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"Is that everything? It seemed like he said quite a bit more than that."

Lost in Translation, 2003
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ABSTRACT

One of the most important problems that needs tackling for wide deployment of Au-
tomatic Speech Recognition (ASR) is the bias in ASR, i.e., ASRs tend to generate more
accurate predictions for certain speaker groups while making more errors on speech
from others. In this thesis, we aim to reduce bias against non-native speakers of Dutch
compared to native Dutch speakers. Typically, an important source of bias is insuffi-
cient training data. We therefore investigate employing three different data augmenta-
tion techniques to increase the amount of non-native accented Dutch training data, i.e.,
speed and volume perturbation and pitch shift, and using these for two transfer learning
techniques: model fine-tuning and multi-task learning, to reduce bias in a state-of-the-
art hybrid HMM-DNN Kaldi-based ASR system. Experimental results on read speech
and human-computer interaction (HMI) speech showed that although individual data
augmentation techniques did not always yield an improved recognition performance,
the combination of all three data augmentation techniques did. Importantly, bias was
reduced by more than 18% absolute compared to the baseline system for read speech
when applying pitch shift data augmentation and multi-task training, and by more than
7% for HMI speech when applying all three data augmentation techniques during fine-
tuning, while improving recognition accuracy of both the native and non-native Dutch
speech.

vii





1
INTRODUCTION

1.1. MOTIVATION
Automatic Speech Recognition (ASR) systems have evolved from discriminating among
isolated digits to recognizing telephone-quality, spontaneous speech, allowing for a grow-
ing number of practical applications in various sectors [1]. However, serious challenges
that ASR systems are facing in almost every stage of the speech recognition process never
fade away. As deep learning becomes more and more widely used in modern industry
to solve statistical problems, researchers started to pay attention to the unfairness the
deep learning algorithms are subject to, although deep neural networks (DNNs) are of-
ten considered a harbour of objectivity [6]. State-of-the-art (SOTA) ASR systems are built
on the basis of DNNs, therefore, the fairness concerns are also mounting in recent ASR-
related study. Various works have shown that speech variability due to gender [3, 9, 18],
age [2], speech impairment [14], regional accents [9], racial disparities [19, 11], and non-
native accents [22, 20] lead to recognition accuracy gaps among speaker groups. There
are many reasons for these biases to occur, such as imbalanced training data sets, vo-
cal characteristics of certain speaker groups, mismatch between the test data and the
training data, and specific architectures and algorithms used during ASR system devel-
opment [6].

As globalisation emerges, more and more people do not only speak their mother
tongues. People learn new languages with different motivations - some are tourists,
some are immigrants, some are interested in foreign cultures, some want to acquire cer-
tain knowledge or want to develop extra skills. At the same time, the popularity of using
ASR systems as a natural interface is increasing with the maturity of speech recogni-
tion technology, whereas most non-native speakers who try to use ASR applications will
probably be disappointed by their performance [20]. As seen in [6], the average word
error rate (WER) difference of the SOTA Dutch ASR system is the biggest between native
speakers and non-native speakers (absolute 36.2% and 47.5% in read and human ma-
chine interaction (HMI) speech). Therefore, this thesis primarily focuses on mitigating
the bias, i.e. the WER difference, between native and non-native Dutch speech.
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Previous research suggests that the most major cause of the bias against accented
speech is the lack of accented speech data [Vu2014Impr ovingAP, 12, 21], and various
attempts have been made to reduce the absolute recognition WER of accented speech.
If we would like to offset the negative influence on the recognition accuracy of accented
speech exerted by this lack, the methods widely adopted can be categorized into:

1. Increasing the amount of non-native speech;

2. Improving the learning efficiency of the model when learning from the limited
non-native speech resources.

Data augmentation, which refers to methods for constructing iterative optimization
or sampling algorithms using unobserved data or latent variables [5], is proven effec-
tive in handling data sparsity [4, 10] and enhancing the performance of deep-neural-
network-based acoustic models on accented speech recognition tasks [17]. However, the
application of data augmentation targeting reducing the bias between native and non-
native speech has been very limited. The previous research mentioned above mainly
focused on augmenting the original data, wishing for improvement in recognition ac-
curacy, not in reducing bias. Therefore, this research investigates the effect of applying
data augmentation techniques on non-native speech data as well, for the bias reduction
purpose.

Traditional machine learning techniques try to learn each task from scratch, while
transfer learning techniques try to transfer the knowledge from some previous tasks to a
target task when the latter has fewer high-quality training data [15]. This characteristic of
transfer learning allows it to be a strong candidate for solving the data sparsity problem
in ASR of accented speech, and its effect in reducing the WER of target tasks are proven
remarkable by a number of previous research [8, 17, 7, 13]. Therefore, it comes naturally
that transfer learning could be employed to see if it reduces the bias against non-native
speech. Considering whether the data from source domain and target domain is labeled
or not, transfer learning techniques can be further divided into self-taught learning, fine-
tuning, multi-task learning, domain adaptation, and self-taught clustering [15]. Within
the scope of this research, since the corpora to be used in this research consist of la-
beled data only, fine-tuning and multi-task learning which are set for labeled data are
employed. How these techniques differ and how the categorization of them is done will
be introduced in detail later in 2.

1.2. RESEARCH QUESTIONS
In this research, I aim to reduce the bias against non-native speakers in Dutch ASR sys-
tems using data augmentation techniques and transfer learning strategies. The research
questions are thus as follows:

• Could data augmentation help reduce the bias against non-native accented speech
in ASR systems without causing harm to the recognition accuracy of native speech?

• Could fine-tuning and multi-task learning be effective in reducing bias against
non-native accented speech without causing harm to the recognition accuracy of
native speech, when compared with standard training methods?
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1.3. OVERVIEW
To answer the research questions above, experiments have been conducted accordingly.
Kaldi [16], an open-source speech recognition toolkit written in C++, is used to build
a SOTA Dutch ASR model which serves as the baseline. Then the application of data
augmentation and transfer learning strategies are performed to investigate their effect
in reaching the goal of answering the questions. The structure of the thesis is: In chapter
2, we introduce the working principle of an ASR system, and the mechanism of Kaldi
toolkit; in chapter 3, we take a closer look at the actual approaches when conducting the
experiments, and the pipeline of building an ASR system with Kaldi; in chapter 4, our
experiments and the corresponding results are presented along with some discussion;
in the final chapter, chapter 5, a brief conclusion about this research project is given,
along with a possible future work plan.
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2
BACKGROUND

This chapter provides basic background information about ASR, which starts from an
overview of the ASR system, and then describes the building process of acoustic model
and language model. Furthermore, how deep learning plays a role in modern ASR sys-
tems, how the training strategies - fine-tuning and multi-task learning - exert influence
on the tasks, and how the Kaldi toolkit does the modeling in a slightly different fashion
compared with the theory, are introduced. Last but not least, the evaluation metrics used
in this work is presented.

