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Abstract

Phylogenetic trees are commonly utilised in evolutionary biology. These trees represent the evolution
of a set of species. In case of gene transfer however, a phylogenetic tree is insufficient. In such cases,
tree-based phylogenetic networks are more suitable as they can depict reticulate evolution. Nonethe-
less, tree-based phylogenetic networks have their limitations as they are unable to represent reticulate
events occurring between different environments, families, or lineages of species. To address this,
forest-based networks offer a solution. A forest-based network is a collection of leaf-disjoint phylo-
genetic trees with arcs added between different trees in case of reticulate evolution. In this thesis, an
integer linear programme (ILP) is created to determine whether a binary phylogenetic network is forest-
based. It is important to note that this thesis exclusively focuses on binary phylogenetic networks. This
ILP model is expected to be valuable in the development of new models and algorithms for both binary
and non-binary phylogenetic networks, thereby enhancing the understanding of reticulate evolution.
Additionally, the ILP may lead to time-related challenges when processing bigger phylogenetic net-
works.

M.A. van Gruijthuijsen
Delft, July 2023
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Introduction

Humans have been capturing and studying the evolution of species for a relatively short period of
time in the grand scale of evolutionary history. The formal discipline of documenting the process of
evolution emerged in the mid-19th century with the groundbreaking work of scientists like Charles
Darwin and Alfred Russel Wallace. Darwin’s publication of “On the Origin of Species” in 1859 marked
a significant milestone in our understanding of evolution. Since then, scientists have been actively
observing, studying, and documenting various aspects of evolution [1].

Evolutionary processes are often documented with a hierarchical structure reminiscent of a family tree.
In numerous cases this structure can be mathematically described as a phylogenetic tree [2]. A phylo-
genetic tree is a certain mathematical structure of points and lines, which are called nodes and edges,
respectively. In this thesis the edges always have a direction and are also called arcs. The direction
of these arcs is always downwards in this thesis. A phylogenetic tree starts with a root and ends in
leaves. We can interpret this root as a common ancestor of the species, and the leaves as the modern
species [3]. An example of a phylogenetic tree is in Figure 1.1a. In this illustration, the node labeled
with 1 is the root, so the common ancestor of the species. The nodes labeled with 3, 4, 7, 8, 10, and
11 are the leaves, so the present-day species. Nodes 2, 5, 6 and 9 are ancestors of these present-day
species.

Phylogenetic trees are highly suitable for representing the evolution of various species, but they are
limited in their ability of representing all types of evolution. In particular, phylogenetic trees are not
capable of representing reticulate evolution. Reticulate evolution is the sharing of genes between dif-
ferent ancestors. Examples of this type of evolutionary process are hybridisation, endosymbiosis, and
lateral gene transfer [2, 4].

1.1. Tree-based phylogenetic networks

In order to be able to represent reticulate evolution, phylogenetic networks offer an outcome. A phy-
logenetic network can be created in multiple ways. One way is by taking a phylogenetic tree, adding
vertices between the arcs of the original tree, and then adding arcs between these new vertices. These
added arcs represent gene transfer between these ancestors [5]. This particular way of creating a
phylogenetic network returns a tree-based phylogenetic network [6]. An example of this approach is
illustrated in Figure 1.1. Figure 1.1a depicts a phylogenetic tree. In Figure 1.1b attachment points are
added between the arcs of the original tree. These attachment points are labeled 12, 13, 14, and 15.
In Figure 1.1c two arcs are added. One between nodes 12 and 14, and one between nodes 15 and
13. This makes the phylogenetic network a tree-based phylogenetic network.



1.1. Tree-based phylogenetic networks 2

»

2N @ﬁ
YA
T I, 276 &=,

(a) A phylogenetic tree (b) A phylogenetic tree with attachment points
added

re

cWolo
& B

o

&—E

@ @

(c) A tree-based phylogenetic network

Figure 1.1: The creation of a tree-based phylogenetic network from a phylogenetic tree.

A real life example that corresponds to this is lateral gene transfer in bacteria. An example is shown
in Figure 1.2. The evolution of certain bacteria is illustrated with the present-day bacteria at the end of
the tree. The dotted arrows mark the transfer of genes between ancestors of these bacteria, which is
the reticulate evolution in this example.
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Figure 1.2: A tree-based phylogenetic network from [6] for a selection of bacteria. The dotted arrows represent the lateral gene
transfer between some of the ancestors of these bacteria.

Zhang et al. introduced a theorem to determine whether a binary phylogenetic network is tree-based
[7]. A binary phylogenetic network is a network where all nodes have at most 2 edges reaching them
and 2 edges leaving them, and at most 3 incident edges in total. This still leaves the question of how
to find out whether a non-binary phylogenetic network is tree-based. This question was answered by
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Figure 1.3: [6] A forest-based phylogenetic network for a selection of bacteria. The dotted arrows represent the lateral gene
transfer between some of the ancestors.

Jetten & van lersel, by introducing an algorithm that determines whether a given phylogenetic network
is tree-based [8]. This phylogenetic network can be either binary or non-binary.

1.2. Forest-based phylogenetic networks

Another approach to create a phylogenetic network is by taking multiple phylogenetic trees and adding
arcs between these different trees in case of reticulate evolution [6]. This leads to a forest-based
phylogenetic network. These arcs can only be added between different trees. It is not allowed to add
arcs within a tree.

