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A B S T R A C T

The representation of uncertainty in results is an important aspect of statistical techniques in hydrology and
climatology. Hypothesis tests and point estimates are not well suited for this purpose. Other statistical tools,
such as confidence curves, are better suited to represent uncertainty. Therefore three parametric methods to
construct confidence curves for the location of a sudden change in the properties of a time series, a change
point (CP), are analyzed for three distributions: log-normal, gamma, and Gumbel. Two types of change are
considered: a change in the mean and a change in the standard deviation. A question that confidence curves
do not answer is how likely the null hypothesis of ‘no change’ is. A possible statistic to help answer this
question, denoted by Un, is introduced and analyzed. It is compared to the statistic that underlies the Pettitt
test. All methods perform well in terms of coverage and confidence set size. One method is based on the
profile likelihood for a CP, the other two, first defined in this article, on the pseudolikelihood for a CP. The
main advantage of the pseudolikelihood over the profile likelihood lies in the much lower computational cost.
The confidence curves generated by the three methods are very similar. In a limited test on time series of
measurements found in the literature, the methods gave results that largely matched those reported elsewhere.
Some results are also given for an order one autoregressive series with a lognormal marginal distribution.
1. Introduction

Today, the need to take into account climate variability and the
results of human interventions in water management and hydrology
seems clear (Kolokytha et al., 2017; Teegavarapu, 2018). To do so, it
is necessary to combine statistical information, obtained from hydro-
logical and climatological time series, with investigations of how the
natural variations in the behavior of the physical system and human
alterations of that system could result in changes in those time series,
and link the changes suggested by statistics to physical causes (Tao
et al., 2011). While this will often be a search for trends or periodic
changes, the time series in question must also be tested for abrupt
changes, either to find real changes (Tao et al., 2011; Harrigan et al.,
2014), or to see whether it is necessary to split a series into two parts
for further analysis (Cong et al., 2017). Beaulieu et al. (2012) mention
that an abrupt change in the statistical properties of a time series
could signal an undocumented change in the measurement procedure.
A general overview of change detection is given in Kundzewicz and
Robson (2004).

In this article the emphasis is on abrupt changes. But please keep
in mind that, for instance, the initial filling of a reservoir may take

∗ Corresponding author.
E-mail address: r.r.p.vannooyen@tudelft.nl (R. van Nooijen).

several years, so it may look as a trend on a daily scale and as a jump
in the time series of annual maximum flows. There have been many
publications on the detection of an abrupt change, or change point
(CP), in hydrology and climatology (Beaulieu et al., 2012; Conte et al.,
2019; Xie et al., 2014; Xiong and Guo, 2004). Theoretical work on CP
detection in general was done, for example, by Pettitt (1979), Chen and
Gupta (2001, 2011), or Brodsky and Darkhovsky (2013).

There are many statistical tools that can be used to detect the
presence of CPs. Ideally, such a tool should provide information on the
uncertainty in the location of the CP. The traditional tests, such as the
one presented in Pettitt (1979), focus on the acceptance or rejection
of the null hypothesis that there is no CP at a given significance
level, a form of Null-Hypothesis Significance Testing (NHST). If the null
hypothesis is rejected, then the CP is assumed to be at the location that
results in the largest value for the test statistic. Such a point estimate
gives no indication of the probability that this is the true CP location.
In the literature the emphasis tends to be on determining whether or
not there is a CP and delivering as point estimate of the CP location.
Attention for the uncertainty in its location is limited. Based on Web
of Science search it seems that less than 10% of the papers dealing
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with CPs uses a method that does more than deliver a point estimate.
This also holds when only papers dealing with environmental times
series are considered. Of those relatively rare papers that deal with the
uncertainty in the CP location most use Bayesian methods. Examples
of Bayesian methods are easier to find, see, for instance, Perreault
et al. (1999, 2000) or, for a hierarchical Bayesian version, Belisle
et al. (1998), Chu and Zhao (2004). Bayesian methods require prior
distributions for all parameters, and they can be computationally inten-
sive. A rare example of a frequentist paper that looks into uncertainty
is Hušková and Kirch (2008) where a bootstrap based method is used
to construct confidence intervals for CPs.

Strictly speaking, the methods discussed in this article serve a
different purpose than NHST, and they are not designed to reject or
not reject the null hypothesis. However, experiments showed that from
the confidence curves a number may be calculated that may serve the
same purpose as the original 𝑝-value, namely to indicate data ‘worthy
f a second look’ (Nuzzo, 2014). This is of interest in situations where
large set of time series is studied and it would not be feasible to

nalyze all confidence curves by eye. Different thresholds for that value
ould then be used to separate the set into three groups: curves that
rovide clear information on the location of a CP, curves that provide
o information on the location of a CP, and curves that need to be
nvestigated further. A possible candidate for such a number is the
unction Un introduced in this paper.

As in all of statistics, there are parametric and nonparametric meth-
ds. The nonparametric methods avoid the choice of a distribution
or the time series, but they tend to specialize in detecting changes
n either the mean or the standard deviation, not both at the same
ime (Eastwood, 1993). The parametric tests can look for changes in
ll parameters of the underlying distribution. For hydrological, meteo-
ological, or climatological time series the distribution may or may not
e known. Sheskin (2003, pp. 97–98) states that while parametric tests
enerally provide a more powerful test of the alternative hypothesis,
hey may lose that advantage if the assumptions underlying the test
re violated. An example of a nonparametric detection method using
onfidence curves can be found in Zhou et al. (2020). It therefore makes
ense to examine both types of CP tests.

The current article examines two parametric approaches. While the
mphasis is on detection of changes in the mean, additional experi-
ents showed that the same algorithm is equally sensitive to changes

n the standard deviation. Both parametric approaches belong to the
omain of parametric statistics and represent uncertainty by a con-
idence curve. Both use a likelihood where the location of the CP,
he distribution parameters to the left of the CP, and the distribution
arameters to the right of the CP are free variables. One then introduces
profile likelihood, the other introduces a pseudolikelihood.

A method based on the first approach can be found in Cunen et al.
2018) where it is called ‘method B’. Method B is based on a calculation
f the log-likelihood of the time series for all possible CP locations. In
his calculation, the parameters of the distribution to the left and to
he right of the CP are so-called ‘nuisance parameters’; their values
re needed to calculate the log-likelihood, but are not of intrinsic
nterest. A profile log-likelihood approach is used to calculate the log-
ikelihoods. The resulting log-likelihood values for the potential CPs
re used to construct a deviance function. Next, Monte Carlo (MC)
imulation is used to approximate the distribution of the values of the
eviance function for each potential CP. This approximate distribution
s then used to build a confidence curve. In the remainder of this study,
his method will be referred to as Confidence curve based on Maximum
ikelihood parameter estimation (CML). A potential problem with this
ethod is that it is very computationally intensive. Even in the case

f just one CP, two optimizations of a log-likelihood need to be done
or each possible CP location to determine the profile log-likelihood.
oreover, a MC simulation is needed to determine an approximate

istribution for each possible CP location. This MC simulation needs
2

o repeat the profile log-likelihood calculation as often as is needed to
btain an approximate distribution. As shown in Appendix E, this leads
o a computational complexity linearly proportional to the number of
amples in the MC simulation and proportional to the cube of the time
eries length. Run-times on a desktop workstation may take hundreds
f seconds for a single sample. Removal of the maximum likelihood
ptimization can reduce the computational cost considerably; this is
he chief reason to examine the second approach.

The current study presents two methods based on the second ap-
roach which uses pseudolikelihood. More information on pseudolike-
ihood can be found in, for example, Gong and Samaniego (1981).
istribution parameters are estimated by the Method of Moments (MoM)

or L-Moments (LMo); this reduces the computational cost of the likeli-
ood calculations. Moreover, fast code for these methods is often easier
o obtain than for log-likelihood optimization. These methods will be
eferred to as Confidence curve based on Method of Moments parameter
estimation (CMoM) and Confidence curve based on L-Moments parameter
stimation (CLMo), respectively. As the experimental results for CMoM
nd CLMo were very similar, only CML and CLMo results are reported
n this study.

To verify that CLMo (CMoM) works, it should be demonstrated that
he results obtained are similar to those of CML. As hydrological time
eries are relatively short, asymptotic results on the performance of
he methods may not be valid. Therefore, it is necessary to generate
tatistics on the performance of all methods through computer exper-
ments. In this study, this has been done for several two-parameter
istributions where the cost of the maximum likelihood calculations is
till manageable: log-normal (LN), gamma (GA), and Gumbel (GU). For
ase of interpretation of the results, clarity of method representation,
nd to keep the computing time needed down to a manageable level,
nly the case of At Most One Change (AMOC) is considered.

