analysis, and 34 studies on intermodal transport planning.

Integrated Synchromodal Transport Planning and Preference Learning )



CHAPTER 2. LITERATURE REVIEW

2.2 Shippers’ preference analysis

Extensive investigations have been conducted to identify the important service attributes in the
shipper decision process. In general, transport cost, transport time, and reliability are considered
to be the three core factors influencing the transport decisions of shippers [I7, [I§]. Transport
cost is listed as the major critical factor in several research [19] [20]. The evidence is consistent
regarding the negative sign of the cost attribute, which means that higher cost tends to reduce
the competitiveness of transport services [2I]. In addition, transit time can be a statistically
significant component of transport projects [22]. For example, Kurtulus et al. [23] found that
reducing transit time by 50% could increase the share of rail from 10.6% to 29.7% considering
short-distance inland transport in Turkey. Kim et al. [I9] indicated that shippers who offer fast
delivery products would concern more about transportation time for mode choice. The value of
time (VOT), has also been estimated to investigate the monetary value of unit transport time
[20, 241 25]. Reliability is commonly defined as the percentage of on-time delivery of freight/goods
at the destination [21 26] 27, 22]. Transport services with higher reliability appear to result in
higher service quality and higher customer satisfaction [23]. Larranaga et al. indicated that with
an increase of 1% unit on-time deliveries, rail and waterway alternatives would each gain 1.91%
and 3.45% market share, moreover, the attribute reliability can sometimes be a more decisive
factor than cost reductions [24]. Some other service attributes have been investigated as well,
such as frequency [19, 22], flexibility [26], and risk of damage [I0]. A few researchers looked into
the impact of gas emissions [28], 29] and transshipment [30} [3T], 32], [3T], revealing the potential role
of transshipment from the perspective of shippers. Nugroho et al. [33] found that companies with
higher export volumes tend to be more aware of the impact of greenhouse gases on the environ-
ment. In the research of Tavasszy et al. [28], it was indicated that as environmental awareness
continues to increase, shippers would be more concerned about emissions during the transport-
ation process, despite emissions showing less significance in comparison to other criteria at that
stage. Some research on transshipment showed that this option may increase cost-effectiveness by
enhancing multimodal transportation and optimizing route and time scheduling [32], while on the
other hand, it may also increase the risk of delays and damage to cargo [34].

All the aforementioned research used discrete choice models to explain choice behavior and
investigate the impacts of potential factors, as shown in Table The multinomial logit (MNL)
model is the classic technique for choice modeling, which was first introduced by McFadden [35].
Recent research on intermodal transport choice modeling attempted to release the predetermined
structures and linear characteristics of underlying functions in MNL. The exploration has lever-
aged the advantages of mixed logit model (MMNL), nested logit model (NL), weighted logit model
(WL), conditional logit model (CL), and latent class logit model (LCMNL). For example, Nicolet
et al. [36] combined MMNL and WL to investigate the mode split in freight transportation using
aggregated origin-destination data. The preference variation within the population was modeled
by MMNL with individual preferences to be randomly distributed within a certain range.

MNL-based models require functional form specification to capture the non-linearity relation
in complex decision-making behavior [37]. Jourquin [38] argued that incorporating non-linearity
in choice modeling provides more degrees of freedom for model estimation. They incorporated
Box-Cox transformations (BCT) in the conditional logit model. The results showed that BCT
could efficiently help overcome multicollinearity and improve the log-likelihood [38]. Jensen et
al. [39] suggested that linear cost functions unrealistically restrict elasticities to the scale of the
variable. The research examined the marginally decreasing sensitivity for cost in the freight model
and demonstrated the necessity to take non-linearity into account [39].
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CHAPTER 2. LITERATURE REVIEW

Table 2.1: Comparison between the proposed model and the models in the existing literature.

Research Influential factors Model Specification
Nugroho et al.(2016) [33] cost,time,reliability,emissions,etc mixed logit linear
Kim et al.(2017) [19] cost,time,reliability, frequency,etc latent class logit linear
Khakdaman et al.(2020) [26] cost,time,reliability, flexibility, etc multinomial logit model linear
Kurtulus et al.(2020) [23] cost,time,reliability, frequency,etc mixed logit linear
Firdausiyah et al.(2021) [40] cost,time binary logit linear
Nicolet et al.(2022) [36] cost,accessibility weighted mixed logit linear
Romén et al.(2016) [37] cost,time,reliability,frequency latent class logit nonlinear
Jensen (2019)[39] cost,time,etc nested logit nonlinear
Jourquin et al. (2022)38] cost,time,distance conditional logit nonlinear
Feo-Valero et al.(2022) [21] cost,reliability,frequency,etc mixed logit nonlinear
This study (2023) cost,time,delay,emission,transshipment preference learning model-free

2.3 Machine learning in transport choice analysis

Discrete choice models have been extensively utilized in transport behavior modeling and recog-
nized as a powerful tool for analyzing decision-making processes [41]. However, the model structure
relies on the assumptions for model specification, which could lead to oversimplification of actual
decision-making processes [42], failure to capture the underlying structure of the data [43], and in-
correct parameter estimation and prediction [44] 45| [42]. For instance, Torres et al. [45] examined
the misspecification effects in utility functions showing when the true utility function is nonlinear,
assuming a linear utility specification resulted in up to 63% relative bias.

With the growing availability of data, utilizing data-driven approaches has emerged as a prom-
ising alternative for choice analysis. Data-driven approaches can identify behavioral patterns
directly from the data [46]. Compared to the statistical-based model, these approaches rely less
on detailed model specifications based on prior behavior knowledge. In the context of transport
choice modeling, various machine learning methods were investigated and demonstrated, including
artificial neural networks (NN), random forests (RF) [47, [48, [42], support vector machine (SVM)
[49, 50, [51], gradient boost model (GBM) [52], 53], [54] restricted boltzmann machines (RBM) [55]
and Association Rules (AR) [46].

Among machine learning methods, artificial neural networks emerged as the workhorse model
and became the most studied machine learning type in recent research [56]. When compared to
discrete choice models, NNs and NN-based models exhibit superior predictive power and accur-
acy [67, 43l [58]. This can be attributed to their ability to automatically learn the true utility
specifications [59], and uncover complex nonlinearities and unobserved information in the data
[56L [60]. Sifringer et al. [43] proposed hybrid learning-based logit models in which the systematic
utility consists of an interpretable part and a non-linear part derived from neural networks. The
representation learning architecture enhanced MNL and NL models for utility specification. They
suggested that the proposed model can achieve better predictive performance and accuracy in
parameter estimation, while MNLs that ignore these non-linearities suffer a severe underfitting
problem. Wang et al. [59] proposed a deep neural network architecture with alternative-specific
utility functions. The results showed that the proposed model appeared to have a lower loss
value in predicting the choice of trip purposes, outperforming discrete choice models including
binary logit, binary mixed logit, multinomial logit, and multinomial mixed logit models. Lee et
al. [58] compared the predictive capability of artificial neural networks with MNL models based
on a survey dataset with 4,764 observations. The cross-validation results show that NN models
outperform MNL models, with prediction accuracies around 80% compared with 70% for MNL.

Some researchers demonstrated the time efficiency of ANN in handling large volumes of data
and complex model specifications [56] 57, [61]. Wong et al. [57] proposed a ResLogit model with a
residual component to capture unobserved taste heterogeneity in the choice process. In contrast
to baseline MNL models, the proposed models had smaller standard errors and higher efficiency
in parameter optimization. Hillel [61] found that due to utilizing the gradient descent algorithm
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in optimum searching, the feed-forward neural network can be trained up to 200 times faster
than nested logit models, moreover, the training time is significantly shorter than other machine
learning methods including random forest, extremely randomized tree, and extremely randomized
tree. Apart from the flexibility in model specification and efficiency in parameter optimization,
another potential of ANN is its adaptivity to large and continuous streams of data, unleashing
the dynamics of the decision-making process [56]. Wang et al. [59] examined the performance
of NN and discrete choice models with sample size variation and indicated that the advantage of
using deep neural networks would be amplified when the sample size is large. Current literature
has demonstrated the benefits of NN in the transport choice modeling field [56], and more invest-
igations and discussions remain to be conducted. Few researchers explore the efficiency of NN in
learning the underlying heterogeneity in choices.

2.4 Intermodal transport planning

The intermodal transport planning problem has been broadly formulated as a single-objective op-
timization problem. Travel cost is considered to be the primary objective of transport operators,
which is commonly composed of transport cost, loading/unloading cost, and storage/inventory
cost [62]. Some researchers included additional cost in the configuration of the total cost, in-
cluding delay penalties [4], emissions-related costs [63] and nonfulfilment penalties [16]. With the
awareness improvement on sustainable development, the objective of minimizing carbon dioxide
emissions became more frequently modeled in intermodal transport planning reseach [64} [65]. The
activity-based method was widely used to calculate the carbon dioxide emissions in the transport-
ation process, which was based on vehicle type, distance, and amount of containers [66] 1], 12} [65].

As transport objectives can be conflicted with each other in the complicated decision-making
process of transport planning [67], multi-objective optimization has been used to model trade-offs
between different objectives [68, 69, [63]. Zhang et al. [67] considered three objectives of the
total cost, delivery time, and reliability, and combined the e-constraint method and the memetic
algorithm for optimum searching. Baykasoglu and Subulan [65] explored transport solutions that
compromise transport costs, transit times, and carbon emissions and compared the optimization
results under crisp and fuzzy decision-making environments using multiple objective optimization
approaches. Zhang et al. [9] set the first objective to maximize the number of served requests,
and the second to minimize the carrier’s overall cost considering operation cost, carbon tax, and
delay penalty.

However, all these objectives represent the benefits of system operators. The interests of ship-
pers and operators can be different, hence, the transport planning results from the perspective
of operators may not be optimal for shippers [IT]. Several research indicated that operators are
more cost-sensitive than shippers [70} 21]. In the study of Feo-Valero et al. [21], it was found that
the role of carriers and shippers significantly affects the impact of transport cost on port choice
decisions. The reason could be that transport operators generally work with a profit margin on
the price to maintain the turnover and acquire new clients [21]. Besides, the difference in the VOT
was investigated [71] 25]. Shippers tend to have a higher gross VOT [25] and be willing to pay
more for reliability improvement [72].

Only a few researchers considered shippers’ preferences in the operation process. Shao et al.
[11] used a dominance-based rough set approach to derive decision rules and require shippers to
select the most important one. The selected rule was then presented as a new constraint for the
optimization problem. While the process of operators consistently seeking input from shippers
during each planning phase can be time-consuming. Similarly, shippers may encounter difficulties
in effectively evaluating and comparing multiple transport attributes simultaneously. Zhang et
al. [12] applied fuzzy set theory and obtained preference information through shippers’ vague
expressions on the importance of attributes including cost, time, reliability, risk, and emissions.
Preferences of shippers were set as constraints that ensured the calculated satisfaction was higher
or equal to the predefined benchmark. The potential problem could be that the preference data
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on the importance of attributes could have a hypothetical bias as shippers may behave differently
in choosing transport services. Furthermore, the predefined benchmark of shippers’ satisfaction
used in constraints needs to be calibrated when applied in different problem settings.

2.5 Research gap

A comprehensive understanding of shippers’ preferences can empower transport freight forwarders
to provide user-oriented targeted transport services and strengthen long-term business relation-
ships. In synchromodal transport research field, many studies addressed the transport planning
problem from the perspective of freight forwarders. It is unclear how to capture the preference
information from shippers’ feedback data in the transport operations, as well as how this informa-
tion can inform freight forwarders in decision-making. There is a lack of a fundamental framework
that integrates synchromodal transport planning and shipper preference learning.

Shippers’ preferences have been explored in their choices of transport modes [73, 27, [19] [17],
terminals [30, 21} B3], and service providers [10]. While different from other logistic transport
systems, transport solutions can involve multiple transport modes, terminals and carriers in the
synchromodal transport system. Hence shippers’ satisfaction with the transport plans can be more
straightforward to reflect their preferences rather than satisfaction with specific transport modes
or carriers. Many studies applied discrete choice models to investigate shippers’ preferences as
shown in Table However, discrete choice models rely on prior knowledge of shippers’ prefer-
ences and require model specification for utility estimation. Previous studies have demonstrated
that these assumptions can restrict the model capacity, and incorrect specified model could mis-
lead the estimation results [56]. In addition, when collecting shipper preference information from
survey data, there can be inaccurate expressions and hypothetical biases.

Artificial neural networks have great potential in the field of transport behavior modeling,
showcasing the ability to handle large-scale datasets of revealed preferences [56]. There is a need
to comparatively explore the abilities of this emerging technology and the classic method (i.e.
discrete choice models) with respect to prediction and explanation. Furthermore, in shippers’
preferences analysis, some studies applied latent class models to reveal underlying preference
heterogeneity [19, [37], while few research investigates whether artificial neural networks can dis-
tinguish the heterogeneity directly from the dataset.

The research on synchromodal transport operation has broadly considered the benefits and in-
terests of system operators (i.e. freight forwarders and carriers) [I, [I6]. Although many researchers
have demonstrated the significance of incorporating the shippers’ benefits into operations [10], only
a limited number of studies have utilized preference information in the synchromodal planning pro-
cess [12, I1]. In comparison to the work of Zhang et al.[I2] and Shao et al. [11], this study focuses
on the integration aspect that utilizes the shippers’ preference information generated in the trans-
port operations to inform the decision-making of freight forwarders.