2.1. AUTOMATIC SPEECH RECOGNITION
ASR lies within the field of pattern recognition. As its name suggests, an ASR aims to
recognise a given input speech signal and output the most likely word sequence corre-
sponding to it. If a sequence of acoustic feature vectors X = (x1, x2, x3, ...) is extracted
from input speech signal, and W denotes a word sequence, the most likely word se-
quence W ∗ can be computed by:

W ∗ = ar g maxW P (W |X ) (2.1)

applying Bayes’ Theorem to simplify the calculation:

W ∗ = ar g maxW P (W |X ) = ar g maxW P (X |W )P (W ) (2.2)

where P (X |W ) is the likelihood of the feature vector sequence extracted from the given
word sequence W . Since the prior probability of the feature vectors P (X ) is the same for
all possible word sequences, it is ignored during the maximisation of ar g maxW P (W |X ).
P (X |W ) predicts what speech units each speech segment corresponds to, so it is called
the acoustic model. P (W ) is the likelihood of the word sequence, which is computed
from a probability distribution over sequences of words, i.e. the language model.

The architecture of ASR is shown in Figure 2.1. Firstly, the input signal is pre-processed
to extract features, which derive the characteristics of speech. In this process, the speech

7
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signal is divided into small segments, and the features are extracted from each segment.
In this research, Mel-Frequency Cepstral Coefficients (MFCCs) are employed as the fea-
tures, which can be extracted from the original sound clip through windowing, applying
discrete Fourier transform (DFT), taking the log of the magnitude, and then warping the
frequencies on the Mel scale, lastly performing the inverse discrete consine transform
(IDCT) of the log filterbank energies. The next step is to search for the word sequences
with the highest probability using the acoustic model, the language model, and a lex-
icon that maps the words to phones. In hybrid ASR models, the Viterbi algorithm is
commonly used to carry out this decoding process.

Figure 2.1: Process of generating an ASR system

2.1.1. ACOUSTIC MODEL
The acoustic model aims to model a sequence of features given a sequence of words
(phones). The transition between phones and its corresponding features, say, MFCCs,
can be modeled with the Hidden Markov Model (HMM); the distribution of features can
be modeled with a Gaussian Mixture Model (GMM), which is used to estimate the like-
lihoods that act as the HMM state observation (features in our case) probabilities. SOTA
acoustic model for Dutch is built with deep neural network (DNN) [20]. DNN replaces
the position of GMM, which leads to the development of models surpassing the accuracy
of GMM-based models.

HIDDEN MARKOV MODEL

HMMs provide a simple and effective framework for modelling the units of speech (e.g.
phones, words) as sequences of states. As shown in Figure 2.2, the top row of nodes are
internal states, which generally represent phones in a lexicon, while the lower row of
nodes represent observable measurements, such as MFCC features. The probability of
observing an observable feature xt given an internal state i is called the emission prob-
ability. The probability of transitioning from one internal state i to another state j is
called the transition probability, and can be denoted as ai j . On entering a state xt , a fea-
ture vector is generated under the emission probability bi (xt ) associated with the state
being entered [8].
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Figure 2.2: Hidden Markov Model

GAUSSIAN MIXTURE MODEL

GMMs model the distribution of the emission probability bi (xt ) mentioned above. By
assuming that bi (xt ) follows a Gaussian distribution, the aforementioned likelihood P (X |W )
can be modelled as

P (X |W ) = a01

T∏
t=1

bt (xt )at t+1 (2.3)

where T is the total number of states. How the GMM is combined with HMM is illus-
trated in Figure 2.3.

Figure 2.3: GMM-HMM acoustic model

DEEP NEURAL NETWORK

Researchers found that in phoneme recognition, applying neural nets (NN) gives better
recognition performance than traditional GMM-HMM models at the beginning of 90s
[19]. This suggests NN has the potential to construct better acoustic models than GMM.
The increase in computational power has also enabled more powerful deep neural net-
works (DNNs) - in particular time-delay neural networks (TDNNs) [16], convolutional
neural networks (CNNs) [1], long short-term memory (LSTM) recurrent neural networks
(RNNs) [10], and bidirectional LSTMs [9] - to be employed for the role of GMM[3]. How
DNNs are combined with HMMs is illustrated in Figure 2.4. In this section, starting from
a basic introduction of deep learning, the application of DNN in acoustic modelling is
introduced.

Machine learning refers artificial intelligence (AI) algorithms which identify patterns
from mass data, and make predictions. Deep learning is a subcategory of machine learn-
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Figure 2.4: DNN-HMM acoustic model

ing, where by ’deep’ it means that deep learning craves more data than machine learning
does. Deep learning algorithms are built on the basis of neural network (NN) layers,
each of which comprises small units named neurons that perform non-linear transfor-
mations. Feedforward neural networks (FNNs) are the essential deep learning models,
where ’feedforward’ indicates that the data flow from the input goes straight to the out-
put without data flowing backward. The goal of a feedforward network is to approximate
some function f ∗. For example, for a classifier, y = f ∗(x) maps an input x to a category
y . A feedforward network defines a linear mapping y = f (x;θ) and learns the value of
the parameters θ that result in the best function approximation. Within the scope of
acoustic modelling, the DNN maps the emission probabilities of certain phones to the
corresponding features. 2.5 illustrates the structure of a basic FNN.

Figure 2.5: Feedforward neural network architecture[11]

To make the mapping function f ∗(x) close to the actual function f (x) as much as
possible, activation functions are used to introduce non-linearity to linear FNNs, and
loss functions are used to quantify how far the predicted outputs of the network are
from the actual scenarios. Common loss functions include Mean Squared Error (MSE)
for regression problems and cross-entropy for classification problems. In general, cross-
entropy and its modified versions are commonly used in ASR tasks. Because of the non-
linearity caused by activation functions, many loss functions applied in neural networks
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become non-convex. Therefore, gradient-based optimizers such as stochastic gradient
descent are used in training deep neural networks, which minimizes the loss functions
iteratively. The gradient of the loss function with respect to the parameters θ is com-
puted in each step, then θ is updated in the opposite direction of the gradient, hence
minimising the value of the loss function. Some widely adopted gradient-descent algo-
rithms are, to name a few, stochastic gradient descent, momentum, root mean squared
propagation (RMSprop), and adaptive moment estimation (Adam).

