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1 CHAPTER

Introduction

In this chapter, we give a general introduction to the field of process
control and we describe the specific challenges and opportunities en-
countered in the case of batch processes. Following, we present the
state-of-the-art control strategies for batch processes. Finally, we intro-
duce the process of batch cooling crystallization, that is the main case
study considered in this thesis. This material builds up the settings re-
quired to motivate and formulate the research objective dealt with in
this thesis.

1.1 Process engineering and process control

From an engineering perspective, the term process refers to a conversion of raw
materials into intermediate or final products using chemical, physical, or biologi-
cal operations (Seborg et al., 2010). In an industrial settings, a process typically
consists of several process steps such as reactions, distillations, and crystallizations.
Each of these process steps takes place in a confined process unit. There exist spe-
cific process units for all the standard process steps. For instance, the three steps
mentioned above are performed in units called reactors, distillation columns, and
crystallizers, respectively.

In an industrial process, a number of process variables such as temperatures,
pressures, and concentrations have to be maintained close to suitable values in
order to guarantee safety, maintain product quality, and maximize economic crite-
ria. Control techniques have been applied for a long time in order to achieve these
goals. The application of control techniques to process engineering is known as
process control. Process control techniques are applied at the levels of the single
units, the interconnection of the several units composing a process, and the full
production plant. The latter case is referred to as plant-wide process control (Luyben
et al., 1998).

In recent years, the performance requirements in the process industry have be-
come increasingly difficult to satisfy. Strong competition, strict safety regulations,
and rapidly changing economic conditions have tightened the product quality
specifications and reduced the margins for profits. This has been a drive for the

1
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Process

Layer 1:
hardware interface

Layer 2:
safety

Layer 3:

regulatory control

Layer 4:
real-time optimization

Layer 5:
planning and scheduling

Communication protocol, sensors and 
actuators validation, limit checking

Alarm management,
safety shutdown

(<1 second)

(<1 second)

(continuous time)

Classic control techniques

Model-based control

(Seconds-minutes)

(Minutes-hours)

(Hours-days)

(Days-monts)

Plant-wide and individual 
unit set-point optimization, 
parameter estimation 

Market demand forecasting, 
supply chain management 

TIME SCALE FUNCTION

Figure 1.1: The five-layer architecture of modern process control software.
Adapted from Nof (2009).

companies to optimize different aspects of their processes.
Process control has also been part of the plant-wide process optimization. Mod-

ern process control software architectures have been organized in a pyramidal
structure consisting of five interdependent layers (Nof, 2009). The two lowest lay-
ers implement the interface with the hardware and safety functionalities. They
consist for instance in the software routines used to communicate with sensors
and actuators (layer 1), and emergency alarms or shutdown rules triggered by
particularly dangerous events (layer 2). These layers should be designed to be as
simple as possible in order to guarantee the maximum reliability. The two up-
per layers perform long-term optimizations based on economic criteria such as
planning and scheduling based on market demand forecast (layer 5: planning
and scheduling), and set-point optimizations based on steady-state plant models
(layer 4: real-time optimization). The middle layer (layer 3: regulatory control)
has the regulatory function and aims to track the set-point determined by the up-
per levels, while rejecting process disturbances. On top of the standard feedback
controllers such as Proportional-Integral-Derivative (PID) (Astrom, 1995), more
advanced control solutions such as Model Predictive Control (MPC) (Maciejowski
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and Huzmezan, 1997) have been adopted in this layer for the loops having the
highest impact on the overall process performance. These control strategies have
been shown to be able to deliver significant economical improvements, sufficient
for the companies to justify the investment costs in these new technologies.

Most of the advanced control strategies, including the celebrated MPC, are
classified as model-based, in the sense that a (dynamic) model of the to-be-controlled
process dynamics is explicitly required for the design of the controller. The accu-
racy of this model has actually a significant impact on the performance that the
controller can deliver.

Unfortunately, the diverse and complex phenomena occurring in industrial
processes are sometimes difficult to model with the accuracy that is required for
high-performing control. Furthermore, the process dynamics are subject to slow
time variations which may reduce over time the performance of a model-based
controller, even when the performance was satisfactory with the original plant
dynamics. For these reasons, the model development and maintenance have been
recognized as the most challenging, time-consuming, and costly tasks required
for the successful implementation of a model-based control system, and they are
currently the bottleneck for an even more widespread penetration of this technol-
ogy in the process industry (Van den Hof, 2014). With the recent improvements
in the sensor technology and in the IT infrastructures installed in the plants, more
and more measurements from the processes are collected and stored in a format
that allows convenient elaboration. These large datasets contain important infor-
mation about the processes and the performance of the operating model-based
controllers. It is evident that using these data for a regular, quantitative, and au-
tomated performance monitoring and model update could push the capabilities
of model-based control systems for process control applications far beyond the
current state-of-the-art.

In this thesis, we work towards the development of strategies for the data-
based model improvement for industrial processes, where the use of the model is
the design of an high-performing model-based controller.

The specific challenges encountered in modeling and control of process sys-
tems are strictly related to the two main modes of operation of process engineer-
ing: continuous and batch. In this thesis, we give particular attention to batch op-
erations. We will use as a test case the batch cooling crystallization process,1 which
is extensively utilized in the pharmaceutical, fine chemicals, semiconductors, and
food industries.

1.2 Continuous and batch processes

Most of the process engineering steps can be performed either in continuous or
in batch mode. There exist for instance continuous or batch reactors, distillation
columns, and crystallizers.

1In practice, batch crystallization is usually applied as a step in more complex process possibly
consisting of multiple reactions, crystallizations, filtration, etc. Therefore, it would be more accurate
to speak of the batch cooling crystallization step. However, hereafter we refer to the batch cooling
crystallization process for simplicity.
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In continuous mode, the raw materials are continuously introduced into the
unit and the products are continuously removed from the unit. The system is
operated at a steady-state condition where the inflow of the raw materials is equal
to the outflow of the products, while the transformation takes places continuously
inside the unit.2

Conversely, in batch mode, the raw materials are loaded in the unit only at the
beginning of the process. Subsequently, the desired transformation takes place
inside the unit and the final products are removed altogether after the process-
ing time. In order to achieve the desired production volume, more batches are
repeated over time.

Continuous and batch operations have complementary advantages and disad-
vantages. A first aspect to be considered is the scale of the production. Contin-
uous operations are usually preferable for large-scale productions at a constant
rate. Indeed, a continuous process unit is constantly operated around the steady
state condition for which it is designed, providing in this condition the maximum
efficiency. However, the costs for the design, construction and operation of a con-
tinuous unit are generally higher than the ones of a batch unit. These costs are
not compensated by the higher efficiency when the production volumes are not
high enough and batch operations are preferred in this case. According to Bon-
vin (2006), continuous processes are required for commodities whose break-even
point is on the order of 100000 metric tons per year, while batch processes are
attractive for production volumes below 10000 metric tons per year.

Batch operations offer other advantages over continuous ones in terms of flex-
ibility of the production. For certain products, there is a market demand that
changes over time or has a seasonal trend. In the case of batch units, it is easy
to adjust the production volume simply by repeating the operation a different
number of times. Conversely, in the case of continuous units, changes in the pro-
duction rate may be limited by design, while the shutdown and the startup of the
unit may be complex, expensive procedures.

For products that require repeated process steps, the same batch unit can be
shared by more steps, while a continuous design would generally require a sepa-
rate unit for each step. For instance, in the pharmaceutical industry the purifica-
tion of a drug may require several crystallization steps. The same batch crystal-
lization unit can be used for different crystallization steps.

Batch units can also be easily converted for a different product or even be
shared between different products, while continuous units are generally product-
specific. Finally, batch processes are often preferred when isolation and lot in-
tegrity are necessary for reasons of sterility or safety. Indeed, it is straightforward
in batch processes to document and keep track of each lot of raw material that
makes up each lot of product (Korovessi and Linninger, 2005).

For all the reasons above, high-volume industries such as petroleum refining
typically use continuous operations, while batch operations are far more common
in lower-volume industries using specialized types of chemistry, for instance in
the pharmaceutical and fine chemicals fields (Tomazi et al., 2006).

2More precisely, in a full process, the inflow of an unit could also consist of intermediate products
of a previous step, and not necessarily of raw materials.
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1.3 Control-relevant aspects of batch processes

It has been observed that batch processes have specific properties that bring both
challenges and opportunities for control (Bonvin, 2006). These challenges and
opportunities are described in the following and their implication for control are
discussed at the end of this section.

1) Repetitive nature. Batch processes are repeated several times. The control
objectives are usually the same for all the batches. Furthermore, the process is
usually designed to be operated starting from a fixed initial condition.3

2) Wide dynamical range. Batch processes evolve from an initial condition where
the raw materials are loaded inside the vessel to a final one where the products
are obtained. Therefore, batch processes have to be operated over a wide range
of conditions. Due to the wide operational range, batch processes often exhibit
severely nonlinear dynamics.

3) Model uncertainty. First-principles models for most batch process units are
available in the literature, as well as in specialized software modeling packages.
However, these models often depend on uncertain parameters whose actual val-
ues are highly uncertain. In other cases, even the structure of the nonlinear equa-
tions describing the process is subject to uncertainty.

4) Limited sensing. While measurements of temperatures, pressures and flows
are relatively reliable and inexpensive, measurements of other quantities such
as concentrations and particle sizes still pose significant technical challenges. In
some cases, reliable measurements are obtained from laboratory analysis of data
collected during the process. Therefore, they are not available online while the
process is running.

5) Limited actuation. Many batch processes have an irreversible and/or history-
dependent behavior, and a strong dependency on the initial state that cannot be
corrected using the available inputs. Furthermore, the ability to influence the pro-
cess usually decreases with time, which limits the impact of corrective actions.

6) Disturbances. Different disturbances may affect the normal operation of a
batch process. Some disturbances enter the process as the result of upstream vari-
ability such as impurities in the raw materials. The thermal evolution of the pro-
cess may also be subject to disturbances due to, for instance, variations of the
temperature of the cooling medium, interaction with other units in the plant, or
to thermal losses to the external environment.

3 In practice, obtaining exactly the same initial condition for all the batches may be difficult due
to process-specific technical difficulties. Thus, small batch-to-batch variations of the initial condition
cannot be completely ruled out.
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7) Slow dynamics. Batch processes are usually characterized by fairly slow dy-
namics. The time constants of process systems are seldom smaller than a few
seconds and have usually the order of several minutes.

On the one hand, points 2, 3, 4, 5, and 6 make batch process control particularly
challenging. Due to this wide dynamical range (point 2), we deal most of the times
with nonlinear control problems. The use of model-based control techniques is
complicated by the uncertainty in the models available at hand (point 3). Due to
the lack of online reliable measurements (point 4), it may be difficult to detect that
a disturbance (point 6) is moving the batch off the desired specification on time.
If the disturbance is detected too late during the batch, it may not be possible to
compensate for it any more due to actuation limitations (point 5).

On the other hand, points 1 and 7 offer opportunities that alleviate the dif-
ficulties discussed above. Batch processes are repeated several times (point 1)
and from the analysis of the data coming from previous batches it is possible for
instance to compensate for the effect of repetitive disturbances or to refine the
model. Furthermore, batch processes usually have large time constants (point 7).
Given the computational power available nowadays, this allows for sophisticated
online elaborations.

1.4 Control of batch processes

A comprehensive categorization of the established control strategies for batch pro-
cesses has been presented in Bonvin (2006). In order to describe these strategies,
it is useful to introduce the following mathematical description of a generic batch
process

dxk(t)

dt
= f(xk(t), uk(t)), xk(0) = x0,k, t = [0, tf ], k ∈ N

yk(t) = g(xk(t), uk(t)),

zk = z(xk(tf )).

(1.1)

The variable t is the time, which spans in a finite interval [0, tf ], k is the batch
index, and xk(t) is the state of the system at time t during batch k. 4

There are two types of to-be-controlled variables, namely the run-time vari-
ables yk(t) and the run-end variables zk. Run-end variables represent quantities
for which only the final value is of interest. For instance, it is possible that in a
batch reaction only the final concentration of a product is interesting, and not the
intermediate values attained at different time instants. Run-time variables repre-
sent quantities that have to be controlled throughout the whole process. For in-
stance, it may be required for a process to follow certain temperature and pressure
profiles in order to guarantee safety and product consistency. Generally speaking,
run-end variables are measured only at the end of a process, while run-time vari-
ables may or may not be measurable online.

4We here assume for notational simplicity that all the batches have the same duration tf . More in
general, different batches may have a different duration tf,k .
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Control objective
Implementation Run-time reference ȳk(t) Run-end reference z̄k
Online 1) Online run-time 2) Online of run-end
Batch to batch 3) B2B run-time 4) B2B run-end

Table 1.1: Control strategies for batch process control.

A controller for a batch process adjusts the input uk(t) in order to follow a run-
time variable yk(t) or a run-end variable zk. The controller may update the input
either online at every time instant of a batch or off-line, i.e. from one batch to the
other.5 This leads to the following four control strategies (see also Table 1.1).

1) Online control of run-time variables. Let us assume that the run-time vari-
able y(t) is measured online and a reference trajectory ȳk(t), t = [0, tf ] for the
batch is given. At every time instant, the input uk(t) is computed by an on-line
tracking controller K

uk(t) = K(y(t), ȳk(t)) (1.2)

in order to achieve a small tracking error ek(t) , ȳk(t) − y(t), t = [0 tf ] and to
satisfy eventual input, output, or states constraints.

Online tracking controllers are also common for continuous processes where
the set-point is a constant corresponding to the desired steady-state and the on-
line controller is a (linear) feedback controller. Compared to continuous processes,
the set-point in the batch case is often a time-varying trajectory instead of a con-
stant. Furthermore, the dynamics of the batch process and the characteristics of
the disturbances may change along that trajectory. For these reasons, a linear
feedback controller may not be sufficient in order to follow the reference with the
required accuracy in the batch case. Strategies such as gain scheduling (Rugh and
Shamma, 2000), feedback linearization (Isidori, 1995), and MPC (Maciejowski and
Huzmezan, 1997) may be applied when the performance of a linear feedback con-
troller is not satisfactory. Note that feedback linearization and MPC require the
knowledge of the state xk(t). If xk(t) is not directly measured, a state estimator has
to be designed as well.

2) Online control of run-end variables. In this case, the objective of the con-
troller is to steer the run-end variables zk to the desired set-point z̄k. Since a pre-
diction in the future is required to evaluate how the run-end variable will evolve,
this problem is tackled using an MPC-like control law. Let us assume that a run-
time variable yk(t) is measured online. This variable is used to obtain an estimate
x̂k(t) of the current state xk(t). The input is determined such that the predicted
run-end variable ẑk is as close as possible to the reference z̄k. Formally, we write

uk(t) = P (ẑ(x̂(t)), z̄k) (1.3)

5In practice a digital controller can only elaborate discrete-time, digital signals. In this section,
the controllers are introduced using a continuous-time notation for simplicity. Note that due to the
usually large time constant of batch processes, the effect of the discretization is not critical for most of
the known process control applications.
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where P is a model-based optimization routine aiming to steer the predicted run-
end variable ẑk to the desired value z̄.