To this end, this research proposes a theoretical framework for the integration of synchromodal
transport planning and shipper preference learning. This framework can serve as the foundation
for the user-oriented synchromodal transport services that freight forwarders provide services while
simultaneously learning from shippers’ preferences. It emphasizes the data collection within the
transport system and improves services based on shippers’ preferences. A preference learning
method is developed to capture shippers’ preferences from their ranking on transport plans. Arti-
ficial neural networks are used to approximate shippers’ satisfaction with transport services. The
derived preference information is incorporated into the synchromodal transport planning process
to generate solutions considering the benefits of both shippers and freight forwarders.
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Chapter 3
Methodology

3.1 Problem statement

As shown in Figure this research proposes a fundamental framework for the integration of
synchromodal transport planning and shipper preference learning. The proposed framework aims
to address two major research problems: the bi-objective synchromodal transport planning prob-
lem and the shippers’ preference learning problem. The synchromodal transport planning problem
focuses on finding Pareto solutions that optimize both cost and satisfaction using the transport
resources and captured shippers’ preferences. This is a challenging problem due to the integration
of shippers’ preferences into the planning process and the potential conflicts between cost and
satisfaction. The planning model should be able to autonomously predict the corresponding satis-
faction and balance the two objectives and model the trade-offs. The aim of shippers’ preference
learning is to capture unknown preferences based on shippers’ ranking data on alternative trans-
port plans. The challenges lie in the capacity to learn complex relationships between different
attributes and the fact that shippers’ preferences can be heterogeneous.

To address these challenges, this research proposed a mathematical planning model with prefer-
ence learning for synchromodal transport decision-making. The preference learning model employs
artificial neural networks to estimate the utility function, which is then used to calculate ship-
pers’ satisfaction. The bi-objective planning model allows freight forwarders to propose transport
solutions with high service quality, resulting in win-win outcomes for both freight forwarders and
shippers. Notations used in models are shown in Table

Research Problem Research Method
Synchromodal transport planning problem Bi-objective mixed integer programming
i : Transport ‘ Solutions (rtrttTUTFYTI—— T ——— i
1| R st i ' Lo . . . i
| [ eques [ Vehlcles} [nctwork J i (X ) i Objective: [Total cost] {Shlppel‘s’ sallsfactlon} !
-------------------------------------------- pareto ' 1

. ]
Freight forwarder ' Route MJ

i Constraints: [

Transport plans Time ] {Sublour elimination]i
l Transport plans (TP) I Estimators(g)
Shippers' preference learning problem Preference learning approach

i Attributes of :
Transport plans { ributes o ] { Preference }1

transport plans (X) | | matrices (PM)

<I

Real preferences '[ Shipper } Rankings Banking. -[ Artificial neural networks
information
(Rx,r1,pm) (RI)

Ranking Utility estimator (g)

Figure 3.1: Research framework
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Table 3.1: Notations in the synchromodal transport planning model

Symbol Description

Sets

R Set of requests indexed by r

S Set of shippers indexed by s

K Set of vehicles indexed by k

K, Set of vehicles served request r

Ky Set of barges

K, Set of trains

N Set of terminals

T Set of transshipment terminals

Parameters

. Transport cost per kilometer per container using vehicle k. unit: euro
CL The loading (or unloading) cost per container using vehicle k. unit: euro
cj, The storage cost per container per hour using vehicle k. unit: euro

cyy The cost of waiting time per vehicle per hour using vehicle k. unit: euro
cy, The cost of emission tax per container per distance using vehicle k. unit: euro
ct The delay penalty per container per hour for request r. unit: euro

di; Distance between terminal ¢ and j. unit: km

U Speed of vehicle k. unit: km/h

sk Starting depots of vehicle k

1% Ending depots of vehicle k

U Capacity of vehicle k. unit: TEU

ex Emissions of vehicle k. unit: kg/(km*TEU)

qr Transport load of request r. unit: TEU

Dr Pickup terminal of request r

d, Delivery terminal of request r

[@p(r)s bp(r)]
[@d(rys Daer)
trs
Variables
k
o
1,
a7
td .
arr,
tr,i
tss.,k'
T J‘k

arr,k
ti
tdepﬁlc

i
wait,k
ti

Pick-up time window of request r
Delivery time window of request r
Parameter for scaling tr,., trs=10

Binary variable; 1 if vehicle &k uses the route between terminal ¢ and j.
Binary variable; 1 if request r transported by vehicle k uses the route between terminal ¢ and j.
Binary variable; 1 if terminal ¢ precedes terminal j in the route of vehicle k.

Binary variable; 1 if request r is transferred from vehicle k to vehicle [ at transshipment terminal 7.

The delay time for request r. unit: hour

The arrival time of request r served by vehicle k at terminal 4. unit: hour
Service start time of request r served by vehicle k at terminal ¢. unit: hour
Service finish time of request r served by vehicle k at terminal 7. unit: hour
The arrival time of vehicle k at terminal ¢. unit: hour

The departure time of vehicle k at terminal 4. unit: hour

The waiting time of vehicle k at terminal 7. unit: hour

Integrated Synchromodal Transport Planning and Preference Learning

11



CHAPTER 3. METHODOLOGY

3.1.1 Synchromodal transport planning problem

This research considers a transport system with two types of stakeholders, a freight forwarder, and
shippers. The freight forwarder is the operator of the transport system who collects requests from
shippers and assigns the resources of carriers to these requests. Specifically, a request r € R is
to transport containers from the origins to the destinations, meeting the requirement of shippers.
The information of a request includes the pickup terminal p,., the delivery terminal d,, pick-up
time window [ay(,), bp(r)], delivery time window [a,(y), bg(r)], and the number of containers g,. We
use semi-hard time windows where containers must be picked up during the corresponding time
windows. Delivery delays occur when the delivery time exceeds the time limit bg(,.). A transport
plan tp, € TP is the service that the freight forwarder provides to the shipper according to the
request 7. A transport plan includes information on the route I, and vehicle(s) k&, to service the
request r with time schedule. A transport plan can be characterized by attributes including trans-
port cost ¢, transport time t,., emission e,., delay d,., and transshipment trans,. The transport
network includes terminals and available corridors. Transport vehicles include trucks, trains, and
barges. The number of barges and trains is fixed, while the number of trucks is not limited. The
capacity of each vehicle is modeled as a limited resource. The loading unit refers to a standardized
container measured in Twenty-foot Equivalent Units (TEU).

3.1.2 Shippers’ preference learning problem

The aim of shippers’ preference learning is to find out how transport choices are made by shippers.
Knowing the customer allows the freight forwarder to understand the shippers’ considerations and
provide better service accordingly [I2]. In this research, the prior information about the shippers’
preferences is the features of transport plans they may be interested in. Based on previous research
on shippers’ behavior, it is assumed that shippers would evaluate the transport plans based on
five criteria: transport cost ¢, transport time ¢,., emission e,, delay d,., and transshipment trans,..
For each request, shippers are queried to rank several alternative plans provided by the freight
forwarder. The ranking results are then collected and used as the supervision of preference learning.
Compared to the query regarding a specific feature, such as asking shippers to rate each attribute
on a predetermined scale of importance, this ranking method can be more accurate to reflect actual
preferences. This is because the ranking result is obtained in the shippers’ real decision-making
process, that is, shippers will be more benefitted if the freight forwarder assigns them the higher-
ranking alternative. It is noted that the purpose of collecting rankings is for preference learning
rather than direct implementation, thus, the freight forwarder does not necessarily implement the
top-ranked plan to operate the system. The final decision is made by the freight forwarder as a
central controller of the transport system aiming for system optimality.

3.2 Synchromodal transport planning

This section introduces the mathematical model for synchromodal transport planning. The object-
ives and constraints are formulated, and the solution algorithm is designed for freight forwarders
to propose transport plans for shippers.

3.2.1 Mathematical model

The synchromodal transport planning model with shippers’ preferences (STPM-SP) has two ob-
jectives, minimizing the total cost and maximizing the shippers’ satisfaction. The synchromodal
transport planning model without shippers’ preferences (STPM) is used as a benchmark, which
is a single-objective optimization model. STPM is used when the freight forward has no inform-
ation on shippers’ preferences, the modeling goal is to propose optimal transport plans from the
perspective of the freight forwarders [4]. This research first uses STPM to propose initial altern-
atives for shippers and then explores shippers’ preferences using preference learning. When the
learned preference is reliable, it is incorporated into STPM. Then, STPM-SP will use the learned
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preference and consider the benefits of both carriers and shippers.

Sychromodal transport planning without shippers’ preferences

When the freight forwarder has no information on shippers’ preferences, the goal of the synchro-
modal transport planning problem is to propose optimal transport plans from the perspective
of freight forwarders. The objective is to minimize total transport cost (Z.), which consists of
transit cost (Ciransit), transfer cost (Ciransfer), storage cost (Csiorage), carbon tax (Cemission)s
waiting cost (Cuwaiting), and delay penalty(Cgeiay). The transit cost is the cost related to vehicle
usage, positively associated with travel distance and loads of requests. Transfer cost is the sum of
terminal transfer cost and pick-up/drop-off transfer cost. Storage cost includes the storage time
at terminals and pickup depots. The emissions calculation follows an activity-based approach
introduced by Demir et al. [63], which considers factors such as vehicle type, distance traveled,
and the number of containers. The delay penalty is associated with the load and the delay time.

The objective of minimizing the total cost (Z.):
min Zc = Ctransit + Ctransfer + Cstorage + Cemission + Cwaiting + Cdelay (31)

Ctransit Z Z Z ckQ7 1] 1] (32)

keKreRi,jeEN

Ctransfer = Z Z Z Ck + Cl qr i, + Z Z Z qur il/p;Tz + yfd):) (33)

k,leK reRieN keK reRi€EN
storage = E § E CkQT l XA tk N + E § E quryprl k T\ Dr ap(r)) (34)
k,leKreRieN kekreRieN
k k,r
Cemission - § § § CzekQT’di,jyiJ (35)
kekreRieN

Cwaiting = Z Z e 'wazt k (36)

k€K, UK, i€EN

Cdelay = Z ngrtg (37)

r€ER

Synchromodal transport planning with shippers’ preferences

Previous research has shown statistically significant differences between the preferences of oper-
ators and shippers when it comes to decision-making in transport services [10, 21]. With the aim
of long-term business relationships between carriers and shippers, this research solves the syn-
chromodal transport planning problem using two objectives: minimizing the total cost (Z.) and
maximizing the shippers’ satisfaction (Z;).

The total transport cost (Z.) is calculated in the same way in the classic STPM as shown in
Eq. In Eq , the total shippers’ satisfaction (Zs) is the sum of the satisfaction of each
shipper with respect to the transport plans assigned to them. The relations between shippers’

preferences and transport plans (g(x, 6)) will be explored using preference learning, as introduced
in Section

min Z3 = — Zg(xT,HT) (3.8)
reR

Based on the assumption on shippers’ preferences (in Section 3.1.2), a transport plan is character-
ized by transport cost c¢,, transport time t,., delay time dt,., emissions e,., and transshipment tr,.,
which can be determined by Eq.. Transshipment refers to the number of transshipment
for the containers of request r during the transport operation. The parameter tr, is used to scale
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the variable tr,.. Its purpose is to adjust the scale of tr,. so that it is comparable to other attributes
in the analysis.

Ctransit,r T Ctransfer,r + Cstorage,r
= ’ — : 3.9
¢ disy * 1. (3.9)
Yrer, (Bt —t558)
tT — r ‘7 i WPr 310
dis, ( )
max(0,t5° .. — by
dt, = 220ty — butr) (3.11)
> ker, (ba) — aper)
k,r
ZkeKT Z(i,j)eN ery; ) drdij
€r = . (3.12)
dis, *
sk’lq
tr, = Zoret 1
= DL (3.13)
(k,))eK, i€T

Constraints of synchromodal transport planning

Constraints (3.14H3.18) are the routing constraints. Constraints and ensure that
vehicles and requests start/end at designated starting/ending depots or pickup/dropoff locations.
Constraints (3.16H3.18)) ensure the flow conservation for both vehicles and containers. Constraints
(3.19) are the capacity constraints. Constraint indicates that vehicle &k is marked as ‘used’
when there is at least one request transported by vehicle k between terminal 7 and terminal j.

Mok =Yak, <1 VkeK UK, (3.14)
JEN JEN
SN =S Yy <1 VkeKreR (3.15)
keK jeN kEK jEN
k _ k .
Yoak;= ak; ke KyUKie (N\ (skUer) (3.16)
JEN JjEN
yor =S yhT WkeK,reRiic (N\(TUsUe)) (3.17)
JEN jeN
DD ouiy =D ) i VreRieT (3.18)
keEK jeN kEK jEN
N eyl <wal, VkeK\Vie N (3.19)
rER
Y <af, VkeKreRyijeN (3.20)

Constraint (3.21)) ensures that transshipments take place only once per transshipment terminal.
Constraint (3.22]) prohibits transshipment between the same vehicle.

s;v<1 VikeKreRieT (3.21)
sin =0 VkeKreRieT (3.22)
Constraints (|3.2313.25|) are used for subtour elimination.
xy; <z Vke KyUKVi,jeN (3.23)
242 =1 Vke KyUK,,Vi,jeN (3.24)
2+ 42k <2 Vhke KyUK,Vi,jpeN (3.25)
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Constraints (3.263.31) are the temporal constraints. Constraints (3.26{3.30) depict the relations

of the arrival time, the service start time, and the service end time of requests, and the arrival
time and departure time of vehicles. M is an extremely large positive value. Constraint (3.31])
sets time constraints for transshipment.

ek <t <99% ke Kvr e RYi,j €N (3.26)
ot Nyl <e9F Yk e KVre RVi,jEN (3.27)
JEN
tik <F Wk € Kvr € RYi,j € N (3.28)
ok <t!P* Vke K,¥reRVi,jeN (3.29)
k dep,k k arr,k k .o
M (1 —ag) <P+t 17 < M - ;) Vke K\Vi,jeN, (3.30)
thrh gt <M1 —all) Vkile K k#1LVre RVieT, (3.31)
Constraints (3.32)) and (3.33) define binary variables.
ay; €{0,1} Vke€ K,Vi,j €N (3.32)
ykre{0,1} Vke K,YreRVi,je N (3.33)

For more detailed illustrations of the constraint, please refer to the research of Zhang et al. [4].

