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 A B S T R A C T

Delamination is a critical mode of failure that occurs between plies in a composite laminate. The 
cohesive element, developed based on the cohesive zone model, is widely used for modelling 
delamination. However, standard cohesive elements suffer from a well-known limit on the 
mesh density—the element size must be much smaller than the cohesive zone size. This work 
extends the line of research on structural cohesive elements onto 3D mixed-mode problems. A 
new triangular Kirchhoff–Love shell element is developed for orthotropic materials to model 
the plies. A new structural cohesive element, conforming to the shell elements of the plies, is 
developed to model the interface delamination. The proposed method is verified and validated 
on the classical benchmark problems of Mode I, Mode II, and mixed-mode delamination of 
unidirectional laminates, a recent unidirectional benchmark problem with curved delamination 
front, as well as the single-leg bending problem of a multi-directional laminate, significantly 
increasing the range and complexity of applicable problems as compared to the previous works. 
All the results show that the element size in the proposed models can be ten times larger than 
that in the standard cohesive element models, with more than 90% reduction in CPU time, while 
retaining prediction accuracy. This would then allow more effective and efficient modelling of 
delamination in composites without worrying about the cohesive zone limit on the mesh density.

. Introduction

The accurate prediction of delamination is of critical importance for the reliable design of fibre-reinforced composite structures. 
he cohesive element (CE) is a widely used finite element technology to model delamination. CE is developed based on the Cohesive 
one Model proposed by Dugdale and Barenblatt [1,2]. A fracture process zone, generally called the cohesive zone, exists along the 
nterface, ahead of the stress-free crack tip. A traction–separation relationship, namely the cohesive law, describes how the interfacial 
tresses and damage evolve with respect to the interfacial openings. Standard CEs are usually developed for use between two solid 
lements to model their debonding under static or fatigue loads [3–12]. In finite element implementation, cohesive zone models are 
lassified into intrinsic and extrinsic types. In the intrinsic model, CEs are embedded in the initial mesh between continuum elements 
o model their debonding. Intrinsic CEs firstly undergo an elastic loading phase, up to the critical stress state for damage onset, before 
oing through the softening phase of the cohesive law. In the extrinsic model, CEs are inserted/activated in the mesh on the fly 
hen the stress state in the continuum has reached damage onset. Hence, extrinsic CEs only go through the softening phase of the 
ohesive law. Comprehensive comparisons of the two approaches have been performed for dynamic fracture problems [13–15]. 
ntrinsic CEs are easy to implement and parallelize, but suffer from the artificial compliance problems in crack-tip speed and
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Nomenclature

Latin characters
𝑎0 Pre-crack length
𝐴 Area of a membrane element
𝑏 Width
𝐁 Matrix connecting the vector 𝐐 and the vector 𝛼
𝐁mem Strain–displacement matrix of a membrane element
𝐃mem Constitutive tensor of a membrane element
𝐸(𝑖𝑗) Young’s modulus(𝑖 = 1, 2, 3 𝑗 = 1, 2, 3)
𝐟ext Vector of the external force
𝐟int Vector of the internal force
𝐟res Vector of the residual force
𝐺I, 𝐺II Mode I, Mode II energy release rates
𝐺Ic, 𝐺IIc Mode I, Mode II critical energy release rates
𝐇 Matrix which contributes to the stiffness matrix of the plate element
𝐊 Stiffness matrix of a finite element
𝐾 Penalty stiffness
𝑙𝑖𝑗 Length of the side 𝑖𝑗, 𝑖𝑗 = 12, 23, 13
𝐿 Length
𝑀𝑛 Normal bending moment
𝐍𝑤 Shape function related to the out-of-plane displacement
𝐍𝜃𝑥 ,𝐍𝜃𝑦 Shape function related to the rotations around x and y, respectively
𝑝∗(𝑥, 𝑦) Prescribed distributed pressure load on the element
𝐪 Vector of nodal degree of freedoms of a finite element
𝐐 Vector of generalized forces
𝑅𝑁 Concentrated force at the element vertex
𝑡 Thickness of a element
𝐓 Matrix contributes the stiffness matrix of the plate element
𝑢𝑖, 𝑣𝑖 Displacements along 𝑥 and 𝑦 axes for node 𝑖
𝐔 Vector of nodal degree of freedoms of the membrane element
𝑈 Internal work
𝑈0 Strain energy density
𝑉𝑛 Kirchhoff shear force
𝑤 Displacement field in the element
𝑤 Displacement on the boundary of the element
𝐖 Vector of nodal degree of freedoms of the plate element
𝑊 External work
Greek characters
𝛼 Vector of coefficients that contributes to the out-of-plane displacement field
𝛾 Angle between the normal 𝑛 and the local axis 𝑥
𝛥I, 𝛥𝑥, 𝛥𝑦 Opening displacement of Mode I and two shear openings along x and y axial
𝜋 Modified potential energy
Sub/superscripts

∙mem Related to membrane elements
∙plate Related to plate elements
∙shell Related to shell elements
∙bot Related to the bot surface of a cohesive element
∙CE Related to cohesive elements
∙𝑛 Related to the normal direction
∙𝑥, ∙𝑦 Related to the global x, y directions, respectively
2 
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Abbreviations

CE Cohesive Element
CZL Cohesive Zone Length
DCB Double Cantilever Beam
DoF Degrees of Freedom
ENF End-Notched-Flexure
FE Finite Element
FNM Floating Node Method
IG InteGration points
MMB Mixed-Mode Bending
R-DCB Reinforced Double Cantilever Beam
SLB Single-Leg Bending
VCCT Virtual Crack Closure Technique

elastic wave propagation [15]. High penalty stiffness is needed to reduce the artificial compliance problems, but this would lead 
to ill-conditioning of the stiffness matrix for implicit analysis and stringent stability requirements for explicit analysis. Extrinsic 
CEs do not add artificial compliance before fracture. However, their implementation would require advanced data structures and 
frequent updates of the mesh [16], making implementation and parallelization more difficult. Discontinuous-Galerkin [17] and 
Augmented Lagrangian [18] approaches have been developed to mitigate the artificial compliance problems of the intrinsic CEs 
without requiring mesh updates of the extrinsic CEs. However, they still suffer from the mesh dependency problems due to the 
restriction that the cohesive fracture can only propagate along existing mesh boundaries. In this work, we focus on quasi-static 
analysis of delamination in composites. Hence, the artificial compliance issues in dynamic fracture are neglected and the intrinsic 
model is assumed for the CEs hereafter.

While being a popular and versatile tool to model delamination, standard CEs suffer from a well-known limit on the mesh density 
— the element size must be much smaller than the Cohesive Zone Length (CZL) to accurately predict delamination. According to 
the previous analysis [3,4], high-stress gradients could be produced within the cohesive zone during delamination in composites. A 
very fine CE mesh must be used there to sufficiently capture the stress gradients such that the internal virtual work of the CEs can 
be accurately integrated. So far, there is no fixed rule on how fine the mesh should be in the literature. In some research [5–7], the 
authors have demonstrated that at least two or three CEs should be used inside the cohesive zone. With coarser meshes, simulations 
would significantly over-predict the peak load [8]. In a typical mode I delamination test of a unidirectional composites coupon, 
i.e., the Double Cantilever Beam (DCB) test, the CZL is less than 1 mm.

The above-mentioned problem of cohesive zone limit on the mesh density of CEs has drawn the attention of many researchers 
in the past. Turon et al. [8] adopted an engineering method to solve the problem by reducing the material strength to numerically 
extend the CZL. While shown to be promising in the Mode I DCB case, in cases such as the pure mode II End-Notched-Flexure (ENF) 
test, decreasing the cohesive strength can cause excessive under-prediction of the overall strength [19,20]. Yang [21] and Do [22]’s 
research work demonstrated that larger CE sizes can be achieved by placing enough integration points in the cohesive zone. Their 
method could predict the peak load correctly for CE size up to 1.43 times the estimated CZL. However, its first-order shape function 
limits the effectiveness of this method in further expanding CE beyond the scale of the cohesive zone [23]. Guiamatsia et al. [24–26] 
used the beam on elastic foundation solution as an enrichment function and tested it in the mixed mode delamination. However, the 
enrichment method could lead to inaccuracies in interpolation for elements larger than 3 mm [25]. Another enrichment approach 
with the piecewise linear shape functions was proposed by Samimi [27–29]. However, the over-prediction problem of peak load 
under large CE has not been solved. Van der Meer et al. [30] used the level set method with a energy-based criterion to propagate 
delamination without the cohesive zone limit. However, this method is limited to the case of a single delamination. Lu et al. [31] 
proposed a adaptive version of the Floating Node Method (FNM) [32] to adaptively refine the CEs in the cohesive zone. However, this 
method is currently implemented for 2D problems. Alvarez et al. [33] used quadratic CEs between quadratic solid elements and used 
higher number of integration points, which increased the grid size to be comparable to CZL but not beyond [23]. Mukhopadhyay 
and Bhatia [34] developed a ℎ𝑝 refinement strategy to simulate the delamination between two solid elements. However, it is only 
implemented in 2D in their work. Daniel [35] developed an ERR-Cohesive method to simulate the delamination with large elements 
by estimating the energy release rate by means of the virtual crack closure technique (VCCT). However, this method is only presented 
in 2D, and the VCCT approach relies on the existence of an initial crack and the assumption of self-similar crack propagation.

Inspired by the earlier works in the literature, Russo and Chen [23] developed a so-called structural CE, which conforms to 
Kirchhoff–Love structural elements for the neighbouring plies. Their work was done in 2D. The Euler–Bernoulli beam elements were 
used to model the plies. The structural CE, sharing its nodes with the beam elements, was developed to model the delamination. An 
adaptive integration scheme was used to place more integration points in CEs containing the cohesive zone. Their results showed 
that the structural CE could overcome the cohesive zone limit on mesh density, allowing the element size to be ten times larger 
than that of the standard linear CEs. Motivated by Russo and Chen’s work, Tosti Balducci and Chen [36] extended the structural 
CE to 3D DCB problem by developing a structural CE compatible with the TUBA3 plate elements [37]. Their results showed that 
3 



X. Ai et al. Engineering Fracture Mechanics 329 (2025) 111586 
the TUBA3-based structural formulation of CE could overcome the cohesive zone limit. However, the curvature degrees of freedom 
(DoFs) make it complicated to set boundary conditions on TUBA3 elements, impeding the adoption of such elements by engineers 
in practice.

From the above reviews, we aim to establish a composites delamination model which simultaneously meets the following 
requirements:

(1) it does not suffer from the cohesive zone limit on mesh density;
(2) it works in 3D space;
(3) it does not require artificial reduction of strengths;
(4) it does not require a pre-crack and the self-similar propagation assumption;
(5) it can model delamination along multiple interfaces; and
(6) it is straightforward to set boundary conditions.

Based on the earlier works [23,36], the idea of this work is to develop a triangular Kirchhoff–Love shell element without curvature 
DoFs to model the composite plies, then formulate the conforming structural CE to be used between the plies to model their 
delamination. Although previous researchers [38,39]have used shell elements and the corresponding CEs to simulate delamination, 
their focus was mainly on the use of shell elements per se and did not solve the problem of cohesive zone limitations on mesh 
density. The shell element in this work is based on a simple triangle Kirchhoff–Love plate element, the cubic displacement element 
proposed by Allman [40]. There are only three DoFs at each node, one for out-of-plane displacement and two for rotations. These 
DoFs are commonly used by engineers and are much easier to handle than the curvature ones when setting boundary conditions. 
Therefore, this article will extend this triangle plate element for the modelling of composite plies and develop the corresponding 
structural CE for the interfaces. If such a structural CE could overcome the cohesive zone limit on its mesh density, then it would 
achieve all the requirements listed above.  Although this paper addresses objectives similar to those of previous studies [23,36], it 
offers significant advantages over the preceding two works in the following aspects:

(1) The previous methods did not modify the underlying isotropic beam or plate element for the plies, limiting the scope of the 
modelling to isotropic beam or plate bending problems. In contrast, this study firstly enriches the baseline plate element to 
include in-plane degrees of freedom, thereby extending the plate element to a shell element. It then extends the supported 
material model from being isotropic to being suitable for composites. These developments are essential for the modelling of 
generic deformations of composite shell structures.

(2) The previous methods are applicable to 2D mixed-mode [23] or 3D mode-I [36] problems. This study extends the structural 
CE method to be applicable for 3D mixed-mode problems, thereby enabling the modelling of more general and more complex 
problems beyond the plane-strain delamination problems of the standard test coupons;

(3) The baseline plate element employed in this study features a reduced number of degrees of freedom compared to the TUBA3 
element in the previous 3D work [36]. As a result, the implementation of the method is simpler and the application of 
boundary conditions more direct than in the case of the TUBA3 elements. These advantages will make simulations more 
efficient when dealing with large-scale and complex models with complex boundary conditions.

(4) Furthermore, this study verifies the method on fully 3D problems with complex stacking sequences and crack fronts. This is 
a significant improvement over the earlier work in terms of the complexity and scope of the verification.

The rest of the paper will be structured in the following way. Section 2 presents the proposed element formulations in detail. 
Section 3 demonstrates the performance of these elements on a series of benchmarks on delamination in both unidirectional and 
multi-directional laminates. In the end, Section 4 draws the conclusions of this work and discusses some potential future work.

2. Method

2.1. Overall illustration

The overall idea of the proposed modelling approach is to represent the composite plies by Kirchoff–Love shell elements and 
the interfaces by structural CEs. Fig.  1 shows the geometrical comparison between the conventional modelling approach with solid 
elements and the proposed structural approach with shells. Looking at the structural CE, the difference from the conventional CE 
is that the nodes of the CE are placed at the mid-plane of the two shell elements, which are not the actual surfaces of the cohesive 
interface. Hence, the opening of the actual interface does not equate to the distance between the upper nodes and lower ones of the 
structural CE. This opening shall be calculated using the shell kinematics to be detailed in later subsections. The rest of this section 
will firstly present the cubic plate element formulation by Allman [40] and its adaptation for flat composites shells, then move on 
to derive the structural CE formulation.
4 
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Fig. 1. Geometrical comparison between conventional CE and structural CE.