The equations used in the methods are derived for independent
dentically distributed (i.i.d.) random variables (RVs). The methods are
ased on pseudolikelihood, and in principle they can be extended to
ime series with short range correlation, see also Aue and Horváth
2012). For other deviations from the i.i.d. assumption such as periodic
omponents or trends, methods that have been applied in combination
ith other CP detection schemes should work here as well. Preliminary

esults on series with short range dependence show that the methods
ith formulas based on i.i.d. still work, but information about un-

ertainty decreases in quality, see Appendix G. Finally, with regard
o long range dependence, Aue and Horváth (2012) state that tests
or structural stability that are designed for the i.i.d. or short range
orrelation case are not robust against long memory. Moreover, time
eries with short range correlation and change points may be difficult
o distinguish from time series with long memory (Berkes et al., 2006).

The remainder of this paper is organized as follows. First, the two
pproaches to confidence curve construction are presented. Next, indi-
ators are defined that can be used to evaluate the method performance
nd compare the confidence curves. Then the results of the application
f the methods to synthetic data are analyzed. After that, the methods
re applied to several hydrological and climatological time series for
hich CP detection results are available in the literature. Finally, we
iscuss the results and present our conclusions. Mathematical details
an be found in Appendices A–E. In Appendix F several time series of
nnual maximum flows for different stations downstream of the site of
he Three Gorges dam are checked for CPs.

. Methodology

All time series will be modeled as a vector 𝑌 of 𝑛 independent
Vs 𝑌1, 𝑌2,… , 𝑌𝑛. In the remainder of the paper, 𝑦 will represent a
ealization of 𝑌 , and 𝑦obs will represent the actual observed time series.

The null hypothesis 𝐻0 will be that the 𝑌𝑖 are i.i.d. RVs. The alterna-
tive hypothesis 𝐻1 will be that there is an index 𝜏 ∈ {1, 2,… , 𝑛 − 1}
such that the original random vector is split into two subseries: a

subseries with i.i.d. RVs {𝑌1, 𝑌2,… , 𝑌𝜏} and a subseries with i.i.d. RVs
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{𝑌𝜏+1, 𝑌𝜏+2,… , 𝑌𝑛}, but the distributions of the variables in the two
subseries are different. Furthermore, it is assumed that all distributions
are from the same family, so they differ only in the parameters used in
the shared probability density function (pdf) and cumulative distribution
function (cdf). The cdf of 𝑌𝑖 will be referred to as 𝐹 (⋅; 𝜃) and the pdf as
𝑓 (⋅; 𝜃) where 𝜃 is a vector. The parameter vectors for the left and the
right subseries will be 𝜃L and 𝜃R respectively. The null hypothesis can
now be expressed as 𝜃L = 𝜃R.

Both approaches need to (approximately) solve maximum likelihood
problems for the subseries to the left and to the right of the change
point 𝜏. Intuitively it is clear that parameter estimation for very small
samples will be difficult. Some studies considering this are Lettenmaier
and Burges (1982), Delicado and Goria (2008), Landwehr et al. (1979).
These suggest that for short subseries, the results may vary considerably
from sample to sample. A minimum subseries length 𝑛min will therefore
be used. As a result, only a subset of CP locations, given by

𝐿CP =
{

𝑛min, 𝑛min + 1,… , 𝑛 − 𝑛min
}

(1)

as considered, and no parameter estimates for subseries shorter than
min were carried out. The choice of 𝑛min is to a certain extent arbitrary.
ere we take a minimum subseries length

min = ⌊2log𝑛⌋ (2)

here the notation ⌊.⌋ denotes rounding down towards the nearest
nteger; 𝑛min = 1 corresponds to considering all possible CPs. One
eason to consider trimming is that the variance in parameter estimates
ends to decrease with increasing sample size. As a result, a short
equence may lead too much ‘wilder’ parameter estimates than a long
equence (Landwehr et al., 1979). This would seem undesirable when
ooking for parameter changes.

.1. A description of the two approaches

The starting point for both approaches is the log-likelihood function
for a CP problem. The value of 𝓁 for a CP 𝜏, distribution parameter

ectors 𝜃L and 𝜃R, and a realization 𝑦 of the time series is

(

𝜏, 𝜃L, 𝜃R; 𝑦
)

=
𝜏
∑

𝑖=1
log 𝑓

(

𝑦𝑖; 𝜃L
)

+
𝑛
∑

𝑗=𝜏+1
log 𝑓

(

𝑦𝑗 ; 𝜃R
)

;

𝜏 ∈ {1, 2,… , 𝑛 − 1} (3)

ere, 𝜃L and 𝜃R are vectors of nuisance parameters and 𝜏 is the parameter
f interest. A common way of dealing with nuisance parameters is the
ollowing. For each 𝜏 take the supremum (least upper bound) of (3)
ver all 𝜃L, 𝜃R; the resulting function is called the profile log-likelihood

prof (𝜏; 𝑦) = sup
𝜃L ,𝜃R

𝓁
(

𝜏, 𝜃L, 𝜃R; 𝑦
)

(4)

or a closed bounded parameter set, the supremum coincides with the
aximum. For a given 𝜏, let �̂�L (𝜏, 𝑦) and �̂�R (𝜏, 𝑦) stand for the values of
L and 𝜃R, respectively, for which 𝓁

(

𝜏, 𝜃L, 𝜃R; 𝑦
)

attains the maximum
alue. With this notation (4) is equivalent to

prof (𝜏; 𝑦) = 𝓁
(

𝜏, �̂�L (𝜏, 𝑦) , �̂�R (𝜏, 𝑦) ; 𝑦
)

(5)

In CML, �̂�L (𝜏, 𝑦) and �̂�R (𝜏, 𝑦) are calculated whenever needed. The
smallest value of 𝜏 ∈ 𝐿CP for which 𝓁prof is maximal will be denoted
by 𝜏 (𝑦),

̂ (𝑦) = min

(

arg max
𝜏∈𝐿CP

𝓁
(

𝜏, �̂�L (𝜏, 𝑦) , �̂�R (𝜏, 𝑦) ; 𝑦
)

)

(6)

The minimum is taken to allow for the, highly unusual, case where
there are multiple maxima. In CLMo (CMoM), instead of a profile
log-likelihood 𝓁prof , a pseudo log-likelihood 𝓁pseu is used. To obtain
𝓁pseu, the LMo (MoM) estimates 𝜃L (𝜏, 𝑦) and 𝜃R (𝜏, 𝑦) of the nuisance
parameters are inserted in (3)

( ̃ ̃ )
3

𝓁pseu (𝜏; 𝑦) = 𝓁 𝜏, 𝜃L (𝜏, 𝑦) , 𝜃R (𝜏, 𝑦) ; 𝑦 (7)
These estimates are assumed to be acceptable approximations of the
maximum likelihood estimation results. The smallest value of 𝜏 ∈ 𝐿CP
for which 𝓁pseu is maximal will be denoted by 𝜏 (𝑦),

̃ (𝑦) = min

(

arg max
𝜏∈𝐿CP

𝓁
(

𝜏, 𝜃L (𝜏, 𝑦) , 𝜃R (𝜏, 𝑦) ; 𝑦
)

)

(8)

From this point onwards, all methods follow the same path towards
a confidence curve. A deviance function for CML is defined as the
deviance of 𝓁prof from the maximum value it attains at 𝜏(𝑦)

𝐷prof (𝜏, 𝑦) = 2
{

𝓁prof (𝜏(𝑦), 𝑦) − 𝓁prof (𝜏, 𝑦)
}

(9)

nd a deviance function for CLMo (CMoM) is defined as the deviance
f 𝓁pseu from the maximum value it attains at 𝜏(𝑦)

pseu (𝜏, 𝑦) = 2
{

𝓁pseu (𝜏 (𝑦) , 𝑦) − 𝓁pseu (𝜏, 𝑦)
}

(10)

or all 𝜏 ∈ 𝐿CP, the distribution of the deviance function for CML
ollows from

∀𝑟 ∈ R ∶ 𝐾𝜏,prof (𝑟) =
Pr

(

𝐷prof (𝜏, 𝑌 ) < 𝑟 ∣ 𝜏, 𝜃L = �̂�L (𝜏 (𝑦) , 𝑦) , 𝜃R = �̂�R (𝜏 (𝑦) , 𝑦)
) (11)

nd for CLMo (CMoM) from
∀𝑟 ∈ R ∶ 𝐾𝜏,pseu (𝑟) =

Pr
(

𝐷pseu (𝜏, 𝑌 ) < 𝑟 ∣ 𝜏, 𝜃L = 𝜃L (𝜏 (𝑦) , 𝑦) , 𝜃R = 𝜃R (𝜏 (𝑦) , 𝑦)
) (12)

o exact or approximate expression for 𝐾𝜏 is available. Therefore, an
C simulation will be used to approximate 𝐾𝜏 .