3.2.2 Solution algorithm

Previous papers have verified the ability of ALNS to produce (near) optimal solutions for vehicle
routing problems and require relatively short computation time when dealing with large instances
[4, 164, [T2]. The classical STPM without shippers’ preference can be solved by the ALNS algorithm
proposed in the research of Zhang et al. [4]. To solve STPM-SP, Algorithm [1|is proposed, which
is extended from [4]. The differences include 1) incorporating the shippers’ satisfaction (g(6))
into the objective function; 2) assigning a higher acceptance probability to the solutions with
better performance in terms of shipper satisfaction; 3) searching for Pareto solutions considering
shippers’ preferences. The input of Algorithm [1] includes vehicles (K), requests (R), terminals
(N), and the satisfaction approximator g(#). The output includes the Pareto solutions for STPM
with shippers’ preferences (X,,). In the search for Pareto solutions, n, donates the label of Pareto
solutions. n, = 1 means the current solution is a non-dominated one and will be included in the
Pareto set; X _, represents the solution set excluding the solution x. The Pareto solutions will be
provided to shippers to collect ranking feedback and then used for preference learning to update

9(0).
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Algorithm 1 ALNS algorithm with shippers’ preferences

Input: K,R,N,I,g(0)

Output: Xpareto
1: obtain the initial solution Xintiar, and then Xjas < Xinitial
2: initialize T'em, Rpoor, Xp
3: for i < 1,1 do

4: Refresh weights and choose operators based on weights;
5: Xcurrent — Xlast
6: while R, is not empty do
7 [Xcurrent; Rpool] = RemovalOperator(Xcurmm, Rpool))
8: [Xcurrent, Rpoot] = InsertionOperator(X current, Rpool))
9: end while
10: if e(Xeurrent) < ¢(Xiast) and U(Xeurrent, 9(0)) > U(Xiast, 9(0)) then
11: Xiast < Xeurrent
12: else if ¢(Xeyrrent) < ¢(Xiast) and U(Xeyrrent, 9(0)) < U(Xjast, g(0)) then
13: if C(chs(t);i(f:::rem) < U(Xlast19{(]9()))(:11(’2((601337‘671119(9)) then
14: Xlast — Xcur'rent
15: else if c¢(Xcurrent) > ¢(Xiast) and U(Xeurrent, 9(6)) > U(Xiast, 9(0)) then
16: if c(Xcugtr;g:/:‘?T::sf(last) > U(Xcurre;}t(,g((lil)t;[(fe(;)ﬁast,9(9)) then
17: Xlast — Xcurrent
18: else
) . L (1m T KlasesO) ey
19: Xiast < Xcurrent With the probability p = e'" UXcurrent:9(®)
20: end if
21: end if
22: X = X U Xjgst
23:
24: for r € X do
25: np = 1
26: for 2’ € (X_,) do
27: if c(2’) < e(x) and U(2’, g(0)) > U(z,g(0)) then
28: ny = 0;
29: break;
30: end if
31: end for
32: if n, =1 then
33: X,=X,Uzx
34: end if
35: end for
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3.3 Preference learning

This section introduces the preference learning method and discusses synthetic preference.

3.3.1 Preference learning algorithm

The goal of preference learning is to develop a model that predicts the utility of a given transport
plan. The process of the learning algorithm is shown in Algorithm The input of preference
learning includes shippers’ ranking results F', shippers’ ID S, transport plans X with attributes,
and the learning model with initialized parameters g(y). Parameters include the epochs ep, batch
size b, and learning rate rl for the training of neural networks. The output is the updated para-
meters of the neural network 6.y rent-

After receiving the input, the first step is to initializing the utility estimator. Since the utility
value is not directly observable in practice, this model learns from comparative preference inform-
ation instead of the target scores of utilities. Before the model-training process, shippers’ ranking
feedback F' is transformed into pairwise comparisons. For example, the ranking of the shipper
s on three transport plans (A; =5 A; =5 Ag) can be transformed into three sets of preference
relations: (A; =5 Aj), (Aj =5 Ax), (Ai =5 Ax). The task of the utility estimator is to regress the
feature representation onto a real-valued utility using a mapping g : X — U:

U=yg(X,0) (3.34)

where the input X is the set of model input features and 6 is a set of parameters in the utility
function approximator, and output U is the predicted utility value regarding the transport plan
with attributes X.

This research proposes to incorporate the structure of artificial neural networks into preference
learning and uses binary logit models as the baseline model. The purpose of this comparison is
not to determine a definitive superior model, but rather to explore how each model adapts un-
der different conditions and gain insights into the reasons for their respective performance. The
experiments will compare the fundamental characteristics between statistical-based utility estim-
ators and data-driven utility estimators. Binary logit models predefine the relationships between
variables based on prior knowledge of utility. Artificial neural networks use interconnected layers
of neurons to capture the patterns directly from data.

Binary logit model

The binary logit model is used as the baseline model of the utility estimator, which has been
widely used for shippers’ preference exploration [40]. In a pairwise comparison between transport
plan 4 and transport plan j, the utility of shippers towards each plan can be determined based on
various factors (Eq, including cost, time, delay, emissions, and transshipment involved in the
transportation process. Additionally, a random factor is considered, following the Gumbel distri-
bution, which introduces stochasticity into the utility estimation. The binary logit model assigns
a probability to each alternative, indicating the likelihood of it being chosen. The probability of
choosing transport plan ¢ over transport plan j can be determined by Eq[3.36}In this research, the
establishment and training of BLs are conducted using Biogeme on Python.

u; = Beci + Biti + Be€i + Badi + Birtri + € (3.35)
()= —— (3.36)
p - eu,; + er °
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Artificial neural networks

Artificial neural networks have shown powerful estimation and prediction capabilities in travel
behavior modelling[43], [59]. Specifically, Wang et al. [59] demonstrated that NNs tend to have
smaller approximation errors than binary logit (BNL) and multinomial logit (MNL) models in
choice analysis. In neural networks, fully-connected layers (or linear layers) are commonly used to
connect every input neuron to every output neuron. The output of each layer can be calculated as
Eq . Rectified linear units (ReLU) are used in deep learning models as activation function
1. In the case of a negative input, it returns 0, and in the case of a positive input, it returns the
same positive value. The function is written in Eq .

Y(x) = max(0, z) (3.38)

where x; and x;_; represent the output and the input of layer 4, respectively. The model input is
the input of the first layer xo; w; and b; are the learned weights and learned bias term of layer i;
I represents the set of layers.

This research designs two learning models for shippers’ preference learning: artificial neural
networks (NNs) for homogeneous preference learning and artificial neural networks with prefer-
ence matrix (NN-PMs) for heterogeneous preference learning. Both models utilize the structure of
artificial neural networks, with the output being the utility of specific transport plans. The main
distinction between these two models lies in the input features. In NNs, the input features are the
attributes associated with the transport plans. While NN-PMs incorporate not only the transport
plan attributes but also the preference matrix of the shipper. The use of the preference matrix
is to reflect the preferences of different shippers and enable more personalized utility estimation.
The preference matrix is constructed based on shippers’ previous choices and the comparison of
transport attributes in these choices. Each row in the matrix corresponds to a shipper, and each
column represents a specific count value for transport attributes. The entries in the matrix indic-
ate whether the chosen transport plan has a lower value of each attribute for each shipper. The
determination of the preference matrix is shown in Equation [3.39

PM, = [pcnvptnapdn7pen7ptrn] (339)

where PM,, represents the preference vector for shipper n; pec,, pty, pd,, pen, ptr, are the count
number for the five transport attributes respectively. Using the historical choice data, when the
chosen transport plans have a lower value for a specific attribute, the corresponding count number
will be plus 1, otherwise, it will be minus 1.

Training process

The task of training is to optimize parameters and find the function that can be as much as pos-
sible in line with shippers’ comparisons. The optimization of model parameters can be divided
into three steps: 1) estimating the utilities of transport plans; 2) computing the loss; 3) updating
model parameters.

For each pairwise comparison, the information includes attributes of two transport plans, the
shipper ID and the chosen transport plan. The learning model estimates the utility of each trans-
port plan. The transport attributes are the input of NNs for the utility estimation. In cases
where there is heterogeneity, the shipper ID is used to extract the preference matrix based on
the historical choice data, as an additional input to NN-PMs. The shippers’ pairwise comparison
results are used as supervision for the learning process.

Considering the probabilistic nature of individual decision-making |74} [75] [76], the cross-entropy
loss, so-called negative log-likelihood, is used to estimate the population error between the estim-
ated utility comparison and the shippers’ utility comparison. The loss function can be written as

Eq[3.4%
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1 & Uin e
L=-% Z(yn*log(m)+(l—yn)*log(m)) (3.40)
where N is the numbér' of training samples; U;, and Uj, are the utilities of the transport
plan A;, and Ajj,, respectively; y,, represents the ground-truth label of the shippers’ choice, where
yn = 1 means the shipper prefers the transport plan A, over the transport plan Aj,, y, = 0
means the shipper chooses the transport plan Aj,, and y, = 0.5 means the utilities of A\;, and Aj,
are the same.

Ujn

This research applies the backpropagation process to compute the gradient of the loss function
with respect to each network parameter and uses the AdamW optimizer to optimize the para-
meters that minimize the loss. AdamW optimizer [77] is a stochastic optimization method that
improves upon the standard Adam optimizer by decoupling weight decay from the gradient up-
date process. Eq[3.41]shows the parameter updating using AdamW. By iteratively applying utility
calculation, loss calculation, and backpropagation on a training dataset, the network’s parameters
are updated to minimize the error and improve the network’s performance.

Ori1 =0, — (a% + 20, (3.41)

where 6; denotes the parameters of the artificfal neural network at iteration t, and 0; denotes

the updated parameters for the next iteration. 6 collectively denotes weights w and bias b. m; is

the first moment vector and v; is the second moment vector.d is a small positive value; A is the
rate of weight decay (0.01).

Algorithm 2 Preference learning algorithm
Input: F,S, X,lr,ep,b, g(z,0p)
1: Initialize 6,
2: for i < 1,n do
3: [zi, xj,y] < transformation(X, F, S, 1) > Transform ranking to pairwise comparison

4: 122 “— g(ﬂii, Hn)

5: L[j — g(xj,en)

6: if 4; > ’LLAj then

7 g1 > Choose x; over x;
8: else if u; < uAj then

9: 7+ 0 > Choose x; over x;
10: else ; =;

11: <+ 0.5

12: end if

13: L,, = loss_funtion(y, y, i, ;) > Calculate the loss
14: %ﬁ: = backpropagate(g(x,0y), Ly) > Calculate the gradient
15: 0,,+1 = update_parameters(6,, %%ﬂ", Ir) > Update the utility estimator
16: end for

17: ecurrent — 671 =0

3.3.2 Synthetic preference

In the proposed framework, shippers are asked to rank transport plans provided by the freight
forwarder. This research uses synthetic preference data for model evaluation due to several reas-
ons: firstly, synthetic data can simulate “what if” scenarios of shippers’ preferences, allowing this
research to test the capacity of the proposed models under various conditions (i.e., homogeneity,
heterogeneity, linearity, nonlinearity). Second, the scalability of synthetic data can provide suffi-
cient samples for model testing and examine the performance of the proposed models at different
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scales of dataset. For this research, the collection of feedback data during the actual transport
process can be challenging. The preference data collection can involve privacy concerns and the
confidentiality of business-sensitive information. Considering the factors discussed above, the util-
ization of synthetic data is a suitable and feasible option.

Random utility maximization hypothesis has been widely used in transport decision-making
[27, 21], using the utility to represent the willingness to choose. It assumes that shippers would
choose the alternative that maximizes their utility. Considering the decision-making process
between two alternative transport plans (A;, A;), the utility can justify as shippers’ criterion for
ranking given transport plans, as shown in the following relation:

where U();) and U(\;) represent the utility of the alternative i and the alternative j, respectively.
Synthetic data of shippers’ ranking is generated using the above decision-theoretic setting.

The utility of each alternative ¢ is composed of a systematic utility V; and a random utility ¢; (in
Eq ) The systematic one is determined by observable features of the transport alternative.
The random utility represents the unobserved features and tastes, considering the stochastics in
the decision-making process.

U =V,+¢ (3'43)

Systematic utility

This research considers both linearity and nonlinearity in utility functions. Linear utility functions
have been commonly used in previous research [27].

Vit = Beci + Biti + Beei + Badi + Birtri (3.44)

For the nonlinear specification of the systematic utility function, this research refers to the
work of Jensen et al. [39]. Jensen et al. [39] considered the nonlinearity in piecewise function, and
the use of the natural logarithm In(z) suggested that the effect of attributes could be incremental.
Therefore, this research adopts the nonlinear systematic functions as shown in Eq.

V2 = BeF(ci) + BeF(ti) + Beei + Badi + Bertr (3.45)
In ()’ if 0<z<ac
Fz)=<Sailn(z)?+b if c1<z<cy (3.46)

agln(x) +bs  if co<x

The parameters in Eq(3.45)) are set based on the research of Jensen et al. [39]: ¢; = 100/3,c; =
2%100/3, a1 = 2In(c1)In(c2), b1 = —0.5(In(c1))® and by = —0.5(In (¢1)[3(In (c2))? + 3(In (c1))?].
The connectivity and continuity of the cost curve were demonstrated in the work of Rich [78].
Both linear and nonlinear utility functions in Eq will be used (separately) to generate
the synthetic preference to test the performance of preference learning methods.

Considering the shippers’ preferences can be heterogeneous, Shippers can have different priorit-
ization on transport attributes. To represent the prioritization, weights are assigned to transport
attributes, which are a., ai, e, a4, and ag.. The heterogeneous systematic utility for linear
functions and nonlinear functions can be written as follows:

Vihl = acﬂcci + atﬂtti + O‘eﬂeei + O‘dﬂddi + O‘trﬂtrtri (347)

‘/ihQ = achF(ci) + OétﬁtF(ti) + aeBee; + agBad; + o Bertry (348)
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Random utility

For the random utility, this research uses a standard Gumble distribution for e, which is a type I
extreme value distribution with a location parameter equal to 0 and a scale parameter equal to 1.
The equation for the standard Gumbel distribution can be written as:

x

flz) =e€%e™¢ (3.49)

3.3.3 Ewvaluation criteria

To evaluate the prediction of proposed models, the prediction accuracy and the log loss are used
as the evaluation criteria. The prediction accuracy is represented by the proportion of pairwise
comparisons that are correctly predicted, which can be calculated using Eq.

