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ARTICLE INFO ABSTRACT

Keywords: Delamination is a critical mode of failure that occurs between plies in a composite laminate. The
Composites cohesive element, developed based on the cohesive zone model, is widely used for modelling
Delamination delamination. However, standard cohesive elements suffer from a well-known limit on the

Cohesive zone model

. mesh density—the element size must be much smaller than the cohesive zone size. This work
Cohesive element

extends the line of research on structural cohesive elements onto 3D mixed-mode problems. A
new triangular Kirchhoff-Love shell element is developed for orthotropic materials to model
the plies. A new structural cohesive element, conforming to the shell elements of the plies, is
developed to model the interface delamination. The proposed method is verified and validated
on the classical benchmark problems of Mode I, Mode II, and mixed-mode delamination of
unidirectional laminates, a recent unidirectional benchmark problem with curved delamination
front, as well as the single-leg bending problem of a multi-directional laminate, significantly
increasing the range and complexity of applicable problems as compared to the previous works.
All the results show that the element size in the proposed models can be ten times larger than
that in the standard cohesive element models, with more than 90% reduction in CPU time, while
retaining prediction accuracy. This would then allow more effective and efficient modelling of
delamination in composites without worrying about the cohesive zone limit on the mesh density.

1. Introduction

The accurate prediction of delamination is of critical importance for the reliable design of fibre-reinforced composite structures.
The cohesive element (CE) is a widely used finite element technology to model delamination. CE is developed based on the Cohesive
Zone Model proposed by Dugdale and Barenblatt [1,2]. A fracture process zone, generally called the cohesive zone, exists along the
interface, ahead of the stress-free crack tip. A traction—separation relationship, namely the cohesive law, describes how the interfacial
stresses and damage evolve with respect to the interfacial openings. Standard CEs are usually developed for use between two solid
elements to model their debonding under static or fatigue loads [3-12]. In finite element implementation, cohesive zone models are
classified into intrinsic and extrinsic types. In the intrinsic model, CEs are embedded in the initial mesh between continuum elements
to model their debonding. Intrinsic CEs firstly undergo an elastic loading phase, up to the critical stress state for damage onset, before
going through the softening phase of the cohesive law. In the extrinsic model, CEs are inserted/activated in the mesh on the fly
when the stress state in the continuum has reached damage onset. Hence, extrinsic CEs only go through the softening phase of the
cohesive law. Comprehensive comparisons of the two approaches have been performed for dynamic fracture problems [13-15].
Intrinsic CEs are easy to implement and parallelize, but suffer from the artificial compliance problems in crack-tip speed and
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Sub/superscripts

Pre-crack length

Area of a membrane element

Width

Matrix connecting the vector Q and the vector «
Strain—-displacement matrix of a membrane element
Constitutive tensor of a membrane element

Young’s modulus(i = 1,2,3 j =1,2,3)

Vector of the external force

Vector of the internal force

Vector of the residual force

Mode I, Mode II energy release rates

Mode I, Mode II critical energy release rates

Matrix which contributes to the stiffness matrix of the plate element
Stiffness matrix of a finite element

Penalty stiffness

Length of the side ij, ij = 12,23,13

Length

Normal bending moment

Shape function related to the out-of-plane displacement
Shape function related to the rotations around x and y, respectively
Prescribed distributed pressure load on the element

Vector of nodal degree of freedoms of a finite element
Vector of generalized forces

Concentrated force at the element vertex

Thickness of a element

Matrix contributes the stiffness matrix of the plate element
Displacements along x and y axes for node i

Vector of nodal degree of freedoms of the membrane element
Internal work

Strain energy density

Kirchhoff shear force

Displacement field in the element

Displacement on the boundary of the element

Vector of nodal degree of freedoms of the plate element
External work

Vector of coefficients that contributes to the out-of-plane displacement field
Angle between the normal »n and the local axis x

Opening displacement of Mode I and two shear openings along x and y axial
Modified potential energy

Related to membrane elements

Related to plate elements

Related to shell elements

Related to the bot surface of a cohesive element
Related to cohesive elements

Related to the normal direction

Related to the global x, y directions, respectively
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Abbreviations

CE Cohesive Element

CZL Cohesive Zone Length

DCB Double Cantilever Beam

DoF Degrees of Freedom

ENF End-Notched-Flexure

FE Finite Element

FNM Floating Node Method

IG InteGration points

MMB Mixed-Mode Bending

R-DCB Reinforced Double Cantilever Beam
SLB Single-Leg Bending

VCCT Virtual Crack Closure Technique

elastic wave propagation [15]. High penalty stiffness is needed to reduce the artificial compliance problems, but this would lead
to ill-conditioning of the stiffness matrix for implicit analysis and stringent stability requirements for explicit analysis. Extrinsic
CEs do not add artificial compliance before fracture. However, their implementation would require advanced data structures and
frequent updates of the mesh [16], making implementation and parallelization more difficult. Discontinuous-Galerkin [17] and
Augmented Lagrangian [18] approaches have been developed to mitigate the artificial compliance problems of the intrinsic CEs
without requiring mesh updates of the extrinsic CEs. However, they still suffer from the mesh dependency problems due to the
restriction that the cohesive fracture can only propagate along existing mesh boundaries. In this work, we focus on quasi-static
analysis of delamination in composites. Hence, the artificial compliance issues in dynamic fracture are neglected and the intrinsic
model is assumed for the CEs hereafter.

While being a popular and versatile tool to model delamination, standard CEs suffer from a well-known limit on the mesh density
— the element size must be much smaller than the Cohesive Zone Length (CZL) to accurately predict delamination. According to
the previous analysis [3,4], high-stress gradients could be produced within the cohesive zone during delamination in composites. A
very fine CE mesh must be used there to sufficiently capture the stress gradients such that the internal virtual work of the CEs can
be accurately integrated. So far, there is no fixed rule on how fine the mesh should be in the literature. In some research [5-7], the
authors have demonstrated that at least two or three CEs should be used inside the cohesive zone. With coarser meshes, simulations
would significantly over-predict the peak load [8]. In a typical mode I delamination test of a unidirectional composites coupon,
i.e., the Double Cantilever Beam (DCB) test, the CZL is less than 1 mm.

The above-mentioned problem of cohesive zone limit on the mesh density of CEs has drawn the attention of many researchers
in the past. Turon et al. [8] adopted an engineering method to solve the problem by reducing the material strength to numerically
extend the CZL. While shown to be promising in the Mode I DCB case, in cases such as the pure mode II End-Notched-Flexure (ENF)
test, decreasing the cohesive strength can cause excessive under-prediction of the overall strength [19,20]. Yang [21] and Do [22]’s
research work demonstrated that larger CE sizes can be achieved by placing enough integration points in the cohesive zone. Their
method could predict the peak load correctly for CE size up to 1.43 times the estimated CZL. However, its first-order shape function
limits the effectiveness of this method in further expanding CE beyond the scale of the cohesive zone [23]. Guiamatsia et al. [24-26]
used the beam on elastic foundation solution as an enrichment function and tested it in the mixed mode delamination. However, the
enrichment method could lead to inaccuracies in interpolation for elements larger than 3 mm [25]. Another enrichment approach
with the piecewise linear shape functions was proposed by Samimi [27-29]. However, the over-prediction problem of peak load
under large CE has not been solved. Van der Meer et al. [30] used the level set method with a energy-based criterion to propagate
delamination without the cohesive zone limit. However, this method is limited to the case of a single delamination. Lu et al. [31]
proposed a adaptive version of the Floating Node Method (FNM) [32] to adaptively refine the CEs in the cohesive zone. However, this
method is currently implemented for 2D problems. Alvarez et al. [33] used quadratic CEs between quadratic solid elements and used
higher number of integration points, which increased the grid size to be comparable to CZL but not beyond [23]. Mukhopadhyay
and Bhatia [34] developed a hp refinement strategy to simulate the delamination between two solid elements. However, it is only
implemented in 2D in their work. Daniel [35] developed an ERR-Cohesive method to simulate the delamination with large elements
by estimating the energy release rate by means of the virtual crack closure technique (VCCT). However, this method is only presented
in 2D, and the VCCT approach relies on the existence of an initial crack and the assumption of self-similar crack propagation.

Inspired by the earlier works in the literature, Russo and Chen [23] developed a so-called structural CE, which conforms to
Kirchhoff-Love structural elements for the neighbouring plies. Their work was done in 2D. The Euler-Bernoulli beam elements were
used to model the plies. The structural CE, sharing its nodes with the beam elements, was developed to model the delamination. An
adaptive integration scheme was used to place more integration points in CEs containing the cohesive zone. Their results showed
that the structural CE could overcome the cohesive zone limit on mesh density, allowing the element size to be ten times larger
than that of the standard linear CEs. Motivated by Russo and Chen’s work, Tosti Balducci and Chen [36] extended the structural
CE to 3D DCB problem by developing a structural CE compatible with the TUBA3 plate elements [37]. Their results showed that
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the TUBA3-based structural formulation of CE could overcome the cohesive zone limit. However, the curvature degrees of freedom
(DoFs) make it complicated to set boundary conditions on TUBA3 elements, impeding the adoption of such elements by engineers
in practice.

From the above reviews, we aim to establish a composites delamination model which simultaneously meets the following
requirements:

(1) it does not suffer from the cohesive zone limit on mesh density;

(2) it works in 3D space;

(3) it does not require artificial reduction of strengths;

(4) it does not require a pre-crack and the self-similar propagation assumption;
(5) it can model delamination along multiple interfaces; and

(6) it is straightforward to set boundary conditions.