Fig. 2. Coordinate system and DoFs for the triangular cubic plate element [40].

2.2. Cubic plate element

2.2.1. Geometric definitions of the plate element
The plate part of the shell element in this work is based on the triangular cubic plate element developed by Allman [40], as 

shown in Fig.  2. A local coordinate system is used in this element, with origin at the centroid of the triangular element. The local 
axes are represented by lowercase letters, 𝑥 and 𝑦, to distinguish them from the global ones, 𝑋 and 𝑌 . The area of this triangular 
element is 𝐴. 𝑠 is the anti-clockwise coordinate along the element boundary. 𝑛 is the exterior normal. The angle between the normal 
𝑛 and the local axis 𝑥 is 𝛾. The out-of-plane displacement defined over the domain is 𝑤(𝑥, 𝑦). An independent out-of-plane boundary 
displacement, 𝑤(𝑠), and its compatible normal derivative, 𝜕𝑤∕𝜕𝑛(𝑠), are assumed along the boundary 𝜕𝐴. The DoFs at each node 
include the displacement 𝑤 and two rotations 𝜕𝑤∕𝜕𝑥, 𝜕𝑤∕𝜕𝑦.

The cubic plate element in Allman’s work only considered the case of isotropic material [40]. This work extends the cubic plate 
element using the classical laminate theory, such that symmetric composite laminates can also be modelled by this plate element. 
The original cubic element formulation will be presented in detail, with adaptations for composites specified along the way.

2.2.2. Modified potential energy for the plate element
The minimum potential energy principle is used to derive the finite element formulation of the triangular plate element. The 

potential energy used is referred to as the modified potential energy in Allman’s work [40]:

𝜋 = ∬ 𝑈0d𝑥d𝑦 +
3
∑

𝑅𝑁 (𝑤𝑁 −𝑤𝑁 ) + ∫ 𝑉𝑛(𝑤 −𝑤) d𝑠 − ∫ 𝑀𝑛(
𝜕𝑤 − 𝜕𝑤 )d𝑠
𝐴 𝑁=1 𝜕𝐴 𝜕𝐴 𝜕𝑛 𝜕𝑛

5 
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Fig. 3. Sign conventions for shear force and bending moment resultants.

−∬𝐴
𝑝∗𝑤d𝑥d𝑦 −

3
∑

𝑁=1
𝑅∗
𝑁𝑤𝑁 − ∫𝜕𝐴

𝑉 ∗
𝑛 𝑤d𝑠 + ∫𝜕𝐴

𝑀∗
𝑛
𝜕𝑤
𝜕𝑛

d𝑠 (1)

where 𝑈0 is the strain energy density. 𝑀𝑛 is the normal bending moment resultant and 𝑉𝑛 is the Kirchhoff shear force distribution 
on the element boundary, respectively. 𝑅𝑁 (𝑁=1,2,3) are the concentrated forces at the element vertices. In addition, 𝑅∗

𝑁 , 𝑉 ∗
𝑛 , and 𝑀∗

𝑛
are the values of prescribed concentrated force, Kirchhoff shear force, and normal bending moment resultant, respectively. 𝑝∗(𝑥, 𝑦)
denotes the prescribed distributed pressure load on the element. This potential energy essentially uses 𝑅𝑁 , 𝑉𝑛, and 𝑀𝑛 as Lagrange 
multipliers to enforce the compatibility between the two fields 𝑤 and 𝑤 and their normal derivatives along the boundary. The 
variational principle based on this modified potential energy satisfies the equilibrium equations, the boundary conditions, and the 
compatibility requirement between 𝑤 and 𝑤 [40].

The expression of 𝑈0 for composites will be different from that for isotropic materials in Allman’s work [40]. The classical 
laminate theory can be used to describe the constitutive relationship of a composite laminate under Kirchhoff–Love kinematic 
assumptions. For the case of a symmetric laminate (the smallest of which would be a single composite ply) considered in this 
work, there would be no membrane-bending coupling. Therefore, the expressions of the moments are:

𝑀𝑥 = −𝐷11
𝜕2𝑤
𝜕𝑥2

−𝐷12
𝜕2𝑤
𝜕𝑦2

− 2𝐷16
𝜕2𝑤
𝜕𝑥𝜕𝑦

𝑀𝑦 = −𝐷12
𝜕2𝑤
𝜕𝑥2

−𝐷22
𝜕2𝑤
𝜕𝑦2

− 2𝐷26
𝜕2𝑤
𝜕𝑥𝜕𝑦

𝑀𝑥𝑦 = −𝐷16
𝜕2𝑤
𝜕𝑥2

−𝐷26
𝜕2𝑤
𝜕𝑦2

− 2𝐷66
𝜕2𝑤
𝜕𝑥𝜕𝑦

(2)

Using the above moment–curvature relations (Eq.  (2)), the strain energy density 𝑈0 can be written as:

𝑈0 =
1
2

[

𝐷11

(

𝜕2𝑤
𝜕𝑥2

)2
+𝐷22

(

𝜕2𝑤
𝜕𝑦2

)2
+ 2𝐷12

𝜕2𝑤
𝜕𝑥2

𝜕2𝑤
𝜕𝑦2

+4𝐷16
𝜕2𝑤
𝜕𝑥2

𝜕2𝑤
𝜕𝑥𝜕𝑦

+ 4𝐷26
𝜕2𝑤
𝜕𝑦2

𝜕2𝑤
𝜕𝑥𝜕𝑦

+ 4𝐷66

(

𝜕2𝑤
𝜕𝑥𝜕𝑦

)2
]

(3)

The sign conventions for the shear force and bending moment resultants are shown in Fig.  3. For the triangular plate element, 
the normal bending moment resultant 𝑀𝑛, Kirchhoff shear force distribution 𝑉𝑛 and concentrated forces 𝑅𝑁 (𝑁=1,2,3) can be expressed 
as [40]:

𝑀𝑛 = 𝑀𝑥 cos2 𝛾 +𝑀𝑦 sin
2 𝛾 +𝑀𝑥𝑦 sin 2𝛾 (4)

𝑉𝑛 = 𝑄𝑛 +
𝜕𝑀𝑛𝑠
𝜕𝑠

(5)

𝑅𝑁 = [𝑀𝑛𝑠]𝑠
+
𝑠− (6)

where

𝑀𝑛𝑠 =
1
2
(𝑀𝑦 −𝑀𝑥) sin 2𝛾 +𝑀𝑥𝑦 cos 2𝛾 (7)

𝑄𝑛 =
𝜕𝑀𝑛
𝜕𝑛

+
𝜕𝑀𝑛𝑠
𝜕𝑠

(8)

In this element, linear variation of the normal bending moment resultant and constant Kirchhoff shear force distribution are 
assumed along the edges:

𝑀 = 𝑀12(1 − 𝜉) +𝑀21𝜉 (9)
𝑛 𝑛 𝑛

6 
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𝑉𝑛 = 𝑉 12
𝑛 (10)

where 𝑀12
𝑛  and 𝑀21

𝑛  are the normal bending moment resultant values at node 1 and node 2 of side 1-2 respectively. The coefficient 𝜉
in Eq.  (9) is defined as 𝜉 = 𝑠∕𝑙12. 𝑉 12

𝑛  is the value of the Kirchhoff shear force distribution along the side 1-2. The cyclic permutation 
of superscripts 1, 2, and 3 in Eqs. (9) and (10) produces the shear force distribution and moment resultant on the other two sides 
(side 2-3 and side 3-1) of the triangular element.

The terms in brackets in Eq.  (6) represent the difference in bending moment resultant values at the element vertices. Therefore, 
the expressions of 𝑅𝑁 (𝑁=1,2,3) are:

𝑅1 = 𝑀12
𝑛𝑠 −𝑀13

𝑛𝑠

𝑅2 = 𝑀23
𝑛𝑠 −𝑀21

𝑛𝑠

𝑅3 = 𝑀31
𝑛𝑠 −𝑀32

𝑛𝑠 (11)

Finally, the directional derivatives in Eqs. (8) are given by:
𝜕
𝜕𝑠

= − sin 𝛾 𝜕
𝜕𝑥

+ cos 𝛾 𝜕
𝜕𝑦

𝜕
𝜕𝑛

= cos 𝛾 𝜕
𝜕𝑥

+ sin 𝛾 𝜕
𝜕𝑦

(12)

2.2.3. Finite element approximation and the discretized equilibrium equation
For finite element implementation, the potential energy 𝜋 should be discretized. In this element, the internal out-of-plane 

displacement field 𝑤(𝑥, 𝑦) is approximated by a cubic polynomial: 
𝑤(𝑥, 𝑦) = 𝐴1 + 𝐴2 𝑥 + 𝐴3 𝑦 + 𝛼1 𝑥

2 + 𝛼2 𝑥𝑦 + 𝛼3 𝑦
2 + 𝛼4 𝑥

3 + 𝛼5 𝑥
2𝑦 + 𝛼6 𝑥𝑦

2 + 𝛼7 𝑦
3 (13)

The three coefficients 𝐴1, 𝐴2, and 𝐴3 represent the rigid body motion and do not affect the value of the strain energy density.
With the above choice of 𝑤, applying the Green’s theorem [41] to transform the strain energy integral to boundary integral 

gives: 

2∬𝐴
𝑈0 d𝑥d𝑦 =

3
∑

𝑁=1
𝑅𝑁𝑤𝑁 + ∫𝜕𝐴

𝑉𝑛𝑤 d𝑠 − ∫𝜕𝐴
𝑀𝑛

𝜕𝑤
𝜕𝑛

d𝑠 (14)

In this work, we assume that there is no distributed pressure load 𝑝∗(𝑥, 𝑦). Then, the modified potential energy (Eq.  (1)) can be 
rewritten more simply as:

𝜋 = −∬𝐴
𝑈0 d𝑥d𝑦 +

3
∑

𝑁=1
𝑅𝑁𝑤𝑁 + ∫𝜕𝐴

𝑉𝑛𝑤 d𝑠 − ∫𝜕𝐴
𝑀𝑛

𝜕𝑤
𝜕𝑛

d𝑠

−
3
∑

𝑁=1
𝑅∗
𝑁𝑤𝑁 − ∫𝜕𝐴

𝑉 ∗
𝑛 𝑤 d𝑠 + ∫𝜕𝐴

𝑀∗
𝑛
𝜕𝑤
𝜕𝑛

d𝑠 (15)

Substituting Eq.  (13) into (3), the strain energy can be rewritten as: 

∬𝐴
𝑈0 d𝑥d𝑦 = 1

2
𝜶T 𝐇𝜶 (16)

where the vector 𝜶 is: 
𝜶 = {𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7}T (17)

The matrix 𝐇 is more complicated to derive for symmetric composite laminates than for isotropic materials considered in Ref. [40]. 
Its detailed derivation is presented in Appendix  A.

After the strain energy, the 2nd, 3rd and 4th terms in Eq.  (15) denote the work of the so-called generalized forces: 
3
∑

𝑁=1
𝑅𝑁𝑤𝑁 + ∫𝜕𝐴

𝑉𝑛𝑤 d𝑠 − ∫𝜕𝐴
𝑀𝑛

𝜕𝑤
𝜕𝑛

d𝑠 = 𝐐T𝐪 (18)

where 𝐐 is the vector of the twelve generalized forces: 
𝐐 = {𝑅1, 𝑅2, 𝑅3, 𝑉

12
𝑛 , 𝑉 23

𝑛 , 𝑉 31
𝑛 ,𝑀12

𝑛 ,𝑀21
𝑛 ,𝑀23

𝑛 ,𝑀32
𝑛 ,𝑀31

𝑛 ,𝑀13
𝑛 }T (19)

Substituting Eqs.  (9) and (10) into Eq.  (18), the generalized displacements corresponding to the generalized forces in Eq.  (19) 
compose the vector 𝐪:

𝐪 =

{

𝑤1, 𝑤2, 𝑤3, 𝑙12 ∫

1

0
𝑤 d𝜉, 𝑙23 ∫

1

0
𝑤 d𝜉, 𝑙31 ∫

1

0
𝑤 d𝜉,

−𝑙12
1 𝜕𝑤 (1 − 𝜉) d𝜉, −𝑙12

1 𝜕𝑤𝜉 d𝜉, −𝑙23
1 𝜕𝑤 (1 − 𝜉) d𝜉,
∫0 𝜕𝑛 ∫0 𝜕𝑛 ∫0 𝜕𝑛

7 
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−𝑙23 ∫

1

0

𝜕𝑤
𝜕𝑛

𝜉 d𝜉, −𝑙31 ∫

1

0

𝜕𝑤
𝜕𝑛

(1 − 𝜉) d𝜉, −𝑙31 ∫

1

0

𝜕𝑤
𝜕𝑛

𝜉 d𝜉

}T

(20)

A matrix 𝐁 can be constructed to connect the vector 𝐐 and the vector 𝜶: 
𝐐 = 𝐁T𝜶 (21)

With the moment–curvature relationship for composites in Eq.  (2) and the expression of 𝑤 in equation (13), the matrix 𝐁 has been 
derived for composites in this work. The details are shown in Appendix  B.

