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Preface

The topic of this thesis, the optimization of maritime battery swapping systems for inland waterway
transportation, addresses a critical aspect of sustainable maritime transport. As the world focuses
more and more on reducing carbon footprints and enhancing energy efficiency, the maritime indus-
try must also evolve. This research explores innovative solutions to one of the industry’s pressing
challenges-efficient energy management through battery swapping technology. Throughout this
research, I have delved into the complexities of multi-objective optimization, balancing investment
costs with operational efficiencies. The journey has been intellectually stimulating and personally
rewarding, providing me with crucial insights and a deeper understanding of the complexities in-
volved in maritime transport.

This master thesis marks the end of my academic journey towards earning a MSc degree at TU
Delft. The work presented herein represents the intersection of academic study, research, and
practical application. I am deeply grateful to my supervisors, whose expertise and guidance have
been helpful in shaping this thesis. Their feedback and support have been crucial in refining my
ideas and enhancing the quality of my research. I would also like to extend my gratitude to my
colleagues and friends for their constructive discussions and moral support.

A special thank you goes to my parents and brother, who have supported me throughout this jour-
ney abroad. Their support, encouragement, and sacrifices have been the foundation upon which I
have built this achievement. Without their belief in me and their constant support, this endeavor
would not have been feasible.

As T present this thesis, I am aware that it is not just an academic requirement but a stepping

stone towards my future career. I hope that the findings and insights presented here will contribute
to the ongoing efforts to make maritime transport more sustainable and efficient.

Sarah Blanc
Delft, August 202/
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Abstract

The ongoing global push towards energy transformation and decarbonization underscores the ur-
gent need for reducing greenhouse gas emissions, particularly in the maritime sector, which accounts
for a significant portion of global trade and emissions. This study focuses on inland waterway trans-
portation (IWT) as a key area for implementing zero-emission solutions, especially through the
use of battery swapping technology. Given the average age and expected lifespan of vessels in
the IWT sector, the transition to renewable energy-powered, zero-carbon ships is imperative for
achieving climate neutrality by 2050. The need for immediate action is critical, as maritime trans-
port, which facilitates 80-90% of global trade, contributes approximately 3% of yearly greenhouse
gas emissions. This research delves into the complexities of multi-objective optimization, balanc-
ing investment costs with operational efficiencies. It provides an in-depth sensitivity analysis of
the impact of battery capacity, battery costs, the availability of docking station spots, loading of
vessels on the overall system configuration. The results show that higher battery capacities lead
to fewer required batteries and docking stations, enhancing network efficiency and reducing invest-
ment costs. The current battery costs, whether slightly increased or decreased, do not significantly
alter the network design. The primary impact is on the total costs, which are influenced by changes
in battery costs rather than adjustments in the network design. The study also reveals that the
availability of spots at docking stations presents mixed outcomes, where additional spots can either
increase or decrease total costs. Therefore, this variable warrants further study. Investigating the
optimal number of spots at central DS could lead to a more efficient network configuration, reduc-
ing overall costs and improving operational efficiency. Finally, the loading situation of the vessels
have a big impact on the network design, where unloaded vessels lead to less batteries and DS used.

The study further explores the effects of varying the weights assigned to three different cost objec-
tives: investment, batteries times at terminal, and space loss. The first hypothesis suggests that
less weight given to the loss space objective results in a smaller number of DS and batteries, as
well as less sharing of batteries. This is because the model aims to minimize battery occupancy on
vessels to avoid associated costs, leading to more frequent swaps and the need for more DS. The
second hypothesis posits that prioritizing the "at terminal" times objective reduces total costs, as
"at terminal" costs are generally lower than investment and loss space costs. The findings con-
firm these hypotheses, showing significant impacts on network design and total costs based on the
weight distribution. Key results indicate that no single scenario studied in this thesis dominates
across all cost factors. However, two runs achieve superior outcomes in three out of the four cost
categories. These runs show similar values for the number of batteries at terminals and on vessels,
suggesting that "at terminal" cost and investment cost objectives are not conflicting, unlike the
loss space objective which appears to be independent. In conclusion, the study emphasizes the
importance of carefully attributing and balancing weights to each cost objective to optimize net-
work design and total costs. Moreover, the findings support the continued development of higher
battery capacities and strategic resource allocation to enhance the efficiency and sustainability of
IWT. The significance of this research lies in its potential to inform the deployment of renewable
energy-powered, zero-carbon ships, contributing to global efforts to mitigate climate change and
promote sustainable development in the maritime sector.

ix
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Chapter 1

Introduction

Nowadays, energy transformation and decarbonisation of the economy are critical global priori-
ties. These efforts focus on transitioning from fossil fuel-based energy sources to renewable and
low-carbon alternatives. The aim is to significantly reduce greenhouse gas emissions, mitigate cli-
mate change, and promote sustainable development. Immediate action is specifically imperative
in the maritime sector, which plays a crucial role in global trade and is a significant contributor to
greenhouse gas emissions. Indeed, about 80 to 90% of the global trade is facilitated by maritime
transport, which also accounts for about 3% of yearly greenhouse gas (GHG) emissions measured
in carbon dioxide (C'O2) equivalent. This represents about 9% of the emissions linked to the trans-
portation industry. Comparable to Germany’s emission levels [7], the worldwide shipping sector
would be the sixth or seventh highest emitter of COs if it was a country. Currently, around 99%
of the energy needed in the maritime industry is met by fossil fuels, with diesel and marine fuel
oil making up as much as 95% of the total demand [§]. The International Maritime Organization
(IMO) issues a warning, stating that GHG emissions from the maritime sector might rise by 50% to
250% by 2050 compared to 2008 levels if corrective action is not taken. This considerable variation
in anticipated GHG emissions highlights the unpredictability of the sector’s development over the
next 30 years. The main reason for this expected GHG increase is the growth that the maritime
sector has enjoyed in recent decades. Indeed, according to statistics on maritime commerce from
1990 to 2020, the volume of commodities loaded at ports worldwide has nearly tripled compared
to 1990 [9]. And, as per the IMO, there might be another 40% to 115% increase in marine traffic
by 2050 when compared to 2020 levels. However, even if it makes a large contribution to global
greenhouse gas emissions, international shipping is still a reasonably effective and environmentally
friendly means of transportation, especially when compared to air and land transportation [10].

Despite the global picture, there are opportunities for regional progress. Inland waterway trans-
portation (IWT) presents a unique scenario within the maritime sector. Here, factors like shorter
routes, specific vessel types, and established infrastructure create favorable conditions for alterna-
tive solutions to significantly reduce greenhouse gas emissions. Given the average age of the current
fleet of vessels within the IWT sector and the expected technical lifespan of vessels of around 25-30
years, the development of new ship and engine designs should take place between 2025 and 2035.
It is imperative to acknowledge that the ships scheduled for deployment in the next five to ten
years will have a substantial impact on energy consumption and carbon emissions from the present
until 2050. This emphasises how critical it is to establish favourable conditions for the deployment
of renewable energy-powered, zero-carbon ships.

1.1 Problem description
This section provides an in-depth exploration of the key issues and context surrounding this research

on maritime battery swapping technology. The sub-sections detail the current state of the inland
shipping sector, the role of the Netherlands within the IWT sector, and the electrification of IWT.
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Lastly, it introduces the concept of containerized battery swapping, highlighting its potential.

1.1.1 Inland shipping sector & its decarbonisation

IWT plays an important role for the transport of goods in Europe, with an approximate 6.3%
share of the total freight volumes. More than 41,000 kilometres of waterways connect hundreds of
cities and industrial regions, with 13 European member states having an interconnected waterway
network [11]. TWT is distinguished from other modes of transportation by its enormous growth
potential, while other modes suffer from capacity constraints and traffic jams. IWT is therefore a
competitive substitute for rail and road freight. Specifically, it provides an eco-friendly substitute
for energy usage and noise discharge. IWT ensures an elevated degree of security, particularly when
transporting hazardous materials. It also helps to relieve traffic on severely used road networks
in places with high population densities. Thus, IWT has prompted the European Commission to
prioritize its expansion as part of the Sustainable and Smart Mobility Strategy, with ambitious
goals to increase these modes of transport by 25% by 2030 and 50% by 2050.

Through the 2030 Climate Plan and the European Green Deal, the European Union has taken
a bold stance on sustainable development in keeping with the worldwide commitment to lessen
the effects of climate change [12]. With the ultimate goal of reaching climate neutrality by 2050,
these strategic initiatives lay out a bold program to significantly reduce GHG emissions, with a
target of at least 55% by 2030 compared to 1990 levels. It is anticipated that every economic
sector, including shipping, will help to accomplish this challenging environmental objective [13].
PATH2ZEROQO [14] is one of the multiple measures that have been developed to help to achieve
the goal of decarbonising the maritime sector. PATH2ZERO stands for PAving THe way towards
Zero-Emission and RObust inland shipping. The path to zero-emission shipping remains uncertain
due to many unknowns surrounding the technology, infrastructure, and logistics required for a
complete transition, and thus needs further studies. The goal of this huge project is to present a
thorough study of the potential and difficulties involved in moving IWT to a zero emission (ZE)
paradigm. In order to evaluate the effectiveness of recently developed methods (such as electricity,
E-fuels, and bio-fuels [15]) for lowering GHG emissions from inland shipping, the PATH2ZERO
effort aims to create a digital twin model of the canal network. This model will consider individual
vessels, logistics, and infrastructure. It will analyze new technologies, but also policy changes and
future scenarios to identify the best path to zero-emission shipping.

To support and direct the maritime industry’s decarbonisation goals, the International Renewable
Energy Agency (IRENA) has compiled a list of initiatives. The four categories into which these
initiatives are separated are shown in Figure IRENA emphasizes the importance of multi-
stakeholder collaboration and information sharing across diverse sectors for achieving impactful
decarbonisation. In Section [2.1.1] stakeholders are identified through a broad lens that includes
all entities that may have an impact on or influence this project, with the end goal being a more
significant contribution to the decarbonisation vision. In addition, IRENA is in favour of using
multiple strategies to achieve sustainable shipping. It focuses on lowering emissions at ports, boost-
ing renewable fuel blends with certifications, increasing consumer knowledge through labelling, and
levelling the playing field for renewable fuels through carbon price and energy efficiency regulations.
It also emphasises how crucial it is to conduct in-depth research and development projects aimed
at comprehending the potential and environmental effects of renewable fuels for transportation.
IRENA also stresses the need for strategic planning and collaboration to secure sufficient renewable
energy resources and develop advanced engine technology to enable the transition to greener fuels,
as developed in Section Lastly, they emphasise the necessity of financial tools and rewards
to promote the use of carbon-neutral shipping systems. It also highlights how crucial it is to do
research, work together, and make calculated investments in the creation of infrastructure and
renewable fuels in order to facilitate the shift to a sustainable maritime sector.



Chapter 1. Introduction
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Figure 1.1: Actions to achieve decarbonisation ambitions

1.1.2 The Netherlands: a European leader in IWT

With a long history in IWT, the Netherlands has not only shaped its own economic landscape,
but has also become a key player in the global European IWT industry. With the densest network
in Europe (over 6,700 km), its waterways efficiently connect major industrial centers, ports and

agricultural regions (see Figure . This, combined with its strategic position as a gateway
between Europe and the world, facilitates seamless multi-modal transport and makes a significant

contribution to global trade flows.
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In 2020, the Netherlands recorded the highest volume of freight transported per inhabitant with 20
tonnes and 49% of the registered freight transport vessels on EU inland waterways [16]. Recognising
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the need for sustainability, the Dutch government has set ambitious targets to achieve a carbon-
neutral IWT sector by 2050. This ambition is fuelling constant innovation, as evidenced by projects
such as PATH2ZERO [15]. In addition, the Netherlands actively collaborates with other countries
and plays a leading role in organisations such as the European Barge Union and the Central
Commission for the Navigation of the Rhine, sharing best practice and developing sustainable
solutions for IWT.

1.1.3 Electrification of IWT

The electrification of IWT presents an opportunity to enhance its efficiency and environmental
sustainability [17]. It uses a dual strategy for supplying power to ships that are docked. First of
all, it permits "cold ironing" which spares ships from using their auxiliary engines while berthed
by connecting them to the onshore grid for power [18]. Secondly, electrification makes it possi-
ble to recharge the batteries of hybrid or fully electric boats. However, changes to the energy
refuelling of all-electric ships (AESs) provide significant difficulties for a number of stakehold-
ers, including ships, ports, and grids. Energy Storage Systems (ESSs) onboard ships, especially
fully battery-powered and plug-in hybrid electric ships, have limited capacity and require signif-
icant power during navigation. As a result, ESSs frequently need to perform energy refuelling
operations at intermediate ports in order to support further navigation [19][20]. A solution to
this issue is to make sure there is a sufficient supply of energy storage devices all along the sailing
routes, and (renewable) electricity available at the shore to enable charging during peak-load times.

Currently, the three primary methods that AESs can refuel are through cable charging, wireless
charging, and battery swapping. Some ports have established the required infrastructure to provide
these services, especially for the cable charging process [21]. But because of the increasing cable
sizes brought about by advances in charging technology, manual connection by crew members may
become unfeasible in the future when vessel charging power levels approach tens of megawatts.
The delay in connecting the heavy cables may result in a reduction in the charging energy given
to the vessel. To answer this issue, techniques for inductive power transfer have been proposed
for wireless charging at ports. However, tracking receiver coils in the dynamic tide and wave
cycles, and placing transmitter coils optimally at the shore to maximise power transfer efficiency
present obstacles. An alternative involves employing autonomous robots to handle the connection
of heavy cables for traditional wired charging and cold ironing [22]. However, one point that needs
to be taken into account is that, for battery-powered vessels and ferries adhering to predetermined
schedules, the charging procedure is confined to a critical time-frame. Thus, inconvenience and
lost revenue may result from disturbances and problems in an unstable power grid that hinder or
slow down the charging process [23]. Moreover, since the size of the batteries needed is significantly
higher than for electric vehicles (EVs), the charging procedure takes a lot longer. This results in
even more time and financial losses. Thus, the idea of battery container swapping has been put
out as a solution to this problem [22]. This aspect is the main focus of this thesis, and is further
developed and discussed in Section Nevertheless, regardless of the type of alternative (wired,
wireless, or swapping), a major obstacle to the broad deployment of AESs and a major cause of
"range anxiety" among vessels is the lack of infrastructure. Consequently, to encourage the switch
to electric fleets, a critical step is to establish a dense and efficient network of charging/swapping
stations along shipping routes.

1.1.4 Containerized battery swapping: a game changer for IWT

As previously indicated, battery swapping stations, or battery storage systems (BSSs), are showing
promise as a solution to boost the switch to zero-emission IWT. BSSs function by swapping out
empty batteries on board ships for fully charged ones at designated port facilities [24]. Standard-
ised battery packaging enable this creative solution, which has several advantages over conventional
wired and wireless charging techniques [25]. One of the key benefits of BSSs is rapid energy re-
plenishment, which enables far faster refuelling times than conventional charging methods [26].
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The first Dutch ship ("Alphenaar") to use this technology is said to finish the swapping proce-
dure in just 15 minutes, increasing port utilisation and vessel operational efficiency. BSSs reduce
the possibility of income losses for ship owners by separating battery charging from the vessel’s
operating hours. Adoption is also encouraged by the lower initial ship owners’ costs associated
with building or renovating vessels because big, costly batteries are no longer necessary. Indeed,
in an ideal scenario, a third-party entity manages the battery life cycle, encompassing health
monitoring, decommissioning, and repurposing, while ship owners subscribe to a battery leasing
service, minimizing investment and operational costs [27]. However, implementing BSSs requires
significant upfront capital expenditures by ports or battery swapping stations operators (such as
the company ZES) for battery stock and the mechanical infrastructure for swapping operations [21].

Another advantage is that BSSs offer centralized and controlled battery charging compared to the
often decentralized nature of battery charging stations (BCSs) [28]. Thus, the local power grid is
less negatively impacted by demand changes thanks to this accumulation of charging loads. Also,
by optimising the charge of spare batteries and supplying extra services to the grid, BSSs can
provide new revenue streams [29]. However, BSSs are mostly appropriate for inland vessels and
short-distance ferries because of the intrinsic capacity constraints of battery packs [19]. Another
drawback is to find a way to accommodate the diverse demands of various vessel sizes and energy
requirements. Indeed, it necessitates complex planning and operational adjustments. The lack of
international standards for both swapping stations and battery packs currently prevents seamless
use across different networks, restricting vessels with varying battery types and brands. Last but
not least, ship owners understandably express concerns about the transparency and accuracy of
information regarding the health and capacity of swapped batteries. Research on BSS operation
and management strategies is lacking, despite the encouraging outcomes of practical BSS imple-
mentations [30]. To fully use this technology for a sustainable IWT future, further research needs
to delve into the effective deployment of BSS and the associated batteries, battery leasing mod-
els, and grid integration strategies. This thesis will prioritize the critical challenge of effectively
deploying BSS, laying the groundwork for a sustainable future in IWT. Section explores the
battery swapping process in detail, discussing its primary components.

Figure 1.3: Vessel loaded with the containerized batteries (swapping technology) [3]

1.2 Research objectives and questions

This thesis aims to develop a comprehensive understanding of the integration and mapping of
a viable ZE logistics and energy system, the battery swapping system. This research aims to
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identify the most effective logistics design for the distribution of batteries and the placement of
docking stations. The design will encompass the following elements: determining the number of
required batteries, identifying the number and locations of docking stations, and developing a
battery distribution plan. This plan will outline where and when batteries should be charged to
ensure they are available with the necessary charge level at the appropriate time and place. The
design will consider potential vessel demand, including the number of ships, their routes, loading,
and power requirements, along with a set of pre-identified possible docking station locations. The
logistics plan will be subject to constraints such as the reduced autonomy of vessels compared to
those using diesel fuel, the lost space due to the batteries containers and the availability of docking
and stocking spaces at docking stations and on vessels. Furthermore, the optimization process
incorporates multiple objective functions to accurately model real-world scenarios and complex
decision-making processes.

The following main research question is established:

How can a multi-objective logistics design be developed for battery distribution and
docking station location within a designated IWT dutch network section?

The main research question is answered together with the following sub-questions:

1. What are the characteristics of the Dutch inland shipping sector, and its sustainable alter-
natives to fuel?

2. Considering factors like route lengths, power requirements, and desired autonomy levels, what
are the optimal number and locations of batteries and docking stations within the network
section, while also considering the trade-offs between different objectives in the logistics
design process?

3. How do vessel capacity reduction due the battery containers impact the design and results,
and how can these constraints be integrated into the optimization model?

4. How do the varying times of battery containers at terminals impact the design and results,
and how can these constraints be integrated into the optimization model?

To answer these questions, a methodology will be developed to model a maritime ZE transport net-
work and understand the performance of the system under various characteristics and limitations.
The methodology must be flexible enough to evaluate design changes as well as the sensitivity of
parameters. Table[L.I]provides an overview of the subquestions and their related applied methods.

1.3 Research perspective, scope, and limitations

This research focuses on a designated section of the Dutch IWT network. The specific section is
chosen based on data availability and representativeness of the overall network. More details about
the network can be found in Section Moreover, it will focus on the four vessel types that are
most frequently utilised in the selected network segment (see Section. This emphasis preserves
practical relevance while enabling a thorough study. The thesis will present a section detailing the
various stakeholders involved in the electrification of IWT in the Netherlands to highlight the
complexity of this process (see Section . However, the optimisation process is taken from a
swapping station and batteries operator point of view (for example ZES).

The limitations of this study can be listed as the following:
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Table 1.1: Method used for each sub-question

How can a multi-objective logistics design be developed for battery distribution and docking
station location within a designated IWT dutch network section?

Subquestion

Method

1. What are the characteristics of the Dutch inland shipping
sector, and its sustainable alternatives to fuel?

Literature review
Expert/Industry interviews

2. Considering factors like route lengths, power requirements,
and desired autonomy levels, what are the optimal number and
locations of batteries and docking stations within the network
section, while also considering the trade-offs between different
objectives in the logistics design process?

Optimization model
Case study

Numerical experiments
Sensitivity analysis

3. How do vessel capacity reduction due the batteries containers
impact the design and results, and how can these constraints
be integrated into the optimization model?

Numerical experiments
Sensitivity analysis

4. How do the varying times of battery containers at terminals
impact the design and results, and how can these constraints

Numerical experiments

be integrated into the optimization model?

Sensitivity analysis

1.4

Here

Base case scenario analysis: It will utilize a base case scenario to establish a reference point
for comparison. This may limit the "generalisability" of the findings to real-world scenarios
with varying factors.

Focus on electricity: The study will primarily examine the transition to electricity as an
energy carrier, while other potential alternatives or combinations of energy sources may not
be explored.

Technological assumptions: It may make assumptions about technological advancements or
their specific implementation, which could impact the validity of the analysis.

External factors: It may not fully account for external factors such as regulatory changes,
economic conditions, or consumer behavior, which could influence the adoption and impact
of electricity-powered logistics.

Research contribution

are the key contributions of this thesis:

It develops a new framework for designing IWT battery logistics that considers multiple,
and conflicting objectives. It goes beyond traditional single-objective approaches, providing
a more comprehensive picture of trade-offs involved.

Secondly, this research analyzes real-world data from the twelve most used routes and four
most common vessel types within a designated dutch IWT network section. This leads to a
practical and data-driven design solution tailored to the specific characteristics of the chosen
network section.

Thirdly, it considers the space lost and weight occupied by the battery containers and analyzes
their impact on the network design.

Finally, it also considers the varying times of the battery containers at terminals and the
costs associated, and analyzes the impact on the network design.
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1.5 Outline

The remainder of this report is organized as follows. Chapter [2] answers the first sub-research
question, and is divided into two parts. Firstly, information about the background of the Dutch
inland shipping sector is provided. Then, a literature review is provided by discussing sustainable
alternatives, as well as the battery swapping process, its main components and the existing models
for battery swapping technologies. The thesis methodology is discussed in Chapter [3] encompassing
short introductions to Operation & Research, and the model with its requirements, assumptions
and simplifications. The conducted case study and its numerical experiments are presented in
Chapter [4 and respond the third and fourth sub-research questions. Together with Chapter
Chapter [4] also aims to provide answers to the second sub-research question. Finally, concluding
remarks and recommendations are provided in Chapter



Chapter 2

Background and Related Literature

2.1 Dutch inland shipping sector

The Dutch IWT sector plays a crucial role in the Netherlands’ economic landscape. It provides a
reliable and efficient mode of transportation for goods, contributing significantly to supply chains
and international trade. Nonetheless, in its quest for sustainability and ongoing expansion, the
Dutch IWT sector faces a unique set of difficulties, just like any other dynamic industry. This
section delves into the key stakeholders involved in the sector and the specific challenges that need
to be addressed to guarantee a thriving and long-lasting Dutch IWT network.

2.1.1 Stakeholders

In this project, three different groups of stakeholders can be observed: the primary stakeholders
(in blue), the secondary stakeholders (in green) and the influential stakeholders (in orange) (see
Figure . Primary stakeholders are directly involved in the implementation and utilization of
electric technologies. They include shipowners and operators, shipbuilders and shipyards, port
authorities and terminal operators. These stakeholders will have a direct impact on the success or
failure of electric adoption in the maritime industry. Secondary stakeholders are indirectly involved
in the adoption of these technologies. They include engine manufacturers, battery manufacturers,
technology providers, environmental organizations, and regulatory bodies. These stakeholders can
influence the adoption of electric propulsion through their products, services, or regulatory frame-
work. And finally, the influential stakeholders are not directly involved in the adoption of this new
technology, but they can exert influence on the decision-making of primary and secondary stake-
holders. They include consumers, labor unions, local communities, and media coverage. Their
mapping can be seen in Figure [2.1

Within the primary stakeholder group, shipowners and operators (such as those represented by
the World Shipping Council (WSC) [31] and the European Community Shipowners’ Associations
(ECSA) [32]) own or operate vessels and bear the responsibility for the deployment and upkeep of
these electric fleets. Their concerns centre on the dependability, performance, and affordability of
electric technology. Furthermore, the responsibility for designing, constructing, and maintaining
electric ships lies with the shipbuilders and shipyards, who are represented by organisations like the
Society of Naval Architects and Marine Engineers (SNAME)[33] and the International Shipbuilders’
Association (ISA)[31]. They must acquire new skills and competencies with this new technology
in order to satisfy the expectations of this developing market. Lastly, the ports and terminals
where ships are loaded and unloaded are managed by port authorities and terminal companies.
The European Sea Ports Organisation (ESPO)[34] and the International Association of Ports
and Harbours (IAPH)[35] are two examples of associations/organizations that represent them.
To support electric vessels, they must make investments in services and infrastructure, such as
exchanging facilities.
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Figure 2.1: Stakeholders mapping

The engine manufacturers are some of the secondary stakeholders; they design and produce en-
gines for use in ships. To keep ahead of the competition and satisfy the changing demands of
the emerging electric maritime industry, they must make research and development investments.
Wirtsild [36] and MAN Energy Solutions [37] are two examples of stakeholders in this group.
The battery manufacturers, such as CATL [38] and SK innovation [39], produce batteries for elec-
tric transportation modes, potentially including those used in ships. To keep up with the rising
demand, they must boost production capacity and enhance battery performance. In contrast,
technology companies create hardware and software for the maritime sector, such as data analytics
tools, communication systems, and navigation systems. They will have to modify their products
to accommodate electric boats. In addition, environmental groups like the Ocean Conservancy
[40] and the Environmental Defence Fund (EDF) [41] seek to implement sustainable practices in
the maritime sector, such cutting emissions and increasing energy efficiency. They should support
the adoption of electric vessels as a way to achieve these goals. Last but not least, the regulatory
agencies establish guidelines and standards, such as safety and emissions criteria, for the maritime
sector. The regulations will have to be updated to allow for the use of electric vessels.

Finally, in the group of the influential stakeholders, the consumers of goods transported by sea
may be willing to pay higher priced products shipped on electric vessels, if this aligns with their
environmental values. Moreover, a positive media coverage of electric inland shipping could raise
awareness of the technology’s benefits and encourage its adoption. The labor unions are interested
in the potential impact of the transition to electric fleet on employment in the logistics industry.
And finally, the local communities are affected by the installation of electric charging stations and
other infrastructure. On the other hand, they can also be positively affected by the reduction in
noise pollution and improvement in air quality.
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2.1.2 Challenges

Several shipping firms operating multiple ships and a large number of independent contractors,
each owning a single ship, define the Dutch IWT network. As such, it is unlikely that individual
shipowners will spend a lot of money on stations and costly battery swapping systems. This poses
a serious dilemma, sometimes known as a "chicken and egg" scenario: shipowners are reluctant
to switch to a battery-electric system in the absence of conveniently accessible swapping stations.
However, businesses are hesitant to make investments in the absence of a sizable fleet of fully func-
tional battery-electric ships. A Dutch national growth fund recently set aside 50 million euros to
build 14 docking stations, electrify 45 ships, and deploy 75 battery containers in order to address
this problem. Ultimately, the objective is to achieve 150 battery-electric ships by 2030 and 400 by
2050 [42].

To further complicate matters, this industry often has a deeply rooted familial aspect. Many ships
are handed down through the generations, fostering strong emotional bonds among families who
see their ships as treasured legacy as much as equipment. The nostalgic tie that certain generations
have to diesel-powered vessels may make the switch to electric systems more difficult. Even while
shipowners are aware of the environmental advantages of electrification, breaking away from the
engine’s familiar noise and the routines they have developed around conventional fuel sources can
be a big obstacle. Encouraging a seamless transition in the business and attaining widespread
adoption of electric ships need addressing this sentimental factor in addition to the infrastructure
and economic issues.

2.2 Sustainable alternatives for marine energy carrier

Several studies, such as [43], have shown that while numerous measures can be implemented and
combined to reduce CO2 emissions in transportation, achieving complete decarbonisation in the
long term necessitates a systematic shift from fossil fuels to alternative energy sources. This tran-
sition cannot be achieved through a single, isolated measure; it requires a comprehensive approach.
This section explores these potential solutions, focusing on alternative energy sources that can be
combined with electricity in the future to ultimately decarbonise the inland waterway transport
(IWT) sector. This chapter provides a high-level overview of the various possibilities. They will
be introduced to the reader, but further exploration of each option is beyond the scope of this thesis.

Despite growing concerns about climate change, the vast majority of the global shipping fleet con-
tinues to rely on fossil fuels. Remarkably, 98.8% of ships continue to run on fossil fuels, with heavy
fuel oil (HFO) making up the majority of this use (about 72%). Liquefied natural gas (LNG)
comprises a comparatively small percentage (2%) of the fuel mix, with marine diesel oil (MDO)
accounting for approximately 26% of the total [44]. Positively, cleaner options are being incorpo-
rated into the design of 21% of newly ordered ships. A ship’s cargo capacity and environmental
impact are both influenced by the fuel it uses. This is due to the fact that a fuel’s volumetric
lower heating value (vVLHV) establishes how much energy can be held in a specific volume. In
simpler terms, fuels with higher vLHVs pack more energy into less space, allowing ships to carry
more cargo without sacrificing fuel range. Currently, most ships use MDO and LNG, which have
vLHVs of 35.9 GJ/m3 and 20.2 GJ/m3, respectively [45]. Table shows the volumetric energy
density and the temperature storage of alternative energy carriers, compared to the MDO and LNG.