In Cunen et al. (2018) and in this paper, a confidence curve (see also
ppendix A) is defined using the distribution of the deviance function

c
(

𝜏, 𝑦obs
)

= 𝐾𝜏
(

𝐷
(

𝜏, 𝑦obs
))

(13)

here 𝑦obs is an observation of the random sample 𝑌 . The MC approx-
mation of 𝐾𝜏 is obtained as follows:

1. Estimate parameters 𝜏, 𝜃L, 𝜃R by first solving for 𝜏∗
(

𝑦obs
)

, and
then calculating 𝜃∗L

(

𝜏∗
(

𝑦obs
)

, 𝑦obs
)

and 𝜃∗R
(

𝜏∗
(

𝑦obs
)

, 𝑦obs
)

.
2. For each possible location 𝜏 ∈ 𝐿CP, and 𝑗 = 1, 2,… , 𝑁 , draw a

new sample 𝑦(𝑗,𝑘) where the components 𝑦(𝑗,𝑘)𝑖 (𝑘 = 1, 2,… , 𝜏)
are distributed according to the distribution 𝐹 (., 𝜃) with 𝜃 =
𝜃∗L

(

𝜏∗
(

𝑦obs
)

, 𝑦obs
)

and the components 𝑦(𝑗,𝑘)𝑖 (𝑘 = 𝜏+1, 𝜏+2,… , 𝑛)
are distributed according to the distribution 𝐹 (., 𝜃) with 𝜃 =
𝜃∗R

(

𝜏∗
(

𝑦obs
)

, 𝑦obs
)

.
3. Approximate the confidence curve cc(𝜏, 𝑦obs) = 𝐾𝜏 (𝐷(𝜏, 𝑦obs)) by

𝐾𝜏,𝑁 (𝐷(𝜏, 𝑦obs)) =
1
𝑁

𝑁
∑

𝑗=1
𝟏𝐷(𝜏,𝑦)<𝐷(𝜏,𝑦obs) (14)

here 𝟏 is the indicator function

𝑎<𝑏 =

{

0 𝑎 ≥ 𝑏
1 𝑎 < 𝑏

(15)

nd 𝜏∗ is 𝜏 for CML and 𝜏 for CLMo (CMoM), and 𝜃∗ is �̂� for CML
nd 𝜃 for CLMo (CMoM). Standard software is not yet available for
he methods, a custom implementation in Matlab® was written. Where
ecessary, random numbers were obtained from the ‘threefry’ type
andom number generator in Matlab.

.2. Properties of confidence curves

The performance of CML and CLMo (CMoM) methods will be exam-
ned and compared by exploring some properties (Zhou et al., 2020) of
onfidence curves constructed by the two methods. They are:

• The cumulative frequency distribution of the 𝜏(𝑦) for CML and
𝜏(𝑦) for CLMo (CMoM) based on synthetic data when the null
hypothesis 𝐻0 (there is no CP) holds. In this case, the distribution
should be close to uniform. If it is not uniform, then it indicates
that there is a bias for certain locations when a type I error
(incorrect rejection of the null hypothesis) occurs.
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• The cumulative frequency distribution of the 𝜏(𝑦) and 𝜏(𝑦) for
synthetic data when the alternative hypothesis 𝐻1 (there is a CP)
holds. While the point where the deviance function is zero is
not necessarily the true CP, it is contained in all confidence sets
that follow from the confidence curve. If these sets are narrow,
then this point should be near the true CP. For a definition of a
confidence set, see Definition 1 in Appendix A.

• The actual versus nominal coverage probability for the confidence
sets produced by the curves at all confidence levels for syn-
thetic data. The actual coverage probability at a given confidence
level (nominal coverage probability) indicates the probability of
a confidence set containing the true value of the parameter of
interest. For detailed definitions of actual and nominal coverage
probability, see Definition 1 in Appendix A.

• A summary of the uncertainty about the CP associated with a
confidence curve cc is defined in Appendix B by (B.7)

Un (cc) =

(

∑𝑛−𝑛min
𝑘=𝑛min

𝟏cc(𝑘)≤𝛾max

)

− 1

𝑛 − 2𝑛min

where

𝛾max =
𝑛 − 2𝑛min

𝑛 − 2𝑛min + 1

• The similarity index is used to measure the similarity of two
confidence curves

𝐽
(

cc, cc′
)

=

∑𝑛−𝑛min
𝑘=𝑛min

min
(

1 − cc (𝑘) , 1 − cc′ (𝑘)
)

∑𝑛−𝑛min
𝑘=𝑛min

max (1 − cc (𝑘) , 1 − cc′ (𝑘))
(16)

where cc and cc′ are a pair of confidence curves. This index
was proposed in Zhou et al. (2020) and resembles the Ružička
index (Schubert and Telcs, 2014). It is one for identical curves
and smaller than one for curves that differ.

2.3. Synthetic time series generation and examples of confidence curves

The CML and CLMo (CMoM) methods were implemented for three
distributions (LN, GA, GU). To evaluate the performance of CML and
CLMo (CMoM), synthetic data were generated from the underlying
distributions. The distributions were selected because they are com-
monly used in hydrology (Hamed and Rao, 2019; Thompson, 2017;
Haktanir, 1991; Karim and Chowdhury, 1995). The pdfs and the rela-
tions between the parameters and moments and L-moments are given
in Appendix D. The change in statistical properties of the synthetic data
was a change in the mean 𝜇 for CML (CMoM) and a change in the mean
or in the standard deviation 𝜎 for CLMo.

For each distribution and each combination of a change in the mean
𝛥𝜇 = 1, 2, 4 and a series length 𝑛 = 40, 100, a set of 𝑀 = 1000 artificial
time series of length 𝑛 with standard deviation 𝜎 = 1, 𝜏 = 𝑛∕4, 𝑛∕2, 3𝑛∕4,
and a jump 𝛥𝜇 in the mean between 𝜏 and 𝜏 + 1 was generated. The
location of the CP during sample generation will be referred to as 𝜏true
in this study. The mean of a specific distribution for the subseries up to
𝜏 was 𝜇L = 2, and the mean for the subseries after 𝜏 was 𝜇R = 𝜇L + 𝛥𝜇,
where 𝛥𝜇 = 1, 2, 4. Examples of synthetic data sets with 𝛥𝜇 = 0, 1, 2 and
he corresponding confidence curves for CML and CLMo are given in
ig. 1(a–f).

The standard deviation for the left and right subseries will be
eferred to as 𝜎L and 𝜎R respectively. Additional experiments were done
or CLMo with 𝜇R = 𝜇L, 𝜎R = 𝜎L + 𝛥𝜎, where 𝛥𝜎 = 1, 2, 3. Examples of
ata series synthetic data sets with 𝛥𝜎 = 0, 1, 2 are given in Fig. 1(g–
). The effect of shifting (different 𝜇L) or scaling (different 𝜎L) a time
eries is discussed in Appendix C. Where necessary, random numbers to
enerate samples were obtained from the ‘twister’ type random number
4

enerator in Matlab. p
3. Evaluation of the methods for synthetic data

The performance of the confidence curves produced by CML and
CLMo (CMoM), as represented by the properties listed in Section 2.2,
are examined. For all methods, 𝑁 = 1000 MC simulations were used
to generate the approximate confidence curve. The majority of the
experiments involved a change in the mean. However, one advantage
of a parametric method is that it looks for changes in all parameters
at the same time, so some experiments were performed for synthetic
series with a change in the standard deviation as well.

3.1. The cumulative frequency distribution of the CP estimate

The methods produce confidence curves instead of point estimates.
These confidence curves are characterized by their shape and the
location of their minimum. In the remainder of the paper, the minimum
of the confidence curve will be referred to as the (point) estimate of the
CP.