A matrix 𝐓 can be defined to represent the relationship between the nodal DoFs 𝐖 and the vector 𝐪: 
𝐪 = 𝐓𝐖 (22)

where 𝐖 is the vector of the nodal DoFs defined by 

𝐖 =
{

𝑤1,
𝜕𝑤1
𝜕𝑥

,
𝜕𝑤1
𝜕𝑦

,𝑤2,
𝜕𝑤2
𝜕𝑥

,
𝜕𝑤3
𝜕𝑦

,𝑤3,
𝜕𝑤3
𝜕𝑥

,
𝜕𝑤3
𝜕𝑦

}T

(23)

With the assumptions of cubic line function for 𝑤 and linear variation for 𝜕𝑤∕𝜕𝑛 along each edge of the element, the 𝐓 matrix can 
be derived as [40]: 

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
𝑙12
2

−
𝑙212
12

sin 𝛾12
𝑙212
12

cos 𝛾12
𝑙12
2

𝑙212
12

sin 𝛾12 −
𝑙212
12

cos 𝛾12 0 0 0

0 0 0
𝑙23
2

−
𝑙223
12

sin 𝛾23
𝑙223
12

cos 𝛾23
𝑙23
2

𝑙223
12

sin 𝛾23 −
𝑙223
12

cos 𝛾23
𝑙31
2

𝑙231
12

sin 𝛾31 −
𝑙231
12

cos 𝛾31 0 0 0
𝑙31
2

−
𝑙231
12

sin 𝛾31
𝑙231
12

cos 𝛾31

0 −
𝑙12
3

cos 𝛾12 −
𝑙12
3

sin 𝛾12 0 −
𝑙12
6

cos 𝛾12 −
𝑙12
6

sin 𝛾12 0 0 0

0 −
𝑙12
6

cos 𝛾12 −
𝑙12
6

sin 𝛾12 0 −
𝑙12
3

cos 𝛾12 −
𝑙12
3

sin 𝛾12 0 0 0

0 0 0 0 −
𝑙23
3

cos 𝛾23 −
𝑙23
3

sin 𝛾23 0 −
𝑙23
6

cos 𝛾23 −
𝑙23
6

sin 𝛾23

0 0 0 0 −
𝑙23
6

cos 𝛾23 −
𝑙23
6

sin 𝛾23 0 −
𝑙23
3

cos 𝛾23 −
𝑙23
3

sin 𝛾23

0 −
𝑙31
6

cos 𝛾31 −
𝑙31
6

sin 𝛾31 0 0 0 0 −
𝑙31
3

cos 𝛾31 −
𝑙31
3

sin 𝛾31

0 −
𝑙31
3

cos 𝛾31 −
𝑙31
3

sin 𝛾31 0 0 0 0 −
𝑙31
6

cos 𝛾31 −
𝑙31
6

sin 𝛾31

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

2.2.4. Stiffness matrix and force vectors of cubic plate element
Substituting Eqs.  (16), (21) and (22) into Eq.  (15), the total modified potential energy represented by the finite element method 

under prescribed boundary loads is: 

𝜋 = −1
2
𝜶T𝐇𝜶 + 𝜶T(𝐁𝐓)𝐖 −𝐐∗T𝐓𝐖 (25)

where the vector 𝐐∗, whose components are obtained by replacing the generalized forces in vector 𝐐 with the corresponding 
prescribed quantities, denotes all the external forces: 

𝐐∗ = {𝑅∗
1 , 𝑅

∗
2 , 𝑅

∗
3 , 𝑉

∗12
𝑛 , 𝑉 ∗23

𝑛 , 𝑉 ∗31
𝑛 ,𝑀∗12

𝑛 ,𝑀∗21
𝑛 ,𝑀∗23

𝑛 ,𝑀∗32
𝑛 ,𝑀∗31

𝑛 ,𝑀∗13
𝑛 }T (26)

Thus, the internal work 𝑈 and the external work 𝑊  of the potential energy can be expressed as:

𝑈 = −1
2
𝜶T𝐇𝜶 + 𝜶T(𝐁𝐓)𝐖 (27)

𝑊 = 𝐐∗T𝐓𝐖 (28)

Based on Eq.  (25), the minimum total potential energy principle gives: 

𝛿𝜋 = 𝛿𝜶T[(𝐁𝐓)𝐖 −𝐇𝜶] + 𝛿𝐖
T
[(𝐁𝐓)T𝜶 − 𝐓T𝐐∗] = 0 (29)

Setting the coefficient of the arbitrary variation 𝛿𝜶T to zero gives: 
𝜶 = 𝐇−1(𝐁𝐓)𝐖 (30)

Performing the variation of 𝑈 as expressed in (27) with 𝜶 substituted by Eq.  (30), we arrive at 𝛿𝑈 for the element as: 

𝛿𝑈 = 𝛿𝐖
T
(𝐁𝐓)T𝐇−1(𝐁𝐓)𝐖 = 𝛿𝐖

T
𝐟int (31)

where 𝐟int is the internal force vector of the plate element: 
𝐟int = (𝐁𝐓)T𝐇−1(𝐁𝐓)𝐖 = 𝐊plate 𝐖 (32)

and 𝐊plate is the stiffness matrix of the plate element: 

𝐊 = (𝐁𝐓)T𝐇−1(𝐁𝐓) (33)
plate

8 
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The variation of the external work 𝑊  gives the external force vector of the element in the absence of distributed pressure load: 
𝛿𝑊 = 𝛿𝐖𝐓T𝐐∗ = 𝛿𝐖𝐟ext , ⇒ 𝐟ext = 𝐓T𝐐∗ (34)

2.3. Formation of shell element

To form a flat shell element that considers membrane deformation and bending, we superimpose a linear membrane element on 
top of the plate element developed in the previous section. The displacement fields 𝑢, 𝑣 are defined in terms of area coordinates 𝐿1, 
𝐿2, 𝐿3:

𝑢 = 𝑢1𝐿1 + 𝑢2𝐿2 + 𝑢3𝐿3 (35)

𝑣 = 𝑣1𝐿1 + 𝑣2𝐿2 + 𝑣3𝐿3 (36)

where 𝑢𝑖 and 𝑣𝑖 represent the displacements along 𝑥 and 𝑦 for node 𝑖, respectively. The DoFs vector of the membrane element 𝐔 is: 
𝐔 =

{

𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑢3, 𝑣3
}T (37)

The stiffness matrix of the triangular membrane element is given by the expression: 

𝐊mem = ∬𝛥
𝐁T
mem 𝐃mem 𝐁mem 𝑡 d𝑥 d𝑦 (38)

where 𝑡 is the thickness of the membrane element and 𝐁mem matrix in Eq.  (38) is 

𝐁mem = 1
2𝐴

⎡

⎢

⎢

⎣

𝑏1 0 𝑏2 0 𝑏3 0
0 𝑐1 0 𝑐2 0 𝑐3
𝑐1 𝑏1 𝑐2 𝑏2 𝑐3 𝑏3

⎤

⎥

⎥

⎦

(39)

𝐴 is the area of the membrane element and:
𝑏1 = 𝑦2 − 𝑦3, 𝑏2 = 𝑦3 − 𝑦1, 𝑏3 = 𝑦1 − 𝑦2 (40)

𝑐1 = 𝑥3 − 𝑥2, 𝑐2 = 𝑥1 − 𝑥3, 𝑐3 = 𝑥2 − 𝑥1 (41)

The 𝐃mem matrix in Eq.  (38) is: 

𝐃mem =

⎡

⎢

⎢

⎢

⎣

𝐸1
1−𝜈12𝜈21

𝜈12𝐸2
1−𝜈12𝜈21

0
𝐸2

1−𝜈12𝜈21
0

symmetric 𝐺12

⎤

⎥

⎥

⎥

⎦

(42)

From Eqs. (33) and (38), we have obtained the stiffness matrices of the plate and membrane elements, respectively. They are 
assembled to form the stiffness matrix of the shell element: 

𝐊shell =
[

𝐊mem 0
0 𝐊plate

]

(43)

The corresponding DoF vector of the shell element is simply:
𝐪shell =

{

𝐔,𝐖
}

(44)

=
{

𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑢3, 𝑣3, 𝑤1,
𝜕𝑤1
𝜕𝑥

,
𝜕𝑤1
𝜕𝑦

,𝑤2,
𝜕𝑤2
𝜕𝑥

,
𝜕𝑤3
𝜕𝑦

,𝑤3,
𝜕𝑤3
𝜕𝑥

,
𝜕𝑤3
𝜕𝑦

}T

The contribution of the shell element to the overall force residual of the finite element system equation is 𝐟ext − 𝐟int . When the 
applied loads are nodal forces, 𝐟ext does not need to be calculated explicitly in the element subroutine as the nodal forces can be 
directly entered in the global external force vector of the system. In this case, the residual contribution of this element can be 
expressed as: 

𝐟res = −𝐟int = −𝐊shell 𝐪shell (45)

2.4. Structural CE between two plies

2.4.1. DoFs and opening vector
The structural CEs must be compatible with the top and bottom shell elements kinematically. Thus, they need to share the same 

DoFs and displacement interpolations along the interface. The DoF vector of the CE can be defined as: 

𝐪CE =
[

𝐔
T
bot,𝐖

T
bot,𝐔

T
top,𝐖

T
top

]T
(46)

where 𝐔bot/top,𝐖bot/top are the membrane and plate DoFs of the bottom/top ply, respectively.
The Mode I opening displacement of the CE can be expressed as 

𝛥I = 𝑤topCE −𝑤botCE (47)
9 
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Fig. 4. Mode I opening.

Fig. 5. Mode II opening.

where 𝑤topCE and 𝑤botCE are the vertical displacements of the top and bottom CE surfaces, respectively. From Fig.  4, using classical 
plate theory, we have:

𝑤topCE = 𝑤top + ℎtop

2
(1 − cos 𝜃top) (48)

𝑤botCE = 𝑤bot − ℎbot

2
(1 − cos 𝜃bot) (49)

ℎtop and ℎbot are the thickness of top and bottom plies, respectively. 𝑤top and 𝑤bot are the vertical displacements of the neutral 
planes of top and bottom plies, respectively. In this work, only geometrical linearity is considered. Thus, the rotations are small 
such that 1 − cos 𝜃 ≈ 0. The mode I opening is then simply the relative displacement between the mid-planes of the plies: 

𝛥I = 𝑤top −𝑤bot (50)

The Mode II opening of the CE shown in Fig.  5 can be expressed as: 
𝛥𝑥 = 𝑢topCE − 𝑢botCE (51)

where 𝑢topCE and 𝑢botCE are the displacements along the x-axis of the top and bottom CE surfaces, respectively. Considering the 
rotations of the shells’ neutral planes and the offsets of shell surfaces from the neutral planes, they can be written as:

𝑢topCE = 𝑢top + ℎtop

2
sin 𝜃top𝑥 (52)

𝑢botCE = 𝑢bot − ℎbot

2
sin 𝜃bot𝑥 (53)

where 𝑢top, 𝑢bot are the displacement 𝑢 of the neutral planes of the top and bottom shells, respectively. For a small rotation 𝜃 in 
geometrically linear problems, sin 𝜃 ≈ 𝜃. Then, the shear opening along 𝑥 is: 

𝛥𝑥 = 𝑢top − 𝑢bot + ℎtop

2
𝜃top𝑥 + ℎbot

2
𝜃bot𝑥 (54)

The shear opening along 𝑦 is found from analogous kinematics in the yz-plane. Hence: 

𝛥 = 𝑣top − 𝑣bot + ℎtop 𝜃top + ℎbot 𝜃bot (55)
𝑦 2 𝑦 2 𝑦

10 
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The central task of CE formulation is to find the matrix, 𝐁CE, that relates the opening vector to its nodal DoFs: 

∆ =
[

𝛥I, 𝛥𝑥, 𝛥𝑦
]T = 𝐁CE 𝐪CE (56)

Examining the expressions of 𝛥I, 𝛥II, 𝛥III in Eqs. (50), (54), and (55), we can see that the 𝐁CE matrix shall be composed of sub-matrices 
that relate the following terms to the nodal DoFs in 𝐪CE: 

𝑤top, 𝑤bot, 𝑢top, 𝑢bot, 𝑣top, 𝑣bot, 𝜃top𝑥 , 𝜃bot𝑥 , 𝜃top𝑦 , 𝜃bot𝑦 (57)

In Eq.  (35), the in-plane displacements 𝑢 and 𝑣 are already expressed in the nodal membrane DoFs. However, the out-of-plane 
displacements 𝑤 and the rotations 𝜃 in the above list remain to be explicitly expressed in terms of nodal DoFs in 𝐪CE.

2.4.2. Shape functions of 𝑤
The displacement 𝑤 shall be expressed in terms of plate DoFs 𝐖 in this section. Referring back to Eq.  (13), the displacement 𝑤

is defined in the local Cartesian coordinates (𝑥 and 𝑦) by the coefficients 𝐴𝑖 and the vector 𝜶. The expression of 𝑤 is then divided 
into two parts. The first part only contains 𝐴𝑖, and the second part only contains 𝛼𝑗 : 

𝑤 = 𝑤𝐴 +𝑤𝛼 (58)

where

𝑤𝐴 = 𝐴1 + 𝐴2 𝑥 + 𝐴3 𝑦 (59)

𝑤𝛼 = 𝛼1 𝑥
2 + 𝛼2 𝑥𝑦 + 𝛼3 𝑦

2 + 𝛼4 𝑥
3 + 𝛼5 𝑥

2𝑦 + 𝛼6 𝑥𝑦
2 + 𝛼7 𝑦

3 (60)

𝑤𝐴 can be rewritten as: 

𝑤𝐴 = 𝐒T 𝐀, 𝐒 = [1, 𝑥, 𝑦]T, 𝐀 = [𝐴1, 𝐴2, 𝐴3]T (61)

Similarly, 𝑤𝛼 can be rewritten as: 

𝑤𝛼 = 𝐑T 𝜶, 𝐑 = [𝑥2, 𝑥𝑦, 𝑦2, 𝑥3, 𝑥2𝑦, 𝑥𝑦2, 𝑦3]T (62)

Let us firstly look at 𝑤𝛼 . Based on Eq.  (30), 𝜶 and 𝐖 can be related by multiplying the three matrices 𝐇, 𝐁 and 𝐓 in Section 2.2.4. 
Here, for simplicity, we replace the product of these three matrices with matrix 𝐂: 

𝐂 = 𝐇−1(𝐁𝐓) (63)

Thus, the vector 𝜶 can be rewritten as: 
𝜶 = 𝐂𝐖 (64)

Substituting Eq.  (64) in to (62), we can obtain the expression of 𝑤𝛼 in terms of 𝐖: 

𝑤𝛼 = 𝐑T𝐂𝐖 (65)

Next, we move on to express 𝑤𝐴 in terms of 𝐖. From Eqs. (58), (61) and (65), we have: 