Returning to the example of the bacteria, in the tree-based network the bacteria all came from the same
root. In the forest-based network, there are multiple roots since there are multiple trees. As long as
there is no lateral gene transfer between the trees of the different roots, the bacteria from the different
roots evolve independently. These different trees can stand for different species, different families,
and among other things, different environments. The human mouth and gut are examples of different
environments when considering human microbioms [6]. In Figure 1.3 a forest-based phylogenetic
network is built up from two different trees. The left tree can be considered the human mouth and
the right tree the human gut. The dotted arrows represent the lateral gene transfer between genes in
these different environments.

1.3. Problem definition

Tree-based phylogenetic networks and forest-based phylogenetic networks are specific types of phylo-
genetic networks. Since phylogenetic networks represent the evolution of species, there are numerous
variations on phylogenetic networks. Zhang et al. and Jetten & lersel established how to determine
whether a phylogenetic network is tree-based [7, 8]. The next question that arises is how to deter-
mine whether a phylogenetic network is forest-based. In this thesis an Integer Linear Program (ILP) is
created that can check whether a binary phylogenetic network is forest-based.

In this thesis only binary phylogenetic networks are considerd. Hence, the provided ILP is not capable
of determining for all types of phylogenetic networks whether they are forest-based. Furthermore, the
code of the ILP is not written to be as efficient as possible. This might give time-related problems when
entering more extensive phylogenetic networks into the ILP. The ILP is also able to determine whether
a network is forest-based or proper forest-based. A proper forest-based network is a special case of
a forest-based network. The ILP is also able to find the base forest with a minimum number of trees.
The details of these definitions are in Chapter 2.

1.4. Overview

In Chapter 2 the important definitions are properly defined and the mathematical theory that formed the
base of the ILP will be stated and explained. Chapter 3 provides the reader with a characterisation of
the problem in terms of a colouring problem and goes over multiple examples. Chapter 4 formulates
the colouring problem as an ILP. Chapter 5 is dedicated to the application of the ILP. Lastly, in Chapter
6 a conclusion is drawn and the possibilities for further research are discussed.



Preliminaries

This chapter introduces the important definitions of this thesis. It also states the crucial theorem needed
to solve the problem of determining whether a phylogenetic network is forest-based.

A graph G is a pair of sets, G = (V,E). V is the set of vertices (also called nodes) and must be
nonempty. These vertices are the points in a graph. The set E are the edges and is a subset of the set
{{fu,v} : u,v € V,u # v}. These edges are the lines in a graph that connect the different vertices [9].

A path from a node u to a node v in a graph G = (V,E) is a sequence of distinct vertices vy, vy, .., Vi
such that u = vy, v = v, and v;v;,1 € Eforall 0 < i < k— 1. A graph is connected if it either has
just one node, or between any two distinct nodes in G there is a path. If u and v are connected to
each other by a path, the relation u ~ v is an equivalence relation on the vertices of graph G. The
equivalence classes of this relation are the components of the graph.

A graph is directed when the edges have a direction. These directed edges are called arcs. In this
thesis only directed graphs are considered. Since phylogenetic networks have a direction forward
in time included in the network, the direction of the arc is generally clear. The direction of an arc is
therefore omitted in the figures unless it is not immediately clear which direction the arc is going. The
head of an arc is the vertex that the arc is going towards. The tail of an arc is the vertex that the arc is
going away from.

A directed graph is connected when the underlying undirected graph is connected. The underlying
undirected graph is the graph obtained from ignoring all directions of the directed graph.

A walk is an alternating sequence vy, e, .., Vx_1, €, vy Of nodes and ars such that for all 1 < i < k the
arc e; has tail v;_; and head v;. A walk is closed if v, = v;. A cycle is a closed walk with v, .., v
distinct. A graph is acyclic when it contains no cycles.

For v € V(G), the number of arcs with their direction towards v is referred to as the indegree of v,
denoted by indeg(v). The number of arcs with their direction away from v is referred to as the outdegree
of v, denoted by outdeg(v) [6]. The parents of a vertex v are the vertices that are the tails of the
incoming arcs of v. The children of a vertex v are the head of that are connected to the outgoing arcs
of v. A binary graph is a graph where all nodes have a maximum indegree and outdegree of 2 and
total degree at most 3.

There are many different definitions in circulation of a (binary) phylogenetic network [10]. The definition
this thesis works with is in Definition 1. This definition deviates from the common definition in two
places. In this definition it is allowed to have multiple roots, and subdivision vertices are allowed. In
this thesis all phylogenetic networks are assumed to be binary phylogenetic networks, unless stated
otherwise. For convenience, abbreviations as ‘phylogenetic networks’ or ‘networks’ will be used.

Definition 1 A (binary) phylogenetic network is a connected directed acyclic graph with leaf-set
corresponding to the present-day species [3] [8]. It contains only the following types of vertices.



1. Roots. Roots are vertices v with indeg(v) = 0, and outdeg(v) = 1 or outdeg(v) = 2. The set
of all roots of a graph G is denoted by R(G).

2. Reticulation vertices. Reticulation vertices are vertices v with indeg(v) = 2, and outdeg(v) = 1.
3. Tree vertices. Tree vertices are vertices v with indeg(v) = 1, and outdeg(v) = 2.