3.1.1. The cumulative frequency distribution of the CP estimate when the
null hypothesis holds

Fig. 2 shows the cumulative frequency distribution of the CP esti-
mates found by CML and CLMo when the null hypothesis holds (no CP).
In this case, if the method is forced to select a CP, then it should not
display a preference for any particular CP. The possible candidates are
the elements of the set 𝐿CP defined in (1). The black line in Fig. 2(a–
c) shows the corresponding uniform frequency distribution on that set.
The experimental results do not match this exactly, but do approximate
it. The methods have a slight preference for points near the middle of
the time series. For LN, GA, and GU the methods CML and CLMo give
similar results.

3.1.2. The cumulative frequency distribution of the CP estimate when the
alternative hypothesis holds

Figs. 3(a–f) show the frequency distribution of detected CPs by
CMLo when the alternative hypothesis holds for 𝜏true = 𝑛∕4, 𝑛∕2, 3𝑛∕4
and 𝑛 = 40, 100. Figs. 3(g–l) show the equivalent results for 𝛥𝜎 = 1, 2.

For CLMo, the minima of the confidence curves for the different
samples are spread around the true CP. Results for CML with a change
in the mean are similar. The spread decreases with increasing 𝛥𝜇 (𝛥𝜎)
and 𝑛. For example, for 𝛥𝜇 = 1 and 𝑛 = 100, about 90% of the estimates
ie within ±10 points of the actual CP. For 𝛥𝜇 = 2, the spread reduces to
5 points. On average the CP estimates are closer to the true value for
hanges in the mean than for changes in the standard deviation. The
requency distributions found by all methods for synthetic time series
rawn from the three distributions are very similar.

.2. Actual versus nominal coverage probability

The difference between the actual and the nominal coverage of the
onfidence sets defined by the confidence curve is quite important for
heir practical use. If the actual coverage of a confidence set is lower
han the nominal one, then it is permissive Appendix A. This may cause
roblems, because it suggests too much certainty about the CP location;
f the set were a person, then that person would be overconfident. If
he actual coverage probability exceeds the nominal coverage, then the
et is conservative; while this is less problematical than permissiveness,
t suggests too much uncertainty; the set would please an overcareful
erson. The actual coverage was estimated as follows: synthetic time
eries with indices 𝑚 = 1, 2,… ,𝑀 were generated, and for each time
eries 𝑚, the confidence curve and the confidence set 𝑅𝛾,m at confidence
evel 𝛾 were determined. Finally, the number 𝑘 of sets for which 𝜏true ∈
𝛾,m was divided by 𝑀 . In Fig. 4, plots of the actual versus nominal
overage are shown.

When interpreting Fig. 4, it is important to recall that if a CP is

resent, then there is only a finite number of possible locations for
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Fig. 1. Synthetic GA distributed data sets with a change 𝛥𝜇 in the mean or 𝛥𝜎 in the standard deviation, and the corresponding confidence curves.

Fig. 2. The cumulative frequency distribution of CPs for 𝑛 = 40, 100 when 𝐻0 holds.
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Fig. 3. The cumulative frequency distribution of CPs when there is a change in mean or standard deviation.
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that CP. This in turn means that if the construction method for the
curve makes very good use of the information in the sample, then
it may result in confidence random sets that contain only one or
two points, but have a very high probability of containing the actual
CP. This implies that for low confidence levels the sets will be very
conservative. This manifests itself in Fig. 4 where in (a) the actual
coverage is always above 37% for 𝛥𝜇 = 1; it always exceeds 65%
for 𝛥𝜇 = 2 in (b), and in (c) it is higher than 70% for 𝛥𝜇 = 2. In
Fig. 4(d–f) it can be seen that for changes in the standard deviation
the actual coverage and nominal coverage start to coincide at lower
values. It follows that in practice, the confidence sets with relatively
6

𝛾

high nominal confidence carry the best information. The sets at low
confidence levels are much too conservative. The results for CML show
that all distributions provide accurate actual coverage for nominal
coverages above 90%. For changes in the mean, the results for CLMo
(CMoM) are nearly identical to those for CML. Results for 𝑛 = 40 were
enerated as well, but the impact from series length on actual coverage
robability was small, so they have not been included here. Table 1
hows detailed information about actual versus nominal coverage for
onfidence curves constructed by CML and CLMo for confidence levels
= 0.90, 0.95, 0.99.
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Fig. 4. Actual versus nominal coverage probability for a change in the mean or standard deviation when 𝜏true = 𝑛∕2 and series length 𝑛 = 100.
Table 1
The actual coverage of confidence sets by CML and CLMo. Cells with conservative
coverage are gray.

Confidence level 0.9 0.95 0.99
Distribution 𝛥𝜇 𝑛 CML CLMo CML CLMo CML CLMo

LN

1
40 0.855 0.860 0.919 0.922 0.980 0.981
100 0.879 0.876 0.935 0.940 0.990 0.989

2
40 0.880 0.885 0.927 0.934 0.974 0.976
100 0.892 0.895 0.957 0.957 0.990 0.991

GA

1
40 0.859 0.854 0.905 0.911 0.982 0.984
100 0.877 0.879 0.931 0.930 0.975 0.980

2
40 0.889 0.896 0.945 0.945 0.988 0.989
100 0.887 0.887 0.932 0.934 0.983 0.988

GU

1
40 0.864 0.868 0.925 0.929 0.985 0.984
100 0.890 0.882 0.934 0.932 0.985 0.985

2
40 0.881 0.882 0.937 0.943 0.985 0.985
100 0.886 0.886 0.951 0.952 0.993 0.993
a
s
C

An indication of the spread in actual coverage can be provided as
ollows. If the actual coverage were equal to the nominal coverage, then
he number 𝑘 of 𝑀 confidence sets 𝑅𝛾,m, 𝑚 = 1, 2,… ,𝑀 that contained

the true CP would be distributed according to a binomial distribution

Pr (𝑘) =
(

𝑀
𝑘

)

𝛾𝑘(1 − 𝛾)𝑀−𝑘 (17)

or the binomial distribution, the variance is 𝑀𝛾(1−𝛾), so the standard
eviation of 𝑘∕𝑀 is

√

𝛾 (1 − 𝛾) ∕𝑀 . For 𝑀 = 1000, the standard
deviation of the distribution of 𝑘 for 𝛾 = 0.90 is 0.009; for 𝛾 = 0.95 it
is 0.007, and for 𝛾 = 0.99 it is 0.003. When combining this information
with Table 1, please recall that the location of the CP is a discrete
RV, so for some confidence levels it might not be possible to define
a confidence set with that exact coverage.

3.3. The uncertainty in the confidence curves

As mentioned in the introduction, it may be necessary to automati-
cally split a set of confidence curves into groups for further analysis.
Here Un is proposed as a tool to do so. One way to evaluate the
suitability of Un is to compare its associated type I and type II errors
to a classical hypothesis test for the null hypothesis that no CP is
7

F

present. For this purpose, a comparison with the classical Pettitt test is
performed. The value Un for a confidence curve is calculated according
to (B.7). It summarizes the uncertainty of a confidence curve.

The bounds on Un depend on the distribution and the parameters, so
in principle they should be determined by Monte Carlo experiments for
each individual case. In practice splitting the series into three classes:
definitely no CP, definitely a CP, and ‘to be examined further’ might
allow rough bounds to be established that depend only weakly on the
distribution parameters. See also Appendix C

3.3.1. The uncertainty in the confidence curves for the null hypothesis
The CML approach implicitly assumes that a CP is present, so it

would seem that it should be preceded by a test for the presence of a CP.
However, if Un is calculated for synthetic time series generated without
a CP, then it turns out to be quite high in most cases, near one for 80%
(𝑛 = 40) to 90% (𝑛 = 100) of all curves, as shown in Fig. 5. Examples of
confidence curves for time series without a CP are shown in Fig. 1(a,g).
As high Un in the presence of a CP means that the method supplies only

very limited amount of information on CP location, it is tempting to
imply say that if Un exceeds a certain bound, then either there is no
P or the method cannot reliably detect the CP location. For example,

ig. 5b shows that for CML (𝑛 = 100), 95% of all Un values exceed
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Fig. 5. Cumulative frequency of Un when 𝐻0 holds (vertical scale truncated at 50%).
Fig. 6. Cumulative frequency of Un for a CP in the middle of the series and a change in the mean or standard deviation.
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0.63. If that bound were used to reject the null hypothesis, then for
this particular distribution and this particular parameter set, that choice
would result in a 5% type I error. The viability of this approach depends
on the distribution of Un in cases where the alternative hypothesis
holds.