The challenge to find attractive storage solutions for marine purposes is specially true for energy
carriers stored under high pressure or very low temperature due to complexity and space occupation
of the storage systems, expressed via the lower volumetric energy density. Figure depicts a
forecast of the fuel/alternative distribution across various vessel types. The visualization suggests
three dominant contenders emerging: battery, hydrogen, and methanol. Considering this, and in
addition to batteries being the main subject of this thesis, the following section briefly explores the
two other alternatives, aiming to provide the lecturer with a broader context for understanding
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Fuel type Volumetric energy density Storage temperature

GJ/m? (°C)
Marine diesel oil (MDO) 35.9 20
Liquid natural gas (LNG) 20.2 -162
Compressed hydrogen 7.5 20
Liquid hydrogen 8.5 -234
Ammonia 11.3 -33
Liquefied bio methane (LBM) 21.0 -162
Methanol 15.8 20

Table 2.1: Volumetric energy density & storage temperature of energy carriers

the issue and its potential solutions.
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Figure 2.2: Innovative transition pathway: technology share for each fleet family in 2050

2.2.1 Hydrogen

As the shipping sector searches for alternative fuels that meet the IMO’s emission reduction stan-
dards, hydrogen emerges as a viable long-term solution. Due to its adaptability, it can be used
in internal combustion engines that have substantially lower emissions than those that use stan-
dard fuels, or it can be used in fuel cells (FCs) for the production of clean power [46]. Grey
hydrogen generation [47] is the major method of producing hydrogen gas and COy from natural
gas. However, significant emissions result if the C'Oy created during this process is not caught.
The conversion of natural gas via C'Os capture and storage, on the other hand, is seen as more
environmentally friendly and is known as "blue hydrogen". Electrolysis is a significant method
of producing hydrogen by splitting water molecules into hydrogen and oxygen gas with the use
of electricity. If this electricity comes from a renewable source, this generated hydrogen is called
green hydrogen. Thus, green hydrogen is therefore one of the cleanest alternative fuels available

47 [43].

Transportation is already noticing the impact of hydrogen fuel cells, especially in public trans-
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portation. Using hydrogen power, several of London’s famous double-decker buses are already
operational [49]. China began investigating this clean fuel in 2009, and in 2016 Foshan City was
the first to widely implement hydrogen-powered public transportation [50]. But for vessels, things
work differently. Although they are still in the early stages of research, hydrogen fuel cells and
engines have enormous potential. Successful marine trials in 2016 provided a glimpse of this future
[51]. Ongoing projects like Nemo Hs, Zero-V, and ZEMSHIP (|52], [53]) demonstrate advance-
ments in hydrogen-fueled FCs on ships. Although scaling up for large ships is difficult, there are
important lessons and impetus to be gained from other industries’ successes. Although it may take
some time to transition from London buses to freight driven by hydrogen, the marine sector may
see a clean revolution of its own far sooner than anticipated.

However, despite the potential of hydrogen, challenges persist in its production and utilization.
The primary concern is the exorbitant expenses of engine retrofits, ship storage, and Hs bunkering
in comparison to MDO [46]. In terms of energy efficiency, electrolytic hydrogen, for example, loses
a lot of energy. Indeed, it contains between 30 and 45 percent less energy than the power used
for the electrolysis process. Subsequently, the energy losses incurred in converting hydrogen back
into electricity in a fuel cell (FC) render the process less energy-efficient than directly utilising
electricity [54]. An additional disadvantage of employing Hs as a fuel is that it would necessitate
a total overhaul of the ship’s engine and fuel systems, making it incompatible with a "drop-in"
strategy [46]. In addition, hydrogen gas is extremely combustible, which increases the possibility
of explosions in the case of a leak. A hydrogen filling station in Sandvika saw an incident that
serves as an example [55]. Finally, because hydrogen has a poor energy density, ships need big
tanks to store it. In fact, compared to traditional fuel oil, it takes up to seven times as much space,
which reduces cargo capacity. Hydrogen is frequently compressed or kept in liquid form to reduce
storage difficulties; this requires high-pressure tanks or cooling to minus 253 degrees Celsius. But

a different approach for long-distance transportation entails binding hydrogen within ammonia
(NHs).

2.2.2 Liquefied Bio Methane (LBM)

Liquefied Bio Methane (LBM), also known as bio-LNG, is a renewable fuel, that aims to revo-
lutionize the IWT sector [56]. Unlike traditional diesel fuel, LBM is produced by capturing and
purifying biogas derived from organic waste sources like sewage treatment plants, landfills, and
even agricultural residues. This biogas is then cooled to a frigid -162°C, transforming it into a
liquefied state & LBM. This procedure removes undesirable elements like carbon dioxide and water
vapour in addition to concentrating the methane content and making it extremely energy-dense
for effective transportation.

The application of LBM in IWT offers a compelling solution to the industry’s environmental woes.
Compared to fossil fuels, LBM boasts significantly lower greenhouse gas emissions, particularly
nitrogen oxides and particulate matter [56]. This results in cleaner water and air near inland
waterways, which frequently cross over densely inhabited towns and environmentally delicate areas.
There are several difficulties involved in incorporating LBM into IWT, though. One major obstacle
is the development of infrastructure. Along inland waterways, bunkering stations (facilities built
expressly to refill vessels with LBM) are hard to come by. It also costs a lot of money up front
to build new IWT vessels with engines that work with LBM or to retrofit existing ones. The cost
of LBM itself can also be higher than traditional fuels, due to the relatively nascent production
capacity [57].

2.2.3 Methanol

Like many alternative fuels, methanol has two options: powering ICEs directly or acting as a hy-
drogen carrier for FCs. Methanol benefits from existing infrastructure for transport and storage,
simplifying transition [58]. While it offers a 25% CO; reduction compared to HFO when made
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from natural gas (NG), a full life-cycle analysis paints a different picture. Studies suggest methanol
from NG might even have 10% higher GHG emissions than HFO [7]. The solution to this is the
green methanol. Produced through renewable energy (e-methanol) or biomass (bio-methanol),
this variations offer truly sustainable choices. Bio-methanol uses biomass, while the latter comes
from renewable electricity. It stands out as a sustainable option because of its renewable origin
and low carbon impact compared to its fossil fuel counterparts. However, large-scale supply of
biomass remains a challenge, with efficient conversion methods still under development. As a re-
sult, e-methanol is emerging as the most sustainable choice, benefiting from a virtually zero carbon
footprint thanks to its renewable electricity source. This approach exploits established and mature
processes, powered by abundant renewable sources such as solar and wind energy.

Methanol has been powering specialised maritime applications such cruise ships, ferries, and smaller
vessels for a number of years. Shipping firms seeking to decarbonise find it to be an appealing
alternative due to its readily available nature, variety of manufacturing sources, and simplicity of
storage and transportation. Since 2020, there has been a sharp increase in orders for methanol-
powered chemical tankers and container ships. Industry giants such as Maersk and Klaveness
Combination Carriers are betting on this fuel, with Klaveness launching the world’s first methanol-
powered container ships in 2023. A key advantage of methanol is its compatibility with existing
engines. Unlike other alternatives such as hydrogen, it requires minimal modifications, making it
a practical solution for immediate decarbonisation efforts in the shipping industry.

2.2.4 Ammonia

Ammonia, which becomes liquid at a relatively mild temperature of minus 33°C, offers a higher
energy density than pure hydrogen, making it more manageable for storage and transportation
[59]. However, there are drawbacks to using ammonia as an energy transporter, most notably its
expense and energy loss. Ammonia use raises further safety concerns [60]. Because of its limited
flammability range, it is safe to store on board. It does, however, carry some toxicity hazards;
exposure to excessive doses may result in lung damage, blindness, or even death [61]. As such,
stringent safety protocols are essential.

While both ammonia FC and internal combustion engine (ICE) applications are still in their early
stages, with limited real-world use in shipping [62], they hold significant potential. The process of
producing ammonia (Haber-Bosch) is well-established and may be modified to use renewable energy
using electrolyzers, in contrast to the technology needed to produce hydrogen [48]. Prominent
companies testing ammonia-powered internal combustion engines (ICEs) include Japan Engine
Corporation, Wartsila, and MAN Energy Solutions. The results of these tests are encouraging
[63]). Gas turbines provide an alternative, although they are less desirable than internal combustion
engines (ICEs) due to their reduced efficiency [63]. However, regardless of the technology selected,
major modifications to the engine and fuel system are required ([48], [63]). With South Korea
and Japan making significant investments in RD, East Asia is leading the world in ammonia
development. This dedication is demonstrated by the National Maritime Research Institute’s
collaboration with J-ENG and the RD efforts of Daewoo Shipbuilding and Hyundai Mipo Dockyard
([64]; [65]). Looking ahead, future ammonia engines are expected to take the form of dual-fuel and
ignition-based technologies, paving the way for wider deployment and a cleaner shipping industry.
While challenges remain, the early steps taken by these major players suggest that ammonia could
be a key player in the fight against maritime emissions.

2.2.5 Summary

Compared to traditional marine diesel fuel, the potential alternatives suffer from significantly lower
energy density, and necpessitating complex storage solutions. Additionally, as illustrated in Figure
their production often relies on electricity. In facts, these alternative fuels require 2 to 3
times the renewable electricity reference (direct use). Thus, as long as the power demand induced
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by electric vessels isn’t too high, electricity is the best option. However, while directly utilizing
renewable electricity seems attractive, a large-scale shift to electric vessels could strain the power
grid. Thus, a combination of electricity, hydrogen and methanol appears to be the best solution
in the long term.

Alternative fuel Volumetric energy density

MWh
Lqiuid hydrogen 2.1
Green methanol 3.3
Green ammonia 3.1

Table 2.2: Alternative fuel requirements compared to 1 [MWHh] of renewable energy (direct use)

A recent MariGreen project feasibility study highlights the potential of hydrogen as an energy
carrier for IWT, particularly in inland navigation [66]. The Rhine Hydrogen Integration Network
of Excellence (RH2INE) further exemplifies this by aiming for ten hydrogen-powered vessels oper-
ating between Rotterdam and Duisburg by 2024 [67]. Methanol presents another good option due
to its energy density, which is closer to that of marine diesel fuel, and its relatively similar storage
requirements. However, considering the current limitations of alternative fuels, electricity emerges
as the most viable near-term solution for IWT. Battery swapping technology, as explored in this
thesis, offers a promising approach to optimize electric IWT operations. In the long term, a com-
bination of electric, hydrogen, and methanol propulsion systems might offer a more comprehensive
solution, but further research and infrastructure development are necessary.

2.3 Battery swapping

The following sections explore the battery swapping process in detail, discussing its primary compo-
nents, providing a literature review of previous models used for battery swapping, and the relevant
methodologies.

2.3.1 Description of the battery swapping process

Two methods are used to replenish exhausted batteries in a battery swapping and charging system:
central charging at battery charging stations (BCSs) [68] and local charging at BSSs (]69], [70]).
While BSSs offer the advantage of quick service for users, concerns arise regarding service quality
and cost-efficiency [69], [70]. Additionally, managing complex BSS infrastructure and ensuring
spatial and safety considerations can be challenging [71]. On the other hand, central charging at
BCSs eliminates these concerns and empowers grid operators with enhanced flexibility. This ap-
proach facilitates optimal load balancing [72] and seamless integration of renewable energy sources
[73]. But because BCSs and BSSs are spread out geographically, a reliable logistics infrastructure
is essential to moving batteries between them so that their operations can be coordinated. This
process creates a closed-loop battery logistics system by transporting charged batteries from BCSs
to BSSs and gathering exhausted ones for return. In contrast to a centralised model, the BCSs
will be located on-site at battery swapping locations.

This thesis restricts its scope to local charging at BSSs. The decision stems from the logistical chal-
lenges and significant battery volume required to manage the transport of hundreds of containers
for battery swapping across a wider area. Building on successful small-scale trials, the next step is
to implement this strategy by developing and producing, on a larger scale, swappable battery con-
tainers. Additionally, infrastructure to facilitate battery changing needs to be planned and built on
a larger scale. Docking or swapping stations will be crucial to ensure vessels have continued access
to batteries. For large-scale adoption, a flexible and readily scalable technology is crucial, achieved
by open access and standardization. Open access allows any vessel equipped with an exchangeable
battery to swap it at any docking station. This minimizes downtime and eliminates dependence
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on individual battery charging speeds. Standardization of batteries and interfaces (connections
between batteries, docking stations, and vessels) facilitates easy system expansion.

Vessel with charged

Docking station container(s)

(Green) power supply

%% - =52

-

Figure 2.3: BSS system description

The three main parts of the exchangeable battery system are: batteries, docking stations, and
vessels, as shown in Figure Together, these elements function in a cycle. Docking stations
charge the batteries, with a power sale price levied for the electricity. Once charged, the batteries
are swapped and used to power the vessels. Docking stations function as battery swap points
for electric ships. With the rapid and effective battery changes offered by these stations, vessels
can continue their travels with the least amount of downtime. To ensure this system operates
effectively, a network of easily accessible charging stations or docking points is crucial. Beyond
providing power for charging, docking stations can leverage idle batteries for grid stabilization and
participation in energy market applications like Frequency Containment Reserve (FCR). In essence,
this means using charged batteries waiting at docking stations to help regulate the electricity grid’s
balance. However, at this stage of development, not enough vessels would be using this technology
to significantly impact the energy grid. Therefore, it had been decided not to account for this
benefit in the main body of this thesis. But since it could become a relevant topic in the future, a
section has been developed about this in Appendix

2.3.2 Main components of the battery swapping technology

As mentioned in the previous section, the integration of the battery swapping technology involves
a comprehensive examination of three main components: batteries, docking stations, and vessels.

Batteries, proposed by ZES, are modular lithium-ion units housed within 20-foot containers [4].
These batteries provide a number of benefits, such as a high energy density and adaptability to
new and retrofitted vessels. However, challenges arise regarding capacity limitations influenced by
factors such as temperature and charging regimes. Additionally, power losses and ageing represent
significant concerns, potentially diminishing battery efficiency and lifespan over time. Notwith-
standing these challenges, it is projected that continuous improvements in battery technology and
the achievement of economies of scale will progressively lower costs, improving the system’s overall
viability and sustainability.

Docking stations serve as critical infrastructure elements in ensuring the seamless availability
of charged batteries for vessels. The ZES-designed docking stations are modular and adhere to
open standards, allowing for easy replication and scalability across different locations, an example
of such stations can be seen in Figure The numbers in the figure correspond to the following
information:

1. Grid connection station;

2. Power distribution container;
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3. Power interface container;
4. Docking platform for placement of ZES-packs;
5. Connector (energy and data communication between ZES-packs and docking station);

6. Charging column for E-vehicles (E-buses, E-trucks, etc.) with standard combined charging
system connection (this sixth element is optional).

However, there are still difficulties in choosing the best locations for docking stations when taking
into account things like grid connectivity and distance to container terminals. Moreover, there
is a close relationship between the design of docking stations and the expenses associated with
investment and operation, including the quantity of charging spots and their power capacities. To
balance cost-effectiveness and operational efficiency, this calls for an iterative optimisation process.

\’e

Figure 2.4: Example of a ZES docking station [4]

Finally, the retrofitting of vessels is an essential aspect of integrating exchangeable batteries into
existing fleets. Barge operators must pay for this process in a number of ways, including as crew
training, possible income loss during retrofitting periods, and the cost of buying and installing
connectors. Furthermore, carrying batteries onboard results in a real loss of revenue due to the
restricted cargo capacity. The amount of power needed by a vessel varies greatly depending on a
number of parameters, including cargo, hull form, speed, and weather. This makes it more difficult
to measure power usage precisely and choose the best operating tactics. Operating difficulties are
further exacerbated by the requirement for greater time at terminals and maybe additional stops
for battery changes or speed modifications.

In conclusion, the successful implementation entails addressing technical challenges associated
with battery performance and infrastructure design, optimizing logistical considerations, man-
aging retrofit costs, and ensuring operational efficiency. A sum up can be found in Figure [2.5
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Furthermore, it calls for a cautious balancing act between the goals of environmental sustainability
and economic viability. The battery swapping system has the ability to completely transform IWT
by combining cutting-edge technology with operational know-how and strategic planning. It does
this by providing a more effective and environmentally friendly fuel substitute for conventional
fuel-based propulsion systems.

Batteries Docking station Vessel

Power
Usable capacity Costs Design Location Costs Retrofit Route requirement

Figure 2.5: Three main components and their challenges

Considering the eight factors illustrated in Figure the model has the following implications:

1. Usable capacity: Each battery’s maximum usable capacity is included as a fixed parameter in
the model. While external factors like temperature aren’t considered, the impact of aging on
capacity reduction can be analyzed by individually adjusting the maximum usable capacity
for each battery.

2. Batteries costs: The cost of acquiring (capital expenditure) for each battery is modeled as
an independent variable. This allows to account for differences in battery types and ages.
However, the cost of operating the batteries (operational expenditure) is not included in this
model.

3. Design: Each DS has parameters that define its number of charging stations, storage spaces,
and charging capacity. The number of charging stations and storage units are determined by
the size of the terminal.

4. Location: Terminals included in the route, where vessels stop, are identified as potential DS
locations. Land availability and grid connection are assumed for each of these locations.

5. DS costs: The Capex are modelled as a parameter for each DS separately. The Opex costs
are not considered.

6. Retrofit: The model does not account for the retrofitting costs. However, the revenue loss
due to space occupied by battery containers is incorporated into the objective function as a
financial penalty.

7. Route: No intermediate stop are allowed in the model.

8. Power requirement: The input of the model defines power requirements for each vessel type
at each time step. Changes in speed, wind, or waves are reflected by adjustments to the
power requirement at each step. However, speed and external conditions themselves are not
directly included as model variables.

2.3.3 Literature review on models of maritime battery swapping

The beginning of this section explores various models proposed in recent studies to optimize the
design and operation of BSS in the maritime sector. Interestingly, all four models identified
originated from master thesis research (2021-2022), highlighting the nascent stage of this field.
Although there isn’t much research specifically on battery swapping optimisation for IWT and
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maritime transportation, this section also dives into models from other modes of transportation
to gain insights into their relevance. The choice of buses and trucks is based on the material that
is currently accessible and their operational resemblance to IWT vessels (big vehicles, established
routes/schedules). While not the main focus, electric cars provide useful goals, limitations, and
variables that can be adjusted to IWT with the right adjustments. This combined approach seeks
to create the foundation for maritime models by drawing on a variety of transport modes.

IWT

Models based on static optimization: the first three studies present static optimization
models, analyzing factors like infrastructure placement and operational costs without explicitly
considering time-based dynamics.

e Energy replenishment location model (Haahjem, 2022 [74]): This model builds upon existing
location and network optimization frameworks. It considers factors like energy storage ca-
pacity, facility location, and network optimization for scenarios with multiple vessels, energy
hubs, and charging stations. The objective function minimizes total costs, encompassing
voyage expenses, lost opportunity cost due to onboard battery storage space, and service
costs associated with replenishing energy. Haahjem further adapts this model for hydrogen
fuel, incorporating insulation factors and hydrogen replenishment costs.

e Flow-refueling location with path-based optimization (Driessen, 2022 [2]): This model com-
bines flow-refueling location and path-based static optimization approaches to determine
optimal placement of charging stations. Its objective function maximizes the total energy
utilized by battery-electric ships within a defined network.

e Battery swapping as a minimum cost flow problem (Odegaard, 2022 [75]): This work proposes
a model that views battery swapping as a variant of the minimum cost flow problem. It aims
to identify the most cost-effective route through a network by pinpointing ports suitable for
battery swapping technology and determining the number of battery modules required for
each leg between established stations. The objective function minimizes the combined cost
of establishing battery swapping stations and supplying batteries to vessels throughout their
journeys.

Model with discrete time integration: the final study incorporates a time dimension into
the analysis.

e Mixed-integer linear programming (MILP) model with discrete time (Pina, 2021 [4]): This
model utilizes a MILP framework with discrete time steps. Its objective is to determine the
optimal number and locations of docking stations, alongside the required number of batteries.
The model minimizes the total investment cost associated with batteries and docking stations.

While the aforementioned models provide valuable insights, further research is necessary to develop
comprehensive BSS optimization frameworks. Future models could integrate factors like:

e Multi-objectives optimization: current models often focus on minimizing costs or maximizing
energy utilization. However, real-world scenarios involve competing objectives.

e Integration with renewable energy sources: exploring the potential of powering BSS with
renewable energy sources like solar and wind.

e Grid integration: exploring the potential for BSS to act as a distributed energy storage
system. During off-peak hours, batteries can be charged using renewable energy sources.
During peak demand periods, excess energy stored in charged batteries can be fed back
to the grid, improving grid stability and potentially generating additional revenue for BSS
operators.
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Other transportation modes

As Zhan et al. (2022) [76] highlight, battery swapping has emerged as a popular solution for
efficient refueling of EVs, addressing the time limitations inherent in traditional charging meth-
ods. Significant research has explored diverse facets of EV battery swapping, encompassing the
establishment of battery-swapping stations, inventory management, optimal charging schedules, as-
signment problems, and comprehensive analyses involving cost-benefit and pricing considerations
(|77, [76]). Determining the ideal location and size for battery-swapping stations has garnered sig-
nificant research attention. Numerous studies (|78|; [79]; [80]; [81]) have tackled this challenge by
leveraging a powerful tool: optimization models. These models, often employing a location-routing
problem framework, help in achieving several goals:

e Stations locations: The formulation of electric vehicle (EV) location models draws signifi-
cant inspiration from early challenges encountered in locating gas stations. These models,
grounded in the assumption of refueling demand, can be categorized into node-based, arc-
based, and flow-based models [82]. In contrast to the node-based model, the flow-based
model posits that refueling demand manifests as traffic flow passing through refueling facil-
ities, aligning more closely with real-world scenarios [83]. Originating from the concept of
maximum coverage, the objective of this model is to optimize the location of facilities to
maximize the capture of traffic flow.

o Efficient sizing: In the initial phase, determining the number of batteries and chargers be-
comes practically significant in the context of random vehicles arrivals, variable battery
statuses, and unpredictable charging durations (|84], [85]). An optimal approach involves
promptly replacing depleted batteries upon arrival at the battery swapping station and si-
multaneously initiating the charging process. However, the costs associated with chargers
and batteries constitute crucial factors influencing battery inventory [86]. To address this,
a mathematical model is established, targeting the annual average cost of facilities, while
considering the power station’s scale and daily battery exchange demand as constraints. The
model is solved using the differential evolution method [87]. By optimizing the battery charg-
ing mode, a BSS optimization model with the maximum battery inventory is constructed.
Subsequently, various charging schemes are devised to minimize battery costs. The specified
scale and capacity serve as rigid constraints, while customer waiting time is considered a soft
constraint influencing electrical charging station capacity.

Previous research show significant operations advantages from battery swapping for electric buses
[88]: swifter refueling minimizes schedule disruption, reduced wait times and lower stress on bat-
teries compared to fast charging potentially extend lifespan, bidirectional power flow in swapping
stations enables grid integration by charging during off-peak hours and injecting power during
peak demand, optimized schedules and minimized emissions result from buses staying on track,
and cost-effectiveness benefits both bus operators and station owners thanks to economies of scale
in battery management and potentially lower electricity costs. Regarding the optimization models
used in previous studies with electric buses, Kun et al. (2020) [89] use an Integer Linear Program
(ILP) and a two-stage Stochastic Program (SP) to optimize the design and operation of a BSS
considering battery swapping robots, local charging, and demand uncertainties. Ayad et al. (2021)
[90] propose a multi-objective mixed-integer nonlinear programming (MINLP) model for designing
fully electrified public bus transit systems using battery swapping. The model optimizes battery
capacities, charger capacities, number of chargers and batteries at the BSS, while considering costs,
traffic conditions, and energy consumption. Regarding operation and grid integration, El-Taweel
et al. (2023) [91] formulate an optimization model for scheduling BSS operations while minimizing
costs through exploiting low electricity prices and providing grid ancillary services. The model
integrates bus fleet requirements, power distribution network constraints, and battery degradation
impact. An investigation of the economic viability of BSSs is made by Kocer et al. (2023) [92],
by optimizing their location and size within a microgrid system. The model maximizes revenue by
considering swap station services and potential grid regulation services. Finally, Wu et al. (2018)
[24] propose a model to minimize BSS costs by optimizing the charging schedule for swapped
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batteries. The model considers battery usage, charging damage, and electricity cost variations,
utilizing a hybrid optimization algorithm.

Recognizing the impact of battery degradation, Deng et al. (2023) [93] develop a mathematical
model to minimize the total system cost, including upfront investment and long-term battery wear
for electric trucks. The model, formulated as a nonlinear optimization problem, is solved efficiently
through a proposed solution procedure. Additionally, a battery charging management strategy is
presented to further reduce degradation costs. The study emphasizes the model’s ability to cap-
ture the trade-off between initial battery purchase cost and long-term degradation, highlighting
the value of optimized charging strategies for cost-efficient BSS operation. Furthermore, a study
by Liu et al. (2023) [94] investigates the integration of ETs with charging/swapping capabilities
and BSSs into an integrated energy system. Focusing on optimizing system operation and mini-
mizing investment costs, it establishes operational models for ETs and BSSs considering flexible
charging/discharging options. Further, it proposes an optimized scheduling model utilizing stepped
carbon trading. The optimization aims to minimize carbon emissions, improve economic perfor-
mance, and enhance the system’s ability to utilize renewable energy, while meeting the charging
and swapping needs of ETs and coordinating various energy demands (electrical, thermal, cool-
ing). This highlights the potential of BSSs to contribute to broader energy system optimization
and sustainability goals.

Summary

In the context of IWT in the Netherlands, several key modeling approaches stand out as particularly
relevant for optimizing BSS:

1. Mixed-Integer Linear Programming (MILP) models are ideally suited to handle the intricacy
of BSS optimisation. Their flexibility in handling various constraints and decision variables
makes them effective for this application. Specifically, MILP can optimize both the location
of battery swapping stations and the allocation of batteries, ensuring minimal total costs
while meeting operational requirements.

2. The operation of battery swapping systems can be simulated over time by incorporating
a dynamic approach. This is essential for monitoring battery levels during the course of
the system’s operation, giving a more thorough insight of its behaviour. Dynamic models
can help anticipate challenges and optimize the charging and swapping schedules, which is
particularly beneficial in the early stages of developing this technology.

3. While existing studies on IWT have focused on relatively small networks, expanding the
model to cover a more extensive and realistic network is necessary. The outputs of the model
will be more reliable and applicable to actual marine operations due to this wider scope,
which will better reflect real-world conditions.

4. Current models in IWT have not yet incorporated multi-objective optimization, despite its
proven effectiveness in other modes of transport, such as electric vehicles. Adopting a multi-
objective mixed-integer linear programming (MILP) approach with the following objectives
can enhance the model’s relevance and utility:

e Upfront investment: minimize the initial costs associated with establishing battery
swapping stations and procuring batteries.

e Operational costs: optimize operational costs over the long term, ensuring the cost-
effectiveness of battery swapping for the BSS operators’ (ZES) clients.

e "At terminal" times: minimize the times, where batteries are at terminal, ensuring that
the battery utilization is as high as possible.

To sum up, given the nascent stage of research in battery swapping for maritime transportation,
mixed-integer linear programming, coupled with a dynamic simulation of battery levels and a
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multi-objective framework, provides a robust foundation for optimizing BSS in IWT. Expanding
the model to a larger, more realistic network will ensure its applicability to real-world scenarios,
ultimately supporting the transition to more sustainable maritime transport in the Netherlands.

2.3.4 Relevant methodologies

Multi-objective optimisation (MOO) is the process of simultaneously optimising several goals,
many of which are competing or in conflict. Instead of searching for a single ideal solution, this
method seeks to identify a set of options that reflect trade-offs between several objectives [95].
As one of the main advantage, finding a range of acceptable solutions gives the decision-makers
a choice of options to pick from [95]. This optimisation technique helps balance many aims and
restrictions, making it especially helpful in real-world problems involving several criteria or objec-
tives [96]. Indeed, instead of looking for one "best" answer, it looks for a set of Pareto-optimal,
or non-dominated, options, in which no solution outperforms another in terms of all criteria. As a
result, the trade-offs involved in decision-making can be better understood [97]. In other words, it
enables a more thorough study of the solution space. Multi-objective optimisation does, however,
have some disadvantages. The optimisation issue can get more complex when managing a large
number of objectives, particularly when restrictions are present [98].Furthermore, determining the
relative relevance of each target and outlining the trade-offs between them can also be difficult
[97]. Thus, making decisions can occasionally be challenging when dealing with competing goals
and striking a balance between them [99].

To address these challenges, various methods and approaches have been proposed. For instance,
the weighted sum method in multi-objective optimization allows for the adjustment of weights
to reflect the relative inter-relationships of different objectives, providing flexibility to meet the
preferences of decision-makers [97]. Progressive multi-objective optimisation is another strategy.
This technique enhances the relevance of the solutions obtained by including the preferences of
decision makers into the optimisation process [99] . Additionally, through efficient exploration of
the solution space, evolutionary algorithms like genetic algorithms and particle swarm optimisation
have shown successful in tackling multi-objective optimisation problems ([100]; [101]). Lastly, large-
scale problems can effectively use approximation methods to estimate the Pareto front. In fact,
a visual representation of the Pareto front (the set of non-dominated solutions in multi-objective
optimization) can aid in decision-makers’ comprehension of the trade-offs between goals. The
multi-objective procedures used in this thesis can be seen in Section 4.5.8
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Methodology

This section delves into the methodological framework employed in this research. An operations
research-based multi-objective optimization model is developed and described in detail. This model
strikes a balance between various objectives while considering relevant factors impacting the sys-
tem.