𝑤𝐴 = 𝐒T 𝐀 = 𝑤 − 𝐑T𝐂𝐖 (66)

Evaluating 𝑤𝐴 at the three nodes, we can obtain: 

𝑤𝐴(𝑥𝑖, 𝑦𝑖) = 𝐒T(𝑥𝑖, 𝑦𝑖)𝐀 = 𝑤𝑖 − 𝐑T(𝑥𝑖, 𝑦𝑖)𝐂𝐖, 𝑖 = 1, 2, 3 (67)

which give us the following matrix equation: 

⎡

⎢

⎢

⎣

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐌𝐴

𝐀 =
⎡

⎢

⎢

⎣

𝑤1
𝑤2
𝑤3

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

𝑥21 𝑥1𝑦1 𝑦21 𝑥31 𝑥21𝑦1 𝑥1𝑦21 𝑦31
𝑥22 𝑥2𝑦2 𝑦22 𝑥32 𝑥22𝑦2 𝑥2𝑦22 𝑦32
𝑥23 𝑥3𝑦3 𝑦23 𝑥33 𝑥2332 𝑥3𝑦23 𝑦33

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐌𝛼

𝐂𝐖 (68)

Since 
⎡

⎢

⎢

⎣

𝑤1
𝑤2
𝑤3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐁𝐴

𝐖 (69)

we can obtain 𝐀 as: 
𝐀 = 𝐌−1 (𝐁 −𝐌 𝐂

)

𝐖 (70)
𝐴 𝐴 𝛼
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Using Eq.  (61), we obtain: 
𝑤𝐴 = 𝐒T𝐌−1

𝐴
(

𝐁𝐴 −𝐌𝛼 𝐂
)

𝐖 (71)

Combining with Eq.  (65), we obtain the expression of 𝑤: 
𝑤 = 𝐒T𝐌−1

𝐴
(

𝐁𝐴 −𝐌𝛼 𝐂
)

𝐖 + 𝐑T𝐂𝐖 = 𝐍𝑤 𝐖 (72)

where the matrix 𝐍𝑤 (1 × 9) can be extracted as: 

𝐍𝑤 = 𝐒T𝐌−1
𝐴 (𝐁𝐴 −𝐌𝛼𝐂) + 𝐑T𝐂 (73)

2.4.3. Shape functions of 𝜃
Using the cubic polynomial expression of 𝑤 from Eq.  (13), 𝜃𝑥 can be expressed as: 

𝜃𝑥 = 𝜕𝑤
𝜕𝑥

= 𝐴2 + 2𝛼1𝑥 + 𝛼2𝑦 + 3𝛼4𝑥2 + 2𝛼5𝑥𝑦 + 𝛼6𝑦
2 (74)

Similarly as in the case of 𝑤, the expression of the above rotations can also be divided into two parts, one containing the 𝐴
coefficients only and another the 𝛼 coefficients only: 

𝜃𝑥 = 𝐴2 + 𝜃𝑥𝛼 (75)

Since 𝐴2 is part of the vector 𝐀 which has been expressed in Eq.  (70), we have: 
𝐴2 = 𝐁𝑥𝐀 = 𝐁𝑥𝐌−1

𝐴 (𝐁𝐴 −𝐌𝛼𝐂)𝐖 (76)

where 𝐁𝑥 is a Boolean matrix: 

𝐁𝑥 =
[

0 1 0
]

(77)

The expression 𝜃𝑥𝛼 can be written as: 

𝜃𝑥𝛼 = 𝐑T
𝑥𝜶 = 𝐑T

𝑥𝐂𝐖 (78)

where Eq.  (64) is used to express 𝜶 and 𝐑𝑥 is also a vector of local coordinates: 

𝐑𝑥 =
[

2𝑥 𝑦 0 3𝑥2 2𝑥𝑦 𝑦2 0
]T (79)

Substituting the expressions above into Eq.  (74), the expression of 𝜃𝑥 is 

𝜃𝑥 = 𝐁𝑥𝐌−1
𝐴 (𝐁𝐴 −𝐌𝛼𝐂)𝐖 + 𝐑T

𝑥𝐂𝐖 (80)

The shape function 𝐍𝑥 of rotation 𝜃𝑥 is therefore: 

𝐍𝑥 = 𝐁𝑥𝐌−1
𝐴 (𝐁𝐴 −𝐌𝛼𝐂) + 𝐑T

𝑥𝐂 (81)

The derivation of shape function 𝐍𝑦 for rotation 𝜃𝑦 is very similar to that for 𝜃𝑥 and is omitted here for brevity.

2.4.4. 𝐁CE matrix
Once we have determined the shape functions, the next step is to assemble the 𝐁CE matrix that relates the DoFs vector 𝐪CE to the 

opening vector ∆ (c.f. Eq.  (56)). Substituting the shape functions in Eqs. (73) and (81) to express the 𝑤 and 𝜃 terms in Eqs. (50), 
(54), and (55), the expression of 𝐁CE can be obtained as the following:

𝐁CE =

⎡

⎢

⎢

⎢

⎣

0 0 0 0 0 0 −𝐍𝑤 0 0 0 0 0 0 𝐍𝑤

−𝐿1 0 −𝐿2 0 −𝐿3 0 ℎbot

2 𝐍𝑥 𝐿1 0 𝐿2 0 𝐿3 0 ℎtop

2 𝐍𝑥

0 −𝐿1 0 −𝐿2 0 −𝐿3
ℎbot

2 𝐍𝑦 0 𝐿1 0 𝐿2 0 𝐿3
ℎtop

2 𝐍𝑦

⎤

⎥

⎥

⎥

⎦

(82)

2.4.5. 𝐃CE matrix
The relationship between traction 𝝉 and opening vector ∆ is expressed through the constitutive matrix 𝐃CE: 

𝝉 = 𝐃CE ∆, 𝐃CE =
⎡

⎢

⎢

⎣

(1 − 𝑑I)𝐾 0 0
0 (1 − 𝑑)𝐾 0
0 0 (1 − 𝑑)𝐾

⎤

⎥

⎥

⎦

(83)

where 𝐾 and 𝑑 are the penalty stiffness and the damage variable of the CE, respectively. The damage variable 𝑑 in this work is 
updated by the bi-linear cohesive law proposed by Turon et al. [42,43]. The damage variable 𝑑I under Mode I loading is distinguished 
from 𝑑 to avoid interpenetration of the top and bottom surfaces under compression: 

𝑑I =

{

𝑑, 𝛥I ≥ 0
(84)
0, 𝛥I < 0
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The penalty stiffness 𝐾 is set as: 

𝐾 = 𝛼
𝐸3
𝑡

(85)

where 𝐸3 is the out-of-plane laminate Young’s modulus, 𝑡 is the thickness of the laminate and 𝛼 is a constant: not to be confused 
with the matrix 𝜶 used in Eq.  (64), here set to be 50 [8].

2.4.6. Stiffness matrix and residual vector
In this work, the secant stiffness matrix is used as the stiffness matrix of the CE: 

𝐊CE = ∫𝛤
𝐁T
CE 𝐃CE 𝐁CE d𝛤 (86)

where 𝛤  represents the domain of the interface. The integral in Eq.  (86) is hard to calculate analytically. Thus, the Gaussian 
integration scheme is applied to obtain the stiffness matrix numerically. Earlier works have shown that using a higher number of 
quadrature points improves the accuracy and smoothness of the load–displacement solutions of delamination simulations [23,33,36]. 
Therefore, thirteen quadrature points are used in this work for the integration of the structural CE, with their coordinates and weights 
taken from the work of Cowper [44].

Assuming that no external distributed loads are applied to the cohesive interfaces, only the internal force vector of the CE 
contributes to the overall residual vector of the system. The residual vector contribution from this CE can then be written as: 

𝐟res = −𝐟int = −𝐊CE 𝐪CE (87)

Note that although the cohesive element developed in this paper appears to have finite thickness between its nodes, the actual 
integration domain is in fact the zero-thickness interface between the plies. The finite thickness of the cohesive element is entirely 
due to the fact that the nodes of the cohesive element, shared with the top and bottom ply elements, are positioned on the midplanes 
of the plies. Through kinematic derivations, the displacements at the upper and lower surfaces of the interface are obtained. The 
separation vector is then calculated as the differences between them. Subsequently, the corresponding tractions and damage variables 
are calculated using the penalty stiffness and the cohesive law. Thus, the cohesive behaviour at the zero-thickness interface can be 
achieved even though the cohesive element has finite thickness between its nodes. In the situation where the physical thickness of the 
interface, i.e., the resin-rich region between two plies, is a matter of importance, different considerations may apply. If the membrane 
stiffness of the resin-rich region cannot be neglected, then solid elements would be needed to model this region. In general, however, 
the membrane stiffness of the resin-rich region is negligible, hence a cohesive law can still be assumed to represent the out-of-plane 
behaviour of the interface. We have developed an approach which relates the finite thickness of the resin-rich region to material 
properties and the penalty stiffness of the traction–separation law. This is the subject of a future communication. 

3. Results

The structural elements Section 2 have been implemented in the Abaqus user-defined element subroutines. The structural CE 
model was firstly verified on the three classical benchmarks, namely the double cantilever beam (DCB), the end-notched flexure 
(ENF), and the mixed-mode bending (MMB) problems. As the above benchmarks only pertain to unidirectional laminates, a multi-
directional laminate problem, namely the single-leg bending (SLB) problem [45,46], was simulated to demonstrate the 3D capacity 
of the model. All simulations of the structural CE model were performed in implicit analysis using the Quasi-Newton solver without 
damping or viscosity. The reference solutions on these problems were obtained with analytical equations and Abaqus standard FE 
simulations using 8-node linear solid elements (C3D8I element in Abaqus) for the plies and 8-node linear CEs for the interfaces. 
The linear CEs were implemented as user-defined elements following the formulation in [5], with the cohesive law from Turon 
et al. [42,43]. The problem descriptions and modelling details will be presented in this section, followed by comparisons of 
load–displacement curves and computational time.

3.1. Unidirectional laminate benchmarks: DCB, ENF, and MMB

3.1.1. Description of the unidirectional laminate tests
The unidirectional laminate benchmarks are drawn from the work by Krueger [46], except that the pre-crack length of the ENF 

model is increased to 35 mm in this work to avoid the snapback in load–displacement response. The geometric parameters and 
boundary conditions are shown in Fig.  6 and Table  1. The detailed material properties are shown in Tables  2 and 3. The mixed 
mode ratio of the SLB specimen is approximately 40% mode II (𝐺II / 𝐺T=0.4) and the MMB specimen is 0.5 (𝐺II / 𝐺T=0.5).

3.1.2. Description of the model
Since the plies of the benchmarks in this section are all 0◦, the symmetric lay-up conditions in Eq.  (2) are met. Therefore, the 

structural model could simply use one layer of shell elements on each side of the delamination, with one layer of structural CEs in 
between. The Abaqus solid models are built according to the work of Krueger [46], except that CEs, instead of VCCT, are used to 
model delamination.
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Fig. 6. DCB, ENF, and MMB test specimens.

Table 1
Geometric parameters for unidirectional benchmarks.
Model

Param. (mm) 2𝐿 𝑎0 ℎ 𝑏 (width) 𝑐

DCB 150.0 30.5 1.50 25.0 –
ENF 101.6 35.0 2.25 25.4 –
MMB 100.8 25.4 2.25 25.4 41.3

Table 2
Material properties for DCB [46].
 T300/1076 Unidirectional graphite/epoxy prepreg
 𝐸11= 139.4 GPa 𝐸22= 10.16 GPa 𝐸33 = 10.16 GPa 
 𝜈12 = 0.30 𝜈13 = 0.30 𝜈23 = 0.436  
 𝐺12 = 4.6 GPa 𝐺13 = 4.6 GPa 𝐺23 = 3.54 GPa  
 Fracture toughness data  
 𝐺Ic = 0.170 kJ∕m2 𝐺IIc = 0.494 kJ∕m2 𝜂 = 1.62  
 Interfacial strength data [20,43]  
 𝜏Ic = 30MPa 𝜏IIc = 60MPa  

Table 3
Material properties for ENF and MMB [46].
 IM7/8552 Unidirectional graphite/epoxy prepreg
 𝐸11= 161 GPa 𝐸22= 11.38 GPa 𝐸33 = 11.38 GPa 
 𝜈12 = 0.32 𝜈13 = 0.32 𝜈23 = 0.45  
 𝐺12 = 5.2 GPa 𝐺13 = 5.2 GPa 𝐺23 = 3.9 GPa  
 Fracture toughness data  
 𝐺Ic = 0.212 kJ∕m2 𝐺IIc = 0.774 kJ∕m2 𝜂 = 2.1  
 Interfacial strength data [20,43]  
 𝜏Ic = 30MPa 𝜏IIc = 60MPa  

3.1.3. Load–displacement curves
The load–displacement curves obtained from the simulations are shown in Fig.  7. The designations ‘‘-solid’’ and ‘‘-structural’’ 

denote the results of the traditional solid element model and those of the proposed structural CE model, respectively. The results 
on meshes of different element sizes are plotted together with the analytical solutions [47–49].

The DCB results in Fig.  7 indicated that the standard model with solid elements requires that the element size should not exceed 
0.5 mm. When the element sizes are greater than or equal to 1 mm, the simulation results differ greatly from the analytical solution. 
The error on peak load exceeds 30%, and the post-peak curve also stays way above the analytical one. With the proposed structural 
model, the results on 2-mm mesh remain in close agreement with the analytical solution, with a less than 3% error on the peak 
load. The post-peak curve also closely follows the analytical curve. The slight over-prediction of the stiffness is expected as a result 
of neglecting transverse shear in the Kirchhoff–Love shell elements. The analytical solution based on the corrected beam theory, 
however, includes such transverse shear effect [47]. Even on a 5-mm mesh, the structural model can predict the peak load fairly 
14 
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Fig. 7. Results of the DCB, ENF, and MMB tests, showing the sensitivities of the conventional solid CE and the proposed structural CE on different 
mesh densities.

well despite the post-peak oscillations right above the analytical curve. Such oscillations are due to the larger spacing between the 
integration points on coarser meshes.