3.3.2. The uncertainty of confidence curves for the alternative hypothesis
Fig. 6 shows the frequency distribution of Un for CLMo when 𝐻1

olds and the CP lies in the middle of the time series (the values for
ML for a change in the mean are very similar). For 𝑛 = 100, 𝛥𝜇 = 1,
5% of the values lie below 0.4 for LN and for GA 95% of the Un values

lie below 0.45 (Fig. 6b). For 𝛥𝜇 = 2 these bounds less than 0.1 for all
istributions. Fig. 6(d–f) show the frequency distribution for Un when

𝐻1 holds and the CP lies in the middle of the time series. For 𝑛 = 100,
𝜎 = 2 and the LN distribution, 95% of the values lie below 0.35. For
A the 95% of the Un values lie below 0.2. For GU 95% of the Un values

ie below 0.2. It should be noted that the scale parameter of GA equals
he variance divided by the mean, so for fixed mean it increases with
he square of the standard deviation. For higher standard deviations
8

his leads to a distribution that tends to produce many low values with
few very high values mixed in. Special care may be needed in the
alculations for low means and high standard deviation.

.3.3. Uncertainty as a tool to select curves and data that need closer
nspection

There are two types of error that are of interest when testing a
ypothesis. If 𝐻0 is rejected when there is no CP, then that is a type
error and if 𝐻0 is accepted when there is a CP, then that is a type

I error. For example, for 𝛥𝜇 = 1, 𝑛 = 100 and distribution LN,
Fig. 5(a) implies that rejection of 𝐻0 for Un ≤ 0.2 would result in a
very small type I error, while Fig. 6(a) implies that non-rejection of 𝐻0
for Un ≥ 0.5 would result in a very small type II error. The subset of
time series where 0.2 < Un < 0.5 would then need further study by
visual inspection or additional tests. If none of the original time series
actually has a CP, then that subset would contain less than 5% of the
original set of time series, while if all series actually have a CP, then
that subset would contain about 30% of the original set.

Fig. 7 is based on the frequency distribution of Un over the synthetic
samples sets and shows how a particular choice of a Un value as a
bound for acceptance of 𝐻 would translate into type I and type II
0
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Fig. 7. Un versus type I and type II errors for a CP in the middle of the series and a change in the mean or the standard deviation.
errors for that set of samples. For different applications of the methods,
the relative importance of the type I and type II error will differ. The
point marked ‘A’ corresponds to the Un value for which the type I and
ype II errors are equal for 𝑛 = 40. The point ‘B’ corresponds to the
n value for which the type I and type II errors are equal for 𝑛 = 100.

By plotting the value pairs of type I and type II errors associated with
a particular value of Un over a range of Un values, it is possible to
visualize the relation between the errors. For 𝑛 = 100 and a change
in the mean of 1 or 2 Fig. 7(a–f) shows that there are choices of Un
boundary that, for these distributions and parameters, result in both
type I and type II errors that are smaller than 5%. For 𝑛 = 100 and
𝜎 = 2 similar results are obtained. For 𝑛 = 100 and 𝛥𝜎 = 1 an upper
ound of 5% on both errors can be achieved only for GU.

To see how a null hypothesis test based on Un would do when
ompared with the classical Pettitt test, the curve of error pairs is drawn
or both tests for a CP in the middle of the time series in Fig. 8. The
esults show that in principle Un could even serve as the basis for a
ypothesis test. For a change in the standard deviation the standard
9

Pettitt test is much less effective (Fig. 8g–l). A modification of that test,
specifically designed for the change to be detected, would be needed.
Here the test based on Un is not the most effective for any particular
change, but it is the one that will detect changes in all parameters.

3.4. The similarity index between confidence curves

To evaluate the similarity between confidence curves for the same
synthetic time series, the similarity index 𝐽 was calculated by (16) for
𝛥𝜇 = 1, 2, 𝜏true = 𝑛∕2, and 𝑛 = 40, 100. Details on the calculation of
𝐽 and its properties can be found in Zhou et al. (2020, Appendix C).
Fig. 9 shows the resulting cumulative frequency distributions of 𝐽 . The
confidence curves for synthetic data calculated by CML are very similar
to those calculated by CLMo. The similarity increases with increasing
𝛥𝜇 and 𝑛. For the GU distribution similarity seems lower. To provide a
point of reference for the similarity values, 𝐽 was calculated for 16000
random pairs of 𝐻 confidence curves. The result was that 95% of the
0



Journal of Hydrology 617 (2023) 129092C. Zhou et al.

p
m

4
l

r
p
e
(
T
t
c
L
d
e
I

Fig. 8. Comparison of error rates for the two null hypothesis tests, where for 𝐻1, the CP is in the middle of the series.
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airs had a similarity below 0.7, for all series lengths, distributions, and
ethods.

. Change point detection and uncertainty in real hydrometeoro-
ogical data

To examine the performance of the CML and CLMo methods on
eal world data, three time series of measurements were taken from
revious publications: annual average naturalized flow at Itaipu (Conte
t al., 2019) - case study 1, annual average temperature at Tuscaloosa
Reeves et al., 2007) - case study 2, and annual average rainfall at
ucumán (Jandhyala et al., 2010) - case study 3. The CPs found in
he original studies are used as a reference. Both methods were used to
onstruct confidence curves for CPs with each of the three distributions:
N, GA, and GU. The uncertainties for the confidence curves were
etermined as was the similarity between the CML and CLMo curve for
ach case. The confidence set at confidence level 95% is also shown.
n Appendix F the methods are applied to four time series of annual
10
aximum discharge on the Yangtze River in China that were also
nalyzed in Zhou et al. (2019) by a non-parametric method — case
tudy 4.

.1. Case study 1

Conte et al. (2019) found a significant CP in 1971 in the annual
verage naturalized flow at the Itaipu Hydroelectric Plant in Brazil from
931 to 2015 by the bootstrap Pettitt test. In this case the value of
𝛥𝜇| ∕𝜎 ≈ 1.33 suggests CML and CLMo should do reasonably well. And
o they do: Un is low (0.03 to 0.07) and 𝐽 is high (≥ 0.96). All give a

95% confidence interval of about three years (see Fig. 10).

4.2. Case study 2

The annual average temperature time series from 1940 to 1986 in
Tuscaloosa (USA) was selected because there was only one documented
reason for a CP during this period. The time series was used in Reeves
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Fig. 9. The similarity index between confidence curves generated by the CML and CLMo methods.
Fig. 10. Confidence curves for CP in annual average naturalized discharge time series of Itaipu.
et al. (2007), and a CP located at the year of 1957 was found by
eight different methods. The value of |𝛥𝜇| ∕𝜎 = 1.33 again suggests
the methods should do well. Both LN and GA based methods find a
reasonably precise confidence curve for the CP with a 95% confidence
interval [1955, 1959]. In this case GU is not doing as well as LN and
GA. Moreover, GU combined with CLMo seems to be confused by the
sudden drop from 1975 to 1976 (Fig. 11(b–d)).

A possible explanation is the difference in parameters for the Gum-
bel distribution found by the different methods. While one would hope
that CML, CMoM, and CLMo would give similar results, all parameter
estimates are RVs and their variance may be quite large for small
samples. Given the very different formulas used to obtain the estimates,
it should not be surprising that, without large samples to reduce the
variance, very different results can be found. This in turn may lead
to different points being selected as CP. Table 2 gives the estimated
parameters and the corresponding values of the log-likelihood. It can
be seen that a CP in 1975 results in a value for the profile log-likelihood
that is close to the minimum and that the pseudo log-likelihood values
are close to the profile log-likelihood value for 1975. For 1957, the
CLMo and CMoM parameter approximations of the location are close
11
Table 2
Different Gumbel based parameter estimates for left and right subseries at Tuscaloosa
with the CP is at a prescribed location.

CP Method left right log-likelihood

loc scale loc scale

1957
CML 17.48 0.7091 16.73 0.4636 −40.0
CMoM 17.53 0.4000 16.76 0.3417 −69.8
CLMo 17.56 0.3502 16.75 0.3580 −100

1975
CML 17.07 0.5896 16.65 0.5552 −45.4
CMoM 17.10 0.4662 16.68 0.4255 −49.8
CLMo 17.08 0.4938 16.67 0.4480 −47.7

to the CML value, but the scale parameter estimates are different, this
results in a large deviation of the pseudo log-likelihood value from the
profile log-likelihood value for 1957.