1 N
= =Sy — i 3.50
oce = 2l = (3.50)

where 3; and y; are the predicted label and the true label, respectively; N represents the total
number of tested pairwise comparisons.

The log loss can be calculated according to Eq. The log-loss metric quantifies the diver-
gence between the predicted probability and the actual value. A higher log-loss value indicates a
greater deviation between the predicted probability and the true value.

N
L= —% ;(yn *log (p) + (1 — yn) xlog (1 —p)) (3.51)

where N represents the total number of tested pairwise comparisons; ¥, is the true label of the
sample n; p is the predicted probability that y, = 1.

3.3.4 Model explaination

SHAP (SHapley Additive exPlanations) has been widely used to explain the output of artificial
neural networks in multiple fields, such as image classification and natural language processing.
This method, first proposed by Lundberg and Li [79] in 2017, is based on cooperative game theory.
SHAP calculates the importance of features by comparing the differences between the prediction
with the quality and the prediction without the feature, across all possible combinations of fea-
tures. In Eq. the sum of the SHAP values corresponds to the difference between the expected
value and the prediction.

> 6if,2) = f(x) —E(f) (3.52)

i€l

where f(x) is the predicted value with all features; E(f) is the expeted value; ¢;(f, z) is the SHAP
value for feature 7. Lundberg and Li [79] have demonstrated the ability to produce consistent and
reliable explanation results by comparing the performance of SHAP and other popular methods
(i.e., local interpretable model-agnostic explanations (LIME), Deep Learning Important Features
(DeepLIFT)). This section discusses how SHAP can be used to explain the prediction results and
the differences with the explanation of binary logit models.

In heterogeneous scenarios, this research integrates a preference matrix into the artificial neural
network structure, however, SHAP may not be suitable for explaining heterogeneity as it calculates
the direct marginal impact of features to the expected value and is limited to capturing interactive
variable relationships.
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Chapter 4
Results

This chapter consists of three parts. The first section presents the experiment overview including
the experimental framework, scenario design, and experiment settings. The second section com-
pares the performance of preference learning methods in four preference scenarios. The third part
evaluates the proposed synchromodal transport planning method and investigates the potential
trade-off between planning objectives.

4.1 Overview of experiments

4.1.1 Experimental framework

Figure shows the framework of experiments. This research designs different scenarios that
consider homogeneous and heterogeneous preferences, as well as linearity and nonlinearity in true
preferences. The proposed preference learning models with the structure of artificial neural net-
works will be examined. The classical discrete choice model, the binary logit model with linear
model specification, is used as the baseline learning model. For synchromodal transport planning,
this research implements STPM-SP to assign vehicles and routes to requests, using STPM as the
baseline model.

The aim of experiments for preference learning is to compare the effectiveness of classical bin-
ary models and deep neural networks in 1) modeling the relationship between transport service
attributes and shipper satisfaction (utility); 2) the ability to extract the information in the pref-
erence matrix into the learning process. Specific research questions related to preference learning
will be answered, including: 1) How effectively can learning models capture preferences from ship-
pers’ feedback? 2) What are the performance differences between baseline models (BLs), artificial
neural networks (NNs), and NNs with preference matrix (NN-PMs)? 3) How does the sample size
impact the performance of preference learning?

The aims of experiments for synchromodal transport planning with shippers’ preferences are
1) to assess the efficiency of synchromodal transport planning model with shippers’ preference
(STPM-SP) in improving transport services compared to the traditional STPM; 2) to examine
the impact of incorporating shippers’ preferences into the planning process. These experiments
target specific questions including: 1) How do Pareto solutions improve overall transport planning
and do these improvements vary among shippers (classes) ? 2) What are the trade-offs involved
in improving shippers’ satisfaction and other transport attributes? 3) How will the mode share
change in these solutions?
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Figure 4.1: The framework of experiments

4.1.2 Scenario design and synthetic preferences

Considering homogeneous preferences and heterogeneous preferences, homogeneous preferences
mean that all shippers have the same preferences for transport plans, that is, the utility functions
of all shippers are identical. Heterogeneous preferences consider shippers have different preferences
for transport attributes. In this research, four classes of true preferences are predefined, with each
shipper belonging to one of these classes. Table [I.] presents an overview of designed scenarios.

Table 4.1: Overview of experiment scenarios

Scenarios Preference True utility function Models
Scenario 1  HoS1 Homogeneous  Linear BL, NN
HoS2 Homogeneous  Nonlinear BL, NN
Scenario 2 HeS1 Heterogeneous Linear BL, NN, NN-PM
HeS2 Heterogeneous Nonlinear BL, NN, NN-PM
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Table [4:2] shows the specific utility functions used in each scenario. In the homogenous scen-
ario, two sub-scenarios are designed: Homogenous Scenario 1 (HoS1) represents the case where the
true preferences follow a linear utility function, and in Homogenous Scenario 2 (HoS2), the true
preferences follow a nonlinear utility function. In the heterogeneous scenario, four classes of true
preferences are predefined based on the shipper classification result in the research of Khakdaman
et al. [26]: 1) high service-level shippers (35.9%): these shippers look for improvements in service
levels, particularly in minimizing time and delay; 2) cost-sensitive shippers (32.3%): these shippers
are sensitive to the cost. They are willing to take risks and longer time for the cost reduction in re-
turn; 3) eco-conscious shippers(18.4%): these shippers tend to minimize the environmental impact
of their shipping activities (emission); 4) cost-efficient shippers (13.4%): these shippers are willing
to make trade-offs and try to minimize delay and cost in their shipping operations simultaneously.

Table 4.2: The specification of utility functions in homogenous scenarios

Scenario  Model specification Parameters

HoS1 Equation [3.44 B, =10,3; = 8,84 =5,8. =5, By = 2

HoS2 Equation Be=10,8; =8,84="5,8c = 5,84 =2
c1 =100/3,c2 = 2%100/3, a; = Z21In(c1) In (¢2), by = —0.5(In (¢1))?
by = —0.5(In (c1)[3(In (c2))? + 3(In (c1))?]

HeS1 Equation m Be = 10a., By = 8ay, Bg = bag, Be = Bae, Brr = 207
HeS2 Equation Be = 10a, Bt = 8ay, Bq = bag, Be = dae, Brr = 2047

¢ =100/3,c; = 2%100/3, a; = 2In(c1) In (cz), by = —0.5(In (¢1))?
by = —0.5(In (c1)[3(In (c2))? + 3(In (c1))?]

Table 4.3: Shipper classes in heterogeneous scenarios

Class Parameters
Class1 a.=1,04 =10,a9 =10, = 1,4, = 1
Class 2 a.=10,a; =l,a9=1,0, = 1,4 = —1

Class 3 a.=1l,as=1,a9=1,a. =10,a4,, = 1
Class4 a.=1,a4 =5, =5, = 1,4, = 1

It is important to note that the discussion of the performance of BLs is limited to the specific
model used, as described in Section 2. The model assumes linear relationships between transport
attributes and utilities, and the model specification represents utility as a linear combination
of transport attributes with a random term. However, within the field of shippers’ preference
research, there are various specifications for discrete choice models. For example, logarithms can
be integrated into the model specification for modeling nonlinearity. The latent class discrete
choice model can account for different groups of shippers. The performance of these alternative
models may differ from the baseline models utilized in this research. However, when selecting the
appropriate model specification, careful consideration of the functional forms, assumptions, and
interactions among variables is necessary. It requires validation and evaluation using statistical
techniques to ensure the chosen model can accurately represent the underlying preferences.

4.2 Experiments on preference learning

This section first presents the data preparation process and the statistics of samples, then the
performance of proposed preference learning models and baseline models are evaluated in scen-
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arios designed in Section The prediction results are explained by analyzing the impacts of
transport attributes on the choices of shippers.

4.2.1 Transport network and data preparation

This research uses the European Gateway Services (EGS) network to conduct experiments for
model valuation. EGS network is located at Rhine-Alpine corridor, providing connections between
the ports of Rotterdam, Antwerp and the prominent economic hubs in Western and Central
Europe. As shown in Figure there are 10 terminals within the network with 3 deep-sea ter-
minals located in the Port of Rotterdam and 7 inland terminals in the Netherlands, Belgium, and
Germany. Additionally, there are 10 transshipment terminals that facilitate cargo transfer between
different transportation modes. The instances comprise a total of 116 vehicles, including 49 barges,
33 trains, and 34 trucks. The specific parameters related to vehicles are shown in Table [C:I]in the
Appendix. Before transport planning, requests are generalized by randomly selecting the origin
terminal p,., destination terminal d,., pickup window [ay, (), bp(r)], drop-off window [aq(,y, ba(r], and
the load of containers g,. The requests’ origins and destinations are randomly distributed among
deep-sea terminals and inland terminals, respectively. The container volumes of the requests are
independently drawn from a uniform distribution with a range of [10, 30] TEU. Additionally, the
earliest pickup time for the requests is independently drawn from a uniform distribution ranging
from 1 to 120. The latest delivery time is determined by the earliest pickup time and the lead
time bg() = ap() + LB,, with LB, independently drawn from a uniform distribution with the
range of hours [20,80].

9. Dortmund
T T —— Truckservice

,,,,,,,,,,,,,,,, Tt Rail service

1. Delta ~, [ "= e _/,_,/'/ ; Barge service
. - -~ - =

Inland terminal

;;;;; TSz 6. Duisburg Deep-sea terminal

i Port of Rotterdam
5. Venlo

7. Willebroek

10. Nuremberg

Figure 4.2: The European Gateway Services network [I]

To prepare the shippers’ feedback data from preference learning, this research conducts 30
instances of the synchromodal transport operations and simulates the ranking process of shippers
using utility functions predefined in synthetic preference. It is assumed that there are 100 shippers
in total in this system. In a single instance of planning, a shipper could have no request or have one
or multiple requests. The freight forwarder receives 100 to 200 requests. After receiving shipping
requests, the freight forwarder will use the STPM to propose transport plans (assigning vehicles
and routes) for each request without the consideration of shippers’ preferences. It is assumed
that the freight forwarder will serve all the received requests. To collect ranking information from
shippers, the freight forwarder selects the top five lowest-cost solutions. Next, the transport plans
within each solution are assigned to corresponding shippers with calculated transport attributes.
Then, the freight forwarder asks shippers to rank the provided alternatives according to their pref-
erences. Since there are no actual shippers involved in the research, the choices are simulated by
calculating the utility of each solution using the predefined utility function and ranking transport
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alternatives based on respective utility values.

Table [£.4] shows the statistics information of all the transport plans provided with sippers.
The transport planning operations generated 4777 transport plans after removing the duplicated
ones. The transport attributes (i.e., cost, time, delay, emission, and transshipment) for these plans
can be calculated based on Equation [3.9}{3.13] The mean values and 75th percentiles of all the
attributes are less than 0.500. Cost, emission, and transshipment have larger standard deviations
than time and delay, indicating greater variability in these attributes

Table 4.4: Summary statistics of transport plans

Variables Mean Std Min 25% 50% 5%  Max
Cost 0.491 0.648 0.194 0.231 0.293 0.457 4.579
Time 0.188 0.157 0.013 0.091 0.141 0.237 1.294
Delay 0.040 0.187 0.000 0.000 0.000 0.000 3.543
Emission 0.497 0.844 0.210 0.229 0.243 0.308 5.682

Transshipment 0.213 0.647 0.000 0.000 0.000 0.000 2.900

After the simulation of shippers ranking the assigned transport plans, the ranking results are
reorganized in the form of pairwise comparisons, generating more than 70,000 pairs of pairwise
comparisons for training and testing of preference learning models. In each pairwise comparison,
two alternatives (transport plans) are put in two columns, Cy and Cj, respectively. Such a
transport plan pair is one sample point for model estimation, specifically, binary logit models and
artificial neural networks are trained based on estimating the respective utilities of two transport
plans and then comparing the utility values to optimize model parameters. Table shows the
statistics of pairwise comparisons generated based on the 100 shippers ranking their transport
plans in 30 instances of transportation operations. On average, one shipper needs to rank seven
transport plans for the data collection. N(Cy) and N(Cy) are the percentages of transport plans
being chosen in columns Cy and Cjp, respectively. As the true preferences are different in the
pre-defined four scenarios (i.e., HoS1, HoS2, HeS1 HeS2), the values of N(Cy) and N(Cy) in the
four scenarios can be different. As the parameters of models are optimized by the comparisons
of transport plans in N(Cy) and N(Cy), it ensures that the choices in both sets are balanced for
model training. S(HoS1), S(HoS2), S(HeS1) and S(HeS2) are the percentage of choices change
comparing to scenarios HoS1, HoS2, HeS1 and HeS2, respectively. It can be observed that the
difference in choice between the linear and nonlinear utility functions is greater than the difference
between homogeneous and heterogeneous preferences.

Table 4.5: Statistics of shippers’ choices in four scenarios

Scenario N(Cy) N(C;) S(HoS1) S(HoS2) S(HeS1) S(HeS2)

HoS1 0501 0499 O 21813 6550 22690
HoS2 0.486 0.514 21813 0 21651 4209
HeS1 0.499 0501 6550 21651 0 22352
HeS2 0.485  0.516 22690 4209 22352 0

As for the models, in preference learning, a 5-layer artificial network is used with 5% 64 neurons
in the input layer,64 % 64 neurons in hidden layers, and 64 * 1 neurons in the output layer. The
ReLU function is used as the activation function. As the ranking data is transformed into pairwise
comparisons, therefore, the binary logit model is used as the benchmark.