Note that while in the classic MPC approach for a continuous processes the op-
timization is typically performed over a receding time horizon (Maciejowski and
Huzmezan, 1997), for the case of batch processes the optimization is performed
over a shrinking time horizon that goes from the current time t to the final time tf .

3) Batch-to-batch control of run-time variables. The objective is to determine
the entire trajectory of the input variable uk+1([0, tf ]) for batch k + 1, based on
all the information collected during the previous batches such that the run-time
variable yk+1([0, tf ]) follows the desired set-point trajectory ȳk+1([0, tf ]) at every
time instant. In the literature, a family of algorithms known as Iterative Learning
Control (ILC) has been developed for this kind of problems (Bristow et al., 2006).
ILC is a fairly common technique for control of mechanical systems, but it has
not been widely applied in the field of process control to date. Most of the ILC
algorithms compute the input for the next batch as a function of the input/output
data relative to the previous batch:

uk+1([0, tf ]) = uk([0, tf ]) + L
(
uk([0, tf ]), yk([0, tf ])

)
. (1.4)

The update term L can be computed completely model-free as in the PD-type
ILC or based on the nominal process model as in the Quadratically-optimal ILC
(Q-ILC) (Bristow et al., 2006). ILC algorithms generally require that the initial
condition of the system and the set-point are the same for all batches, and that the
real-time disturbances are moderate or absent.

4) Batch-to-batch control of run-end variables. The objective is to determine the
entire trajectory of the input variable uk+1([0, tf ]) based on data from the previous
batch such that the run-end variable zk+1 follows the reference z̄k+1. In the litera-
ture, algorithms such as Run-to-Run (R2R) have been applied to solve this control
problem:

uk+1([0, tf ]) = uk([0, tf ]) +R(zk, z̄k+1). (1.5)

The R2R correction adds to the previous input uk([0, tf ]) an update term R that
is expected to decrease the difference between zk+1 and z̄k+1. The term R could
be for instance a gradient-based optimization step with an objective function such
as ‖z̄k+1 − ẑk+1‖2, where ẑk+1 is a prediction of the run-end variable computed
based on a nominal process model (Wang et al., 2009).

The control strategies presented above can be combined in different ways. For
instance, it is possible to combine online and batch-to-batch control for of run-
time variables, see e.g. the Batch-MPC algorithm presented in Lee et al. (1999).
Other possibilities could be to use an online controller for the run-time variables
combined with a batch-to-batch controller for the run-end variables (Lee and Lee,
2003) , or to use the online controller for both the run-time and the run-end vari-
ables using a multi-objective MPC scheme (Mesbah, 2010). Other combinations of
batch control strategies can be found in the literature.
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1.5 Identification of batch processes

The control strategies presented in the previous section are based on a nominal
model of the batch process. In this model, the value of a number of physical
parameters is typically not known with high precision. This results in a severe
model uncertainty, which in turn limits the performance of the model-based con-
trol strategies. Intuitively, it should be possible to recover the control performance
by identifying a model using previous experimental data.

Identification techniques have been used intensively for improving the model-
based control of continuous processes, where the systems are operated around a
fixed operating point and the dynamics of the deviation around that point are of-
ten approximately linear. Well-established identification techniques using linear,
black-box model structures (Ljung, 1999) have been applied in order to obtain the
models to be used for control.

In the case of batch processes, the systems have to be operated in a wide dy-
namical range and nonlinear models are almost always required. Even though
nonlinear, black-box structures such as Linear Parameter Varying (LPV) could per-
haps be used to model the behavior of batch processes (Lakshmanan and Arkun,
1999), this approach has not yet been widely demonstrated in practice. In the ma-
jority of the cases, the model structures for batch processes are derived from a
first-principles model, leaving the uncertain physical coefficients as free parame-
ters.

In principle, accurate and reliable models could be obtained by estimating
these parameters using the measured data from previous batches. However, pa-
rameter estimation for batch processes described in first-principles model struc-
tures entails several issues that need to be carefully addressed. These issues are
described in the following of this section.

1) Lack of identifiability. In the first-principles model structures, the sensitiv-
ities of the measured output to the different parameters may differ by orders of
magnitude. Furthermore, these sensitivities depend on the particular input used
in the identification data set. The effect of the parameters with lower sensitivity
may be hidden in measurement noise. Besides, the effect of a subset of parameters
may be highly correlated, or even perfectly collinear. This means that changes of
the parameters in certain directions may be difficult to detect from the observa-
tions. All these characteristics may lead to lack of identifiability issues: it is pos-
sible that more than one set of parameters describe the input/output observation
exactly. Even when the “true” parameters are theoretically unique, there could
exists a very large set of admissible parameters that describe the input/output
observation almost equivalently (even close to numerical precision) (Vajda et al.,
1989).

Note that in the case of linear dynamical systems, identifiability issues can be
circumvented by adopting standard parameterizations of the transfer functions,
such as fractions of polynomials with parametrized coefficients. Conditions on
the input such that all the parameters in a standard model structure are identifi-
able are known in the literature (Ljung, 1999). Even more, the input signals can
be designed in order to guarantee a certain accuracy for the estimated parameters
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using experiment design tools (Goodwin and Payne, 1977; Jansson and Hjalmars-
son, 2005). Unfortunately, these strategies are much less mature in the case of
nonlinear dynamical systems (see point 5 in this list).

2) Nonlinear optimization. Parameter estimation generally requires the solu-
tion of a nonlinear, nonconvex optimization problem. The solution of such a
problem can be computationally intense and specific algorithms may be required.
Furthermore, it is in general very hard to guarantee that the algorithm finds a
global optimum for the problem. From a numerical perspective, having highly
correlated parameters with sensitivities ranging orders of magnitude is a further
difficulty.

Note that a nonlinear optimization is required for parameter estimation both
in the case of linear and nonlinear dynamical systems. However, for the case
of linear dynamical systems, specific algorithms have been developed in order
to make this optimization more effective. For instance, subspace identification
methods (Verhaegen and Dewilde, 1992), which do not require optimization can
be used to generate a rather good initial estimate for the nonlinear optimization.

3) Structural model mismatch. The model structures used to describe batch pro-
cesses are often approximations of a physical reality that is known to be more
complex. Therefore, it is likely that the model structure assumed for identifica-
tion does not contain the true system for any choice of the model parameters.
When this is the case, it is obvious that the identified model cannot converge to
the true system. We can only ensure that the identified model is close to the best
approximation (defined in some way) of the true system within the model struc-
ture. Thus, the actual “distance” between the true system and the identified model
is due to the distance between the true system and its best approximation within
the model structure (bias error), and the distance between the best approximation
and the identified model (variance error).

In the case of linear dynamical systems, the effect of a structural model mis-
match has been extensively analyzed in the field of Identification for Control (Gev-
ers, 2005). In the frequency domain, the distance between the transfer function of
the true system and the one of the identified model is simply the sum of the dis-
tance between the true system and its best approximation (bias error), and the
distance between the identified model and the best approximation (variance er-
ror). The best approximation of a linear dynamical system for a certain controller
design objective can also be characterized by frequency-domain expressions. Con-
versely, in the case of nonlinear dynamical systems, there is not a general way to
characterize the effect of the bias and the variance error.

5) Need for excitation signals. The accuracy of an identified model depends on
the level of information contained in the data used for parameter estimation. In
principle, it is possible to increase the level of information by adding an excitation
signal to the input in the identification dataset (Ljung, 1999). The parameter esti-
mation procedure will lead to a more accurate model when a suitable excitation
signal is applied, which in turn will provide a better control performance once
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the model is used to re-design the controller. However, the same excitation signal
leads to a performance degradation while it is applied since it acts as a distur-
bance on the controlled system. Thus, there is a trade-off between the performance
degradation due to the excitation signal and the performance improvement that
can be obtained having a more accurate model.

The problem of designing excitation signals for linear dynamical systems has
been considered in the field of Identification for Control. Experiment design tools
for linear dynamical (Jansson and Hjalmarsson, 2005) have been used to obtain
excitation signals that guarantee a given model accuracy, while results from robust
control set the link between model accuracy and performance improvement.

The classic approaches to the design of the excitation signals consider two dis-
tinct phases: an identification phase in which the excitation signal is fed to the
system and a model is identified, and a control phase in which a controller based
on the identified model is applied to the system. The first approach presented
in the literature (Gevers and Ljung, 1986) was to design the excitation signal in
order to maximize the performance in the control phase, subject to a constraint
on the performance degradation due to the excitation signal in the identification
phase. More recently, the reasoning has been reversed in the so-called least costly
approach (Bombois et al., 2006), where the the performance degradation due to
the application of the excitation signal in the identification phase is minimized,
subject to a constraint on the desired performance in the control phase.

These two-phase frameworks do not fit the situation encountered in batch pro-
cess control, where several batches are repeated, and the identification and control
tasks can be performed at the end of each batch. In the batch control case, excita-
tion signals can be added to the input during each batch. The excitation signal for
one batch should be designed taking into account the performance degradation in
the current batch, as well as the expected improvement in the all following ones
that are planned.

Another complication is that batch processes are almost always severely non-
linear. Unfortunately, there is to date a lack of generally applicable, computational
efficient Experiment Design tools which can handle nonlinear dynamical systems.
The methods in the literature are either tailor-made for very special and simple
nonlinear structures (Barker et al., 2004; Hjalmarsson and Mårtensson, 2007; Lars-
son et al., 2010), or computationally very expensive and, in general, intractable
(Franceschini and Macchietto, 2008). Due to these issues, the design of suitable
excitation signals for the identification of batch processes is still a challenge.

1.6 Batch cooling crystallization

As mentioned in Section 1.1, in this thesis we will focus on a specific batch pro-
cess, namely batch cooling crystallization. Crystallization may be defined as a
phase change in which a crystalline product is obtained from a fluid, a gas, or
a melt (Myerson, 2002). From an industrial perspective, crystallization processes
are utilized with different purposes in a wide range of fields. Crystallization is
extensively applied as a separation and purification step in the commodity, petro-
chemical, specialty, fine-chemical, and pharmaceutical industries. Crystallization
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is used in the food industry to give products the desired texture and consistency. It
is applied for instance in the industrial production of ice cream, butter, chocolate,
cheese, and bread (Larsen et al., 2006). In the semiconductor industry, microelec-
tronic devices are created by a large number of steps, most of which involve either
etching or growth of crystalline material (Braatz, 2002).

Different kind of crystallization processes are applied in the industrial practice.
Batch cooling crystallization is the most common strategy in the pharmaceutical
and the fine chemicals industries (Myerson, 2002). In a batch cooling crystalliza-
tion process, a chemical solution consisting of a solute dissolved into a solvent is
loaded at high temperature into a vessel called crystallizer, and is subsequently
cooled down. The cooling is performed by circulating a colder medium inside
the jackets surrounding the crystallizer. By cooling, the equilibrium concentration
(i.e. the solubility) of the solution is lowered, and part of the solute is transferred
from the solution to the solid, crystalline phase. Thus, while the solution is cooled,
the concentration of the solute in the solution decreases and the amount of solid
crystals increases. When the final temperature is reached, the solid, crystalline
product is extracted and the batch ends.

Despite the wide diffusion of batch cooling crystallization in the industry,
some of the physical phenomena governing this process are still largely uncer-
tain and debated in the scientific community. As a consequence, the nonlinear
dynamic models currently used to describe the process suffer from severe uncer-
tainties. For this reason, besides being directly a relevant industrial application,
batch crystallization is a serious benchmark for batch control algorithms.

1.7 Control of batch cooling crystallization

The ultimate objective of a batch cooling crystallization process is to produce crys-
tals satisfying certain requirements in terms of size, morphology, shape, purity,
etc. In practice, however, direct control of the crystal properties is severely hin-
dered by modeling and measurement issues. Therefore, in most of the cases the
crystal properties are only indirectly controlled by specifying the reference trajec-
tories that a number of process variables such as the temperature, the growth rate
and the supersaturation 6 have to follow during the time of the batch. An accurate
tracking of these references can guarantee that the crystals obtained at the end of
the batch consistently satisfy the desired properties.

Feedback control of the temperature is the most common control strategy for
batch cooling crystallizers in an industrial settings (Fujiwara et al., 2005). The de-
sired cooling profile is given as reference to a feedback controller. Since the ther-
mal part of the dynamics is in general fairly linear, a linear feedback controller
such as a PI or PID can provide a sufficiently accurate tracking performance.
While the temperature control is easy to implement, in some cases controlling
only the temperature is insufficient in order to consistently guarantee the desired
product quality.

The supersaturation and the growth rate have a more direct influence on the

6The physical meaning of the supersaturation and the growth rate will be given in Chapter 2 . The
exact definition of these quantities is not crucial for the reasoning of this section.
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crystallization process. Feedback control of these quantities has been widely in-
vestigated in the literature (Nagy et al., 2008) and different strategies have been
applied. Unlike the thermal dynamics, the dynamics of the growth and of the su-
persaturation are severely nonlinear. For this reason, a nonlinear control strategy
is required in this case. In Xie et al. (2002) and Vissers et al. (2011), a feedback
linearization strategy has been proposed for supersaturation control. An exper-
imental verification of such a scheme has been presented in Vissers et al. (2012).
MPC has also been proposed and experimentally validated for the control of the
growth rate (Mesbah et al., 2011). Similar MPC schemes have been applied to
control the crystal size in Mesbah (2010).

First attempts of batch-to-batch control for supersaturation using Iterative Learn-
ing Control (ILC) have been proposed very recently, see for instance Zhang et al.
(2009) and Sanzida and Nagy (2012). However, the results presented in those con-
tributions are limited to simulation studies.

1.8 Problem statement

The following observations have lead us to the problem statement of this thesis

• A wealth of model-based control strategies for batch processes are available
in the literature.

• The models describing the dynamics of batch processes suffer from severe
uncertainties. Therefore, the performance delivered by these model-based
control strategies may be far from optimal.

• In the industrial practice, several batches are repeated over time. The mea-
surements from past batches contain important information on the process
dynamics and on the characteristics of the disturbances.

The problem statement is the following:

Problem statement

Develop strategies to improve from batch to batch the performance of
model-based control for batch processes and, if possible, validate them
for the batch cooling crystallization process.

For the sake of concreteness, we have given particular attention to a specific
control objective for a specific batch process, namely the tracking of a constant
supersaturation 7 set-point for a batch cooling crystallization process. More pre-
cisely, the control objective for a batch is to design the entire temperature trajec-
tory in order to track the supersaturation set-point, based on the measurements

7 We have selected the supersaturation as controlled variable for the batch cooling crystallization
process because this quantity can be readily estimated from the measurements of temperature and
concentration which were available in our experiments. In general, different process variables such as
the growth rate or the CSD could be considered, once these quantities are measured or estimated.
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collected in the previous batches. Thus, the control problem classifies as batch-to-
batch control of run-time variables in the framework of Section 1.4.