Convolutional neural networks (CNNs) [14] are originally proposed for image recog-
nition problems with their unique advantage of capturing spatial structures of images,
assuming nearby pixels are correlated with each other. This characteristic allows it to be
applied in speech recognition tasks, since the features of speech can also be visualised
as images. In [14], a CNN-HMM hybrid acoustic model was applied in the ASR system,
which had better performance in speech recognition tasks than GMM-HMM based sys-
tem.

Time Delay Neural Networks (TDNNs) [16] are one-dimensional CNNs, also perform
relatively well and efficiently as acoustic models in the field of speech recognition [7].
There are many popular variations of TDNN in its family, including time delay neural
network factorisation (TDNNF) [18], time delay neural neural network with long short-
term memory (TDNN-LSTM) [17], and time delay neural network with bidirectional long
short-term memory (TDNN-BLSTM) [5]. TDNNF has been picked as the baseline acous-
tic model due to its relative low bias against non-native speech of Dutch compared with
TDNN-LSTM and TDNN-BLSTM [7].

The TDNNF, which will be applied in the experiments later, is inspired by the SVD
(Singular Value Decomposition) method of reducing network parameters, which has be-
come popular in recent years. SVD factorises the network weight matrix into two smaller
matrices and discarding the smaller singular values [18].

Povey [18] applied SVD to TDNN and added a series of strategies such as L2 reg-
ulation, "floating" semi-orthogonal constraint, 3-stage convolution per-layer, dropout,
skipping connections, etc. The result is the TDNNF, which is structurally the same as a
TDNN whose layers have been compressed via SVD, but is trained from a random start
with one of the two factors of each matrix constrained to be semi-orthogonal. This
boosts the computational efficiency of TDNNs and performs equally well as TDNN-
LSTM hybrid systems. The overall architecture of a TDNNF is illustrated in Figure 3.1:

Figure 2.6: TDNNF

where the difference between an original TDNN block and TDNNF block can be
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viewed intuitively in Figure 2.7.

Figure 2.7: TDNNF in comparison with TDNN

As shown above, the major difference between TDNNF and TDNN is that the original
weight matrix W is decomposed into two matrices M and N , and N is constrained to be
semi-orthogonal. By doing so, the results obtained with a TDNNF model are often better
than previous TDNN-LSTM and BLSTM results, while being much faster to decode [18].

2.1.2. LANGUAGE MODEL
The language model calculates the likelihood of a sequence of words P (W ). It predicts
the next word given the previous words. The prior probability P (W ) of a word sequence
W = w1, w2, ..., wK is:

P (W ) =
K∏

k=1
P (wk |wk−1, ..., w1) (2.4)

By approximating it using a first-order Markov chain, the word following the current
word depends on the current word only, and this kind of model is named as bigram (2-
gram) and the equation above can be further simplified as:

P (W ) =
K∏

k=1
P (wk |wk−1) (2.5)

The current word is determined by the N preceding words, and this kind of model is
named n-gram. When n = 3, the prior probability is calculated as follows:

P (W ) =
K∏

k=1
P (wk |wk−2wk−1) (2.6)

P (wk |wk−2wk−1) = c(wk−2wk−1wk )

c(wk−2wk−1)
(2.7)

where c(wk−2wk−1wk ) denotes the total number of occurrence of word sequence wk−2wk−1wk

in the dataset used, c(wk−2wk−1) corresponds to the occurrence of wk−2wk−1. For tri-
gram (3-gram) or other n-gram models, the corpus may still have weird word combina-
tions, so the data sparsity problem usually arises. Smoothing or pruning are mainly em-
ployed as the solution, which helps avoiding the probability of occurrence of a sequence
of words being zero.
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2.1.3. LEXICON

The most basic form of a lexicon is a set of words, followed by their pronunciation sep-
arated into units of word pronunciation, i.e. the phones. As its name suggests, it can be
viewed as a dictionary for the dataset.

The lexicon bridges the acoustic model and the language model. As introduced above,
the AM is defined via connecting the HMM of pronunciations and the feature vectors
extracted from the speech recordings (MFCCs in our case). As we denote the acoustic
feature be X , the AM models P (X |W ), the likelihood of an observable feature given a
particular word. The LM estimates the prior probability P (W ) of a word in the tran-
scripts. Between these two models, the lexicon maps the words from the LM to the fea-
tures in the AM. By using AM and LM models in conjunction, the decoding procedure
can be executed employing algorithms like Baum-Welch and Viterbi to compute the pos-
terior probability P (W |X ), which represents the likelihood of a sequence of words given
the features of speech signals. Speech recognition is done through picking the word se-
quence with the highest probability.

2.2. DATA AUGMENTATION

Data augmentation attempts to synthetically produce extra training data with a closer
match to the target speaker, by transforming the original training data [3]. It has been
proven to be an effective way to decrease the acoustic mismatch between training and
testing conditions, since data augmentation approaches supplement the training data
with distorted or synthetic variants of speech, with characteristics resembling the tar-
get acoustic characteristics, for instance a slower/faster speaking speed, a lower/higher
volume or pitch. Other popular data augmentation techniques like SpecAugment were
not tried out since they mostly only make changes to the spectrogram of original speech
without increasing the amount of data.

By re-scaling the speed of the speech recordings in the time domain with a pertur-
bation factor, both the audio duration and the spectral envelope are changed via speed
perturbation [13]. When the value of the perturbation factor is bigger than 1 then the
recording will be accelerated. When the value of perturbation factor is smaller than 1
the recording will be decelerated. Similarly, volume perturbation [13] re-scales the vol-
ume of the audio segments.

The pitch shift technique allows the original pitch of a sound to be raised or low-
ered [4]. As the features are extracted in the frequency domain, recordings with higher
frequency (Hz) produce MFCCs of better quality [2].

2.3. TRAINING STRATEGIES

Based on the availability of labels in data sets, the transfer learning techniques can be
categorised as shown in Table 2.1.

Since the Dutch data sets used in this research comprises labelled data only, fine-
tuning and multi-task learning are naturally adopted as my training methods.
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Source Data
labelled unlabelled

Target Data labelled
Fine-tuning
Multi-task Learning

Self-taught Learning

unlabelled
Domain adversarial training
Zero-shot Learning

Self-taught Clustering

Table 2.1: Categorisation of transfer learning techniques

2.3.1. FINE-TUNING

Fine-tuning is a sub-category of transfer learning, which means taking the weights of
a trained neural network and using it as initialization for a new model being trained
on new data. It is usually used to speed up the training, or overcome the sparse data
problem since it’s relatively efficient compared with training from scratch. There are
various strategies within the scope of fine-tuning, such as training the whole initialized
network or "freezing" some of the pre-trained weights (usually whole layers).