4. Subdivision vertices. Subdivision vertices are vertices v with indeg(v) = 1, and outdeg(v) = 1.
5. Leaves. Leaves are vertices v with indeg(v) = 1, outdeg(v) = 0 [6].

A forest-based phylogenetic network is built up from different trees. A tree is a phylogenetic network
with 1 root and no reticulations [6]. G is a forest if all of its connected components are trees and it has
at least two connected components [6].

Definition 2 [6] A network N = (V,A) on X, with V the set of vertices of the network and A the set of
arcs of the network, is forest-based if there exists a subset A’ € A, such that:

1. F' = (V,A") is a forest with the same leaf set as N,
2. every arcin A — A’ has end vertices contained in different trees of F' = (V,A").

The suppressing of a vertex v is the deletion of v and its incoming and outgoing arcs and adding a new
arc from the parent of v to the child of v [6]. The forest F on X obtained by repeatedly suppressing all
subdivision vertices and outdegree 1 roots in each component of F' until a phylogenetic tree is obtained
is a base forest for N. For m = 2, a network N with m roots is proper forest-based if it contains a
proper base forest, that is, a base forest with m roots.

The main problem of this thesis is finding an efficient algorithm for deciding whether or not a binary
phylogenetic network is (proper) forest-based. Instead of finding an algorithm directly, the problem can
first be transformed to a colouring problem with Theorem 1.

The set of all reticulation vertices of G is denoted by H(G). A vertex in a network N is an omnian (vertex)
of N if all of the children of v are reticulation vertices [6]. The set of omnians is denoted by D.

Suppose that N is a network and that v € V(N). The vertex y,, € RH(N) = R(N) U H(N) is defined as
the (unique) ancestor of v such that no vertex in RH(N) — y,, is contained in the directed path P from y,,
to v. An example is in Figure 2.1. In this figure, for leaf 5, y5 = p,, and for leaf 3, y3 = h;. The thought
behind this definition of y,, is that, for any base forest F in a proper forest-based network, the vertices
v and y,, must belong to the same tree in F [6].

Figure 2.1: [6] A 3-rooted forest-based network N

Let RH(N) be the vertex set of an undirected graph I'(NV), and let vertices u,v € RH(N) form an edge
{u, v} in T(N) if there exists a reticulation vertex h € H(N) with parents u' and v’ such that u = y,;» and
v = y,. A graph I'"(N) of ['(N) with the same vertex set as I'(N) is an omni-extension of I'(N) if, for
any omnian v € D(N), there exists a child h of v such that {y,, h} is an arc of I'"(N) for u the second
parent of h [5]. An example is in Figure 2.2 [6].
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Figure 2.2: [6] In (a) a 2-rooted forest-based network N with D(N) = {v,w}. In (b) an omni-extension of I'(N), with a minimum
number of possible edges.

Definition 3 [6] Let Y be a non-empty set of colours. Thenamap o : V(G) — Y satisfying o(u) #+ o(v)
for all arcs {u, v} of G is a proper vertex colouring of G.

The approach in this thesis to find an ILP is inspired by Theorem 1. This approach is different from the
approach in this theorem. In the theorem the focus is on colouring the omni-extensions, whereas in
the thesis, the focus is on directly colouring the network.

Theorem 1 [5] Let N be an m-rooted network on X, some integer m = 2, and let {c,, .., c;,} be a set of
m colours. Then, N is proper forest-based if and only if there exists an omni-extension T'(N) of T’ (N)
and a proper vertex colouring g : RH(N) = {cy, ..., ¢y} Of T'(N) satisfying:

1. The restriction of o to R(N) is a bijection.

2. Forallu € R(N) and all v € H(N) such that o(u) = a(v) there must exist a directed path P in N
from u to v such that o(w) = a(u) holds for all vertices w € H(N) that lie on P.

The proof of this theorem is in Huber et al. [6].



Colouring problem

This chapter describes a colouring problem which can be used to decide whether a binary phylogenetic
network is forest-based. It will be the basis for the ILP in the next chapter.First, the requirements to
colour a network properly are stated. Then, these requirements are applied to a few examples. Lastly,
the requirements give rise to a conjecture. However, this conjecture is false and a counterexample is
given.

3.1. Requirements

In order to determine whether a given phylogenetic network is forest based, a network needs to be
coloured as defined below. The different colours used correspond to the different trees in a base
forest.

Concretely, this leads to the following requirements. Note that requirements 1 through 5 are sufficient
to decide whether a network is forest-based. Requirement 6 is only relevant in deciding whether a
network is proper forest-based.

1. Every vertex needs to be coloured in exactly 1 colour.
Every root must have a different colour.
Vertices with the same colour form a tree.

The leaves of these trees are also the leaves of the network.

o > @ DN

If both parents of a vertex have the same colour, then the vertex gets a new different colour and
the vertex is the root of the tree with that colour.

6. The number of different colours used is kept to a minimum.

When it is possible to colour a given binary phylogenetic network satisfying these requirements, the
network is forest-based. When the number of colours that is needed to colour the network this way is
equal to the number of roots, the network is a proper forest-based network.

3.2. Examples

To create a better understanding of the requirements, two examples are considered. One example is
a proper forest-based network and the other example is a forest-based network.