4.3. Case study 3

In Jandhyala et al. (2010), the annual average rainfall time series
from 1884 to 1996 at Tucumán in Argentina was investigated and a
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Fig. 11. Confidence curves for CP in time series of Tuscaloosa (a–d) and Tucumán (e–h).
CP was found in 1956 by a Bayesian method. The result was confirmed
by Wu et al. (2001); they believed the change was caused by the
construction of a dam in Tucumán from 1952 to 1962. Fig. 11(e) shows
the data and the CP in 1956. In Fig. 11(f–h) the results of CML and
CLMo with different distributions are shown. The value of |𝛥𝜇| ∕𝜎 =
0.75 suggests that the uncertainty here will be bigger. This is confirmed
by the results. All three methods generate curves with several local
minima, a global one at 1955 and a deep local one near 1972. This
leads to relatively high uncertainties. For LN and GA the uncertainties
(0.43 to 0.47) are still low enough to make the presence of a change
point probable. Further investigation is needed to determine whether
or not this type of curve means that a check for multiple change points
should be made. Extension of the methods discussed here to multiple
change points would involve the use of 2D confidence sets.
12
5. Conclusion and discussion

This study proposed new parametric methods to quantify the uncer-
tainty in the location of a CP. The methods discussed here are intended
for situations where it is of interest to look for the location of a CP
and the statistical properties of the time series are sufficiently clear to
determine expressions for the likelihood or pseudolikelihood. To keep
the description of the methods readable, only the AMOC case with i.i.d.
RVs in the (sub)series was presented. Extension to multiple CPs and/or
series with short range dependence is possible in principle and will
be investigated in future articles. Furthermore, when the methods as
described in this study were applied to time series with short range
dependence, they still worked, although the performance was reduced.
The question of how to detect CPs in time series resulting from long-
memory processes is a different topic (Berkes et al., 2006; Aue and
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Horváth, 2012). Moreover, it turns out that distinguishing between long
memory processes and short memory processes with shifting means is
quite difficult (Rea et al., 2011).

The two new methods (CLMo, CMoM) were compared to a method
(CML) described in Cunen et al. (2018). All methods were able to detect
changes in the mean and in the standard deviation. They all involve
a choice of a distribution family that is used to define a likelihood
function for the CP. In this likelihood function, the parameters of
the distribution are ‘nuisance’ parameters. It would be possible to
add an additional nuisance parameter to represent dependence. The
CML method deals with the nuisance parameters by using a profile
likelihood; the CMoM and CLMo methods use a pseudolikelihood with
parameter estimates based on moments and L-moments respectively.
All methods define a deviance function based on the likelihood for the
possible CP locations. An MC calculation is then used to assign approx-
imate probabilities to the deviance function values. These approximate
probabilities then define the confidence curve. The reason for the
introduction of CMoM and CLMo is that CML, which uses ML parameter
estimates, can be very costly in terms of computations and therefore in
terms of time. Even for the gamma and Gumbel distributions, where
the ML method is relatively cheap, the cost of CML was at least 8 times
that of CMoM.

A statistical analysis of the results of a large number of synthetic
data series of two lengths, 40 and 100, showed that CLMo, CMoM and
CML performed equally well. Performance in terms of actual coverage
of the associated confidence sets for high confidence levels was sat-
isfactory and nearly independent of series length. Coverage for lower
confidence levels was very conservative due to the discrete nature of
the CP variable. For all distributions, the confidence curves produced by
CLMo, CMoM, and CML were very close to each other, so using CLMo
or CMoM instead of CML does not result in loss of quality.

In this article Un was introduced to provide a summary of the
ncertainty about the CP location shown by a confidence curve. The
mount of uncertainty about the CP location decreased with increasing
eries length and/or with increasing size of the change at the CP. Given
hat a longer series provides more data and that a larger change should
e easier to distinguish from random noise, this was to be expected.
reliminary findings suggest that a test based on Un may perform on a

par with the classical Pettitt test as long as the series are not too short
and the change is large enough. This would combine in one method
a null hypothesis test and confidence set estimates of CP location at
multiple confidence levels.

When applied to measurement series from literature, all methods
produced results compatible with the results reported in the literature.
In fact, in all cases where the literature reported one or more CPs, the
lowest point on the confidence curve coincided with one of those CPs.
A somewhat surprising, but most welcome result was that the choice
of distribution (Gumbel, gamma, or log-normal) used to calculate the
likelihood had very little influence on the ability of the methods to
recover information on a possible CP from the measurement series. To
see if this holds more generally, more experiments with both synthetic
data series and measurement time series are planned.

Both the experiments on synthetic data series and the results for
measurement time series suggest that the series should have a length
of about 100 points, and changes in the mean are detected if they
exceed one standard deviation. For changes in the standard deviation,
more experiments are needed to see how absolute or relative size of the
change influences the method sensitivity.

The two new methods, CLMo and CMoM, introduced in this article
complement the AED-BP method from Zhou et al. (2020). The AED-
BP method has as advantage that it is non-parametric and relatively
fast, but it tends to generate confidence curves with somewhat larger,
and therefore less informative, confidence sets. Moreover, it needs an
additional calculation to properly detect changes in standard deviation.
A viable approach would be to start with AED-BP, apply CLMo when
the results are not conclusive or a change in the mean is not expected,
and use the more expensive CML method when the CLMo results still
13

display large uncertainty.
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Appendix A. Confidence curves

In the literature, the definition of confidence curves has evolved
over time. An early definition was given by Birnbaum (1961), who
defined a confidence curve as ‘a set of upper and lower confidence
limits, at each confidence coefficient from 0.5 to 1, inclusive’. Schweder
and Hjort (2016, Definition 4.3) gave a more general abstract definition
of a confidence curve. A variation on that definition is given below. In
this paper 𝛾 is used to denote a confidence level, as opposed to Cunen
et al. (2018) and Zhou et al. (2020) where 𝛼 is used. For more details
on confidence curves, please consult Zhou et al. (2020, Appendix A).

Definition 1. If 𝜆 is a parameter of a random sample 𝑋, then a
confidence set for 𝜆 with confidence level 𝛾 is a random set 𝑅 (𝑋) such
that

Pr (𝜆 ∈ 𝑅 (𝑋)) = 𝛾 (A.1)

where Pr (𝐸) denotes the probability of event 𝐸.
A confidence set is a generalized confidence interval. The standard

concepts that hold for confidence intervals can therefore be extended to
confidence sets. A confidence set with confidence level 𝛾 has anominal
coverage probability of 𝛾; in other words, it is constructed to contain 𝜆
with a probability 𝛾. However, the construction may use approxima-
tions. Therefore, the actual coverage probability is defined, which is the
probability that 𝜆 is in 𝑅 (𝑋) when the set is actually constructed for a
sample taken from 𝑋. The actual coverage probability can be estimated
by MC experiments. If the actual coverage probability is smaller than
nominal coverage probability 𝛾, the set is called permissive; when the

actual coverage probability is larger than 𝛾, the set is called conservative.
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Definition 2. Suppose 𝑋 is a random sample of size 𝑛, and 𝜆 is
a parameter of the random sample with values in a value set 𝑉 . A
function 𝑔 (𝜆, 𝑥) with range [0, 1] that is continuous in 𝑥 for fixed 𝜆 is a
confidence curve when:

1. There is a point estimator �̂� for 𝜆 such that

min
𝜆∈𝑉

𝑔 (𝜆, 𝑥) = 𝑔
(

�̂� (𝑥) , 𝑥
)

= 0 (A.2)

for all realizations 𝑥 of 𝑋.
2. For the true value 𝜆true of the property 𝜆, the RV 𝑔

(

𝜆true, 𝑋
)

has
the uniform distribution on the unit interval.