2.3.2. MULTI-TASK LEARNING

During multi-task learning, the system is trained for multiple tasks simultaneously us-
ing shared information. The idea is that this allows the model to exploit similarities and
differences between the two tasks to create a model that is better able to generalise than
models trained on a single task. Multi-task learning, where the secondary task is ac-
cent/dialect recognition, has been explored by a number of researchers [6, 21, 12] in the
context of hybrid models, and improvements with multi-task learning have been ob-
served in these research.

Multi-task learning aims to learn to produce generalized speech representations that
are not too task-specific so that they can be be shared across different tasks. Through
sharing knowledge, the data becomes more ample for each task. It also allows the model
to learn representations transmitting enough knowledge for all of the tasks. An example
of DNN with multi-task learning is displayed in Figure 2.8.

Figure 2.8: Multi-task Learning with shared layers

The task-specific parts of the network begin with the same representation from the
last shared layer.
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Multi-task learning improves the generalizability of this representation because learn-
ing multiple tasks forces the model to focus on the features that are useful across all of
the tasks. Assuming the tasks are correlated, a feature that is important for Task A is
also likely to be important for Task C. The opposite is also true; unimportant features are
likely to be paid less attention by the system across all the tasks.

Multi-task learning also effectively increases the size of datasets, since the datasets
for each task are shared. By adding more samples to the training set from different tasks,
the model will learn to better ignore the task-specific noise or biases within each indi-
vidual data-set.

The loss function for a multi-task learning model is as follows:

LMT L =λ1Lt ask1 +λ2Lt ask2 + ...+λnLt askn (2.8)

where n denoted the total number of tasks and all the λs sum up to 1.

2.4. ASR SYSTEM BUILT WITH KALDI
This section focuses on the implementation process of a hybrid ASR system using Kaldi
toolkit. The baseline TDNNF model was built with Kaldi since it outperformed E2E
model in terms of the absolute bias, so I will follow this and use Kaldi toolkit to build
my model as well.

2.4.1. TRIPHONE
Speech is continuous. The pronunciation of a certain phone is influenced by the pre-
ceding and following phones, for example, the ’/t/’ sounds differently in ’suit’ and ’tube’.
Therefore, the acoustic phonetic context of a speech unit does affect its acoustic real-
ization. As shown in Figure 2.9, ’speech’ is labelled as si l − s + pi y − ch + si l , where −
indicates that i y is followd by ch and + means p follows s. This representation method
which includes the context of a phone is called a triphone.

Figure 2.9: Triphone and state-clusered triphone

However, one issue with using triphones is that the number of states is exponentially
increased during computation. In practice, many states have similar output distribu-
tion, so they can share the same Gaussian model, which is called state-clustering, as
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we can see in Figure 2.9 as well. This clustering process can be efficiently implemented
using phonetic decision trees, which are binary trees with a series of ’yes’ or ’no’ ques-
tions regarding the right and left context of every phone. As shown in Figure 2.10, for
each monophone, a decision tree will be built involving an algorithm that aims local
optimum: the algorithm picks the question that allows the data to be split resulting in
the highest likelihood under the HMMs. Note that in Figure 2.10, the square box denote
HMM, i.e. the cluster of triphones.

Figure 2.10: How decision tree splits data[15]

A triphone model built with this fashion was the very first step of the experiments.

2.4.2. WEIGHTED FINITE STATE TRANSDUCER ( WFST)
Kaldi-based ASR system is framed in a WFST context, where each ASR component cor-
responds to a transducer, and the ’weights’ denote transition probabilities from input to
output of the transducer. The transducers used in a Kaldi-based ASR system are shown
in table 2.2. The H transducer maps hidden states of an HMM to context-dependent

Transducer Description input output
G word-level grammar words words
L pronunciation lexicon phones words
C context-dependency CD phones phones
H HMM HMM states CD phones

Table 2.2: Transducers used in a Kaldi-based ASR system

(CD) phones and C maps CD phones to context-independent phones, afterwards the L
and G transducers map phones to words and then to sentences. The overall combined
transducer H ◦C ◦ L ◦G represents the mapping from HMM states to word sequences
restricted by G .

This process can be expressed as:

HC LG = mi n(det (H ◦mi n(det (C ◦mi n(detL ◦G))))) (2.9)

With the equation above, the decoding can be done in an efficient way.
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2.4.3. WORD LATTICE
When decoding a traditional GMM-HMM model, word lattices are required. A lattice in
Kaldi refers to a representation of the alternative word-sequences that are "sufficiently
likely" for a particular utterance, and is used as a data-structure frame and saves the
N-best sequence paths with a more compact form to deal with the large dimensional
search problem. Suppose an utterance with T frames will be decoded, we construct an
acceptor named U , which has T +1 states with an arc for each combination of time and
context-dependent HMM state. Then the search graph (S) of the utterance is defined as:

S =U ◦HC LG (2.10)

The decoding problem is equal to finding the best path through S. In practice, Viterbi
decoding using maximum likelihood (ML) is used to find the best path.

The final pruned lattice is set as P and its inverse is Q = i nv(P ). Another acceptor is
denoted by E , whose symbols equal to the input symbol (word) on the corresponding arc
of Q, and the weights on the arcs of E containing both the weight and the output symbol
(p.d.f.), if any, on the corresponding arcs of Q. Here E can be regarded as an encoded
version of Q. The generated lattice L is:

L = pr une(det (r meps(E)),α) (2.11)

We obtained HMM state-level alignment information via determinization. Through
pruning, only the best-scoring path for each word sequence is retained.

2.4.4. EVALUATION CRITERIA

WORD ERROR RATE

Automatic speech recognition performance is typically evaluated using the WER. The
WER is exactly the Levenshtein distance between the prediction and the ground truth,
i.e. the minimum number of single-character edits (insertions, deletions, or substitu-
tions) required to change the prediction into the true sentence. WER is computed as:

W ER = S +D + I

N
(2.12)

Where S is the number of substitutions, D is the number of deletions, I is the number of
insertions, and N is the number of words in the reference transcript. Figure 2.11 gives an
example of how WER is calculated. A lower WER indicates that the prediction generated
appears to be more accurate.

Although WER is used widely as the mainstream metric for evaluating the perfor-
mance of ASR systems, the drawback still exists: it cannot differentiate between impor-
tant words and words that are not essential to the sentences.