4.2.2 Model comparison

This section has homogeneous preferences and heterogeneous preferences. Each part has two sub-
scenarios, one using linear true utility functions, and the other using nonlinear utility functions.
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The performance of the models is evaluated based on two criteria, prediction accuracy and log
loss. Log loss (also called the negative log-likelihood loss) represented the difference between the
predicted probability distribution and the actual probability distribution. Lower log loss indicates
better preference probability prediction. The log loss is normalized by dividing by the sample size,
which ensures that the value is comparable with different numbers of samples.

Scenario 1: Homogeneous preferences

When assuming shippers have identical preferences, the behaviors of shippers will follow the same
utility function. In HoS1 and HoS2, a linear function and a nonlinear function are employed as true
utility functions, respectively. Binary logit models (BL) and artificial neural networks (NN) are
tested as utility estimators with various training sample sizes. In HoS1, the true utility function
is based on the linear combination of transport attributes (i.e., cost, time, delay, emission, trans-
shipment), therefore, binary models correctly specify the true preference function. In HoS2, model
specification in BL cannot fully capture true preferences due to the nonlinear relation between
transport attributes.

Figure [£.3] shows the accuracy and the log loss of prediction results of BLs and NNs in the
scenario of HoS1. For both BLs and NNs, the prediction accuracy can reach above 90%, and
slightly improves with the increase of sample size. The reason for the high prediction accuracy
could be due to BLs having the correct model specifications that match the actual preferences, and
the neural networks’ capability to model the linear correlation between transportation attributes
and utilities. In addition, NNs have a higher log loss than BLs with a small sample size (70),
while obtaining lower log loss with sample sizes of 7 % 102, 7 x 103, 7 * 10%, which is in line with the
results in the research of Wang et al.[59).

1.0 3.0
= —e— BL
25 —e— NN
081
2.0
o 0.6 "
g g
£ & 1.54
2 =
< 0.4
1.01
021 —— BL 0.5 \
—— NN ~__
0.0 T T T T 0.0 T T T .
1 2 3 4 1 2 3 4
Sample size (7 * 10%) Sample size (7 * 10%)
(a) Accuracy (b) Log loss

Figure 4.3: Evaluations of utility predictions in HoS1

In HoS2, the utility has nonlinear relationships with the transportation attributes. As shown
in Figure both models exhibit an accuracy of less than 60% with a sample size of 70, while
the accuracy of NNs is slightly higher than BLs. As the sample size increases from 7 * 10 to
7% 103, the prediction accuracy of NNs improves significantly, reaching 85% with 7 * 103 samples,
while the accuracy of BLs remains below 60%. This is due to the fixed model specification of BLs,
which cannot handle nonlinearity in the data, whereas NNs can use nonlinear activation functions
to model complex nonlinear relationships. It should be noted that a relatively large sample size
is required for NNs to capture the nonlinearity, which is 7 * 10® in this case. Similar to HoS1, the
log loss of NNs is higher than BLs when the sample size is small, but it decreases substantially as
the sample size grows.
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Figure 4.4: Evaluations of utility predictions in HoS2

Scenario 2: Heterogeneous preferences

Scenario 2 examines a more realistic and complex setting where shippers’ preferences can be
heterogeneous. To represent these preferences, the research uses four shippers’ classes based on
previous literature, as shown in Section [I.1.2] Three models are tested in this section: binary lo-
git models (BL), artificial neural networks with transport attributes as input (NN), and artificial
neural networks with both transport attributes and preference matrix as input (NN-PM). The
comparison between BLs and NNs can reveal differences in predictive ability resulting from model
specifications and direct learning of nonlinearity from data. The comparison between NNs and
NN-PMs can demonstrate the impact of incorporating the preference matrix in choice prediction.

HeS1 considered the scenario that shippers have heterogeneous preferences and the true utility
function is linear combinations of transport attributes. As shown in Figure all three models
can achieve an accuracy of over 80%. As the sample size increases, the accuracy of NN-PMs
increases to 90%, while the changes in BLs and NNs are insignificant. This can be because the
preference matrix reflects the priority from past choices made by shippers, and the architecture of
artificial neural networks captures these priorities and construct utility functions that can predict
new choices considering the respective preferences of shippers. When the sample size is 7 * 10!
or 7 * 102, the log loss of NN-PMs is higher than that of both NNs and BLs, but it decreases to
the lowest level when the sample size reaches 7 * 10*. This suggests that with a larger number
of comparison samples, the information in the preference matrix becomes more reliable for distin-
guishing between different classes of shippers.

HeS2 considers the heterogeneous preferences with the true utility functions being nonlinear.
The accuracy of BLs remains below 60% with the sample size ranging from 7 x 10! to 7 * 10%,
as the model specification being incapable of capturing the nonlinearity and heterogeneity from
data. The accuracy of NN-PMs is similar to that of NNs when the sample size is 7 * 10!, and it
becomes slightly higher than NNs as the sample size increases. This improvement can be due to
the fact that only a small proportion of shippers change their choices in heterogeneous scenarios
compared to homogeneous scenarios, as shown in Table The log loss of NNs and NN-PMs
have lower values than BLs when the sample size is large (7 * 103, 7 % 10%).

To investigate the prediction results for each class of shipper, Figure [£.7] shows the shipper
classification and prediction results in the scenario of heterogeneous preferences with a sample size
of 7000 alternative comparisons. Figure [I.7a] presents the relative importance of each attribute in
the true preference in the case of HeS1. Figure shows the percentages of predicted shippers
in classes. NN-PM outperforms both BLs and NNs in both HeS1 and HeS2. In HeS1, NN-PMs
have an accuracy of 97.12%, compared to 88.14% for BLs and 87.92% for NNs. In HeS2, the
accuracy of BLs and NNs is significantly lower in HeS2 compared to HeS1. The accuracy of BLs
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Figure 4.5: Evaluations of utility predictions in HeS1
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Figure 4.6: Evaluations of utility predictions in HeS2

decreases to 50.34% due to the inability to capture nonlinearity and heterogeneity in preferences.
The accuracy of NNs decreases to 77.36%, suggesting that this model fails to distinguish differ-
ences across shipper classes. NN-PMs have an accuracy of 85.22%, higher than BLs and NNs. It
can be observed that the percentages of incorrectly predicted choices in class 1 and class 3 are
larger than those in class 2 and class 4. NN-PMs can correctly predict more shippers from class
1 and class 3 compared to BLs and NNs, which becomes the main factor in its overall better
performance in HeS1. In HeS2, compared with NNs; NN-PM performs better in class 1 and class
2, while making more incorrect predictions in class 3. Compared with the results of NN-PM in
HeS1, NN-PMs produce more incorrect predictions in class 1 and class 3, while having similar
correctly predicted choices for class 2. These findings can be explained by the fact that shippers
of class 2 place a greater priority on specific attributes (cost), compared to shippers in class 1 and
class 3, as shown in Figure [f.7a] therefore, the preference matrix used in NN-PM can reflect the
underlying preferences more accurately when the preference for specific attributes is stronger, al-
lowing the deep neural network structure to better incorporate this information in its predictions.
The specific percentages are listed in Table
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Figure 4.7: Shipper classification and prediction results in the scenario of heterogenous preferences

4.2.3 Summary of model comparison

The increase in sample size can generally decrease prediction errors, and artificial neural networks
are particularly sensitive to changes in sample size. This is because artificial neural networks are
designed to learn directly from data, without relying on pre-defined model specifications. It is im-
portant to note that the improvement of NNs becomes slower as the sample size increases beyond
a certain threshold. This threshold is related to various factors, including the input data and the
underlying patterns of the sample data, which is in line with the result of previous research[59].
For instance, in the case of the NNs model, the sample size required to achieve high performance
can be dependent on the specific scenario and the shippers’ real preferences. Specifically, in HoS1
and HeS1, the high performance of NNs was achieved with a sample size of 7 * 102, and further
increasing the sample size did not result in significant performance gains in terms of both accuracy
and log loss. However, in HoS2 and HeS2 scenarios, the threshold value is found to be 7 x 103.

In addition, Scenario HeS1 revealed that artificial neural networks with different inputs require
different sample sizes to achieve optimal performance. It can be seen in Figure [{.5a] and [L.5D] that
NNs can achieve the best performance with a sample size of 7 * 102, while NN-PMs required a
larger sample size of 7 % 103. This difference can be explained that the incorporation of the in-
formation preference matrix can make artificial neural networks to be more effective in leveraging
large datasets in scenarios where shippers’ preferences are heterogeneous.
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Table shows the numerical results of prediction accuracy and log loss in terms of models
and scenarios with the sample size being 7 * 10*. It can be observed that both BLs and NNs have
both high accuracy in HoS1. BLs can efficiently capture shippers’ preferences when the structures
of model specification and the real preferences are the same. Considering Scenario HoS2, NNs
outperform BLs by about 52.3% prediction accuracy, implying that the structure of NNs is more
effective in capturing the nonlinearity in preference datasets.

In scenarios with heterogeneous preferences, NN-PMs outperform BLs and NNs in terms of
both accuracy and log loss. This can be attributed to the incorporation of the preference matrix,
which reflects shipper heterogeneity based on their previous choices. The architecture of artificial
neural networks is capable of modeling and capturing this heterogeneity, leading to improved per-
formance in predicting choice probabilities.

Table 4.6: The evaluation of models in four scenarios

Evaluation Prediction Accuracy Log Loss

HoS1 HoS2 HeS1 HeS2 HoS1  HoS2 HeS1  HeS2
BL 96.23% 56.51% 87.40% 59.21% | 0.3506 0.6644 0.4827 0.6622
NN 96.12% 86.06% 88.10% 85.21% | 0.0778 0.3340 0.3026 0.3569
NN-PM - - 93.71% 87.40% | - - 0.1577 0.3321

It is important to note that the discussion of the performance of BLs is limited to the specific
model used, as described in Section The model assumes linear relationships between trans-
port attributes and utility, and the model specification (Eq. represents utility as a linear
combination of transport attributes with a random term. However, within the field of shippers’
preference research, there are various specifications for discrete choice models [38] [39, [19, 37]. For
example, Box—Cox transforms [38] or logarithms [39] can be integrated in the model specification
for modeling nonlinearity. The latent class discrete choice model can account for different groups
of shippers [37,[I9]. The performance of these alternative models may differ from the baseline mod-
els utilized in this research. However, when selecting the appropriate model specification, careful
consideration of the functional forms, assumptions, and interactions among variables is necessary.
It requires validation and evaluation using statistical techniques to ensure the chosen model can
accurately represent the underlying preferences. In comparison, artificial neural networks can
autonomously capture underlying relationships from the data. The neural network structure can
provide opportunities to simplify the preparation work for model specification, enhance predic-
tion accuracy, and reduce the risk of inappropriate specification. Furthermore, artificial neural
networks may adapt to new data and identify patterns that may not be easily discerned using
conventional statistical methods.

4.2.4 Model explanation

Homogeneous scenario

To understand how SHAP can explain individual preference, this section investigates the dif-
ferences in the predicted utility and SHAP values on two alternatives (transport plan A and
transport plan B). The force plots are shown in Figure and The predicted utilities for
transport plan A and transport plan B are -100.45 and -222.31, respectively. Therefore, ship-
pers prefer transport plan A to transport plan B as utility A is higher. The base value is the
expected utility prediction without input features, which is estimated by the average predicted
utility. The base value, in this case, is -155.84. The willingness of shippers to choose transport
plan A (—100.45 > —155.84) is higher than the average level of willingness, whereas transport
plan B (—222.31 < —155.84) indicates the opposite. Taking the base value as the starting point,
the colored bars in Figure and show the contributions of transport attributes (i.e., cost,
time, delay, emission, transshipment) to the predicted utilities. Blue factors make the predicted

Integrated Synchromodal Transport Planning and Preference Learning 31



CHAPTER 4. RESULTS

utility less than the base value, and the red factors have a positive impact on a larger predicted
utility than the base value. The values for each attribute are shown below the colored bars.

For the predicted utility of transport plan A, the cost of 0.194 has the largest effect to make the
utility larger than the base value (-155.84), followed by transshipment. It is noted that although
the value of transshipment is 0.000 in transport plan A, it has a positive impact on the predicted
utility. This is because the base value is the reference with the information of all the values of
transshipment in transport plans. Considering the transshipment can not be negative, the value
of 0.000 represents a relatively low level of transshipment. It is consistent with the true utility
function that transshipment has a negative parameter, so the lower transshipment contributes to
a higher predicted utility.

For transport plan B, cost, transshipment, and emission have positive impacts on increasing
the utility, while transport delay and transport time have distinct impacts on pushing the utility
lower than the base value. Comparing plan A and plan B, it can be observed that the predicted
utility of plan A is greater than the base value, while the predicted utility of plan B is lower. This
can be attributed to the positive impact of a time value of 0.131 on the utility of plan A and the
negative impact of a time value of 0.257 on the utility of plan B. The delay of 1.020 in plan B is
the major reason for the lower utility. These findings are consistent with the true utility function,
in which the increase in delay and time can decrease the utility.
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Figure 4.8: Force plots for utility predictions in HoS1

Heterogeneous scenario

Based on the training of NN-PMs in the case of heterogeneous linear preferences, utilities for dif-
ferent types of shippers on the same transport plans can be calculated. To investigate the impact
of attribute variance on utilities, utilities were first calculated by shipper class on the average
transport plan, where attribute values were set to their average values. Next, utilities were calcu-
lated again after increasing respective attributes by 0.001, 0.010, and 0.100 to obtain the utility
differences (the original utility minus the new utility).

Table [£.7] presents the resulting changes in utility values for each attribute by shipper class.
These utility changes can provide valuable insights into the relative importance of different attrib-
utes for different classes of shippers. For example, shippers in Class 2 have the most significant
negative impact among all classes with the increase in transport time, indicating this class is the
most sensitive to transport costs, followed by Class 4, Class 3, and Class 1.