Based on the earlier works [23,36], the idea of this work is to develop a triangular Kirchhoff-Love shell element without curvature
DoFs to model the composite plies, then formulate the conforming structural CE to be used between the plies to model their
delamination. Although previous researchers [38,39]have used shell elements and the corresponding CEs to simulate delamination,
their focus was mainly on the use of shell elements per se and did not solve the problem of cohesive zone limitations on mesh
density. The shell element in this work is based on a simple triangle Kirchhoff-Love plate element, the cubic displacement element
proposed by Allman [40]. There are only three DoFs at each node, one for out-of-plane displacement and two for rotations. These
DoFs are commonly used by engineers and are much easier to handle than the curvature ones when setting boundary conditions.
Therefore, this article will extend this triangle plate element for the modelling of composite plies and develop the corresponding
structural CE for the interfaces. If such a structural CE could overcome the cohesive zone limit on its mesh density, then it would
achieve all the requirements listed above. Although this paper addresses objectives similar to those of previous studies [23,36], it
offers significant advantages over the preceding two works in the following aspects:

(1) The previous methods did not modify the underlying isotropic beam or plate element for the plies, limiting the scope of the
modelling to isotropic beam or plate bending problems. In contrast, this study firstly enriches the baseline plate element to
include in-plane degrees of freedom, thereby extending the plate element to a shell element. It then extends the supported
material model from being isotropic to being suitable for composites. These developments are essential for the modelling of
generic deformations of composite shell structures.

(2) The previous methods are applicable to 2D mixed-mode [23] or 3D mode-I [36] problems. This study extends the structural
CE method to be applicable for 3D mixed-mode problems, thereby enabling the modelling of more general and more complex
problems beyond the plane-strain delamination problems of the standard test coupons;

(3) The baseline plate element employed in this study features a reduced number of degrees of freedom compared to the TUBA3
element in the previous 3D work [36]. As a result, the implementation of the method is simpler and the application of
boundary conditions more direct than in the case of the TUBA3 elements. These advantages will make simulations more
efficient when dealing with large-scale and complex models with complex boundary conditions.

(4) Furthermore, this study verifies the method on fully 3D problems with complex stacking sequences and crack fronts. This is
a significant improvement over the earlier work in terms of the complexity and scope of the verification.

The rest of the paper will be structured in the following way. Section 2 presents the proposed element formulations in detail.
Section 3 demonstrates the performance of these elements on a series of benchmarks on delamination in both unidirectional and
multi-directional laminates. In the end, Section 4 draws the conclusions of this work and discusses some potential future work.

2. Method

2.1. Overadll illustration

The overall idea of the proposed modelling approach is to represent the composite plies by Kirchoff-Love shell elements and
the interfaces by structural CEs. Fig. 1 shows the geometrical comparison between the conventional modelling approach with solid
elements and the proposed structural approach with shells. Looking at the structural CE, the difference from the conventional CE
is that the nodes of the CE are placed at the mid-plane of the two shell elements, which are not the actual surfaces of the cohesive
interface. Hence, the opening of the actual interface does not equate to the distance between the upper nodes and lower ones of the
structural CE. This opening shall be calculated using the shell kinematics to be detailed in later subsections. The rest of this section
will firstly present the cubic plate element formulation by Allman [40] and its adaptation for flat composites shells, then move on
to derive the structural CE formulation.
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Fig. 1. Geometrical comparison between conventional CE and structural CE.
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Fig. 2. Coordinate system and DoFs for the triangular cubic plate element [40].

2.2. Cubic plate element

2.2.1. Geometric definitions of the plate element

The plate part of the shell element in this work is based on the triangular cubic plate element developed by Allman [40], as
shown in Fig. 2. A local coordinate system is used in this element, with origin at the centroid of the triangular element. The local
axes are represented by lowercase letters, x and y, to distinguish them from the global ones, X and Y. The area of this triangular
element is A. s is the anti-clockwise coordinate along the element boundary. » is the exterior normal. The angle between the normal
n and the local axis x is y. The out-of-plane displacement defined over the domain is w(x, y). An independent out-of-plane boundary
displacement, w(s), and its compatible normal derivative, 9w/on(s), are assumed along the boundary dA. The DoFs at each node
include the displacement w and two rotations 9w/ox, 9w/ay.

The cubic plate element in Allman’s work only considered the case of isotropic material [40]. This work extends the cubic plate
element using the classical laminate theory, such that symmetric composite laminates can also be modelled by this plate element.
The original cubic element formulation will be presented in detail, with adaptations for composites specified along the way.

2.2.2. Modified potential energy for the plate element
The minimum potential energy principle is used to derive the finite element formulation of the triangular plate element. The
potential energy used is referred to as the modified potential energy in Allman’s work [40]:

3

— . Jw Jw
= Uydxd, E R — V —w)ds — M, (— - —)
V3 //A odxdy + Ny WN)+/M (W —w)ds /M "(0n 0n) s

N=1
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- // prwdxdy — Y Ry Wy - / V*wds +/ Mm% g @

A o] oA oa " On
where U, is the strain energy density. M, is the normal bending moment resultant and V,, is the Kirchhoff shear force distribution
on the element boundary, respectively. Ry -3, are the concentrated forces at the element vertices. In addition, R}, V", and M
are the values of prescribed concentrated force, Kirchhoff shear force, and normal bending moment resultant, respectively. p*(x, y)
denotes the prescribed distributed pressure load on the element. This potential energy essentially uses Ry, V,, and M, as Lagrange
multipliers to enforce the compatibility between the two fields w and w and their normal derivatives along the boundary. The
variational principle based on this modified potential energy satisfies the equilibrium equations, the boundary conditions, and the

compatibility requirement between w and w [40].

The expression of U, for composites will be different from that for isotropic materials in Allman’s work [40]. The classical
laminate theory can be used to describe the constitutive relationship of a composite laminate under Kirchhoff-Love kinematic
assumptions. For the case of a symmetric laminate (the smallest of which would be a single composite ply) considered in this
work, there would be no membrane-bending coupling. Therefore, the expressions of the moments are:

0w 0w w
M. =-p, ¥ -p,L¥_ gw
x i) 12752 1 3%y
0w 0w %w
M, =—-D,— — - = -
y 1255 250 26 5%y
0*w *w 0w
M, =-Dig— — Dyg— -2 2
xy 16552 25,2 5 3xay (2)
Using the above moment—curvature relations (Eq. (2)), the strain energy density U, can be written as:
2 2
1 0w 0w 0w 0*w
Uy== D, (£E) +Dy (ZE) +2p, 2225
0 2[ 11<ax2> 22<0y2> 1252 32
0w Pw w 0w w :
+4D, 222 L4, T2 L 3
16°9x2 oxay 26°9y2 0xdy 66 \ oxay &)

The sign conventions for the shear force and bending moment resultants are shown in Fig. 3. For the triangular plate element,
the normal bending moment resultant M,, Kirchhoff shear force distribution ¥, and concentrated forces Ry (y-1 3 can be expressed
as [40]:

M, = M, cos’y + M, sin? y + M, sin2y )
oM,
V,=0,+ asm (5)
Ry =M, 6
where
1 .
M, = E(My — M,)sin2y + M, cos2y @
oM,  OM,,
_ M, , M, 8
O on ds ®)

In this element, linear variation of the normal bending moment resultant and constant Kirchhoff shear force distribution are
assumed along the edges:

M, =M>*(1-§)+M'¢ Q)
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V,=V, (10)

where Miz and le are the normal bending moment resultant values at node 1 and node 2 of side 1-2 respectively. The coefficient &
in Eq. (9) is defined as & = s/ 5. anz is the value of the Kirchhoff shear force distribution along the side 1-2. The cyclic permutation
of superscripts 1, 2, and 3 in Egs. (9) and (10) produces the shear force distribution and moment resultant on the other two sides
(side 2-3 and side 3-1) of the triangular element.