BIAS

In this research, the bias against non-native accents is quantified as the absolute WER
difference between the native speech data and the non-native accented speech data
tested with the same ASR model. It can be expressed as:

Bi as = |W ERnon−nati ve −W ERnati ve | (2.13)
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Figure 2.11: An example of WER
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3
METHODOLOGY

In this chapter, the datasets, the data augmentation techniques, and the training meth-
ods used in this research are explained in further detail.

3.1. DATASETS

3.1.1. THE SPOKEN DUTCH CORPUS
CGN[4], which abbreviates from Corpus Gesproken Nederlands, is a Dutch corpus con-
taining native speech data spoken by speakers from the Netherlands and Flanders. The
size of the corpus is close to ten million words (about 1,000 hours of speech), two thirds
of which originates from the Netherlands and one third from Flanders. The data recorded
in only the Netherlands are used to train the ASR systems. CGN is a dataset of contempo-
rary standard monologue and multilogue Dutch as spoken by adults (age 18-approximately
60 years) in The Netherlands and Flanders, which covers different speaking styles includ-
ing read, broadcast news (BN), and conversational telephone speech (CTS).

The CGN corpus is further divided into 15 different speech data components as shown
in the list below. Among the 15 components, components a −h are multilogue speech
data, while components i −o are monologue speech data.

• Component a: face-to-face spontaneous conversations,

• Component b: interviews with teachers of Dutch,

• Component c: spontaneous telephone dialogues recorded via a switchboard,

• Component d: spontaneous telephone dialogues recorded with local interface,

• Component e: simulated business negotiations,

• Component f : interviews/discussions/debates (broadcast),

• Component g: (political) discussions/debates/meetings,

21
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• Component h: lessons recorded in a classroom,

• Component i: live commentaries (broadcast),

• Component j: newsreports/reportages (broadcast),

• Component k: news (broadcast),

• Component l: commentaries/columns/reviews (broadcast),

• Component m: ceremonious speeches/sermons,

• Component n: lectures/seminars,

• Component o: read speech.

All the components above add up to 483 hours of speech from Netherlands in total
duration. The pre-processing of the CGN data follows the recipe by [5], which segments
the audio clips into smaller snippets of at least 6 seconds in duration and then removes
the silent parts which are regarded as meaningless, leading to a final actual data set with
423-hour speech recordings, which is denoted by Ctr ai n . How the training set was picked
also follows what has been done in [5].

3.1.2. JASMIN-CGN
As an extension of the CGN corpus, JASMIN-CGN[1] consists of read speech and human-
machine interaction (HMI) speech spoken by native speakers who are children, teenagers
and older adults and non-native speakers who are teenagers and adults. The non-native
speakers come from 37 different countries, including Afghanistan, Andorra, Egypt and
Spain. Same as how CGN is used, native speech from only Netherlands is used. The gen-
eral information about these 5 speakers groups in JASMIN-CGN corpus is listed below.

• DC: native Dutch children; age 6-13; 12 hours 21 minutes of raw speech data,

• DT: native Dutch teenagers; age 12-18; 12 hours 21 minutes of raw speech data,

• DOA native Dutch older adults; age greater than or equal to 59, 9 hours 26 minutes
of raw speech data,

• NNT: non-native teenagers; age 11-18; 12 hours 21 minutes of raw speech data,

• NNA non-native adults; age 19-55; 12 hours 21 minutes of raw speech data.

Following the same recipe [5] introduced in the above section, the recordings in
JASMIN-CGN are pre-processed, resulting in a cleaned data set of 36.12 hours in dura-
tion. The non-native test sets are handpicked from the corpus to make it as fair as possi-
ble - by ’fair’ I mean the test set consists of speakers who are native and non-native, male
and female, children, teenagers, and older adults, each with an equal portion. For each
group of speakers (DC, DT, DOA, NNT and NNA), 6 speakers (3 female and 3 male speak-
ers) who record both read and HMI speech data are selected. What’s left in JASMIN-CGN
after picking out the test sets is used as the training set.

The test sets are listed below.
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• RD : native Dutch read speech; 1.45 hours; consisting of RDC , RDT and RDO A ,

• RN N : non-native read speech; 1.63 hours; consisting of RN N T and RN N A ,

• HD : native HMI speech; 0.68 hours; consisting of HDC , HDT and HDO A ,

• HN N : non-native accented HMI speech; 0.36 hours; consisting of HN N T and HN N A .

3.2. BASELINE STATE-OF-THE-ART ASR SYSTEM FOR DUTCH
Starting with a monophone system trained with Kaldi, the initial HMM topology was
created. An initial triphone model was first trained, then TDNNF-based acoustic models
are built on top of this basic triphone model, replacing the GMM obtained from previous
stages, but with the same HMM used as before.

The baseline model, the TDNNF hybrid DNN-HMM architecture built with Kaldi
from [2], is illustrated in figure 3.1. The TDNNF model consisted of 12 TDNNF layers
of dimension 1024, and was trained with the lattice-free maximum mutual information
(LF-MMI) criterion for 4 epochs. 100-dimensional i-vectors were appended to the high
resolution MFCC input features for speaker adaptation purposes. Context-dependent
phone alignment labels used for training the AM were obtained by using a GMM-HMM
trained beforehand with the same training data as that for the TDNNF. The baseline

Figure 3.1: Architecture of the employed TDNNF AM.

model was trained with Ctr ai n .

3.3. DATA AUGMENTATION
Three different data augmentation techniques were investigated and compared. The
data is augmented two-fold by each of the augmentation techniques, which generated 2
times the original data in terms of total length.

3.3.1. SPEED PERTURBATION
The standard Kaldi speed perturbation script that re-scales the speed of the speech record-
ings in the time domain is used. The perturbation factors we applied were {0.9,1,1.1}.
Given an audio segment x(t ), the scaling factor α is applied along the time axis, giving
the output y(t ) as follows:

y(t ) = x(αt ) (3.1)
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In frequency domain, this corresponds to the change below:

X ( f )−> 1

α
X (

1

f
) (3.2)

where X ( f ) and 1
α X ( 1

f ) represent the Fourier transform of x(t ) and y(t ) respectively. In
this way, speed perturbation leads to both change in audio duration and perturbation in
spectral envelope [3].

3.3.2. VOLUME PERTURBATION
Similar to speed perturbation, volume perturbation [3] re-scales the volume of the au-
dio segments. We used the standard Kaldi script that modifies the wav.scp to perturb
the volume. The same rescaling factors as used for speed perturbation are applied for
volume perturbation, {0.9,1,1.1}.