3.2.1. Proper Forest-Based Phylogenetic Network

Figure 3.1 depicts the process of colouring a phylogenetic network according to the requirements. In
Figure 3.1a, the two roots, nodes 1 and 8, are coloured differently, because of requirement 2. In Figure
3.1b nodes 2, 3, 4 and 5 receive the same colour as node 1 because of requirements 1, 6, 3, and 4.
For the same reason, nodes 9, 10, 11, 12, 13, and 16 get the same colour as 8. Node 6 is a reticulation



3.2. Examples 8

vertex. This vertex has two parents, namely node 1 and node 11. These nodes are coloured differently.
Then requirements 6 and 4 come into play. Then node 6 can be coloured either one of the parents’
colour. The same holds for node 14 which is also a reticulation vertex. This leads to Figure 3.1c. In this
figure all the vertices are coloured and they are coloured according to the requirements with the use
of exactly 2 colours, which is equal to the number of roots. Hence, the phylogenetic network is proper

forest-based.
©® (0
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(a) The roots are coloured. (b) All nodes are coloured except for the reticulation vertices
and the leaves below the reticulation vertices.
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(c) All vertices are coloured.

Figure 3.1: [6] A proper forest-based phylogenetic network in different stages of the colouring process.

3.2.2. Forest-based phylogenetic network

Figure 3.2 depicts the process of colouring a phylogenetic network according to the requirements. In
Figure 3.2a, the two roots, nodes 1 and 9, are coloured differently, because of requirement 2. In Figure
3.2b nodes 2, 3, and 4 receive the same colour as node 1 because of requirements 1, 6, 3, and 4. For
the same reason, nodes 10, 11, 12, 13 and 14 get the same colour as node 9. Node 5 is a reticulation
vertex. This vertex has two parents, namely node 2 and node 10. These nodes are coloured differently.
Then requirements 6, 3, and 4 come into play. This results in that node 5 needs to get a new colour.
Then node 6, 7, and 8 are also coloured this same colour because of requirements 6, 3, and 4. This
leads to Figure 3.2c. In this figure all the vertices are coloured and they are coloured according to the
requirements with the use of 3 colours. The total number of roots is 2. Hence, the number of roots is
not equal to the number of colours that is used. Thus, the phylogenetic network is forest-based, but
not proper forest-based.
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vertices and leaf below the
reticulation vertices are coloured

Figure 3.2: A forest-based phylogenetic network in different stages of the colouring process.

3.3. False conjecture

From the previous examples, it might appear that when there is only one parent then the vertex must
be coloured in the same colour as the parent. However, this conjecture is false and a counterexample
is in Figure 3.3.

In Figure 3.3a node 1 is the root and is coloured blue. Node 2 is also coloured blue. Node 4 has one
parent, namely node 2. Following the conjecture that node 4 must get the same colour since it has
one parent, node 4 is also coloured blue. Node 3 has two parents that have the same colour. Hence,
according to requirement 5, node 3 must get a new colour. The same holds for node 5. Requirement
4 is not satisfied anymore for the blue colour. Hence following this conjecture results in a network that
can not be coloured properly.

In Figure 3.3b node 1 and node 2 are coloured the same as in Figure 3.3a. Node 4 is coloured differently.
Then, reticulation vertices 3 and 5 do not need to be coloured in a new colour. In total, this gives 2
colours necessary to colour the network properly.

Figure 3.3b is coloured properly, whereas Figure 3.3 is not. Hence the conjecture that when there is
only one parent, then the vertex must be coloured in the same colour as the parent, is false.
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Figure 3.3: Part of a phylogenetic network coloured in two ways.



ILP-formulation

In this chapter the ILP for finding out whether a phylogenetic network is (proper) forest-based, is de-
termined and explained. The determination of this ILP is done according to the requirements stated in
Chapter 3.

4.1. Formulating the ILP

The index ¢ denotes a colour, v denotes a vertex, n denotes the total number of vertices contained
in the given network. By m the total number of colours that is available is denoted. This m is always
greater than the number of colours needed to colour the network properly.

4.1.1. Decision variables
The ILP has two decision variables, x., and y,,,. These decision variables are introduced in Equations
(4.1) and (4.2), respectively,

1, if vertex v has colour ¢ with v € {1,..,n} and c € {1, .., m},

Xep = (4.1)
0, else,
1, if colour c is introduced in vertex v,

Yev = (4.2)
0, else.

4.1.2. Objective function
The objective function states that the number of colours needed to properly colour the network should
be minimised. This corresponds to requirement 6. The objective function is displayed in Equation (4.3)

min Zn: i Vev- (4.3)

v=1c=1

There are three possibilities:

n m

1. :E: Gew) =1,
v=1c=1
n m

2.3 > ) >,
v=1c=1

11
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3. the ILP is infeasible.

In case 1, the minimum number of colours is equal to the number of roots. This means that the network
is network is proper forest-based. In case 2, the minimum number of colours is greater than the number
of roots. This means that the network is forest-based. In case 3 the ILP is infeasible. This means that
the network is not forest-based.