The terms in brackets in Eq. (6) represent the difference in bending moment resultant values at the element vertices. Therefore,
the expressions of Ry y_;,3) are:

— 12 13
Ry = Mns - Mns
— 23 21
Ry, = MVIS - Mns
Ry= M3 - M (11)

Finally, the directional derivatives in Egs. (8) are given by:

i——sin i+cos 9

ds y()x J/(3y

0 0 .0

L 4 = 12
5, = CosT o+ smyay (12)

2.2.3. Finite element approximation and the discretized equilibrium equation
For finite element implementation, the potential energy = should be discretized. In this element, the internal out-of-plane
displacement field w(x, y) is approximated by a cubic polynomial:

W, )= Al + Ay x+ Ay y+ oy X2+ ayxy+ a3 3 +ay x>+ as Xy +agxy? +ap (13)

The three coefficients A,, A,, and A; represent the rigid body motion and do not affect the value of the strain energy density.
With the above choice of w, applying the Green’s theorem [41] to transform the strain energy integral to boundary integral
gives:

3

Jw
2//U dxdy= Y Ryw +/ des—/ M, 2% ds 14
4l Z NN foa " oa " On

N=1
In this work, we assume that there is no distributed pressure load p*(x,y). Then, the modified potential energy (Eq. (1)) can be
rewritten more simply as:

3

ﬂ=—/U0dxdy+ ZRNEN"'/ V,,Eds—/ M,,a—wds
A Nel 0A 0A on

3 _
- Y Rywy —/ Vn*wds+/ M:?)—L: ds (15)
] 04 oA
Substituting Eq. (13) into (3), the strain energy can be rewritten as:
// Uy dxdy = e Ha (16)
A 2

where the vector «a is:
a={a, a, a3, @y, Os, Og, 057}T 17)

The matrix H is more complicated to derive for symmetric composite laminates than for isotropic materials considered in Ref. [40].
Its detailed derivation is presented in Appendix A.
After the strain energy, the 2nd, 3rd and 4th terms in Eq. (15) denote the work of the so-called generalized forces:

3 _
> Ry +/ V,,Eds—/ M,%% 45 = Q'q (18)
fomd 0A oa = On
where Q is the vector of the twelve generalized forces:
Q= (R, Ry, Ry, V2, V5 V3 M2 M2 M2 M3, M3, M 13T (19)

Substituting Egs. (9) and (10) into Eq. (18), the generalized displacements corresponding to the generalized forces in Eq. (19)
compose the vector q:

1 1 1
q={wl7wzsw3’ 112/ wdg, 123/ wdg, 131/5(15,
0 0 0
' ow ' ow ' ow
-1 91 _gyde, 1 MW e ge, 1 91 _gyde,
12/0 5, (1 —9d 12/0 pdd 23/0 5, 1—9d

7
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A matrix B can be constructed to connect the vector Q and the vector a:
Q= BT (21

With the moment-curvature relationship for composites in Eq. (2) and the expression of w in equation (13), the matrix B has been
derived for composites in this work. The details are shown in Appendix B. o
A matrix T can be defined to represent the relationship between the nodal DoFs W and the vector q:

q=TW (22)

where W is the vector of the nodal DoFs defined by
- — — — T
W:{wl,%,awl,wz,aﬂ 3 5y, 243 aﬂ} (23)

- s W3, —,
Jdx  dy Jdx  dy dx  dy

With the assumptions of cubic line function for w and linear variation for 9w/an along each edge of the element, the T matrix can
be derived as [40]:

M1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
2 2 2 2
I 1, ! ! 1, 17,
% ,% sinyjp % Cosy|p 72 ll—g sinyjy fﬁ cosy|n 0 0 0
) I I ) 2 2
0 0 0 e -2 in 723 2 cos 723 2z 2 in 723 -2 cos 723
) ) 2 12 12 1% %2
131 T 5 0 0 0 131 T 5
> ) siny3; 1 €os 731 > 1 sinys) 1 €os 731 (24)
i i
0 —%cosylz —% siny|y 0 —%cosylz —% sinyp 0 0 0
1 1 1 1
0 —1?2 cosyn —1?2 siny, 0 —1?2 cos ¥ —172 siny, 0 0 0
[} I I I
0 0 0 0 —? C0S Y23 —? sinyp3 0 —% €0S 123 —% sinyy3
I I I I
0 0 0 f% cOs 723 f% siny,3 0 7? €OS 723 f% sinyy3
131 =T 13 [T
—?cosyﬂ 3 siny3; 0 0 0 0 —700573] -5 sinys;
—h—lcosyql —[3—lsin73l 0 0 0 0 —h—]cosyg] —h—]siny;]
- 3 h 3 6 ’ 6 i

2.2.4. Stiffness matrix and force vectors of cubic plate element
Substituting Eqgs. (16), (21) and (22) into Eq. (15), the total modified potential energy represented by the finite element method
under prescribed boundary loads is:

r= —%aTHa +a"BT)W - Q*TTW (25)

where the vector Q*, whose components are obtained by replacing the generalized forces in vector Q with the corresponding
prescribed quantities, denotes all the external forces:

Q* — {R*,R;,R§, V:IZ,V:ZS, V:Sl,M:IZ,MJZI,M:B,M:H, M:SI,M:B}T (26)
Thus, the internal work U and the external work W of the potential energy can be expressed as:

U= —%aTHa +a"BDW (27)

w = Q' TTW (28)

Based on Eq. (25), the minimum total potential energy principle gives:
57 = 6a’[(BT)W — Ha] + 6W [(BT)Ta - TTQ*] =0 (29)
Setting the coefficient of the arbitrary variation éa” to zero gives:
a=H'BT)W (30)
Performing the variation of U as expressed in (27) with a substituted by Eq. (30), we arrive at U for the element as:
5U = 5W (BT)TH™'(BT)W = 6W f,,, 1)
where f; is the internal force vector of the plate element:

£, =@BDH'BT)W=K_,, W (32)

plate

and K is the stiffness matrix of the plate element:

K, = (BT)TH™'(BT) (33)
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The variation of the external work W gives the external force vector of the element in the absence of distributed pressure load:

SW =6WT'Q* = sWf,,, = f,, =T'Q" (34)

2.3. Formation of shell element

To form a flat shell element that considers membrane deformation and bending, we superimpose a linear membrane element on
top of the plate element developed in the previous section. The displacement fields u, v are defined in terms of area coordinates L,
L,, Ls:

u=u Ly +uyLy+uzls (35)
v=v Ly + 0Ly +v3Ls (36)
where u; and v; represent the displacements along x and y for node i, respectively. The DoFs vector of the membrane element Uis:
U= {ul, vy, Uy, Uy, U3, 03}T 37)

The stiffness matrix of the triangular membrane element is given by the expression:

Kmem = // BI’]em Dmem Bmem tdx dy (38)
)
where 7 is the thickness of the membrane element and B

b, 0 b, 0 by O
Bmem:_ 0 < 0 /] 0 ) (39)

matrix in Eq. (38) is

mem

A is the area of the membrane element and:
b1 =Y2=DV3 b2=y3—y1, b3=y1—y2 (40)
Cl =X3—Xp, C=X|—X3, C3=Xp—X (41)

The D™™ matrix in Eq. (38) is:
E, vioEp

0
I=viavay I*Vézvzl
Dyem = 2 0 (42)
I=viavyy
symmetric Gy

From Egs. (33) and (38), we have obtained the stiffness matrices of the plate and membrane elements, respectively. They are
assembled to form the stiffness matrix of the shell element:

_ Kmem 0
Kshell B [ 0 Kplale (43)

The corresponding DoF vector of the shell element is simply:

Asherl = {ﬁW} (44)
0w, 0w, _ 0w, 0w, _ 0w; 0wy \T

— Wy, ——, ——, W3, ——, —}

ox 0y Jx 0y dx  dy

The contribution of the shell element to the overall force residual of the finite element system equation is f,; — f;,;. When the

applied loads are nodal forces, f.,, does not need to be calculated explicitly in the element subroutine as the nodal forces can be

directly entered in the global external force vector of the system. In this case, the residual contribution of this element can be

expressed as:

fres = _fint = _Kshell Ushell (45)

= {ul,vl,uz,uz,u3,v3,w1,

2.4. Structural CE between two plies

2.4.1. DoFs and opening vector
The structural CEs must be compatible with the top and bottom shell elements kinematically. Thus, they need to share the same
DoFs and displacement interpolations along the interface. The DoF vector of the CE can be defined as:

—T —1 1T

—T —T
Acg = [Ubot’ Wbot’ Utop’ Wtop (46)

where Uy, /mp,Wbot /top are the membrane and plate DoFs of the bottom/top ply, respectively.
The Mode I opening displacement of the CE can be expressed as

A= wtopCE _ wbotCE 47)



X. Ai et al. Engineering Fracture Mechanics 329 (2025) 111586

Fig. 4. Mode I opening.

hbot

Fig. 5. Mode II opening.

where w'°PCE and wP°tCE are the vertical displacements of the top and bottom CE surfaces, respectively. From Fig. 4, using classical
plate theory, we have:

htop

wOPCE — ytop T(l — cos 6'°P) -
bot
LPOICE _ bt _ h2 (1 — cos 8™ »

h'P and hP° are the thickness of top and bottom plies, respectively. w'°P and wP® are the vertical displacements of the neutral
planes of top and bottom plies, respectively. In this work, only geometrical linearity is considered. Thus, the rotations are small
such that 1 — cos§ =~ 0. The mode I opening is then simply the relative displacement between the mid-planes of the plies:

A= wtop — bot (50)
The Mode II opening of the CE shown in Fig. 5 can be expressed as:
A = utopCE _ ubOtCE (51)
X
where u°PCE and 4Po'CE are the displacements along the x-axis of the top and bottom CE surfaces, respectively. Considering the
rotations of the shells’ neutral planes and the offsets of shell surfaces from the neutral planes, they can be written as:
top
4toPCE _  top + h2 sin 9;09 (52)

bot
ubotCE — ubot _

sin 9}:‘“ (53)

where ut°P, 4ot are the displacement u of the neutral planes of the top and bottom shells, respectively. For a small rotation 6 in
geometrically linear problems, sin6 =~ 6. Then, the shear opening along x is:

top bot
A =P — ot 4 B2 gop 4 B g (54)
The shear opening along y is found from analogous kinematics in the yz-plane. Hence:
top hbot
_ top _ ,bot h top bot
4, =v v + - 0," + - 9y (55)

10
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The central task of CE formulation is to find the matrix, B¢, that relates the opening vector to its nodal DoFs:
T
A= (44,4, =Bepqeg (56)

Examining the expressions of 4;, Ay, 4y in Egs. (50), (54), and (55), we can see that the B matrix shall be composed of sub-matrices
that relate the following terms to the nodal DoFs in qcg:

t \(
wtop, wbot’ utop’ ubot’ Utop’ Ubot’ onp, GEOt, eyop’ esot (57)

In Eq. (35), the in-plane displacements u and v are already expressed in the nodal membrane DoFs. However, the out-of-plane
displacements w and the rotations 0 in the above list remain to be explicitly expressed in terms of nodal DoFs in qcg.