Nevertheless, most of the control methodologies developed in this thesis can
be adapted for different batch processes and control objectives.

1.9 Approach

In the pursuit of the main research objective, our general approach is to use the
measured data from previous batches in order to improve from batch to batch
the model that is used to design the model-based controller. By doing so, the
performance of the model-based control system is expected to increase. In order
to achieve this result, we have identified and tackled a number of distinct goals.
These goals, together with the specific solution approach that we have followed,
and an overview of the results achieved of this thesis are presented in this section.

1.9.1 Development of a parametric model update strategy for batch
cooling crystallization

As discussed in Section 1.5, a possible approach to perform the batch-to-batch
model update is to estimate the uncertain physical coefficients of the process within
a model structure obtained from a first-principles modeling. Owing to the struc-
tural use of all the a-priori knowledge available on the process, this approach has
the potential of delivering an accurate model using a limited amount of data.

The first strategy that we have developed for the batch-to-batch model update
is based on this approach and is called in this thesis Iterative Identification Con-
trol (IIC). The core element of the IIC approach is a repeated parameter estimation
procedure. In IIC, the model of the batch cooling crystallization process is selected
within a set of candidates described in a fixed model structure. The model struc-
ture is obtained from a first-principles modeling of the process, leaving as free
parameters a number of uncertain physical constants. The measured batch data
are used to update from batch to batch estimates for those uncertain parameters.
More precisely, the estimation is performed iteratively after each batch adopting
a maximum likelihood (Van den Bos, 2007) framework which combines the previ-
ous estimate with the data measured in the most recent batch. By doing this (and
under certain conditions on the data, see later), the variance of the estimated pa-
rameters decreases after each batch, since the estimate is constructed based on the
information contained in all the previous batches.

The model updated with the estimated parameters is used to design the input
temperature trajectory for the next batch with the objective of tracking the desired
supersaturation set-point. The batch is performed using this new input, and so on
and so forth for the following batches.

In general, the estimates of the model parameters can really improve only if
the data used to update the estimates are sufficiently informative (Ljung, 1999). This
requires certain condition on the input signal applied to the system while the data
are generated. These conditions could be enforced for instance by superposing
a special excitation signal to the normal control input (i.e. the input optimized ac-
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cording to the control objective). In our case, we found that the input optimized
in order to track the desired set-point already produces sufficiently informative
datasets. Therefore, we did not include excitation signals in the IIC algorithm.

IIC is a very powerful and general model learning approach. The measured
data, together with the structural a-priori information are used efficiently in order
to estimate a limited number of uncertain parameters. Therefore, a very accurate
model can be obtained within few iterations of the algorithms (i.e. in a limited
number of batches). This model can be utilized in order to design virtually any
kind of model-based controller. Even though in this thesis we limited ourself to
a supersaturation tracking control problem, other objectives could be similarly
selected.

However, a limitation of IIC is that its attractive properties are valid only under
the assumption that the process dynamics are truly described within the model
structure selected. In the case of a structural model mismatch, i.e. when the true
process dynamics are not described by any of the models in the model structure,
the performance delivered by IIC is in general reduced. Even worse, limited tools
are available in order to quantify the performance degradation to be expected in
the case of structural model mismatch.

Unfortunately, structural model mismatches cannot be ruled out for the batch
crystallization process. Some of the basic principles of the process are debated
in the scientific community, and different model structures describing the same
phenomena occurring during the process can be found in the literature.

1.9.2 Development of a non-parametric model update approach

In order to cope with the limitations of IIC in the presence of structural model mis-
matches, we address the use of a non-parametric model update strategy known
in the literature as Iterative Learning Control (ILC). ILC is a popular tool for the
improvement of the control performance of uncertain dynamic systems that oper-
ate repetitively (Bristow et al., 2006). More than a single algorithm, the term ILC
actually denotes a class of algorithms specifically designed to solve repeated feed-
forward reference tracking problems, such as the supersaturation tracking prob-
lem at hand. Unlike IIC, ILC approaches do not usually require strict assumptions
on the model structure describing the true process dynamics, nor the presence of
excitation signals. However, they do require that the initial condition and the ref-
erence trajectories are the same (or at least do not change too much) for all the
batches, and that the real-time disturbances are moderate or absent.

In the ILC algorithm that we have adopted, the measured data from previ-
ous batches are used to compute a non-parametric, additive correction term for a
nominal model of the process dynamics. The nominal model is obtained using the
same model structure selected in the IIC algorithm, for a certain nominal choice
of the model parameters. Owing to the flexible, non-parametric model correction,
the ILC algorithm is suitable to compensate the nominal model for the structural
model mismatches that could affect the true process dynamics. This is the crucial
advantage of ILC with respect to IIC.

However, it is expected for ILC a slower convergence to the desired set-points
than in the case of IIC. Furthermore, the model corrected using the ILC strategy
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is a good approximation of the true system dynamics only along one particular
trajectory. Therefore, the model is useful only to solve a specific repeated reference
tracking problem, with a fixed reference for all the batches.

Another well-known drawback of ILC is the inability to cope efficiently with
real-time disturbances, i.e. disturbances that are different from batch to batch. To
date, most of the successful applications of ILC have appeared in the domain of
(electro)-mechanical systems, where the effect of these disturbances is less severe
than in the process field (Ahn et al., 2007). For process control application, the use
of ILC techniques is more delicate, and generally suggested only in combination
with a regular feedback control solution which takes care of these disturbances
(Chin et al., 2004). First attempts of using ILC for supersaturation tracking control
have appeared recently in the literature, see for instance Zhang et al. (2009) and
Sanzida and Nagy (2012). However, these contributions were not dealing with
the important issue of the process disturbances, which were not considered in the
simulation studies reported therein.

In this thesis, we combine the ILC algorithm for supersaturation tracking with
a lower-level feedback temperature controller in a master-slave configuration. Based
on the update model, the ILC (master) controller determines from batch to batch a
new reference temperature trajectory for a feedback controller in order to track the
desired supersaturation set-point. The role of the feedback temperature controller
is to reject the real-time disturbances as efficiently as possible, thus decreasing
their influence on the supersaturation dynamics. This improves the efficiency of
the ILC algorithm.

1.9.3 Validate the batch-to-batch control algorithms

Simulation results. We will first validate the IIC and ILC environment in a sim-
ulation environment using a model of the process dynamics obtained from first-
principles modeling. In the simulation study, we take into account several issues
that may occur in in practice, such as the presence of both parametric and struc-
tural model mismatches, as well as process disturbances.

The simulation results show that the two algorithms have complementary ad-
vantages and disadvantages. On the one hand, IIC provides the best performance
when the assumed model structure can actually describe the data-generating sys-
tem (i.e. the simulation model representing the true process dynamics). On the
other hand, ILC is more robust to structural model mismatches. Even though
these mismatches slow down the convergence, a satisfactory result is eventually
obtained after a number of batches.

Experimental results. We will present the results of an experimental campaign
where we have tested the IIC and ILC algorithms on a pilot-scale crystallization
set-up. The experiments have been performed in the ACES department of the
company DSM (Geleen, The Netherlands) with the support of the ISPT research
project PH-00-04 (see Section 1.11). We used for the experiments a 50-liters, jack-
eted glass vessel as crystallizer and performed batch cooling crystallization exper-
iment from a solution of Succinic acid in water.

These experiments confirm the potential of the IIC and ILC approaches for
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the batch-to-batch improvement of model-based control in batch cooling crystal-
lization. However, they also highlight a number of issues that still need to be
addressed in order to bring similar techniques to an industrial production envi-
ronment.

1.9.4 Investigate the role of excitation in an iterative identifica-
tion/controller design scheme for linear dynamical systems

In the IIC algorithm, the input is designed for each batch in order to satisfy the
control objective, i.e. in order to track the desired supersaturation set-point. Once
the batch is performed, the measured batch data are used in order to refine the
model of the batch dynamics. The improved model is used to design the input for
the next batch, and so on and so forth for the following batches.

An interesting observation is that in IIC the choice of the input does not only
determine the control performance for the current batch, but also influences the
control performance for the following batches. In fact, the accuracy of the identi-
fied model (and thus the control performance in the following batches) depends
on the input applied to the system in the identification data (Ljung, 2007). For
the supersaturation tracking control problem, we verified that the normal control
input (i.e. the input designed in order to track the constant supersaturation set-
point) was already sufficiently exciting in order to estimate the model parameters
with a reasonably good accuracy, and we used this input in the IIC algorithm.

Even though this strategy already guarantees satisfactory results (for the par-
ticular control problem at hand), it is possible that different choices could provide
an even superior performance. For instance, the use of an additional excitation
signal superposed to the normal control input leads after identification to an in-
creased model accuracy, and thus a better control performance. The same excita-
tion signal, however, causes a temporary performance degradation, since it acts
as a disturbance while it is applied to control system.

In the thesis, we will study in detail the problem of designing the excitation
signals in an iterative identification/controller design scheme with the objective
of optimizing the overall performance. By overall performance, we mean that we
take into account both the performance degradation due to the application of the
excitation signal and the improvement due to the more accurate model.

The IIC framework is generalized in order to describe either a continuous or a
batch process regulated by a model-based controller. The total time of operation
of the model-based control system is divided into a number of learning intervals.
For the case batch systems, the learning intervals correspond to the different batch
runs. After an interval, the measured data are used to refine the estimate of the
model parameters, and a new controller is designed. The controller will be ap-
plied in the next interval, and so on and so forth for the following intervals.

Excitation signals can be added to the normal control input for all the inter-
vals. We have for each interval a modeling error cost due to the current model
uncertainty and an excitation cost due to the application of an excitation signal.
Applying an excitation signal during an interval creates an excitation cost for the
current interval, but it also reduces the modeling error cost for all the following
intervals. The problem is to design these excitation signals in order to find a good
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trade-off between these two costs. 8

As discussed in Section 1.5, similar design problems have been considered
in the Identification for Control literature for linear dynamical systems in a two-
phase framework. In the identification phase, the excitation signal is fed to the
system and using the data collected from this phase a model is identified. This
model is used in order to design an improved controller, that is applied to the sys-
tem during the control phase. A trade-off is found between the excitation cost in
the identification phase and the modeling error cost in the control phase (Bombois
et al., 2006; Gevers and Ljung, 1986).

The two-phase framework does not fit the situation encountered in our iter-
ative identification/control scheme. In our case, there is not a clear distinction
between identification and control phases. In fact, identification and control de-
sign are performed during all the interval. Excitation signals can be injected in
every interval and the choice of these signals should be made based on the excita-
tion cost in the current interval, and the modeling error cost for all the following
intervals.

In our framework, we define the total cost for an interval as the sum of the ex-
citation cost and the modeling error cost. Our approach is to design the excitation
signals aiming to minimize the sum of the total cost over all the intervals, possibly
satisfying constraints on the total cost for each of the individual intervals.

In principle, we would like to find an efficient way to solve this optimization
problem for general nonlinear dynamical systems, such as the one describing the
batch cooling crystallization process. However, this is a very tough problem that
will not be solved completely in this thesis. To date, in the literature, a general
solution to this problem has not yet been presented even for the simpler case of
linear dynamical systems.

In this thesis we will show that, in the case of linear dynamical systems, the
optimization problem required to find the excitation signals in the iterative identi-
fication/controller design framework can be transformed into a convex optimiza-
tion problem exploiting classic experiment design tools (Goodwin and Payne,
1977; Jansson and Hjalmarsson, 2005). This convex optimization problem can be
solved efficiently using standard optimization software (Boyd and Vandenberghe,
2004).

The potential of our method is illustrated in a simulation study. We verified
that our approach guarantees a superior overall performance compared to the
classic two-phase approaches previously developed in the field of Identification
for Control.

1.9.5 Develop experiment design tools for nonlinear systems

The lack of generally applicable, computationally efficient experiment design tools
for nonlinear systems is the main bottleneck for the application of the framework
discussed in the previous section to batch processes. In fact, as previously re-
marked in this introduction, batch processes often exhibit severely nonlinear be-
haviors.

8For a continuous system, the length of the intervals is an additional design choice. This is dis-
cussed in Chapter 4.
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As discussed in Section 1.5, the experiment design tools are used to design ex-
citation signals which guarantee a certain model accuracy. More specifically, the
model accuracy is evaluated in the terms of the information matrix, which is related
9 to the inverse of the covariance matrix of the estimated parameters, and is a func-
tion of the excitation signal. From a mathematical perspective, experiment design
problems are optimization problems where the information matrix appears in the
objective function and/or in the constraints, and the excitation signal is the opti-
mization variable. Experiment design tools are used to solve these optimization
problems.

Unfortunately, general, computationally efficient experiment design tools are
known only for linear dynamical systems (Goodwin and Payne, 1977; Jansson and
Hjalmarsson, 2005). For these systems, the information matrix is an affine func-
tion of the spectrum10 of the excitation signal. This property is used to solve ex-
periment design problems using a two-step approach. First, the optimal spectrum
for the excitation signal is determined. Exploiting the affine relation, the experi-
ment design problem can often be formulated in convex form. Once the convex
optimization problem is solved, an excitation signal having the desired spectrum
is generated.

Conversely, experiment design for nonlinear dynamical systems is still a very
open and challenging research topic. In the nonlinear case, the main difficulty is
that the affine relation between the spectrum and the information matrix does not
hold. Therefore, the two-step design method used for linear systems cannot be
applied. A possibility is to design the entire probability density function of the ex-
citation signal (Hjalmarsson and Mårtensson, 2007). Since the probability density
function appears linearly in the information matrix, a similar two-step design ap-
proach could be adopted. However, this procedure is much more involved than
the one based on the spectrum. So far, it has been successfully applied only to
academic examples of very limited complexity.

An alternative approach is to optimize the excitation signal directly in the time
domain by solving a dynamic optimization problem (Franceschini and Macchi-
etto, 2008). A drawback of this approach is that the dynamic optimization problem
to be solved is in general very hard. Typically, it is severely non-convex and de-
pends on a large number of optimization variables representing a parametrization
of the excitation signal. When the optimization problem is solved using standard
gradient-based algorithms, chances are high that the numerical solution will lie in
the proximity of a local optimum, which is possibly far away from the global one.

Motivated by the limitations of the methods available in the literature, we will
conduct research towards the development of a novel experiment design tool ap-
plicable to a wide class of nonlinear systems, but still relying on convex optimiza-
tion routines. We restrict our attention to multilevel excitation signals, i.e. signals
which admit a finite number of possible levels. A multilevel excitation signal
can be described by the sequence of the levels appearing therein. Within this se-

9For certain estimation criteria such as Maximum Likelihood and Prediction Error Identification,
the information matrix is asymptotically equal to the inverse of the covariance matrix (see Ljung (1999)
and Van den Bos (2007) for details).