In the ENF case, the solid element model on 1-mm mesh could capture the peak load correctly, thanks to the larger cohesive zone 
in Mode II delamination than in Mode I. However, the result on 2.5-mm mesh already shows a clear drift towards over-prediction. As 
the element size increases to 5 mm, the peak load and post-peak response again become severely over-predicted. Correspondingly, 
if the structural model is used on the 5-mm mesh, the predicted curve remains close to the analytical solution throughout the 
loading history. Even the 7.5-mm structural model manages to capture the load–displacement response very accurately. The slight 
15 
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Table 4
Comparison of CPU time (unit: second).
 DCB ENF MMB  
 Solid model (mesh size) 5311.8 (0.5 mm) 4239.7 (1 mm) 5560.7 (0.5 mm) 
 Structural model (mesh size) 197.15 (5 mm) 285.33 (7.5 mm) 370.02 (7.5 mm) 
 836.76 (2 mm) 736.41 (5 mm) 474.79 (5 mm)  
 Reduction by structural 96.3% 93.3% 93.3%  
 84.2% 82.6% 91.5%  

Fig. 8. Load–displacement curves of the DCB model with different integration points on two different meshes.

under-prediction of the peak load is expected, as the analytical curve is based on Linear Elastic Fracture Mechanics, which ignores 
the presence of material softening (i.e. the cohesive zone) at the crack tip.

In the MMB case, very similar trends can be observed. The solid model on the 2.5-mm mesh cannot capture the correct load–
displacement response, while the structural model’s predictions on the 2.5-mm and 5-mm meshes oscillate closely around the 
analytical curve. Even the 7.5-mm structural model predicts the peak load correctly, albeit with bigger oscillations during the load 
drop section due to the coarser distribution of integration points in larger elements.

3.1.4. Computational performances
By allowing larger elements to be used, the proposed structural model is able to reduce the computational time of the 

delamination simulations considerably. The results of the structural model are compared against those of the solid element model. 
The comparison of CPU time is reported in Table  4. It can be seen that the structural model can reduce the computational time in 
all three problems by more than 90%, while retaining accurate predictions of the peak loads and the overall load-drop curves.

3.1.5. Studies on integration points
In this section, the influence of the number of integration points in one element on the simulation results is discussed, using 

the error of the load–displacement curves with respect to the analytical solutions. The earlier work in 2D [23] showed the largest 
influence of integration points in the DCB model. Therefore, only DCB is studied here. The load–displacement curves with different 
integration points are reported in Fig.  8. The use of 52 integration points in the element domain is achieved through subdomain 
integration as detailed in Tosti Balducci and Chen [36].

From Fig.  8(a), on the 5-mm mesh, it is clear that as we increase the number of integration points, the predicted curves become 
closer to the analytical one, consistent with earlier results [23,36]. It is also clear that even with just 3 integration points, the 
prediction does not exhibit the same overshoot of peak load as seen in the solid-element model in Fig.  7(a). This indicates that it 
is the higher-order continuity in the kinematics of the structural elements that brings down this overshoot and hence enables the 
use of larger elements. From Fig.  8(b), on the 2-mm mesh, the number of integration points does not seem to show any effect. In 
summary, having more integration points increases the prediction accuracy on coarse meshes, but has little effect once the mesh 
is sufficiently refined. This suggests a trade-off between using more integration points and using finer meshes. As the element size 
determines the size of the system matrix, while the operations at integration points are local to each element and can be parallelized, 
it would be more efficient to use more integration points on a coarser mesh.

3.2. Unidirectional laminate benchmarks: Reinforced DCB

Although the earlier benchmarks are modelled in 3D, they can actually be modelled in 2D [23] as the delamination front does 
not vary significantly across the width of the specimens. To verify the capacity of the proposed elements in modelling delamination 
in 3D, the Reinforced DCB (R-DCB) problem is studied in this section.
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Fig. 9. Geometry of the R-DCB specimen (units in mm) [50].

Fig. 10. Boundary conditions and loading of the finite element model; U3=7.5 mm.

Table 5
Lamina properties of the R-DCB model [51].
 Property Value Units 
 𝐸11 154 GPa  
 𝐸22 = 𝐸33 8.5 GPa  
 𝐺12 = 𝐺13 4.2 GPa  
 𝐺23 3.04 GPa  
 𝜇12 = 𝜇13 0.35 –  
 𝜇23 0.4 –  

Table 6
Interlaminar properties of the R-DCB model [51].
 Property Value Units  
 𝐾: Penalty stiffness 105 N∕mm3 
 𝐺Ic 0.305 N/mm  
 𝐺IIc 2.77 N/mm  
 𝜂 2.05 –  
 𝜏Ic 32.6 MPa  
 𝜏IIc 98 MPa  

3.2.1. Description of the reinforced DCB
The R-DCB experiment was proposed by Carreras et al. [50]. The main part of the R-DCB specimen is a standard DCB specimen 

made of 16 unidirectional plies at 0◦. Two reinforcement parts, made of 8 plies of the same material at 0◦, are attached on the top 
and bottom of the DCB specimen. The elastic properties of the ply material are shown in Table  5. The pre-crack is 35 mm long on 
the opposite side of the reinforcement. The geometry of the R-DCB specimen is shown in Fig.  9.

The R-DCB problem is modelled with the proposed structural elements. Symmetry is used to reduce the size of the model. The 
boundary conditions of the model are shown in Fig.  10. The right side of the model is fixed and a displacement loading is applied 
on the left side. The two arms of the DCB and the two reinforcement parts are each modelled with one layer of cubic shell elements. 
Their interfaces are each modelled with one layer of structural CEs. The properties for the structural CEs are shown in Table  6.

3.2.2. Results and comparisons
Similarly as in the previous section, different mesh sizes are used for mesh convergence analysis. The predicted load–displacement 

curves on different mesh sizes are shown in Fig.  11. We can see that the three curves agree well with each other. The 5-mm curve 
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Fig. 11. Load–displacement curves of the reinforced DCB with different mesh sizes from simulation results.

Fig. 12. Comparison of numerical and experimental results of the force–displacement curves [50].

is not as smooth as the other two, consistent with the DCB results in Fig.  7(b). The most obvious difference is that the 5-mm curve 
slightly over-predicts the second peak load and the corresponding opening displacement. The 2-mm and 1-mm curves fall on top of 
each other, indicating that the mesh has converged. The 2-mm curve is used for subsequent comparison with experimental data.

In Fig.  12, it can be seen that the predicted load–displacement curve agrees reasonably well with the experimental data from 
4 specimens. However, there are three obvious differences. Firstly, the initial stiffness is greater than the experimental one. This 
could be due to the fact that the loading grips and test machine increase compliance, which is not included in the model. Looking 
closely at the initial part of the experimental load–displacement curves, we can see that there is a slight increase in stiffness at 
around 0.5 mm displacement. This indicates the presence of some initial machine compliance, which is not taken into account in 
the simulation. Secondly, for the second peak load that denotes the onset of delamination in the reinforced region, the numerical 
prediction is greater than the experimental result by 15%. This could be due to the lack of transverse shear compliance in the model, 
particularly in the reinforced region. This leads to a stiffer response in the model than in the experiments when the reinforced region 
is loaded. This stiffer reinforcement slows down the delamination propagation when it first encounters the reinforcement, leading 
to slower damage creation. Third, the numerical curve after the second peak falls sharply and below the experimental curves. This 
indicates that the fracture toughness value used by the structural CEs may have underestimated the fracture energy for the crack 
propagation in the reinforced region, which may include crack toughening mechanisms such as fibre bridging due to the curved 
delamination front.

In Fig.  13, the positions of the crack fronts of the test specimens and numerical models are plotted at multiple opening 
displacements. It can be observed that the delamination front shapes of the numerical results are consistent with the experimental 
results: the delamination front is a straight line before it goes into the reinforced part. When it extends to the reinforced region, 
the shape changes from a straight line to a curve. However, the delamination propagates faster in the numerical results than in 
18 
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Fig. 13. Comparison of numerical and experimental results of the delamination front position.

the experiments, except at 10-mm displacement when the delamination propagation in the middle is clearly hindered by the stiff 
reinforcement. However, once delamination initiates in the reinforced region, it again propagates faster in the simulation than in 
the experiment, as shown by the curves at 12-mm and 15-mm displacements. The reason for the faster numerical propagation could 
be that the stiffness in the simulation is higher than that in the experiments due to the lack of initial machine compliance and the 
lack of transverse shear compliance in the model. Therefore, in the simulation, a smaller displacement loading on the arms would 
be needed than in the experiments to open the cohesive crack tip to reach its delamination onset. This also means that for the same 
amount of displacement loading, the simulation would predict the delamination front to propagate further than in the experiments.

3.3. Multi-directional laminate benchmark: SLB

3.3.1. Description of the SLB test
The SLB specimen is shown in Fig.  14, with its geometrical parameters specified in Table  7. Unlike in the previous benchmarks, 

the ply angles here are no longer all 0◦. The material of the SLB model is C12K/R6376 and its properties are shown in Table  8. 
Unfortunately, The value of 𝜏IIc cannot be found in the literature. However, the value of 𝜏IIc can be estimated by 𝜏Ic in Eq.  (88) 
which is derived by the equations in Ref. [43] with the same penalty stiffness of mode I and mode II. Hence, the value of 𝜏IIc here 
is estimated to be 58 MPa. 

𝜏IIc = 𝜏Ic

√

𝐺IIc
𝐺

(88)

Ic
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Fig. 14. SLB specimen [45].

Table 7
Geometric parameters for the SLB specimen.
 Parameter 2𝐿 𝑎0 𝑡1 𝑡2 𝑏 (width) 
 value (mm) 177.8 60 2 2 25.4  

Table 8
C12K/R6376 material properties for SLB specimen [46].
 𝐸11= 146.9 GPa 𝐸22= 10.6 GPa 𝐸33 = 10.6 GPa 
 𝜈12 = 0.33 𝜈13 = 0.33 𝜈23 = 0.33  
 𝐺12 = 5.45 GPa 𝐺13 = 5.45 GPa 𝐺23 = 3.99 GPa 
 Fracture toughness data  
 𝐺Ic = 0.34 kJ∕m2 𝐺IIc = 1.286 kJ∕m2 𝜂 = 3.39  
 Interfacial strength data  
 𝜏Ic = 25MPa [52] 𝜏IIc = 58MPaa  
a Estimated [20].

Fig. 15. Layer-wise model for SLB.
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Fig. 16. Load–displacement predictions of the SLB.

3.3.2. Description of the model
Since the SLB specimen is a multi-directional laminate and its lay-up is not symmetric, we can no longer model the entire 

laminate with a single layer of shell elements on each side of the delamination, as done in the unidirectional models. Therefore, the 
SLB model uses one layer of shell elements for each ply and one layer of structural CEs between every two plies (c.f., Fig.  15).

3.3.3. Load–displacement curves
In Fig.  16, the load–displacement curves are reported for the solid and structural models. Both are compared with the analytical 

solution derived in Appendix  C. All the load–displacement predictions by the solid model could not reach numerical convergence 
within the allowable settings on solver iterations. As a result, the load-decreasing section of the curve could not be obtained. From 
the left figure, it can be seen that only the 0.5-mm solid model can capture the correct peak load. For the 2.5-mm solid model, 
the peak load is much lower than the analytical solution due to premature divergence of analysis. However, the peak load of the 
model on the 5-mm mesh is much larger than the analytical solution, in line with the solid model’s performance in the unidirectional 
benchmarks. The right figure shows that all the structural models can obtain converged solutions throughout the full loading history. 
Overall speaking, the predicted curves of the structural models follow well the analytical solution. On the 2.5-mm mesh, the error 
of peak load is 2%, the same level of accuracy as that of the unidirectional structural model. On the 5-mm mesh, the predicted peak 
load is larger by 12.5%. However, the post-peak part of the curve quickly converges to that of the 2.5-mm mesh result. It should 
be noted that the initial stiffness of the structural models is 5% larger than that of the analytical solution. The reason is that the 
compliance 𝐶 obtained by Eq.  (C.12) is calculated by simplifying the SLB model into a 2D beam model (c.f., Fig.  C.1), where the 
neutral axis is assumed to be aligned with the centreline of the uncracked region for simplicity. However, the actual neutral axis of 
the SLB model should be slightly above the assumed one, as only the top part of the cracked region would be under bending. This 
discrepancy would cause the analytical stiffness to be slightly lower than that in the actual situation. Another discrepancy to note is 
that when the crack length 𝑎 is longer than 𝐿, the load increases again with increasing displacement (c.f., Appendix  C, curve DFE). 
For this part, the predicted curves of the structural models are above the analytical curve. This discrepancy is however expected. 
As the crack length 𝑎 increases with delamination propagation, the mixed-mode ratio 𝐵 is found to also increase, particularly when 
𝑎 > 𝐿 [53], which causes the critical energy release rate 𝐺𝑐 to increase as well. However, the analytical solution in Appendix  C 
assumes a fixed mixed-ratio, which underestimates 𝐺𝑐 for 𝑎 > 𝐿, hence resulting in the analytical curve being below the numerical 
ones. The analytical curve could be corrected, should an analytical expression of 𝐺𝑐 in terms of 𝑎 become available.

In addition, it needs to be emphasized that the difficulty of convergence of the solid model leads to a significant increase in 
computational time. Due to this reason, artificial viscosity would be needed to continue the simulation through the convergence 
difficulties. However, this would introduce a fitting parameter which generally requires trial and error to properly set its value. 
This suggests that the proposed structural model not only allows coarser meshes with faster computations but also ensures better 
numerical stability than the solid element model.