4.1.3. Constraints

Constraint 1: Every vertex needs to be coloured in 1 and exactly 1 colour
This corresponds to requirement 1. This is given in Equation (4.4)

m
Z Xep=1 Vv €E(1,2,.,n}. (4.4)
c=1

Suppose there is a vertex set V = {v,,v,}, and a colour set C = {b,r, g}, with corresponding colours
blue, red and green. Then

Zxc,, -1 wev, (4.5)

cec

X + Xr + Xgy =1 forv=uvy,v,, (4.6)
Xpp, T Xpp, + Xgp, = 1, 4.7)
Xpy, * Xpy, + Xgp, =1 )

This means that exactly one of x;,, , Xy, , X4v, is €qual to 1. So vertex v, is coloured in exactly one of
the colours blue, red or green, where ’or’ is an exclusive 'or’. Similarly for vertex v,.

Constraint 2: A colour can be introduced at most once
This corresponds to requirement 6. This is given in Equation (4.8)

n
Z Yey <1 Ve (4.8)
v=1

Constraint 3: All roots must be coloured a different colour
This corresponds to requirements 1 and 2. This is given in Equation (4.9)

Xer, T Xer, <1 Ve €{1,2,.,m} r,1, different roots. (4.9)

Suppose root r; and is coloured in colour c, then x.,, = 1. For a second root , that is not the same
root as ry, it is not possible that r, also has colour c.

Constraint 4: If a vertex has two parents, then its child must have the same colour as the vertex
This corresponds to requirements 3, 4, and 5. This is given in Equation (4.10)

Xey SXey Ve €{1,2,.,m} Vvsdt indeg(v) =2 w childof v. (4.10)

Equation 4.10 gives thatx., =1 = x,, =1,and x,, =0 = x., = 0. So if v is coloured in colour
¢, then its kid w is also coloured in colour c. This is in Figure 4.1 If the child is not coloured in colour c,
then v is also not coloured in colour c. This holds according to requirement 4. This is in Figure 4.2.



4.1. Formulating the ILP 13

OISO O,

O O

(a) Only v is coloured. (b) Both v and w are
coloured.

Figure 4.1: Part of a binary phylogenetic network.

OISO O,

O

(a) Only w is coloured. (b) Both v and w are
coloured.

Figure 4.2: Part of a binary phylogenetic network.

Constraint 5: If both parents have the same colour, then vertex cannot have that colour
This corresponds to requirements 3, 4, and 5 of Chapter 3. This is given in Equation (4.11)

Xeu, + Xeu, S 2 — Xy Vc €{1,2,.,m} Vwvsuchthatindeg(v) =2 wuy,u, parentsofv. (4.11)

Equation (4.11) generates Equations (4.12) and (4.13)

Xeu, t Xeu, =2 = X =0, (4.12)
Xep =1 = Xgy, + Xy, =0, 1. (4.13)

Equation (4.12) says that if both parents of v have colour ¢, then v cannot have colour ¢. This is
in Figure 4.3. In this case, a new colour needs to be introduced. The next constraint handles this.
Suppose u; and u, have the same colour, say c. Then x.,, = xcy, = 1, SO X¢y,, + X, = 2. Then
2 —x, =2—0=2,since x., = 0 because vertex v must be coloured differently than vertex u; and
vertex u,. So the equation is then satisfied.

O ©,

Figure 4.3: Part of a phylogenetic network. Vertices u; and u, are the parents of vertex v. Vertices u; and u, are both coloured
blue. Vertex v is not coloured.
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Equation (4.13) says that if v does have colour c, then either none or one of the parents of v has colour
¢, but not both. This is in Figure 4.4.

@ @

(a) Only v is coloured blue. (b) One of the parents, u,,
and v are coloured blue.

Figure 4.4: Part of a binary phylogenetic network.

Constraint 6: If both parents have the same colour, then we need to introduce a new colour
This corresponds to requirements 3, 4, and 5 of Chapter 3. This is given in Equation (4.14)

Xevy, T Xev, =1 <Yy Vc€{l12,.,m} Vwsuchthatindeg(w)=2 wv,,v, parentsofw. (4.14)

Equation (4.14) generates Equations (4.15) and (4.16)

Xey, t Xew, =2 = Yew =1, (4.15)
Yew =0 = xgp, + X, =0, 1. (4.16)

Equation (4.15) says that if both parents have colour c, then some colour is introduced in vertex w.
Suppose v; and v, have the same colour, say c,. Then reticulation vertex w must be coloured a new
colour that has not been introduced yet, say colour ¢, with g > r where we have that our set of colours
is C ={cq, 3, .., Cpp} With m > r. This is in Figure 4.5.

@ © e e

(a) v, and v, are coloured (b) v; and v, are coloured
blue. blue and w is coloured green

Figure 4.5: Part of a binary phylogenetic graph. Vertices v; and v, are the parents of vertex w, which is a reticulation vertex.

The following statements are also all included in this equation. Equation (4.16) says that if colour ¢
does not get introduced in vertex v, then exactly 1 of the parents of vertex v must have colour c.

Constraint 7: One of two children must have same colour as vertex
This corresponds to requirements 3 and 4. This is given in Equation (4.17)

Xy < Z Xew VCE{1,2,..m} Vvsdt outdeg(v)#0 W setof children of v. 4.17)
wEW

Equation (4.17) generates Equations (4.18) and (4.19)
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Xy =1 = Z Yow, = 1,2, (4.18)
k=1
2
D ew, =0 = xep = 0. (4.19)

k=1

Equation (4.18) says that if vertex v has colour ¢, then one of the children must have colour ¢ as well.
Equation (4.19) says that if none of the children has colour c, then the vertex also does not have colour

o e e

(a) The vertex and one of its (b) The vertex and both its
children is coloured blue. children are coloured blue.