2.4.2. Shape functions of w

The displacement w shall be expressed in terms of plate DoFs W in this section. Referring back to Eq. (13), the displacement w
is defined in the local Cartesian coordinates (x and y) by the coefficients A; and the vector a. The expression of w is then divided
into two parts. The first part only contains A;, and the second part only contains «;:

w=w,+w, (58)
where

wy=A+Ayx+Azy (59)

Wy =y X2+t xy+ a3 ) + oy X + a5 X2y + ag x)* + oy Y (60)
w4 can be rewritten as:

wy=8STA, S=1[1,x 7, A=[4;, 4,, A5]" (61)
Similarly, w, can be rewritten as:

w, = RTa, R=[x% xy, %, x°, x2y, xy*, y°1T (62)

Let us firstly look at w,. Based on Eq. (30), @ and W can be related by multiplying the three matrices H, B and T in Section 2.2.4.
Here, for simplicity, we replace the product of these three matrices with matrix C:

C=H"'®BT) (63)
Thus, the vector a can be rewritten as:

a=CW (64)
Substituting Eq. (64) in to (62), we can obtain the expression of w, in terms of W:

w, = RTCW (65)

Next, we move on to express w, in terms of W. From Egs. (58), (61) and (65), we have:

wy=STA=w-RTCW (66)
Evaluating w, at the three nodes, we can obtain:

WA, v) = ST y) A = w; —RT(x;, y) CW,  i=1,2,3 67)

which give us the following matrix equation:

X on w] | oy oyox xn oy |
I x; pl|A=|w|-|x xn ¥ x5 xn xy, »n|CW (68)
Loxs s w3 X3y 1 g 63 xyyon
———
M, M,
Since
w; 1 0 0 0 0 00 0 O .
w, =[0 0 0o 1 0 0 0 0 oW (69)
ws O o0 0 0 0 0O 1 0 O
B,
we can obtain A as:
A=M;' (B, -M,C)W (70)

11
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Using Eq. (61), we obtain:

wy =S™;! (B, - M, C) W 71)
Combining with Eq. (65), we obtain the expression of w:

w=8™7;"(B,-M,C)W+R'CW=N,W (72)
where the matrix N,, (1 x 9) can be extracted as:

N,=S8"™™M;'B, -M,C)+R'C (73)

2.4.3. Shape functions of 6
Using the cubic polynomial expression of w from Eq. (13), 6, can be expressed as:

0, = (3)—2‘: = Ay + 20, x + ayy + 3a,x% + 2asxy + ag)’ 74

Similarly as in the case of w, the expression of the above rotations can also be divided into two parts, one containing the A
coefficients only and another the a coefficients only:

0, =A,+0,, (75)
Since A, is part of the vector A which has been expressed in Eq. (70), we have:

A, =B A=BM;' (B, -M,COW (76)
where B, is a Boolean matrix:

B,=[0 1 0] (77)

The expression 6., can be written as:

0., =Rla =RICW (78)
where Eq. (64) is used to express a and R, is also a vector of local coordinates:

R,o=[2x y 0 32 2xp »* o0 (79)
Substituting the expressions above into Eq. (74), the expression of 6, is

6, =B,M;'(B, - M,CO)W + RTCW (80)
The shape function N, of rotation 6, is therefore:

N, =B.M;'(B, - M,C)+RTC (81)

The derivation of shape function N, for rotation 6, is very similar to that for 6, and is omitted here for brevity.

2.4.4. Bcg matrix

Once we have determined the shape functions, the next step is to assemble the By matrix that relates the DoFs vector qcg to the
opening vector A (c.f. Eq. (56)). Substituting the shape functions in Egs. (73) and (81) to express the w and # terms in Egs. (50),
(54), and (55), the expression of B¢ can be obtained as the following:

0 0 0 0 0 0 -N,, 0 0 0 0 0 0 N,
pbot htop
Beg=|-L, 0O ~-L, 0 —Ly 0 N, Ly 0 L, 0 Ly 0 =I=N, (82)
pbot htop
0 -L; 0 -L, 0 -Ly =N, 0 L, 0 L, 0 Ly %ZN,

2.4.5. D¢y matrix
The relationship between traction = and opening vector A is expressed through the constitutive matrix Dcg:

(1-dpK 0 0
T=Dcg A, Dgg= 0 (1-dK 0 (83)
0 0 (1-dK

where K and d are the penalty stiffness and the damage variable of the CE, respectively. The damage variable d in this work is
updated by the bi-linear cohesive law proposed by Turon et al. [42,43]. The damage variable d; under Mode I loading is distinguished
from d to avoid interpenetration of the top and bottom surfaces under compression:

d, 4>0
dy = ! (84)
0, 4<0

12
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The penalty stiffness K is set as:
E5

where E; is the out-of-plane laminate Young’s modulus, ¢ is the thickness of the laminate and « is a constant: not to be confused
with the matrix a used in Eq. (64), here set to be 50 [8].

2.4.6. Stiffness matrix and residual vector
In this work, the secant stiffness matrix is used as the stiffness matrix of the CE:

Keg = /r Bl DcgBepd I (86)

where I' represents the domain of the interface. The integral in Eq. (86) is hard to calculate analytically. Thus, the Gaussian
integration scheme is applied to obtain the stiffness matrix numerically. Earlier works have shown that using a higher number of
quadrature points improves the accuracy and smoothness of the load—displacement solutions of delamination simulations [23,33,36].
Therefore, thirteen quadrature points are used in this work for the integration of the structural CE, with their coordinates and weights
taken from the work of Cowper [44].

Assuming that no external distributed loads are applied to the cohesive interfaces, only the internal force vector of the CE
contributes to the overall residual vector of the system. The residual vector contribution from this CE can then be written as:

fres = _fim = _KCE dce (87)

Note that although the cohesive element developed in this paper appears to have finite thickness between its nodes, the actual
integration domain is in fact the zero-thickness interface between the plies. The finite thickness of the cohesive element is entirely
due to the fact that the nodes of the cohesive element, shared with the top and bottom ply elements, are positioned on the midplanes
of the plies. Through kinematic derivations, the displacements at the upper and lower surfaces of the interface are obtained. The
separation vector is then calculated as the differences between them. Subsequently, the corresponding tractions and damage variables
are calculated using the penalty stiffness and the cohesive law. Thus, the cohesive behaviour at the zero-thickness interface can be
achieved even though the cohesive element has finite thickness between its nodes. In the situation where the physical thickness of the
interface, i.e., the resin-rich region between two plies, is a matter of importance, different considerations may apply. If the membrane
stiffness of the resin-rich region cannot be neglected, then solid elements would be needed to model this region. In general, however,
the membrane stiffness of the resin-rich region is negligible, hence a cohesive law can still be assumed to represent the out-of-plane
behaviour of the interface. We have developed an approach which relates the finite thickness of the resin-rich region to material
properties and the penalty stiffness of the traction—separation law. This is the subject of a future communication.

3. Results

The structural elements Section 2 have been implemented in the Abaqus user-defined element subroutines. The structural CE
model was firstly verified on the three classical benchmarks, namely the double cantilever beam (DCB), the end-notched flexure
(ENF), and the mixed-mode bending (MMB) problems. As the above benchmarks only pertain to unidirectional laminates, a multi-
directional laminate problem, namely the single-leg bending (SLB) problem [45,46], was simulated to demonstrate the 3D capacity
of the model. All simulations of the structural CE model were performed in implicit analysis using the Quasi-Newton solver without
damping or viscosity. The reference solutions on these problems were obtained with analytical equations and Abaqus standard FE
simulations using 8-node linear solid elements (C3D8I element in Abaqus) for the plies and 8-node linear CEs for the interfaces.
The linear CEs were implemented as user-defined elements following the formulation in [5], with the cohesive law from Turon
et al. [42,43]. The problem descriptions and modelling details will be presented in this section, followed by comparisons of
load-displacement curves and computational time.

3.1. Unidirectional laminate benchmarks: DCB, ENF, and MMB

3.1.1. Description of the unidirectional laminate tests

The unidirectional laminate benchmarks are drawn from the work by Krueger [46], except that the pre-crack length of the ENF
model is increased to 35 mm in this work to avoid the snapback in load-displacement response. The geometric parameters and
boundary conditions are shown in Fig. 6 and Table 1. The detailed material properties are shown in Tables 2 and 3. The mixed
mode ratio of the SLB specimen is approximately 40% mode II (Gy; / Gr=0.4) and the MMB specimen is 0.5 (G}, / G1=0.5).

3.1.2. Description of the model

Since the plies of the benchmarks in this section are all 0°, the symmetric lay-up conditions in Eq. (2) are met. Therefore, the
structural model could simply use one layer of shell elements on each side of the delamination, with one layer of structural CEs in
between. The Abaqus solid models are built according to the work of Krueger [46], except that CEs, instead of VCCT, are used to
model delamination.
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Fig. 6. DCB, ENF, and MMB test specimens.
Table 1

Geometric parameters for unidirectional benchmarks.