3.1 Operations research and optimisation

The field of operations research (OR) uses a variety of quantitative and qualitative models to
help with decision-making in situations involving complicated problem-solving [102]. It includes
structuring, analysing, and resolving issues pertaining to the creation and functioning of intricate
human systems through the application of modelling methodologies [103]. Providing a quantitative
foundation for executive decision-making, it is also regarded as the scientific method of resolving
decision problems [104]. The origins of OR can be found in World War II, when a group of British
scientists started making decisions about how best to use war material using science [105]. More-
over, OR is seen as a range of tasks that includes analysing current data, assessing operational
procedures, and putting new tactics and technology into practice. Particularly in the context of
public health programs, policy, planning, and implementation, OR has grown to be an essential
component of practice [106].

OR offers a robust framework for tackling complex decision-making problems. This structured
approach, followed in this thesis and outlined by Hillier and Lieberman (2013) [107], comprises six
key steps, that can be seen in Figure (3.1

1. Definition of the problem and gathering of relevant data (see Chapters [1] and : Clearly
recognising the problem at hand is the first step. This stage establishes the framework for
the entire analysis. It requires a thorough comprehension of the goals, limitations, and extent
of the issue. It is necessary to collect pertinent data related to the issue from a variety of
sources. The information in this data is what powers the next actions.

2. Representation of the problem through a mathematical model (see Chapter [3): The next
stage is to create a mathematical model after the problem is well defined and data has been
gathered. This model converts intricate interactions into equations and variables in order to
provide a simplified picture of the real-world issue. The particulars of the situation must be
taken into consideration when selecting the modelling technique. Queuing theory, network
optimisation, and linear programming are popular methods.

3. Development of a computer-based procedure for deriving solutions (see Chapter : Once
the mathematical model has been constructed, the emphasis switches to identifying the best
solutions. In this step, the model is analysed and workable solutions are derived by applying
computational approaches (see Appendix. In this procedure, specialised software programs

23
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like solvers and optimisation algorithms are essential. These tools effectively go through the
model’s intricacies, locating solutions that meet the predetermined goals and limitations.

4. Test and refinement of the model (see ChaptersandE[): The resulting solutions are carefully
evaluated in this step using data and observations from the real environment. Any differences
between the actual behaviour of the system and the predictions made by the model can be
found with the use of this critical examination. The model may be improved on the basis
of these results by adding more variables, changing some of the parameters, or even using a
different modelling strategy. Testing and improving the model iteratively guarantees that it
accurately captures the issue and generates dependable solutions.

5. Preparation for the ongoing application of the model (see Chapters |4 and : The model
must be carefully prepared before being released into the actual world. Making sure the
model is easily available and intelligible to stakeholders, especially management, is the task
at hand. For those in charge of putting the model’s recommendations into practice, this can
entail developing user-friendly interfaces, thorough documentation, and training programs.
In order to prevent irrational expectations, it is also necessary to properly convey the model’s
potential drawbacks and limits.

6. Implementation (not done in this thesis): Finally, the moment arrives to put the model into
action. This step involves integrating the chosen solution into the real-world operations. This
may involve adjusting existing processes, allocating resources, or making strategic decisions
based on the model’s insights. Close monitoring and ongoing evaluation are crucial during
this phase to ensure the solution delivers the desired outcomes and identify any further
refinements needed.

Formulation of a Development of a Preparation for the
Problem definition mathmetical model computer-based Test of the model ongoing application fnblemenaticniet
to represent the procedure for of the model the model
problem deriving solutions

Figure 3.1: Six key steps of OR

3.2 Optimisation of BSS

Depending on the nature of the issue, various tools can be used to optimise BSS activities [108].
Classical combinatorial optimisation algorithms such as integer linear programming offer answers
for discrete choice problems with restrictions. Sequential decision-making frameworks are chosen
when the best option is dependent on changing factors because they enable judgements to be made
at each time step based on available information and potential future developments. Ultimately,
multi-objective optimisation algorithms search for solutions that successfully strike a balance be-
tween several competing goals (see Section for more details).

In this thesis, the primary focus is on the placement of docking stations, determining the number
of batteries, and their strategic allocation. However, the complexity of the entire BSS system
remains of great interest. Numerous aspects must be carefully studied and aligned to develop
an efficient and optimized battery swapping network. Thus, a summary of BSSs’ fundamental
technological features may be seen in Figure These stand for the crucial areas of attention
that engineers must optimise and modify while putting a BSS system into place. When several BSSs
are spread around a service zone in real-world situations, determining where to put them optimally
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Figure 3.2: Different technical aspects of battery swapping technology

becomes a crucial optimisation issue that needs careful thought. Four major areas offer chances
for optimisation from the standpoint of the BSS operator: the use of the electrical grid, charging
process management, initial construction planning, and swapping service response. It is important
to note that while almost all studies focus on electric vehicles (EVs), many elements can be applied
to maritime transport with few or even no modifications. Firstly, according to study by Wang et
al. (2020) [109], the location choice should take into account variables including marine traffic,
swapping demand, and power grid capacity. Choosing the starting battery count for a new BSS
is another crucial component of construction planning, considering the high cost of battery packs
[24]. Secondly, models for charging process management that are optimised should be studied. Wu
et al. (2017) [110] investigated how these models could dynamically modify the charging power to
balance the need for refilled batteries against possible damage from rapid charging. Thirdly, Zhang
et al. (2020) [111] argue that some operators could benefit from using optimal service response
systems to manage swapping demands due to restricted battery availability and lengthier charging
periods compared to conventional techniques. Waiting times might be reduced and swaps could
be prioritised with this strategy. With respect to the electrical grid, every BSS must obtain a
significant quantity of energy from the power grid [26]. For BSSs, the grid can set up special
rules like cumulative electricity amounts [112], immediate power constraints [113], and diverse or
time-of-use electricity pricing [24]. Thus, in order to finalize the BSS model, it is imperative to
investigate optimisation models for the electrical grid.

3.3 Battery swapping model

The goal of this study is to create an optimisation model that will allow the fleet of interchangeable
batteries and the IWT network’s docking station locations to be managed together. In order to
effectively match batteries with the pre-planned sailing paths of the vessels, the model takes a
battery-centric approach, tracking battery location and charge level. The model is formulated as a
deterministic optimisation problem, given the well-defined nature of vessel demand, including sail-
ing routes, power requirements, and port sites. Additionally, because modelling vessel locations,
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power requirements, battery locations, and charge levels is appropriate, a discrete time repre-
sentation with bi-hourly time steps is employed. To ensure flexibility and scalability as per the
requirements, the network representation is simplified. Numbers are used to identify terminals,
and at each time step, vessel sailing profiles are modified to reflect the position of the vessel (sailing
or at terminals). Because of this, a particular node-arc network topology is no longer necessary,
making it easier to modify and expand the model to accommodate various network topologies. For
the purpose of determining the ideal number of batteries, docking station locations, and battery
capacity to successfully supply the vessels’ electrical power consumption, this thesis presents a
mixed-integer linear programming (MILP) model with discrete time steps. Formulating the prob-
lem using MILP offers the advantage of guaranteeing (sub-)optimal solutions since all objective
functions and constraints can be expressed as linear equations. The commercial solver Gurobi is
employed to solve the developed MILP model.

In Figure|3.3] a general overview of the model with the inputs and outputs is shown.
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Figure 3.3: Model overview

3.3.1 Model requirements
The key model requirements for this research are:

o Multi-objective optimization: The model should be equipped to handle multiple objectives
simultaneously.

e Scalability: The model should be designed to scale efficiently. This guarantees its application
in the future to a larger network segment that includes more vessels, terminals, and maybe
smaller time increments for finer-grained analysis.

e Time scale: All of the selected vessels’ operational routes within the network segment should
be represented by the model.

e Fleet and route flexibility: The model needs to be adaptable to analyze different fleet compo-
sitions. This includes allowing for variations in vessels types, routes, and power consumption.

e Scenario analysis: In order to evaluate the effects of numerous aspects on the best logistics
design, the model should enable the exploration of multiple scenarios. This can involve
things like fluctuations in battery capacity, the ability of docking stations to charge and
stock batteries, or the availability of docking on vessels.
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3.3.2 Model assumptions

The following assumptions are made to simplify the model and achieve the highest computational
efficiency possible:

Battery characteristics

Lithium-ion technology: The model assumes a homogeneous fleet of lithium-ion batteries.
This excludes complexities of managing different battery technologies like hydrogen fuel cells.

Simplified battery aging: Battery ageing is not explicitly considered because of its complexity
and the short timescale represented (48 hours). Different maximum usable battery capacities
for various battery types can, nevertheless, be used to indirectly capture power losses and
fluctuation caused by use, temperature, and ageing.

Average usable capacity: An average usable capacity value is used in the model to represent
battery capacity variability caused by variables such as temperature and charging sched-
ules. To take different ageing and charging conditions into consideration, different battery
capacities can be modelled.

Charge before deployment: Batteries are assumed to be fully charged (i.e. battery level of
100%) before being placed on a vessel.

Minimum battery level: A minimum battery level of 5% at any time is set to avoid full
discharge and maintain a safety margin for unforeseen power demands.

Docking Stations

Limited locations: Docking station locations are restricted to terminals where vessels stop
during their routes. Pre-identified terminals with guaranteed space and grid connection are
assumed.

Vessels

Real-world sailing profiles: The model uses real world sailing profiles (routes and power
consumption) provided by EuRIS and Rijkswaterstaat.

Indirect speed and distance: Vessel speeds and distances are not explicitly modeled. Energy
consumption per time step in the sailing profiles can be adjusted to indirectly account for
these factors.

o Quick battery swapping: The time a vessel stops at a terminal is assumed sufficient for battery

loading or unloading. No additional time is factored in for swapping batteries.

Other considerations

e Limited cost scope: Only capital expenditures for batteries and docking stations are consid-

ered. Some operational costs are included via the space lost and at terminal times. However,
in a more realistic scenario, additional costs should be taken into account, such as electricity
costs for charging the batteries or labor costs for operating and maintaining the batteries
and docking stations.

Simplified vessel retrofit: Costs for vessel retrofit are not included.

Revenue losses: The revenue losses due to reduced cargo capacity to accommodate batteries
are included in the model (see Section for detailed calculations), and based on the
transportation costs of 1 battery container from terminal A to terminal B.
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e 100% service level: A 100% service level is assumed, meaning all vessel power demands must
be met.

e Loaded vs unloaded: The weight, thus speed, of the vessels are different when loaded or
unloaded. This is taken into account in section 5.4l

3.3.3 Model simplifications

The key model simplifications are listed below. It is important to mention that these simplifica-
tions are necessary to achieve a balance between model complexity and computational feasibility.
The selected simplifications enable for effective analysis in a reasonable amount of time while
concentrating on capturing the essential elements of the issue. The observed results can still of-
fer insightful design information for the battery logistics system, and the model can be further
improved in the future to take into account more intricate details.

e Time scale and complexity: Due to running time limitations, the model focuses on the
four most common vessel types identified in the study and 14 sailing vessels in total. This
reduces the complexity of simulating a larger fleet. Furthermore, the sailing profiles will be
represented using a maximum of 24 time steps (of 2 hours each). This captures the essential
aspects of routes and power consumption without excessive detail.

e Battery management: For simplicity, batteries are assumed to charge and discharge linearly
over time. Moreover, if a vessel has multiple batteries, only one is used to power the vessel
in each time step.

e Battery representation: Variations in battery age, size, energy losses, and degradation are
indirectly captured by using different maximum capacities for different battery types.

e Fixed sailing conditions: The model assumes that external factors like sailing speed, and

weather do not influence the vessels’ sailing profiles (sailing times and power consumption).

3.3.4 Mathematical formulation

The notation used for this mathematical formulation is provided in Table
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Table 3.1: Mathematical model
Sets and indices
|4 Set of vessels veV
B Set of batteries beB
T Set of battery swapping terminals teT
P Set of time periods p peP
Parameters
Batteries
cby Capex of battery b [€]
capy Maximum capacity of battery b [kWh]
mlv Minimum battery level charge required to be used in vessel (%]
mlb Safe operating range for the battery to prevent full discharge (%]
Terminals
cdsg Capex of one charging station at terminal ¢ [€]
cht; Number of charging points of a DS installed at terminal ¢ [unit]
mazx DS, Number of spots of a DS installed at terminal ¢ [unit]
pwy Power of each charging spot ¢ [kW]
Vessels
chv, Number of batteries that can be fitted in vessel v [unit]
. 1 if vessel v is at terminal ¢ at time p
SDu.t.p Sailing route .
0 otherwise
peny p Costs for transporting a battery container on vessel v at time period p [€]
penbis, Costs for storing a container at a terminal at time period p [€]
scalery Converter of operational costs into long-term costs, for the loss of space
scalers Converter of operational costs into long-term costs, for the time at terminal
Others
M, A large number []
My A small number [-]

Initial values
Lby o

Uty i0

UUbﬂ},O

EOp+ 0

mObﬂ),O

Battery level of battery b at start of the horizon (p = 0)
1 if battery b is at terminal ¢ at time p =0
otherwise
if battery b is on vessel v at p =0
otherwise
if battery b is at terminal ¢ and is being charged at p =0
otherwise

if battery b is on vessel v and the battery is being used at p =0

O R O R O =k O

otherwise
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Variables

1 if battery b is being used
ny .
0 otherwise

1 if terminal ¢ is being used as DS
Ut .
0 otherwise

—_

if battery b is at terminal ¢ at time period p

o

otherwise

—_

if battery b is on vessel v at time period p
Ybv,p

o

otherwise

—_

i if battery b is being charged at terminal ¢ at time period p
bbp 0 otherwise

1 if battery b is providing energy to vessel v at time period p
m
bop 0 otherwise

{
{
{
{
{

lyp Level of battery b at time period p

A visual representation of the variables can be seen in Figure |3.4]

—
\

Figure 3.4: Variables and their meaning
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The mathematical formulation then follows as:

min Z ny - cby + Z Uy - cdsy (3.1)
beB teT
(3.2)
(3.3)
Subject to:
Vb e B (3.4)

vteT  (3.5)

1 > Z myv,p > PCy,p - M2 Yv € V,Vp e pP* (36)
beB

vVt e T,Vp € P* (3.7)

vb € B,Vp € P* (3.8)

Vb € B,Vp € P* (3.9)

(Ybo.p — Ybw,p—1) - MUV - capy < Iy p Vb € B,Vv € V,Vp € P* (3.10)

Z Tpt,p 1 Z Yvu,p = Tb Vb € B,Vp € P* (311)

teT veV

Toip < Totp1+ Y Uswp1-Poiyp) Vbe BNteT,Npe P*  (3.12)
veV

Yowp < Ypwp-1+ Y (Totp-1-SPutp-1) Vbe B,Yve V,¥pe P*  (3.13)
teT

Vte T,Vpe P*  (3.14)

> U < chuy YoeV,¥peP*  (3.15)
beB

kytp < Totp Vbe BVteT,Vpe P (3.16)
Mpop < Ybw,p Vbe B,YveV,Vpe P (3.17)
ny € {0,1} Yoe B  (3.18)
u, € {0,1} VieT,WveV  (3.19)
Tb,t.ps kbep € {0, 1} Vbe B,VteT,Vpe P (3.20)
Yb,0,ps Mb,0,p € 10,1} Vbe B,YveV,¥pe P (3.21)
lhp € Ry Vbe B,Vpep (3.22)
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With the following initial values:

o0 = Ubpto*np Vbe B,VteT (3.23)
Yo,0,0 = U0 * Np Vb e B,YveV (3.24)
kp,t.0 = kOpt.0 * 1p Ybe BVteT (3.25)
Mpw,0 = MOpy.0 * T Vbe B,YveV (3.26)
lbo = Lpo *np Vb € B (3.27)

As areminder, the objective functions are developed from the perspective of a battery and swapping
station operators (such as ZES), see Figure The model considers three objective functions:

1. Minimizing costs (3.1): This involves reducing the initial investment (capital expenditure)
required for batteries and DS at each terminal.

2. Minimizing the space lost (thus profit loss) of the barge operators : This objective
function is designed for ZES to minimize their impact on their clients, the barge operators,
to prevent losing them as customers. A scalar is applied to the operational costs to reflect
a long-term vision, ensuring that this objective function accounts for long-term expenditure,
such as the costs in the first objective function.

3. Minimizing time at terminal ("at terminal")(3.3): This objective aims to minimize the total
time batteries spend at terminals, encompassing both charging and storage periods. By
reducing terminal dwell time, this objective contributes to optimizing battery usage and
overall system efficiency.

Swapping stations OF2

operators (ZES)

Barge operators

v

OF1 &OF3

Figure 3.5: Graphical representation of the objective functions

The distinctions of the proposed model with respect to the literature [4] are highlighted in orange.
The batteries and terminals’ utilisations are determined by constraints and Constraint
prohibits a vessel from using more than one battery at the same time by requiring that a single
battery power the vessel throughout each time step. Constraint guarantees that the number of
charging containers does not surpass the available charging points at each terminal for each time
step. The battery charge level is controlled at each time step by constraint This limitation
guarantees that the power needs of the vessel are fulfilled continuously during the operation.
Constraint[3.9|requires that the battery level stay between a predetermined minimum level that acts
as a safety margin and the battery’s full capacity in order to guarantee safe operation and prevent
total discharge. Additionally, this requirement ensures that battery stays non-negative. Batteries
must satisfy a minimal charge level in order to be put aboard boats, according to constraint
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The location of the batteries is limited to the vessel or specific terminals by constraint The
paths of the vessels to the batteries are matched by constraints and preventing a battery
that is not aboard a vessel from moving within the network. Constraint ensures that the
number of containers at each DS does not exceed the number of spots that are offered by the DS.
Similarly, constraint ensures that the number of batteries containers on each vessel does not
exceed the maximum allowed number. Constraint and constraint force the battery to be
at a docking station to be charged and to be on a vessel to provide it with energy. Constraints
[3-18 B-19] [3.20] and [3.21] define the binary variables. Finally, constraint defines the positive
real variable. Constraints [3.23] [3.24] [3.25] [3.26] and [3.27] represent the initial values at the first
time step (p =0).

3.4 Model verification

To ensure the model’s functionality, a series of scenario analyses were conducted. This entailed
methodically changing some parameters after beginning with a baseline model configuration. The
logical consistency of the generated solutions was then evaluated. Firstly, the most straightforward
verification is to check whether this model produces the same results under identical conditions
with the existing literature [4]. This verification has been done and confirmed. Then, for further
verifications, smaller-scale scenarios were created for verification due to computational time con-
straints. It contains 3 docking stations, as well as 3 vessels. A visual representation of the network
structure used for the verification is provided in Figure [3.6

Antwerp P2
Moerdijk P3
Rotterdam P1

Figure 3.6: Network for verification

The routes and frequencies used for the verification can be seen in Figure [3.7

Ship Daily Trips for 43
Cityl City2 Time Distance type* trips Rounded days**
1 Antwerp Rotterdam 11h33 127km C3b 4.74 5 204
3 Moerdijk Rotterdam 3h15 35km C3b 1.93 2 83

Figure 3.7: Routes and frequencies for verification

The results of the 5 other verification tests can be see in Table 3.2
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Test Variable Value #DS batiries batteries/V DS/V Ca‘?;i‘/ Vi ot1 T2 T3
1 Sailing profiles no movement 0 0 0 0 0
1 ( < initial . . . . .
2 maxDS unfeasible unfeasible  unfeasible unfeasible unfeasible - - -
values)

3 cap 100000 0 3 1 0 955.555
4 cht 0 for all unfeasible unfeasible unfeasible unfeasible unfeasible - - -
5 DS costs 11350000

cap 5000 0 6 2 0 1910000

Table 3.2: Model verifications

1. The first test case involves modifying the sailing route so that the vessels remain stationary
at all times. Since the vessels aren’t moving, it would be logically expected that the model
finds a solution that requires no battery or DS, resulting in zero cost. And indeed, the model
delivers exactly that outcome.

2. The second test involved initializing each docking station with two batteries at time zero (p
=0) while limiting the maximum number of available spots to just one per station. This
scenario inherently leads to an unfeasible model, as evidenced by the model’s output.

3. The third test focuses on significantly increasing battery capacity. This allows each vessel
to operate throughout all time steps using a single battery, eliminating the need for battery
swaps or charging stations. Consequently, the total number of batteries required is equal to
the number of vessels (three in this case). This approach also eliminates the need for docking
stations, as reflected in the model’s results.

4. The fourth test removes charging spots from all three docking stations. Consequently, the
model should identify this scenario as infeasible because vessels must swap batteries within
24 hours. This expectation aligns with the observed outcome.

5. The last verification scenario combines high capacity requirements with high docking station
installation costs. In this case, a single battery cannot provide enough power for the entire
trip, necessitating the use of two batteries. However, under this scenario, DS stations are
not utilized.

Thus, the model has been successfully verified: the model’s internal consistency and adherence
to the intended design was verified. The next chapter delves into the model’s implementation for
the chosen case study and numerical experiments. This implementation will showcase the model’s
practical application and its ability to generate valuable insights within the specific context.
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Case study and numerical
experiments

There are numerous software choices available for creating and using MILP models. Python was
the programming language used in this study, and Visual Studio Code served as the integrated
development environment for running the code. Gurobi was also chosen as the optimisation prob-
lem’s commercial solver. The model’s binary variable count significantly impacts computational
time during optimization. Despite Gurobi’s pre-solver capabilities that reduce problem size, solv-
ing instances with more than four vessels and 24 time steps proved computationally expensive. To
address part of this limitation, access to more powerful computing resources from TU Delft was
necessary. Examples of the input file can be found in Appendix [B. This section dives into the
chosen case study, presenting the results obtained through the conducted numerical experiments.

4.1 Network

This research focuses on a specific section of the Dutch IWT network. The data used to define
this network section is derived from Rijkswaterstaat, the executive agency of the dutch ministry
of infrastructure and water management. The end network contains 13 ports, that can potentially
be DS.

Time Period: The analysis period covers a timeframe from March 1st to April 12th, 2024.

Network Scope:

e Routes: The network focuses on the twelve most frequently used direct routes (both di-
rections) within the designated section. These routes represent A-to-B journeys without
intermediate stops.

e Ports: The network encompasses thirteen ports, eleven located within the Netherlands, one
in Germany, and one in Belgium. This inclusion ensures the network reflects cargo flow
entering and exiting the Netherlands through its bordering countries.

A visual representation of the final network structure is provided in Figure[4.I] As evident from the
visualization, the network captures a significant portion of the Dutch IWT network, highlighting
the most heavily utilized waterways.

4.2 Sailing profiles

The route data for this network section is derived from Rijkswaterstaat, covering the same period
from March 1st to April 12th, 2024. This data includes the daily number of trips for each route,

35
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Rotterdam T1
Antwerp T2
Moerdijk T3

Amsterdam T4
Alphen T5
Wanssum T6
Nijmegen T7
Bergen T8
Alblasserdam T9
Duisburg T10
Oosterhout T11
Tilburg T12
Veghel T13

Figure 4.1: Graphical representation of the selected network

considering both directions (as visualized in Figure . To obtain realistic sailing times and
distances for each route, data was sourced from Eurisportal, a platform that provides live sailing
information on chosen routes. The vessel type assigned to each route reflects the most commonly
used vessel type on that specific route within the analyzed timeframe (March 1st to April 12th,
2024). This approach ensures the model accounts for the typical vessel types operating on different
routes within the network.

City 1 City 2 Time Distance Ship type* Daily trips Rounded Trips for 43 days**
1 Antwerp Rotterdam 11h33 127km C3b 4.74 5 204
2 Amsterdam Rotterdam 9h00 113km M8 3.21 3 138
3 Alphen Rotterdam 5h10 35km M8 2.72 3 117
4 Nijmegen Wanssum 3h43 43km M8 2.19 2 94
5 Moerdijk Rotterdam 3h15 35km C3b 1.93 2 83
6 Duisburg Rotterdam 17h03 222km M1l 2.91 3 125
7 Oosterhout Tilburg 2-3h 22km M8 2.81 3 121
8 Rotterdam Veghel 10h28 105km M6 2.72 3 117
9 Moerdijk Oosterhout 1h49 24km M8 2.05 2 88
10 Bergen Rotterdam 6h52 83km M8 1.98 2 85
11 Alblasserdam Nijmegen 7h26 97km M8 1.86 2 80
12 Alblasserdam Rotterdam 1h29 15km M8 1.37 1 59

* Most used vessel types for this route

*+* Data from March 1% to April 12th

Figure 4.2: Routes and frequencies for the selected network

To represent vessel activity within the network, sailing profiles were constructed for each route.
These profiles encompass a two-day timeframe, effectively doubling the frequency of the actual
routes identified in the data. Due to limitations in computational resources, vessel selection during
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route construction aimed to minimize the total number of vessels required to service all routes.
The optimization process identified a fleet of fourteen vessels to efficiently cover the designated
network section. This fleet composition is further described in the next subsection.

4.3 Vessels

As mentioned earlier, this research focuses on four distinct vessel types within the IWT network,
with a total of 14 vessels. These types are differentiated by their time-dependent power require-
ments while sailing. To estimate the power consumption for each vessel type, an interpolation
method was employed, based on the literature [4]. This interpolation leverages the maximum
load capacity of each vessel type to determine its power requirements at each time step during its
journey. The power consumption is per time step (i.e. two hours of sailing).

C3b M8 M6 M1l

- 3 vessels « 7 vessels + 1 vessel - 3 vessels

+ Max load: 6400 T « Max load: 3200 T + Max load: 1700 T « Max load: 5500 T

+ Power + Power + Power + Power
consumption: 900 consumption: 600 consumption: 500 consumption: 800
[kwh] [kwh] [kwh] [kwh]

Figure 4.3: Vessels types with their characteristics

4.4 Base case
The base case scenario has the following parameters and initial characteristics:

e One objective function: the installation costs of the DS and batteries.
e Capex of battery: 955.500€.

e Maximum capacity of battery: 2900 kWh.

e Minimum battery level charge required to be used in vessel: 100%.

e Safe operating range for the battery to prevent full discharge: 10%.

e Capex of one charging station at terminal t: 1.350.000€.

e Number of charging points of a DS installed at terminal: between 4 and 2, depending on the
size and importance of each terminal.

e Number of spots of a DS installed at terminal: between 8 and 4, depending on the size and
importance of each terminal.

e Power of each charging spot: 1000 kW.
e Battery levels at start of period: 100%.
e Number of batteries at each terminal at start of period: 3 batteries.

e Number of batteries charging at each terminal at start of period: 0.
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e Number of batteries on each vessel at start of period: 3.
e Number of batteries providing energy on each vessel at start of period: 1.

o All vessels are fully loaded at every time steps.

4.5 Results

This section presents the findings of the computational model. First, the results for the base case
scenario are presented. Subsequently, a sensitivity analysis is conducted, in order to assess the
influence of three key input parameters: battery capacity, battery costs, and the number of battery
storage spots available at terminals. Thereafter, the impact of loaded or unloaded vessels on the
model’s outputs is studied. Following this, the space inefficiency caused by transporting batteries
on board vessels is taken into account and studied. Finally, the results section is concluded with an
analysis considering the multi-objective perspective of the study. The results are accompanied by a
consistent set of operational metrics. The names and purposes of these metrics are detailed in Table
This model prioritizes batteries, so specific origin-destination (OD) pairs won’t be directly
analyzed. The design centers on the batteries themselves, leading to a global system perspective.
Due to the model’s structure, examining OD pairs becomes complex. Indeed, vessels can travel
across various OD pairs within the two-day timeframe. Since the results are battery-oriented, the
ability to control or precisely visualize specific OD pairs is limited.

Metric/output

Description

Number of vessels

The total count of vessels involved in the scenario.
Impacts the scale of operations and resource needs.

Objective function

The objective function(s) being optimized.

Number of batteries

Total number of batteries used.
Critical for understanding energy storage capacity and costs as-
sociated.

Number of docking
stations

Total count of docking stations (DS) required.
Important for infrastructure planning and cost estimation.

Locations of the DS

Specific locations of docking stations.
Important for geographical distribution and logistics.

Total capex [€]

Total investment required for economic assessment.
It depends on which objective functions are taken into account.

Number of batteries
per vessel

Average number of batteries per vessel.
It indicates the distribution of resources and operational strategy.

Number of DS per
vessel

Average number of docking stations per vessel.
It evaluates accessibility and recharging convenience.

Shared batteries

Number of batteries shared among vessels.
Important for resource utilization and efficiency.

Costs per vessel
[€/vessel]

Average cost per vessel.
It includes operational and investment costs for economic assess-
ment.

Optimality gap [%]

Difference between the current solution and the best theoretical
bound.
As a measure of optimization efficiency.

Table 4.1: Dictionary of operational metrics (output): definitions and significance of each output
metric used in the analysis.

To ensure consistency in the analysis, a hypothesis is formulated for each experiment.

hypothesis is then tested against the results and thoroughly analyzed. Finally, an Managerial

This
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insights: (recommendation) is provided, summarizing the key takeaways of each experiment. This
recommendation is written to be comprehensible and practical for a DS and battery operator, such
as ZES.