The estimate �̂� (𝑥) is merely a reference point. It is the confidence curve
as a whole that is meaningful. If cc (⋅, ⋅) is a confidence curve according
to Definition 2, then for fixed 𝜆0 the function cc

(

𝜆0, 𝑋
)

is a RV. Hence,
we can speak of the distribution of cc

(

𝜆0, 𝑋
)

. If 𝜆true is the true value of
𝜆, then, for a given confidence level 𝛾 ∈ [0, 1], cc

(

𝜆true, 𝑋
)

is uniformly
distributed on [0, 1]. Therefore,

Pr
(

cc
(

𝜆true, 𝑋
)

≤ 𝛾
)

= 𝛾 (A.3)

Now define confidence sets 𝑅𝛾 (𝑋) = {𝜆 ∶ cc (𝜆,𝑋) ≤ 𝛾} with a confi-
dence level 𝛾. By definition 𝜆true ∈ 𝑅𝛾 (𝑋) if and only if cc

(

𝜆true, 𝑋
)

≤ 𝛾,
so

Pr
(

𝜆true ∈ 𝑅𝛾 (𝑋)
)

= Pr
(

cc(𝜆true, 𝑋) ≤ 𝛾
)

= 𝛾 (A.4)

Note that the confidence sets 𝑅𝛾 (𝑋) are nested sets because they are
derived from a confidence curve.

Appendix B. A summary of total uncertainty for a confidence
curve

To have a reference for the size of confidence sets for CPs we
introduce the following notation. For a set 𝑆 with a finite number of
elements, let #𝑆 denote the number of elements and let Choice (𝑘;𝑆)
denote a random set obtained by drawing 𝑘 elements from 𝑆 at random
without replacement and with equal probability of selection for each
element. Now for a given fixed element 𝑠0 ∈ 𝑆, 𝑛 = #𝑆 and a given
value 0 ≤ 𝛾 ≤ 1, the following equations hold

Pr
(

𝑠0 ∈ Choice (𝑘;𝑆)
)

= 𝑘
𝑛

(B.1)

r
(

𝑠0 ∈ Choice (⌈𝛾𝑛⌉ ;𝑆)
)

=
⌈𝛾𝑛⌉
𝑛

≥ 𝛾 (B.2)

here ⌈𝑟⌉ = min {𝑘 ∈ Z ∶ 𝑘 ≥ 𝑟}.
Visual inspection of a confidence curve cc can give a subjective

mpression of the location of the CP and its uncertainty, but a more
bjective measure would be needed for automated analysis of large sets
f time series. In the case that the CP is restricted to 𝐿CP defined in (1),
t is easy to define random sets such that the probability that the true CP
true lies in the set is approximately 𝛾, independently of the properties
f the sample. Simply take

𝛾 = Choice
(⌈

𝛾
(

𝑛 − 2𝑛min + 1
)⌉

;𝐿CP
)

(B.3)

which has a coverage probability of

Pr
(

𝜏true ∈ 𝛾 (𝑋)
)

=

⌈

𝛾
(

𝑛 − 2𝑛min + 1
)⌉

𝑛 − 2𝑛min + 1
≥ 𝛾 (B.4)

For a realization 𝑅𝛾 of a confidence set with confidence level 𝛾 for a
CP restricted to 𝐿CP, we take as a summary of relative uncertainty

Un
(

𝑅𝛾
)

=
#𝑅𝛾 − 1

𝛾
(

𝑛 − 2𝑛min
) (B.5)

Now for large 𝑛, the value of Un
(

𝑅𝛾
)

is zero for a one point set,
approximately one for a realization of 𝛾 and larger than one for very
uninformative sets.

This measure is useful for a set at a given confidence level, but for
14

automated analysis of a cc a level needs to be selected. The highest
confidence level for which a non-trivial 𝛾 can be constructed for
which the equals sign holds is

𝛾max =
𝑛 − 2𝑛min

𝑛 − 2𝑛min + 1
(B.6)

so that is the level that will be used. For Un applied to a confidence
curve is defined as (leaving out the factor 1∕𝛾max)

Un (cc) =

(

∑𝑛−𝑛min
𝑘=𝑛min

𝟏cc(𝑘)≤𝛾max

)

− 1

𝑛 − 2𝑛min
(B.7)

Appendix C. The effect of shifting or scaling the time series on the
confidence curve

C.1. Location-scale distribution families

If the pdf 𝑓 (𝑥; 𝜃) with 𝜃 = (𝜉, 𝜍) is of the form

𝑓 (𝑥; 𝜃) = 1
𝜍
𝑔
(

𝑥 − 𝜉
𝜍

)

(C.1)

here 𝜉 is the location and 𝜍 is the scale, then for the CML method
t can be shown that the deviance function 𝐷prof (𝜏, 𝑎𝑦 + 𝑏) is equal
o 𝐷prof (𝜏, 𝑦). For the CMoM and CLMo methods, a similar equality
olds for 𝐷pseu under the condition that the estimates of the parameters
atisfy

𝜉 (𝑎𝑦 + 𝑏) = 𝑎𝜉 (𝑦) + 𝑏 (C.2)

̃ (𝑎𝑦 + 𝑏) = 𝑎�̃� (𝑦) (C.3)

f 𝐷 (𝜏, 𝑎𝑦 + 𝑏) = 𝐷 (𝜏, 𝑦), then tests on synthetic time series with 𝜃𝐿 =
0, 1) while varying 𝜃R are representative for the performance of the
ethod.

.2. Distribution families with a scale parameter

If the pdf 𝑓 (𝑥; 𝜃) with 𝜃 = (𝜍, 𝜂) is of the form

(𝑥; 𝜃) = 1
𝜍
𝑔
(

𝑥
𝜍
; 𝜂
)

(C.4)

here 𝜍 is the scale and 𝜂 is a shape parameter, then for the CML
ethod it can be shown that 𝐷prof (𝜏, 𝑎𝑦) = 𝐷prof (𝜏, 𝑦). For the CMoM

nd CLMo methods a similar equality holds for 𝐷pseu under the condi-
ion that the estimates of the parameters satisfy

̃ (𝑎𝑦) = 𝑎�̃� (𝑦) (C.5)

�̃� (𝑎𝑦) = �̃� (𝑦) (C.6)

f 𝐷 (𝜏, 𝑎𝑦) = 𝐷 (𝜏, 𝑦), then tests on synthetic time series with 𝜃L,1 =
L = 1 while varying the other parameters are representative for the
erformance of the method.

ppendix D. Details on pdfs and parameter estimates

.1. Location-scale distribution families

If the pdf 𝑓 (𝑥; 𝜃) with 𝜃 = (𝜉, 𝜍) is of the form

(𝑥; 𝜃) = 1
𝜍
𝑔
(

𝑥 − 𝜉
𝜍

)

(D.1)

where 𝜉 is the location and 𝜍 is the scale, then for the CML method
t can be shown that the deviance function 𝐷prof (𝜏, 𝑎𝑦 + 𝑏) is equal
o 𝐷prof (𝜏, 𝑦). For the CMoM and CLMo methods, a similar equality
olds for 𝐷pseu under the condition that the estimates of the parameters
atisfy

̃ ̃
𝜉 (𝑎𝑦 + 𝑏) = 𝑎𝜉 (𝑦) + 𝑏 (D.2)
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Fig. F.12. Confidence curves for CP in annual maximum discharge time series of Cuntan (a–d) and Yichang (e–h).
a
(

�̃� (𝑎𝑦 + 𝑏) = 𝑎�̃� (𝑦) (D.3)

If 𝐷 (𝜏, 𝑎𝑦 + 𝑏) = 𝐷 (𝜏, 𝑦), then tests on synthetic time series with 𝜃𝐿 =
(0, 1) while varying 𝜃R are representative for the performance of the
method.

D.2. Distribution families with a scale parameter

If the pdf 𝑓 (𝑥; 𝜃) with 𝜃 = (𝜍, 𝜂) is of the form

𝑓 (𝑥; 𝜃) = 1
𝜍
𝑔
(

𝑥
𝜍
; 𝜂
)

(D.4)

where 𝜍 is the scale and 𝜂 is a shape parameter, then for the CML
method it can be shown that 𝐷 𝜏, 𝑎𝑦 = 𝐷 𝜏, 𝑦 . For the CMoM
15

prof ( ) prof ( )
and CLMo methods a similar equality holds for 𝐷pseu under the condi-
tion that the estimates of the parameters satisfy

�̃� (𝑎𝑦) = 𝑎�̃� (𝑦) (D.5)

�̃� (𝑎𝑦) = �̃� (𝑦) (D.6)

If 𝐷 (𝜏, 𝑎𝑦) = 𝐷 (𝜏, 𝑦), then tests on synthetic time series with 𝜃L,1 =
𝜍L = 1 while varying the other parameters are representative for the
performance of the method.