4. Summary and conclusions

This work aims to establish a state-of-the-art numerical method to simulate the delamination of composite laminates aimed at 
overcoming the cohesive zone limit on mesh density. The Kirchhoff–Love triangular cubic plate element from Allman [40] has been 
extended for the modelling of symmetric laminate shells. A structural CE, conforming with the shell element, has been developed to 
model delamination between the shells. The combination of the Kirchhoff–Love shell element and the structural CE is shown to be 
a powerful new method that overcomes the cohesive zone limit and models delamination with high accuracy and efficiency under 
different loading conditions. This capability is expected to make a strong impact in the composites modelling community, as the 
cohesive zone limit has been a long-lasting and well-known problem for delamination modelling.
21 



X. Ai et al. Engineering Fracture Mechanics 329 (2025) 111586 
This method has also been validated on the DCB, ENF, MMB, and SLB problems. The results show excellent agreement with 
the analytical solutions. By comparing the results with those from the solid element model, the structural model has shown the 
following advantages: (1) it can accurately predict the load–displacement curves with significantly coarser meshes than the solid 
element model, allowing 5-mm elements to be used instead of the 0.5-mm elements in the latter; (2) its computational speed is much 
faster than that of the solid element model, achieving more than 90% reduction in CPU time; and (3) it has better numerical stability 
than the solid element model, reaching convergence without needing artificial viscosity for stabilization. In addition, the method 
has been applied on the R-DCB problem where the delamination front is highly curved. Its predictions on the load–displacement 
curve and delamination fronts are in very good agreement with the experimental data.

Future work includes the incorporation of intralaminar damage in the structural model. Since Kirchhoff–Love thin shell elements 
are used to model the plies, the transverse strains are ignored. This will impact the prediction of intralaminar damage in the model 
because an accurate three-dimensional damage criterion would require out-of-plane stresses and/or strains as inputs. However, since 
the layer-by-layer modelling method used in this work employs CEs between every two plies, the required out-of-plane stresses can 
be obtained by extracting the tractions of the CEs and interpolating them between the layers [23]. This is the subject of an ongoing 
work in the group.
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Appendix A. 𝐇 matrix

Before we calculate 𝑈0 in Eq.  (3), we need to calculate six parts. The first part is: 
𝐷11
2

(

𝜕2𝑤
𝜕𝑥2

)2
= 𝐷11(2𝛼21 + 12𝑥𝛼1𝛼4 + 4𝑦𝛼1𝛼5 + 18𝑥2𝛼24 + 12𝑥𝑦𝛼4𝛼5 + 2𝑦2𝛼25 ) (A.1)

Based on Eq.  (16), we can obtain: 

∬𝐴

𝐷11
2

(

𝜕2𝑤
𝜕𝑥2

)2
d𝑥d𝑦 = 1

2
𝜶T 𝐇1 𝜶 (A.2)

where 𝐇1 is: 

𝐇1 = ∬𝐴
𝐷11

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 0 0 12𝑥 4𝑦 0 0
0 0 0 0 0 0

0 0 0 0 0
36𝑥2 12𝑥𝑦 0 0

Symmetric 4𝑦2 0 0
0 0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d𝑥d𝑦 (A.3)

The second part is: 
𝐷22
2

(

𝜕2𝑤
𝜕𝑦2

)2
= 𝐷22(2𝛼23 + 4𝑥𝛼3𝛼6 + 12𝑦𝛼3𝛼7 + 2𝑥2𝛼26 + 12𝑥𝑦𝛼6𝛼7 + 18𝑦2𝛼27 ) (A.4)

Then, an equation which is similar as Eq.  (A.2) in terms of 𝐇2 can be obtained: 
𝐷22

(

𝜕2𝑤
)2

d𝑥d𝑦 = 1𝜶T 𝐇2 𝜶 (A.5)
∬𝐴 2 𝜕𝑥2 2
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where 𝐇2 is: 

𝐇2 = ∬𝐴
𝐷22

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0
0 0 0 0 0 0

4 0 0 4𝑥 12𝑦
0 0 0 0

Symmetric 0 0 0
4𝑥2 12𝑥𝑦
0 36𝑦2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d𝑥d𝑦 (A.6)

The third part is:

𝐷12
𝜕2𝑤
𝜕𝑥2

𝜕2𝑤
𝜕𝑦2

=𝐷12(4𝛼1𝛼3 + 4𝑥𝛼1𝛼6 + 12𝑥𝛼3𝛼4 + 12𝑦𝛼1𝛼7 + 4𝑦𝛼3𝛼5

+ 12𝑥2𝛼4𝛼6 + 12𝑦2𝛼5𝛼7 + 36𝑥𝑦𝛼4𝛼7 + 4𝑥𝑦𝛼5𝛼6) (A.7)

and 𝐇3 can be obtained by using the same method: 

𝐇3 = ∬𝐴
𝐷12

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 4 0 0 4𝑥 12𝑦
0 0 0 0 0 0

0 12𝑥 4𝑦 0 0
0 0 12𝑥2 36𝑥𝑦

Symmetric 0 4𝑥𝑦 12𝑦2

0 0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d𝑥d𝑦 (A.8)

Therefore, the 𝐇 matrix of 4th, 5th and 6th part are expressed by the following expressions: 

𝐇4 = ∬𝐴
𝐷16

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 4 0 0 8𝑥 8𝑦 0
0 0 12𝑥 4𝑦 0 0

0 0 0 0 0
0 24𝑥2 24𝑥𝑦 0

Symmetric 16𝑥𝑦 8𝑦2 0
0 0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d𝑥d𝑦 (A.9)

𝐇5 = ∬𝐴
𝐷26

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0
0 4 0 0 4𝑥 12𝑦

0 0 8𝑥 8𝑦 0
0 0 0 0

Symmetric 0 8𝑥2 24𝑥𝑦
16𝑥𝑦 24𝑦2

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d𝑥d𝑦 (A.10)

and 

𝐇6 = ∬𝐴
𝐷66

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0
4 0 0 8𝑥 8𝑦 0

0 0 0 0 0
0 0 0 0

Symmetric 16𝑥2 16𝑥𝑦 0
16𝑦2 0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d𝑥d𝑦 (A.11)

The 𝐇 matrix can be written as the sum of 𝐇𝑖 (𝑖 = 1, 2,… , 6): 
𝐇 = 𝐇1 +𝐇2 +𝐇3 +𝐇4 +𝐇5 +𝐇6 (A.12)

where the integral for each item of the 𝐇 matrix can be calculated by using the formulas given in Ref. [37].

Appendix B. 𝐁 matrix

Plugging the expression of 𝑤 (Eq.  (13)) into Eq.  (2), we can express the moment resultants as: 
𝑀𝑥 = − 2𝐷11𝛼1 − 2𝐷16𝛼2 − 2𝐷12𝛼3 − 6𝑥𝐷11𝛼4 − (2𝑦𝐷11 + 4𝑥𝐷16)𝛼5

− (2𝑥𝐷12 + 4𝑦𝐷16)𝛼6 − 6𝑦𝐷12𝛼7 (B.1)

which in matrix form is: 
𝑀 = 𝐁T 𝜶 (B.2)
𝑥 𝑀𝑥
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where 𝐁T
𝑀𝑥

 is:

𝐁T
𝑀𝑥

= [ − 2𝐷11, −2𝐷16, −2𝐷12, −6𝑥𝐷11, −(2𝑦𝐷11 + 4𝑥𝐷16),

− (2𝑥𝐷12 + 4𝑦𝐷16), −6𝑦𝐷12] (B.3)

Similarly, for 𝑀𝑦, we have: 

𝑀𝑦 = 𝐁T
𝑀𝑦

𝜶 (B.4)

where 𝐁T
𝑀𝑦

 is:

𝐁T
𝑀𝑦

= [ − 2𝐷12, −2𝐷26, −2𝐷22, −6𝑥𝐷12, −(2𝑦𝐷12 + 4𝑥𝐷26),

− (2𝑥𝐷22 + 4𝑦𝐷26), −6𝑦𝐷22] (B.5)

For 𝑀𝑥𝑦, we can obtain: 

𝑀𝑥𝑦 = 𝐁T
𝑀𝑥𝑦

𝜶 (B.6)

where the matrix 𝐁T
𝑀𝑥𝑦

 is:

𝐁T
𝑀𝑥𝑦

= [ − 2𝐷16, −2𝐷66, −2𝐷26, −6𝑥𝐷16, −(4𝑥𝐷66 + 2𝑦𝐷16),

− (4𝑦𝐷66 + 2𝑥𝐷26), −6𝑦𝐷26] (B.7)

From Eq.  (2), we can calculate the derivative of the moment:
𝜕𝑀𝑥
𝜕𝑥

= −𝐷11
𝜕3𝑤
𝜕𝑥3

−𝐷12
𝜕3𝑤
𝜕𝑥𝜕𝑦2

− 2𝐷16
𝜕3𝑤
𝜕𝑥2𝜕𝑦

𝜕𝑀𝑥
𝜕𝑦

= −𝐷11
𝜕3𝑤
𝜕𝑥2𝜕𝑦

−𝐷12
𝜕3𝑤
𝜕𝑦3

− 2𝐷16
𝜕3𝑤
𝜕𝑥𝜕𝑦2

𝜕𝑀𝑦

𝜕𝑥
= −𝐷12

𝜕3𝑤
𝜕𝑥3

−𝐷22
𝜕3𝑤
𝜕𝑥𝜕𝑦2

− 2𝐷26
𝜕3𝑤
𝜕𝑥2𝜕𝑦

𝜕𝑀𝑦

𝜕𝑦
= −𝐷12

𝜕3𝑤
𝜕𝑥2𝜕𝑦

−𝐷22
𝜕3𝑤
𝜕𝑦3

− 2𝐷26
𝜕3𝑤
𝜕𝑥𝜕𝑦2

𝜕𝑀𝑥𝑦

𝜕𝑥
= −𝐷16

𝜕3𝑤
𝜕𝑥3

−𝐷26
𝜕3𝑤
𝜕𝑥𝜕𝑦2

− 2𝐷66
𝜕3𝑤
𝜕𝑥2𝜕𝑦

𝜕𝑀𝑥𝑦

𝜕𝑦
= −𝐷16

𝜕3𝑤
𝜕𝑥2𝜕𝑦

−𝐷26
𝜕3𝑤
𝜕𝑦3

− 2𝐷66
𝜕3𝑤
𝜕𝑥𝜕𝑦2

(B.8)

Using Eq.  (4), we calculate 𝑀𝑛 for node 1 and node 2 on the side 1-2 as:
𝑀12

𝑛 = cos2 𝛾12𝐁T
𝑀1

𝑥
𝜶 + sin2 𝛾12𝐁T

𝑀1
𝑦
𝜶 + sin 2𝛾12𝐁T

𝑀1
𝑥𝑦
𝜶 (B.9)

𝑀21
𝑛 = cos2 𝛾12𝐁T

𝑀2
𝑥
𝜶 + sin2 𝛾12𝐁T

𝑀2
𝑦
𝜶 + sin 2𝛾12𝐁T

𝑀2
𝑥𝑦
𝜶 (B.10)

where 𝐁T
𝑀𝑗

𝑥
 means Eq.  (B.3) evaluated at the coordinates of node 𝑗 and 𝐁T

𝑀𝑗
𝑦
 means Eq.  (B.5) evaluated at the coordinates of node 

𝑗, respectively. And the corresponding 𝐁 matrix is:
𝐁T
𝑀12

𝑛
= cos2 𝛾12𝐁T

𝑀1
𝑥
+ sin2 𝛾12𝐁T

𝑀1
𝑦
+ sin 2𝛾12𝐁T

𝑀1
𝑥𝑦

(B.11)

𝐁T
𝑀21

𝑛
= cos2 𝛾12𝐁T

𝑀2
𝑥
+ sin2 𝛾12𝐁T

𝑀2
𝑦
+ sin 2𝛾12𝐁T

𝑀2
𝑥𝑦

(B.12)

Similarly, 𝑀𝑛 for the side 2-3 is:
𝑀23

𝑛 = cos2 𝛾23𝐁T
𝑀2

𝑥
𝜶 + sin2 𝛾23𝐁T

𝑀2
𝑦
𝜶 + sin 2𝛾23𝐁T

𝑀2
𝑥𝑦
𝜶 (B.13)

𝑀32
𝑛 = cos2 𝛾23𝐁T

𝑀3
𝑥
𝜶 + sin2 𝛾23𝐁T

𝑀3
𝑦
𝜶 + sin 2𝛾23𝐁T

𝑀3
𝑥𝑦
𝜶 (B.14)

And the corresponding 𝐁 matrix is:
𝐁T
𝑀23

𝑛
= cos2 𝛾23𝐁T

𝑀2
𝑥
+ sin2 𝛾23𝐁T

𝑀2
𝑦
+ sin 2𝛾23𝐁T

𝑀2
𝑥𝑦

(B.15)

𝐁T
𝑀32

𝑛
= cos2 𝛾23𝐁T

𝑀3
𝑥
+ sin2 𝛾23𝐁T

𝑀3
𝑦
+ sin 2𝛾23𝐁T

𝑀3
𝑥𝑦

(B.16)

Finally, 𝑀𝑛 for the side 3-1 is:
𝑀31 = cos2 𝛾31𝐁T 𝜶 + sin2 𝛾31𝐁T 𝜶 + sin 2𝛾31𝐁T 𝜶 (B.17)
𝑛 𝑀3

𝑥 𝑀3
𝑦 𝑀3

𝑥𝑦
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𝑀13
𝑛 = cos2 𝛾31𝐁T

𝑀1
𝑥
𝜶 + sin2 𝛾31𝐁T

𝑀1
𝑦
𝜶 + sin 2𝛾31𝐁T

𝑀1
𝑥𝑦
𝜶 (B.18)

And the corresponding 𝐁 matrix is:

𝐁T
𝑀31

𝑛
= cos2 𝛾31𝐁T

𝑀3
𝑥
+ sin2 𝛾31𝐁T

𝑀3
𝑦
+ sin 2𝛾31𝐁T

𝑀3
𝑥𝑦

(B.19)

𝐁T
𝑀13

𝑛
= cos2 𝛾31𝐁T

𝑀1
𝑥
+ sin2 𝛾31𝐁T

𝑀1
𝑦
+ sin 2𝛾31𝐁T

𝑀1
𝑥𝑦

(B.20)

Before calculating 𝑅𝑁 , we need to calculate 𝑀𝑛𝑠 at first as shown in Eq.  (11). For node 1:

𝑀12
𝑛𝑠 =

[

1
2

(

𝐁T
𝑀1

𝑦
− 𝐁T

𝑀1
𝑥

)

sin 2𝛾12 + 𝐁T
𝑀1

𝑥𝑦
cos 2𝛾12

]

𝜶 (B.21)

𝑀13
𝑛𝑠 =

[

1
2

(

𝐁T
𝑀1

𝑦
− 𝐁T

𝑀1
𝑥

)

sin 2𝛾31 + 𝐁T
𝑀1

𝑥𝑦
cos 2𝛾31

]

𝜶 (B.22)

Thus, plugging the above two terms into Eq.  (11), 𝑅1 is:

𝑅1 =
[

1
2
(sin 2𝛾12 − sin 2𝛾31)

(

𝐁T
𝑀1

𝑦
− 𝐁T

𝑀1
𝑥

)

+ (cos 2𝛾12 − cos 2𝛾31)𝐁T
𝑀1

𝑥𝑦

]

𝜶

= 𝐁𝑅1
𝜶 (B.23)

where the matrix 𝐁𝑅1
 is: 

𝐁T
𝑅1

= 1
2
(

sin 2𝛾12 − sin 2𝛾31
)

(

𝐁T
𝑀1

𝑦
− 𝐁T

𝑀1
𝑥

)

+ (cos 2𝛾12 − cos 2𝛾31)𝐁T
𝑀1

𝑥𝑦
(B.24)

Similarly, the matrix 𝐁𝑅2
 related to the node 2: 

𝐁T
𝑅2

= 1
2
(

sin 2𝛾23 − sin 2𝛾12
)

(

𝐁T
𝑀2

𝑦
− 𝐁T

𝑀2
𝑥

)

+ (cos 2𝛾23 − cos 2𝛾12)𝐁T
𝑀2

𝑥𝑦
(B.25)

At last, the matrix 𝐁𝑅3
: 

𝐁T
𝑅3

= 1
2
(

sin 2𝛾31 − sin 2𝛾23
)

(

𝐁T
𝑀3

𝑦
− 𝐁T

𝑀3
𝑥

)

+ (cos 2𝛾31 − cos 2𝛾23)𝐁T
𝑀3

𝑥𝑦
(B.26)

In order to simplify the writing of the above formula, we define the following notations:

𝑆1 = sin 2𝛾12 − sin 2𝛾31, 𝐶1 = cos 2𝛾12 − cos 2𝛾31
𝑆2 = sin 2𝛾23 − sin 2𝛾12, 𝐶2 = cos 2𝛾23 − cos 2𝛾12

𝑆3 = sin 2𝛾31 − sin 2𝛾23, 𝐶3 = cos 2𝛾31 − cos 2𝛾23 (B.27)

The matrix 𝐁T
𝑅 in Eq.  (B.24), (B.25) and (B.26) can be rewritten as:

𝐁T
𝑅1

= 1
2
𝑆1

(

𝐁T
𝑀1

𝑦
− 𝐁T

𝑀1
𝑥

)

+ 𝐶1𝐁T
𝑀1

𝑥𝑦

𝐁T
𝑅2

= 1
2
𝑆2

(

𝐁T
𝑀2

𝑦
− 𝐁T

𝑀2
𝑥

)

+ 𝐶2𝐁T
𝑀2

𝑥𝑦

𝐁T
𝑅3

= 1
2
𝑆3

(

𝐁T
𝑀3

𝑦
− 𝐁T

𝑀3
𝑥

)

+ 𝐶3𝐁T
𝑀3

𝑥𝑦
(B.28)

Next, we calculate 𝑉𝑛 according to Eqs. (5) to (8). Plugging Eqs.  (7) and (8) into (5), we get: 

𝑉𝑛 =
𝜕𝑀𝑛
𝜕𝑛

+ 2
𝜕𝑀𝑛𝑠
𝜕𝑠

(B.29)

Plugging Eq.  (12) into Eq.  (B.29), we get: 

𝑉𝑛 = cos 𝛾
𝜕𝑀𝑛
𝜕𝑥

+ sin 𝛾
𝜕𝑀𝑛
𝜕𝑦

− 2 sin 𝛾
𝜕𝑀𝑛𝑠
𝜕𝑥

+ 2 cos 𝛾
𝜕𝑀𝑛𝑠
𝜕𝑦

(B.30)

The terms on the RHS above require eventually the evaluation of 𝜕𝑀𝑛
𝜕𝑥 , 

𝜕𝑀𝑛
𝜕𝑦 , 

𝜕𝑀𝑛𝑠
𝜕𝑥 , and 𝜕𝑀𝑛𝑠

𝜕𝑦 .

For 𝑉 12 item, the derivation from Eq.  (B.9) is:
𝑛
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𝜕𝑀12
𝑛

𝜕𝑥
= cos2 𝛾12

𝜕𝐁T
𝑀1

𝑥

𝜕𝑥
𝜶 + sin2 𝛾12

𝜕𝐁T
𝑀1

𝑦

𝜕𝑥
𝜶 + sin 2𝛾12

𝜕𝐁T
𝑀1

𝑥𝑦

𝜕𝑥
𝜶 (B.31)

𝜕𝑀12
𝑛

𝜕𝑦
= cos2 𝛾12

𝜕𝐁T
𝑀1

𝑥

𝜕𝑦
𝜶 + sin2 𝛾12

𝜕𝐁T
𝑀1

𝑦

𝜕𝑦
𝜶 + sin 2𝛾12

𝜕𝐁T
𝑀1

𝑥𝑦

𝜕𝑦
𝜶 (B.32)

where
𝜕𝐁T

𝑀1
𝑥

𝜕𝑥
=
[

0, 0, 0, −6𝐷11, −4𝐷16, −2𝐷12, 0
]

(B.33)

𝜕𝐁T
𝑀1

𝑦

𝜕𝑥
=
[

0, 0, 0, −6𝐷12, −4𝐷26, −2𝐷22, 0
]

(B.34)

𝜕𝐁T
𝑀1

𝑥𝑦

𝜕𝑥
=
[

0, 0, 0, −6𝐷16, −4𝐷66, −2𝐷26, 0
]

(B.35)

And
𝜕𝐁T

𝑀1
𝑥

𝜕𝑦
=
[

0, 0, 0, 0, −2𝐷11, −4𝐷16, −6𝐷12
]

(B.36)

𝜕𝐁T
𝑀1

𝑦

𝜕𝑦
=
[

0, 0, 0, 0, −2𝐷12, −4𝐷26, −6𝐷22
]

(B.37)

𝜕𝐁T
𝑀1

𝑥𝑦

𝜕𝑦
=
[

0, 0, 0, 0, −2𝐷16, −4𝐷66, −6𝐷26
]

(B.38)

Thus, the matrix 𝐁T
𝑀12

𝑛,𝑥
 and 𝐁T

𝑀12
𝑛,𝑦

 are:

𝐁T
𝑀12

𝑛,𝑥
= cos2 𝛾12

𝜕𝐁T
𝑀1

𝑥

𝜕𝑥
+ sin2 𝛾12

𝜕𝐁T
𝑀1

𝑦

𝜕𝑥
+ sin 2𝛾12

𝜕𝐁T
𝑀1

𝑥𝑦

𝜕𝑥
(B.39)

𝐁T
𝑀12

𝑛,𝑦
= cos2 𝛾12

𝜕𝐁T
𝑀1

𝑥

𝜕𝑦
+ sin2 𝛾12

𝜕𝐁T
𝑀1

𝑦

𝜕𝑦
+ sin 2𝛾12

𝜕𝐁T
𝑀1

𝑥𝑦

𝜕𝑦
(B.40)

Using Eq.  (7), the derivative of moment 𝑀𝑛𝑠 on side 1-2 is:

𝜕𝑀12
𝑛𝑠

𝜕𝑥
=
⎡

⎢

⎢

⎣

1
2

⎛

⎜

⎜

⎝

𝜕𝐁T
𝑀1

𝑦

𝜕𝑥
−

𝜕𝐁T
𝑀1

𝑥

𝜕𝑥

⎞

⎟

⎟

⎠

sin 2𝛾12 +
𝜕𝐁T

𝑀1
𝑥𝑦

𝜕𝑥
cos 2𝛾12

⎤

⎥

⎥

⎦

𝜶 (B.41)

𝜕𝑀12
𝑛𝑠

𝜕𝑦
=
⎡

⎢

⎢

⎣

1
2

⎛

⎜

⎜

⎝

𝜕𝐁T
𝑀1

𝑦

𝜕𝑦
−

𝜕𝐁T
𝑀1

𝑥

𝜕𝑦

⎞

⎟

⎟

⎠

sin 2𝛾12 +
𝜕𝐁T

𝑀1
𝑥𝑦

𝜕𝑦
cos 2𝛾12

⎤

⎥

⎥

⎦

𝜶 (B.42)

Thus, the matrices 𝐁T
𝑀12

𝑛𝑠,𝑥
 and 𝐁T

𝑀12
𝑛𝑠,𝑦

 are:

𝐁T
𝑀12

𝑛𝑠,𝑥
= 1

2
sin 2𝛾12

⎛

⎜

⎜

⎝

𝜕𝐁T
𝑀1

𝑦

𝜕𝑥
−

𝜕𝐁T
𝑀1

𝑥

𝜕𝑥

⎞

⎟

⎟

⎠

+ cos 2𝛾12

𝜕𝐁T
𝑀1

𝑥𝑦

𝜕𝑥
(B.43)

𝐁T
𝑀12

𝑛𝑠,𝑦
= 1

2
sin 2𝛾12

⎛

⎜

⎜

⎝

𝜕𝐁T
𝑀1

𝑦

𝜕𝑦
−

𝜕𝐁T
𝑀1

𝑥

𝜕𝑦

⎞

⎟

⎟

⎠

+ cos 2𝛾12

𝜕𝐁T
𝑀1

𝑥𝑦

𝜕𝑦
(B.44)

Finally, using Eq.  (B.30), 𝐁 matrix for the Kirchhoff shear force 𝑉𝑛 on side 1-2 is: 

𝐁T
𝑉 12
𝑛

= cos 𝛾12𝐁T
𝑀12

𝑛,𝑥
+ sin 𝛾12𝐁T

𝑀12
𝑛,𝑦

− 2 sin 𝛾12𝐁T
𝑀12

𝑛𝑠,𝑥
+ 2 cos 𝛾12𝐁T

𝑀12
𝑛𝑠,𝑦

(B.45)

Similarly, 𝐁𝑉𝑛  matrix on side 2-3 is:

𝐁T
𝑀23

𝑛,𝑥
= cos2 𝛾23

𝜕𝐁T
𝑀2

𝑥

𝜕𝑥
+ sin2 𝛾23

𝜕𝐁T
𝑀2

𝑦

𝜕𝑥
+ sin 2𝛾23

𝜕𝐁T
𝑀1

𝑥𝑦

𝜕𝑥
(B.46)

𝐁T
𝑀23

𝑛,𝑦
= cos2 𝛾23

𝜕𝐁T
𝑀2

𝑥

𝜕𝑦
+ sin2 𝛾23

𝜕𝐁T
𝑀2

𝑦

𝜕𝑦
+ sin 2𝛾23

𝜕𝐁T
𝑀2

𝑥𝑦

𝜕𝑦
(B.47)
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Fig. C.1. Analytical solution of SLB model.

and

𝐁T
𝑀23

𝑛𝑠,𝑥
= 1

2
sin 2𝛾23

⎛

⎜

⎜

⎝

𝜕𝐁T
𝑀2

𝑦

𝜕𝑥
−

𝜕𝐁T
𝑀2

𝑥

𝜕𝑥

⎞

⎟

⎟

⎠

+ cos 2𝛾23

𝜕𝐁T
𝑀2

𝑥𝑦

𝜕𝑥
(B.48)

𝐁T
𝑀23

𝑛𝑠,𝑦
= 1

2
sin 2𝛾23

⎛

⎜

⎜

⎝

𝜕𝐁T
𝑀2

𝑦

𝜕𝑦
−

𝜕𝐁T
𝑀2

𝑥

𝜕𝑦

⎞

⎟

⎟

⎠

+ cos 2𝛾23

𝜕𝐁T
𝑀2

𝑥𝑦

𝜕𝑦
(B.49)

The 𝐁 matrix for 𝑉 23
𝑛  is: 

𝐁T
𝑉 23
𝑛

= cos 𝛾23𝐁T
𝑀23

𝑛,𝑥
+ sin 𝛾23𝐁T

𝑀23
𝑛,𝑦

− 2 sin 𝛾23𝐁T
𝑀23

𝑛𝑠,𝑥
+ 2 cos 𝛾23𝐁T

𝑀23
𝑛𝑠,𝑦

(B.50)

On side 3-1:

𝐁T
𝑀31

𝑛,𝑥
= cos2 𝛾31

𝜕𝐁T
𝑀3

𝑥

𝜕𝑥
+ sin2 𝛾31

𝜕𝐁T
𝑀3

𝑦

𝜕𝑥
+ sin 2𝛾31

𝜕𝐁T
𝑀3

𝑥𝑦

𝜕𝑥
(B.51)

𝐁T
𝑀31

𝑛,𝑦
= cos2 𝛾31

𝜕𝐁T
𝑀3

𝑥

𝜕𝑦
+ sin2 𝛾31

𝜕𝐁T
𝑀3

𝑦

𝜕𝑦
+ sin 2𝛾31

𝜕𝐁T
𝑀3

𝑥𝑦

𝜕𝑦
(B.52)

and

𝐁T
𝑀31

𝑛𝑠,𝑥
= 1

2
sin 2𝛾31

⎛

⎜

⎜

⎝

𝜕𝐁T
𝑀3

𝑦

𝜕𝑥
−

𝜕𝐁T
𝑀3

𝑥

𝜕𝑥

⎞

⎟

⎟

⎠

+ cos 2𝛾31

𝜕𝐁T
𝑀3

𝑥𝑦

𝜕𝑥
(B.53)

𝐁T
𝑀31

𝑛𝑠,𝑦
= 1

2
sin 2𝛾31

⎛

⎜

⎜

⎝

𝜕𝐁T
𝑀3

𝑦

𝜕𝑦
−

𝜕𝐁T
𝑀3

𝑥

𝜕𝑦

⎞

⎟

⎟

⎠

+ cos 2𝛾31

𝜕𝐁T
𝑀3

𝑥𝑦

𝜕𝑦
(B.54)

The 𝐁 matrix for 𝑉 31
𝑛  is:

𝐁T
𝑉 31
𝑛

= cos 𝛾31𝐁T
𝑀31

𝑛,𝑥
+ sin 𝛾23𝐁T

𝑀31
𝑛,𝑦

− 2 sin 𝛾23𝐁T
𝑀31

𝑛𝑠,𝑥
+ 2 cos 𝛾23𝐁T

𝑀31
𝑛𝑠,𝑦

Therefore, the calculations of 𝐁 matrices for 𝑉𝑛 on sides 23 and 31 can be simplified through the use of the pre-calculated matrices 
for side 12.