10The spectrum is a frequency-domain representation of the signal which describe its power content
as a function of the frequency.
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quence, we recognize a number of shorter subsequences. Under certain conditions,
we find that the information matrix for the full sequence is proportional to the
contribution due to each subsequence, times the frequency at which the subse-
quence appears in the complete sequence. Owing to the linear relation between
the information matrix and these frequencies, we are able to formulate a convex
experiment design problem using the frequencies as optimization variables. After
solving the problem, we generate an excitation signal in which the subsequences
appear in numbers proportional to the optimal frequencies.

The applicability of our method is demonstrated in a simulation study using
the model of an irreversible, first-order reaction system. 11 We show that the de-
sign based on the optimal multilevel excitation signal outperforms the one based
on random binary signals, which is a common choice in the current engineering
practice.

1.10 Organization of this thesis

This thesis is divided into five main chapters that describe the model of a batch
cooling crystallization process, the batch-to-batch algorithms IIC and ILC for su-
persaturation tracking control, the use of excitation signals in an iterative identifi-
cation/controller design scheme, a novel experiment design method for nonlinear
systems, and the experiments where we applied the IIC and ILC algorithms on a
pilot-scale batch crystallizer.

In Chapter 2, the batch cooling crystallization process is introduced. The control-
relevant aspect of crystallization are discussed and a mathematical first-principles
model of the batch cooling crystallization process is described.

In Chapter 3, the IIC and the ILC algorithm are developed and discussed in
detail. The advantages and disadvantages of the two methods are thoroughly
investigated in a simulation study using the crystallization model developed in
Chapter 2.

In Chapter 4, the use of excitation signals in an iterative identification/con-
troller design inspired from IIC is explored. The framework is here limited to
linear dynamical systems due to the current lack of efficient experiment design
tools which can handle nonlinear systems. The applicability of the method in the
case of linear systems is demonstrated in a simulation study.

In Chapter 5, the novel experiment design method for nonlinear systems based
on multilevel excitation signals is presented. The applicability of the method is
demonstrated in a simulation study involving an irreversible, first-order reaction
system.

In Chapter 6, the results of the experimental campaign performed using a
pilot-scale batch cooling crystallization setup are presented. The ILC and IIC
control algorithms are applied to a pilot-scale crystallization setup. This gives
experimental evidence to the simulation result presented in Chapter 3.

11We could not apply our method to the batch cooling crystallization system since the latter does
not satisfy one of the required condition, namely the fading memory property. More details are given
in Chapter 5 where the method is presented.
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2 CHAPTER

The batch cooling crystallization
process

In this chapter, the control-relevant aspect of crystallization are intro-
duced and a first-principles model of the batch cooling crystallization
process is presented. Following, the results of a number of simula-
tions using this model are presented and analyzed. Finally, the control
strategies developed in the scientific literature and the ones currently
applied in the industrial practice for batch cooling crystallization pro-
cesses are discussed. The model of the batch cooling crystallization
process will be utilized as a simulation test case for the batch-to-batch
control algorithms in Chapter 3. Experimental results obtained apply-
ing these algorithms on a real crystallization system will be presented
in Chapter 6.

2.1 Introduction

This chapter provides a control-oriented introduction to the batch cooling crys-
tallization process, which is the main example of a batch process considered in
this thesis. The process model presented in this chapter will be used as a simu-
lation test-case for the batch-to-batch control algorithm presented in Chapter 3.
Experimental results in which these algorithms have been applied on a real crys-
tallization system will be presented in Chapter 6.

In this chapter, the basic principles of crystallization are first discussed. This
part has been written as a first introduction to crystallization for an audience
which has little or no familiarity with this topic, and whose background is pos-
sibly different than chemical or process engineering. It is required to familiarize
with the phenomena that play a major role in a crystallization process, as well as to
introduce the field-specific terminology. We do not claim here completeness, and
we refer to the crystallization literature (see Myerson (2002) and the references
therein) for a more in-depth presentation.

Subsequently, a first-principles, dynamical model for the process is presented.
The population balance, mass balance, energy balance and constitutive equations

23
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are used to construct the model. The overall process model is composed of a set
of partial integro-differential equations. A model reduction technique known as
moment model reduction is used to transform the model into a set of ordinary
differential equations which is easier to deal with for optimization and control
purposes. The results of a number of simulations along a nominal profile are pre-
sented and analyzed. The nonlinearities in the model are quantitatively evaluated
by considering the deviation of the output in response to step deviations on the
input along the nominal input trajectory.

Finally, the control strategies developed in the scientific literature and the ones
currently used in the industrial practice for batch cooling crystallization processes
are briefly discussed.

2.2 Principles of Crystallization

2.2.1 Chemical solution

In order to describe a crystallization process, it is necessary to introduce the con-
cept of chemical solution. In chemistry, the term solution refers to an homogeneous
mixture of at least two substances: a solvent and one (or more) solutes. The sol-
vent constitutes the major fraction of the mixture and the molecules of the solutes
are said to be dissolved in the solvent. The solution has the same physical phase
as its solvent. Thus, for instance, if the solvent is liquid, then the solution is also
liquid.

Hereafter, we consider liquid solutions where the solvent is liquid and the so-
lute dissolved in it is a solid at the condition of interest. An everyday-life example
is a glass of water in which a teaspoon of sugar has been dissolved. For a solution,
it is possible to define the concentration C of the solute as

C =
amount of solute dissolved

amount of solution
or C =

amount of solute dissolved
amount of solvent

.

(2.1)
Since the amounts in the formulas above can be represented using different units
(volume, mass or moles), the concentration C can be expressed in a variety of
different units. In the following, we will consider the concentration as the ratio of
the amount of the solute to the total amount of the solution expressing both the
quantities in kilograms. In this case, the concentration is a dimensionless quantity.

2.2.2 Objective of the crystallization process

The objective of the crystallization process is to extract the molecules of the solute
from the solvent in a solid, crystalline form. Furthermore, certain requirements on
a number of properties of the final crystalline product have to be met. The most
important industrially-relevant properties are specified in terms of the crystal size,
morphology, shape and purity (Vissers, 2012):

Size Crystal of different sizes are produced in a crystallization process. The crys-
tal size influences physical properties of the product such as density and filtrabil-
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ity.

Morphology The molecules of the same compound can arrange in different crys-
talline structures called polymorphs. Different polymorph have different chemical
and physical properties.

Shape Crystals can grow in different shapes such as needles, cubes or other
polyhedra. Similarly to the size, the shape has an influence on the physical prop-
erties of the product.

Purity It is possible that molecules of undesired impurities (e.g. by-products of
a previous reaction step) or molecules of the solvent are included in the crystal
structure during the growth phase.

The actual specifications depend on the crystallization system at hand, on the
following downstream process step and on the final use of the product. For in-
stance, the size of the crystals affects the efficiency of downstream operations such
as filtering, milling, mixing, granulation, compactation, etc. (Larsen et al., 2006).
A product that includes molecules of the solvent might be difficult to dry (Vis-
sers, 2012). For a drug, a final product consisting of a specific polymorph having
a very high purity is often required. A thorough characterization of the possible
specifications is out of the scope of this thesis. The interested reader is referred to
Myerson (2002).

2.2.3 Phase diagram

In the following, we consider in particular a cooling crystallization process. As
the name suggests, the extraction of the solute from the solution happens in this
case by cooling down the solution. In order to describe the process, it is useful
to introduce the so-called phase diagram (Figure 2.1). The phase diagram has the
temperature and the concentration of a solution on the horizontal and the vertical
axes, respectively.

The following ideal experiment is useful to understand the main chemical and
physical principles governing the process. The experiment takes place in an ide-
ally mixed, closed vessel. Owing to the ideal mixing conditions, all the physical
and chemical the properties such as temperature and composition are homoge-
neous at different locations inside the vessel.

2.2.4 Solubility

A certain amount of pure solvent is loaded into the vessel at the start of the ex-
periment. The system can be represented in the phase diagram by point A, which
has concentration equal to zero and a given temperature. A certain amount of
solute can be added and will dissolve in the solvent forming a solution (point B).
The concentration of the solution increases if more solute is added to the solution
and dissolves in it. However, for each temperature there is a maximum amount
of solute that can be dissolved. The maximum concentration that can be reached
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Figure 2.1: The phase diagram of the ideal experiment.

by adding solute to the solution at a constant temperature T is represented in the
phase diagram by the solubility curve Cs(T ). (black continuous line).1 In most of
the cases, the solubility curve Cs(T ) is a strictly monotonically increasing function
of the temperature T , i.e. Cs(T2) > Cs(T1) for T2 > T1.2

When the value of the concentration C is exactly equal to the solubility Cs, the
solution is said to be saturated. Conversely, the temperature value Tsat such that
the solubility Cs is equal to the concentration C is called saturation temperature.
Formally, we have

Tsat(C) = C−1
s (C) (2.2)

where C−1
s (·) denotes the inverse of the function Cs(·)

In the phase diagram of Figure 2.1, if more solute is added after having reached
the point C (which lies exactly on the solubility curve), it will remain in the solid
state. Since the vessel is ideally mixed, this solid will be dispersed in the solution
in the form of a suspension. The content of the vessel is no longer a clear solution,
but a two-phase fluid slurry consisting of the solution and the solid suspension.

2.2.5 Metastable region and Metastable Zone Width

Let us assume that the system is at point C and the solution is perfectly clear, i.e.
no solid suspension is present. If the temperature is decreased, the system moves
to the so-called metastable region. As the name suggests, in this region the chemical
system is not at an equilibrium. The concentration is above the solubility curve

1In the following subsection, we will see that the concentration can actually be brought above the
solubility curve following a different experimental procedure. However, the solution is not at a chem-
ical equilibrium point in that case.

2In some special cases, the solubility curve decreases with the temperature. Furthermore, the sol-
ubility curve may also depend on other variables such as the pressure, the PH of the solution and
the presence of impurities. For the sake of simplicity, here we assume that these variables are con-
stant throughout the process and that the solubility curve is a monotonically increasing function of
temperature.
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and a certain chemical potential is generated. This potential is often considered in
terms of the supersaturation, which is defined as the difference between the actual
concentration and the solubility at the given temperature. Supersaturation is often
described as the driving force of crystallization, in the sense that it is necessary
(even though not per se sufficient, see later) for all the phenomena involved in
crystallization to occur.

The molecules of the solute in a supersaturated solution tend to group to-
gether into arrays known as clusters. The formation of clusters is thought to be
a stochastic process caused by random fluctuation of the energy in the solution
(Kashchiev, 2000). The clusters are not stable structures and are continuously
forming, changing size and disappearing due to the attachment or the detach-
ment of solute molecules. In principle, there exists a minimum critical size that
would make the cluster permanent crystal formations. The value of the critical
size decreases for increasing values of the supersaturation (Mullin, 1993). How-
ever, in the metastable region none of the cluster reaches the critical size and the
crystallization process does not start.

In the phase diagram, if we move from point C to point D no crystals are gen-
erated, even though in D a positive supersaturation can be measured. Clusters
of solute molecules are continuously forming and disappearing in the supersatu-
rated solution without ever reaching the critical size. From a macroscopic point of
view, the properties of the solution do not change.

If the temperature is further reduced in the metastable region, it is possible to
hit the metastable limit and reach the unstable region. In Figure 2.1, if the temper-
ature is further reduced from point D, the system will eventually reach the point
E which lies in the unstable region. As we will see in the next subsection, the
crystallization process can start once the unstable region is reached.

The width of the metastable region is often evaluated in terms of the MetaStable
Zone Width (MSZW). This quantity is defined as the difference between the tem-
perature at which the solution enters the metastable region (which is the satura-
tion temperature for the total amount of solute dissolved in the solution) and the
temperature at which the solution leaves the metastable region and reaches the
unstable region. In the phase diagram 2.1, the MSZW corresponds to the length
of the segment CE.

2.2.6 Unstable region and nucleation

In the unstable region, crystals are spontaneously generated inside the solution
due to a mechanism known as primary nucleation. For increasing values of super-
saturation, the critical size of the cluster decreases. In the unstable region, the
supersaturation is so large that some of the clusters can reach the decreased crit-
ical size. These cluster become stable crystal structures known as nuclei that can
grow spontaneously in a supersaturated solution. Primary nucleation inherits the
stochastic nature of the cluster formation process. Indeed, the primary nucleation
rate depends on the number of clusters that grow up to the critical size, which in
turn is a random quantity.

After the first crystals are formed due to the primary nucleation, other crys-
tal formation phenomena known as secondary nucleation occur. Several secondary



28 Chapter 2 The batch cooling crystallization process

nucleation mechanisms have been observed, all requiring the presence of preex-
isting crystals in the solution. A comprehensive categorization of these mecha-
nisms is out of the scope of this thesis. According to (Wissing et al., 1986), the
major secondary nucleation mechanism in industrial crystallizers is the result of
micro abrasion which occur due to the crystal-crystal, crystal-impeller and crystal-
crystallizer wall impacts. This mechanism is known as contact secondary nucleation.

In our ideal experiment, starting from the point E, a number of crystals are first
generated due to primary nucleation. Afterwards, more crystals will be generated
due to both primary and secondary nucleation. The relative amount of primary
and secondary nucleation is debated in the scientific community. The classical nu-
cleation theory predicts very high values for the primary nucleation, that would
suggest that this is the major crystal generation phenomenon. However, according
to recently developed theories and experimental evidences (Kadam et al., 2011),
the rate of the primary nucleation is much lower than the one predicted by pre-
vious theories and in practice all the crystals that are eventually generated (apart
the very first ones) are the result of the secondary nucleation mechanism.

2.2.7 Unseeded batch and crystal growth

A batch crystallization process initialized by a primary nucleation event in the
unstable region is referred to as an unseeded batch. After a primary nucleation
event, the crystallization initially evolves at a dramatic speed due to the large ini-
tial supersaturation. More and more nuclei are generated due to both primary
and secondary nucleation. Furthermore, the nuclei attract more molecules of so-
lute and start to grow. As for the nucleation, even for the growth several theories
exist (Myerson, 2002) and a thorough analysis of those is beyond the scope of this
thesis. In general, it is accepted that the growth is an increasing function of the
supersaturation.

Due to the growth, the solute is transferred from the solution to the solid crys-
talline state and consequently its concentration in the solvent rapidly drops to-
wards the solubility curve.

If the temperature is kept constant, the concentration will eventually reach the
solubility curve and the crystallization process would stop. In order to continue
the crystallization, the temperature is gradually reduced in order to lower the
solubility curve and maintain supersaturation. However, in an unseeded batch
the concentration is consumed very fast by the growth of the large number of
crystals previously generated and for this reason the trajectory followed by the
concentration in the phase diagram is always very close to the solubility curve.
When the final temperature is reached, the crystallization is finished (point F).

2.2.8 Seeded batch

It is possible to initialize the crystallization process within the metastable region
and avoid the primary nucleation event, whose stochastic nature may induce re-
producibility issues for the whole process. In order to do so, a certain amount
of crystals is introduced in the crystallizer when the system is in the metastable
region and the solution is still clear. The crystals used to initialize the process are
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known as the seeds and the operation is known as the seeding.
In the phase diagram of Figure 2.1, seeding is applied in the clear solution

at point D. After the seeding, the concentration decreases due to the growth of
the seeds and of the newborn nuclei resulting from secondary nucleation. The
temperature of the solution is decreased to generate supersaturation and finally
the point F is reached, without ever entering the unstable region.