4.5.1 Base case scenario

The base scenario has the input given in Section and its only objective function is the total
Capex (see equation in the model). The key results can be seen in Table

Scenario
Number of vessels 14
Objective function Investment costs
Number of batteries 49
Number of DS (DS) 6
Locations of the DS T1, T2, T3, T4, T9, T10
Total capex [€] 54,919,500
Number of batteries per vessel 3.5
Number of DS per vessel 0.428
Shared batteries 15 batteries shared by 2 vessels
Costs per vessel [€/vessel] 3,922,281
Optimality gap [%] ] 42.7 \

Table 4.2: Detailed breakdown of the base case scenario results

The base scenario considers a fleet of 14 vessels with a single objective function. This simplicity in
objective function allows for a focused optimization, prioritizing investment cost minimization. As
can be seen in Table[.2] a total of 49 batteries are required to support the fleet, which results in an
average of 3.5 batteries per vessel. Six DS are established at specific locations (T1, T2, T3, T4, T9,
and T10). The total capital expenditure is 54,919,500€. This includes the costs associated with
procuring the batteries, and setting up the DS. Thus, the average cost per vessel, calculated as
3,922 281€reflects the significant upfront investment required to transition to a battery-swapping
system. While the average cost per vessel is high, it is important to consider the long-term op-
erational savings and environmental benefits of transitioning to a battery swapping system. The
reduction in fuel costs and emissions over time could offset the initial investment. With 0.428 DS
per vessel, it is evident that the DS are shared resources, strategically placed to serve multiple
vessels. This efficient allocation reduces the need for one-to-one docking station-to-vessel corre-
spondence. Shared batteries are also part of the strategy, with 15 batteries being shared by two
vessels. This sharing mechanism optimizes battery usage and reduces the total number of batteries
needed, thereby lowering costs. The optimality gap of 42.7% would indicate a potential difference
between the current solution and the best theoretical bound. In other words, it is not possible
to guarantee that the solution is optimal yet in practice it might be already very close to the
optimal solution. It is important to note that the complexity and large size of the model, due to
the numerous variables, high number of vessels, and extensive network, limits the precision that
can be achieved. The number of computational cores available for solving the model is insufficient,
causing the optimization process to stall around this optimality gap. Despite this, the optimal
function value has stabilized, implying that the solution may be close to the actual optimum, but
the model struggles to prove its optimality definitively. These remarks hold for the whole results
section.
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\

Figure 4.4: Locations of the docking stations in the base case scenario (in red)

A visual representation of the docking stations can be seen in Figure The DS for the base case
are located in Rotterdam (T1), Antwerp (T2), Moerdijk (T3), Amsterdam (T4), Alblasserdam
(T9), and Duisburg (T10). Rotterdam, Moerdijk, and Alblasserdam are key locations where many
vessels routes cross and vessels stop, making it logical to have DS there. These DS can also be seen
in a network representation made by ZES (see Figure , where these three terminals are key
nodes. Antwerp and Duisburg also warrant DS due to the long trips to these destinations within
the network and the high frequency of trips to and from these locations. Despite the potential
benefits of expanding the network to connect more cities to these two terminals, it remains logical to
establish DS at there, given their significant roles within the European inland waterway network.
While Amsterdam may not be a central hub in the network, it remains a significant draw for
vessels due to its own unique attractions. This ongoing vessel traffic justifies the presence of a
DS in Amsterdam. With these remarks, the model has been successfully validated. Indeed, the
model’s accuracy in representing the real-world system for the purposes of this study is confirmed.
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Figure 4.5: Network representation by ZES
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4.5.2 Influence of battery capacities, costs and available spots at DS

This section aims to provide a sensitivity analysis on the impact of battery capacity, battery costs,
and the available number of storage spots at the docking station. These three aspects are studied
separately to understand their individual effects on the overall system configuration.

Battery capacities

The hypothesis on the impact of battery capacities is the following:

"Higher battery capacity leads to a reduction in the number of batteries and DS
used. "

The rationale behind this hypothesis is that higher capacity batteries can store more energy, al-
lowing vessels to travel longer distances without needing frequent recharges. Consequently, fewer
batteries are required to meet the energy demands of the fleet. Additionally, with longer travel
capabilities, vessels can rely on fewer, strategically located DS. These docking stations are typi-
cally situated at key terminals within the network, which act as hubs. By centralizing recharging
points at these critical locations, the system can operate efficiently with a reduced number of DS,
optimizing both the infrastructure and operational costs.

The results presented in Table investigates the influence of battery capacity on the metrics
presented in Table The table explores five different scenarios with battery capacities ranging
from 2,700 to 10,000 kWh (the base case scenario is indicated by a salmon color in the "Battery
capacity" row). The results highlight how changes in battery capacity affect the overall system
configuration and costs. Consistently, across all scenarios, the number of vessels and the number
of objective functions remain the same at 14 and 1 (investment costs), respectively. This stability
ensures that the comparison focuses solely on the impact of varying battery capacities.

Scenarios

Battery capacity [kWh] 2,700 2,900 \ 3,200 \ 4,000 \ 10,000 ‘
Number of vessels 14 14 14 14 14
Objective function Invest. Invest. Invest. Invest. Invest.
Number of batteries 49 49 47 37 22
Number of DS 7 6 6 3 1

%é’ %Z’ T1, T2, T1, T2, T1
Locations of the DS T97 le T3, T4, T3, T4, T2 T1

! ’ T9, T10 T10, T12 T10

T13
Total capex [€] 56,269,500 | 54,919,500 | 53,008,500 | 39,403,500 | 23,371,000
Batteries per vessel 3.5 3.5 3.357 2.643 1.571
DS per vessel 0.5 0.428 0.428 0.214 0.071
Shared batteries 13by2V | 15by2V | 17by2V | 11by2V | 6by2V
Costs per vessel [€] 4,019,250 | 3,922,281 3,786,321 2,814,536 1,597,929
Optimality gap [%] | 446 | 427 | 45 [ 374 | 213 |

Table 4.3: Detailed breakdown of the influence of different battery capacities on various operational
metrics
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As anticipated by the hypothesis, as battery capacity increases, the number of batteries required
decreases significantly. For instance, with a capacity of 2,700 kWh, 49 batteries are needed, whereas
only 22 batteries are required for a capacity of 10,000 kWh. Because each higher-capacity battery
can store more energy, fewer batteries are needed to meet the same total energy demand. Thus,
vessels equipped with higher capacity batteries can operate for longer periods before needing to
swap or recharge their batteries. This reduces the frequency with which they need to visit DS.
As a result, the number of batteries per vessel decreases with increasing capacity, highlighting
improved efficiency. At 2,700 kWh, there are 3.5 batteries per vessel, similar to the base case. At
10,000 kWh, only 1.571 batteries per vessel are needed. Similarly, the number of DS decreases with
increasing battery capacity, confirming again the hypothesis. The base case of 2,900 kWh requires
6 DS, while the highest capacity of 10,000 kWh requires only 1 DS. Because vessels need to swap
batteries less frequently, the total number of DS required to support the fleet decreases. With
fewer batteries and less frequent swaps, the docking station infrastructure can be consolidated into
fewer, more strategically located stations. One can observe that a critical shift occurs between
batteries with capacities of 3200 kWh and 4000 kWh. Within this range, the number of required
DS decreases significantly. The DS that remain in use are the ones that are key nodes or far away
(such as Antwerp and Duisburg) in the network. Ultimately, with even higher battery capacities,
only a single docking station in Rotterdam is sufficient. This aligns with Rotterdam’s central role
in the network, as it’s a major port with a high volume of vessel traffic. This reduces the overall
infrastructure cost and simplifies the logistics. Indeed, the total capital expenditure decreases
with increasing battery capacity, from 56,269,500€for a capacity of 2,700 kWh to 23,371,000€for
a capacity of 10,000 kWh. The sharing of batteries among vessels remains a consistent strategy
across scenarios. The analysis of the number of shared batteries in relation to battery capacity
reveals an interesting trend. Initially, as battery capacity increases, the number of shared batteries
also goes up, peaking at a capacity of 3,200 kWh where there are 17 shared batteries by 2 vessels.
This increase can be attributed to the higher energy demands being met more efficiently through
shared use. However, beyond this peak, the number of shared batteries starts to decline. For
example, with a battery capacity of 4,000 kWh, the shared batteries drop to 11 by 2 vessels, and
further decrease to 6 by 2 vessels at 10,000 kWh. This decline is due to the fact that higher capacity
batteries enable vessels to travel longer distances without needing frequent swaps. Consequently,
these batteries stay longer on the vessels, reducing the opportunity for sharing within the 48-hour
time period. Thus, while larger battery capacities initially encourage more shared usage, surpassing
a certain threshold results in diminished sharing due to extended operational times. To sum up,
the main key insight is the economy of scale: higher battery capacities lead to significant reductions
in the number of required batteries and DS, translating into lower total investment costs.

Managerial insights: Although a capacity of 10,000 kWh may not be feasible in the near term,
even intermediate capacities such as 3,200 or 4,000 kWh demonstrate substantial changes in net-
work design. These capacities lead to lower investment costs, highlighting the importance of pur-
suing higher battery capacities. Therefore, it is advisable to continue efforts in developing and
improving battery technologies to achieve these benefits.

Battery costs

The hypothesis on the impact of battery costs is the following:
"Lower battery costs would lead to a higher number of used batteries and fewer DS."

This hypothesis can be explained by the fact that once battery costs are sufficiently low, it becomes
more cost-effective to transport a larger number of batteries and minimize the use of DS. By
carrying more batteries, vessels can reduce the need for frequent recharges and thereby decrease
the necessity for extensive DS infrastructure. This shift allows for lower investment in DS, as the
network relies more on the availability of low-cost batteries to maintain operations efficiently.
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Table investigates the influence of varying battery costs on the same key metrics from Table
It explores four different scenarios with battery costs ranging from 650,000€t0 1,250,000€(the
base case being the one colored in salmon). As for the previous table, the number of vessels and
the number of objective functions remain the same at 14 and 1 (investment costs), respectively.
This stability ensures that the comparison focuses solely on the impact of varying battery costs.

Scenarios

Battery costs [€] ] 650’000 \ 800,000 \ 955,500 1’250°000
Number of vessels 14 14 14 14
Objective function Invest. Invest. Invest. Invest.
Number of batteries 51 50 49 49
Number of DS 5 5 6 6

T1, T2, T1, T2, T1, T2, T1, T2,
Locations of the DS T3, T9, T3, T9, T3, T4, T3, T4,

T10 T10 T9, T10 T10, T12
Total capex [€] 39,900,000 | 46,750,000 | 54,919,500 | 69,350,000
Number of batteries per vessel 3.643 3.571 3.5 3.5
Number of DS per vessel 0.357 0.357 0.428 0.428
Shared batteries 13by2V | 15by2V | 15by2V | 13by 2V
Costs per vessel [€/vessel| 2,850,000 | 3,339,286 | 3,922,281 4,953,571
Optimality gap [%)] | 416 [ 424 [ 427 | 430 |

Table 4.4: Detailed breakdown of the influence of different battery costs on various operational
metrics

As can be seen in Table the number of batteries required slightly decreases as battery costs
increase, from 51 batteries at 650,000€t0 49 batteries at 955,500€and 1,250,000€. This suggests
a marginal reduction in battery requirements as batteries costs rise. It makes sense that the
more expensive the batteries are, the fewer will be used to minimize costs. Thus, the number of
batteries per vessel shows a slight decrease with increasing costs, from 3.643 batteries per vessel
at 650,000€t0 3.5 batteries per vessel in the base case and higher cost scenarios. Inversely, the
number of DS varies slightly across scenarios, with 5 DS needed at lower battery costs (650,000€and
800,000€), increasing to 6 DS in the base case (955,500€) and higher cost scenarios (1,250,000€).
This indicates that with fewer batteries, more DS are required to support the fleet efficiently.
Regarding the locations of the DS, they only change across scenarios with slight variations. For
instance, at lower battery costs, DS are located at T1, T2, T3, T9, and T10. As costs increase, an
additional station is added at T4 or T12. Despite the differences between the scenarios (as shown
in Figure , all four cases share four common terminals that are always used. These terminals,
previously discussed in the results, can be considered key points within the network. The total
investment costs increases significantly with rising battery costs, from 39,900,000€at 650,000€t0
69,350,000€at 1,250,000€. The primary and main reason for this significant increase in Capex
is the direct correlation between the cost per battery and the total number of batteries needed.
Higher battery costs directly inflate the total investment required. Furthermore, the number of
needed batteries doesn’t fluctuate significantly. Indeed, having one or two batteries less doesn’t
have a huge impact on the total costs. Similarly, costs per vessel increase with higher battery
costs. For a battery cost of 650,000€, the cost per vessel is 2,850,000€, while for the highest cost
of 1,250,000€, it rises to 4,953,571€. Regarding the sharing of batteries among vessels, it remains a
consistent strategy across scenarios. The number of shared batteries is highest in the base case and
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intermediate cost scenarios, with 15 batteries shared by 2 vessels. This trend diminishes slightly
at the lowest and highest cost scenarios. The cause of this behavior remains unclear.
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Figure 4.6: Locations of the common docking stations of all cases in red, the other used locations
are in blue

To sum up, the key results of this experiment are:

e Battery costs have an important impact on total Capex and per vessel costs. Higher battery

costs lead to increased total expenditures, reflecting the critical role of battery pricing in the
economic viability of the system.

Slight variations in the number of batteries and DS required suggest that while battery costs
affect total costs, they do not drastically alter the infrastructure needs. However, with fewer
batteries, more DS are needed to answer the demand.

Despite the differences between the scenarios, all four cases consistently utilize four common
terminals. These terminals serve as key points within the network. Their consistent use
across various scenarios highlights their strategic importance and reliability as central hubs
in the distribution system. This suggests that these terminals are crucial for maintaining the
network’s efficiency and effectiveness, regardless of changes in battery costs. Their strategic
location and capacity likely make them indispensable for optimizing the overall logistics and
transportation flow within the network.

Managerial insights: To achieve a significant shift as mentioned in the hypothesis, battery
costs would need to decrease more substantially than the range used in this experiment. Given the
current technological landscape, such a significant reduction in battery costs does not seem feasible
or realistic. Therefore, the current battery costs, whether slightly increased or decreased, do mot
significantly alter the network design. The primary impact is on the total costs, which are influenced
by changes in battery costs rather than adjustments in the network design. As a result, it is crucial
to focus on other factors that can optimize the network, as substantial changes in battery costs
alone are unlikely to provide significant improvements.
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Number of spots available at DS

The hypothesis on the impact of the number of spots available at DS is the following:

"More spots available at DS would decrease the number of used DS and increase the
sharing of batteries.”

This hypothesis is based on the idea that central terminals, where many vessels pass through, can
function as "swapping" hubs. These hubs would be capable of storing and handling a large number
of batteries, allowing most battery swaps to occur there. As a result, fewer DS would be needed
elsewhere in the network. By concentrating the battery swapping activities at central hubs, the
overall network can operate more efficiently with a reduced number of DS while maximizing the
sharing of batteries.

Table investigates the influence of varying number of spots available at DS on the same key
metrics (presented in Table . It explores four different scenarios with varying additional spots
available at DS: the base case (no additional spots), +2 spots, +4 spots, and +8 spots. In this
context, "spots available at DS" refers to the number of charging spots and the maximum number
of available spots at each terminal, where batteries can be stored even if they are not being charged.
Once again, the number of vessels and the number of objective functions remain the same at 14 and
1 (still investment costs), respectively. This stability ensures that the comparison focuses solely on
the impact of varying spots available at DS.

Scenarios

Spots available at DS base case | +2 \ +4 \ +8 ‘
Number of vessels 14 14 14 14
Objective function Invest. Invest. Invest. Invest.
Number of batteries 49 52 48 50
Number of DS 6 4 6 )

T1, T2, T1 T2 T1, T2, T1, T2,
Locations of the DS T3, T4, le Ti2 T3, T4, T3, T10,

T9, T10 ’ T9, T10 T12
Total capex [€] 54,919,500 | 55,086,000 | 53,964,000 | 54,525,000
Number of batteries per vessel 3.5 3.714 3.428 3.571
Number of DS per vessel 0.428 0.286 0.428 0.357
Shared batteries 15by2V | 12by2V | 12by2V | 16 by 2V
Costs per vessel [€/vessel] 3,922,281 3,854,571 3,894,643 | 3,894,643
Optimality gap [%] | 427 [ 448 | 437 | 455 |

Table 4.5: Detailed breakdown of the influence of different numbers of battery spots available at
the DS on various operational metrics

As can be seen in Table the total capex unexpectedly increases in the +2 spots scenario
(55,086,000€) compared to the base case (54,919,500€). This might be due to increased complex-
ity and suboptimal solutions caused by the higher computational demand caused by additional
potential solutions to cover. Scenarios with +4 (53,964,000€) and +8 (54,525,000€) spots show
a decrease in capex compared to the base case scenario, indicating a potential improvement in
investment efficiency when more spots are available. Indeed, interestingly, the 44 scenario has less
batteries but the same amount of DS, and inversely for the +8 scenario (same amount of batteries
but less DS). In facts, the base case requires 49 batteries, which increases to 52 with +2 spots,
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drops to 48 with +4 spots, and slightly rises to 50 with +8 spots. The base case and +4 spots
scenarios both use 6 docking stations, while +2 spots reduce this to 4, and +8 spots use 5 docking
stations. However, the base case, +4 and +8 spots scenarios share some similar DS locations (T1,
T2, T3, T10), suggesting a stabilized configuration that might be near-optimal for those settings.
As previously discussed, these locations are the key node locations within the network. Overall,
the results of this experiment show instability and a lack of coherence, likely due to dependen-
cies on the initial conditions and inputs provided to the model. Specifically, the initial location
of batteries at time p=0 plays a crucial role. If the hypothesis holds, the batteries need to be
transported to the hubs initially, which can take more than the 48-hour simulation period used in
this study. Additionally, the process of moving batteries to hubs necessitates the use of multiple
DS, increasing the overall number of DS needed. Despite these inconsistencies, observable trends
still emerge from the results. Notably, as the number of DS decreases, the number of batteries
increases. This trend suggests a shift towards fewer DS with more centralized battery handling,
ultimately leading to a decrease in total costs per vessel.

Managerial insights: Given the trends observed, the availability of more spots at DS could
significantly impact network design. Therefore, this variable warrants further study. Investigating
the optimal number of spots at central DS could lead to a more efficient network configuration,
reducing overall costs and improving operational efficiency.

4.5.3 Summary of results with one objective

As shown in Figure[4.7] despite some variations, the number of DS and batteries per vessel remains
relatively stable across the different experiments. Notably, the base case is centered, indicating
a relatively balanced number of DS and batteries compared to other experiments. The cost of
batteries primarily influences the number of batteries per vessel, while both battery capacity and
the availability of spots at terminals impact the number of DS and batteries used. Unfortunately,
it is challenging to draw the Pareto front because the total costs depend on the battery costs,
which vary in some cases.

Battery and DS requirements for the most relevant runs
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Figure 4.7: Battery and DS requirements for the most relevant runs
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4.5.4 Loaded vs unloaded

This section examines the implications of considering that vessels are not always fully loaded. It
delves into the relevant data, analyzes how this factor influences the inputs, and explores its effects
on the results.

Data

Data from Rijkswaterstaat has enabled a data analysis revealing a difference in the average speed
of each vessel type when loaded versus unloaded. As illustrated in Table it is evident that
vessels travel faster when unloaded, with C3b category vessels exhibiting speeds nearly twice as
fast as when they are loaded.

Vessel type Loaded speed Unloaded speed

km/h kn/h
M6 14.1 18.7
M8 13.6 19.2
M11 14.5 19.0
C3b 8.4 15.4

Table 4.6: Vessels speed when loaded and unloaded

Changes in input

This change in speed affects the sailing profiles. When vessels move faster, they reach their next
destination earlier. Consequently, the sailing profiles have been adjusted to reflect this. Four
scenarios have been developed:

1. All vessels are loaded at all time steps.
2. All vessels are unloaded at all time steps.

3. All vessels are loaded at p=0, unload their goods at the next port, then travel unloaded to
the following port, and repeat this cycle.

4. The same as scenario 3, but with 50% of the vessels loaded at p=0.

The new sailing profiles induce new fleet composition, that can been see in Figures [4.8] and
Furthermore, although the speed changes, the instant power consumption remains the same. This
is because, while the vessels are lighter, they achieve higher speeds by using the same amount of
power.

C3b M8 M6 M1l

» 3 vessels « 7 vessels - 1 vessel « 3 vessels

* Max load: 6400 T « Max load: 3200 T * Max load: 1700 T « Max load: 5500 T

» Power + Power * Power + Power
consumption: 900 consumption: 600 consumption: 500 consumption: 800
[kwh] [kwh] [kwh] [kwh]

Figure 4.8: Fleet composition for scenarios 1, 3 and 4
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C3b

» 2 vessels
* Max load: 6400 T
* Power

consumption: 900
[kwWh]

M8

+ 6 vessels
 Max load: 3200 T
+ Power

consumption: 600
[kwWh]

M6

+ 1 vessel
* Max load: 1700 T
- Power

consumption: 500
[kwh]

M1l

+ 2 vessels
 Max load: 5500 T
+ Power

consumption: 800
[kwh]

Figure 4.9: Fleet composition for scenario 2

Analysis of the results

The hypothesis on the impact of vessels loading is the following:
"The less loaded the vessels are, the fewer batteries and DS are used."

This hypothesis assumes that, for the same period of time and the same number of trips, less loaded
vessels will operate more efficiently. When vessels are less loaded, they can travel at higher speeds.
This increased speed results in shorter travel times and reduced overall energy consumption for the
same number of trips. Consequently, vessels require fewer batteries and, therefore, fewer battery
swaps. As a result, the overall need for DS is reduced, optimizing the network by minimizing the
infrastructure required to support the operations.

The analysis presented in Table [1.7] investigates the influence of different loading conditions on the
same key metrics (in Table . It explores the four different scenarios described above. As previ-
ously mentioned, the number of vessels varies slightly across scenarios, with 14 vessels in the 100%
loaded, 50%-50% fully loaded at t=0, and 50%-50% half loaded at t=0 scenarios, and 11 vessels
in the 100% unloaded scenario. Each scenario maintains a single objective function (investments
costs).

As can be seen in Table the number of batteries required decreases significantly in the 100%
unloaded scenario (32 batteries) compared to the 100% loaded scenario (49 batteries). As already
mentioned, this reduction is due to fewer vessels, but also to the faster travel speeds of unloaded
vessels, which together reduces the overall energy demand. Thus, the number of docking stations
also decreases in the 100% unloaded scenario (4 DS) compared to the 100% loaded scenario (6 DS).
In the mixed loading scenarios, the number of batteries required falls between the two extremes,
with 40 batteries in the 50%-50% fully loaded at p=0 scenario and 42 batteries in the 50%-50%
half loaded at p=0 scenario. This reduction is due to the faster travel speeds of the vessels when
they are unloaded. Thus, it also reduces the overall energy demand. The locations of the DS
vary slightly across scenarios, reflecting the adjusted sailing profiles and optimized routes based
on loading conditions. For example, the 100% unloaded scenario includes DS at T1, T2, T10,
and T12, while the 100% loaded scenario includes DS at T1, T2, T3, T4, T9, and T10. Notably,
the terminals T1, T2, and T10 are constant across all scenarios. T1 remains the central hub
of the network. Terminals in Belgium (T2) and Germany (T10) are farther away, resulting in
longer travel times for vessels regardless of their loading state (loaded or unloaded). Regarding the
investment costs, it decreases significantly in the 100% unloaded scenario (35,976,000€) compared
to the 100% loaded scenario (54,919,500€). This is due to the reduced number of batteries and DS
required for unloaded vessels. Thus, costs per vessel decrease significantly in the unloaded scenario
(3,270,545 €) compared to the loaded scenario (3,922,281€). The mixed loading scenarios have
intermediate investment costs values. This reflects the balance between loaded and unloaded travel
phases. The sharing of batteries varies across scenarios, with 15 batteries shared by 2 vessels in the
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Scenarios
50%-50% 50%-50%
Loaded (L) vs Unloaded (U) 100% L 100% U fully I at t—0 | half L at t—0
Number of vessels 14 11 14 14
Objective function Invest. Invest. Invest. Invest.
Number of batteries 49 32 40 42
Number of DS 6 4 5 5
T1, T2, T1. T2 T1, T2, T1, T2,
Locations of the DS T3, T4, le T712 T3, T10, T3, T9,
T9, T10 ’ T12 T10
Total capex [€] 54,919,500 | 35,976,000 44,970,000 46,881,000
Number of batteries per vessel 3.5 2.909 2.857 3.0
Number of DS per vessel 0.428 0.363 0.357 0.357
. 9by 2V 17by 2V 16 by 2V
Shared batteries 15by 2V Aby 3V 2 by 3V 1by 3V
Costs per vessel [€/vessel] 3,922,281 3,270,545 3,212,143 3,348,643
Optimality gap [%] ] 42.7 \ 43.5 \ 29.0 \ 47.1 \

Table 4.7: Detailed breakdown of the influence of different loading scenarios on various operational
metrics

100% loaded scenario, reducing to 9 shared by 2 vessels in the 100% unloaded scenario but with 4
batteries shared by 3 vessels. This variation can be attributed to the different energy demands and
operational requirements in each scenario: the less used are the batteries, the more they can be
shared. Thus, the possibility for sharing increases. Interestingly, there are cases where a battery is
shared between 3 vessels over the running time of 2 days. This occurs because of the efficiency and
scheduling optimization within the network, where batteries are strategically rotated among vessels
to maximize their utilization and ensure continuous operations. To sum up, the loading conditions
significantly influence the operational and financial aspects of the system. Fully unloaded vessels
require fewer resources and lower costs, while fully loaded vessels necessitate more batteries and
docking stations. The mixed loading scenarios have intermediate resources needs and investment
costs values. Based on this analysis of different loading conditions, the scenario where vessels are
50% loaded and 50% unloaded with fully loaded at p=0 is selected for further analysis from section
on. This scenario offers a balanced approach, optimizing battery and docking station usage
while maintaining operational efficiency. Most importantly, the scenario is among the closest to
the reality of IWT, where vessels are both, loaded and unloaded within a time frame of two days.

Managerial insights: This experiment highlights the critical importance of realistic modeling in
capturing the true impacts of vessel loading conditions on network design and costs. The significant
differences observed in total investment costs, sometimes exceeding 20%, emphasize the need for
accurate and detailed simulation of real-world conditions. Therefore, it is crucial to incorporate
realistic loading scenarios in future studies to ensure the network design is realistic, efficient and
cost-effective.

4.5.5 Lost space

To optimize the use of space on vessels, it is essential to consider the trade-offs between carrying
battery containers versus goods containers. This section delves into the influence of this factor on
the overall network design and the resulting outcomes.
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Data

According to Wirtsild, the battery containers are 20 ft containers, weighting approximately 27
tons each. In general, filled with goods, a Twenty-foot Equivalent Unit (TEU), which corresponds
to a 20 ft container, typically weighs around 2.5 tons. Using these data points, it is possible to
infer that to maintain the same weight on the vessel, one battery container (27 tons) is equivalent
to approximately ten goods containers (10 x 2.5 tons = 25 tons). However, a sensitivity analysis
will be conducted using equivalences of 5, 8 and 10 good containers to explore different scenarios
and their impacts on the system. Cost data from the website Searates indicates that the cost
for transporting one 20 ft container varies depending on the route. For example, shipping from
Rotterdam to Antwerp costs about 2,400€, and from Rotterdam to Duisburg around 2,700€. The
travelling times for these two trips are respectively 11 hours 30 minutes and 17 hours. Consequently,
via the linear regression that can be seen in Figure [£.10] the costs in function of the travelling time
are determined. For clarity, the legend accompanying the Figure defines the units and meaning of
each axis. Linear regression was chosen as the most simplified but suitable method to calculate this
function. This is because a logical assumption can be made that there is a fixed cost associated
with each trip, regardless of the distance traveled. On top of this fixed cost, an additional cost is
incurred for each kilometer (or minute) spent traveling. This makes sense since, even for a short
trip lasting 30 minutes, the total cost won’t be close to zero.

Line Fit Plot
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Figure 4.10: Linear regression to get the transportation costs function (X is the time in hours, Y
is the costs in €)

Changes in the model

This significant weight difference implies a revenue loss for the barge operators when opting to
carry battery containers. Since the BSS operators should aim to keep its clients, they have to
minimize their impacts on them. In this scenario, they should aim to minimize the revenue loss of
the barge operators. Thus, the penalty for lost cargo space needs to be factored into the overall
cost-benefit analysis of implementing battery swapping systems. In the optimization model, this
penalty costs can be included as an additional objective to ensure a comprehensive evaluation
(see equation . However, a scaling factor should be applied to this new objective function to
align it with the long-term costs, ensuring consistency with the investment costs. In the context
of financial decision-making, it is crucial to accurately compare different types of costs associated
with business operations and investments. The methodology of converting operational costs into
long-term costs using the concept of present value is described below. By doing so, it enables
a meaningful comparison between operational (loss costs in this case) and investment costs. To
convert the annual operational costs into a present value, one uses the formula for the present value
of an annuity. This formula allows to determine the equivalent value today of a series of future
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cash flows, considering the time value of money. The formula for the present value of an annuity
is:

PV =C- (71_(1?)77»)

Where:

e PV — Present value

C' = Annual operational cost
e 7 = Discount rate

e n = Number of years

A time horizon (n) should be chosen to accurately reflect the expected useful life of the investment.
For this analysis, a period between 5 years and 20 years is selected. This range is chosen to capture
the full lifecycle of the investment, taking into account both the initial implementation phase
and the subsequent operational period during which the investment generates returns. A shorter
horizon might not fully encompass the benefits and potential cost savings realized over time, while
a longer horizon ensures that the long-term impacts and value of the investment are thoroughly
evaluated. Moreover, selecting an appropriate discount rate is critical in this process, as it accounts
for the time value of money, reflecting the opportunity cost, inflation, and risk associated with the
cash flows. In general, a discount rate between 5% and 10% is used, justified by the following
considerations:

e Cost of capital: The average cost of borrowing and the return required by equity investors
is typically around 5% for a stable company in a low-risk industry.

e Inflation: A moderate inflation rate of 2-3% is expected in the Eurozone, necessitating a
higher discount rate to ensure real returns.

e Risk premium: An additional premium is included to account for the uncertainties and risks
associated with the future operational costs and the business environment.