Figure 4.6: Part of a binary phylogenetic network. Vertices w; and w, are the children of vertex v.

Constraint 8: If a vertex is coloured, then one of its parents must have the same colour or the
colour must be introduced.
This corresponds to requirements 3, 4, and 5. This is given in Equation (4.20)

2

Xep < Yoy + Zxcu Ve€{1,2,.,m} Vve({l,2..,n} u parents ofv. (4.20)
i=0

Equation (4.20) generates Equation and (4.21)

2
Xy =1 = ycv+2xcui =1,23 = yp=1Vie, =1V, =L 4.21)

i=0

Equation (4.21) says that if vertex v is coloured in colour ¢, then one or both of the parents of vertex
v is coloured in colour ¢, or colour ¢ gets introduced in vertex v. Note that these are inclusive ‘or’
statements. Since the ILP wants to minimise y.,, we know that introducing a new colour will be its last
option.
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4.2. Complete ILP

min Z i(ycw

v=1c=1

m
sit. Z Xep =1
c=1
n
z Yev <1
v=1

Xer, T Xer, < 1

xC‘U S xCW

Xeu, + Xeu, S2— Xy
Xcv, + Xev, — 1< Yew

Xy = Z Xewy,

weEW

Xey < Yev + z Xcu;

ueuyu

xC‘U' yC'U € {0' 1}

vve{l?2,.,n}

Ve e{l,2,.,m}
vce{l,2,..,m},
Ve e{l,2,.,m},
vece{l,2,.,m},
vece{l,2,.,m},
vece{l,2,.,m},
vce{l,2,.,m}
vce{l,?2,.,m}

ry, rpdifferent roots

Vv s.t. indeg(v) = 2, w child of v
Vv such that indeg(v) = 2, Uy, U, parents of v
vw such that indeg(w) = 2, vy, U, parents of w

Vv s.t. outdeg(v) # 0, W set of children of v

vv € {1,2,..,n} U set of parents of v

Vv e{l,2,..,n}



Testing the ILP

In this chapter, the ILP is tested with three examples. These examples cover the different possibilities
of proper forest-based networks, forest-based networks and non forest-based networks. The corre-
sponding code can be found in Appendix A.

5.1. Examples

The ILP is tested with multiple examples. In this section, three examples are discussed. These three
examples are chosen because they highlight the different possibilities of whether the phylogenetic
network is forest-based.

5.1.1. Forest-Based Phylogenetic Network

This example is in Figure 5.1. In Figure 5.1a the vertices of the phylogenetic network are not coloured.
When running the ILP with this network, its vertices get coloured as in Figure 5.1b. In this figure, nodes
1, 2, 3, and 4 are coloured blue, nodes 5, 6, 7, and 8 are coloured green, and nodes 9, 10, 11, 12, 13,
and 14 are coloured red.

For all nodes that are coloured the same colour, the collection of nodes and the edges between these
nodes is an optimal base forest in the phylogenetic network. Hence, the collection of nodes 1, 2, 3, and
4 with the arcs connecting these nodes is a base forest. The collection of nodes 5, 6, 7, and 8 with the
arcs connecting these nodes is also a base forest. The collection of nodes 9, 10, 11, 12, 13, and 14
and the arcs connecting these nodes is also a base forest. These three base forests are the optimal
base forests for this phylogenetic network.

In total 3 different colours are needed to colour the network properly. The network has 2 roots, namely
node 1 and 9. The total numbers necessary to colour the network properly is thus greater than the
number of roots. Hence, the network is a forest-based network, but not a proper forest-based network.
This is in alignment with the output of the ILP.

17
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5 11 5

© v oY% e ®

(a) The vertices are not coloured. (b) The vertices are coloured according to the ILP.

Figure 5.1: The colouring of a forest-based phylogenetic network according to the ILP.

5.1.2. Proper Forest-Based Phylogenetic Network

This example is in Figure 5.2. In Figure 5.2a the vertices of the phylogenetic network are not coloured.
When running the ILP with this network, its vertices get coloured as in Figure 5.2b. In this figure, nodes
1,2, 3,4, and 5 are coloured blue. Nodes 6, 7, 8, 9, 10, 11, 12, 13, 14,15, and 16 are coloured green.

The collection of nodes 1, 2, 3, 4, and 5 with the arcs connecting these nodes is a base forest. The
collection of nodes 6, 7, 8, 9, 10, 11, 12, 13, 14,15, and 16 with the arcs connecting these nodes is also
a base forest. These two base forests are the optimal base forests for this phylogenetic network.

In total 2 different colours are needed to colour the network properly. The network has 2 roots, namely
node 1 and 8. The total numbers necessary to colour the network properly is thus equal to the number
of roots. Hence, the network is a proper forest-based network. This is in alignment with the output of
the ILP.
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(a) The vertices are not coloured.
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(b) The vertices are coloured according to the ILP.

Figure 5.2: The colouring of a proper forest-based phylogenetic network according to the ILP.

5.1.3. Non Forest-Based Phylogenetic Network

This example is in Figure 5.3. In Figure 5.3a the vertices of the phylogenetic network are not coloured.
This network is close to the network in Figure 5.1a, only a node is added between 11 and 13 and an
arc is added between nodes 12 and 15.