By seeding, it is in principle possible to initialize the process with a known
number and type of crystals, and to avoid the primary nucleation event. There-
fore, fewer batch to batch variations are expected than in the case of unseeded
batch crystallization. In principle, this is a significant advantage for industrial
applications.

Furthermore, seeding is applied at lower level of supersaturation compared
to the ones required to initiate primary nucleation. For low supersaturation, the
growth and the secondary nucleation are expected to have a simpler nature, which
is an advantage for modeling and control purposes.

Finally, when the number of seeds used is sufficiently high, the material ob-
tained at the end of the process is expected to be mainly composed of the initial
seeds grown up to larger sizes, i.e. the influence of the new particles produced
due to the secondary nucleation is expected to be negligible. We speak in this case
of a full seeded crystallization process.

2.2.9 Dissolution

When the point F is reached (either from a seeded or an unseeded batch crystal-
lization), the solution has a low concentration since most of the compound pre-
viously dissolved in the solution is now in the solid crystalline form as a suspen-
sion. The physical properties of the slurry are sensibly different from the ones of
the solution: the slurry has higher viscosity and a turbid coloration. In a real in-
dustrial process, the crystallization step finishes at this point. The solid material is
typically separated from the liquid phase using mechanical filtration, dried, and
possibly undergoes further process-specific steps (Myerson, 2002).

Instead of performing these operations, in this ideal experiment we now heat
up the crystallizer in order to dissolve the solid suspension and bring the system
back to the initial state. Let us assume that in point F the concentration lies exactly
on the solubility curve. When the slurry is heated up, the solubility increases and
the crystal start to dissolve moving the concentration back to the solubility curve.
Dissolution is a very fast process compared to crystallization. For this reason, the
concentration is alway very close to (but in principle lower than) the solubility
curve during the heat-up phase. In other words, a negative supersaturation is
maintained during the heat-up phase. However, this supersaturation is so small
that can hardly be observed using normal process equipment. 3

When point C is reached, all the material is dissolved again and the solution is
clear. If the temperature is further increased, the concentration remains constant
at the same value as in point C.

3 In our experiments, we will exploit this phenomenon and determine the solubility line of the com-
ponent using the measurement of temperature and concentration collected during an heat-up phase
(see Chapter 6).
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Figure 2.2: Schematic representation of a batch cooling crystallizer. The crystal-
lizer temperature is manipulated by circulating a fluid medium in jacket. The con-
tent of the crystallizer is mixed with the help of an impeller.

2.3 Seeded batch cooling crystallization

In this section we consider in detail seeded batch crystallization. First, the prac-
tical operations required to perform the process are described. Subsequently, a
mathematical, first-principles model is presented. Finally, the results of a sim-
ulation based on the model are shown and the nonlinearities of the model are
analyzed.

2.3.1 Operation

In an industrial environment, a seeded batch cooling crystallization process takes
place in a closed stirred vessel called crystallizer. The temperature in the crys-
tallizer is usually manipulated by circulating a cooling medium in the so-called
jacket which surrounds the crystallizer. The heat is removed from the crystallizer
by contact with the cooling medium. The composition is kept as homogeneous
as possible by mixing the content of the crystallizer with the help of an impeller.
A schematic representation of a batch cooling crystallizer is represented in Figure
2.2.

The operations performed to execute the batch are described in the follow-
ing. In Figure 2.3, the corresponding position of the process in the temperature-
concentration plane are shown.

1. The solution is loaded into the crystallizer at the start of the batch. The
solution has initial concentration Ci and Th.

2. The solution is cooled down from temperature Th to the temperature Tseed

in order to generate an initial level of supersaturation which is suitable for
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Figure 2.3: Steps of a batch cooling crystallization.

seeding.

3. The seeds are added to the solution and start to grow.

4. The crystallizer is cooled down to the final temperature Tf . The crystals keep
growing and new crystals are generated due to the (secondary) nucleation
phenomena. The concentration keeps decreasing and reaches the final value
Cf .

5. The crystalline product is filtered out from the solution, dried, and under-
goes the following process steps.

The most important operational variables that can be directly manipulated in or-
der to influence the result of the crystallization process are

• The initial concentrationCi, supersaturation Si and the seeding temperature
Tseed.

• The temperature cooling profile T (t) from the seeding temperature Tseed to
the final temperature Tf .

• The amount (and possibly the type) of the seeds.

The model that we are going to develop describes the system after the seeding,
when the solution is cooled down to the final temperature (i.e. point 4 of the list
of operations described above). The model has to describe the time evolution of

• The temperature of the solution.

• The concentration and the supersaturation of the solution.

• The number and the size of the crystals.
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2.3.2 Population balance

Modeling the properties of the crystals is the biggest challenge due to the dis-
tributed nature of the process. A large number of crystals is generated and each
of them has different properties. In general, it is not practical to keep track of the
properties of each individual crystals. It is more useful (and computationally less
involved) to model the distribution of these properties among the whole popula-
tion of the crystals.

A population balance is a mathematical tool to describe systems consisting of a
(usually large) number of separate entities called particles dispersed in an environ-
mental phase called continuous phase (Ramkrishna, 2000). A number of properties
is associated with the particles. These properties are collected in the so-called par-
ticle state. In general, one would incorporate in the particle state the properties
that are of direct interest for the particular application, plus the properties that are
necessary to describe the time evolution (e.g. birth and death) of the particles.

In the case of crystallization, the particles are the crystals and the continuous
phase is the volume of the crystallizer which is occupied by the slurry. The prop-
erties contained in the particle state vector could be the position, the size, the
morphology, the shape and the purity and of the crystals. Under the hypothe-
sis of a good mixing, the properties of the slurry can be assumed homogeneous
in the crystallizer. Therefore, the position of the crystal in the crystallizer can be
removed from the particle state. For control-oriented models of crystallization,
crystal shape, morphology and purity are also ignored in the modeling and the
size L (m) ∈ [0,∞) of the crystals is almost always the only property considered
within the particle state vector (Larsen et al., 2006).

As often done in the literature, we define the Crystal Size Distribution (CSD)
n(L, t) (1/m3·m) as the number density of the crystals at time t and size L, divided
by the volume V of the crystallizer. Choosing an arbitrary region [a, b] in the size
coordinate, the total number N[a,b](t) of particles whose size is in the range [a, b]
at the time t is given by

N[a,b](t) = V

∫ b

L=a

n(L, t) dL.

The CSD evolves over time due to the growth G(L, t) (m/min) of the existing crys-
tals and the birth B0(t) (1/min) of new crystals, i.e. the nucleation. The growth
G(L, t) represents the speed at which the crystals of size L increase at the time
t and causes the CSD to shift towards higher size. The birth B0 (t) represents
the number of particles having size L = 0 that are generated due to nucleation
at the time t and implies a boundary condition on the CSD at the size 0, i.e. on
n(0, t). Given two arbitrary sizes a, b with a 6= 0 and b > 0, the growth is the only
mechanism such that the number of particles in the size interval [a, b] can instantly
change. We have indeed that

d

dt
N[a,b](t) =

d

dt
V

∫ b

a

n(L, t) dL = G(a, t)n(a, t)−G(b, t)n(b, t).

where G(a, t)n(a, t) and G(b, t)n(b, t) represent the flux of crystals through the left
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and right boundaries of the interval [a, b] respectively (Ramkrishna, 2000). This
last formula can also be written as∫ b

a

[
∂n(L, t)

∂t
+
∂Gn(L, t)

∂L

]
dL = 0.

Since the interval [a, b] in the previous equation is arbitrary, the smoothness of
the integrand implies that it vanishes altogether. Thus, we obtain the Population
Balance Equation (PBE)

∂n(L, t)

∂t
+
∂G(L, t)n(L, t)

∂L
= 0. (2.3)

This equation must be supplemented with initial and boundary conditions.

Initial condition Since we apply seeding to the process, an initial distribution
of crystals is introduced into the system at the time t = 0. Thus we set the initial
condition to

n(L, 0) = n0(L)

where n0(L) is the CSD of the seeds.

Boundary condition Assuming that the growth rateG(L, t) is positive, a bound-
ary condition can be set for the size L = 0. Let us recall that B0(t) is the number
of crystals having size L = 0 which are generated at the time t due to nucleation.
Therefore flux of the particles entering the size class L > 0 at the time t is

G(0, t)n(0, t) = B0(t). (2.4)

The PBE equation together with the initial condition and the boundary condi-
tion can be written in the form

∂n(L, t)

∂t
+

∂

∂L
G(L, t)n(L, t) = 0 (2.5)

n(L, 0) = n0(t) (2.6)

n(0, t) =
B0(t)

G(L, t)
. (2.7)

In the derivation of the PBE above, B0(t) is considered a generic function of t
and G(L, t) a generic function of L and t. In a crystallization process, B0(t) and
G(L, t) actually depend on a number of process variables (e.g. temperature, con-
centration) through constitutive kinetic expressions. In order to determine these
process variables, mass and energy balances have first to be included in the model.

Moments of the CSD It is useful to define at this point the i-th moment of the
CSD as

mi(t) ,
∫ ∞
L=0

Lin(L, t) dL, i = 0, 1, . . . , n. (2.8)
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The first four moments of the CSD carry a physical meaning regarding the total
number, length, area and volume of the crystals inside the crystallizer. We have
indeed that at any time t

• The total number Nc(t) of crystals in the crystallizer is

Nc(t) = V

∫ ∞
0

n(L, t) dL = V m0(t). (2.9)

• The total length Lc(t) of the crystals in the crystallizer is

Lc(t) = V

∫ ∞
0

Ln(L, t) dL = V m1(t). (2.10)

• The total surface area Ac(t) of the crystals in the crystallizer is

Ac(t) = V ka

∫ ∞
0

L2n(L, t) dL = V kam2(t). (2.11)

where ka (dimensionless) is the area shape factor.

• The total volume Vc(t) of the crystals in the crystallizer is

Vc(t) = V kv

∫ ∞
0

L3n(L, t) dL = V kvm3(t) (2.12)

and the total mass Ms(t) of crystals inside the crystallizer is

Mc(t) = V ρckv

∫ ∞
0

L3n(L, t) dL = V ρckvm3(t) (2.13)

where kv (dimensionless) is the volume shape factor and ρc is the density of
the crystalline material.

2.3.3 Mass balance

The solvent is only present in the liquid phase and its total amount ML (kg) is
assumed to be constant4. Conversely, the solute is transferred from the liquid to
the solid phase during the crystallization process. Let MC (kg) be the (constant)
total mass of the solute in the system. We have that

MC = Ms(t) +Md(t) (2.14)

where Ms (kg) is the mass of the solute in the solid, crystalline phase and Md (kg)
is the mass of the solute which is actually dissolved in the liquid phase. Compar-
ing the right hand side of Equation (2.14) between the time 0 and the generic time
t

Ms(0) +Md(0) = Ms(t) +Md(t). (2.15)

4We neglect the evaporation of the solvent.
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Substituting (2.13) for Ms(0) and Ms(t), solving for Md(t) we get

Md(t) = Md(0)− ρckvV (m3(t)−m3,i), (2.16)

where m3,i = m3(0) is the third moment of the CSD of the seeds.
Let us define the concentration C(t) (kg/kg) as the mass fraction of the com-

pound to the mass of the solvent:

C(t) ,
Md(t)

ML +Md(t)
(2.17)

Using relation (2.16), we can write C(t) as

C =
CiML − (1− Ci)ρckvV (m3 −m3,i)

CiML − (1− Ci)ρckvV (m3 −m3,i) + (1− Ci)ML)
. (2.18)

where Ci is the initial concentration

Ci =
Md(0)

Md(0) +ML
. (2.19)

Thus, we see that the mass balance implies a static relation between the third
moment of the CSD m3(t) and the liquid concentration C(t).

Crystal mass fraction From the liquid concentration C(t), we can also compute
the mass Ms(t) of crystals present in the slurry at the time t. Solving Equation
(2.16) for Ms(t) and using the definition of the concentration (2.17):

Ms(t) = C0(ML +Md(0))− C(t)(ML +Md(t)) +Ms(0) (2.20)

Substituting again Md(t) from (2.16) we get

Ms(t) =
Ci − C(t)

1 + C(t)
(ML +Md(0)) +Ms(0) (2.21)

and substituting Md(0) = MC −Ms(0):

Ms(t) =
Ci − C(t)

1 + C(t)
(ML +MC −Ms(0)) +Ms(0) (2.22)

We also define the crystal mass fraction mf as the ratio of the mass Ms(t) of the
crystals to the total mass of the solvent and the solute inside the crystallizer

mf (t) ,
Ms(t)

MC +ML
(2.23)

substituting Ms(t) from (2.22), we have

mf (t) =
Ci − C(t)

1 + C(t)

(ML +MC −Ms(0))

MC +ML
+

Ms(0)

MC +ML
(2.24)
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In all the practical applications, the seed massMs(0) is much smaller than the total
mass of the solute and the solvent ML +MC . Therefore, the crystal mass fraction
can be simplified as

mf =
Ci − C(t)

1 + C(t)
. (2.25)

It is often useful to evaluate the mass fraction obtained at the final time tf of
the batch. Since the final concentration C(tf ) can often be approximated as the
Cs(T (tf )), the final mass fraction can be obtained simply knowing the initial con-
centration Ci (or, equivalently, the initial saturation temperature Tsat(Ci) and the
final temperature Cf :

mf (tf ) ≈ Ci − Cs(tf )

1 + Cs(tf )
(2.26)

2.3.4 Energy balance

The total energy in the system is given by

E(t) = ρcpV T (t). (2.27)

where cp (J/oC·kg) is the slurry specific heat capacity, ρ (kg/m3) is the slurry den-
sity and T (t) (oC) is the temperature inside the crystallizer. Energy is exchanged
through contact with the jackets

dE

dt
= UA(TJ(t)− T (t)). (2.28)

Substituting (2.27) for the energy, the temperature inside the crystallizer is given
by the expression

dT

dt
=

UA

ρcpV
(TJ(t)− T (t)) (2.29)

2.3.5 Kinetic Relations

The constitutive kinetic equations link the terms G and Bo describing the growth
and the birth, respectively to the other process variables. In this thesis, we use the
so-called power laws (Myerson, 2002) in order to model these terms.

The growth rateG is assumed to depend on the supersaturation S(t) according
to the relation

G(t) = kgS(t)g (2.30)

and the birthB0 is assumed to depend on the supersaturation S(t) and of the third
moment m3(t) according to the relation

Bo(t) = kbS(t)bm3(t), (2.31)

where the supersaturation S(t) is defined as

S(t) = C(t)− Cs(T (t)). (2.32)
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Note that we assume that the growth rate does not depend on the crystal size L,
i.e. G(L, t) = G(t). In other words, the growth rate is the same for all particles,
independently on their size. Note also that the term Bo related to the nucleation
has an auto catalytic nature since it depends (through m3) on the mass of the
crystals that has already been produced in the crystallization process.