In this project, the operational costs (losses) are what aims to be minimized for every two days of
operation. Given this frequency, it is essential to annualize these costs to understand their long-
term impact. There are approximately 365 days in a year, translating to about 182.5 operational
cycles (2 days per cycle) per year. Thus, the annual operational cost is calculated as follows:

Annual operational cost = Loss cost for 2 operational days -182.5

Thus, the scaler to be put in the objective equation is the following:

1825 (0

Having determined the equation for the present value, it is essential to understand the influence of
time periods and discount rates on the present value. Therefore, three experiments are designed to
represent the total loss costs for the scenario where all vessels sailing during the two days modeled
in this thesis are transporting a single battery container (see Tables and . Each ex-
periment expresses a different equivalence between one battery containers and the good containers
(5, 8, and 10). As can be seen in the Figures, the higher is the equivalence (5, 8,10), the higher is
the present value. In a similar way, the higher is the time horizon, the higher is the present value.
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5 years ‘ 8 years ‘ 10 years ‘ 20 years ‘ Discount rate
103,506,963 | 154,519,259 | 184,607,377 | 297,940,293 5%
90,628,234 | 127,544,748 | 146,901,238 | 203,538,024 10%

Table 4.8: Present value of the ordinary annuity for 1 battery container being 10 good containers
[€], taken into account that all vessels transport 1 battery container during the 2 days modeled

5 years ‘ 8 years ‘ 10 years ‘ 20 years ‘ Discount rate
82,963,596 | 123,851,314 | 147,967,745 | 238,807,105 5%
72,640,951 | 102,230,493 | 117,745,267 | 163,141,164 10%

Table 4.9: Present value of the ordinary annuity for 1 battery container being 8 good containers
[€], taken into account that all vessels transport 1 battery container during the 2 days modeled

5 years ‘ 8 years ‘ 10 years ‘ 20 years ‘ Discount rate
51,785,086 | 77,306,810 | 92,360,057 | 149,061,121 5%
45,341,790 | 63,811,319 | 73,495,474 | 101,831,161 10%

Table 4.10: Present value of the ordinary annuity for 1 battery container being 5 good containers
[€], taken into account that all vessels transport 1 battery container during the 2 days modeled

Finally, the lower is the discount rate, the higher is the present value.

Analysis of the results

In the analysis of the loss cost associated with transporting batteries, it is impractical to examine
every possible scenario. Therefore, a representative subset of cases is selected to provide meaningful
insights while maintaining manageability. The selection is based on choosing the highest, lowest,
and an intermediate case from the present value calculations (Tables and . This
approach ensures that the analysis captures a wide range of potential outcomes. The three selected
cases are:

1. Case 1: lowest present value of loss costs

e Scenario: This value corresponds to the present value of the ordinary annuity for one
battery container being 5 good containers, over a period of 5 years with a 10% discount
rate.

e Scaler: 182.5 - (%) = 691.8.

2. Case 2: highest present value of loss costs

e Scenario: This value corresponds to the present value of the ordinary annuity for one
battery container being 10 good containers, over a period of 20 years with a 5% discount
rate.

o Scaler: 182.5 (100 ) — 22744,

3. Case 3: intermediate present value of loss costs

e Scenario: This value corresponds to the present value of the ordinary annuity for one
battery container being 8 good containers, over a period of 10 years with a 10% discount
rate.
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o Scaler: 182.5 (100 ) — 11214,

After running the model for Case 1, with a weight of 75% arbitrarly assigned to the investment cost
objective function, it is found that the loss costs were excessively high compared to the investment
costs. Consequently, all docking stations were utilized, and a significant number of batteries were
required. To address this, it was decided to halve the loss costs. The initial hourly loss costs were
based on a linear regression derived from shipping costs from Rotterdam to Antwerp (approximately
2,400€) and from Rotterdam to Duisburg (around 2,700€). However, these numbers represent the
price to transport a container, not the actual profit for the barge owner. The effective profit,
and thus the losses, are lower than these amounts. Two types of trials were conducted: one
assuming the profit was half of the transportation costs and another assuming it was a fourth of
the transportation costs. Also, it can be argued that more weight should be given to investment
costs from a DS operator’s perspective. Indeed, their first priority status to maximize their profit or
minimize their costs. As a result, a total of five cases were initially tested on the most favourable
scaler, which is in Case 1. The hypothesis on the impact of the revenue loss and the weight
attributed to the investment objective is the following;:

"The smaller the percentage of transportation costs attributed to revenue loss and
the more importance given to the investment objective, the closer the shifting point
will be."

This hypothesis is based on the premise that high loss costs can significantly skew the results.
By reducing the percentage of transportation costs attributed to revenue loss and simultaneously
giving more weight to the investment objective, the influence of loss costs is minimized. This ad-
justment prevents loss costs from excessively impacting the outcomes, leading to a more balanced
solution. The shifting point, where the balance between cost objectives is optimized, becomes
closer and more distinct, allowing for clearer insights into the trade-offs involved.

Scenarios
Case 1.1 Case 1.2 Case 1.3 Case 1.4 Case 1.5
- Full 172 1/2 1/4 1/4
Specificities 5% 75% 90% 75% 90%
Number of vessels 14 14 14 14 14
Obiective functions Invest. Invest. Invest. Invest. Invest.
J v Lost space | Lost space | Lost space | Lost space | Lost space
Number of batteries 48 40 39 39 40
Number of DS 12 12 10 11 9
T1, T2, T1, T2, T1, T2,
T3, T4, T3, T4, T1, T2, T3, T4, T1, T2,
T5, T6 T5, T7 T3, T4, T5, T6 T3, T4,
Locations of the DS [ Ty T6, T8, e T6, T9,
T8, T9, T8, T9, T9. T10 T8, T9, T10. T11
T10, T11, T10, T11, Tli Tlé T10, T11, 1113 ’
T12, T13 T12, T13 ’ T13
Total costs [€] 294,445,866 | 124,994,085 | 80,431,970 | 85,146,781 | 63,376,872
Optimality gap [%] 37.7 38.0 40.4 36.6 44.9

Table 4.11: Detailed breakdown of the trials conducted to determine the scenarios of space lost

The scenarios vary by the fraction of transport costs (full, 1/2, 1/4) attributed to the revenue
loss for the barge operator, and the weight assigned to the investment objective function (75%,
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90%). All scenarios consider both investment costs and lost space as objective functions, reflecting
a multi-objective optimization approach. Moreover, the number of vessels remains constant at 14
across all scenarios, ensuring comparability of results. First of all, one can observe that the smaller
the fraction of transport costs (full, 1/2, 1/4) attributed to the revenue loss for the barge operator,
the more balanced the results. By balanced results, it is meant that the lost costs are not so high
and significant that the investment costs do not matter anymore. This is shown by all or almost
all DS being utilized, resulting in total costs that are very high. However, even more significant
is the weight attributed to the objective function of investments. Indeed, scenarios with higher
weights on the investment objective (e.g., 90% in Cases 1.3 and 1.5) tend to reduce the number of
DS, leading to lower Capex. Conversely, scenarios with lower weights on the investment objective
(e.g., 75% in Cases 1.1, 1.2, and 1.4) tend to utilize more resources, including more DS, leading to
higher Capex. This can be explained by the fact that, in absolute terms, the objective function
for lost space is significantly larger. Therefore, assigning more weight to the investment function
allows for a more balanced solution, enabling trade-offs between the two objective functions. It is
important to note that from the perspective of ZES, in the first stage of the design, it makes sense
to prioritize their initial investment over any other factor.

Managerial insights: Based on these findings, it is advisable to continue with Case 1.5 for
further analysis and decision-making. This case presents the most balanced output, minimizing
the excessive influence of loss costs and offering a clear view of the trade-offs between different
objectives. By focusing on Case 1.5, one can derive the most meaningful insights and optimize the
network design effectively.

Based on the previous managerial insights, Case 1.5 is further tested with the initial three different
cases (see Table . Once again, the number of vessels and the number of objective functions
remain the same at 14 and 2 (lost space and investment costs), respectively. As expected, Case
2 and Case 3 provide results that imply the need for more batteries and more docking stations.
The loss costs projected in the long term are significantly higher, which consequently reduces the
relative importance of the investment cost objective function. Thus, in order to get realistic results,
it is chosen to continue the thesis with Case 1 (one battery container being 5 good containers, over
a period of 5 years with a 10% discount rate). Indeed, Case 1 offers a more balanced approach,
considering both the investment and operational costs without overwhelming the model with ex-
cessive loss costs.

In table one can see Cases 1.4 and 1.5. These cases are identical except for the weight
assigned to the investment cost objective in the function. One can observe a significant change
in the model’s behavior and output as the weight increases from 75% to 90%. To further refine
this shift and identify the exact tipping point, a sensitivity analysis is conducted. The results are
presented in Table [£.13] The hypothesis on the impact of the weights attributed to each of the two
objectives is the following:

"The more importance given to the investment objective, the fewer DS are used.
Additionally, due to fewer DS and less emphasis on loss costs, the total costs also
decrease.”

This hypothesis is grounded in the understanding that prioritizing the investment objective leads
to a reduction in the number of DS required. By focusing more on investment costs, the network
design aims to minimize initial expenditures, which in turn reduces the infrastructure needed, such
as DS. Additionally, with less weight given to loss costs, the total costs are further lowered, as
these costs have less influence on the overall optimization. This results in a more cost-effective
network configuration, balancing investment efficiency with operational needs.

As can be seen in Table [4.13] the scenarios vary by the weight assigned to the investment cost
objective, ranging from 80% to 97.5%, with a corresponding reduction in the weight of the lost
space objective. Once again, the number of vessels remains constant at 14 across all scenarios,
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Scenarios
Lost space | Casel [ Case2 [ Case3 |
Number of vessels 14 14 14
. . . Invest. Invest. Invest.
Objective function Lost space | Lost space | Lost space
Number of batteries 40 40 40
Number of DS 9 12 11
T1, T2, T1, T2,
T1, 12, T3, T4, T3, T4,
T3, T4, Th, T7 T5, T6
Locations of the DS T6, T9, [ [
T10. T11 T8, T9, T8, T9,
T13, ’ T10, T11, T10, T11,
T12, T13 T13
Total costs [€] 63,376,872 | 158,285,657 | 92,237,724
Number of batteries per vessel 2.857 2.857 2.857
Number of DS per vessel 0.643 0.857 0.786
. 12by 2V 1l4by2V 16 by 2V
Shared batteries 2 by 3V 3 by 3V 3 by 3V
Costs per vessel [€/vessel| 4,526,919 11,306,118 | 6,588,408
Optimality gap [%] 449 [ 379 [ 410 ]

Table 4.12: Detailed breakdown of the influence of the different space loss scenarios, based on the
scenario of Case 1.5, on various operational metrics

ensuring comparability of results. The number of batteries remains relatively stable across the
scenarios, ranging from 39 to 41. This consistency suggests that the battery requirements are not
highly sensitive to the variations in the weight given to the investment objective function. However,
the number of DS decreases as the weight given to the investment objective function increases.
This makes sense because prioritizing investment costs leads to a reduction in the number of DS to
lower overall expenditures. Contrarily, when less weight is attributed to the investment objective
function, there are more DS because the model prioritizes operational efficiency and convenience.
More DS mean that vessels can access battery swapping services more frequently and conveniently,
reducing downtime and improving overall efficiency. However, this comes at the cost of higher
investments in infrastructure. There is no single shifting point in this trend. Instead, the number
of DS decreases gradually as more weight is given to the investment objective function. This
indicates a steady reallocation of resources to minimize investment costs progressively.

Managerial insights: The weights assigned to each objective can significantly affect the design
of the network and the total costs incurred. It is crucial to prioritize the objectives appropriately and
assign well-reflected weights to achieve a balanced and efficient network configuration. Therefore,
careful consideration should be given to the weighting process to optimize both investment and
operational outcomes effectively.

4.5.6 New base case scenario

To ensure a more realistic foundation for the next part of the thesis, a new base case scenario
is constructed that incorporates the results obtained so far. This new base case scenario has the
following parameters and initial characteristics (the changes compared to the previous base case
scenario are highlighted in orange):
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Scenarios
Case 1.5 Case 1.5.1 | Case 1.5.2 | Case 1.5.3 | Case 1.5.4
e aps 1/4 1/4 1/4 1/4 1/4
Specificities 90% 80% 85% 95% 97.5%
Number of vessels 14 14 14 14 14
Obiective functions Invest. Invest. Invest. Invest. Invest.
J Lost space | Lost space | Lost space | Lost space | Lost space
Number of batteries 40 39 39 39 41
Number of DS 9 11 10 8 7
T1, T2,
T1, T2, T3, T4, T1, T2, T1, T2, T1, T2,
T3, T4, T5, T6 T3, T4, T3, T4 T4, T6
Locations of the DS T6, T9 ’ T6, T8 T [
T8, T9 T7, T9 T9, T10
T10, T11, T10, T11 T9, T10 T10, T13 T11
T13 ’ T T11, T13 ’
T13
Total costs [€] 63,376,872 | 75,970,287 | 69,502,215 | 55,205,520 | 52,505,401
Number of batteries per v. 2.857 2.857 2.786 2.786 2.928
Number of DS per v. 0.643 0.786 0.714 0.571 0.5
. 12by2V | 13by2V | 15by2V | 16 by2V | 14by 2V
Shared batteries 2by3V | 1by3V | 3by3V | 2by3V | 2by3V
Costs per vessel [€/vessel| 4,526,919 | 5,426,449 | 3,626,035 | 3,433,178 | 3’750’385
Optimality gap [%] ] 44.9 \ 41.2 \ 42.2 \ 47.0 \ 47.0

Table 4.13: Comparison of the different space loss scenarios, where one battery container is equiv-
alent to five good containers, varying the weight attributed to each objective.

e Capex of battery: 955.500€.

e Maximum capacity of battery: 2900 kWh.

e Minimum battery level charge required to be used in vessel: 100%.

e Safe operating range for the battery to prevent full discharge: 10%.

e Capex of one charging station at terminal t: 1.350.000€.

e Number of charging points of a DS installed at terminal: between 4 and 2, depending on the
size and importance of each terminal.

e Number of spots of a DS installed at terminal: between 8 and 4, depending on the the size
and importance of each terminal.

e Power of each charging spot: 1000 kW.

e Battery levels at start of period: 100%.
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Number of batteries at each terminal at start of period: 3.

e Number of batteries charging at each terminal at start of period: 0.

Number of batteries on each vessel at start of period: 3.
e Number of batteries providing energy on each vessel at start of period: 1.

The DS locations of this new base case scenario can be seen in Figure 4.11

\

Figure 4.11: DS locations for the new base case scenario (in red)

4.5.7 Third objective function: "at terminal" times

This section introduces a new objective function (see that considers the difference between
the number of designated charging spaces for battery containers at the terminal and the avail-
able storage space. In other words, once fully charged, batteries can be stored at the terminal.
However, storing containers at the terminal incurs costs per square meter. Therefore, this third
objective function aims to minimize the time batteries spend at the terminal ("at terminal” times),
effectively maximizing their utilization. To ensure consistent comparison with the other two ob-
jective functions, these "at terminal" times need to be converted into monetary costs. This scaler
expresses the transition to the total monetary cost associated with the "at terminal" times of these
containers (in [€/2h/container|), but also the conversion of the costs into long-term costs. As
for the costs associated to the loss of space, the concept of present value is used. In order to be
consistent, the scaler of 691.8 is used.

When dealing with containers at terminals, several unavoidable charges and fees are associated
with the handling and storage of these containers. Understanding these fees is crucial for effective
cost management. The key charges include Terminal Handling Charges (THC), gate storage fees,
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and demurrage fees. The THC is a fee collected by terminal operators for services such as loading,
unloading, storing, moving, and maintaining containers at a terminal. These charges cover the
operational costs incurred by the terminal for managing the containers. Gate storage fees are
incurred for the space occupied by containers in the terminal yard, warehouse, or container depot.
The storage period begins when containers enter the storage facility and ends when they leave.
Ports generally offer a few free days (typically 3-7 days) to load or unload containers. If contain-
ers are removed from the terminal within these free days, gate storage fees are not applicable.
However, if containers are delayed due to port congestion or other external factors, gate storage
fees must be paid. These fees are charged for the extended use of the terminal space beyond the
allotted free days. Demurrage fees are charged by carriers for the delayed use of containers within
the terminal. Similar to gate storage fees, demurrage fees apply when containers are not removed
from the terminal within the free days assigned by the shipping company. The main difference is
that demurrage fees are paid directly to the carriers, while gate storage fees are collected by the
terminal through the carriers. In some ports, these fees may overlap, and both may be applicable
simultaneously.

Country THCs in USD (Origin) THCs in USD (Destination)

Germany 270 270
Singapore 178 178
India 130 124
UK 225 225
Japan 242 242

Table 4.14: THCs for 20ft dry containers in different countries in 2022 [6].

In the context of this thesis, the terminal would constantly house some battery containers. This
ongoing presence of battery containers implies that the free storage period typically offered by
the port would not apply. Instead, the storage and handling of battery containers would be
more akin to a "rental" agreement for a portion of the terminal’s space. This arrangement would
include a fixed cost for the designated area within the terminal, similar to leasing a portion of
the terminal’s storage capacity. From the website Container-xChange [6], we get a breakdown
of THC fees for 20ft dry containers in different countries in 2022 (see Table . In Germany,
the costs are 250€per container, which includes loading, unloading, and other handling costs. By
analyzing these costs and supported by data from another source, fbazoom [114], which mentions
that storage costs can go up to 90€per container per day, it can be deduced that it is reasonable
to attribute approximately 90€par day and per container of this THC costs to storage. Thus, the
fee per container, per 2 hours, is about 7.5. Thus, the scaler pen; is equal to 7.5 [€/2h/container].

4.5.8 Multi-objective analysis

This section focuses on exploring the impact of varying the weights attributed to each of the three
objective functions on the optimal solutions. Multi-objective optimization is a critical aspect of
decision-making in complex systems, where different criteria must be balanced to achieve the best
overall outcome. By adjusting the weights assigned to each objective, one can observe how the
optimal solutions shift in response to these changes. This approach allows to understand the trade-
offs between different objectives and how they affect the overall system performance, and identify
the most balanced and effective solutions that achieve a desirable compromise between investment
costs, space lost, and "at terminal" times. As a reminder, the three objective functions used in
this thesis are:

1. Investment costs: focus on minimizing the initial capital expenditure required for setting
up the infrastructure, including docking stations and battery containers. These costs are
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a crucial consideration for stakeholders looking to optimize their return on investment and
ensure the financial viability of the project.

2. Space lost: aim of minimizing the loss of revenue for barge owners due to the space occupied
by battery containers that could otherwise be used for transporting goods containers.

3. "At terminal" times: aim of minimizing the time that battery containers spend at the ter-
minal. These times represent an opportunity cost, as resources that are not being utilized
efficiently contribute to higher operational expenses and reduced system effectiveness.

Weighting sum method

This method involves combining multiple objective functions into a single composite objective
function. Each objective function is assigned a weight that reflects its relative importance. The
solver then optimizes this single weighted objective function. It is useful in scenarios where there
is a clear understanding of the relative importance of each objective. The equation of the objective
function is:

F:Z?:lwifi(x) =wi- fitws- fot+ws-f3

where w1, we, w3 are the weights for the objective functions fi, fo, f3 respectively. fi is the invest-
ment costs objective, fo the loss space and f3 the "at terminal" times.

To understand the impacts of different priorities in multi-objective optimization, three base sce-
narios are analyzed where each objective function is given the full weight individually (see Table
4.15)). The two hypotheses for these cases are the following:

"When all weight is given to the investment objective, this results in fewer batteries
and DS used."

"When all weight is given to minimizing "at terminal” times, more batteries are
used, but there is less sharing of them."

These hypotheses are grounded in the fact that prioritizing the investment objective means mini-
mizing the costs associated with batteries and DS. This leads to the smallest possible use of these
resources, as the model aims to reduce capital expenditures to the minimum. For the second hy-
pothesis, when minimizing "at terminal" times is prioritized, vessels are configured to transport
as many batteries as possible. This approach reduces the number of batteries left at terminals,
increasing the usage of batteries but reducing their sharing. The focus here is on maximizing the
operational efficiency and minimizing downtime, leading to a higher number of batteries in transit.

In table [£.15] the three basic scenarios are presented, each focusing solely on one objective function
to facilitate comparison: investment costs, loss space costs, and "at terminal” times. Each scenario
has 14 vessels, with variations in the number of batteries, docking stations (DS), total costs, and
optimality gaps. In Base 1, where the focus is entirely on minimizing investment costs, one sees the
use of 42 batteries and 5 DS. This results in the lowest total cost of 46,881,000€. Shared batteries
are distributed with 16 shared by 2 vessels and 1 shared by 3 vessels, resulting in a cost per vessel
of 3,348,642€. In Base 2, the objective is to minimize loss space costs. This scenario utilizes 44
batteries and 13 DS, leading to the highest total cost among the scenarios at 164,510,040€. The
cost per vessel is significantly higher at 11,750,717€with the same shared battery distribution as
Base 1. The substantial increase in the number of DS reflects the need for more frequent battery
swaps, which drives up costs. Base 3 focuses on minimizing "at terminal" times, resulting in the
highest number of batteries at 56 and 13 DS. The total cost is 129,712€and the cost per vessel
drops to 9,265€the lowest among the three scenarios. The shared batteries reduce to 6 shared by
2 vessels, emphasizing a strategy to have more batteries on vessels to reduce "at terminal" times.
The high number of batteries indicates an aggressive approach to reducing "at terminal" times,
which, while effective in this respect, complicates the optimization process.
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Scenarios
Base 1 Base 2 Base 3
Winvest [%] 100 0 0
wspace[%] 0 100 0
WatTerminal [%] 0 0 100
Number of vessels 14 14 14
Objective functions Invest. Lost space | At terminal times
Number of batteries 42 44 56
Number of DS 5 13 13
T1, T2, T1, T2,
T3, T4, T3, T4,
T1, T2, T5, T6, T5, T6,
Locations of the DS T3, T9, T7, T8, T7, T8,
T10 T9, T10, T9, T10,
T11, T12 T11, T12
T13 T13
Total costs [€] 46,881,000 | 164,510,040 129,712
Number of batteries per vessel 3.0 3.143 4.0
Number of DS per vessel 0.357 0.929 0.929
. 16by2V | 16 by 2V
Shared batteries by 3V 1by 3V 6by2V
Costs per vessel [€/vessel| 3,348,642 | 11,750,717 9,265
Optimality gap [%] ] 46.8 \ 35.8 \ 56.0 \

Table 4.15: Detailed breakdown of the basic scenarios with only one objective each, in order to be
able to compare the results

Managerial insights: Both hypotheses have been verified through the analysis. The results show
that the design of the network varies significantly depending on the objective that is prioritized. This
underscores the importance of carefully considering the weights and priorities assigned to each ob-
jective. If the primary goal is to focus on the physical design of the network, the investment costs
objective is more relevant, as it directly influences the infrastructure and resource allocation.

The rest of the experiments have been divided into four blocks, each containing three experiments.
In the first three blocks (runs 1 to 9), each block maintains a constant weight for the investment
objective (0.8, 0.9, 0.95). The fourth block (runs 10 to 12) assigns a consistent weight to the space
loss objective (0.05). This setup was designed to analyze the solution space and better understand
the trade-offs involved. Firstly, the run 1 to 9 will be presented and analyzed. The hypotheses on
the weights attributed to each objective for these 9 runs are the following:

"The less weight given to the loss space objective, the smaller the number of DS and
batteries, and the more sharing of the batteries.”

"The more weight given to the "at terminal” times objective, the smaller the total
costs.”

The first hypotheses stems from the model’s strategy to minimize the space occupied by batter-
ies on vessels in order to reduce the associated costs. By assigning less weight to the loss space
objective, the model prioritizes minimizing the number of batteries on board, leading to fewer
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swaps and thus requiring fewer DS. Moreover, with fewer batteries on the vessels, there are more
opportunities for swaps, resulting in more frequent sharing of batteries. The second hypothesis
is based on the observation that "at terminal" costs are typically lower than investment and loss
space costs. By giving more weight to the "at terminal" times objective, the model aims to reduce
"at terminal" times, which in turn minimizes overall costs.

Scenarios

Run 1 Run 2 Run 3
Winvest [%] 90 90 90
wspace[%} ) 2.5 7.5
WatTerminal [%] 5 7.5 2.5
Number of vessels 14 14 14

Invest. Invest. Invest.
Objective functions Lost space Lost space Lost space

"At terminal"

"At terminal"

"At terminal"

Number of batteries 39 41 40
Number of DS 8 6 8
T1, T2 T1, T2
) ) Tl’ T2’ 9 9
Locations of the DS T4, 17, T7, T9, T3, T4,
T9, T10 T10. T11 T7, T9
T11, T13 ’ T10, T13
Total costs [€] 52,999,976 48,122,474 58,650,080
Number of batteries per vessel 2.786 2.923 2.857
Number of DS per vessel 0.571 0.429 0.571
. 16 by 2V 18 by 2V 19by 2V
Shared batteries 2 by 3V 2 by 3V 1by 3V
Costs per vessel [€/vessel] 3,785,712 3,437,319 4,189,291
Optimality gap [%)] ] 46.8 \ 47.4 \ 48.0 |

Table 4.16: Detailed breakdown of the runs with a weight of 90% attributed to the investment
objective and various weights for the "at terminal" and loss space objectives.

Table represents the results for Runs 1,2 and 3. From this Table, one can observe that the
number of batteries remains stable, with slight variations (39 in Run 1, 41 in Run 2, and 40 in
Run 3). This stability suggests that the overall battery requirement is relatively consistent across
different weight distributions of the objective functions. There is a decrease in the number of DS
from 8 in Run 1 and Run 3 to 6 in Run 2. The increase in the number of batteries in Run 2
correlates with the reduction in DS, as more batteries are required to maintain operations with
fewer docking stations available. The total costs decreases when more weight is given to the "at
terminal" times objective (Run 2) compared to the others. This results in fewer DS, as the model
prioritizes reducing "at terminal" times. The space lost costs are very high, so giving them less
weight automatically decreases the total costs. Thus, the costs per vessel follow a similar trend,
with the lowest costs in Run 2 (3,437,319€) when more weight is given to "at terminal" times. This
decrease in costs highlights the efficiency gained by reducing "at terminal" times and the number
of DS. Regarding the locations of the DS, there are common DS locations across the runs (T1,
T2, T7, T9, T10). This indicate a stable and preferred selection of places, with some additional
DS needed in specific scenarios. This consistency suggests that these locations are strategically
important for the battery swapping network.
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Scenarios
Run 4 Run 5 Run 6
Winvest [%] 95 95 95
Wspace | 70| 2.5 1.125 3.635
WatTerminal [ 70) 2.5 3.635 1.125
Number of vessels 14 14 14
Invest. Invest. Invest.
Objective functions Lost space Lost space Lost space

"At terminal"

"At terminal"

"At terminal"

Number of batteries 40 41 39
Number of DS 8 6 9
T1, T2,
$:137 %i’ T1, T2, T3, T4,
Locations of the DS T77 T97 T3, T4, T7, T9
T1h. T13 T9, T10 T10, T11,
’ T13
Total costs [€] 51,421,673 47,756,578 53,826,709
Number of batteries per vessel 2.857 2.929 2.786
Number of DS per vessel 0.571 0.429 0.643
. 16 by 2V 19by 2V 17by 2V
Shared batteries 1by 3V 1by 3V 2 by 3V
Costs per vessel [€/vessel] 3,672,976 3,411,184 3,844,764
Optimality gap [%] ] 49.2 \ 49.0 \ 50.3 |

Table 4.17: Detailed breakdown of the runs with a weight of 95% attributed to the investment
objective and various weights for the "at terminal" and loss space objectives.

Table represents the results for Runs 4,5 and 6. Similar to the previous runs, there is a stable
number of batteries (around 39 to 41). The number of docking stations (DS) shows more variabil-
ity, decreasing from 8 in Run 4 to 6 in Run 5, and increasing to 9 in Run 6. This variation reflects
the model’s adjustments based on the different weights assigned to the "at terminal" times and
lost space objectives. Common DS locations across these three runs, including T1, T2, T3, T4,
T7, T9, and T10, indicate a stable and preferred selection. This consistency suggests these loca-
tions are strategically important for the battery swapping network, with additional DS required in
specific scenarios to optimize operations. As for the previous runs, the total costs decreases when
more weight is given to the "at terminal" times objective, as observed in Run 5 (47,756,578€).
This reduction in total costs aligns with fewer DS and an increase in the number of batteries,
as the model prioritizes reducing "at terminal" times, but also to less weight given to the space
lost costs. Thus, the costs per vessel also follow a similar trend, being lowest in Run 5 (3,411,184€).