Param. (mm) .
Model 2L a, h b (width) c
DCB 150.0 30.5 1.50 25.0 -
ENF 101.6 35.0 2.25 25.4 -
MMB 100.8 25.4 2.25 25.4 41.3
Table 2
Material properties for DCB [46].
T300/1076 Unidirectional graphite/epoxy prepreg
E, ;= 139.4 GPa E,,= 10.16 GPa E;; = 10.16 GPa
Vi = 0.30 Vi3 = 0.30 Vy; = 0.436
G,, = 4.6 GPa G,; = 4.6 GPa Gy, = 3.54 GPa
Fracture toughness data
Gy, = 0.170 kJ/m? Gy = 0.494 kI/m? n=162
Interfacial strength data [20,43]
7. = 30MPa Ty = 60 MPa
Table 3
Material properties for ENF and MMB [46].
IM7 /8552 Unidirectional graphite/epoxy prepreg
E,;= 161 GPa Ep=11.38 GPa Ey, = 11.38 GPa
Vi = 0.32 Vi3 = 0.32 Vyy = 0.45
G,, = 5.2 GPa G,; = 5.2 GPa Gy = 3.9 GPa
Fracture toughness data
Gy = 0212 kJ/m? Gy = 0.774 KJ/m?* n=21

Interfacial strength data [20,43]

7. = 30MPa Ty, = 60 MPa

3.1.3. Load-displacement curves

The load—-displacement curves obtained from the simulations are shown in Fig. 7. The designations “-solid” and “-structural”
denote the results of the traditional solid element model and those of the proposed structural CE model, respectively. The results
on meshes of different element sizes are plotted together with the analytical solutions [47-49].

The DCB results in Fig. 7 indicated that the standard model with solid elements requires that the element size should not exceed
0.5 mm. When the element sizes are greater than or equal to 1 mm, the simulation results differ greatly from the analytical solution.
The error on peak load exceeds 30%, and the post-peak curve also stays way above the analytical one. With the proposed structural
model, the results on 2-mm mesh remain in close agreement with the analytical solution, with a less than 3% error on the peak
load. The post-peak curve also closely follows the analytical curve. The slight over-prediction of the stiffness is expected as a result
of neglecting transverse shear in the Kirchhoff-Love shell elements. The analytical solution based on the corrected beam theory,
however, includes such transverse shear effect [47]. Even on a 5-mm mesh, the structural model can predict the peak load fairly
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well despite the post-peak oscillations right above the analytical curve. Such oscillations are due to the larger spacing between the
integration points on coarser meshes.

In the ENF case, the solid element model on 1-mm mesh could capture the peak load correctly, thanks to the larger cohesive zone
in Mode II delamination than in Mode I. However, the result on 2.5-mm mesh already shows a clear drift towards over-prediction. As
the element size increases to 5 mm, the peak load and post-peak response again become severely over-predicted. Correspondingly,
if the structural model is used on the 5-mm mesh, the predicted curve remains close to the analytical solution throughout the
loading history. Even the 7.5-mm structural model manages to capture the load-displacement response very accurately. The slight
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Table 4

Comparison of CPU time (unit: second).

Engineering Fracture Mechanics 329 (2025) 111586

DCB

ENF

MMB

Solid model (mesh size)

5311.8 (0.5 mm)

4239.7 (1 mm)

5560.7 (0.5 mm)

Structural model (mesh size)

197.15 (5 mm)
836.76 (2 mm)

285.33 (7.5 mm)
736.41 (5 mm)

370.02 (7.5 mm)
474.79 (5 mm)

Reduction by structural 96.3% 93.3% 93.3%
84.2% 82.6% 91.5%
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Fig. 8. Load-displacement curves of the DCB model with different integration points on two different meshes.

under-prediction of the peak load is expected, as the analytical curve is based on Linear Elastic Fracture Mechanics, which ignores
the presence of material softening (i.e. the cohesive zone) at the crack tip.

In the MMB case, very similar trends can be observed. The solid model on the 2.5-mm mesh cannot capture the correct load—
displacement response, while the structural model’s predictions on the 2.5-mm and 5-mm meshes oscillate closely around the
analytical curve. Even the 7.5-mm structural model predicts the peak load correctly, albeit with bigger oscillations during the load
drop section due to the coarser distribution of integration points in larger elements.

3.1.4. Computational performances

By allowing larger elements to be used, the proposed structural model is able to reduce the computational time of the
delamination simulations considerably. The results of the structural model are compared against those of the solid element model.
The comparison of CPU time is reported in Table 4. It can be seen that the structural model can reduce the computational time in
all three problems by more than 90%, while retaining accurate predictions of the peak loads and the overall load-drop curves.

3.1.5. Studies on integration points

In this section, the influence of the number of integration points in one element on the simulation results is discussed, using
the error of the load-displacement curves with respect to the analytical solutions. The earlier work in 2D [23] showed the largest
influence of integration points in the DCB model. Therefore, only DCB is studied here. The load-displacement curves with different
integration points are reported in Fig. 8. The use of 52 integration points in the element domain is achieved through subdomain
integration as detailed in Tosti Balducci and Chen [36].

From Fig. 8(a), on the 5-mm mesh, it is clear that as we increase the number of integration points, the predicted curves become
closer to the analytical one, consistent with earlier results [23,36]. It is also clear that even with just 3 integration points, the
prediction does not exhibit the same overshoot of peak load as seen in the solid-element model in Fig. 7(a). This indicates that it
is the higher-order continuity in the kinematics of the structural elements that brings down this overshoot and hence enables the
use of larger elements. From Fig. 8(b), on the 2-mm mesh, the number of integration points does not seem to show any effect. In
summary, having more integration points increases the prediction accuracy on coarse meshes, but has little effect once the mesh
is sufficiently refined. This suggests a trade-off between using more integration points and using finer meshes. As the element size
determines the size of the system matrix, while the operations at integration points are local to each element and can be parallelized,
it would be more efficient to use more integration points on a coarser mesh.

3.2. Unidirectional laminate benchmarks: Reinforced DCB
Although the earlier benchmarks are modelled in 3D, they can actually be modelled in 2D [23] as the delamination front does

not vary significantly across the width of the specimens. To verify the capacity of the proposed elements in modelling delamination
in 3D, the Reinforced DCB (R-DCB) problem is studied in this section.
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Fig. 10. Boundary conditions and loading of the finite element model; U;=7.5 mm.

Table 5
Lamina properties of the R-DCB model [51].
Property Value Units
E, 154 GPa
Ey = Ey 8.5 GPa
G, =Gp3 4.2 GPa
Gy 3.04 GPa
Hiz = Hi3 0.35 -
Ha3 0.4 -
Table 6
Interlaminar properties of the R-DCB model [51].
Property Value Units
K: Penalty stiffness 10° N/mm®
Gy 0.305 N/mm
Gy 2.77 N/mm
n 2.05 -
e 32.6 MPa
Tie 98 MPa

3.2.1. Description of the reinforced DCB

The R-DCB experiment was proposed by Carreras et al. [50]. The main part of the R-DCB specimen is a standard DCB specimen
made of 16 unidirectional plies at 0°. Two reinforcement parts, made of 8 plies of the same material at 0°, are attached on the top
and bottom of the DCB specimen. The elastic properties of the ply material are shown in Table 5. The pre-crack is 35 mm long on
the opposite side of the reinforcement. The geometry of the R-DCB specimen is shown in Fig. 9.

The R-DCB problem is modelled with the proposed structural elements. Symmetry is used to reduce the size of the model. The
boundary conditions of the model are shown in Fig. 10. The right side of the model is fixed and a displacement loading is applied
on the left side. The two arms of the DCB and the two reinforcement parts are each modelled with one layer of cubic shell elements.
Their interfaces are each modelled with one layer of structural CEs. The properties for the structural CEs are shown in Table 6.

3.2.2. Results and comparisons
Similarly as in the previous section, different mesh sizes are used for mesh convergence analysis. The predicted load—displacement

curves on different mesh sizes are shown in Fig. 11. We can see that the three curves agree well with each other. The 5-mm curve
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Fig. 12. Comparison of numerical and experimental results of the force-displacement curves [50].

is not as smooth as the other two, consistent with the DCB results in Fig. 7(b). The most obvious difference is that the 5-mm curve
slightly over-predicts the second peak load and the corresponding opening displacement. The 2-mm and 1-mm curves fall on top of
each other, indicating that the mesh has converged. The 2-mm curve is used for subsequent comparison with experimental data.

In Fig. 12, it can be seen that the predicted load—displacement curve agrees reasonably well with the experimental data from
4 specimens. However, there are three obvious differences. Firstly, the initial stiffness is greater than the experimental one. This
could be due to the fact that the loading grips and test machine increase compliance, which is not included in the model. Looking
closely at the initial part of the experimental load—displacement curves, we can see that there is a slight increase in stiffness at
around 0.5 mm displacement. This indicates the presence of some initial machine compliance, which is not taken into account in
the simulation. Secondly, for the second peak load that denotes the onset of delamination in the reinforced region, the numerical
prediction is greater than the experimental result by 15%. This could be due to the lack of transverse shear compliance in the model,
particularly in the reinforced region. This leads to a stiffer response in the model than in the experiments when the reinforced region
is loaded. This stiffer reinforcement slows down the delamination propagation when it first encounters the reinforcement, leading
to slower damage creation. Third, the numerical curve after the second peak falls sharply and below the experimental curves. This
indicates that the fracture toughness value used by the structural CEs may have underestimated the fracture energy for the crack
propagation in the reinforced region, which may include crack toughening mechanisms such as fibre bridging due to the curved
delamination front.