Suppose we try colouring the network similarly to the network from Figure 5.1. This gives Figure 5.3b.
In this figure, nodes 1, 2, 3, and 4 are coloured blue, nodes 5, 6, 7, and 8 are coloured green, and
nodes 9, 10, 11, 12, 13, 14, and 15 are coloured red. This goes wrong at node 13, as this node does
not satisfy requirement 5. In order to satisfy this requirement, node 13 needs to get a new color. This
leads to Figure 5.3c. In this figure, nodes 1, 2, 3, and 4 are coloured blue, nodes 5, 6, 7, and 8 are
coloured green, nodes 9, 10, 11, and 12 are coloured red, and nodes 13, 14, and 15 are coloured
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yellow. Now requirement 4 is not satisfied, since the red colour ends at node 12 and node 12 is not a
leaf.

When running this in the ILP, it returns that the network is not forest-based, which is the correct outcome.

5 @\ 5

© v o e v ¢®
D—) O—@
® Go) ® )

(a) The vertices are not coloured. (b) The vertices are coloured as one might suspect.
However, requirement 5 is not satisfied at node 15.

'
@
@ © o®

O—@
© @

(c) The vertices are coloured trying to fix the problem at
node 15. However, requirement 4 is not met.

Figure 5.3: Attempts of colouring a phylogenetic network that is not forest-based satisfying the requirements.



Conclusion and Discussion

In this thesis, the problem of determining whether a binary phylogenetic network is forest-based is
approached by transforming it into a colouring problem. This transformation leads to six requirements
that a phylogenetic network must satisfy in order to be forest-based. The colouring problem is translated
into an ILP. This ILP effectively determines whether a binary phylogenetic network is (proper) forest-
based.

The ILP has been tested with approximately 15 examples. This does not guarantee its effectiveness for
every binary phylogenetic network. Further research could involve testing new examples to gain more
certainty. Additionally, it is important to note that the solver CPLEX was used to solve these examples.

The developed ILP is not suitable for non-binary phylogenetic networks. Further research should in-
volve creating an ILP or algorithm to determine whether a non-binary phylogenetic network is (proper)
forest-based. It is important to consider the biological implications here. We can question the plausibil-
ity of a vertex in a phylogenetic network having three incoming arcs, as this would imply simultaneous
gene transfers from two different species. The probability of such events occurring simultaneously is
minimal since it would require multiple species to share genes. A more likely scenario is that the outde-
gree of a species is greater than two, indicating gene sharing with more than two other species, leading
to the emergence of new species.

In general, an ILP is classified as NP-hard. This does not imply that the created ILP is NP-hard as well,
but the computational time is something to look into in further research. Presumably, the computing
time goes up when working with larger phylogenetic networks. Since it is realistic for phylogenetic
networks to be quite big due to their derivation from species evolution, future research should explore
column generation or heuristics as potential methods to reduce computational time.

21
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Code

In the code, lines 11 to 54 contain different graphs that can easily be uncommented. These graphs
function as examples to test the ILP. Line 57 draws the graph. Line 61 creates the LP problem. Lines
64 and 65 contain the decision variables. Line 69 displays the objective function. Lines 76 to 121
contain the constraints. Lines 140 solves the ILP. Lines 141 to 164 show the useful results of the ILP.

import networkx as nx
from pulp import *

m = 5 #number of colours

#Input graphs
G = nx.DiGraph ()

#
# Graph 1: middelste graaf i drew on 2-5-2023 in my schrift: Forest based
#n list = [*range(l, 15, 1)] #list of vertices

#G.add nodes_from(n_list)
#G.add edges from([(1, 2), (2, 3), (3, 4),
# (2, 5), (3, 6),
(5, 6), (6, 7), (7, 8),
(10, 5), (13, 7),
(9, 10), (10, 11), (11, 12), (11, 13), (13, 14)1)

H = H

# Graph 2: Huber2022; Fig 1lii: Proper forest based
#n list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
#G.add nodes_from(n_list)
#G.add edges from([(1, 2), (2, 3), (2, 4), (4, 5), (1, 6), (6, 7),
# (4,14), (11,6),

# (8, 9, (8, 10), (10, 11), (11, 12), (10, 13),
# (13, 14), (14, 15), (13, 16)])

#

# # Graph 3: Huber2022; Fig 2i: Proper forest based

# n list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

# G.add nodes from(n list)

# G.add edges from([(1, 2), (1, 3), (3, 4), (4, 5),

# (6, 7), (7, 8), (8, 9), (6, 10),

# (3, 8), (7, 4)])

#

## Graph 4: graaf die ik op 15 juni naar mezelf heb gestuurd

#n list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

#G.add nodes from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

#G.add edges from([(1, 2), (2, 3), (3, 4), (4, 5), (4, 7), (5, &), (5, 8), (7, 8), (8, 9),
# (10, 2), (10, 11)1)

#
# # Graph 5: Not Forest Based since it doesnt have the same leaf set

23
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45 n_list = [*range(l, 16, 1)] #list of vertices
46 G.add nodes from(n_list)
47 G.add edges from([ (1, 2), (2, 3), (3, 4),