Table represents the results for Runs 7,8 and 9. The number of DS is higher in these runs,
increasing from 8 in Run 8 to 9 in Run 7, and further to 10 in Run 9. This is especially the case
when a high weight is given to the space lost objective. This is because the model aims to transport
fewer batteries, necessitating more frequent swaps and hence more DS. The stable common DS
locations (T1, T2, T4, T7, T9, T10, T11, T13) again reflect a consistent pattern in optimal DS
placement. The total costs changes significantly across these runs. Run 8, where more weight is
given to the "at terminal" times objective (49,133,575€), has the lowest total costs, indicating that
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Scenarios

Run 7 Run 8 Run 9
Winvest [%] 85 85 85
Wspace | 70| 7.5 3.75 11.25
WatTerminal [%] 7.5 11.25 3.75
Number of vessels 14 14 14

Invest. Invest. Invest.
Objective functions Lost space Lost space Lost space

"At terminal"

"At terminal"

"At terminal"

Number of batteries 39 40 39
Number of DS 9 8 10
T1, T2, T1, T2,
T3, T4, $4117 %3’ T3, T4,
Locations of the DS T7, T9, T9’ le T7, T8,
T10, T11, T171 Tlé T9, T10,
T13 : T11, T13
Total costs [€] 55,841,480 49,133,575 63,413,771
Number of batteries per vessel 2.786 2.857 2.786
Number of DS per vessel 0.643 0.571 0.714
. 17by 2V 13by 2V 15 by 2V
Shared batteries 1by 3V 1 by 3V 2 by 3V
Costs per vessel [€/vessel] 3,988,677 3,509,541 4,529,555
Optimality gap [%] ] 44.9 \ 48.9 \ 43.1 |

Table 4.18: Detailed breakdown of the runs with a weight of 85% attributed to the investment
objective and various weights for the "at terminal" and loss space objectives.

managing "at terminal" times effectively can reduce overall costs. Conversely, Run 9, with more
weight given to the lost space objective (63,413,771€), has the highest total costs, highlighting
the high costs associated with managing lost space. Thus, as in the other runs, total costs are
influenced by the balance between investment, "at terminal" times, and space lost objectives, with
costs generally decreasing as the weight shifts towards "at terminal" times.

Managerial insights: As evidenced by the results, it is crucial to carefully attribute and choose
the weight assigned to each objective. The weights significantly influence the design of the network
and the total costs incurred. Therefore, a balanced and well-considered approach to weighting each
objective is essential for optimizing the system. Table provides more insights and leads to
further advice.

Table shows additional results for each run. #x is the number of 2h time slots where
batteries are on terminals ("at terminal" times), and #y is the number of 2h time
slots where batteries are on vessels. The table, as well as its analysis, is divided into three
blocks: the basic scenarios, the 9 runs where the investment function is given weights between 85%
and 95%, and the three last runs where the weight given to the loss space function is fixed to 5%.

The first block exhibits interesting results and provides the minimal costs for each objective sep-
arately. As can be seen in Figure the smallest x occurs when all the weight is given to the
batteries’ "at terminal" times objective. This makes sense because prioritizing "at terminal" times
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wl w2 w3 Total Invest. #x #y Loss sp. at T.
%l (% (% RON [€] #b DS g (bat T) (bon V) [€] €]
100 0 0 Base 1 46°881°000 42 5 46°881°000 122 844 - -

0 100 0 Base 2 164°510°040 44 13 - 446 566 164°510°040 -

0 0 100 Base 3 129’712 56 13 - 25 1263 - 129’712
90 5 5 Runl 52’999’976 39 8 48°064’500 252 645 193’531°018 1’307’502
90 2.5 7.5 Run2 48’122°474 41 6 47275500 212 731 219°681°074 1°099°962
90 7.5 2.5 Run3 58’650°080 40 8 49°020°000 263 657 193’306’208 1’364’576
95 2.5 2.5 Run4 51'421°673 40 8 49°020°000 271 649 192°700°837 1’406°084
95 1.1 3.9 Runb 47756°578 41 6 47275500 218 725 249°231°189 1°’131°093
95 3.9 1.1 Run6 53’826°709 39 9 49°414°500 276 621 189°429°619 1’432°026
85 7.5 7.5 Run7 55841480 39 9 49°414°500 267 630 183’136’ 737 1’385’330
85 3.7 11.3 Run8 49’133’575 40 8 49°020°000 255 665 197°243’393 1’323’068
85 11.3 3.7 Run9 63’412°771 39 10 50764’500 288 609 179°622’292 1°494°288
60 5 35 Runl0 38’843’165 39 8 48’064’500 262 635 190°573’591 1’359’387
70 5 25 Runll 43°535’295 39 8 48°064’500 255 639 191’187’5622 1’323’067
80 5 15 Runl2 48’887°450 40 8 49°020°000 279 641 189°086°022 1’447°591

Table 4.19: Detailed breakdown of the summary of the 15 multi-objective runs, with regards to
the most relevant output.

reduces the number of batteries that need to be kept on hand, minimizing the inventory at the ter-
minals. The second smallest x is observed when only the investment cost is considered, highlighting
the balance between these two objectives. The highest x is seen when all the weight is given to
the loss space objective. This is because minimizing the space lost to batteries on vessels leads to
a greater number of batteries being stored at the terminals. This scenario is also associated with
the smallest Y, which again makes sense because prioritizing the loss space objective means fewer
batteries are kept on vessels to maximize cargo space. This results in a lower number of batteries
being present on vessels over the 2-day period.
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Figure 4.12: Number of 2-hour slots with batteries on terminals vs. vessels, for each run

Regarding the second block, the following overall remarks can be done:

e Stability in battery numbers: Across all scenarios, the number of batteries remains stable,
hovering around 40.



Chapter 4. Case study and numerical experiments 65

e DS: The number of DS varies between 6 and 10, with most scenarios clustering around 8.
This variability is influenced by the weights assigned to the investment, "at terminal" times,
and space lost objectives. When more weight is given to the investment objective, the number
of DS tends to decrease. Conversely, when more weight is given to the loss space objective,
the number of DS increases. This is because prioritizing lost space leads to a need for more
frequent swaps to minimize "at terminal" times, hence more DS are required.

e Total costs: The total costs remain within a similar range, with variations depending mostly
on the weight assigned to the space loss objective. When more weight is assigned to the "at
terminal" times objective, The total costs tend to be lower due to reduced "at terminal"
times and fewer DS. Conversely, when more weight is assigned to the loss space objective,
total costs increase due to the need for more DS and the associated infrastructure costs. This
dependency highlights the trade-offs between minimizing "at terminal" times and managing
loss space effectively.

e Stability: Investment and "at terminal" costs exhibit relative stability. However, loss space
costs demonstrate a wider range. This can be attributed to generally higher costs associated
with loss space. As a result, a one-unit increase in loss space could lead to a proportionally
larger increase in total costs compared to the other two objectives.

e Pareto optimum: The three best solutions for each costs separately are:

Total costs: Runb < Run2 < Run&

Investment costs: Rund = Run2 < Runl
— Loss space costs: Run9 < Run7 < Runb
— "At terminal" costs: Run2 < Runb < Runl

The results indicate that no single scenario dominates across all cost factors. However, Runs
2 and 5 appear to achieve superior outcomes for three out of the four cost categories.

e Interestingly, Runs 2 and 5 exhibit very similar values for x (212 vs. 218) and y (731 vs.
725), as can be seen in Figure These values contrast with the other runs in this block,
which tend to have lower x and higher Y. This suggests alignment between the "at terminal"
cost and investment cost objectives in Runs 2 and 5, indicating they are not conflicting.
In contrast, the loss space objective appears to be independent. This is logical because
minimizing loss space prioritizes maximizing x while minimizing Y.

The third block (see Table achieves significantly lower total costs due to the emphasis placed
on the "at terminal" cost objective through higher weights. However, this comes at the expense of
a less flexible network design. The network remains very stable, consistently consisting of only 8
DS and 39 or 40 batteries. Furthermore, the other performance metrics for this block fall within
the average range observed in block 2.

Managerial insights: The general advice from this experiment is that, from a purely network
optimization perspective, the network is physically more efficient when the weight assigned to loss
space costs is minimized. From the perspective of the battery and DS operator, it is anyways more
logical to prioritize their own costs, including investment and the expenses associated with renting
space to store batteries at terminals.

This thesis utilizes this weighting sum method. However, two other methods (the hierarchical
method and the blended objectives method) could also be relevant for further studies. Brief de-
scriptions of these two methods are provided below.
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Scenarios
Run 10 Run 11 Run 12
Winvest [%] 60 70 80
Wspace | 70| 5 5 5
WatTerminal [%] 35 25 15
Number of vessels 14 14 14
Invest. Invest. Invest.
Objective functions Lost space Lost space Lost space

"At terminal"

"At terminal"

"At terminal"

Number of batteries 39 39 40
Number of DS 8 8 8
T1, T2, T1, T2, T1, T2,
. T3, T4, T4, T7, T4, T7,
Locations of the DS T7, T9, T9, T10, T9, T10,
T10, T13 T11, T13 T11, T13
Total costs [€] 38,843,165 43,535,295 48,887,450
Number of batteries per vessel 2.786 2.786 2.857
Number of DS per vessel 0.571 0.571 0.571
. 20 by 2V 16 by 2V 14 by 2V
Shared batteries 1by 3V 2 by 3V 1by 3V
Costs per vessel [€/vessel] 2,774,511 3,109,664 3,491,961
Optimality gap [%)] ] 44.9 \ 47.6 \ 48.0 |

Table 4.20: Detailed breakdown of the runs with a weight of 5% attributed to the loss space
objective and various weights for the "at terminal" and investment objectives.

Hierarchical (lexicographic) method

Hierarchical (or lexicographic) optimization involves optimizing multiple objectives in a strict pri-
ority order. The first objective is optimized fully before considering the second objective, and so
on. This method is suitable when one objective is significantly more important than the others,
or when there are strict priorities. It is particularly useful in cases where certain objectives are
non-negotiable and must be optimized first. In this case, with three objective functions, the process
is composed of the three following steps:

1. First Objective fi(x):
min f1 ()

Subject to no constraints initially.

2. Second Objective fo(x):
min fo(x)

Subject to:

filz) < fix(1+ea)

This ensures f; stays within the acceptable tolerance.
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3. Third Objective f3(x):
min f3(z)
Subject to:
file) < fix(1+e)

fg(l') < f; X (]. +€2)

This ensures both f; and f> stay within their respective acceptable tolerances.

Where f; and f5 are the optimized values of the first and second objectives, and €; and e their
respective tolerances.

Blended objectives method

Blended objectives in Gurobi allow for a more advanced combination of multiple objectives. Each
objective can be assigned a weight and a priority, and the solver tries to find a balance according to
these specifications. This method provides flexibility in handling multiple objectives with varying
degrees of importance. It is ideal for complex decision-making scenarios where multiple objectives
must be balanced, and each has different levels of importance and urgency. The minimization
process becomes:

min Zle w; fi(x) , subject to priorities

where w; are the weights for the objective functions f; respectively.



Chapter 5

Conclusions and recommendations

This chapter synthesizes the findings from the previous experiments, providing an overview of the
key insights gained from this study. The conclusions drawn highlight the critical factors influencing
the design and optimization of maritime battery swapping systems. These insights also inform the
recommendations provided, aimed at guiding future research and practical implementation in the
field.

5.1 Conclusions

This study aimed to investigate the potential of integrating battery storage into IWT systems. To
this end, a computational model was developed to assess the system’s performance under various
conditions. The analysis encompassed a base case scenario to establish a comparison point and
a subsequent sensitivity analysis to determine the impact of key system parameters, including
battery capacity, costs, and availability. Recognizing the complex nature of the problem, a multi-
objective optimization approach was then employed to simultaneously consider multiple objectives,
providing a more realistic understanding of the complex decision making.

Section shows that the decrease in the number of batteries and DS with increasing battery
capacity is primarily due to the higher energy storage capability of each battery. This allows
vessels to operate longer without requiring frequent swaps, leading to fewer overall batteries and
DS. Consequently, the infrastructure can be more efficiently utilized, reducing investment costs.
Furthermore, it also reveals that battery costs influence the financial aspect of maritime battery
swapping systems. Higher costs lead to increased Capex and per vessel costs, emphasizing the need
for cost-effective battery solutions. While the overall infrastructure requirements remain relatively
stable, strategic resource allocation and optimization become more challenging with rising costs.
Lastly, this section also exhibits that the number of available spots at DS presents contradictory
results: sometimes leading to higher Capex due to increased complexity, as seen in the +2 spots
scenario, and sometimes enhancing investment efficiency, as observed in the +4 and +8 spots sce-
narios. The +4 spots scenario strikes the best balance, achieving lower Capex and optimal resource
utilization. Overall, the results of this experiment show instability and a lack of coherence, likely
due to dependencies on the initial conditions and inputs provided to the model. Specifically, the
initial location of batteries at time p=0 plays a crucial role. As shown in Section loading
conditions significantly influence the operational and financial aspects of maritime battery swap-
ping systems. Fully unloaded vessels require fewer resources and lower costs, while fully loaded
vessels necessitate more batteries and docking stations. However, none of these two scenarios is
realistic. Thus, mixed loading scenarios provide a more realistic and balanced approach but intro-
duce additional optimization challenges.

Section analyzes various scenarios to determine the optimal balance between investment and
space loss costs. After initial trials, it became evident that the loss costs were excessively high rel-
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ative to investment costs. To address this, the hourly loss costs were reduced, acknowledging that
the initial costs, derived from shipping prices, did not accurately reflect the barge owner’s actual
profits or losses. A key observation is that reducing the fraction of transport costs attributed to
revenue loss results in more balanced outcomes, where the loss costs do not overshadow investment
costs. This balance is essential to avoid disproportionately high total costs driven by excessive
docking station utilization. Scenarios with higher weights on the investment objective (e.g., 90%
in Cases 1.3 and 1.5) tend to reduce the number of docking stations, leading to lower capital expen-
ditures (Capex). In contrast, scenarios with lower weights on the investment objective (e.g., 75%
in Cases 1.1, 1.2, and 1.4) utilize more resources, including additional docking stations, resulting in
higher Capex. This trend underscores the need to find a balanced approach where both investment
costs and loss space are effectively managed. From the analysis, Case 1.5 emerges as the most bal-
anced scenario, providing a practical trade-off between investment costs and operational efficiency.
This scenario, with a higher weight on the investment objective, effectively minimizes Capex while
maintaining an efficient distribution network. The number of batteries required remains relatively
stable across scenarios, ranging from 39 to 41, indicating that battery requirements are not highly
sensitive to changes in the weight given to the investment objective function. However, the number
of docking stations show a clear decrease as more weight is allocated to investment costs, reflecting
a strategic reallocation of resources to minimize expenditures progressively.

After the introduction of a third objective function in Section [4.5.7| representing the costs as-
sociated with the batteries times at terminal, 15 different runs were conducted in Section
Overall, the number of batteries remains stable around 40, while the number of DS varies between
6 and 10, mostly clustering around 8. The number of DS decreases when more weight is given to
the investment objective and increases with greater emphasis on the loss space objective, due to
the need for more frequent battery swaps. Total costs fluctuate mainly based on the weight as-
signed to the space loss objective, with lower costs observed when prioritizing "at terminal" times
due to fewer DS and smaller "at terminal” times costs. Investment and "at terminal" costs show
relative stability, whereas loss space costs exhibit a wider range, leading to significant impacts on
total costs. The results also highlight that no single scenario dominates across all cost factors.
However, two runs (2 & 5) stand out by achieving superior outcomes in three out of the four cost
categories. These two runs are the ones where the weights given to the loss space objective are
the smallest, indicating alignment between "at terminal" and investment cost objectives. These
runs also show similar values for the number of batteries at terminals (X) and on vessels (Y),
suggesting a balance that is disrupted when the loss space objective is prioritized. The general
advice from this experiment is the following: for optimal network efficiency, minimizing the weight
assigned to loss space costs is crucial. From the battery and DS operator’s perspective, it is more
logical to prioritize investment and rental costs. The importance of carefully assigning weights
to each objective is emphasized, as this significantly influences network design and total costs.
To determine these appropriate weightings, the BSS system operators should use a collaborative
approach, involving all concerned stakeholders. By engaging in open dialogue, diverse perspectives
can be considered, and trade-offs between conflicting objectives can be identified. This participa-
tory process promotes transparency and ensures that the model aligns, as much as possible, with
the priorities of all parties involved.

5.2 Recommendations

By addressing the following recommendations, future research can build upon the findings of this
thesis to develop more refined, efficient, and sustainable battery swapping systems for IWT.

Optimality gaps The optimality gaps observed in this study are high. It is essential to ac-
knowledge that while a large network provides more realistic results and greater opportunities for
battery sharing, it also increases the complexity of the optimization process. Future work should
focus on reducing these optimality gaps to enhance the applicability of the model.
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Expanding the network After getting better optimality gaps, the next step should involve
expanding the network even more, in order to include more connections between the Netherlands
and the rest of Europe, beyond just Antwerp and Duisburg. This expansion would provide a
more comprehensive view of the potential efficiencies and challenges in a broader context, further
enhancing the model’s realism and utility.

Detailed sailing profiles It would be beneficial to model the sailing profiles with greater detail,
but also flexibility. This could include external factors such as wind speed, weather conditions,
and varying waterway traffic. Incorporating these elements would provide a more accurate repre-
sentation of operational conditions, leading to more robust and reliable optimization outcomes.

Energy grid resilience How does the transition to electricity impact the resilience of the energy
grid, and what strategies can be implemented to enhance the robustness of logistics operations in
case of an overloaded grid network? It is crucial to study the implications of increased electric
demand on the energy grid and develop strategies such as smart grid technologies, decentralized
energy storage, and demand response mechanisms to ensure the reliability and resilience of logis-
tics operations amidst potential grid overloads. Appendix [A] which explores the implications of
increased electric demand on the energy grid and proposes potential solutions to ensure reliability
and resilience, proposes first answers to this aspect.

Technological advancements Future research should also explore advancements in battery
technology and their integration into the optimization model. As battery efficiency and capacity
improve, updating the model to reflect these changes will ensure it remains relevant and effective.

Policy and economic factors It is also recommended to consider the impact of policy changes
and economic factors on the feasibility and sustainability of battery swapping systems. This
includes analyzing subsidies, regulations, and market dynamics that could influence the adoption
and operational efficiency of such systems. Notably, this could change the outcome that include
the net present values, or revenue losses.

Environmental impact Lastly, a more detailed assessment of the environmental impact of
battery swapping systems should be conducted. This includes evaluating the lifecycle emissions of
batteries, the potential for renewable energy integration, and the overall reduction in greenhouse
gas emissions compared to traditional fuel-based systems.



Appendix A

Impacts on the electricity grid

This appendix explores the implications of increased electric demand on the energy grid and pro-
poses potential solutions to ensure reliability and resilience. Although extensive research has been
conducted on the impacts and solutions for EVs, there appears to be a lack of studies focusing on
the electrification of IWT. This section leverages the findings and methodologies applied to EVs
to propose initial steps towards solutions that could be implemented for IWT.

A.1 Grid pressure concerns for electrified IWT

Although a lot of research has been done on how EVs affect the electricity grid, not as much has
been done on the possible pressure that comes with electrifying IWT. According to previous re-
search on EVs, grid stability may be threatened by the growing demand for power brought on by
the electrification of transportation [115]. The impact of rising EV use on local power demands has
also been evaluated by Su et al. (2012) [116], highlighting the significance of taking into account
the effects on power distribution systems and transportation networks. Nevertheless, IWT elec-
trification currently lacks this level of investigation, creating a knowledge gap about its possible
effects on the grid.

The Netherlands relies on a nationwide electricity grid (TRL 9) for a stable and continuous supply.
This grid is also interconnected with neighboring European countries for added security, such as
Belgium, Norway and Germany. Battery electric charging facilities for IWT, typically ranging from
2MVA to 10MVA [117], require a medium voltage grid connection (173kVA to 10MVA), which has
a process and development period of 6 months to 3 years [118]. Concerns exist regarding potential
network congestion when developing a nationwide charging and bunkering infrastructure for the
Netherlands. While Figure depicts current demand-side congestion on a limited portion of
the Dutch grid [5], even seemingly small projects like a 2MVA battery charging facility (requiring
medium voltage connection) can necessitate adjustments at higher grid levels [118]. Notably, the
impact varies significantly based on location. Integrating renewable energy sources like wind and
solar into the national grid presents potential challenges related to grid congestion. Notably, this
is not solely due to the variability of these sources, but also increased overall demand for electricity
driven by the broader electrification of various sectors.

A.2 Vehicle-to-grid (V2G) for energy storage

V2G technology allows EVs to do more than just receive electricity for charging [26]. EVs can
actually feed electricity back into the grid thanks to V2G. A MIT team’s recent publication in the
journal Energy Advances explores how V2G technology can enable EVs to function as a large-scale
energy storage system [119]. By enabling EVs to return power to the grid, costly fixed battery
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Figure A.1: The current electrical grid congestion from the demand side. Yellow is limited transport
capacity available, orange is a pre-announcement of structural congestion, red is current structural
congestion, and red shaded means that no transport capacity available (i.e. the limits for the
application of congestion management have been reached) [5].

storage and backup generators may become unnecessary. This is especially important when inter-
mittent renewable energy sources like wind and solar power increase in share of the energy mix.
This MIT study is the first in-depth examination of the integration of V2G into next-generation
power systems. The study team examined variables such carbon emission targets, fluctuating
renewable energy generation, and the expenses of constructing conventional energy storage and
transmission infrastructure using computational models. According to their research, V2G might
considerably lower the price of decarbonising the electricity system.

Within the scope of this study, V2G technology can also be considered as battery-to-grid technol-
ogy, making it applicable to the IWT sector. This V2G capability offers several advantages, such
as a reduced reliance on fossil fuels, grid stability, and economic benefits [120]. Indeed, emissions
from power facilities can be reduced by utilising stored renewable energy during peak hours. More-
over, V2G lessens the burden on the grid by balancing out variations in electricity demand. Last
but not least, operators may be able to make money by reselling electricity to the grid at busy
times. There are, however, a few difficulties to take into account. First off, there is a significant
investment in infrastructure. It would be essential to set up a network of exchanging stations with
the required bi-directional charging capability. TWT requires network construction regardless of
V2G technology. The costs of the investment are therefore inevitable. Second, more research is
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necessary about the battery’s capacity and degradation over time, as these factors will affect V2G’s
economic viability [121].

A study made by Ke et al. (2020) [122] examined converting the Penghu bus system to battery-
swapping electric buses. A genetic algorithm optimized charging schedules to minimize daily costs.
They explored using leftover battery capacity for demand response (selling power back to the
grid). While reselling electricity increased revenue, it also raised the total cost due to needing
more batteries, faster battery degradation, and energy losses. Two scenarios were compared: one
with just battery optimization and another that factored in wind and solar power generation. The
cost increase for considering renewable energy sources and demand response was 13% to 17%.
Interestingly, the revenue from reselling electricity could outweigh this added cost, but only if the
resale price was double the standard electricity rate. The research team of MIT [119] is currently
investigating the potential impact of heavy-duty EVs on the power grid. They think that electric
delivery trucks could be early adopters of V2G technology and have a big impact on grid balancing
and decarbonisation efforts because of their predictable routes and charging schedules. The vessels
also have a lot of potential and might be considered a useful resource in this regard. It is true that
inland vessels usually have dependable routes and operational routines, which facilitates scheduling
of V2G charging and discharging cycles. Thus, one of the main benefits of incorporating them into
the grid is their predictability. Furthermore, because inland vessels have longer operating ranges
than land-based electric vehicles, they have bigger battery capacities. Increased capacity for energy
storage and return to the grid results from this. The redeployment of electricity from the charged
containers could be envisioned in the following way:

1. Grid signal: The swapping station receives a signal from the grid operator indicating a peak
demand period.

2. Power flow reversal: The switching station starts a power draw from the already charged
batteries rather than keeping charged batteries in the containers and waiting for a vessel to
arrive.

3. Electricity injection: The captured electric current is fed back into the grid, helping to meet
the surge in demand and stabilize the overall grid frequency.

4. Battery management: The system is not intended to empty every container to the fullest
extent possible. A sufficient number of reserve containers are kept on hand to guarantee that
a few upcoming vessels can be fully charged with the required number of containers.

A.3 Renewable energy sources

The paper published by the MIT [119] highlights the increasing demand for electricity as trans-
portation electrification accelerates. Although this is good for cutting emissions, it also makes it
more difficult to guarantee that there will be enough renewable energy to power this shift. Achiev-
ing clean energy targets requires storing energy from renewable sources. BSS are a well-liked and
practical method of connecting solar power to electric vessels. They can smooth out the fluc-
tuations in PV energy production using supercapacitors [123], and they can also shift the load
profile and store energy. Reducing operational costs is one of the main advantages of incorporating
renewable energy, particularly solar photovoltaic (PV), into the grid through demand response.
However, it’s imperative to control the inherent uncertainty caused by fluctuating PV output and
demand. Energy management systems and charging stations must properly communicate in order
to charge depleted batteries as efficiently as feasible using renewable energy sources rather than
depending solely on energy storage. Energy storage system integration improves power delivery
and is especially important in day-ahead scheduling scenarios with system uncertainty. By using
a smart grid, load demand can be shifted to coincide with the production of renewable energy,
maximising energy consumption [124]. Moreover, the problem of high peak demand brought on by
more charging stations can be handled by utilising renewable energy sources to maximise charging
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service capacity at a lower cost [125]. In order to send power to loads and store a predetermined
quantity of energy in the battery for later charging, a grid-connected PV-wind hybrid system with
battery storage systems (BSS) and charging stations is one option [126]. This section has focused
a lot of attention on solar energy, but it’s crucial to emphasise that the ideas covered here may be
applied to any renewable energy source that has the potential to become a significant player in the
future.

A.4 Other solutions to network congestion or too high pres-
sure

Besides the V2G technology, addressing network congestion can involve other strategies. One pro-
posed solution is to modify the grid structure itself. The medium voltage grid typically employs
radial, annular, or meshed configurations, as illustrated in Figure[A.2] In a radial grid, also known
as a star-shaped grid, the supply point is connected to the network station through a single connec-
tion. Any malfunction in this connection results in a complete grid outage. An annular grid allows
the supply point to reach multiple stations via two connections, and a failure in one connection can
be rectified by relocating the grid opening. In a meshed grid, the supply point connects to several
stations through more than two connections [127]. To enhance the medium voltage grid, additional
support points can be introduced, supplied by a meshed-operated medium voltage transport grid.
This would result in shorter radial medium voltage grid structures, offering increased flexibility
and capacity [127].

Figure A.2: Three common grid structures used in medium voltage networks: the radial, annular,
and meshed configurations.

Making grids that are simpler and shorter is another strategy. A direct connection between a
charging facility and a renewable production source, such as a solar field or wind turbine, is possible.
It’s crucial to remember that renewable energy sources are sporadic, and installing a system like this
would require extra financial outlay. Although renewable energy sources with intermittent nature,
such as wind and solar, have great potential, their unpredictability calls for creative solutions in
order to achieve broad electrification of ships. Luckily, there are more intermittent sources available
in the future. Exciting prospects like thermochemical energy storage, white hydrogen, and many
more that are independent of the season, solar exposure, etc. are being investigated through
ongoing study. Though these solutions remain on the horizon, they represent a promising avenue
for overcoming intermittency and ensuring reliable energy access for the maritime industry in the
long term. The ongoing pursuit of these technologies carries the potential to revolutionize the
industry’s decarbonization objective, and their eventual breakthroughs could prove transformative
for electrification efforts. While interesting, this topic falls outside the scope of this thesis and
won’t be explored further.