With the various values of transport attributes, the linearity in shippers’ preferences can be
observed from the changes in predicted utilities. The proportion of input changes is similar to
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the proportion of the output changes for all attributes. For instance, when the transport cost
increases by 0.001, 0.010, and 0.100, the changes in predicted utility are -0.077, -0.770, and -7.197,
respectively, which demonstrates a linear relationship between cost and utility.

Although the proposed model can achieve high predicting accuracy on comparisons for shipper
preferences (93%), it is important to note that the ability to predict the value of utility can be
related to the preference distribution within classes and the range of training datasets.

The impacts of transport attributes, that are prioritized and have a greater impact on utility,
are easier to capture than non-prioritized attributes. As shown in Table [f.7} NN-PMs are able
to accurately predict the preferences of Class 2 for transport time and delay, but have limited
ability to predict the impact of emissions. In addition, it is easier to capture the preferences with
a higher level of prioritization (Class 1 and Class 2) than those without clear preferences (Class
3 and Class 4). For example, for Class 3, the changes in cost are relatively large considering the
true preference of this class (sensitive to emission). This finding is in line with the results shown
in Figure [£.7] This may be due to the models being trained using comparisons, which may result
in information loss regarding the exact values of utilities for non-prioritized attributes.

Based on the utility changes with the variation of 0.01, Figure and Figure show the
relative importance of transport attributes in true preferences and predicted preferences, respect-
ively. It shows that, in comparison to the true relative importance, the learned preference pattern
by NN-PMs can differentiate between shipper classes, which is a key factor in the outperform-
ance of NN-PMs over NNs and BLs in heterogeneous scenarios. However, it is important to note
that there is still space for improvement in fully recovering the degree of attribute prioritization
in classes. As shown in Figure [£.9] the actual sensitivity of shippers in Class 1 and Class 3 to
transport cost and emission, respectively, should be greater than their predicted preferences.

Table 4.7: The utility changes of NN-PMs with the attribute variances

0.001  0.010 0.100 Sensitivity

Cost

Class 1 -0.077 -0.770 -7.197 *
Class 2 -0.283 -2.832 -28.351  HHk*
Class 3 -0.110 -1.021 -12.104 **
Class 4 -0.259 -2.574 -25.875 **¥*
Time

Class 1 -0.181 -1.805 -21.605  ****
Class 2 -0.037 -0.368 -3.683 *
Class 3 -0.125  -1.251 -10.471 ***
Class 4 -0.039 -0.393 -3.934 *x
Delay

Class 1 -0.169 -1.691 -16.775  *¥**
Class 2 0.001  0.014 0.141 *
Class 3 -0.065 -0.649 -6.146 K
Class 4 -0.123  -1.231 -12.310 ***
Emission

Class 1 0.020 0.204 2.041 *
Class 2 0.011  0.112  1.296 ok
Class 3 -0.071  -0.709 -7.080 ootk
Class 4 -0.011  -0.112 -1.114 orx
Transshipment

Class 1 -0.004 -0.025 -0.158 *
Class 2 0.010 0.179 2.045 ok
Class 3 -0.013 -0.127 -1.291 ARk
Class 4 0.010 0.096 0.964 ok

Note. **** means the class is the most sensitive class for a specific attribute.
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Figure 4.9: The relative importance of attributes
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4.3 Experiments on synchromodal transport planning

This section examines the performance of the synchromodal transport planning model with ship-
pers’ preference learning (STPM-SP). The trained utility estimators are utilized during the plan-
ning process to assess the satisfaction level of shippers towards transport solutions. The synchro-
modal transport planning model (STPM) is used as a benchmark model to compare the impact
of integrating preference information on transport solutions. To examine this effect, we conduct
experiments in four scenarios (HoS1, HoS2, HeS1, HeS2) using synchromodal transport planning
modals (STPM, STPM-SP).

4.3.1 Synchromodal transport planning with shippers’ preferences

In total, there are 80 instances of synchromodal transport operations conducted by running five
instances for each combination of scenarios, models, and request numbers, as shown in Table [.8]
Table [4.9] presented the computational time of STPM and STPM-SP.

Table 4.8: The experiment settings

Settings

Scenario [HoS1, HoS2, HeS1, HeS2]
Models [STPM (baseline), STPM-SP]
Number of requests  [10,50,100,150]

Repetition 5

Table 4.9: The computational time of STPM and STPM-SP (unit: hour)

Request STPM STPM-SP

10 0.06 0.08
50 1.81 2.02
100 9.92 9.85
150 26.29 23.41

Figure [£.10] presents the satisfaction improvement and the corresponding cost increase in the
experiments. The red dots represent the average values of maximum satisfaction improvement
and the corresponding cost increase within Pareto sets of five instances of synchromodal trans-
port planning. The green dots represent the average values of satisfaction improvement and cost
increase for the most efficient trade-offs, determined by the ratio of the gap between satisfaction
improvement and cost increase to satisfaction improvement. Each label along the dots indicates
the number of requests in a single instance, with ‘R100’ indicating 100 requests. The specific
values for these experiments are shown in Table

By comparing the solutions with the most satisfaction improvement (in red) and the solutions
with the most cost-efficient satisfaction improvement (in green), it can be observed that the most
efficient satisfaction tends to be approximately half of the maximum satisfaction attained. How-
ever, there can be certain combinations where it is challenging to find cost-efficient trade-offs,
resulting in relatively low improvements in efficiency. For example, the cost-efficient satisfaction
improvement for instances of R10 in HoS1 (Figure and HoS2 (Figure are relatively
low.

In the scenarios where all shippers share the same preference, the trade-offs between cost and
shippers’ satisfaction appear to be less cost-efficient compared to the scenarios with heterogeneous
preferences. It is observed that in HeS1 (Figure , instances with a request size of 10, 50, and
100 tend to have higher satisfaction levels with a relatively smaller increase in cost. For example,
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in the R100 case of HoS1 (Figure , the average maximum satisfaction improvement is ap-
proximately 17.44%, whereas, in HeS1 (Figure , where there are four classes of shippers with
different preferences, the value can be increased to 25.53% with a lower increase in cost (8.03%).
In the case of 150 requests, although HoS1 shows a larger satisfaction improvement (47.67%),
HeS1, with the most efficient solution proposed by STPM-SP, can provide win-win solutions, that
is, satisfaction improved by 9.28% while simultaneously reducing costs by 1.04%. This can be
explained by the fact that when shippers’ preferences differ, freight forwarders have the flexibility
to reallocate resources that have already been utilized, adjusting the allocation across shippers
instead of requiring additional resources for satisfaction improvement.

By comparing the outcomes of different true model specifications, a notable trend is that the
satisfaction improvement is more significant in the nonlinear cases (Figure compared
to the linear cases (Figure . This could be attributed to the fact that the attribute
changes in the nonlinear functions used in this research have a greater impact on satisfaction com-
pared to the changes in linear functions. Therefore, the extent to the satisfaction can be improved
is closely related to the relationship between true utility and the factors influencing it. Nonlinear
functions may amplify the effects of attribute changes, leading to more substantial improvements
in satisfaction.
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Figure 4.10: The changes in the satisfaction improvement and cost increase in the scenarios
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Table 4.10: The numerical results of satisfaction improvement and cost increase

ST* cr* ST CI
HoS1
R10 10.937%  14.475% 2.699%  0.707%
R50 21.172%  12.735%  6.396%  -0.348%

R100 17.445%  12.689% 13.282% 6.176%
R150 47.671%  8.277%  25.087% 2.216%

HoS2
R10 17.911% 1.889% 0.023%  0.000%
R50 27.144%  3.770% 23.178% 1.711%

R100 46.575%  1.347%  32.450%  0.542%
R150 31.445%  3.836%  11.017% 0.196%

HeS1
R10 23.228%  11.158% 7.508%  0.021%
R50 32.631%  11.378% 9.413% 1.181%

R100 25.533%  8.031% 15.427% 0.616%
R150 21.795%  9.375%  9.275%  -0.398%

HeS2
R10 24.122%  4.354%  8.363%  2.485%
R50 43.031%  1.401%  23.747% 0.011%

R100 90.970%  4.558%  49.133% 1.808%
R150 122.473% 9.117%  62.540% -0.222%

Average 37.755% 7.399% 18.721%  1.044%
Notes: SI* and CI* are the satisfaction improvement and cost increase for the solutions with maximum
satisfaction improvement, respectively. SI and CI are the satisfaction improvement and cost increase for
the solutions with the most efficient satisfaction

4.3.2 Synchromodal transport planning with homogeneous preferences

Figure compares the solution attributes between the solution proposed by STPM (base solu-
tion) and the Pareto solution set with 6 non-dominated solutions of STPM-SP on the same 100
requests. Taking the best solution proposed by STPM as the base solution, the variations of
solution attributes in the Pareto set are shown.

The Pareto set of non-dominated solutions has a satisfaction improvement ranging from 18.72%
t0 26.98%. It appears that all of these non-dominated solutions have higher generalized costs, costs,
and emissions compared to the base solution. However, they also require shorter times, suggesting
that shippers prioritize faster delivery over lower costs and emissions. Solution 1 has the largest
satisfaction improvement (26.98%) among the non-dominated solutions in the Pareto set. How-
ever, it also has the most significant increase in generalized cost, cost, and emissions compared
to the base solution. In addition, trade-offs between different solution attributes can be observed,
for example, S2 and S1 have similar satisfaction, but S2 has less increase in cost and emissions
compared to S1, and it reduces time and transshipment. However, such improvement is based on
the trade-off of the increase in delay. The specific values are listed in Table [C.3]in Appendix.

To better understand the influence of STPM-SP on the individual shipper, the individual sat-
isfaction improvement and modal share are investigated for solution 78, which achieves the highest
satisfaction improvement among all the Pareto solutions proposed by STPM-SP.

Figure[I.12]shows the average proportion of shippers with various levels of satisfaction improve-
ment in the instances with 100 requests. A positive level (in red) indicates that the STPM-SP
model improves the satisfaction levels of the shipper compared to the solution generated by the
STPM model, otherwise, the value is negative shown in blue. Figure shows performance
variability for shippers. 71.9% shippers have increased satisfaction while 28.1% satisfactions ex-
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Figure 4.11: The comparison between the base solution and the Pareto solutions in HoS1

perience setbacks. 65.7% of the shippers have experienced a satisfaction increase of less than 50%,
while 6.2% of shippers have a satisfaction decrease of more than 100%.
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Figure 4.12: Proportions of shippers based on satisfaction improvement

Figure shows the average changes in modal share between the STPM solutions and the
STPM-SP solutions in the instances with 100 requests, and Table shows the percentages of
trips by mode shift. In general, the barge mode accounts for the largest proportion of trips in both
the STPM solutions and the STPM-SP solutions, with shares of 58.64% and 57.64% respectively.
Most of the barge, train and truck trips in the base solution (55.756%, 9.375% and 28.696%)
remain using their original mode, with only a small proportion of trips shifting to other modes.
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Figure 4.13: The shift of modal share between the STPM solution and the STPM-SP solution

Table 4.11: Percentages of trips in modal shift

From-To Percentage of trips
Barge-Barge 55.756%
Barge-Train 0.195%
Barge-Truck 2.687%
Train-Barge 0.120%
Train-Train 9.375%
Train-Truck 0.422%
Truck-Barge 2.236%
Truck-Train 0.509%
Truck-Truck 28.696%

4.3.3 Synchromodal transport planning with heterogeneous preferences

Figure [I.14] shows the comparison between the base solution generated by STPM and the Pareto
solution proposed by STPM-SP. Among the Pareto solutions, S1 demonstrates the greatest im-
provement in shippers’ satisfaction, with an increase of 23.46%, followed by S2. The main reason
for such improvement is the reduction of delay, transport time, and transport cost, although it
comes at the expense of higher emissions. Another solution, S6, also exhibits significant reductions
in delay and transport costs while requiring longer time and transshipment. The specific values
are listed in Table in Appendix.

Figure [£.15] illustrates the average distribution of shippers based on their satisfaction improve-
ment in instances with 100 requests. It is observed that a majority of shippers (68.3%) experience
a higher level of service, with 59.6% of the improvement falling within the range of [0%,50%). A
few shippers experience a reduction in satisfaction of more than 100%. Therefore, in practice, it
is crucial to investigate the underlying reasons and take measures to prevent significant decreases
in satisfaction for these shippers. Figure [f.16]|shows the average modal share changes between the
base solution (the optimal solution proposed by STPM) and the Pareto solution with maximize
satisfaction proposed by STPM-SP. Table shows specific numerical values of modal share
shift. Overall, the changes in mode share are not particularly significant, with a slight increase of
0.16% in train share, 0.37% in truck share, and marginal decreases of 0.53% in barge share.

Figure shows the distribution of improvements across shipper classes. Among shippers
in class 3, 80% experienced an improvement in satisfaction. The values are 67.39% and 76.19%
for class 1 and class 2, respectively. However, in class 4, which prioritizes cost and delay, only
42.85% of shippers have satisfaction improvement. This indicates that compared to other classes,
the satisfaction of class 4 is more challenging to improve. This could be because the trade-off
between cost and delay is significantly stronger, making it more difficult to achieve improvements
by adjusting transport plans.
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Table 4.12: Percentages of trips in modal shift

From-To Percentage of trips

Barge-Barge 55.756%
Barge-Train 0.195%
Barge-Truck 2.687%
Train-Barge 0.120%
Train-Train 9.375%
Train-Truck 0.422%
Truck-Barge 2.236%
Truck-Train 0.509%
Truck-Truck 28.696%
Satisfaction improved ® Satisfaction decreased ® Satisfaction unchanged
Class | 67.39% —
é Class 2 76.19% _
§ Class 3 80.00% 2000%
Class 4 2.86% o s
0% 20% 40% 60% 80% 100%

Percentage

Figure 4.17: Proportions of shippers with satisfaction changes in classes

Figure presents the transport attribute for each class of shippers and Table presents
the corresponding values of changes. Specifically, the percentages represent the extent of increase
or decrease in the transport attribute, compared to the optimal solution generated by STPM. After
the incorporation of heterogeneous preferences, shippers in class 1, who prioritize time and delay,
have a decrease in average emission, delay, and cost, while transshipment and time increased. It is
noted that although both time and delay are prioritized in class 1 according to the true preferences,
the average delay reduces by 23.95%, while time increases by 10.57%. This finding highlights the
ability of STPM-SP to not only identify the prioritized attributes but also effectively capture the
trade-offs between these attributes and search for the most enhancements in satisfaction. The
shippers in classes 1, 2, and 3 experience significant changes in transshipments, with percentages
of 104.76%, -41.44%, and -48.89%, respectively. This underscores the importance of transshipment
in synchromodal transport operations, as it enhances flexibility and offers more opportunities for
the adjustments of resource allocation among different classes of shippers.