Appendix E. The computational cost of the methods

For a time series of length 𝑛, with 𝑁 MC runs for distribution
pproximation, all three methods (CML, CLMO, CMoM) need (1 +𝑁)
𝑛 − 2𝑛 + 1

)

deviance calculations. Each deviance calculation needs
min
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Fig. F.13. Confidence curves for CP in annual maximum discharge time series of Hankou (a–d) and Datong (e–h).
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2
(

𝑛 − 2𝑛min + 1
)

parameter estimates and
(

𝑛 − 2𝑛min + 1
)

×𝑛 calculations
f the logarithm of the pdf. Each pair of ML parameter estimates will
eed at least 𝑛 calculations of the logarithm of the pdf. The costs
f a pair of MoM or LMo parameter estimates may be lower, but
ill still be on the order of 𝑛 arithmetic operations. A relatively big
ifference in cost occurs for those distributions where ML needs to
olve a minimization problem, while MoM and LMo provide explicit
ormulas. For all methods the total number of operations for one sample
ill be
(

(1 +𝑁)
(

𝑛 − 2𝑛min + 1
)2 𝑛

)

(E.1)

where 𝑂 stands for ‘on the order of’. The difference in cost between
the methods does not show up in the 𝑂 notation, because it arises from
multiplication factors that do not depend on 𝑛. A MoM or LMo param-
ter estimate involves on the order of 𝑛 additions and multiplications
16

𝑛

lus a constant number of more complex operations. An ML estimate
here the solution is not available in explicit form will involve solving
minimization problem; this in turn may involve between 5 and 20

valuations of expressions derived from the log-likelihood. While these
valuations are order 𝑛 in the operations count, they are likely to be
ore costly (perhaps a factor of 2 to 10) than the order 𝑛 addition and
ultiplication operations needed by MoM and LMo. So, in theory ML
ay well take anywhere from 10 to 200 times as long. For GU and GA,
here the ML problems correspond to a one dimensional search for the
oint where a nonlinear function is zero, in practice the cost of ML was
etween 8 and 11 times that of CMoM.

With 𝑛 = 100 and 𝑁 = 1000, the computational cost is not negligible.
hen one of these methods is itself analyzed statistically, for instance,

y studying 𝑀 ≥ 1000 time series, this becomes a major problem. For
= 1, 𝑛 = 100 and 𝑀 = 𝑁 = 1000 the cost exceeds 𝑂

(

1012
)

min
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Fig. G.14. The cumulative frequency distribution of CPs when there is a change in mean in an AR(1) LN series with lag-one autocorrelation 𝜌.
Fig. G.15. Cumulative frequency of Un for a change in the mean and a CP in the middle of an AR(1) LN series with lag-one autocorrelation 𝜌.
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alculations of the logarithm of the pdf. In practice, for one series
aken from the GA distribution with 𝑛 = 100, 𝑛min = 9 and 𝑁 =
000, a CML curve for one series took 314 seconds and CMoM took
7 seconds. Counting flops is complicated by the presence of the log
nd Gamma functions. Calculating flop rates is difficult because the
urrent implementation is in Matlab®, not in C or Fortran. Moreover,
uns for different parameter sets were done in parallel. The calculations
ere performed on a six core Intel® Xeon® W-2133 at 3.60 GHz. A

ough estimate of the code performance would be between 0.04 (CLMo)
nd 0.4 (CML) GFlops per core; Intel (2020) gives an Adjusted Peak
erformance (APP) of 160 GFlops, so about 27 GFlops per core. In
heory, there is room for improvement, but to verify this, an optimized
mplementation in a compiled language would be needed.

ppendix F. Case study 4

Four time series of annual maximum discharge on the Yangtze River
n China were analyzed by classical methods (Pettitt, CUSUM, Cramér–
17

on Mises) in Zhou et al. (2019) and by nonparametric confidence c
urves in Zhou et al. (2020). The stations Cuntan, Yichang, Hankou and
atong along the Yangtze River were selected to examine the impacts

rom the construction of the Three Georges dam. Construction officially
tarted in 1994. There followed a series of interventions in the flow of
he Yangtze River, first by partial damming, and then by the filling, in
tages, of the reservoir. Construction was completed in 2009, but the
eservoir was not yet completely filled at that point.

For Cuntan, which lies upstream of the Three Gorges dam, a time se-
ies of annual maximum flow from 1893 to 2014 was examined. Earlier
tudies did not find clear CPs. All confidence curves in Fig. F.12(b–d)
how that there is no clear indication of a CP. All Un values are near
ne, this strongly suggests that there is no CP.

For Yichang, which lies about 40 km downstream of the Three
orges dam, a time series of annual maximum flow from 1946 to 2014
as examined. An earlier study found a possible CP in 1962 (Xie et al.,
014). In Zhou et al. (2019) CUSUM found a CP in 1962, while Pettitt
nd Cramér–von Mises found a CP in 1966. All confidence curves in
ig. F.12(f–h) show that there is a clear CP near 1962. At the 95%

onfidence level the LN and GA based methods provide a set with
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Fig. G.16. Actual versus nominal coverage probability for a change in the mean in an AR(1) LN series with lag-one autocorrelation 𝜌 when 𝜏true = 𝑛∕2 and series length 𝑛 = 100.
bout 7 candidates, while for GU, CML selects 4 years and CLMo selects
years. The value of |𝛥𝜇| ∕𝜎 at the CP in 1962 is near one.

For Hankou, approximately 700 km downstream of the Three Gorges
am, a time series of annual maximum flow from 1950 to 2014 was
xamined. Earlier studies did not find clear CPs. All methods, except
or CLMo with GU, have Un close to one, see Fig. F.13(b–d). However,
iven the closeness of the lowest point on the confidence curve to the
nd of the series and the narrowness of the 80% confidence set, more
ata is needed to decide whether there is a CP near 2005 or not.

For Datong, about 1200 km downstream of the Three Gorges dam, a
ime series of annual maximum flow from 1952 to 2014 was examined.
arlier studies did not find clear CPs. Again, all methods have a Un

that is nearly one, see Fig. F.13(f–h). The shape of the confidence curve
suggests that more data is needed to decide whether or not there is a
CP near 2003.

Appendix G. Effects of short range dependence

Autoregressive time series of order one (AR(1)) with an underlying
LN distribution were generated according to the procedure used by
Vogel et al. (1998) summarized below. First an AR(1) model is used
to generate a time series 𝑌 ′

𝑘

𝑌 ′
𝑘 = 𝜙𝑌 ′

𝑘−1 + 𝐺𝑘 for 𝑘 = 1, 2,… (G.1)

where 𝑌 ′
0 is normally distributed with mean 𝜇′ and standard deviation

𝜎′, the 𝐺𝑘 are i.i.d. according to a normal distribution with mean
′ = (1 − 𝜙)𝜇′ and standard deviation 𝜎′

√

1 − 𝜙2, and 𝑌 ′
0 is independent

of all 𝐺𝑘. Next a time series 𝑌𝑘 is obtained by setting

𝑌𝑘 = exp
(

𝑌 ′
𝑘
)

(G.2)

If

𝜇′ = log
𝜇

√

1 + 𝜎2
𝜇2

(G.3)

𝜎′ =

√

log
(

1 + 𝜎2

𝜇2

)

(G.4)

𝜙 =
log

(

𝜌
[

exp
(

[

𝜎′
]2
)

− 1
]

+ 1
)

[𝜎′]2
(G.5)

then 𝑌𝑘 will have a LN distribution with mean 𝜇 and standard deviation
𝜎. The series 𝑌𝑘 will have lag-one autocorrelation 𝜌. Eq. (G.3) differs
from Eq. 2 in Vogel et al. (1998) because of a typing error. When
needed, a CP at 𝑘 is introduced by starting a new series with initial
value 𝑦𝑘, but 𝜇′ and 𝜎′ derived from 𝜇R and 𝜎R.

These are preliminary results for groups of 100 samples instead of
18

he groups of 1000 samples used in the main paper. Samples were
generated using the ’multFibonacci’ random number generator from
Matlab. Fig. G.14 shows that the confidence curves still have their
minimum close to the actual CP. The algorithms used the ‘multFi-
bonacci’ generator from Matlab to obtain random numbers. Figs. G.15
and G.16 show, that due to the difference between the assumed i.i.d. LN
distribution and the actual AR(1) LN distribution, the actual coverage
becomes increasingly permissive and the uncertainty about the CP
increases.
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