Appendix B

Inputs

This appendix provides the input data for the model, presented in Excel format.

p cds cht pw name maxDS
1 1350000 4 1000 T1 8
2 1350000 4 1000 T2 8
3 1350000 3 1000 T3 6
4 1350000 3 1000 T4 6
5 1350000 3 1000 5 6
6 1350000 2 1000 T6 4
7 1350000 2 1000 17 4
8 1350000 2 1000 T8 4
9 1350000 2 1000 T9 4
10 1350000 2 1000 T10 4
11 1350000 2 1000 T11 4
12 1350000 2 1000 T12 4
13 1350000 2 1000 T13 4

Figure B.1: Example of the inputs in excel: the DS inputs

\'} chv L
1 3 Vessel 0
2 3 Vessel 1
3 3 Vessel 2
4 3 Vessel 3
5 3 Vessel4
6 3 Vessel 5
7 3 Vessel 6
8 3 Vessel 7
9 3 Vessel 8
10 3 Vessel 9 M11
11 3 Vessel 10 M11
12 3 Vessel 11 M11
13 3 Vessel 12 M8
14 3 Vessel 13 M6

Figure B.2: Example of the inputs in excel: the vessels inputs
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Example of the inputs in excel: the sailing profiles

Figure B.3
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Figure B.4: Example of the inputs in excel
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7

Initial values

b cb cap Lbo Uto x0 Uvo y0 ko mo

1 955500 2900 2900 1 0 0 0 (0114
2 955500 2900 2900 1 0 0 0 OK
3 955500 2900 2900 2 0 0 0 OK
4 955500 2900 2900 2 0 0 0 OK
5 955500 2900 2900 3 0 0 0 OK
6 955500 2900 2900 3 0 0 0 oK
7 955500 2900 2900 4 0 0 0 oK
8 955500 2900 2900 4 0 0 0 oK
9 955500 2900 2900 5 0 0 0 oK
10 955500 2900 2900 5 0 0 0 oK
11 955500 2900 2900 6 0 0 0 0K
12 955500 2900 2900 6 0 0 0 OK
13 955500 2900 2900 7 0 0 0 OK
14 955500 2900 2900 7 0 0 0 OK
15 955500 2900 2900 8 0 0 0 oK
16 955500 2900 2900 8 0 0 0 oK
17 955500 2900 2900 9 0 0 0 oK
18 955500 2900 2900 9 0 0 0 oK
19 955500 2900 2900 10 0 0 0 (0114
20 955500 2900 2900 10 0 0 0 OK
21 955500 2900 2900 11 0 0 0 OK
22 955500 2900 2900 11 0 0 0 OK
23 955500 2900 2900 12 0 0 0 OK
24 955500 2900 2900 12 0 0 0 oK
25 955500 2900 2900 13 0 0 0 oK
26 955500 2900 2900 13 0 0 0 oK
27 955500 2900 2900 0 1 0 1 oK
28 955500 2900 2900 0 1 0 0 oK
29 955500 2900 2900 0 2 0 2 oK
30 955500 2900 2900 0 2 0 0 OK
31 955500 2900 2900 0 3 0 3 OK
32 955500 2900 2900 0 3 0 0 OK
33 955500 2900 2900 0 4 0 4 oK
34 955500 2900 2900 0 4 0 0 oK
35 955500 2900 2900 0 5 0 5 oK
36 955500 2900 2900 0 5 0 0 oK
37 955500 2900 2900 0 6 0 6 oK
38 955500 2900 2900 0 6 0 0 OK
39 955500 2900 2900 0 7 0 7 OK
40 955500 2900 2900 0 7 0 0 OK
41 955500 2900 2900 0 8 0 8 OK
42 955500 2900 2900 0 8 0 0 oK
43 955500 2900 2900 0 9 0 9 oK
44 955500 2900 2900 0 9 0 0 oK
45 955500 2900 2900 0 10 0 10 oK
46 955500 2900 2900 0 10 0 0 (0114
47 955500 2900 2900 0 11 0 11 oK
48 955500 2900 2900 0 11 0 0 OK

Figure B.5: Example of the inputs in excel: part of initial conditions
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Appendix C

Python code

from gurobipy import =x

from openpyxl import load_workbook

from tabulate import tabulate

import numpy as np

import csv

import pandas as pd

np.set_printoptions (threshold=np.inf) # to see all extension when printing

o°
o°

#
#Create model
BM = Model ("Basic_Model™)

# %%
#Import data
wb = load_workbook ("PinaTl4VNUIT1_5_ 3.xlsx")

ws = wb.active

# %%

#14V13DS

o Sets————————————————

B = np.array([i[0].value for i in wb.worksheets[0]["A3":"A83"]]) # set of batteries

T = np.array([1[0].value for i in wb.worksheets[1]["A2":"A14"]]) # set of terminals

V = np.array([i[0].value for i in wb.worksheets[2]["A2":"A15"]]) # set of vessels

P = np.array([i[0].value for i in wb.worksheets[3]["A3":"A26"]]) # set of time periods

# %%

#14V13DS

o Parameters —— === — s

## Batteries

cb = np.array([i[0].value for i in wb.worksheets[0] ["B3":"B83"]]) # Investment cost [
Euro]

cap = np.array([i[0].value for i in wb.worksheets[0]["C3":"C83"]]) # Capacity [kW]

mbl = 0.1 # Min battery level at all times

Lb0 = np.array([i[0].value for i in wb.worksheets[0] ["D3":"D83"]]) # Initial values:
battery level [kW]

ut_aux = np.array([i[0].value for i in wb.worksheets[0]["E3":"E83"]]) # Initial values:
battery location at terminal

Ut0 = np.zeros((len(B),len(T)))

for b in range(len(B)):
if ut_aux[b]>0:

UtO[b,ut_aux[b]-1]1=1
uv_aux = np.array([i[0].value for i in wb.worksheets[0]["F3":"F83"]]) # Initial values:

battery location on vessel
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Appendix C. Python code 79

Uv0 = np.zeros((len(B),len(V)))
for b in range(len(B)):
if uv_aux[b]>0:
Uv0 [b,uv_aux[b]-1]=1

k_aux = np.array([i[0].value for i in wb.worksheets[0]["G3":"G83"]]) # Initial values:
battery usage on terminal
k0 = np.zeros((len(B),len(T)))
for b in range(len(B)):
if k_aux[b]>0:
kO[b,k_aux([b]-1]1=1

m_aux = np.array([i[0].value for i1 in wb.worksheets[0] ["H3":"H83"]]) # Initial values:
battery usage on vessel
m0 = np.zeros((len(B),len(V)))

for b in range(len(B)):
if m_aux[b]>0:
mO [b, m_aux[b]-1]=1

## Vessels

chv = np.array([i[0].value for i in wb.worksheets[2]["B2":"B15"]]) # Total number of
charging points in vessel
sp_aux = [np.array([i[0].value for i in wb.worksheets[3]["B3":"B26"]]), # Sailing

profile of vessels

np.array ([1[0].value for i in wb.worksheets[3]["D3":"D26"]11]),
np.array ([1[0].value for i in wb.worksheets[3]["F3":"F26"]]),
np.array([i[0].value for i in wb.worksheets[3]["H3":"H26"]1]),
np.array ([1[0].value for i in wb.worksheets[3]["J3":"J26"]]),
np.array ([1[0].value for i in wb.worksheets[3]["L3":"L26"]])
np.array ([1[0].value for i in wb.worksheets[3]["N3":"N26"]11]),
np.array ([1[0].value for i in wb.worksheets[3]["P3":"P26"]]),
np.array ([1[0].value for i in wb.worksheets[3]["R3":"R26"]]),
np.array ([1[0].value for i in wb.worksheets[3]["T3":"T26"]1]),
np.array ([1[0].value for i in wb.worksheets[3]["V3":"V26"]]),
np.array ([1[0].value for i in wb.worksheets[3]["X3":"X26"]]),
np.array ([1[0].value for i in wb.worksheets[3]["Z3":"Z26"]])
np.array ([1[0].value for i in wb.worksheets[3]["AB3":"AB26"]1])]

sp_aux = np.array (sp_aux)

sp = np.zeros((len(V),len(T),len(P)))
for v in range(len(V)):
for p in range (len(P)):
if sp_aux[v,p]>0:
splv,sp_aux[v,pl-1,pl=1

s pv_aux = [np.array([i[0].value for i1 in wb.worksheets[3]["C3":"C26"]], dtype=float), #

Power requirement per time step
np.array ([1[0].value for
np.array ([1[0].value for
np.array ([1[0] .value for
np.array ([1[0].value for
np.array ([1[0].value for
np.array ([1[0].value for
np.array ([1[0].value for
np.array ([1[0].value for

[0]
[0]
[0]
[0]
[0]

in wb.worksheets[3]["E3":"E26"]], dtype=float),
in wb.worksheets[3]["G3":"G26"]], dtype=float),
in wb.worksheets[3]["I3":"I26"]], dtype=float),
in wb.worksheets[3] ["K3":"K26"]], dtype=float),
in wb.worksheets[3]["M3":"M26"]], dtype=float),
in wb.worksheets[3]["03":"026"]], dtype=float),
in wb.worksheets[3]["0Q03":"Q026"]], dtype=float),
in wb.worksheets[3]["S3":"S26"]], dtype=float),
in wb.worksheets[3]["U3":"U26"]], dtype=float),
in wb.worksheets[3]["W3":"W26"]], dtype=float),
in wb.worksheets[3]["Y3":"Y26"]], dtype=float),
in wb.worksheets[3] ["AA3":"AA26"]], dtype=float),
in wb.worksheets[3] ["AC3":"AC26"]], dtype=float)]

np.array ([1i .value for
np.array ([1
np.array ([1i
np.array ([1i
np.array ([i

.value for
.value for
.value for
.value for

I el T o S oy S Sy S

pv = np.array (pv_aux

)
pc = np.zeros ((len(V),len(P)))
for v in range(len(V)):
for p in range (len(P)):

if pv[v,pl>0:
pclv,pl=1
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penalty_aux
), # Power requirement per

[np.array ([1[0] .value for i in wb.worksheets[3]["C30":

time step

"C53"]1], dtype=float

np.array([i[0].value for i in wb.worksheets[3]["E30":"E53"]], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["G30":"G53"]], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["I30":"I53"]], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["K30":"K53"]], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["M30":"M53"]], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["030":"053"]], dtype=float),
np.array ([i[0].value for i in wb.worksheets[3]["030":"053"]1], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["S30":"S53"]], dtype=float),
np.array ([i[0].value for i in wb.worksheets[3]["U30":"U53"]1], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["W30":"W53"]], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["Y30":"Y53"]], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["AA30":"AA53"]], dtype=float),
np.array([i[0].value for i in wb.worksheets[3]["AC30":"AC53"]], dtype=float)]

penalty = np.array (penalty_aux)

penalty x= 5

pen = np.zeros((len(V), len(P)))

for v in range(len(V)):
for p in range(len(P)):

if penaltyl[v, p] > O:
pen[v, p] = penaltyl[v, p]

mlv = 1 # Min battery level to be placed on vessel

## Docking Stations

cds = np.array([i[0].value for i in wb.worksheets[1]["B2":"B14"]]) # Investment cost [
Euro]

cht = np.array([i[0].value for i in wb.worksheets[1]["C2":"C14"]]) # Total number of

charging points at terminal

pw = np.array([i[0].value for i in wb.worksheets[1l]["D2":"D14"]1])

np.array([i[0].value for i in wb.worksheets[1l]["F2":

batteries that can be at the port at the same time

the DS [kWh]
maxDS =
## Others
Ml = 2%len(P) # Large number
M2 = 0.001 # Small number
M3 = capl0] # Large number
lost = 691.8 # Loss of space
# %%
- Variables
# x[b,t,pl: Binary variable if
x = {}

for b in range(len(B)):
for t in range(len(T)):
for p in range(len(P)):
x[b,t,p]=BM.addVar
+str(p)+"]")
# y[b,v,pl: Binary variable if
y {}
for b in range(len(B)):
for v in range(len(V)):
for p in range(len(P)):
y[b,v,p]=BM.addVar
+str(p)+"1")

# nibl:
n {}
for b in range(len(B)):

battery is at ds

(1b=0,

vtype=GRB.BINARY ,

battery is at a vessel

(1b=0,

vtype=GRB.BINARY ,

Binary variable if a battery is used

# Power grids provide

"F14"]]) # Maximum number of

name="x["+str (b)+", "+str (t)+", "

name:"y["+str (b)+", "+str(v)+","
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Appendix C. Python code 81

n[b]=BM.addVar (lb=0, vtype=GRB.BINARY , name="n["+str(b)+"]")

# ult]: Binary variable if a terminal is used as DS
u = {}
for t in range(len(T)):
ul[t]=BM.addvVar (lb=0, vtype=GRB.BINARY , name="u["+str (t)+"]")

# 1[b,p]: Continuous variable for battery level
1= {}
for b in range(len(B)):
for p in range(len(P)):
1[b,p]=BM.addVar (1lb=0, vtype=GRB.CONTINUOUS , name="1["+str(b)+","+str(p)+"]")

# m[b,v,pl: Binary variable if battery being used on a vessel
m = {}
for b in range(len(B)):
for v in range(len(V)):
for p in range(len(P)):
m[b,v,p]=BM.addVar (1lb=0, vtype=GRB.BINARY , name="m["+str (b)+","+str(v)+","
tstr(p)+"]")

# k[b,t,pl: Binary variable if battery being charged at a terminal
k = {}
for b in range(len(B)):
for t in range(len(T)):
for p in range(len(P)):
k[b,t,p]=BM.addVar (lb=0, vtype=GRB.BINARY , name="k["+str (b)+","+str(t)+","

+str(p)+"]")

BM.update ()

# %%

o Objective ———————————————————— -

objl = quicksum(u[t]*cds[t] for t in range(len(T))) + quicksum(n[b]*cb[b] for b in range
(len(B )))

obj2 = quicksum(quicksum(quicksum(lost*7.5xx[b,t,pl*n[b] for b in range (len(B))) for p
in range (1,len(P))) for t in range (len(T)))

0obj3 = quicksum(quicksum (quicksum(lost*pen[v,pl*y[b,v,p] for b in range (len(B))) for p
in range (1, len(P))) for v in range (len(V)))

#Weights given to each objective

wl = 0.9 #Investment costs
w2 = 0.05 #Idle times
w3 = 1-wl-w2 #Loss of space

BM.setObjective (wlxobjl+w2+obj2+w3xobj3, GRB.MINIMIZE)

BM.update ()

# %%

- Constraints ——————————-—————————————————
#Constraint 1 - Used batteries

conl = {}

for b in range(len(B)):
BM.addConstr (n[b]*M1l, GRB.GREATER_EQUAL, quicksum(quicksum(m[b,v,p] for v in range (

len(V))) for p in range(l,len(P))))
#Constraint 2 - Used terminals
con2 = {}

for t in range(len(T)):
BM.addConstr (u[t]*M1l, GRB.GREATER_EQUAL, quicksum(quicksum(x[b,t,p] for b in range(
len(B))) for p in range(l,len(P))))

#Constraint 3 - Maximum number of used batteries in vessel
con3a = {}
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220 for v in range(len(V)):

230 for p in range(l,len(P)):

231 BM.addConstr (quicksum(m[b,v,p] for b in range(len(B))), GRB.LESS_EQUAL, 1)

232 con3b = {}

233 for v in range (len(V)):

234 for p in range(1l,len(P)):

235 BM.addConstr (quicksum(m[b,v,p] for b in range(len(B))), GRB.GREATER_EQUAL, pv|[v,
pl=xM2)

2
237 #Constraint 301 - Maximum number of charging batteries at terminal

238 con30la = {}

230 for t in range(len(T)):

240 for p in range(l,len(P)):

241 BM.addConstr (quicksum(k[b,t,p] for b in range(len(B))), GRB.LESS_EQUAL, chtl[t])
242 con301b = {}

243 for t in range(len(T)):

244 for p in range(l,len(P)):

245 BM.addConstr (quicksum(k[b,t,p] for b in range(len(B))), GRB.GREATER_EQUAL, O0)

246

247 #Constraint 4 - Battery level

248 cond = {}

249 for b in range(len(B)):

250 for p in range(l,len(P)):

251 BM.addConstr (1[b,p]l, GRB.LESS_EQUAL, l[b,p-1]+(quicksum(pw[t]lx*k[b,t,p] for t in
range (len(T))) - quicksum(m[b,v,pl*pv[v,p] for v in range(len(V)))))

53 #Constraint 5 - Maximum & minimum battery level

54 conba = {}

55 for b in range(len(B)):

56 for p in range(l,len(P)):

57 BM.addConstr (1[b,p], GRB.LESS_EQUAL , caplbl)

58 conbb = {}

5o for b in range(len(B)):

60 for p in range(l,len(P)):

61 BM.addConstr (1[b,p], GRB.GREATER_EQUAL , cap[b]*mbl)

263 #Constraint 6 — Minimum battery level to be placed on a ship

264 con6 = {}

265 for b in range(len(B)):

266 for v in range(len(V)):

267 for p in range(l,len(P)):

268 BM.addConstr ((y[b,v,p]l-y[b,v,p-1]) *mlvxcap([b], GRB.LESS_EQUAL , 1l[b,p])

269

270 #Constraint 7 - Battery location

271 con7 = {}

272 for b in range(len(B)):

273 for p in range(l,len(P)):

274 BM.addConstr (quicksum(y[b,v,p] for v in range(len(V))) + quicksum(x[b,t,p] for t
in range(len(T))), GRB.EQUAL , n[b]l)

276 #Constraint 8 - Batteries & vessels routes

277 con8a = {}

278 for b in range(len(B)):

279 for t in range(len(T)):

280 for p in range(l,len(P)):

281 BM.addConstr (x[b,t,p]l, GRB.LESS_EQUAL, x[b,t,p-l]l+quicksum(y[b,v,p-1]l*sp(v,t

,pl for v in range(len(V))))
282 con8b = {}
283 for b in range(len(B)):

284 for v in range(len(V)):
285 for p in range(l,len(P)):
286 BM.addConstr (y[b,v,p], GRB.LESS_EQUAL, yl[b,v,p-1l]l+quicksum(x[b,t,p-1]*splv,t

,p-1]1 for t in range(len(T))))
287
288 #Constraint 9 - Maximum number of batteries at DS
280 con9 = {}
200 for t in range(len(T)):
291 for p in range(l,len(P)):
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BM.addConstr (quicksum(x[b,t,p] for b in range(len(B))), GRB.LESS_EQUAL, maxDS[t
1)

#Constraint 10 - Maximum number of batteries on vessel
conl0 = {}
for t in range(len(T)):

for p in range(l,len(P)):
BM.addConstr (quicksum(y[b,v,p] for b in range(len(B))), GRB.LESS_EQUAL, chv([v])

#Constraint 11 - Battery charging at DS only if it is at DS
conll = {}
for b in range(len(B)):

for t in range(len(T)):
for p in range(l,len(P)):
BM.addConstr (k[b,t,p]l, GRB.LESS_EQUAL , x[b,t,pl)

#Constraint 12 - Battery used in vessel only if it is on vessel
conl2 = {}
for b in range (len(B)):

for v in range(len(V)):
for p in range(l,len(P)):
BM.addConstr (m[b,v,p], GRB.LESS_EQUAL , yl[b,v,pl)

#Constraint 13 - Initial battery location & battery ussage (on vessel and terminal)
conl3a = {}
for b in range(len(B)):

for t in range(len(T)):
BM.addConstr (x[b,t,0], GRB.EQUAL, UtO[b,t])

conl3b = {}
for b in range(len(B)):

for v in range(len(V)):
BM.addConstr (y[b,v,0], GRB.EQUAL, UvO0[b,v])

conl3c = {}
for b in range(len(B)):

for t in range(len(T)):
BM.addConstr (k[b,t,0], GRB.EQUAL, kO[b,t])

conl3d = {}
for b in range(len(B)):

for v in range(len(V)):
BM.addConstr (m[b,v,0], GRB.EQUAL, mO[b,v])

#Constraint 14 - Initial battery levels
conld = {}
for b in range(len(B)):

BM.addConstr (1[b,0], GRB.EQUAL , LbO[b])

# Set optimality tolerance

BM

.params.MIPGap = 0.2

#Running time

BM

BM.
BM.
BM.

BM

BM.

BM.

BM

.params.TimeLimit = 14400 #3.5 hours
params.MIPFocus = 3 #blocked at 21%
params.Cuts = 1 #-1,0,1,2,3 (very aggressive so higher comp. time)

params.VarBranch = 1 #blocked at 23.6%
.params.Heuristics =1 #-1,0,this: 1,2,3 (higher comp. time)

setParam ("OutputFlag", True) # show the gurobi output BM.setParam (4 MIPGapa , 0);
# find the optimal solution
write ("output_MO_runl.lp") # print the model in .lp format file

.optimize ()
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## Batteries

batteries =0

for 10 in n.values() :
if 10.X > 0:

v_names
batt_vessel = []
for b in range(len(B)):

for v in range(len(V)):

batteries = batteries +1

= np.array([1i[0].value for i1 in wb.worksheets[2]["C2":"C15"]1])

usage= sum(m[b,v,p].X for p in range(l,len(P)))
if usage >0:
batt_vessel.append([b,v_names|[v]])

## Docking stations
ds_names = np.array([i1i[0].value for i in wb.worksheets[1l]["E2":"E14"]])

DS =0
uL = []
Auxl =

[]

for i2 in u.values():
if i2.X > 0:

DS= DS +1
Auxl.append (1)

else:

Auxl.append(0)

for i3 in range(len(Auxl)):
if Aux1[i3] > O:

## KPIs

Aux2 =

ulL.append (ds_names [i3])

0

for 13 in n.values():

if

1i3.X>0:

Aux2=Aux2+1

bv = Aux2/len (V)

Aux3 =

0

for 14 in u.values|():
if 14.X>0:

Aux3=Aux3+1

dsv = Aux3/len (V)

Aux4d =

[]

for 15 in n.values () :
if 15.X>0:

Aux4.append (1)

else:

Aux5 =

Aux4.append(0)

[]

for 16 in u.values /() :
if 16.X>0:

Aux5.append (1)

else:

CXv =

print
print
print
print

Aux5.append(0)

(sum (Aux4+cb) + sum(Aux5*cds))/len (V)

(
(
(
(

"OBTAINED RESULTS\n")

"oy

"Used terminals as docking stations:",DS)
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426 print ("")

(
427 print ("Docking stations locations:",ul)
428 print (" ")
420 print (" ")
430 print ("Used batteries:",batteries)
431 print (" ")
432 print ("Shared batteries:\n")
433 print (tabulate (batt_vessel , headers=["Battery #","Vessel"]))
434 print (" ")
435 print (" ")
436 print ("KPIs:\n")
437 print (" * Batteries/vessel:",bv)
438 print (" ")
430 print (" % DS/vessel:",dsv)
440 print (" ")
441 print (" % Capex/vessel:",cxv)
442 Print (NN
443
444
445 F-—————————— Save outputs in Excel file-————-----"-"""""""""—"—"—"—"—"—"—"—"—\————————————
146 nInfo = []
147 for al in n.values():
448 if al.X > 0:
449 nInfo.append(al.varName)
450
451 uInfo = []
1452 for a2 in u.values|():
453 if a2.X > 0:
454 ulnfo.append(a2.varName)
455
456 xInfo = []
457 for a3 in x.values():
458 if a3.X > 0:
459 xInfo.append(a3.varName)
460
161 yInfo = []
162 for a4 in y.values():
463 if a4.X > 0:
464 yvInfo.append(ad4.varName)
465
166 1Name = []

467 1lValue = []
168 for a5 in l.values{():

469 if a5.X > 0:

470 1Name.append (a5.varName)
471 1Value.append (a5.X)

472

273 kInfo = []
274 for a6 in k.values():

AT5 if a6.X > 0:

476 kInfo.append(a6.varName)

477

278 mInfo = []

479 for a7 in m.values():

480 if a7.X > 0:

481 mInfo.append(a7.varName)

482

483

484 # Create dataframes for each variable

485 dfl = pd.DataFrame({"n[b]": nInfo})

1486 df2 = pd.DataFrame ({"u[p]": ulInfo})

187 df3 = pd.DataFrame ({"x[b,t,p]": xInfo})

1488 df4 = pd.DataFrame ({"y[b,v,p]": yInfo})

180 df5 = pd.DataFrame ({"1l[b,p]": 1Name, "Level": 1lValue})
( [

100 df6 = pd.DataFrame ({"k b t,p]l": kInfo})

101 df7 = pd.DataFrame ({"m[b,v,p]": mInfo})

102 writer = pd.ExcelWriter ("Output_MO_runl.xlsx", engine="xlsxwriter")
493
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# Write each dataframe to a different worksheet
sheet_name="Batteries n(b)")
sheet_name="Docking stations u(t)")

dfl
df2
df3
df4
dfb
dfeé
df7

.to_excel (writer
.to_excel (writer
.to_excel (writer
.to_excel (writer
.to_excel (writer
.to_excel (writer
.to_excel (writer

503 writer.close ()

Listing C.1: Example of Python code for one of the multi-objective run ("Run 1")

sheet_name="Batt.
sheet_name="BRatt.
sheet_name="Batt.
sheet_name="Batt.
sheet_name="Batt.

loc.
loc.

terminal x(b,t,p)")
vessel y(b,v,p)")
level (b,p)")

ch. terminal k(b,t,p)")
used vessel m(b,v,p)")
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Multi-objective optimization for the design of
electrified IWT network

S. Blanc

Delft University of Technology, The Netherlands

Abstract. The global push towards energy transformation and decar-
bonisation highlights the urgent need to reduce greenhouse gas emissions,
particularly in the maritime sector, which contributes significantly to
global trade and emissions. This study examines inland waterway trans-
portation (IWT) as a key area for implementing zero-emission solutions.
With the transition to zero-carbon ships being critical for climate neu-
trality by 2050, immediate action is essential. This research delves into
the optimization of battery swapping systems within the Dutch IWT sec-
tor, focusing on multi-objective optimization that balances investment
costs, operational efficiencies, and other factors.

The findings indicate that higher battery capacities reduce the number of
required batteries and docking stations, enhancing network efficiency and
lowering investment costs. Vessel loading conditions significantly affect
the network design, with unloaded vessels requiring fewer batteries and
docking stations. The study also examines the impact of varying weights
assigned to three objectives: investment, "at terminal" times, and space
loss. Results confirm that less weight on the loss space objective reduces
the number of DS and batteries, while prioritizing the "at terminal" times
objective lowers total costs. The research demonstrates that no single
scenario dominates across all cost factors, though two scenarios achieve
superior outcomes in most categories, indicating alignment between "at
terminal" cost and investment cost objectives. In conclusion, the study
emphasizes the importance of carefully balancing weights assigned to
each cost objective to optimize network design and total costs.

Keywords: IWT - Battery swapping - Optimization - Zero-emission
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1 Introduction

Energy transformation and decarbonization of the economy are critical global
priorities, focusing on shifting from fossil fuel-based energy sources to renewable
and low-carbon alternatives. The maritime sector, a significant contributor to
global greenhouse gas emissions, requires immediate action. Maritime transport,
which facilitates 80-90% of global trade, accounts for approximately 3% of yearly
GHG emissions. If this sector was a country, it would rank as the sixth or seventh
highest emitter of COs [1]. Currently, around 99% of the energy in the maritime
industry is derived from fossil fuels, with diesel and marine fuel oil making up
95% of the total demand [2]. Without corrective action, GHG emissions from
the maritime sector could rise by 50% to 250% by 2050 compared to 2008 levels,
driven by the growth in maritime commerce, which has nearly tripled in volume
from 1990 to 2020 [3]|. Despite its significant GHG contribution, international
shipping remains an efficient and environmentally friendly mode of transport
compared to air and land transportation. Opportunities for regional progress
exist, particularly in inland waterway transportation (IWT). IWT plays an im-
portant role for the transport of goods in Europe, with an approximate 6.3%
share of the total freight volumes. More than 41,000 kilometres of waterways
connect hundreds of cities and industrial regions, with 13 European member
states having an interconnected waterway network [4]. IWT is distinguished by
its shorter routes, specific vessel types, and established infrastructure, making it
an attractive alternative for reducing greenhouse gas emissions. Given the aver-
age age and technical lifespan of vessels in the IWT sector, new ship and engine
designs should be developed between 2025 and 2035 to ensure a significant im-
pact on energy consumption and carbon emissions by 2050.

Several studies suggest that a systematic shift from fossil fuels to alternative
energy sources is necessary for complete decarbonisation |5]. Hydrogen, liquefied
bio-methane (LBM), methanol, and ammonia are among the potential solutions,
each offering unique benefits and facing specific challenges (see Figure . Com-
pared to traditional marine diesel fuel, the potential alternatives suffer from
significantly lower energy density, and sometimes necessitating complex stor-
age solutions. Additionally, their production often relies on electricity. In facts,
these alternative fuels require 2 to 3 times the renewable electricity reference (di-
rect use). Thus, as long as the power demand induced by electric vessels isn’t too
high, electricity is the best option. The electrification of IWT, especially through
battery swapping technology, presents a promising solution. Battery swapping
allows for rapid energy replenishment and reduces the operational downtime of
vessels, enhancing efficiency and sustainability. However, while directly utilizing
renewable electricity seems attractive, a large-scale shift to electric vessels could
strain the power grid. Thus, a combination of electricity with other alternative
energy sources appears to be the best solution in the long term.

Several shipping firms operating multiple ships and a large number of indepen-
dent contractors, each owning a single ship, define the Dutch IWT network. As
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Fig. 1: Innovative transition pathway: technology share for each fleet family in
2050

such, it is unlikely that individual shipowners will spend a lot of money on sta-
tions and costly battery swapping systems. This poses a serious dilemma, some-
times known as a "chicken-and-egg" scenario: shipowners are reluctant to switch
to a battery-electric system in the absence of conveniently accessible swapping
stations @ However, businesses are hesitant to make investments in the absence
of a sizable fleet of fully functional battery-electric ships. To further complicate
matters, this industry often has a deeply rooted familial aspect. Many ships are
handed down through the generations, fostering strong emotional bonds among
families who see their ships as treasured legacy as much as equipment. The nos-
talgic tie that certain generations have to diesel-powered vessels may make the
switch to electric systems more difficult. Even while shipowners are aware of
the environmental advantages of electrification, breaking away from the engine’s
familiar noise and the routines they have developed around conventional fuel
sources can be a big obstacle. To encourage a seamless transition in the business
and attaining widespread adoption of electric ships, this study delves into the op-
timization of battery swapping systems within the Dutch IWT sector. It aims to
identify the most effective logistics design for battery distribution and the place-
ment of docking stations, considering factors such as the number of required
batteries, docking station locations, and battery distribution plans. The opti-
mization process incorporates multiple objective functions to model real-world
scenarios and complex decision-making processes.
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2 Literature Review

This section explores various models proposed in recent studies to optimize the
design and operation of BSS in the maritime sector. Interestingly, all four models
identified originated from master thesis researches (2021-2022), highlighting the
nascent stage of this field.

Models based on static optimization: the first three studies present static
optimization models, analyzing factors like infrastructure placement and opera-
tional costs without explicitly considering time-based dynamics.

— Energy replenishment location model (Haahjem, 2022 |7]): This model builds
upon existing location and network optimization frameworks. It considers
factors like energy storage capacity, facility location, and network optimiza-
tion for scenarios with multiple vessels, energy hubs, and charging stations.
The objective function minimizes total costs, encompassing voyage expenses,
lost opportunity cost due to onboard battery storage space, and service costs
associated with replenishing energy. Haahjem further adapts this model for
hydrogen fuel, incorporating insulation factors and hydrogen replenishment
costs.

— Flow-refueling location with path-based optimization (Driessen, 2022 [§]):
This model combines flow-refueling location and path-based static optimiza-
tion approaches to determine optimal placement of charging stations. Its
objective function maximizes the total energy utilized by battery-electric
ships within a defined network.

— Battery swapping as a minimum cost flow problem (Odegaard, 2022 [9]):
This work proposes a model that views battery swapping as a variant of the
minimum cost flow problem. It aims to identify the most cost-effective route
through a network by pinpointing ports suitable for battery swapping tech-
nology and determining the number of battery modules required for each
leg between established stations. The objective function minimizes the com-
bined cost of establishing battery swapping stations and supplying batteries
to vessels throughout their trips.