In Fig. 13, the positions of the crack fronts of the test specimens and numerical models are plotted at multiple opening
displacements. It can be observed that the delamination front shapes of the numerical results are consistent with the experimental
results: the delamination front is a straight line before it goes into the reinforced part. When it extends to the reinforced region,
the shape changes from a straight line to a curve. However, the delamination propagates faster in the numerical results than in
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Fig. 13. Comparison of numerical and experimental results of the delamination front position.

the experiments, except at 10-mm displacement when the delamination propagation in the middle is clearly hindered by the stiff
reinforcement. However, once delamination initiates in the reinforced region, it again propagates faster in the simulation than in
the experiment, as shown by the curves at 12-mm and 15-mm displacements. The reason for the faster numerical propagation could
be that the stiffness in the simulation is higher than that in the experiments due to the lack of initial machine compliance and the
lack of transverse shear compliance in the model. Therefore, in the simulation, a smaller displacement loading on the arms would
be needed than in the experiments to open the cohesive crack tip to reach its delamination onset. This also means that for the same
amount of displacement loading, the simulation would predict the delamination front to propagate further than in the experiments.

3.3. Multi-directional laminate benchmark: SLB

3.3.1. Description of the SLB test

The SLB specimen is shown in Fig. 14, with its geometrical parameters specified in Table 7. Unlike in the previous benchmarks,
the ply angles here are no longer all 0°. The material of the SLB model is C12K/R6376 and its properties are shown in Table 8.
Unfortunately, The value of 7. cannot be found in the literature. However, the value of 75, can be estimated by 7. in Eq. (88)
which is derived by the equations in Ref. [43] with the same penalty stiffness of mode I and mode II. Hence, the value of 7;;, here
is estimated to be 58 MPa.

G,
Tie = Tie V GIIIC (88)
C
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Fig. 14. SLB specimen [45].

Table 7
Geometric parameters for the SLB specimen.
Parameter 2L a, 1 t, b (width)
value (mm) 177.8 60 2 2 25.4
Table 8
C12K/R6376 material properties for SLB specimen [46].
E, = 146.9 GPa Ep,= 10.6 GPa Ey; = 10.6 GPa
v, = 0.33 vi; = 0.33 vy = 0.33
G,, = 5.45 GPa G,; = 5.45 GPa Gy, = 3.99 GPa
Fracture toughness data
Gy =034 kKI/m? Gy = 1.286 kJ/m? n=2339
Interfacial strength data
7. = 25MPa [52] e = 58 MPa?

a Estimated [20].

" Nt layer—»

2" Jayer—s
cohesive—»¢
1t layer—»

Fig. 15. Layer-wise model for SLB.
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Fig. 16. Load-displacement predictions of the SLB.

3.3.2. Description of the model

Since the SLB specimen is a multi-directional laminate and its lay-up is not symmetric, we can no longer model the entire
laminate with a single layer of shell elements on each side of the delamination, as done in the unidirectional models. Therefore, the
SLB model uses one layer of shell elements for each ply and one layer of structural CEs between every two plies (c.f., Fig. 15).

3.3.3. Load-displacement curves

In Fig. 16, the load—displacement curves are reported for the solid and structural models. Both are compared with the analytical
solution derived in Appendix C. All the load-displacement predictions by the solid model could not reach numerical convergence
within the allowable settings on solver iterations. As a result, the load-decreasing section of the curve could not be obtained. From
the left figure, it can be seen that only the 0.5-mm solid model can capture the correct peak load. For the 2.5-mm solid model,
the peak load is much lower than the analytical solution due to premature divergence of analysis. However, the peak load of the
model on the 5-mm mesh is much larger than the analytical solution, in line with the solid model’s performance in the unidirectional
benchmarks. The right figure shows that all the structural models can obtain converged solutions throughout the full loading history.
Overall speaking, the predicted curves of the structural models follow well the analytical solution. On the 2.5-mm mesh, the error
of peak load is 2%, the same level of accuracy as that of the unidirectional structural model. On the 5-mm mesh, the predicted peak
load is larger by 12.5%. However, the post-peak part of the curve quickly converges to that of the 2.5-mm mesh result. It should
be noted that the initial stiffness of the structural models is 5% larger than that of the analytical solution. The reason is that the
compliance C obtained by Eq. (C.12) is calculated by simplifying the SLB model into a 2D beam model (c.f., Fig. C.1), where the
neutral axis is assumed to be aligned with the centreline of the uncracked region for simplicity. However, the actual neutral axis of
the SLB model should be slightly above the assumed one, as only the top part of the cracked region would be under bending. This
discrepancy would cause the analytical stiffness to be slightly lower than that in the actual situation. Another discrepancy to note is
that when the crack length a is longer than L, the load increases again with increasing displacement (c.f., Appendix C, curve DFE).
For this part, the predicted curves of the structural models are above the analytical curve. This discrepancy is however expected.
As the crack length a increases with delamination propagation, the mixed-mode ratio B is found to also increase, particularly when
a > L [53], which causes the critical energy release rate G, to increase as well. However, the analytical solution in Appendix C
assumes a fixed mixed-ratio, which underestimates G, for a > L, hence resulting in the analytical curve being below the numerical
ones. The analytical curve could be corrected, should an analytical expression of G, in terms of ¢ become available.

In addition, it needs to be emphasized that the difficulty of convergence of the solid model leads to a significant increase in
computational time. Due to this reason, artificial viscosity would be needed to continue the simulation through the convergence
difficulties. However, this would introduce a fitting parameter which generally requires trial and error to properly set its value.
This suggests that the proposed structural model not only allows coarser meshes with faster computations but also ensures better
numerical stability than the solid element model.

4. Summary and conclusions

This work aims to establish a state-of-the-art numerical method to simulate the delamination of composite laminates aimed at
overcoming the cohesive zone limit on mesh density. The Kirchhoff-Love triangular cubic plate element from Allman [40] has been
extended for the modelling of symmetric laminate shells. A structural CE, conforming with the shell element, has been developed to
model delamination between the shells. The combination of the Kirchhoff-Love shell element and the structural CE is shown to be
a powerful new method that overcomes the cohesive zone limit and models delamination with high accuracy and efficiency under
different loading conditions. This capability is expected to make a strong impact in the composites modelling community, as the
cohesive zone limit has been a long-lasting and well-known problem for delamination modelling.
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This method has also been validated on the DCB, ENF, MMB, and SLB problems. The results show excellent agreement with
the analytical solutions. By comparing the results with those from the solid element model, the structural model has shown the
following advantages: (1) it can accurately predict the load-displacement curves with significantly coarser meshes than the solid
element model, allowing 5-mm elements to be used instead of the 0.5-mm elements in the latter; (2) its computational speed is much
faster than that of the solid element model, achieving more than 90% reduction in CPU time; and (3) it has better numerical stability
than the solid element model, reaching convergence without needing artificial viscosity for stabilization. In addition, the method
has been applied on the R-DCB problem where the delamination front is highly curved. Its predictions on the load-displacement
curve and delamination fronts are in very good agreement with the experimental data.

Future work includes the incorporation of intralaminar damage in the structural model. Since Kirchhoff-Love thin shell elements
are used to model the plies, the transverse strains are ignored. This will impact the prediction of intralaminar damage in the model
because an accurate three-dimensional damage criterion would require out-of-plane stresses and/or strains as inputs. However, since
the layer-by-layer modelling method used in this work employs CEs between every two plies, the required out-of-plane stresses can
be obtained by extracting the tractions of the CEs and interpolating them between the layers [23]. This is the subject of an ongoing
work in the group.
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Appendix A. H matrix

Before we calculate Uj in Eq. (3), we need to calculate six parts. The first part is:

D

2 N2
> <6 w> = D11(2a12 + 12xay a4 + 4yayas + 18x2a§ + 12xya a5 + 2y2a§) (A.1)

0x2

Based on Eq. (16), we can obtain:

Dy (Pw)’
// il 05 a_w dxdy = laT H1 a (A.2)
A 2 ox2 2

where H, is:

4 0 0 12x 4y 0 0]

0 0 0 0 0 0

0 0 0 0 0
H, = // Dy, 36x* 12xy 0 0|dxdy (A.3)

A Symmetric 42 0 0

0 0

0

The second part is:
Dy (o*w\’ 2 22 2 2

- <0_yz> = Dy (2a3 + 4xaza6 + 12yazaq + 2x"ag + 12xyagay + 18y~ as) (A.4)

Then, an equation which is similar as Eq. (A.2) in terms of H, can be obtained:

Dy (2w’ 1 T
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where H, is:

[0 0 000 0 0]

0 0 0 0 O 0
4 0 0 4x 12y

H, = // D,, 0 0 O 0 [dxdy (A.6)

A Symmetric 0 0 0
4x%  12xy
I 0 36y

The third part is:
2. 52
123715 ?)Tl;) =D ,(4aya3 + 4xaag + 12xa304 + 12ya a7 + 4yazas

+ 12x%a a5 + 12y%asay + 36xya a; + 4xyasag) (A7)

and H; can be obtained by using the same method:

0 0 4 0 0 4x 12y
0 0 0 0 0 0
0 12x 4y 0 0
H; = // Dy, 0 0 12x% 36xy|dxdy (A.8)
A Symmetric 0 4xy 12)?
0 0
0
Therefore, the H matrix of 4th, 5th and 6th part are expressed by the following expressions:
[0 4 0 0 8x 8y 0]
0 0 12x 4y 0 0
0 0 0 0 0
H, = // Dy 0 24x* 24xy 0|dxdy (A.9)
A Symmetric 16xy 8% 0
0 0
0
[0 0 00 0 0 0 ]
0 4 0 O 4x 12y
0 0 8x 8y 0
Hj = // Doy 0 0 0 0 |dxdy (A.10)
A Symmetric 0 8x2  24xy
16xy 24y*
0
and
[0 0 0 0 o0 0 0]
4 0 0 8x 8y 0
0 0 0 0 0
H, = // Dgs 0 0 0  0|dxdy (A.11)
A Symmetric 16x>  16xy 0
162 0
0
The H matrix can be written as the sum of H; (i = 1,2,...,6):
H=H, +H, + H; + H; + H5 + Hy (A12)

where the integral for each item of the H matrix can be calculated by using the formulas given in Ref. [37].
Appendix B. B matrix

Plugging the expression of w (Eq. (13)) into Eq. (2), we can express the moment resultants as:
M, =—-2Dja; —2Dgay —2Dpa3 — 6xD oy — (2yD;; + 4xDg)as
— (2xDy, +4yDg)ag — 6yDray (B.1)
which in matrix form is:

M,=B}, « (B.2)
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T e
where B M, 15
B;rwx =[- 2D11, _2D16’ —2D12, —6XD1],
— (2xDy, +4yDyg), —6yD,]
Similarly, for M s We have:
_pT
M y= B M, a
T e
where B M, is:
BLy =[—2Dyy, —2Ds5, —2Dy), =6xDy,
— (2xDyy +4yDyg), —6yDys]
For M,,, we can obtain:
_pT
M,, =B My, *
where the matrix B}l is:
Xy

T
BM

— (4yDgg + 2xDyg), =6y D¢l

—(2yDy; +4xDyg),

—(2yD|5 +4xDyg),

o= [=2Dg, —2Dgq, —2D,¢, —6xD ¢, —(4xDgg + 2yD ¢),

From Eq. (2), we can calculate the derivative of the moment:

oM w Pw Pw
*=-Djy— —Dpp—— - 165 55

ox 0x3 0x0y? 0x2dy
oM, _ _ Fw Fw _ Pw
ay ox2ay 12°9)3 16 9xay2
My Pw  Pw L,y Pw
0x 127953 2 0x0y? 2 0x20y
M, —_D Pw _ Pw Pw
dy 12 9x2ay 22 5y3 %6 9xdy2
oM, —_D Pw _ Pw _ Pw
ox 167953 26 9xay? % 9x29y
oM, _ Pw _ Pw _9D Pw
dy lédxzay 26 0y? 66 0x0y?

Using Eq. (4), we calculate M, for node 1 and node 2 on the side 1-2 as:

M,}2 =cos? y,BY @ +sin? y,BY @ +sin2y,BY |«
M) M} M},

21 2 T -2 T . T
M = cos B o +sin B a+sin2y;,B L a
n "2l 712 M2 Y12 M2,

Engineering Fracture Mechanics 329 (2025) 111586

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

where BLI means Eq. (B.3) evaluated at the coordinates of node j and BL’ means Eq. (B.5) evaluated at the coordinates of node
y

X
Jj, respectively. And the corresponding B matrix is:

n

n

Similarly, M, for the side 2-3 is:

M? =cos? 73BT e +sin? 73BT @ +sin2y3BT | @
n 12382 723 M2 7230,

BT | =cos?y,BT , + sin’ y1.BT , +sin2y,BT
M2 M? M? M2

BT ., = cos? 7B |+ sin’ y1,BT | +sin2y,BT
M)? M} M} M},

y

xy

32 _ ool T 2 T : T
M cos y23BM3a + sin y23BM3a + sin 2;/23BM3 a
X y Xy

32 =
And the corresponding B matrix is:

Mn

n

Finally, M, for the side 3-1 is:

BT ., =cos? ;BT | + sin’ ¥23BT , +sin2y,; BT
M2 M} M3 M}

BT . =cos? 73BT +sin? o3BT | + sin2y,;BT
23 Y2382 723 M2 723 M2,

Y

M31 =cos’y3 BT ja+ sin” 73, BT ,a+sin2yy BT [ a
M3 M3 M3,
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(B.14)

(B.15)

(B.16)

(B.17)
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13 2 T 2 T : T
M~ =cos B  a+sin B  a+sin2y; B«
n 7318, &+ STy ! +sin2y3; M,
And the corresponding B matrix is:

BT . =cos? 73BT L+ sin® y3;BT  + sin2y;,BT
3 310, 3 7318, 3
M} VB M3 M3,
T

BT |, =cos?y; BT +sin2yg]BT + sin2y;;B
M3 M) 2 Ml M

n X y y

Before calculating Ry, we need to calculate M, at first as shown in Eq. (11). For node 1:

2_ |1l {pr _pr . T
M, = [2 (BM} BMX‘> sm2y12+BMX]y cosZylz] a

1 .
M3 = [5 (BLyl —BL)](> sin 2y3; +BL)]0’ c052y31] a

Thus, plugging the above two terms into Eq. (11), R, is:
R, = l(sin 2y, —sin2y;,) ( BT , — BT + (€08 2y, — cos 2y )BT 14
1 2 12 31 M} M} 12 31 M)l(y
=By
where the matrix B, is:

1, . .
T _1 _ T _pT _ T
BR1 =3 (sin2yp, —sin2y3;) (BM; BM}) + (cos 2y, — cos 2y31)BMX1y

Similarly, the matrix By, related to the node 2:

T _ 1. . T T ) T
By, = 3 (sin2yy3 — sin2yy,) BMy2 - BMX2 + (c08 2y53 — cos 2y12)BM§y

At last, the matrix Bp,:

1. .
BT = = (sin2y;, — sin2y <BT -BT ) + (08 23, — €0s 2y,3)BT
Ry =3 ( 31 23) M3 M3 31 8Py

In order to simplify the writing of the above formula, we define the following notations:

EI =sin2y;, —sin2y3, E] = c0s 2y, — €08 2y3

S, =sin2y,; —sin2yj,, C, =cos2yy3 —cos2y,

53 = sin2y3; — sin2y,3, 63 = COs 2y3; — C0S 2y,3

The matrix Bﬁ in Eq. (B.24), (B.25) and (B.26) can be rewritten as:

T _ 1< (pT _pT = nT
BY, =551 (B}, ~B} ) +CiB},,
T _ 1< T _npT = T
B}, =35, (BMY2 BM§> +OB]
T _1< T _pT = nT
B, =35 (BMS BM£> +CB],

Next, we calculate V, according to Egs. (5) to (8). Plugging Egs. (7) and (8) into (5), we get:

oM oM
Vv, = 42 1S
" on 0s

Plugging Eq. (12) into Eq. (B.29), we get:

oM, . O0M, . OM, oM,
V, =cosy—— +siny —2siny -~ +2cosy -
ox dy ox
. . oM, M,
The terms on the RHS above require eventually the evaluation of pat ay" s

For V12 item, the derivation from Eq. (B.9) is:

25

oM,
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. oM,
1 - and =

y

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)
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T T
oM 12 B, B B
2 = cos’y, X +sin 7y, ~a +sin2y, -
ox x x
T T
oM 12 B, B BT,
n 2 X ) y . Xy
3y =Ccos“ ¥y @ +8in“ ¥y, a +5sin 2y,
where
9B |
WX =[0, 0, 0, =6D,;, —=4D,s, —2D,, 0]
9B |
= =[0, 0, 0, =6Dy,, —4Dyg, —2Dy;, 0]
ox
oBT |
M},
— = [0, 0, 0, 6D, —4Dgg, —2Dyg, 0]
And
oB} |
—5 =0, 0,00, 2Dy, =4Dyg, —6Dys]
y
9B,
ayy =[0, 0, 0, 0, =2Dy5, —4Dy4, —6Dn]
B,
k 2 =10, 0, 0, 0, =2Dyg, —4Dgg, —6Dyg]
y
Thus, the matrix BT |, and BLIZ are:
nx iy
T oBT oBT
T 2 aBM} .2 My . My
BM,}%( = cos yna—x + sin ylza—x +sin 2y, F
T T T
oB! | oB | BT |

X ¥y Xy

2
+sin” y;,

+sin2y;,

T ol
BM12 = Ccos” Y12
ny

Using Eq. (7), the derivative of moment M, on side 1-2 is:

T T T
v [P P T
=|= - = |sin + —— cos a
0x 2| ox 0x ST ox T2
T T T
o2 [o(®he ) B
=|= - sin + cos a
ay 3 ay ay N 2y 712
Thus, the matrices B | and BT  are:
ns.x M".).y
X B, 0BT BT,
BT , = —sin2y, X - = |+ cos 2y, =
Ml 2 ox ox
. oBl, 0BT BT,
BT , = =sin2y, z - = |+ cos 2y, =
Mg, 2 dy dy

Finally, using Eq. (B.30), B matrix for the Kirchhoff shear force V, on side 1-2 is:

BT =cosy;,BT ., +siny,BT | —2siny;,BT +2cosy;,BT
anz 12 M’% 12 M,f%, 12 M’}Szyx 12 Mr}.rz,y