Now, all the components of 𝐁 matrix have been derived. The assembled (7 × 12) matrix 𝐁 is: 
𝐁 = [𝐁𝑅1

,𝐁𝑅2
,𝐁𝑅3

,𝐁𝑉 12
𝑛
,𝐁𝑉 23

𝑛
,𝐁𝑉 31

𝑛
,𝐁𝑀12

𝑛
,𝐁𝑀21

𝑛
,𝐁𝑀23

𝑛
,𝐁𝑀32

𝑛
,𝐁𝑀31

𝑛
,𝐁𝑀13

𝑛
] (B.55)

Appendix C. Analytical solution of SLB benchmark

Referring to Fig.  C.1, the analytical load–displacement curve consists of three parts. The first part, OB, is the linear elastic stage 
with the initial crack length 𝑎0. The second part comes from the curve ABC which represents the load–displacement response during 
delamination propagation when 𝑎 < 𝐿 (the half length of the SLB model). When 𝑎 > 𝐿, we can obtain the last curve DFE. The full 
analytical curve would then be OBFE. The derivation process of each curve is shown one by one in the following content.

When the crack length 𝑎 is smaller than 𝐿, the analytical derivation of the SLB benchmark follows from the work of Davidson 
et al. [45]. Referring to the SLB model in Fig.  14, it is evident that the bending stiffness in the cracked region comes entirely from 
the part above the crack, which is midplane symmetrical. The uncracked region is midplane anti-symmetric.

The SLB model (𝑎 < 𝐿) is simplified into a 2D beam model, as shown in Fig.  C.2. The moment–curvature relationship for the 
SLB problem can be expressed as: 

𝑀 = −𝑏𝐷 d2𝑤 = 𝑏𝐷 𝜅 (C.1)

d𝑥2 𝑥
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Fig. C.2. Beam model of SLB specimen (𝑎 < 𝐿).

where 𝑀 is the moment on a face along the x-axis, 𝑏 is the width of the specimen, 𝑤 is the deflection along the 𝑧 direction. And 𝐷
is the effective bending rigidity per unit width. Because the values of 𝐷 in the uncracked region and cracked regions are different, 
𝐷0 represents the effective bending rigidity of the uncracked region, and 𝐷1 represents the effective bending rigidity of the cracked 
region to distinguish them.

We assume that the classical laminate theory is applicable to the SLB problem. In matrix form, the constitutive equation can be 
written as: 

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
−−
𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴11 𝐴12 𝐴16 | 𝐵11 𝐵12 𝐵16
𝐴12 𝐴22 𝐴26 | 𝐵12 𝐵22 𝐵26
𝐴16 𝐴26 𝐴66 | 𝐵16 𝐵26 𝐵66
−− −− −− | −− −− −−
𝐵11 𝐵12 𝐵16 | 𝐷11 𝐷12 𝐷16
𝐵12 𝐵22 𝐵26 | 𝐷12 𝐷22 𝐷26
𝐵16 𝐵26 𝐵66 | 𝐷16 𝐷26 𝐷66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀0𝑥
𝜀0𝑦
𝛾0𝑥𝑦
−−
𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(C.2)

where 𝜀0𝑥, 𝜀0𝑦, 𝛾0𝑥𝑦 are the membrane strains of the neutral plane, and 𝜅𝑥, 𝜅𝑦, 𝜅𝑥𝑦 are the curvatures, derived from the out-of-plane 
displacement 𝑤: 

𝜅𝑥 = − 𝜕2𝑤
𝜕𝑥2

, 𝜅𝑦 = − 𝜕2𝑤
𝜕𝑦2

, 𝜅𝑥𝑦 = − 𝜕2𝑤
𝜕𝑥𝜕𝑦

(C.3)

The inverted form of the constitutive relationship is: 
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀0𝑥
𝜀0𝑦
𝛾0𝑥𝑦
−−
𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼11 𝛼12 𝛼16 | 𝛽11 𝛽12 𝛽16
𝛼12 𝛼22 𝛼26 | 𝛽12 𝛽22 𝛽26
𝛼16 𝛼26 𝛼66 | 𝛽16 𝛽26 𝛽66
−− −− −− | −− −− −−
𝛽11 𝛽12 𝛽16 | 𝛿11 𝛿12 𝛿16
𝛽12 𝛽22 𝛽26 | 𝛿12 𝛿22 𝛿26
𝛽16 𝛽26 𝛽66 | 𝛿16 𝛿26 𝛿66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
−−
𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(C.4)

If the plate constraint condition is ‘‘generalized plane stress’’, 𝑁𝑦, 𝑁𝑥𝑦, 𝑀𝑦, and 𝑀𝑥𝑦 are zero. When considering 𝑁𝑥 = 0, Eq. 
(C.4) gives: 

𝐷 = 1
𝛿11

(C.5)

For the plane strain condition (𝜖0𝑦 = 𝛾0𝑥𝑦 = 𝜅𝑦 = 𝜅𝑥𝑦 = 0), Eq.  (C.2) gives: 

𝐷 = 𝐷11 (C.6)

The expression of strain energy is: 

𝑈 = ∫

2𝐿

0

𝑀2d𝑥
2𝑏𝐷

(C.7)

From Fig.  C.2, the boundary conditions of the SLB model can be considered similar to three-point bending. So we can get the 
moment along the beam as: 

𝑀 =

⎧

⎪

⎨

⎪

−𝑃𝑥
2

, 0 ≤ 𝑥 ≤ 𝐿
𝑃𝑥 − 𝑃𝐿, 𝐿 ≤ 𝑥 ≤ 2𝐿

(C.8)
⎩
2
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Fig. C.3. Beam model of SLB specimen (𝑎 ≥ 𝐿).

Since the cross-section of the upper part of the cracked region (0 ≤ 𝑥 ≤ 𝑎) is different from that of the uncracked region, the moment 
𝑀 is further divided, and the expression for strain energy is the sum of three parts: 

𝑈 |(𝑎<𝐿) = ∫

𝑎

0

𝑀2d𝑥
2𝑏𝐷1

+ ∫

𝐿−𝑎

𝑎

𝑀2d𝑥
2𝑏𝐷0

+ ∫

2𝐿

𝐿

𝑀2d𝑥
2𝑏𝐷0

(C.9)

Substituting Eq.  (C.8) into Eq.  (C.9), we can get: 

𝑈 |(𝑎<𝐿) = ∫

𝑎

0

(

− 𝑃𝑥
2

)2
d𝑥

2𝑏𝐷1
+ ∫

𝐿

𝑎

(

− 𝑃𝑥
2

)2
d𝑥

2𝑏𝐷0
+ ∫

2𝐿

𝐿

(

𝑃𝑥
2 − 𝑃𝐿

)2
d𝑥

2𝑏𝐷0
(C.10)

Based on the expression of strain energy, the displacement 𝛿 can be calculated by Castigliano’s second theorem:

𝛿|(𝑎<𝐿) =
𝜕 𝑈 |(𝑎<𝐿)

𝜕𝑃
= ∫

𝑎

0

𝑃𝑥2d𝑥
4𝑏𝐷1

+ ∫

𝐿

𝑎

𝑃𝑥2d𝑥
4𝑏𝐷0

+ ∫

2𝐿

𝐿

(

𝑃𝑥2 − 4𝑃𝐿𝑥 + 4𝑃𝐿2) d𝑥
4𝑏𝐷0

= 𝑃𝑎3

12𝑏𝐷1
+ 2𝑃𝐿3 − 𝑃𝑎3

12𝑏𝐷0
(C.11)

The above equation can be used to plot the 𝑃 − 𝛿 curve for a certain crack length 𝑎, which for the case of 𝑎 = 𝑎0 gives the first 
part of the analytical curve, i.e., OB. The compliance 𝐶 during the elastic region is defined as the centre deflection 𝛿 divided by the 
centre load 𝑃 : 

𝐶|(𝑎<𝐿) =
𝛿|(𝑎<𝐿)
𝑃

=
2𝐿3 + 𝑎3(𝑅 − 1)

12𝑏𝐷0
(C.12)

where 𝑅 is the ratio of the bending rigidity of the uncracked region to that of the cracked region: 

𝑅 = 𝐷0∕𝐷1 (C.13)

The relationship between the critical energy release rate 𝐺𝑐 and the derivative of compliance 𝐶 with respect to the crack length 
𝑎 is: 

𝐺𝑐 =
𝑃 2

2𝑏
𝜕𝐶
𝜕𝑎

(C.14)

Substituting Eq.  (C.12) into Eq.  (C.14), we can obtain: 

𝐺𝑐 =
𝑃 2𝑎2(𝑅 − 1)

8𝑏2𝐷0
(C.15)

Substituting Eq.  (C.12) to Eq.  (C.15), the critical energy release rate 𝐺𝑐 can also be obtained by the critical load and deflection: 

𝐺𝑐 =
3𝑃𝑎2 𝛿|(𝑎<𝐿)

2𝑏
(𝑅 − 1)

[2𝐿3 + 𝑎3(𝑅 − 1)]
(C.16)

The critical energy release rate 𝐺𝑐 in Eq.  (C.16) is the value in mixed mode. It can be calculated by: 

𝐺c = 𝐺Ic + (𝐺IIc − 𝐺Ic)𝐵𝜂 (C.17)

where 𝐺Ic and 𝐺IIc are the critical energy release rates in pure mode I and mode II, respectively. The mixed mode ratio 𝐵 in the SLB 
model is 0.4 [46]. Eq.  (C.15) can be used to calculate the critical load 𝑃  at a certain crack length 𝑎. It can also be used to express 
𝑎 in terms of 𝑃  for a fixed 𝐺𝑐 , which can be plugged into Eq.  (C.16) to obtain the relationship between 𝛿 and 𝑃  for a fixed 𝐺𝑐 for 
the case of 𝑎 < 𝐿, hence giving the curve ABC.
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When the crack length 𝑎 is greater than or equal to 𝐿, the analytical derivation of the SLB benchmark can follow the same 
derivation process as above. The SLB model (𝑎 ≥ 𝐿) is simplified in Fig.  C.3. Based on Fig.  C.3, the expression for strain energy is 
rewritten as: 

𝑈 |(𝑎≥𝐿) = ∫

𝐿

0

𝑀2d𝑥
2𝑏𝐷1

+ ∫

𝑎

𝐿

𝑀2d𝑥
2𝑏𝐷1

+ ∫

2𝐿

𝑎

𝑀2d𝑥
2𝑏𝐷0

(C.18)

Since the boundary conditions have not changed, the expression of the moment is consistent with Eq.  (C.8). Substituting Eq. 
(C.8) into Eq.  (C.18), we can obtain:

𝑈 |(𝑎≥𝐿) =∫

𝐿

0

𝑃 2𝑥2d𝑥
8𝑏𝐷1

+ ∫

𝑎

𝐿

(

𝑃 2𝑥2 − 4𝑃 2𝐿𝑥 + 4𝑃 2𝐿2) d𝑥
8𝑏𝐷1

+ ∫

2𝐿

𝑎

(

𝑃 2𝑥2 − 4𝑃 2𝐿𝑥 + 4𝑃 2𝐿2) d𝑥
8𝑏𝐷0

(C.19)

The displacement 𝛿 at the middle can also be found by Castigliano’s second theorem: 

𝛿|(𝑎≥𝐿) = − 𝑃𝐿3

2𝑏𝐷1
+ 𝑃𝑎3 − 6𝑃𝐿𝑎2 + 12𝑃𝐿2𝑎

12𝑏𝐷1
+ 8𝑃𝐿3

12𝑏𝐷0
− 𝑃𝑎3 − 6𝑃𝐿𝑎2 + 12𝑃𝐿2𝑎

12𝑏𝐷0
(C.20)

Introducing ratio 𝑅 in Eq.  (C.13), the above equation can be rewritten as: 

𝛿|(𝑎≥𝐿) = −
(6𝑅 − 8)𝑃𝐿3

12𝑏𝐷0
+

(𝑅 − 1)(𝑃𝑎3 − 6𝑃𝐿𝑎2 + 12𝑃𝐿2𝑎)
12𝑏𝐷0

(C.21)

The expression of compliance 𝐶 under the condition 𝑎 ≥ 𝐿 is: 

𝐶|(𝑎≥𝐿) =
𝛿|(𝑎≥𝐿)
𝑃

= −
(6𝑅 − 8)𝐿3

12𝑏𝐷0
+

(𝑅 − 1)(𝑎3 − 6𝐿𝑎2 + 12𝐿2𝑎)
12𝑏𝐷0

(C.22)

Substituting Eq.  (C.22) into Eq.  (C.14), we have: 

𝐺𝑐 =
𝑃 2(𝑅 − 1)(3𝑎2 − 12𝑎𝐿 + 12𝐿2)

24𝑏2𝐷0
(C.23)

where 𝐺𝑐 is the critical energy release rate given by Eq.  (C.17). Using Eqs.  (C.21) and (C.23), one can then vary 𝑎 to plot the third 
part of the analytical curve DE.

Data availability

Data will be made available on request.
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