3.3.3. PITCH SHIFT
The pitch shift technique allows the original pitch of a sound to be raised or lowered. In
our work, which uses the l i br osa function l i br osa.e f f ect s.pi tch_shi f t , the pitches
of audio snippets are shifted by {±2} semitones. A semitone corresponds to multiplying

the number of Hertz (Hz) by 2
1
2 .

3.4. TRANSFER LEARNING
Two transfer learning techniques were investigated and compared to each other and
standard training (referred to as in-domain training).

3.4.1. FINE-TUNING
Fine-tuning takes the initial baseline model trained on Ctr ai n , and then trains the new
model with a target data set. The model is trained for four epochs, following the scheme
used in the baseline. Layer transfer was employed during training, where the values of
parameters are transferred from the baseline to be the initial values of the new model.
During fine-tuning, the baseline Gaussian Mixture Model (GMM), i-vector extractor, tree,
and TDNNF architecture are used, while the target training data and a fused tri-gram
language model in which the word combinations and words from both Jamin-CGN and
CGN are used, as Jasmin-CGN contains phones and words unseen in CGN.

3.4.2. MULTI-TASK LEARNING
Figure 3.2 shows how multi-task learning is implemented in the AM in our TDNNF-
architecture.

During multi-task learning, the model is trained for recognition of the speech in CGN
and recognition of the speech in Jasmin-CGN. The acoustic features and the acoustic
model are shared except for the last hidden layer of the neural network in the AM. The
features include 100-dimensional i-vectors extracted from the global i-vector extractor
trained on both CGN and Jasmin-CGN and appended to the MFCC features. The AM is
the TDNNF and the LM is the fused tri-gram language model in which the text and words
from both Jamin-CGN and CGN are used.
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Figure 3.2: Multi-task Learning

The loss of the whole network is computed as a weighted sum of cross-entropy losses
at two different output layers; they weigh the same (0.5) in our case.

3.5. EXPERIMENTS AND EVALUATION
In our experiments, the native Dutch speech from CGN Ctr ai n was used to train the ini-
tial baseline model after which a new model was trained using fine-tuning and multi-
task learning.

Training data from the Jasmin-CGN and CGN is augmented and fed into the network
simultaneously when doing in-domain training and multi-task learning, while fine-tuning
is performed on the basis of an AM trained with CGN and its augmented data. Five sets
of target data consisting of both native and non-native Dutch are created and used for
fine-tuning, multi-task training and added to the training set for in-domain training:

• a) the original Jtr ai n speech data;

• b) speed perturbed speech from Jtr ai n ;

• c) volume perturbed speech from Jtr ai n ;

• d) pitch shifted speech from Jtr ai n ;

• e) b+c+d

Both the native and non-native accented speech from Jasmin-CGN is used for speech,
volume and pitch shift augmentation. Thereafter the training is carried out in three ways
as below for each of the above five data combinations:

• In-domain training: The model is trained on the CGN Ctr ai n and the Jasmin-CGN
and the augmented data simultaneously [i.e., data a) to e)].

• Fine-tuning: The baseline model trained on Ctr ai n is fine-tuned with the Jasmin-
CGN data and the augmented data [i.e., data a) to e)].

• Multi-Task Learning: The model is trained on the CGN Ctr ai n and the Jasmin-CGN
and the augmented data simultaneously [i.e., data a) to e)]. The last hidden layer
and output layer are independent per data set.
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All 15 models are evaluated on the four defined test sets of JASMIN-CGN in terms of
the word error rate (WER). Bias is defined as the difference in WER between the native
Dutch speakers and the non-native Dutch speakers, and calculated for read speech and
HMI speech separately.

3.6. DATA PREPARATION
The Kaldi recipes require some standard input files to build an ASR system, and these
files can be prepared using the corpora. The data preparation stage mainly consists of
processing of the recordings in the database, and processing of the lexicon, the phone
set, and meta-data about the phone set which Kaldi needs. For acoustic data, the follow-
ing files are needed:

• text

The file "text" contains the transcriptions of each utterance with the first element
represents the utterance-id. The format of this file is <utterance-id> <transcripts>:

N08006-fn008183.1 ggg
N08006-fn008183.10 ja

N08006-fn008183.103 ja
N08006-fn008183.104 ja

...

• wav.scp

The format of this file is <recording-id> <extended-filename>:

fn008053 sox -t wav ...data/audio/wav/comp-c/nl/fn008053.wav -b 16 -t wav - remix - |
fn008093 sox -t wav ...data/audio/wav/comp-c/nl/fn008093.wav -b 16 -t wav - remix - |

...

• utt2spk

This file shows that for each utterance, which speaker spoke it. The format is
<utterance-id> <speaker-id>:

N08006-fn008183.1 N08006
N08006-fn008183.10 N08006

N08006-fn008183.103 N08006
N08006-fn008183.104 N08006

...

• spk2utt

The format of spk2utt is <speaker-id> <utterance-id1> <utterance-id2> ....:
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N08006 N08006-fn008183.1 N08006-fn008183.10 N08006-fn008183.103 ...

• feats.scp

This file is related to the feature extraction process and the format is <utterance-
id> <extended-filename-of-features>. In the following example, the second ele-
ment means when opening the "archive" file .../eg s/kaldi _eg s_CGN /s5/d at a/dev_t/d at a/r aw_m f cc_dev_t .1.ar k,
fseek() to position 18, and the computer reads the data stored there.

N08006-fn008183.1 .../egs/kaldi_egs_CGN/s5/data/dev_t/data/raw_mfcc_dev_t.1.ark:18
N08006-fn008183.10 .../egs/kaldi_egs_CGN/s5/data/dev_t/data/raw_mfcc_dev_t.1.ark:1930

N08006-fn008183.103 .../egs/kaldi_egs_CGN/s5/data/dev_t/data/raw_mfcc_dev_t.1.ark:2296
...

These files map the information of certain speech segment to the corresponding
speaker.

The second group of data files are for the language model. The essential LM-related
files are:

• lexicon.txt

The lexicon.txt file for both CGN and Jasmin-CGN are modified from the lexi-
con given by each database. Only orthographic and phonetic information are ex-
tracted. For JASMIN-CGN, silences are denoted by []. The repeated entries for the
same word on multiple lines are removed from lexicon. An example of file lexi-
con.txt is as follows:

aalmoezenier a l m u z @ n i r
aalmoezeniersdienst a l m u z @ n i r z d i n s t

aalscholver a l s x O l v @ r
aalscholvers a l s x O l v @ r s

...