Despite their wide usage for control-oriented modeling of crystallization sys-
tems, the equations (2.30)-(2.31) describing the growth and the birth terms are the
most uncertain parts of our model, both in terms of the nonlinear structure of the
dependencies, and in terms of the numerical values of the coefficients appearing
therein.

2.3.6 Reference PBE model

Bringing together the PBE equations with the mass balance (2.16), the energy bal-
ance (2.29) and the constitutive kinetic expressions we get the “full” PBE model
(2.30, 2.31)

∂n(L, t)

∂t
+

∂

∂L
Gn(L, t) = 0 (2.33)

n(L, 0) = n0(L) (2.34)

n(0, t) =
B0

G
(2.35)

dT

dt
=

UA

ρcpV
(TJ − T ) (2.36)

where

G = kgS
g (2.37)

B0 = kbS
bm3 (2.38)

S = C − Cs(T ) (2.39)

C =
CiML − (1− Ci)ρckvV (m3 −m3,i)

CiML − (1− Ci)ρckvV (m3 −m3,i) + (1− Ci)ML
. (2.40)

and the solubility curveCs(T ) is approximated as a polynomial of the temperature
T :

Cs(T ) = a0 + a1T + a2T
2 + a3T

3. (2.41)

Note that from now on we drop the dependency on time of the variables Bo, G,
S, C, T , TJ , and m3 for notational convenience. The system is described by is a
set of partial integro-differential equations. The input to the system is considered
to be the temperature of the cooling medium inside the jacket TJ . The measured
output depends on the particular measurement set-up available. In general, it
could contain the temperature T , the concentration C and the some information
about the CSD n(L, t). In this thesis, we will assume that only the temperature T
and the concentration C are measured.

In order to simulate this system, a numerical scheme has to be applied. In
Appendix B, a finite volume scheme that can be used for this purpose is presented.
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2.3.7 Moment model reduction

A simple model reduction technique is commonly used in order to transform the
PBE model to a set of Ordinary Differential Equations (ODE).

Let us multiply both sides of Equation (2.5) by Li and integrate over the crystal
size domain: ∫ ∞

L=0

∂n(L, t)

∂t
Li dL = −G

∫ ∞
L=0

∂n(L, t)

∂L
Li dL.

Bringing the derivative out of the integral on the left hand side5 and integrating
by parts on the right hand side

d

dt

mi︷ ︸︸ ︷∫ ∞
L=0

n(L, t)Li dL = −Gn(L, t)Li
∣∣∣∣∞
0

+ iG

mi−1︷ ︸︸ ︷∫ ∞
L=0

n(L, t)Li−1 dL .

dmi

dt
= lim
L→∞

(−Gn(L, t)Li) +Gn(0)0i + iGmi−1

where in the previous formula 0i = 1 for i = 0. The limit limL→∞(−Gn(L, t)Li) is
0 since n(L, t) = 0,∀t for L large enough. Therefore, using the boundary condition
(2.7), we can write

dm0

dt
= Gn(0, t) = B0 (2.42)

dmi

dt
= iGmi−1, i = 1, 2, . . . ,∞. (2.43)

Note that (2.42) is valid only when the growth rate G is positive, since the bound-
ary condition (2.7) is used in the derivation. In order to describe the system for
negative growth rate, the moment reduction cannot be applied and the PBE model
has to be used.

2.3.8 Reference moment model

Making use of the moment transformation, we can write the ODE system

dm0

dt
= B0 (2.44)

dm1

dt
= Gm0 (2.45)

dm2

dt
= 2Gm1 (2.46)

dm3

dt
= 3Gm2 (2.47)

dT

dt
=

1

ρcpV
(UA(T − TJ)) (2.48)

5This mathematical operation is known as Leibnitz integral rule and it requires the function n(L, t)
and its first derivative to be continuous.
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where

G = kgS
g (2.49)

B = kbS
bm3 (2.50)

S = C − Cs(T ) (2.51)

C =
CiML − (1− Ci)ρckvV (m3 −m3,i)

CiML − (1− Ci)ρckvV (m3 −m3,i) + (1− Ci)ML)
. (2.52)

Note that we need to include the moments at least up to the third order in
order to obtain a closed ODE system. Indeed, the third moment m3 is required in
order to compute the concentration C, which in turn is used to compute S, G and
B.

The moment reduction does not introduce further approximations, i.e. the
system (2.44-2.48) describes the time evolution of the moments and of the tem-
perature exactly as the PBE model (2.33-2.36). However, the exact shape of the
distribution cannot be reconstructed exactly from a finite number of moments.
Furthermore, the moment model cannot be applied when the growth rate is nega-
tive (i.e. during the dissolution phase) and when B0 and G have a more complex
form 6.

In this thesis, we will not model the system during the dissolution phase.
Furthermore, we will assume that the simple kinetic expressions (2.30-2.31) hold.
Therefore, the moment model will be applied for identification and control pur-
poses.

2.3.9 Measured output and control output

We will assume throughout this thesis that the concentration C and the crystal-
lizer temperature T are the only measured outputs of the system. The actual
measurements of concentration C̃ and reactor temperature T̃ are collected at the
measurement rate ts = 5 s and corrupted by the additive noise signals eC and eT ,
respectively. The noise signals eC and eT are modeled as the realization of two in-
dependent white Gaussian processes having standard deviation σT = 0.1 oC and
σC = 0.001 kg/kg, respectively.

In the following chapter, we will consider the supersaturation S as the control
variable for batch-to-batch control. An estimate S̃ of the supersaturation S can be
readily obtained from the measurement C̃ and T̃ using (2.32), i.e.

S̃ = C̃ − Cs(T̃ ) (2.53)

since the coefficients of the solubility curveCs(·) are assumed to be known exactly.

6The method cannot not be applied for instance when G depends on the size L (except for the case
of linear dependency) or when B depends on the the CSD by a quantity that cannot be represented as
an expression involving the moments.
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Symbol Description Value Units
ρc Crystal density 1130 kg/m3

kv Crystal shape factor 0.1 dimensionless
ρ Slurry density 789 kg/m3

cp Slurry specific heat capacity 4185 J /(oC kg)
V Crystallyzer volume 0.905 m3

UA Product heat-transfer area 1.5 · 105 J /(min oC)
a0 Coefficient 0 solubility 27.8428 dimensionless
a1 Coefficient 1 solubility 2.0891 1/oC
a2 Coefficient 2 solubility −0.0311 1/oC2

a3 Coefficient 3 solubility 0.0017 1/oC3

kb Nucleation base 1.57 · 1013 1/(m3 min)
b Nucleation exponent 1.7 dimensionless
kg Growth base 5.0 · 10−4 m /min
g Growth exponent 1.1 dimensionless

Table 2.1: Model coefficients of Succinic acid in water.

2.3.10 Model coefficients and scaling

The nominal value of the coefficients of the crystallization model are reported in
the Table 2.1. These coefficient are relative to a crystallization process where the
solute is Succinic acid and the solvent is water. Real experiments based on this
crystallization system will be presented in Chapter 6.

In our model, the order of magnitude of the CSD n(L, t) is about 1015 (see
Figure 2.5). The order of magnitude of the first four moments m0,m1,m2,m3

is 1010, 106, 103, 1 respectively. The order of magnitude of kb, b, kg, g (which are
very uncertain quantities, and often considered as to-be-estimated parameters)
is 1013, 1, 10−4, 1. For numerical reasons, it is convenient to work with a model
where all the states and the other quantities of interest are in the same numerical
range. This is particularly important when the model is used for optimization or
parameter estimation.

Therefore, the model is modified by scaling the CSD by a factor sN and crystal
length by a factor sL in the software implementation. In the new variables, the
scaled CSD n′(L′, t) is expressed in (sN/(m

3 ·sLm) with sN = 10−10 and sL = 104.
The original moments mi are in 1:1 correspondence with the scaled moments m′i
according to the formula

m′i = sNs
i
Lmi. (2.54)

System equations can be derived in the scaled variables by modifying the kinetic
parameters:

k′g = sLkg k′b =
kb
s3
L

. (2.55)

Adopting this transformation, all the model states and the to-be-estimated pa-
rameters are kept in the same numerical range (approximately from 0 to 100).

In this thesis, we performed all the simulations and optimizations using the
scaled model, while we present the results in their original physical units (unless
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explicitly stated).

2.3.11 Simulations

In this subsection we analyze the response of the model developed in the previous
subsection subject to a nominal input profile. The initial values of temperature
and concentration and supersaturation are Ti = Tseed = 38 oC, Ci = 0.0147 kg/kg
and Si = 0.0025 kg/kg respectively. The CSD of the seeds no(L) (Figure 2.5a) has
the shape of a parabola centered in the mean size L0 = 40 µm and having width
vs = 20 µm and total mass of the seeds if Ms = 1 kg. The first four moments of
the seed CSD distributions are (in scaled units) m0,i = 14.7, m1,i = 5.9, m2,i =
2.38, m3,i = 0.97.

The crystallizer is cooled down from the initial temperature Ti to the final tem-
perature Tf = 20 oC in 100 minutes following an approximately linear tempera-
ture profile7. Afterwards, the crystallizer temperature is kept constant at the value
Tf for 20 more minutes.

Both the PBE model (2.33-2.36) and the moment model (2.44-2.48) are simu-
lated. The moment model is integrated in time using a fixed-step Runge-Kutta
method with sampling time ts = 5 sec. The PBE model is first discretized in the
size domain using the finite volume scheme presented in Appendix B and then
integrated in time using the same fixed-step Runge-Kutta method used for the
moment model.

A number of time profiles for this simulation are reported in Figure 2.4. In
2.4a the crystallizer temperature T , the measured crystallizer temperature T̃ and
the jacket temperature TJ are reported. The jacket temperature is lower than the
crystallizer temperature during the time of the cooling in order to remove heat
from the crystallizer. At the end of the cooling, the temperatures T and TJ reach
the final equilibrium value Tf = 10 oC. Note that the noise eT is rather small
compared to the range of variation of the temperature T and therefore the signals
T and T̃ are almost overlapping in the plot.

In Figure 2.4b the concentration C, the measured concentration C̃ and the sol-
ubility Cs are reported. The concentration C decrease from the initial value Ci to
a final value Cf which is approximately on the solubility of the final temperature
Tf , i.e. Cf ≈ Cs(Tf ). Unlike the temperature noise eT , the concentration noise
eC is rather large compared to the range of variation of the concentration C and
therefore its effect on the measurement C̃ is more important.

In 2.4c the supersaturation S and the supersaturation S̃ estimated according
to (2.53) are reported. The effect of the measurement noise signals eT and eC is
significant on S̃. Note however that the dynamics of the temperature and the
concentration are rather slow (in the range of several minutes) compared to the
measurement rate ts = 5 s. Therefore, it is possible to obtain a more accurate
estimate of the supersaturation simply by low-pass filtering the measurements T̃
and C̃ before applying (2.53). (see Section 3.3.3 in Chapter 3).

7Note that the actual input of the system is the jacket temperature TJ . In this simulation, jacket
temperature TJ was driven in such a way that the reactor temperature follows the desired temperature
trajectory by simulating the system in a feedback loop with a PI controller. The PI controller in this
simulation receives the noise-free temperature signal T .
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The supersaturation has a peak around the time t = 20 min and decreases
afterwards. This behavior for the supersaturation is expected in the case of a linear
temperature decrease due to the combination of two effects. First, the rate at which
the total crystal mass Ms increases (or conversely the concentration C decreases)
depends on the total surface area of the crystals. At the start of the batch only
few, small crystals (i.e. the seeds) having a small total surface area are present.
Therefore, the concentration C decreases slowly. In the equations of the moment
model, this is reflected by the fact that the derivative of the third moment m3

(which is related to the crystal mass) is proportional to the growth rate G times
the second moment m2 (which is related to the total surface area of the crystals).

Second, the solubility Cs(T ) is steeper at higher temperature (see Figure 2.6).
Therefore, for a linear cooling rate the solubility decreases faster at the start of
the batch. Let us recall that the supersaturation S is defined as the difference
C − Cs. At the start of the batch, the small concentration consumption is not
compensated by the large decrease in the solubility. Therefore, the supersatura-
tion increases. Afterwards, the concentration decreases faster and the solubility
slower. Therefore, the concentration approaches the solubility and the supersat-
uration decreases towards 0. This behavior is also evident from the Figure 2.4b
where the concentration C and the solubility Cs(T ) are reported.

The moments m0,m1,m2,m3 are reported in 2.4d. The moments are here re-
ported in scaled units, so that they can be conveniently shown in the same plot.
All the moments increase throughout the process reflecting the increase in the
number, length, surface area and volume/mass of the crystals. Note that the in-
crease in the number of the crystals (which is the result of the nucleation) is not
particularly significant for this system. The scaled zeroth moments m0 increases
by a factor 1.3, i.e. from m0(0) = 14.7 to m0(tf ) = 18.5. In fact, we are here sim-
ulating a full seeded crystallization process (see section (2.2.8)) where most of the
final crystals are the result of the outgrowth of the initial seeds. For different crys-
tallization systems, the zeroth moment could increase by a much larger factor, e.g.
larger than 100. For instance, it was recently shown that a crystallization process
can be initialized by seeding with a single particle (Kadam et al., 2011). In this
case, this factor is practically unbounded.

In Figure 2.5 the initial (a) and the final (b) CSD are shown. Note that while
the other results presented in this section can be obtained by simulating either the
moment model or the CSD model, the evolution of the CSD can only be simu-
lated using the PBE model. We see that the final CSD can be seen as the sum of
the initial CSD shifted to a higher mean size due to the growth of the seeds and
a “tail” of smaller particles created throughout the process due to the nucleation.
Even from these plots it is evident that we are here considering a full seeded crys-
tallization process. Indeed, the total area under the curve in Figure 2.5b (which
is proportional to the total number of crystals obtained at the end of the process,
i.e. m0(tf )) is only 1.3 times the the area of the seed CSD in Figure 2.5a) (which is
proportional to the number of the seeds, i.e. m0(t0)).

The relative importance of the crystals which are the results of nucleation is
even lower if they are considered in terms of their total mass instead of their total
number. Indeed, the crystals resulting from the nucleation are smaller than the
ones resulting from the growth of the initial seeds, and the contribution to the total
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Figure 2.4: Simulated time profiles.

mass of the crystals is proportional to the cube of the crystal length (see formula
(2.13)). In our simulation, the mass of crystals which are the result of nucleation
at the final time less the 0.1% the total mass produced at the final time in this
simulation.