According to Figure class 3 has the highest proportion of shippers with improved sat-
isfaction. Although the average emission for class 3 requests only decreased by 1.17% (the most
prioritized attribute in class 1), the decrease in time by 20.58% becomes the contributing factor
for this improvement. Therefore, it is crucial to have a comprehensive understanding of shippers’
preferences rather than relying on partial knowledge. This is because there may be scenarios where
improving attributes that are not the most prioritized can still result in increased satisfaction for
shippers.

When looking into the Pareto solution, Figure compares the modal share across different
shipper classes. It is observed that class 1 and class 2 have a significant proportion of barge usage,
accounting for 59.14% and 64.54% respectively. The truck share of class 1 is larger than that of
class 2, indicating their distinct preferences, which is that class 1 prioritizes short transport time
and low delay, while class 2 values cost-effectiveness. Regarding class 3, truck trips account for a
relatively high proportion (40.00%). This aligns with the finding from Figure which indicates
that the satisfaction improvement for class 3 is primarily driven by time reduction rather than
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Table 4.13: The comparison of transport attributes for shippers

Comparison Cost Time Delay =~ Emission Transshipment
Class 1 -4.73%  10.57%  -23.95%  -8.44% 104.76%
Class 2 -6.01% -3.54% -31.55%  -8.41% -41.44%
Class 3 5.98% -20.58%  0.00% -1.17% -48.89%
Class 4 15.88% -0.61% -16.97%  32.98% 0.00%

the prioritized attribute of emission reduction. For class 4, who prioritize both cost and delay, the
train can be a suitable option since they offer a balance between lower cost compared to trucks
and faster travel times compared to barges. This finding highlights the benefits of multimodal
transportation over single-mode transportation. Through the integration of multiple modes of
transport, multimodal solutions can effectively leverage the strengths of different modes and be
adjusted to fulfill the specific preferences of diverse shippers.

Barge © Train = Truck

100%

14.29%
23.61%

80% PEHI0Y 40.00%
11.85%
5 77,
60% S 57.14%
40% 39.57%
59.14% 64.54%
20%
20.43% 28.57%
43%
0%
Class 1 Class 2 Class 3 Class 4

Figure 4.19: The modal share in the S1 across shipper classes
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Discussions

This section presents the discussions and reflections on the research methodology and experimental
results.

5.1 Discussions on the methodology framework

The research aims to develop a foundational framework for a shipper-oriented synchromodal trans-
port system, integrating synchromodal transport planning with shippers’ preference learning. This
framework can enable freight forwarders to offer customized transport solutions and improve the
attractiveness of transport services, which will enhance existing business relationships and facilit-
ate the expansion of the customer base.

The traditional methods for studying shippers’ preferences are commonly based on survey
data. For example, shippers are asked to rate various transport attributes using a predefined
scale of importance. However, this method has its limitations, including hypothetical biases and
challenges associated with large-scale data collection. The hypothetical nature of survey may lead
to responses that do not accurately reflect shippers’ true preferences in practical situations. Based
on these considerations, this research aims to utilize revealed preference data and the basic idea
is to utilize the data generated from the transport system to improve the system itself. In this
approach, when shippers have transport requests, they are presented with multiple alternative
transport plans and are requested to rank these provided options. Unlike the traditional method
that relies on hypothetical ratings, this ranking method captures shippers’ preferences in their
actual decision-making process, resulting in a more accurate reflection of their preferences. As the
transport system serves shippers over time, the preference database can expand, allowing for a
more extensive and robust understanding of shippers’ preferences.

The motivation behind incorporating artificial neural network-based preference learning into
synchromodal transport planning stems from its ability to leverage large-scale revealed preference
data and autonomously capture preferences without prior knowledge of variable relationships.
This approach holds potential for online operation, enabling the identification of preferences for
new shippers.

To implement the proposed framework in practice, several aspects need to be considered.
Firstly, the feedback collection requires an advanced data storage system and management system
to accommodate the storage and retrieval of significant amounts of data, including information such
as shippers’ IDs, their rankings of transport plans and transport attributes of alternative plans.
Second, active collaboration from shippers is essential for the success of this approach. Shippers
would be required to provide their feedback on the provided transport plans and understand that
the top-ranked plan may not always be implemented (as the freight forwarders are the final decision
maker of this system). Furthermore, freight forwarders are required to invest additional efforts
in presenting candidate solutions for each shipper and have appropriate measures for shippers’
privacy protection.
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5.2 Discussions on the preference learning

Considering the flexibility and scalability, this research uses synthetic preference data for model
evaluation. synthetic data can simulate “what if” scenarios of shippers’ preferences, allowing this
research to test the capacity of the proposed models under various conditions (i.e., homogeneity,
heterogeneity, linearity, nonlinearity). Synthetic data can provide sufficient samples for model test-
ing and examine the performance of the proposed models at different scales of dataset. For this
research, the collection of feedback data during the actual transport process can be challenging,
considering the duration of transport operations, shippers’ privacy, and business confidentiality.

This research uses binary logit models as the baseline model in preference learning and com-
pares them with artificial neural networks. The purpose of this comparison is to explore how each
model adapts under different conditions and gain insights into the reasons for their respective
performance, rather than to determine a definitive superior model. The model comparison en-
ables a better understanding of the fundamental characteristics between statistical-based utility
estimators and data-driven utility estimators. The former one incorporates prior knowledge and
relies on a smaller number of parameters, and the other releases model specifications but requires
an expanded parameter space. It should be noted that the discussion on both baseline models
and proposed models is restricted to the specific model settings, in which the binary logit models
have a linear combination of attributes and artificial neural networks are five-layer feedforward
networks with the ReLLU activation function.

As the binary logit model is a basic form of the discrete choice model, it cannot fully represent
the capabilities of the entire discrete choice model family. This research suggests it is worthwhile
to investigate more advanced discrete choice models. For example, Box—Cox transforms [3§] or
logarithms [39] can be integrated into the model specification for modeling nonlinearity. The latent
class discrete choice model can analyze preference heterogeneity by estimating the probability of
individuals belonging to specific classes and class-specific probabilities [37) [19]. It is important to
note that discrete choice models require prior statistical experiments to ensure the chosen model
can accurately represent the underlying preferences. When selecting the appropriate model spe-
cification, researchers should have careful consideration of the relationships between the variables
and the utilities, including non-linear transformations of variables and interactions between them.
In comparison, the neural network structure may provide opportunities to simplify the preparation
work for model specification, enhance prediction accuracy, and reduce the risk of inappropriate
specification. Furthermore, artificial neural networks may adapt to new data and identify patterns
that cannot be easily discerned using conventional statistical methods.

5.3 Discussions on the results

The experiments present two trade-offs related to model selection in preference learning. The
first trade-off is that although artificial neural networks release the prior assumptions regarding
variable relationships, this advantage comes at the cost of requiring large-scale training data and
parameters, which can place a significant workload on data collection and hyperparameter tuning.
The second trade-off relates to the model’s capacity for generalization and explanations. Artifi-
cial neural networks employ a large number of parameters, relax the assumptions regarding the
model specification and enable generalization of the model structure. Nonetheless, the increased
complexity resulting from parameters makes it challenging to provide clear explanations for ship-
pers’ behavior. This research applies SHAP for model explanation for the homogeneous preference
scenario, while it cannot analyze the potential interactive effect between variables (i.e., the pref-
erence matrix and transport attributes) and is still limited to explain the heterogenous preferences.

For the experiments of transport planning, this research chooses the STPM model as the
baseline to conduct a comparative evaluation with the proposed STPM-SP model. The primary
task of experiments is to integrate preference information into the planning process and quantify
the extent to which satisfaction can be enhanced. Additionally, this research explores various
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aspects such as the trade-off within different Pareto solutions, the distribution of satisfaction
improvement among shippers, and the changes in model shares. Results show that the proposed
STPM-SP can improve the shippers’ satisfaction by 37% on average compared to the solution that
resulted in STPM. Results also demonstrate the importance of a comprehensive understanding
of shippers’ preferences because it can be possible that the enhanced attributes may not be the
highest prioritized ones but can still result in increased satisfaction for shippers. Furthermore, the
incorporation of shippers’ preference has the potential to effectively increase the modal share of
sustainable modes while simultaneously improving shippers’ satisfaction. By aligning the prefer-
ences of shippers with the environmental goals, freight forwarders can have win-win solutions for
future synchromodal transport planning.

Integrated Synchromodal Transport Planning and Preference Learning 45



Chapter 6

Conclusions and
Recommendations

This chapter presents the main conclusions and discusses future research directions.

6.1 Conclusions

This study develops a foundational framework for integrating synchromodal transport planning
and preference learning. An artificial neural network-based preference learning method is pro-
posed to capture the preference information from shippers’ feedback data in transport operations.
A synchromodal transport planning model with shippers’ preferences (STPM-SP) is proposed to
support the decision-making of freight forwarders incorporating shippers’ preferences. The model
considers two objectives minimizing the total cost and maximizing shippers’ satisfaction. The
Adaptive Large Neighborhood Search is modified to solve the STPM-SP.

The proposed preference learning method can effectively capture both linear and nonlinear
relationships between variables and utilities using large-scale datasets, without the prior model
specification. It can also automatically distinguish the heterogeneity of preferences with the in-
formation of historical decisions. In comparison to statistical-based discrete choice models, the
structure of artificial neural networks has the potential to simplify the preparatory work required
for model specification, reducing the risk of inappropriate specification.

The planning results demonstrate that STPM-SP can effectively find solutions with a signi-
ficant satisfaction improvement of about 37%. The distribution of shippers’ satisfaction indicates
that achieving satisfaction improvement can not only be related to the allocation of extra resources
but also involves the trade-off between the resources assigned to shippers. STPM-SP can optimize
this trade-off to maximize overall satisfaction. Furthermore, the results also present the import-
ance of a comprehensive understanding of shippers’ preferences since it can be possible that the
enhanced attributes may not be the highest prioritized ones in preferences but can still result in
a significant satisfaction increase for shippers.

The proposed framework can serve as the foundation for the user-oriented synchromodal trans-
port services that freight forwarders can learn from shippers’ preferences from revealed preference
data collected in the system and improve their services accordingly. As the transport system
serves shippers over time, the preference database can expand, allowing for a more extensive and
robust understanding of shippers’ preferences. This process can be iterative and has the potential
for online learning and continual improvement of the system, building the capacity of freight for-
warders to provide transport plans that align with the preferences of new shippers and adapt to
the evolving preferences of existing shippers.

Based on the discussion, the answers to the research questions can be concluded as follows:

RQ@ 1: How to learn shippers’ preferences from their rankings on alternatives of transport
plans?

46 Integrated Synchromodal Transport Planning and Preference Learning



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

When shippers have transport requests, they are presented with multiple alternative transport
plans and are requested to rank these provided options. An artificial neural network-based pref-
erence learning method is proposed to capture the preference information from shippers’ feedback
data in transport operations.

RQ@ 2: To what extent the true preferences can be captured from the ranking data?

The proposed preference learning method can effectively capture both linear and nonlinear
relationships between variables and utilities using a large-scale dataset with a prediction accuracy
above 85% in four tested scenarios, without the prior model specification. It can also automatic-
ally distinguish the heterogeneity of preferences based on the information on historical decisions.

RQ 3: How to incorporate preferences into synchromodal transport planning?

A sychromodal transport planning model with shippers’ preferences (STPM-SP) is proposed
to support the decision making of freight forwarders incorporating with shippers’ preferences. The
model considers two objectives of minimizing the total cost and maximizing shippers’ satisfaction.
The output of the preference learning method is used as a utility estimator to calculate the ship-
pers’ satisfaction.

RQ 4: To what extent the transport services can be improved according to the learned pref-
erences?

The planning results demonstrate that STPM-SP can effectively find solutions with a significant
satisfaction improvement of about 37%. The most cost-efficient satisfaction improvement tends to
be approximately half of the maximum satisfaction attained.

6.2 Practical recommendations

Based on the findings, this thesis can provide several recommendations for practice for transport-
ation service providers and policy-makers, which are listed as follows:

e A better understanding of shippers’ preferences can help freight forwarders to identify gaps
between the current service level and shippers’ expectations, which enables them to recognize
the areas in which their services may not fully meet the expectations of shippers. There may
be scenarios where improving attributes that are not the most prioritized can still result in
increased satisfaction for shippers.

e The integrated framework of synchromodal transport planning and preference learning can
also be used in single-mode or intermodal transport systems. It can be more valuable
for synchromodal transport planning with real-time information updates, as the system
requires making prompt decisions from freight forwarders during transport operations to
accommodate real-time modifications. Instead of consulting shippers for plan adjustments
frequently, freight forwarders can leverage their knowledge of shippers’ preferences to make
quicker and more informed decisions.

e For discrete choice models, statistical experiments and analyses are required to determine
the appropriate model specification. Incorrect model specifications can lead to undesired
performance outcomes. Artificial neural networks can autonomously capture nonlinear re-
lationships between variables rather than relying on strong model specifications. While the
potential trade-offs also should be noted, including the explanation capability, hyperpara-
meter tuning, and the requirement for a large sample size.
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6.3 Limitations and future research

Based on the conclusions, this research reflects the limitations and proposes several suggestions
for future research:

e This research simulates the shippers’ ranking on transport plans based on the predefined

utility functions. However, synthetic data may not capture the full range of factors and
complexity that exist in real-world scenarios. Therefore, it is crucial to incorporate the
actual shipper ranking data in future research, which will provide a more comprehensive and
realistic understanding of real shippers’ preferences and better demonstrate the applicability
and effectiveness of the models.