48 (2, 5), (3, 6),

49 (5, 6), (6, 7), (7, 8),

50 (10, 5), (13, 7),

51 (9, 10), (10, 11), (11, 12),
52 (11, 15), (15,13), (13, 14),
53 (12,15)1)

54 4

55

56

57

58

59 nx.draw (G, with labels = True)

60
61

62 #create LP problem

63 Problem = LpProblem(”Colouring Problem”, LpMinimize)

64

65 # DECISION VARIABLES #

66 x_cv = LpVariable.dicts(”coloured”, (range(m), n_list), 0, 1, cat=LpInteger)
67 y cv = LpVariable.dicts(”introduced”, (range(m), n_list), 0, 1, cat=LpInteger)
68

69

70 # OBJECTIVE FUNCTION #

71 Problem += lpSum([y cv([c][v] for c in range(m) for v in GJ])

72

73

74 # CONSTRAINTS #

75

76

77 ## Every vertex needs to be coloured in 1 and exactly 1 colour (eg4.4)

7¢ for v in G:

79 Problem += lpSum([x cv[c][v] for ¢ in range(m)]) == 1

80

81

82 #Introduce a colour maximal once

83 for c in range(m) :

84 Problem += lpSum(y cv[c][v] for v in G) <=1

85

86

87 ## All roots must be coloured a different colour

88 roots = [v for v in G if G.in degree(v) == 0]

89 for ¢ in range(m): #for all ¢ in 1, 2, ..., m

90 for rl in roots:

91 for r2 in roots:

92 if rl != r2:

93 Problem += x cv[c][rl] + x cv[c][r2] <=1
94

95 r = len(roots) #the total number of roots

9
o7
98
9 ## If a vertex has two parents, then its child must have the same colour as the vertex

100
101
102
103
104
105
106

107
108
109
110
11
112
113
114

for ¢ in range(m): #for all ¢ in 1, 2, ..., m
for v in G: #for all v in 1, 2, ..., n
if G.in degree(v) == 2:
children = list (G.neighbors(v))
Problem += x cv[c][v] == 1lpSum([x cv[c][w]

## If both parents have the same colour, then child cannot have that colour AND introduce new

colour
for ¢ in range(m): #for all c¢c in 1, 2, ...,
for w in G: #for all v in 1, 2, ..., n

if G.in_degree(w) ==
vl, v2 = G.predecessors(w) #w 1is
Problem += x cv[c][vl] + x _cv[c]
Problem += x cv[c][vl] + x cv[c]

## One of two children must have same colour as vertex

m

the child of vl and v2
[v2] <= 2 - x cvic][w]
-1 <=y cvic][w]

[v2]

for w in children])
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115 for ¢ in range (m) :

116 for v in G:

17 if G.out degree(v) != 0: #v is not a leaf

118 children = list (G.neighbors(v))

19 Problem += x_cv([c][v] <= 1lpSum([x_cv[c][w] for w in children])

120

121

122 #Vertex v is gekleurd in kleur c implies dat of 1 van de ouders kleur c heeft of kleur wordt
geintroduceerd (dit wil die minimalisefren dus doet ie niet zomaar)

123 for ¢ in range (m) :

124 for v in G:

125 if G.in_degree(v) ==

126 ul, u2 = G.predecessors(v) #parents of v

127 Problem += x cv[c][v] <=y cv[c][v] + x cv[c][ul] + x cv[c][u2]
128 if G.in_degree(v) ==

129 parent = list (G.predecessors(v))

130 ul = parent[0]

131 Problem += x cv[c][v] <= y cv[c][v] + x cv[c][ul]

132 if G.in degree(v) == 0:

133 Problem += x cv[c][v] <= y cv[c][V]

134
135

136

137

138 #print (Problem)

139

140

141 # Result of problem

142 Problem.solve () #CPLEX CMD (msg=0) )
143 status = LpStatus[Problem.status]
144 print (”Status:”, status)

145

146

147 #status = undefined means: feasible solution hasn’t been found but may exist
148 1f status == ”Infeasible” or status == ”“Undefined”:

149 print (“The phylogenetic network is not forest-based”)

150 else:

151 s = value (Problem.objective) #total colours necessary to colour this
152 print (“Total colours necessary:”, value (Problem.objective))

153 print (”“Total roots:”, r)

154 if s == r:

155 print (“This is a PROPER forest-based phylogenetic network”)

156 else:

157 print (“This is a forest-based phylogenetic network”)

158

159 #

160 varsdict {}

161 nodedict = {}

162 completeVarsdict = {}
163 for v in G:

164 for ¢ in range(m):

165 if x cv[c][v].varValue ==

166 print (v, c)

167 #for v in Problem.variables () :

168 # print (v)

169 # if v.varValue ==

170 # text = v.name.replace(”coloured ", ””)
171 ## text = text.replace (”introduced ”, ””)
172 # c, n = text.split(”_")

173 # nodedict[n] = c

174 # varsdict[v.name] = v.varValue

175 # completeVarsdict[v.name] = v.varValue

176

177 #cols = list (nodedict.items())

178 #cols.sort (key=lambda tup: int (tup([0]))

179 #

180 #print ()

181 #for n, ¢ in cols:

182 # print(n, c)

183 #print ()

184 #



185
186
187
188
189
190
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#print (varsdict)
#print (completeVarsdict)

#1if it is coloured, display it

#
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