Similarly, B,, matrix on side 2-3 is:

oBT | oBT | oBT |
T _ ool M o gin? My My
B’ ., =cos”yy; +8in” yp3 +8in2y,;
My x
T T T
B, 6BM2 0BM2

B}, =cos’ 13 0_yx +sin® 5 0_yy + sin2p53

ny
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(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)
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Fig. C.1. Analytical solution of SLB model.

and
T T T
. . 0B 2 6BMX2 B 2
BM}?_X =3 sin 2y, * ox + cos 2yp3 . (B.48)
T T T
. . oB 2 6BMX2 oB 2
BM23 = 3 sin2y,3 3y — 3y + cos 2yp3 (B.49)
ns,y
The B matrix for Vf is:
T T . T : T T
BV,,23 = cos y23BM3_3X + sin y23BM3’3y —2sin y23BM%3x + 2cos yBBM,ﬁy (B.50)
On side 3-1:
oBT | oBT | 0BT |
T _ .2 x .2 ¥ . xy
B 51 =c0sTr3 +8in” 73 +sin2y3 (B.51)
i X x
oB” | B , B} |
BT | = cos’y3 ——= +sin’ y3; —— +sin 273, : (B.52)
ny
and
T T T
T 1. aBM}S' aBM? B gy
BM;?}.X = 3 sin2y3, % ox + cos 2y3; I (B.53)
T T T
BT L n2 aBM’S' ” : 2 aBMg'y (B.54)
= — SIn zy - + cos Y .
My, 2 oy dy 31

The B matrix for V3! is:

BIT/:] = cos 731BL31X + sin y23BL3]y — 2sin yBBLSJ ) +2cos y23BL;}Jy
Therefore, the calculations of B matrices for ¥, on sides 23 and 31 can be simplified through the use of the pre-calculated matrices

for side 12.
Now, all the components of B matrix have been derived. The assembled (7 x 12) matrix B is:

B =[Bg,,Bg,.Br,, By 12, B2, Byai, By 12, B o, Byos, Bys, By s, Byis] (B.55)

Appendix C. Analytical solution of SLB benchmark

Referring to Fig. C.1, the analytical load-displacement curve consists of three parts. The first part, OB, is the linear elastic stage
with the initial crack length q,. The second part comes from the curve ABC which represents the load-displacement response during
delamination propagation when a < L (the half length of the SLB model). When a > L, we can obtain the last curve DFE. The full
analytical curve would then be OBFE. The derivation process of each curve is shown one by one in the following content.

When the crack length a is smaller than L, the analytical derivation of the SLB benchmark follows from the work of Davidson
et al. [45]. Referring to the SLB model in Fig. 14, it is evident that the bending stiffness in the cracked region comes entirely from
the part above the crack, which is midplane symmetrical. The uncracked region is midplane anti-symmetric.

The SLB model (a < L) is simplified into a 2D beam model, as shown in Fig. C.2. The moment—curvature relationship for the
SLB problem can be expressed as:

2
M=—bDiTL;=bDKX 1)
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Fig. C.2. Beam model of SLB specimen (a < L).

where M is the moment on a face along the x-axis, b is the width of the specimen, w is the deflection along the z direction. And D
is the effective bending rigidity per unit width. Because the values of D in the uncracked region and cracked regions are different,
D, represents the effective bending rigidity of the uncracked region, and D, represents the effective bending rigidity of the cracked
region to distinguish them.

We assume that the classical laminate theory is applicable to the SLB problem. In matrix form, the constitutive equation can be
written as:

N, Ay Ayp Ag | By By B[ e
N, Ap Ay Ay | B By By ES
Ny, Ag Ay Ag | Big By Beg V)?y
- 1=l-- - —-— | - —-— —||- (C.2)
M, B, By, By | Dy D Digl|k,
M, B, By By | D Dy Dyl|k,
| M,,| [Bis By Bss | Dig Dy Des|[xy,]
where 52, e(y), y)(c)y are the membrane strains of the neutral plane, and «,, Ky, Ky, are the curvatures, derived from the out-of-plane
displacement w:
P N S i’ (€.3)

ax2’ Y ay? " " 9xay

The inverted form of the constitutive relationship is:

01 T o
5 ayp ap o | B B Bis|| Ny
€, ap ayn ag | P P Bl Ny
}’gy a6 %6 | Bis P Pes || Nxy
B N e Iy | €4
Ky Pu P bis | 611 61n by || My
K Bio Pn b | b1 Sn || M,
y
<y [Pie P Bos | V16 6 Bes || My

If the plate constraint condition is “generalized plane stress”, N, N
(C.4) gives:

xy» M,, and M, are zero. When considering N, = 0, Eq.

1
D=— (C.5)
o1

. . 0_ .0 _ . _ _ .
For the plane strain condition (ey =Yy =Ky =K = 0), Eq. (C.2) gives:

D =Dy, (C.6)
The expression of strain energy is:
2L 2
U= M=dx C.7)
o 2bD

From Fig. C.2, the boundary conditions of the SLB model can be considered similar to three-point bending. So we can get the
moment along the beam as:

_Px 0<x<L

M=4,2" (C.8)
%—PL, L<x<2L
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Fig. C.3. Beam model of SLB specimen (a > L).

Since the cross-section of the upper part of the cracked region (0 < x < a) is different from that of the uncracked region, the moment
M is further divided, and the expression for strain energy is the sum of three parts:
Ul [ M%dx L=a p24x + 2L M2dx
I =
@<= fy 26D, ' J, 2bDy ' /. 2bD,

(C.9)
Substituting Eq. (C.8) into Eq. (C.9), we can get:

2 2 2
—&> dx —&> dx 2L (%—PL) dx

a ( > L ( >
Ulgger) = / + / + / - (C.10)
@)™ [0 2bD, o 2bD, L 2bD,

Based on the expression of strain energy, the displacement § can be calculated by Castigliano’s second theorem:

U (4er) T py2dx L py2dx 2L (Px? —4PLx +4PL?)dx
5|(a<L) = P =
0 a L

4bD, 4bD, 4bD,,
3 3 _ 3
_ Pa + 2PL° — Pa (€.11)
12bD, 12bD,

The above equation can be used to plot the P — § curve for a certain crack length a, which for the case of a = a, gives the first
part of the analytical curve, i.e., OB. The compliance C during the elastic region is defined as the centre deflection 6 divided by the
centre load P:

8lu<y 2L +a@(R-1)

= 12
Clia<ny P 12bD, (€12

where R is the ratio of the bending rigidity of the uncracked region to that of the cracked region:
R=D,/D, (C.13)

The relationship between the critical energy release rate G, and the derivative of compliance C with respect to the crack length
a is:

P? oC
== C.14
¢ 2b oa ( )
Substituting Eq. (C.12) into Eq. (C.14), we can obtain:
PZ2(R-1)
= C.15
¢ 82D, (€.15)
Substituting Eq. (C.12) to Eq. (C.15), the critical energy release rate G, can also be obtained by the critical load and deflection:
3Pa? §| _
G, = (a<L) (R-1) (C.16)
2b [2L3 + a*(R - 1)]
The critical energy release rate G, in Eq. (C.16) is the value in mixed mode. It can be calculated by:
G, = Gy + (G, — Gy)B" (C.17)

where G, and Gy, are the critical energy release rates in pure mode I and mode II, respectively. The mixed mode ratio B in the SLB
model is 0.4 [46]. Eq. (C.15) can be used to calculate the critical load P at a certain crack length a. It can also be used to express
a in terms of P for a fixed G,, which can be plugged into Eq. (C.16) to obtain the relationship between § and P for a fixed G, for
the case of a < L, hence giving the curve ABC.
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When the crack length « is greater than or equal to L, the analytical derivation of the SLB benchmark can follow the same
derivation process as above. The SLB model (a > L) is simplified in Fig. C.3. Based on Fig. C.3, the expression for strain energy is
rewritten as:

L 2 a 2 2L 2
M“dx M“dx M=dx
U = C.18
liaz1) /0 WD, T /L WD, T / 26D, (C.18)

Since the boundary conditions have not changed, the expression of the moment is consistent with Eq. (C.8). Substituting Eq.
(C.8) into Eq. (C.18), we can obtain:

L p2,24y @ (P2x2 —4P2Lx +4P?L?) dx
Ul@zr) = s

8bD, 86D,
/ZL (P>x* —4P%Lx +4P*L?) dx €19)
+ .
. 85D,
The displacement § at the middle can also be found by Castigliano’s second theorem:
PL?  Pa®—6PLda*+12PL% _ 8PL® Pd®—6PLa*>+12PL%
Sluzn = 5,5 + - (C.20)
bD, 126D, 126D, 126D,
Introducing ratio R in Eq. (C.13), the above equation can be rewritten as:
(6R—8)PL> (R-1)(Pa®-6PLa®>+12PL%a)
6 =- C.21
lazr) 260, 12bD, (¢21)
The expression of compliance C under the condition a > L is:
Ol(ax1) (6R—8)L* (R-1)(a®—6La>+12L%a)
C = — =— C.22
lazr) P 126D, T 12bD, (€22)
Substituting Eq. (C.22) into Eq. (C.14), we have:
P%(R - 1)(3a* — 12aL + 1212
G, = FR=-D@a — 12al + 1217) (C.23)
2402D,

where G, is the critical energy release rate given by Eq. (C.17). Using Egs. (C.21) and (C.23), one can then vary a to plot the third
part of the analytical curve DE.

Data availability

Data will be made available on request.
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