This research examines the predictive capabilities of binary logit models and artificial neural
networks in preference learning. It can be argued that the binary logit model is a basic
form of discrete choice model and may not fully represent the capabilities of the entire
discrete choice model family. In future research, more advanced model structures can be
explored. For instance, within the family of discrete choice models, latent class models are
designed for heterogeneous preferences, and mixed logit models allow for the exploration of
individual preferences. For artificial neural networks, the predictive power may be enhanced
by incorporating self-attention mechanisms and recurrence structures.

In the experiments for synchromodal transport planning, the selection of variables and para-
meters presented serves as an illustrative list that represents general shipper preferences. It
is important to note that this list may not be comprehensive. Future studies may explore
a wider range of variables to incorporate into the modeling process, and this research sug-
gests that some potential variables that could be considered include shippers’ characteristics,
company types, and cargo types.

In STPM-SP, shippers’ satisfaction with the transport solution is quantified by summing the
satisfaction of all shippers. However, in practical operations, freight forwarders often assign
priority to shippers based on their business relationships. Future optimization models can
take this into account by assigning different weights to individual shippers or incorporating
specific enhancements for certain shippers as constraints. This would better reflect real-world
transport operations and improve the practicability of the optimization models.

This research focuses on learning shippers’ preferences based on historical data. The new
challenge lies in capturing the preferences of new shippers. It remains uncertain whether the
preferences of new shippers can be learned, especially if they differ from the preferences of
existing shippers. Furthermore, it is unclear how long it takes, or after how many services,
such preferences can be accurately predicted. It is worthwhile to investigate the feasibility
and efficiency of the proposed models in capturing the preferences of new shippers and
incorporate such information into the online planning process.
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Appendix A

Summary

A.1 Summary

A comprehensive understanding of shippers’ preferences can empower transport freight forward-
ers to provide user-oriented transport services and strengthen long-term business relationships.
In synchromodal transport research field, many studies addressed the transport planning problem
from the perspective of freight forwarders, while the considerations of shippers can be diverse from
freight forwarders. There is still a lack of insight into incorporating the benefit of shippers into
the transport planning and it is unclear how to leverage the potential of customer data to improve
services. To this end, this thesis develops a foundational framework for integrating synchromodal
transport planning and preference learning to capture shippers’ preference in the transport pro-
cess and enable freight forwarders to make more informed decisions. This framework can serve
as the foundation for the user-oriented synchromodal transport services that freight forwarders
provide services while simultaneously learning from shippers’ preferences. It emphasizes the data
collection within the transport system and improves services based on the preferences of shippers.

To integrate synchromodal transport planning and preference learning, there are two major
research problems: the shippers’ preference learning problem and the bi-objective synchromodal
transport planning problem. A preference learning model is proposed, which utilizes shippers’
decisions on transport services to estimate their preferences. Artificial neural networks are used
to approximate shippers’ satisfaction with transport services. A synchromodal transport plan-
ning model considering shippers’ preferences is established using a heuristic algorithm. In this
approach, when shippers have transport requests, they are presented with multiple alternative
transport plans and are requested to rank these provided options. This ranking method captures
shippers’ preferences in their actual decision-making process, resulting in an accurate reflection of
their preferences. As the transport system serves shippers over time, the preference database can
expand, allowing for a more extensive and robust understanding of shippers’ preferences. Con-
sidering the characteristics of shippers’ real preferences, four 'what if’ scenarios are designed: ho-
mogeneous linear preference scenario (HoS1), homogeneous nonlinear preference scenario (HoS2),
heterogenous linear preference scenario (HeS1), and heterogenous nonlinear preference scenario
(HeS2).

A.1.1 Summary on the preference learning

The experiments on preference learning examined the performance of binary logit models (BLs),
artificial neural networks (NNs), and artificial neural networks with preference matrix as input
(NN-PMs). The performances of the models are evaluated based on prediction accuracy and log
loss. Results show that the increase in sample size can generally decrease prediction errors, and
artificial neural networks are particularly sensitive to changes in sample size. In scenarios with
homogeneous preferences, both BLs, and NNs have a high accuracy in HoS1. BLs can efficiently
capture shippers’ preferences when the structures of model specification and the real preferences
are the same. Considering Scenario HoS2, NNs significantly outperform BLs implying that the
structure of NNs can be effective in capturing the nonlinearity in preference datasets without the
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prior knowledge on real preferences. In scenarios with heterogeneous preferences, NN-PMs outper-
form BLs and NNs in terms of both accuracy and log loss. This can be because the architecture
of artificial neural networks is capable of modeling heterogeneity through the incorporation of
the preference matrix. For model explanation, SHAP is applied to explain individual preference
in homogenous scenarios. This research discussed the contributions of each transport attribute
(i.e., cost, time, delay, emission, transshipment) to the predicted utilities, taking the base utility
value as the basis point. The predicted utilities of the two alternatives are investigated and the
differences are analyzed. For the heterogeneous cases, this research investigated the influences of
attribute variances on utilities. It is found that the impacts of transport attributes, that are pri-
oritized and have a greater impact on utility, are easier to capture than non-prioritized attributes.

A.1.2 Summary on the synchrmodal transport planning

The analysis of satisfaction improvement and cost increase in the Pareto solutions of STPM-SP
demonstrates the effectiveness of STPM-SP in finding solutions with significant satisfaction im-
provement. The extent of improvement and trade-offs with cost was found to be influenced by
preference scenarios, the relationship between influential attributes and utility, and the number
of requests. The proposed STPM-SP can improve the shippers’ satisfaction by 37% on average
compared to the solution that resulted in STPM.

While STPM-SP effectively improves overall satisfaction, it is important to examine how these
benefits are distributed among shippers in individual instances. In both the homogeneous and het-
erogeneous cases, it is observed that while some shippers experience increased satisfaction, others
face setbacks. It is crucial to note that achieving satisfaction improvement is not only related to
the allocation of extra resources but also involves the trade-off between shippers’ satisfaction and
resource utilization between shippers. STPM-SP was able to optimize this trade-off to maximize
overall satisfaction. In practice, there might be a need to balance or equalize the improvements
across shippers, or sometimes to prioritize specific shippers. STPM-SP can adapt to these situ-
ations by incorporating these additional constraints.

Based on the analysis of modal share, this research also demonstrates the potential for in-
creasing the modal shares of sustainable modes through improvements in critical attributes for
shippers, such as time, emission, and transshipment of the transport system. Given the current
emphasis on environmental sustainability, freight forwarders can explore opportunities to enhance
specific attributes that are important to shippers. By doing so, they can effectively increase the
modal share of sustainable modes while simultaneously improving shippers’ satisfaction. By align-
ing the preferences of shippers with the environmental goals, freight forwarders can have win-win
solutions for future synchromodal transport planning.

When analyzing the scenarios of heterogeneous preferences, it shows that the improvement in
satisfaction may not be attributed to advancements in the prioritized attributes. For instance,
while the average emission for class 3 requests (the most prioritized attribute in class 3) only
decreased by 1.17%, the significant reduction in time by 20.58% becomes a contributing factor to
the overall improvement. This observation emphasizes the importance of understanding shippers’
preferences comprehensively because it can be possible to identify scenarios where the enhanced
attributes may not be the highest prioritized ones but can still result in increased satisfaction for
shippers.
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Appendix B

Supplementary results for

preference learning

This appendix is the supplementary results for the experiments of preference learning.

B.1 Relative importance of transport attributes

Table lists the relative importance of transport attributes for different classes of shippers in
the real preferences, and Table shows the values of preference learning using NN-PMs.

Table B.1: Relative importance of transport attributes in true preferences

Cost Time Delay Emission Transshipment
Class 1 6.94%  55.56% 34.72% 1.39% 1.39%
Class 2 85.47% 6.84%  4.27% 1.71% 1.711%
Class 3 22.22% 17.78% 11.11% 44.44%  4.44%
Class 4 57.47% 9.20%  28.74% 2.30% 2.30%

Table B.2: Relative importance of transport attributes in captured preferences

Cost Time Delay Emission Transshipment
Class 1 17.12% 40.17% 37.61% 4.54% 0.56%
Class 2 63.01% 8.19%  0.32%  2.50% 3.98%
Class 3 22.72% 27.83% 14.44% 15.78% 2.83%
Class 4 57.28% 8.75%  27.39% 2.50% 2.14%
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B.2 Prediction performance across shipper classes
Table presents the prediction performance of NN-PMs across shipper classes. p(c) is the per-

centage of correctly predicted tested samples, and p(c) is the percentage of incorrectly predicted
tested samples. The visualization of this table is shown in Figure [4.7]

Table B.3: Prediction results of different classes in HoS1

Class 1 Class 2 Class 3 Class 4 Total
p(c) p(i) p(c) p(i) p(c) p(i) () p(i)
HeS1
BL 28.44% 6.14%  42.30% 1.30% 10.88% 3.48% 6.52%  0.94% 100.00%
NN 28.66% 5.92%  41.40% 0.92% 11.26% 4.38% 6.60%  0.86% 100.00%
NN-PM  33.74% 0.84% 45.38% 1.38% 10.80% 0.26% 7.20% 0.40% 100.00%
HeS2
BL 17.62% 16.96% 24.62% 21.16% 5.26% 6.92% 2.84% 4.62%  100.00%
NN 25.62% 8.96%  36.22% 9.56% 9.26% 2.92%  6.26% 1.20% 100.00%

NN-PM  27.74% 6.84%  40.90% 1.72%  10.46% 4.88% 6.12%  1.34% 100.00%
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Supplementary results for
synchromodal transport planning

C.1 Parameters of STPM-SP
The parameters in STPM-SP are shown in Table

Table C.1: Parameter settings in the synchromodal transport planning model

Parameter Value  Parameter Value  Parameter Value

& 02758 ¢, 0.0635  Chyrye 0.0213
Ciruck 3 cirain 18 Céarge 18

c, 1 cy 1 cy, 4
Ctruck 0.8866  etrain 0.3146  eparge 0.2288

C.2 Overview of scenario comparison

Table presents the satisfaction improvements and corresponding cost increases in solutions of
STPM-PL compared to STPM. The column ‘SI_max’ means the average of maximum satisfaction
improvements in the Pareto sets and ‘Cl_max’ is the corresponding cost increases. The negative
values suggest a cost reduction. The column ‘SI_eff’ means the average of the most effective
satisfaction improvements and ‘Cl_eff’ is the corresponding cost increases. The effectiveness focuses
on the trade-offs between satisfaction and cost.
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Table C.2: The comparison of solutions of STMP and STPM-SP

Scenario HoS1

SI_max Cl.max Sl_eff Cl_eff
R10 10.94% 14.48%  2.70% 0.71%
R50 21.17% 12.73%  6.40%  -0.35%
R100 17.44% 12.69% 13.28% 6.18%
R150 47.67% 8.28% 25.09% 2.22%
Scenario HoS2

SI.max  Cl.max Sl_eff Cl_eff
R10 17.91% 1.89% 0.02% 0.00%
R50 27.14%  3.77%  23.18% 1.71%
R100 46.57% 1.35% 32.45% 0.54%
R150 31.44% 3.84% 11.02%  0.20%
Scenario  HeS1

SI.max  Cl.max Sl_eff Cl_eff
R10 23.23% 11.16%  7.51% 0.02%
R50 32.63% 11.38%  9.41% 1.18%
R100 25.53% 8.03% 15.43%  0.62%
R150 21.80% 9.37% 9.28%  -1.40%
Scenario HeS2

SI.max  Cl.max Sl_eff Cl_eff
R10 24.12%  4.35% 8.36% 2.49%
R50 43.03% 1.40% 23.75% 0.01%
R100 90.97%  4.56% 49.13% 1.81%
R150 122.47%  9.12% 62.54% -0.22%

C.3 Solution comparison in HoS1

Table presents the comparison of the base solution and the Pareto solutions in HoS1, which
are the corresponding percentages visualized in Figure

Table C.3: Comparison of the base solution and the Pareto solutions in HoS1

HoS1 Generalized cost  Cost Time Delay Emission Transshipment Satisfaction
S1 24.76% 25.35% -10.59% 14.05%  67.09% -18.56% 26.98%
S2 22.40% 19.79% -15.13% 44.26%  54.01% -22.20% 26.84%
S3 17.07% 16.10% -13.39% 24.01%  38.98% 20.75% 26.28%
S4 12.65% 15.90% -7.38%  -22.24% 39.29% 22.20% 25.93%
S5 11.89% 7.96%  -6.86%  48.44%  27.74% 2.18% 20.46%
S6 9.11% 7.80%  -7.25%  19.99%  25.29% 22.93% 18.72%
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C.4 Solution comparison in HeS1

Table shows the corresponding percentages visualized in Figure [4.14

Table C.4: Comparison of the base solution and the Pareto solutions in HeS1

HeS1 Generalized cost  Cost Time Delay Emission Transshipment Satisfaction
S1 9.22% -4.18%  -7.29% -40.01% 18.40% 2.30% 23.46%
S2 1.66% -0.33%  3.97% -5.92%  10.71% -6.30% 22.84%
S3 0.99% 5.11% 1.33%  15.73%  9.53% -13.20% 22.41%
S4 0.67% -4.35%  1.93% -17.88% 7.23% -0.79% 21.36%
S5 0.66% -4.03%  9.45%  -16.69% 6.88% 5.19% 18.47%
S6 -3.62% -13.04% 5.49%  -38.10% -1.05% 17.60% 18.39%
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