2.3.12 Nonlinearity study

The presence of the nonlinearities in the model can be visualized by considering
the output deviation with respect to a nominal output in response to an input signal
constructed as the sum of a nominal input and a step input deviation. In this non-
linearity study, we consider as nominal input and output the trajectories of TJ(t)
and S(t) of the previous simulation, respectively (Figure 2.4). Step deviations on
the input having different amplitudes and applied at different time instants along
the nominal input TJ(t) trajectory are considered. For each input T J(t) built as
the sum of the nominal input TJ(t) and a step signal, the model is simulated and
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Figure 2.5: Simulated initial and final CSD.
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Figure 2.7: Normalized step responses.

the output S(t) is obtained. The output deviation caused by the step input devi-
ation is thus S(t) − S(t). In order to compare the effect of the different steps, the
normalized step responses are constructed by dividing the output deviations by the
amplitude of the corresponding steps and shifting them in time to the origin. If
the system dynamics from TJ to S were linear, all the normalized step responses
would perfectly overlap. Therefore, the level of nonlinearity can be evaluated by
considering the mismatch between the normalized responses.

In Figure 2.7a, we report the normalized responses to steps having the same
amplitude ∆TJ = 0.1oC, but applied at different time instants t = 0, 30, 60, 90 min
along the trajectory TJ(t). In Figure 2.7b, we report the normalized responses at
front of steps applied at the same time t = 0, but having different amplitudes
∆TJ = 0.1, 3, 6, 9. The dramatic effect of the nonlinearities is evident in these
plots.

2.4 Control of batch cooling crystallization processes

As previously mentioned in this chapter, the ultimate objective of a batch cooling
crystallization process is to produce crystals having certain properties in terms of
size, morphology, shape, purity, etc. In general, one is interested in the properties
that the crystals have at the end of the process, and not in the intermediate values
that they take at other instants during the process. For this reason, they classify as
a run-end control variables in the batch control framework presented in Chapter
1.

In practice, direct control of the crystal properties is severely hindered by mod-
eling and measuring limitations. In fact, the morphology, shape and purity of the
crystals are not even included in our modeling framework. In the literature, few
models have been proposed to predict the shape of the crystals and their poly-
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morphic nature (see e.g. Datta and Grant (2004); Rohl (2003)). However, they are
not considered reliable enough to be used in a control scheme. To the best of the
author’s knowledge, quantitative models describing the crystal purity have not
been developed to date.

The crystal size is described in our model in terms of the CSD. Despite recent
advances in the sensor technology, measuring this quantity is still a great techni-
cal challenge. To date, direct control of the CSD has been investigated in a certain
number of publications with promising results (see e.g. Abu Bakar et al. (2009);
Mesbah (2010); Nagy and Braatz (2004)). However, in our experimental campaign,
we only had access to temperature and concentration measurements. As recently
shown in Vissers (2012), these process variables do not contain sufficient informa-
tion in order to estimate the CSD. Therefore, we could not pursue further research
in the direction of CSD control.

In the absence of direct measurements of the crystal properties of interest, the
latter can be controlled only indirectly by specifying the reference trajectories that
a number of other process variables such as the temperature, the growth rate and
the supersaturation have to follow during the time of the batch. An accurate
tracking of the references can guarantee that the crystals obtained at the end of
the batch consistently satisfy the production requirements. For these process vari-
ables, the entire trajectory that is followed throughout the process has an influence
on the properties of the crystals that are generated. Therefore, they are considered
run-time control variables in the framework introduced in Chapter 1.

Temperature control is the most common control strategy for batch cooling
crystallizers in an industrial settings (Fujiwara et al., 2005). The desired cooling
profile is given as reference to a feedback controller. Since the thermal part of
the dynamics is fairly linear, a linear feedback controller such as a PI or PID can
provide a sufficiently accurate tracking performance. While temperature control
is generally easy to implement, it is not always sufficient in order to guarantee the
desired product quality. In fact, the supersaturation and the growth rate have a
more direct influence on the crystallization process.

Supersaturation and growth-rate control have been widely investigated in the
literature (Nagy et al., 2008) using different strategies. Unlike the thermal dynam-
ics, the dynamics of the growth and of the supersaturation are severly nonlinear
(see Section 2.3.12). For this reason, a nonlinear control strategy is required in this
case. In Xie et al. (2002) and Vissers et al. (2011) a feedback linearization strategy
has been proposed for supersaturation control. An experimental verification of
such scheme has been presented in Vissers et al. (2012). MPC has also been pro-
posed and experimentally verified for the control the growth rate in Mesbah et al.
(2011).

In the control strategies described above, a nominal model of the process dy-
namics is used to design the model-based controller. The quality of this model
used to synthesize the controller influences the tracking performance, and thus the
properties of the crystals. Unfortunately, models of batch cooling crystallization
processes suffer from significant uncertainties, notably in the parts describing the
growth and the nucleation. In the next chapter we will show that, when several
batches are repeated, it is possible to improve the model (and consequently, the
performance delivered by a model-based control solution) using the input/output
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measurements from previous batches.

2.5 Summary

In this chapter, we have introduced the batch cooling crystallization process from
a control-oriented perspective. The objective of the process is to extract the molecules
of the solute from the solution in the solid, crystalline phase. Furthermore, a num-
ber of specifications in terms of properties such as size, morphology, shape and
purity have to be met.

First, we have presented general principles regarding crystallization and pre-
sented a first-principle mathematical model of the batch cooling crystallization
process. The model is constructed using the population balance framework and
is described by a set of partial integro-differential equations. The well-known mo-
ment model reduction technique has been applied in order to transform the orig-
inal model to a set of ordinary differential equations known as moment model.
Due to the simpler structure, the moment model can more easily be used for iden-
tification and control purposes. Even though it is not possible to reconstruct the
full crystal size distribution from a finite number of moment, the moment model
can still describe the temperature, concentration and supersaturation dynamics
without introducing any approximations in our case.

Following, we have presented and discussed the results of a number of sim-
ulations. The presence of severe nonlinearities in the dynamics from the jacket
temperature to the supersaturation has been visualized by considering the out-
put response of the model when step changes are applied along a nominal input
trajectory.

Finally, we have discussed a number of control strategies for batch cooling
crystallization. In general, direct control of the desired crystal properties such
as the CSD is hindered by measurement and modeling limitations. Therefore, in
most of the cases the crystal properties are only indirectly controlled by specifying
the reference trajectories that a number of process variables such as the temper-
ature, the growth rate and the supersaturation have to follow during the time of
the batch. An accurate tracking of the references can guarantee that the crystals
obtained at the end of the batch consistently satisfy the desired properties.

In the state-of-the-art approaches, the tracking of these variables is achieved
using model-based control scheme. The quality of the model used to synthesize
the controller influences the tracking performance, and thus the properties of the
crystals. In the next chapter we will show that, when several batches are repeated,
it is possible to improve the model using the input/output measurements from
previous batches.

2.6 Symbols and units
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Symbol Description Units
a0 Coefficient 0 solubility dimensionless
a1 Coefficient 1 solubility 1/oC
a2 Coefficient 2 solubility 1/oC2

a3 Coefficient 3 solubility 1/oC3

b Nucleation exponent dimensionless
cp Slurry specific heat capacity J/(oC kg)
C Concentration of Succinic acid in water kg/kg
Cs Solubility of Succinic acid in water kg/kg
E Energy of the system J
g Growth exponent coefficient dimensionless
kb Nucleation base 1/(m3 min)
kg Growth base coefficient m/min
ka Area shape factor dimensionless
kv Crystal shape factor dimensionless
L Crystal size m
m0 0th moment of the CSD 1/m3

m1 1st moment of the CSD m/m3

m2 2nd moment of the CSD m2/m3

m3 3rd moment of the CSD m3/m3

ML Total mass of solvent kg
MC Total mass of solute kg
Mc Mass of solute in the solid, crystalline phase kg
Md Mass of solute dissolved in the solution kg
n CSD 1/(m3 m)
S Suspersaturation kg/kg
σC Standard deviation concentration noise kg/kg
σT Standard deviation temperature noise oC
T Crystallizer temperature oC
TJ Jacket temperature oC
UA Product heat-transfer area J/(min oC)
V Crystallyzer volume m3

ρ Slurry density kg/m3

ρc Crystal density kg/m3

Table 2.2: Symbols and units used in this chapter.



3 CHAPTER

Batch-to-batch control for cooling
crystallization

In this chapter, we investigate the use of batch-to-batch model update
techniques for the batch cooling crystallization process with the objec-
tive of improving the supersaturation tracking performance. When a
model structure describing the true process dynamics is available, the
use of a parametric model update provides a fast and efficient learning
mechanism. However, the performance of a parametric approach is re-
duced in the case of structural model mismatches. Thus, when severe
structural model mismatches are suspected, the use of a nonparamet-
ric approach may be advantageous. Two batch-to-batch control algo-
rithms for supersaturation control in cooling crystallization, namely
Iterative Identification Control (IIC) and Iterative Learning Control
(ILC) are developed in this chapter. IIC is based on a parametric model
update. In IIC, estimates of the uncertain coefficients of the process
model are recursively estimated adopting a Maximum Likelihood es-
timation framework. Conversely, ILC is based on a nonparametric
model update. In IIC, the nominal process model is adjusted with a
nonparametric, additive correction term which depends on the error
in the last batch. The supersaturation tracking performance achieved
using the two algorithms is investigated in a simulation study. Similar
control schemes will be tested on a real experimental setup in Chapter
6. 1

3.1 Introduction

As discussed in the previous chapter, the ultimate objective of a batch cooling
crystallization process is to produce crystals having specified properties defined
in terms of size, morphology, shape, composition, purity, etc. However, direct

1This chapter encompasses the results presented in Forgione et al. (2012b) and Forgione et al.
(2012a).

49
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control of these properties is often not possible due to measurement and modeling
limitations.

In most of the cases, the crystal properties are translated into reference tra-
jectories that a number of process variables such as the temperature, the super-
saturation and the growth rate have to follow during the time of the batch. An
accurate tracking of these references can guarantee that the desired properties are
consistently met (Fujiwara et al., 2005; Gutwald and Mersmann, 1990).

In industrial batch cooling crystallizers, the crystallizer temperature is often
the only process variable that is controlled (Fujiwara et al., 2005). The jacket tem-
perature is the manipulated variable used to steer the crystallizer temperature to
the desired trajectory. Since accurate, on-line temperature measurements can be
readily obtained, the crystallizer temperature is usually controlled in a closed-
loop setting. In this configuration, the desired cooling profile is given as set-point
of a feedback loop. This strategy is known as T-control in the literature (Fujiwara
et al., 2005). In general, the thermal part of the dynamics is fairly linear, and a lin-
ear feedback controller such as a PI or PID provides a sufficiently accurate tracking
performance. This controller is also useful in order to reject real-time disturbances
affecting the temperature dynamics, caused for instance by variations of the am-
bient temperature, and of the temperature of the cooling medium circulated in the
jacket of the reactor.

However, even when the temperature is effectively controlled, the final prod-
uct of a batch might not show all the desired properties. In fact, even though the
temperature is an important process variable, it is not the one most closely related
to the crystallization dynamics.

A process variable having a more significant effect on the properties of the
final product is the supersaturation, which is the driving force for important phe-
nomena involved in crystallization such as the growth and the nucleation. On-
line feedback control of the supersaturation has been widely investigated (Nagy
et al., 2008). This strategy is known as C-control in the literature (Fujiwara et al.,
2005).2 In general, C-control was shown to give better performance compared to
T-control, particularly in terms of reproducibility.

In most of the C-control strategies, a nominal model of the supersaturation
dynamics is used to design the model-based controller. Therefore, the quality
of the model has a direct influence on the tracking performance that the model-
based controller can achieve. Unfortunately, the models describing this dynamics
often suffer from severe uncertainties. Due to these uncertainties, the performance
delivered by the model-based controller can significantly deteriorate in the case of
a model-plant mismatch.

In this chapter, we investigate the opportunity of using input/output data
from previous batches in order to improve this model, and consequently the per-
formance delivered by a model-based control solution. We consider in particular
a situation in which the concentration measurements are available only at the end
of a batch. This situation can occur in an industrial environment, where the mea-
surements are often obtained through the off-line analysis of samples collected

2The term C-control refers to the concentration, which is required (together with the temperature)
in order to compute the supersaturation.
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throughout the batch. 3 Due to this limitation, on-line feedback control for the
supersaturation is not feasible and feedforward solutions have to be applied. The
quality of the model is even more important than in the case of feedback control.
Indeed, feedforward control solutions are known to be more sensitive to model-
plant mismatches than the ones based on on-line feedback.

We present a Batch-to-Batch (B2B) control framework conceived in order to
track a given supersaturation profile under the presence of disturbances and model
uncertainties. Based on the off-line concentration measurements collected from
the previous batches, the B2B algorithm updates a model of the uncertain process
dynamics. Following, it uses the updated model in order to compute an improved
reference profile T r for the temperature in the crystallizer. This profile is fed to
the lower-level PI temperature controller in the next batch. Two B2B algorithms,
namely Iterative Identification Control (IIC) and Iterative Learning Control (ILC)
are here presented. While IIC is based on a parametric model update, ILC per-
forms a more flexible, nonparametric model correction. Due to the different na-
ture of the model update, the two algorithms have complementary advantages
and disadvantages, which are investigated in this chapter in a simulation study.

In the IIC algorithm, the measurements are used to estimate the uncertain coef-
ficients of the process described in a fixed model structure. In our case, the model
structure used for IIC is given by the moment model (2.44)-(2.48) introduced in
the previous chapter, leaving the coefficients of the growth and the nucleation as
free parameters. The estimation of these parameters is performed iteratively af-
ter each batch adopting a Maximum Likelihood (Van den Bos, 2007) framework
which combines the previous estimate with the data measured in the most recent
batch. By doing this (and under certain conditions on the data used to perform
the estimation, see later), the accuracy of the model increases after each batch,
since the estimates are constructed using an increasing amount of information.
Consequently, the control performance also improves.

In general, the accuracy of the parameter estimates can really increase only if
the data used to perform the estimation are sufficiently informative (Ljung, 1999).
This requires certain conditions on the input signal applied to the system while
the data are generated. These conditions could be enforced for instance by su-
perposing a special excitation signal to the normal control input (i.e. the input
optimized in order to track the desired supersaturation set-point). In our case,
we found that the normal control input already leads to sufficiently informative
datasets. Therefore, we did not include excitation signals in the IIC algorithm.

IIC is a very powerful and general model learning approach. Owing to the
structural use of the a-priori knowledge available on the process, this approach
has the potential of delivering an accurate model using a limited amount of data,
i.e. within a limited number of batches. This model can be utilized in order to de-
sign virtually any kind of model-based controller. Even though here we consider
specifically a supersaturation tracking control problem, other objective could be
similarly selected.

However, a limitation of IIC is that its attractive properties are valid only under
the assumption that the process dynamics are truly described within the model

3 In other cases, the measurement are actually collected on-line, but they are not considered reliable
enough for an on-line feedback control solution.
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structure selected. In the case of a structural model mismatch, i.e. when the true
process dynamics are not described by any of the models in the model structure,
the performance delivered by IIC is in general diminished. Unfortunately, struc-
tural model mismatches cannot be ruled out for the batch crystallization process.
As discussed in the previous chapter, some of the basic principles of the process
are debated in the scientific community, and different model structures describing
the same phenomena occurring during the process can be found in the literature.