The first element is the word and the following items are the corresponding tran-
scriptions in terms of phonemes.

• nonsilence_phones.txt

This file includes all phones listed in the transcripts. Different duration-dependent
versions of the same phone are expressed using the ′ :′ symbol:

• silence_phones.txt & optional_silence.txt

silence_phones.txt contains two markers SIL and SPN which are abbreviation of
"silence word" and "spoken noise" respectively. SPN is linked together with <UNK>,
which means unknown phones. Kaldi maps all words that appear in training data
but not in the lexicon to <UNK>. Similarly, the file optional_silence.txt only con-
tains SIL.
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2
2:
@
@:
...

When viewing both Jasmin-CGN and CGN as in-domain data, the text files above
are merged together as a whole.

• extra_questions.txt

Additional questions used when generating decision tree during state-clustering
are listed in this file. These questions are used during data splitting.

The final step of preparing data is generating a WFST form for the grammar(G
transducer) and lexicon(L transducer) respectively using the language files ob-
tained.
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4
RESULTS

Several hybrid TDNNF DNN-HMM architectures are trained using different sets of aug-
mented data obtained with the three data augmentation techniques on the basis of the
baseline hybrid TDNNF DNN-HMM. Model performance is analysed in comparison with
the baseline results on native and non-native accented Dutch.

4.1. RESULTS
Our baseline ASR system was first evaluated on the CGN test sets to investigate its per-
formance on in-domain data, making sure that it recognises native Dutch speech well.
Subsequently, we investigate the new models’ performance on the Jasmin-CGN test sets.

4.1.1. BASELINE RESULTS

CGN does not have an HMI set, so instead we tested the baseline on a similar speaking
style: conversational telephone speech. Table 4.1 shows the recognition and bias results
of the baseline model, trained only on the CGN native speech, for read speech and con-
versational speech separately. Average Dutch (AvgD refers to the WER averaged over all
the native Dutch speakers and Av(era)g(e)N(on-native) speakers refers to the WER aver-
aged over all the non-native Dutch speakers.

Read speech is better recognised than conversational speech. At the same time, the
bias against non-native listeners is about twice as large for read speech than conversa-
tional speech.

4.1.2. DATA AUGMENTATION AND TRANSFER LEARNING RESULTS

Table 4.2 shows the recognition results for the native and non-native speech and the
bias results for read speech (BR ) and HMI speech (BH ) separately for the three training
methods with the five different data augmented training sets. The WER is averaged over
all native Dutch speakers and all non-native Dutch speakers respectively on read speech
and HMI speech.
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For in-domain training, we observe that the different data augmentation techniques
when applied alone give little to no improvement in recognition performance for both
the native and non-native speakers. Applying all three data augmentation techniques,
however, leads to a reduction in WER and the lowest WER for both the native and the
non-native speaker groups for both read speech and HMI speech. The lowest bias for
HMI is also obtained when using all three data augmentation techniques, while for read
speech the lowest bias was observed when volume perturbed data was added.

When fine-tuning is applied we observe a similar trend as for in-domain training,
different results when different data augmentation techniques are applied alone, with
the best recognition results obtained when all three data augmentation techniques are
applied for both native and non-native speakers and both read and HMI speech. The
smallest bias for read speech was observed when only the Jasmin data was added, for
HMI speech the smallest bias was observed when all augmented data was added during
fine-tuning.

For multi-task training, the smallest bias for read speech is also the smallest bias
overall, which is obtained with pitch-shifted Jasmin data. The smallest bias in HMI
speech comes from training with speed-perturbed Jasmin.

Among the techniques employed, fine-tuning and multi-task learning reduce the
bias more than simply including the target non-native speech as in-domain data, al-
though the imbalanced nature of Jasmin-CGN, which refers to its uneven composition
where the amount of HMI speech data is more than read speech data, made the results
of fine-tuning overfit to the HMI speech.

Looking at the variation of WERs across speaker groups, it is true that data augmen-
tation helps reduce the WER, but it is not definite that the application of data augmen-
tation technique(s) reduces the bias, e.g. BR becomes higher than what obtained in in-
domain training when Jasmin-CGN is augmented during fine-tuning, whereas BH is re-
duced.

If we look at the effect of each data augmentation technique individually on recog-
nition performance and bias, it is clear that in most cases pitch shift gives the most bias
reduction whether it is tested on read speech or HMI speech. Speed perturbation ranks
the second on average and volume perturbation comes last, suggesting that non-native
speakers do not vary much from the native speakers in case of speech volume. When
only pitch shift is applied, the bias in HMI speech is usually smaller than the bias when
volume or speed perturbed data is used. Furthermore, multi-task learning achieved the
smallest bias in read speech with only pitch shift applied.

Comparing the different training methods shows that multi-task learning gives the
best performance as its bias is lower in most datasets than in-domain training and fine-
tuning.

In general, read speech is better recognised that HMI speech, which is true for all
speaker groups irrespective of the data augmentation techniques applied. BR is the
largest when all the augmented data is used during fine-tuning, and the smallest when
Jasmin-CGN is only pitch-shifted during multi-task learning. BH is the largest when we
do the in-domain training with the original datasets, and the smallest when speed per-
turbation is applied during multi-task learning.

BR is the largest when all the augmented data is used during fine-tuning, and the
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smallest when Jasmin-CGN is only pitch-shifted during multi-task learning. BH is the
largest when we do the in-domain training with the original datasets, and the smallest
when speed perturbation is applied during multi-task learning.

Table 4.1: WERs(%) on the read and HMI native/non-native speech. Baseline model trained with CGN only.

Group AvgD AvgN Bias
Read 20.80 48.04 27.24
HMI 30.90 44.57 13.67
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Table 4.2: WERs(%) on the read and HMI native/non-native speech for the models trained with different train-
ing methods (in-domain, fine-tuning, and multi-task) and different types of augmented speech data. SP refers
to speed perturbation; VP refers to volume perturbation; PS refers to pitch shift. Column-wise, the lowest WER
and bias are denoted in bold.