Model with discrete time integration: the fourth study incorporates a time
dimension into the analysis.

— Mixed-integer linear programming (MILP) model with discrete time (Pina,
2021 [10]): This model utilizes a MILP framework with discrete time steps.
Its objective is to determine the optimal number and locations of docking
stations, alongside the required number of batteries. The model minimizes
the total investment cost associated with batteries and docking stations.

While the previously mentioned models provide valuable insights, further re-
search is necessary to develop comprehensive BSS optimization frameworks. In
this study, the developed model integrates the following new factors:
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— Expanding model scope: While existing studies on IWT have focused on
relatively small networks, this study expands the model to cover a more
extensive and realistic network. This broader scope ensures that outputs are
more reliable and applicable to actual marine operations.

— Multi-objective mixed-integer linear programming (MILP): Multi-objective
optimization is employed to simultaneously optimize several goals, many of
which may conflict. This method seeks to reflect trade-offs between multiple
objectives, rather than a single ideal solution. Integrating multi-objective
optimization into MILP enhances the model’s relevance. Objectives include
minimizing upfront investment costs, optimizing long-term operational costs,
and reducing battery "at terminal" times. This approach balances invest-
ment in infrastructure with operational efficiency, making it cost-effective
for BSS operators and beneficial for the barge owners.

3 Methodology

This study formulates a deterministic optimization problem to manage battery
locations and charge levels effectively, given the well-defined nature of vessel de-
mand. A discrete time representation with bi-hourly time steps models vessel lo-
cations, power requirements, battery locations, and charge levels. This approach
simplifies the network representation, allowing for flexibility and scalability. The
MILP model uses discrete time steps to determine the optimal number of bat-
teries, docking station locations, and battery capacity to meet vessels’ electrical
power consumption. In order to effectively match batteries with the pre-planned
sailing paths of the vessels, the model takes a battery-centric approach, tracking
battery location and charge level. To ensure flexibility and scalability, the net-
work representation is simplified. Numbers are used to identify terminals, and
at each time step, vessel sailing profiles are modified to reflect the position of
the vessel (sailing or at terminals). Because of this, a particular node-arc net-
work topology is no longer necessary, making it easier to modify and expand
the model to accommodate various network topologies. In Figure [2| a general
overview of the model with the inputs and outputs is shown. The model contains
three objective functions. They are developed from the perspective of a battery
and swapping station operators (such as ZES). The three objective functions are
the following:

1. Minimizing costs: This involves reducing the initial investment (capital ex-
penditure) required for batteries and DS at each terminal.

2. Minimizing the loss space (thus profit loss) of the barge operators: This
objective function is designed for ZES to minimize their impact on their
clients, the barge operators, to prevent losing them as customers. A scaler
is applied to the operational costs to reflect a long-term vision, ensuring
that this objective function accounts for long-term expenditure, such as the
investment costs in the first objective function.

3. Minimizing time at terminal ("at terminal"): This objective aims to minimize
the total time batteries spend at terminals, encompassing both charging and
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storage periods. By reducing terminal dwell time, this objective contributes
to optimizing battery usage and overall system efficiency.

[w=F
> CAPEX
N > Numberof needed batteries
> oA @ > Location, battery level and
> Number of charging spots function at each time step
> Number of stocking spots
> Powerof each charging spot
OD
> Sailingprofiles
¥z > Maximum of number of batteries > CAPEX, loss space costs, idles
_=Ec on board ) times costs
WSS > Penaly costsfor transportinga > Numberof chargingspots
battery container (loss of space) > Number of stocking spots
> Terminals location
> Penaltycostsforstoringa
container at terminal

Fig. 2: Model overview

4 Case Study and Numerical Experiments

This section dives into the chosen network and input, presenting the results
obtained through the conducted numerical experiments. Python is the program-
ming language used, and Gurobi is chosen as the optimisation problem’s com-
mercial solver. The organization of the results is the following: first, a sensitivity
analysis is conducted on the model with only the investment costs objective. The
aim is to assess the influence of three key input parameters: battery capacity,
battery costs, and the number of battery storage spots available at terminals.
Thereafter, the impact of loaded or unloaded vessels on the model’s outputs is
studied. Following this, the space inefficiency caused by transporting batteries
on board vessels is taken into account and studied, via the introduction of a
second objective. Finally, the results section is concluded with an analysis con-
sidering the multi-objective perspective of the study, analysing three objectives
together. To ensure consistency in the analysis, a hypothesis is formulated for
each experiment. This hypothesis is then tested against the results. Finally, an
advice (recommendation) is provided, summarizing the key takeaways of each
experiment. This recommendation is written to be comprehensible and practical
for a DS and battery operator, such as ZES.
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4.1 Network

This research focuses on a specific section of the Dutch IWT network. The data
used to define this network section is derived from Rijkswaterstaat, the executive
agency of the dutch ministry of infrastructure and water management. The data
analysis period covers a timeframe from March 1st to April 12th, 2024.

Network Scope:

— Routes: The network focuses on the twelve most frequently used direct routes
(both directions) within the designated section. These routes represent A-
to-B journeys without intermediate stops.

— Terminals: The network encompasses thirteen ports, eleven located within
the Netherlands, one in Germany, and one in Belgium. This inclusion ensures
the network reflects cargo flow entering and exiting the Netherlands through
its bordering countries.

A visual representation of the final network structure is provided in Figure
As evident from the visualization, the network captures a significant portion of
the Dutch IWT network, highlighting the most heavily utilized waterways.

Rotterdam T1
Antwerp T2
Moerdijk T3

Amsterdam T4
Alphen T5
Wanssum T6
Nijmegen T7
Bergen T8
Alblasserdam T9
Duisburg T10
Oosterhout T11
Tilburg T12
Veghel T13

Fig. 3: Graphical representation of the selected network
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4.2 Sailing profiles and vessels types

The route data for this network section is also derived from Rijkswaterstaat, cov-
ering the same period from March 1st to April 12th. This data includes the daily
number of trips for each route, considering both directions. To obtain realistic
sailing times and distances for each route, data was sourced from Eurisportal,
a platform that provides live sailing information on chosen routes. The vessel
type assigned to each route reflects the most commonly used vessel type on that
specific route within the analyzed timeframe. These types are differentiated by
their time-dependent power requirements while sailing. To estimate the power
consumption for each vessel type, an interpolation method was employed, based
on the literature |10]. This interpolation leverages the maximum load capacity
of each vessel type to determine its power requirements at each time step during
its journey. The power consumption is per time step (i.e. two hours of sailing).
To represent vessel activity within the network, sailing profiles were constructed
for each route. These profiles encompass a two-day timeframe, effectively dou-
bling the frequency of the actual routes identified in the data. Due to limitations
in computational resources, vessel selection during route construction aimed to
minimize the total number of vessels required to service all routes. The opti-
mization process identified a fleet of 14 vessels to efficiently cover the designated
network section.

4.3 Influence of battery capacity, battery costs, and the number of
battery storage spots available at terminals

Influence of battery capacities The hypothesis on the impact of battery
capacities is the following:

"Higher battery capacity leads to a reduction in the number of
batteries and DS used."

The rationale behind this hypothesis is that higher capacity batteries can store
more energy, allowing vessels to travel longer distances without needing fre-
quent recharges. Consequently, fewer batteries are required to meet the energy
demands of the fleet. Additionally, with longer travel capabilities, vessels can rely
on fewer, strategically located DS. These docking stations are typically situated
at key terminals within the network, which act as hubs. By centralizing recharg-
ing points at these critical locations, the system can operate efficiently with a
reduced number of DS, optimizing both the infrastructure and operational costs.

Battery costs The hypothesis on the impact of battery costs is the following:

"Lower battery costs would lead to a higher number of used batteries
and fewer DS."
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This hypothesis can be explained by the fact that once battery costs are suf-
ficiently low, it becomes more cost-effective to transport a larger number of
batteries and minimize the use of DS. By carrying more batteries, vessels can
reduce the need for frequent recharges and thereby decrease the necessity for
extensive DS infrastructure. This shift allows for lower investment in DS, as the
network relies more on the availability of low-cost batteries to maintain opera-
tions efliciently.

Number of spots available at DS The hypothesis on the impact of the
number of spots available at DS is the following:

"More spots available at DS would decrease the number of used DS
and increase the sharing of batteries.”

This hypothesis is based on the idea that central terminals, where many vessels
pass through, can function as "swapping" hubs. These hubs would be capable of
storing and handling a large number of batteries, allowing most battery swaps to
occur there. As a result, fewer DS would be needed elsewhere in the network. By
concentrating the battery swapping activities at central hubs, the overall network
can operate more efficiently with a reduced number of DS while maximizing the
sharing of batteries.

Sensitivity analysis main results

The key results of this section are:

— As anticipated by the hypothesis, as battery capacity increases, the number
of batteries required decreases significantly. For instance, with a capacity of
2,700 kWh, 49 batteries are needed, whereas only 22 batteries are required
for a capacity of 10,000 kWh. Because each higher-capacity battery can store
more energy, fewer batteries are needed to meet the same total energy de-
mand. Thus, vessels equipped with higher capacity batteries can operate
for longer periods before needing to swap or recharge their batteries. This
reduces the frequency with which they need to visit DS.

— Furthermore, because vessels need to swap batteries less frequently, the total
number of DS required to support the fleet decreases when the battery ca-
pacity increases. With fewer batteries and less frequent swaps, the docking
station infrastructure can be consolidated into fewer, more strategically lo-
cated stations. One can observe that a critical shift occurs between batteries
with capacities of 3200 kWh and 4000 kWh. Within this range, the number
of required DS decreases significantly. The DS that remain in use are the
ones that are key nodes or far away (such as Antwerp and Duisburg) in the
network. Ultimately, with even higher battery capacities, only a single dock-
ing station in Rotterdam is sufficient. This aligns with Rotterdam’s central
role in the network, as it’s a major port with a high volume of vessel traffic.
This reduces the overall infrastructure cost and simplifies the logistics.
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— Battery costs have an important impact on total Capex. Higher battery costs
lead to increased total expenditures, reflecting the critical role of battery
pricing in the economic viability of the system.

— Slight variations in the number of batteries and DS required suggest that
while battery costs affect total costs, they do not drastically alter the in-
frastructure needs. However, with fewer batteries, more DS are needed to
answer the demand.

— The results of the experiment with the number of spots avilable at DS show
instability and a lack of coherence, likely due to dependencies on the initial
conditions and inputs provided to the model. Specifically, the initial location
of batteries at time p=0 plays a crucial role. If the hypothesis holds, the
batteries need to be transported to the hubs initially, which can take more
than the 48-hour simulation period used in this study. Additionally, the
process of moving batteries to hubs necessitates the use of multiple DS,
increasing the overall number of DS needed. Despite these inconsistencies,
observable trends still emerge from the results. Notably, as the number of
DS decreases, the number of batteries increases. This trend suggests a shift
towards fewer DS with more centralized battery handling, ultimately leading
to a decrease in total costs per vessel.

To sum up, as shown in Figure[d] despite some variations, the number of DS and
batteries per vessel remains relatively stable across the different experiments.
The cost of batteries primarily influences the number of batteries per vessel,
while both battery capacity and the availability of spots at terminals impact the
number of DS and batteries used.
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Fig. 4: Battery and DS requirements for the most relevant runs
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Managerial insights:

— Battery capacities: Although a capacity of 10,000 kWh may not be feasible
in the near term, even intermediate capacities such as 3,200 or 4,000 kWh
demonstrate substantial changes in network design. These capacities lead
to lower investment costs, highlighting the importance of pursuing higher
battery capacities. Therefore, it is advisable to continue efforts in developing
and improving battery technologies to achieve these benefits.

— Battery costs: To achieve a significant shift as mentioned in the hypothesis,
battery costs would need to decrease more substantially than the range used
in this research. Given the current technological landscape, such a significant
reduction in battery costs does not seem feasible or realistic. Therefore, the
current battery costs, whether slightly increased or decreased, do not signif-
icantly alter the network design. The primary impact is on the total costs,
which are influenced by changes in battery costs rather than adjustments in
the network design. As a result, it is crucial to focus on other factors that
can optimize the network, as substantial changes in battery costs alone are
unlikely to provide significant improvements.

— Number of spots available at DS: Given the trends observed, the avail-
ability of more spots at DS could significantly impact network design. There-
fore, this variable warrants further study. Investigating the optimal number
of spots at central DS could lead to a more efficient network configuration,
reducing overall costs and improving operational efficiency.

4.4 Loaded vs unloaded

This section examines the implications of considering that vessels are not always
fully loaded. This parameter induces changes in speed, affecting the sailing pro-
files. When vessels move faster, they reach their next destination earlier.

The hypothesis on the impact of vessels loading is the following:

"The less loaded the vessels are, the fewer batteries and DS are
used. "

This hypothesis assumes that, for the same period of time and the same number
of trips, less loaded vessels will operate more efficiently. When vessels are less
loaded, they can travel at higher speeds. This increased speed results in shorter
travel times and reduced overall energy consumption for the same number of
trips. Consequently, vessels require fewer batteries and, therefore, fewer battery
swaps. As a result, the overall need for DS is reduced, optimizing the network
by minimizing the infrastructure required to support the operations.

The results show that the number of batteries required decreases significantly in
the 100% unloaded scenario (32 batteries) compared to the 100% loaded scenario
(49 batteries). This reduction is due to fewer vessels, but also to the faster travel
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speeds of unloaded vessels, which together reduces the overall energy demand.
Thus, the number of docking stations also decreases in the 100% unloaded sce-
nario (4 DS) compared to the 100% loaded scenario (6 DS). In the mixed loading
scenarios, the number of batteries required falls between the two extremes, with
40 batteries in the 50%-50% fully loaded at p=0 scenario and 42 batteries in the
50%-50% half loaded at p—0 scenario. This reduction is due to the faster travel
speeds of the vessels when they are unloaded. Thus, it also reduces the overall
energy demand. The locations of the DS vary slightly across scenarios, reflecting
the adjusted sailing profiles and optimized routes based on loading conditions.

Managerial insights: This experiment highlights the critical importance of
realistic modeling in capturing the true impacts of vessel loading conditions on
network design and costs. The significant differences observed in total investment
costs, sometimes exceeding 20%, emphasize the need for accurate and detailed
simulation of real-world conditions. Therefore, it is crucial to incorporate realis-
tic loading scenarios in future studies to ensure the network design is realistic,
efficient and cost-effective.

4.5 Lost space

To optimize the use of space on vessels, it is essential to consider the trade-
offs between carrying battery containers versus goods containers. This implies
a revenue loss for the barge operators when opting to carry battery containers.
Since the BSS operators should aim to keep its clients, they have to minimize
their impacts on them. In this scenario, they should aim to minimize the rev-
enue loss of the barge operators. Thus, a second objective function is introduced.

The hypothesis on the impact of the weights attributed to each of the two ob-
jectives is the following:

"The more importance given to the investment objective, the fewer
DS are used. Additionally, due to fewer DS and less emphasis on
loss costs, the total costs also decrease."”

This hypothesis is grounded in the understanding that prioritizing the invest-
ment objective leads to a reduction in the number of DS required. By focusing
more on investment costs, the network design aims to minimize initial expendi-
tures, which in turn reduces the infrastructure needed, such as DS. Additionally,
with less weight given to loss costs, the total costs are further lowered, as these
costs have less influence on the overall optimization. This results in a more cost-
effective network configuration, balancing investment efficiency with operational
needs.

The results suggest that the battery requirements are not highly sensitive to the
variations in the weight given to the investment objective function. However,
the number of DS decreases as the weight given to the investment objective
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function increases. This makes sense because prioritizing investment costs leads
to a reduction in the number of DS to lower overall expenditures. Contrarily,
when less weight is attributed to the investment objective function, there are
more DS because the model prioritizes operational efficiency and convenience.
More DS mean that vessels can access battery swapping services more frequently
and conveniently, reducing downtime and improving overall efficiency. However,
this comes at the cost of higher investments in infrastructure. There is no single
shifting point in this trend. Instead, the number of DS decreases gradually as
more weight is given to the investment objective function. This indicates a steady
reallocation of resources to minimize investment costs progressively.

Managerial insights: The weights assigned to each objective can significantly
affect the design of the network and the total costs incurred. It is crucial to pri-
oritize the objectives appropriately and assign well-reflected weights to achieve
a balanced and efficient network configuration. Therefore, careful consideration
should be given to the weighting process to optimize both investment and oper-
ational outcomes effectively.

4.6 Multi-objective analysis

In this section, a third objective function that considers the difference between
the number of designated charging spaces for battery containers at the termi-
nal and the available storage space, is introduced. In other words, once fully
charged, batteries can be stored at the terminals. However, storing containers at
the terminals incurs costs per square meter. Therefore, this third objective func-
tion aims to minimize the time batteries spend at the terminal ("at terminal"
times), effectively maximizing their utilization. To ensure consistent comparison
with the other two objective functions, these "at terminal" times need to be
converted into monetary costs.

This section focuses on exploring the impact of varying the weights attributed
to each of the three objective functions on the optimal solutions. Multi-objective
optimization is a critical aspect of decision-making in complex systems, where
different criteria must be balanced to achieve the best overall outcome. By ad-
justing the weights assigned to each objective, one can observe how the optimal
solutions shift in response to these changes. This approach allows to understand
the trade-offs between different objectives and how they affect the overall sys-
tem performance, and identify the most balanced and effective solutions that
achieve a desirable compromise between investment costs, space lost, and "at
terminal" times. In order to do so, the weighting sum method is used [11]. This
method involves combining multiple objective functions into a single compos-
ite objective function. Each objective function is assigned a weight that reflects
its relative importance. The solver then optimizes this single weighted objective
function. It is useful in scenarios where there is a clear understanding of the
relative importance of each objective. The equation of the objective function is:
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F=Y0 (wifix) =wi-fi+ws fotws:fs

Where wq,ws,ws are the weights for the objective functions fi, fa, f3 respec-
tively. fi is the investment costs objective, fo the loss space and f3 the "at
terminal" times.

To understand the impacts of different priorities in multi-objective optimization,
15 scenarios are analyzed where each objective function is given a varying weight
(see Table [1)). The Table, as well as its analysis, is divided into three blocks:
the basic scenarios, the 9 runs where the investment function is given weights
between 85% and 95%, and the three last runs where the weight given to the loss
space function is fixed to 5%. X is the number of 2h time slots where batteries
are on terminals ("at terminal" times), and Y is the number of 2h time slots
where batteries are on vessels. The two main hypotheses are the following:

"The less weight given to the loss space objective, the smaller the
number of DS and batteries, and the more sharing of the batteries."

"The more weight given to the "at terminal” times objective, the
smaller the total costs.”

The first hypotheses stems from the model’s strategy to minimize the space
occupied by batteries on vessels in order to reduce the associated costs. By as-
signing less weight to the loss space objective, the model prioritizes minimizing
the number of batteries on board, leading to fewer swaps and thus requiring
fewer DS. Moreover, with fewer batteries on the vessels, there are more oppor-
tunities for swaps, resulting in more frequent sharing of batteries. The second
hypothesis is based on the observation that "at terminal" costs are typically
lower than investment and loss space costs. By giving more weight to the "at
terminal" times objective, the model aims to reduce "at terminal" times, which
in turn minimizes overall costs. Table [I] contains the main results of each run.

The first block exhibits interesting results and provides the minimal costs for
each objective separately. #X is the number of 2h time slots where batteries are
on terminals ("at terminal" times), and #Y is the number of 2h time slots where
batteries are on vessels. As can be observed in Figure |5} the smallest X occurs
when all the weight is given to the batteries’ "at terminal" times objective (B3).
This makes sense because prioritizing "at terminal” times reduces the number
of batteries that need to be kept on hand, minimizing the inventory at the
terminals. The second smallest X is observed when only the investment cost is
considered, highlighting the balance between these two objectives. The highest
X is seen when all the weight is given to the loss space objective. This is because
minimizing the space lost to batteries on vessels leads to a greater number of
batteries being stored at the terminals. This scenario is also associated with the
smallest Y, which again makes sense because prioritizing the loss space objective
means fewer batteries are kept on vessels to maximize cargo space. This results
in a lower number of batteries being present on vessels over the 2-day period.
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wl w2 w3 Total Invest. #X #Y  Loss space "at term."
%l %] 1% "N el *PPS fg patT)(bonv)  [€ €l

100 0 0 Basel 46'881°000 42 5 46'881'000 122 844 - -

0 100 0 Base2 164'510°040 44 13 - 446 566 164’510°040 -

0 0 100 Base3 129712 56 13 - 25 1263 - 129712
90 5 5 Runl 52999976 39 8 48064500 252 645 193531018 1307502
90 2.5 7.5 Run2 48'122474 41 6 47275500 212 731 219°681°074 17099962
90 7.5 2.5 Run3 58650°080 40 8 49°020°000 263 657 193306208 1'364°576
95 2.5 2.5 Rund 51421673 40 8 490200000 271 649  192'700°837 14067084
95 1.1 3.9 Run5 47756578 41 6 47275500 218 725 249231189 1'131°093
95 3.9 1.1 Run6 53'826'709 39 9 49414500 276 621 189429619 14327026
85 7.5 7.5 Run7 55841480 39 9 49414500 267 630  183'136'737 13857330
85 3.7 11.3 Run8 49'133'575 40 8 490200000 255 665  197'243'393 1'323°068
85 11.3 3.7 Run9 63412771 39 10 50°764’500 288 609  179°622'292 14947288
60 5 35 Runl0 38843'165 39 8 48064500 262 635 190'573591 1359387
70 5 25 Runll 43535295 39 8 48°064'500 255 639  191'187°562 17323°067
80 5 15 Runl2 48'887°450 40 8 49°020°000 279 641  189°086°022 1°447°591

Table 1: Detailed breakdown of the summary of the 15 multi-objective runs, with
regards to the most relevant output.
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Fig.5: Number of 2-hour slots with batteries on terminals vs. vessels, for each
run

Regarding the second block, the following overall remarks can be done:

— Stability in battery numbers: Across all scenarios, the number of batteries
remains stable, hovering around 40.
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— DS: The number of DS varies between 6 and 10, with most scenarios clus-
tering around 8. This variability is influenced by the weights assigned to
the investment, "at terminal" times, and space lost objectives. When more
weight is given to the investment objective, the number of DS tends to
decrease. Conversely, when more weight is given to the space loss objective
(w2), the number of DS increases, as can be seen in Figure@ This is because

prioritizing lost space leads to a need for more frequent swaps to minimize
"at terminal" times, hence more DS are required.
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Fig.6: Results of runs 1-9: comparing total costs, DS count, and space loss
weighting

— Total costs: The total costs remain within a similar range, with variations
depending mostly on the weight assigned to the space loss objective, see
Figure [6] When more weight is assigned to the "at terminal" times objec-
tive, the total costs tend to be lower due to reduced "at terminal" times
and fewer DS. Conversely, when more weight is assigned to the loss space
objective, total costs increase due to the need for more DS and the associ-
ated infrastructure costs. This dependency highlights the trade-offs between
minimizing "at terminal" times and managing loss space effectively.
Stability: Investment and "at terminal" costs exhibit relative stability. How-

ever, loss space costs demonstrate a wider range. This can be attributed
to generally higher costs associated with loss space. As a result, a one-unit
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increase in loss space could lead to a proportionally larger increase in total
costs compared to the other two objectives.
— Pareto optimum: The three best solutions for each costs separately are:

e Total costs: Runb < Run2 < Run8

e Investment costs: Runb = Run2 < Runl

e Loss space costs: Run9 < Run7 < Runb

e "At terminal" costs: Run2 < Runb < Runl
The results indicate that no single scenario dominates across all cost factors.
However, Runs 2 and 5 appear to achieve superior outcomes for three out of
the four cost categories, as shown in Figure [7}
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Fig. 7: Investment, space lost and at terminal costs for runs 1 to 9

— Interestingly, as can be observed in Figure ] Runs 2 and 5 exhibit very
similar values for X (212 vs. 218) and Y (731 vs. 725). These values contrast
with the other runs in this block, which tend to have lower X and higher Y.
This suggests alignment between the "at terminal" cost and investment cost
objectives in Runs 2 and 5, indicating they are not conflicting. In contrast,
the loss space objective appears to be independent. This is logical because
minimizing loss space prioritizes maximizing X while minimizing Y.

The third block achieves significantly lower total costs due to the emphasis placed
on the "at terminal" cost objective through higher weights. However, this comes
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at the expense of a less flexible network design. The network remains very stable,
consistently consisting of only 8 DS and 39 or 40 batteries. Furthermore, the
other performance metrics for this block fall within the average range observed
in block 2.

Managerial insight: The general advice from this experiment is that, from a
purely network optimization perspective, the network is physically more efficient
when the weight assigned to loss space costs is minimized. From the perspective
of the battery and DS operator, it is anyways more logical to prioritize their
own costs, including investment and the expenses associated with renting space
to store batteries at terminals.

5 Conclusion and Future Research

This study aimed to investigate the potential of integrating battery storage into
IWT systems. To this end, a computational model was developed to assess the
system’s performance under various conditions. The analysis encompassed a base
case scenario to establish a comparison point and a subsequent sensitivity analy-
sis to determine the impact of key system parameters, including battery capacity,
costs, and availability. Recognizing the complex nature of the problem, a multi-
objective optimization approach was then employed to simultaneously consider
multiple objectives, providing a more realistic understanding of the complex de-
cision making.

The results show that the decrease in the number of batteries and DS with in-
creasing battery capacity is primarily due to the higher energy storage capability
of each battery. This allows vessels to operate longer without requiring frequent
swaps, leading to fewer overall batteries and DS. Consequently, the infrastruc-
ture can be more efficiently utilized, reducing investment costs. Furthermore, it
also reveals that battery costs influence the financial aspect of maritime battery
swapping systems. Higher costs lead to increased Capex and per vessel costs,
emphasizing the need for cost-effective battery solutions. While the overall in-
frastructure requirements remain relatively stable, costs optimization become
more challenging with rising costs. Moreover, the number of available spots at
DS presents contradictory results. It shows instability and a lack of coherence,
likely due to dependencies on the initial conditions and inputs provided to the
model. Specifically, the initial location of batteries at time p=0 plays a crucial
role. Loading conditions significantly influence the operational and financial as-
pects of maritime battery swapping systems. Fully unloaded vessels require fewer
resources and lower costs, while fully loaded vessels necessitate more batteries
and docking stations. However, none of these two scenarios is realistic. Thus,
mixed loading scenarios provide a more realistic and balanced approach. The
analysis of the space loss costs underscores the need to find a balanced approach
where both investment costs and loss space are effectively managed. A higher
weight on the investment objective, effectively minimizes Capex while maintain-
ing an efficient distribution network. The number of docking stations shows a
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clear decrease as more weight is allocated to investment costs, reflecting a strate-
gic reallocation of resources to minimize expenditures progressively.

After the introduction of a third objective function, representing the costs asso-
ciated with the batteries "at terminal" times, 15 different runs are conducted.
Overall, the number of batteries remains stable around 40, while the number of
DS varies between 6 and 10, mostly clustering around 8. The number of DS de-
creases when more weight is given to the investment objective and increases with
greater emphasis on the loss space objective, due to the need for more frequent
battery swaps. Total costs fluctuate mainly based on the weight assigned to the
space loss objective, with lower costs observed when prioritizing "at terminal"
times due to fewer DS and smaller "at terminal" times costs. Investment and "at
terminal" costs show relative stability, whereas loss space costs exhibit a wider
range, leading to significant impacts on total costs. The results also highlight that
no single scenario dominates across all cost factors. However, two runs stand out
by achieving superior outcomes in three out of the four cost categories. These
two runs are the ones where the weights given to the loss space objective are
the smallest, indicating alignment between "at terminal" and investment cost
objectives. These runs also show similar values for the number of batteries at
terminals (X) and on vessels (Y), suggesting a balance that is disrupted when the
loss space objective is prioritized. The general insight from this experiment is the
following: for optimal network efficiency, minimizing the weight assigned to loss
space costs is crucial. From the battery and DS operator’s perspective, it is more
logical to prioritize investment and rental costs. The importance of carefully as-
signing weights to each objective is emphasized, as this significantly influences
network design and total costs. To determine these appropriate weightings, the
BSS system operators should use a collaborative approach, involving all con-
cerned stakeholders. By engaging in open dialogue, diverse perspectives can be
considered, and trade-offs between conflicting objectives can be identified. This
participatory process promotes transparency and ensures that the model aligns,
as much as possible, with the priorities of all parties involved.

Yet there are various limitations of this study and future research can build
upon the findings of this thesis to develop more refined, efficient, and sustainable
battery swapping systems for IWT.

Optimality gaps The optimality gaps observed in this study are high. It is
essential to acknowledge that while a large network provides more realistic results
and greater opportunities for battery sharing, it also increases the complexity of
the optimization process. Future work should focus on reducing these optimality
gaps to enhance the applicability of the model.

Detailed sailing profiles It would be beneficial to model the sailing profiles
with greater detail, but also flexibility. This could include external factors such
as wind speed, weather conditions, and varying waterway traffic. Incorporat-
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ing these elements would provide a more accurate representation of operational
conditions, leading to more robust and reliable optimization outcomes.

Energy grid resilience How does the transition to electricity impact the re-
silience of the energy grid, and what strategies can be implemented to enhance
the robustness of logistics operations in case of an overloaded grid network? It
is crucial to study the implications of increased electric demand on the energy
grid and develop strategies such as smart grid technologies, decentralized energy
storage, and demand response mechanisms to ensure the reliability and resilience
of logistics operations amidst potential grid overloads.
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