Method Datasets RD RN N HD HN N BR BH

in-domain Ctr ai n , Jtr ai n 17.97 31.65 28.8 37.95 13.68 9.15
Ctr ai n , Jtr ai n +SP 17.55 30.13 29.47 36.65 12.58 7.18
Ctr ai n , Jtr ai n +V P 20.49 32.54 29.9 37.65 12.05 7.75
Ctr ai n , Jtr ai n +PS 17.26 30.04 28.59 36.33 12.78 7.74
Ctr ai n , Jtr ai n +SP +V P +PS 16.82 30.04 27.95 34.66 13.22 6.71

fine-tune Jtr ai n 15.61 31.09 45.24 53.7e 15.48 8.48
Jtr ai n +SP 15.31 30.89 45.1 52.81 15.58 7.71
Jtr ai n +V P 15.66 31.45 46.46 53.96 15.79 7.5
Jtr ai n +PS 13.85 30.3 47.06 54.55 16.45 7.49
Jtr ai n +SP +V P +PS 12.64 29.91 43.79 50.1 17.27 6.31

multi-task Ctr ai n , Jtr ai n 21.11 34.8 29.05 35.98 13.69 6.93
Ctr ai n , Jtr ai n +SP 20.03 34.05 28.67 35.37 14.02 6.7
Ctr ai n , Jtr ai n +V P 20.84 33.73 29.01 35.86 12.89 6.85
Ctr ai n , Jtr ai n +PS 18.79 27.88 28.29 35.06 9.09 6.77
Ctr ai n , Jtr ai n +SP +V P +PS 17.05 27.87 28.03 34.99 10.82 6.96
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DISCUSSION AND CONCLUSION

5.1. DISCUSSION
Among the data augmentation techniques adopted, pitch shift contributed the most to
the overall reduction in bias. A possible explanation could be that, compared to speaking
volume and speaking speed, the pitch difference between native and non-native speak-
ers gives more variation to the speech data within a dataset. Another noticeable finding
observed from the table is that combining all data augmentation techniques does not
necessarily lead to better performance in terms of bias reduction, as sometimes training
with only one set of augmented data has lower bias. As for the effect of transfer learning,
the results show that the application of fine-tuning makes the model work better for read
speech than the HMI data. One possible reason could be that there are more read speech
than HMI speech in JASMIN-CGN, . Hence, the model fine-tuned with JASMIN-CGN is
slightly biased towards read speech.

On the other hand, multi-task learning has managed to avoid this kind of perfor-
mance degradation. Furthermore, multitask learning enforces more fairness across native/non-
native speaker groups than fine-tuning, as most biases are lower in multitask learning
than those obtained in fine-tuning.

The research questions can be answered.

• RQ1: Could data augmentation help reduce the bias against non-native accented
speech in ASR systems?

• A1: Yes. As shown in Table 4.2 for in-domain training the results on adding Jasmin-
CGN and the perturbed data with different augmentation techniques, decreases
the WER and Bias significantly as compared to the baseline. Within the in-domain
experiments, we observe that the different data augmentation techniques when
applied alone give only little improvement in recognition performance for both
the native and non-native speakers (and a small deterioration when only volume
perturbed data is applied). Applying all three data augmentation techniques, how-
ever, leads to a reduction in WER and the lowest WER for both the native and the
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non-native speaker groups for both read speech and HMI speech. The lowest bias
for HMI is also obtained when using all three data augmentation techniques, while
for read speech the lowest bias was observed when volume perturbed data was
added, but this is due to an increase in WER for the native speech which was larger
than the increase in WER for the non-native accented speech. In general, read
speech is better recognised that HMI speech, which is true for all speaker groups
irrespective of the data augmentation techniques applied.

• RQ2: Could fine-tuning and multi-task learning be effective in reducing bias against
non-native accented speech when compared with standard training methods?

• A2: Yes. When fine-tuning is applied we observe a similar trend as for in-domain
training, different results when different data augmentation techniques are ap-
plied alone (with an increase in WER when only volume perturbed data is applied),
with the best recognition results obtained when all three data augmentation tech-
niques are applied for both native and non-native speakers and both read and HMI
speech. The smallest bias for read speech was observed when only the Jasmin data
was added, but again at the cost of high WERs for both speaker groups and both
types of speech. For HMI speech, the smallest bias was observed when all aug-
mented data was added during fine-tuning.

For multi-task training, the smallest bias for read speech is also the smallest bias
overall, which is obtained with pitch-shifted Jasmin-CGN data. The smallest bias
in HMI speech comes from training with speed-perturbed Jasmin-CGN.

Among the techniques employed, fine-tuning and multi-task learning reduce the
bias more than simply including the target non-native speech as in-domain data.

By comparing the best performance of each method, we can conclude that data aug-
mentation does contributed to the reduction of both WER and bias, and among all the
data augmentation techniques adopted, pitch shift is proven the most effective in most
cases. The application of transfer learning methods, fine-tuning and multi-task learn-
ing, leads to better performance than what we got from simply using in-domain train-
ing. Furthermore, the lowest bias does not necessarily correspond to the lowest WER: for
read speech, the model with the lowest bias has fairly good WERs, while for HMI speech,
the WERs of the model with the lowest bias are relatively high. Looking at the WERs
across different methods, we can see that multi-task learning shows the lowest bias for
most datasets compared to in-domain training and fine-tuning. Multi-task learning re-
duces the bias while causing the least harm to the WERs among the methods adopted,
but at the cost of slightly higher WERs on native speakers compared with fine-tuning.
Overall, multi-task learning with pitch-shifted data seems to be the best choice if we aim
to reduce the bias without causing performance degradation on native speakers.

5.2. FUTURE RESEARCH
Future-work-wise, the research could be done following the pattern of answering the re-
search questions. More powerful data augmentation techniques could be explored to
cover other features of non-native speech, such as articulation imprecision, disfluency,
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and uncommon word combinations. Generative adversarial networks (GANs)[2] and
Text-to-speech (TTS)[1] have proven effective in terms of augmenting original data to
compensate for the lack of accented data, the possibility of generating more non-native
speech to reduce the bias using these two techniques combined does exist.

On the other hand, effective learning methods not only limited to fine-tuning and
multi-task learning could also be tried out, like the pre-training method of language
models using corpus from other languages. Unlabelled data could also be exploited
to help enhance the performance, since in this research, only experiments on labelled
data are conducted, which limits the choices of adding possible extra datasets. Also, Us-
ing more task-specific layers during transfer learning could also be a possible approach,
since the speech characteristics preserved in each layer could be very different.

5.3. CONCLUSION
In this research, it has been shown that although the bias against non-native speakers
cannot be removed completely, the combination of certain techniques does help reduc-
ing it. The results show that the application of data augmentation techniques reduces
bias against non-native-accented speech of HMI speech more than it reduces the bias for
read speech. This suggests that the recognition accuracy of the ASR system is more sen-
sitive to the change in HMI speech data. Both transfer learning methods adopted have
promising results in terms of bias reduction, where multitask learning has a stronger
effect compared with fine-tuning.
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