In order to cope with the limitations of IIC in the presence of structural model
mismatches, we have investigated the use of a nonparametric model update ap-
proach, namely ILC. Unlike IIC, ILC does not require strict assumptions on the
model structure describing the true process dynamics, nor the presence of excita-
tion signals. However, it does require that the initial condition and the reference
trajectories are the same (or at least do not change too much) for a number of
consecutive batches, and that the real-time disturbances are moderate or absent.

Different algorithms are categorized as ILC in the literature. The term ILC ac-
tually denotes a class of algorithms specifically designed to solve repeated feed-
forward reference tracking problems (Bristow et al., 2006), such as the supersatu-
ration tracking problem at hand. The ILC algorithm presented in this chapter is
based on the two-step procedure first introduced in Volckaert et al. (2010). After
a batch, a nominal model of the dynamics between the temperature reference T r

and the supersaturation S is updated in a non-parametric way using an additive
correction term. In our case, the nominal model for the ILC algorithm is the (non-
linear) moment model (2.44)-(2.48) introduced in the previous 2 with a nominal
values for the uncertain physical parameters. The correction term is obtained in
such a way that the updated model matches more closely the actual supersatu-
ration during the previous batch, which is estimated using the measurement of
temperature and concentration.

Owing to the flexible, non-parametric model correction, the ILC algorithm is
suitable to compensate the nominal model for the structural model mismatches
that could affect the true process dynamics. This is the crucial advantage of ILC
with respect to IIC. However, being a nonparametric approach, ILC generally re-
quires a larger amount of data than IIC in order to obtain an accurate model.
Therefore, the convergence of the supersaturation to the desired set-point can only
be achieved in a certain number of batches. Furthermore, the model corrected us-
ing ILC can be a valid approximation of the true process dynamics only along
one particular trajectory. Therefore, this model is useful only to solve a specific
repeated reference tracking problem, where the set-point is kept the same for a
number of consecutive batches.

Another well-known drawback of ILC is the inability to cope efficiently with
real-time disturbances, i.e. the disturbances that are different from batch to batch.
To date, most of the successful applications of ILC have indeed appeared in the
domain of (electro)-mechanical systems, where these disturbances are less severe
than in the case of process systems (Ahn et al., 2007). For process control, the use
of ILC is known to be more delicate, and generally suggested only in combination
with a regular feedback control solution (Chin et al., 2004). However, the issue of
these disturbances was completely ignored in previous contributions of ILC for
supersaturation control in batch cooling crystallization, (see Zhang et al. (2009)
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and Sanzida and Nagy (2012)), where the jacket temperature was directly adjusted
from batch to batch using a similar ILC algorithm. In our B2B framework, the
presence of the lower-level PI temperature controller is meant to mitigates the
effect of these disturbances on the ILC.

3.2 Model of the batch cooling crystallization process

The dynamics of the batch cooling crystallization process is described by the mo-
ment model (2.44)-(2.48) already presented in Chapter 2. A compact state space
representation of the model is

ẋ = F(x) + G(TJ)

y = H(x)

S =M(y)

(3.1)

where the states x = (m0 m1 m2 m3 T )> are the first four moments of the CSD,
and the crystallizer temperature, the input is the jacket temperature TJ , the mea-
sured outputs y = (T C)> are the crystallizer temperature and the solute con-
centration, the control output S is the supersaturation. The state and the output
mappings are given by

F(x) =


kb
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C − Cs

(
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))b
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 ,G(TJ) =


0
0
0
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ρcpV
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 ,H(x) =

(
T
C

)
, (3.2)

M(y) = C − Cs(T ) (3.3)

where

C =
CiML − (1− Ci)ρckvV (m3 −m3,i)

CiML − (1− Ci)ρckvV (m3 −m3,i) + (1− Ci)ML)
(3.4)

is the liquid concentration and

Cs(T ) = ao + a1T + a2T
2 + a3T

3 (3.5)

represent the solubility at the temperature T .
Note that the control output S can be computed from the measured outputs y

using the static relationM(y) defined in (3.3), i.e. S = C − Cs(T ).
The parameters θ =

[
kg g kb b

]> in the state equation are in practice often
not known with good accuracy. We assume that a nominal parameter vector
θ̂1 , [k̂g,1 ĝ1 k̂b,1 b̂1]> is available a priori. However, the data-generating sys-
tem which represents the true crystallization system is described by a different
parameter vector θo , [kg,o go kb,o bo]

> in order to study the performance of
the algorithm in the presence of a parametric model mismatch.4 More precisely, the

4Later in this chapter, we will also consider the situation of a structural model mismatch and modify
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nominal parameter vector is chosen as θ̂1 = [5 1.1 10.57 1.7]>, while the true pa-
rameter vector is θo = [4 1 12 1.4]>. The other coefficients appearing in the model
equations are assumed to be known exactly and their numerical values are the
ones reported in Table 2.1.

It will be convenient to consider the system dynamics in a finite, discrete-time
representation. By applying an integration method with fixed step td = 5 s, the
input/output relation from TJ to S is represented by the static mapping S =
FSTJ (TJ, θ) relating the input vector TJ ∈ RN containing the N values of the
jacket temperature TJ to the output vector S ∈ RN containing the N values of the
supersaturation S at the sample points, where N is the number of samples corre-
sponding to a batch. 5 In this chapter, we shall adopt the bold-face notation W
for vectors of sampled variables W ∈ RN . Furthermore, the notation FWV (·) will
be used in general to describe the mapping from an input vector V to an output
vector W, i.e. W = FWV (V). The dependence of the mapping on the uncertain
parameter vector θ will be made explicit when required.

Measurements C̃ and T̃ of C and T are collected at the same rate ts = td and
corrupted by the additive noise signals eC and eT , respectively:

C̃ = C + eC , T̃ = T + eT . (3.6)

The noise signals eC and eT are modeled as the realization of two independent
white Gaussian processes having standard deviation σT = 0.1 oC and σC =
0.002 kg/kg . The jacket temperature TJ is perturbed by an additive, low-frequency
disturbance δT (see Figure 3.1), which is modeled as a first-order autoregressive
process having standard deviation σAR = 0.25 oC:

δT (t+ 1) = aδT (t) + e(t) (3.7)

where a = 0.9895 and e(t) is white noise with standard deviation σe = σAR
√

1− a2.
The realizations eC , eT and δT are different for all the batches.

There are several reasons to include the disturbance δT into the nominal tem-
perature dynamics. Such a disturbance could be the effect of undesired inter-
actions between the crystallizer and other pieces of equipment connected to the
same utility network. For instance, the demand of coolant of the complete site
can cause a disturbance on the jacket temperature (Vissers, 2012). The disturbance
δT can also used to take into account the effect of unmodeled dynamics such as
the thermal losses to the environment, which in turn depend on the crystallizer
temperature and the ambient temperature.

3.3 Batch-to-batch supersaturation control

In this section we present the B2B strategies ILC and IIC. Both strategies are based
on the same B2B+PI configuration that is presented in the first subsection. Subse-
quently, the role of the B2B controller is discussed and finally a detailed descrip-
tion of the ILC and IIC algorithms is given.

the structure of the model equations representing the data-generating system.
5Hereafter, we ignore the error which is due to the discretization of the continuous-time system.
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Figure 3.1: The overall B2B+PI control scheme.

3.3.1 B2B+PI Configuration

As discussed in the introduction, we included in the control scheme a PI controller
for the crystallizer temperature. This controller is beneficial in order to reject the
disturbance δT that we introduced in the previous section.

The B2B algorithm will be designed to provide a reference trajectory T r for
the PI controller, instead of providing a trajectory for the jacket temperature TJ
directly. The overall B2B+PI control scheme is sketched in Figure 3.1. The two
leftmost blocks represent the control system: the PI temperature controller and
the B2B controller, which drives the reference of the latter. The signals coming
and departing from the B2B block are updated off-line only, i.e. from one batch
to the other, and are indicated by dashed lines. All other signals represented by
continuous lines are updated during the batch. Note that the supersaturation S,
which is the control output of the process, is the static function of the measured
outputs T and C defined in Equation (3.3), i.e. S = C − Cs(T ) where Cs(·) is the
solubility line (see Section 2.2.4).

3.3.2 Design of the PI controller

The design of the PI controller is here presented in the continuous-time framework
for simplicity. The continuous-time transfer function of the PI controller is

C(s) = KP +
KI

s
(3.8)

where
KP =

ρcpV

tclUA
and KI =

1

tcl
(3.9)

and tcl = 2 min. Note that the PI controller is designed in order to move the
pole of the closed-loop system to the location 1

tcl
. Indeed, the closed-loop transfer
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function FTT r (s) from T r to T is

FTT r (s) =
1

1 + s
tcl

. (3.10)

A discrete-time version of this PI controller having the same sampling time
td = 5 s as the one used to discretize the crystallization system is implemented in
the simulation model:

C(z) = KP + ts
KI

z − 1
. (3.11)

3.3.3 Nominal cooling trajectory

The temperature reference T r for the first batch will be set to a linear trajectory
from 38 to 10 oC in a total time of tf = 150 min. The corresponding temperature
and supersaturation profiles are reported in Figure 3.2. From the temperature
plot, we see that the actual temperature T follows the reference T r with a very
small steady-state tracking error. Note that a nonzero steady state tracking error
has to be expected for this closed-loop system, which has one integrator in the
loop transfer function, in response to a linear reference trajectory. The effect of the
slow disturbance δT is efficiently rejected by the PI controller and is not visible on
the temperature T . The effect of the additive measurement noise eT is also almost
negligible and the signals T̃ and T almost overlap on the plot.

On the contrary, the effect of the measurement noise eC and eT is much more
significant on the estimate S̃ of the supersaturation computed as

S̃ = C̃ − Cs(T̃ ). (3.12)

A more accurate estimate of the supersaturation can be obtained noting that
the measurement rate ts = 5 s is rather fast compared with the dynamics of the
system, which are in the order of several minutes. Therefore, it is possible to re-
ject a significant portion of the measurement noise by low-pass filtering the mea-
surements T̃ and C̃. For this purpose, we make use of a fourth order low-pass
Butterworth filter B(z) having a cutoff frequency of 1

tf
with tf = 5 min

B(z) =
6.5785 · 10−6(z + 1)4

(z2 − 1.814z + 0.8239)(z2 − 1.913z + 0.9231)
. (3.13)

First, the signals T̃f and C̃f are obtained by filtering T̃ and C̃, respectively through
B(z). A zero-phase lag is obtained by processing the signals in both the forward
and reverse directions (Mitra, 2000). 6 Following, a filtered estimate Sf of the
supersaturation S is computed as

S̃f = C̃f − Cs(T̃f ). (3.14)

It is evident from the plot that S̃f is a much more accurate estimate of actual su-

6Note that this filtering technique can only be performed off-line having the entire measurement
vectors T̃f and C̃f . However, this is not a limitation for batch-to-batch control.
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Figure 3.2: Temperature and supersaturation profiles for the first batch.

persaturation S than S̃. For this reason, in the ILC algorithm we will estimate the
supersaturation according of (3.14).

3.3.4 Batch-to-Batch Control

After batch k, the corrupted measured outputs ỹk = (T̃k, C̃k)> are available.
The role of the B2B controller is to design an improved input Tr

k+1 in order to
track a reference Sk+1 in the batch k + 1. The design can be based on all the
information collected up to batch k, that is given by the data collected from the
previous batches and the a priori information about the system. In our case, the
a priori information consists of an assumed model structure FST r (·, θ), the nominal
parameter vector θ̂1 and the properties of the disturbances.

The B2B algorithms IIC and ILC are described in the following.

3.3.5 Iterative Identification Control

In the IIC algorithm, the measurement ỹk = (T̃k C̃k)> collected from one batch
are used to update an estimate θ̂k+1 , [k̂g,k+1 ĝk+1k̂b,k+1 b̂k+1] for the unknown
parameter vector θo. The IIC-updated model from the temperature reference T r

to the supersaturation S for the batch k + 1 is defined as

ŜIIC
k+1(·) = FST r (·, θ̂k+1) (3.15)

and is used to compute the temperature reference for the next batch as

Tr
k+1 = arg min

Tr∈RN

∥∥∥Sk+1 − ŜIIC
k+1(Tr)

∥∥∥2

. (3.16)
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The estimation of the updated parameter θ̂k+1 is performed in a Maximum Likeli-
hood (ML) framework (Van den Bos, 2007) based on the previous estimate θ̂k and
the data ỹk = [T̃k C̃k]> measured in the current batch. 7

Using the notation introduced in Section 3.2, the dynamics of the data-generating
system from T to C is described by the function FCT (·, θ) for θ = θo. Formally, we
should solve an Errors-in-Variables (EIV) estimation problem (Soderstrom, 2007)
since both T̃k (which is the input variable of the to-be-estimated dynamics) and
C̃k (which is the output) are corrupted by measurement noise. However, com-
puting the ML estimator for an EIV problem is rather complicated, in particular
for a generic nonlinear system such as the one describing the batch crystallization
process considered here.

In this work, we construct the ML estimator ignoring the effect or the mea-
surement error eT on the temperature, since its standard deviation is very small
compared to the amplitude of the temperature T . For this purpose, let us assume
for the moment that the noise-free temperature Tk is available. Then, the ML
estimator is given by

θ̂k+1 = arg min
θ

1

σ2
C

∥∥∥C̃k − FCT (Tk, θ)
∥∥∥2

+
∥∥∥θ − θ̂k∥∥∥2

P−1
k

. (3.17)

where FCT (·, θ) is the uncertain dynamics from T to C, the matrices Pk for k ≥ 2

are the covariances matrices of the estimated parameter vectors θ̂k (the covariance
matrices will also be iteratively estimated, see later), and the matrix P−1

1 is set to
0.

For a sufficiently large value of N , the estimated parameter vector θ̂k+1 is ap-
proximately normally distributed around θo with a covariance matrix Pk+1 given
by

P−1
k+1 = P−1

k +

Ik︷ ︸︸ ︷
∂FCT (Tk, θ)

∂θ

>
Σe
−1 ∂FCT (Tk, θ)

∂θ

∣∣∣∣
θ=θo

(3.18)

were Ik � 0 is the information matrix relative to the experiment k (see Van den Bos
(2007)).

In practice, the true parameter θo is not known. Therefore, the information
matrix is approximated as

Ik =
∂FCT (Tk, θ)

∂θ

>
Σe
−1 ∂FCT (Tk, θ)

∂θ

∣∣∣∣
θ=θ̂k

, (3.19)

i.e. the derivatives of FCT (Tk, θ) with respect to the parameter vector θ are com-
puted in the point θ̂k, instead that in the unknown point θo.

As mentioned before, the noise-free signal Tk is not available in practice. There-
fore, we will replace Tk with T̃k in the formulas (3.17), (3.18), (3.19) in the IIC

7The previous parameter θ̂k could be interpreted as a prior in a Bayesian estimation framework.
However, since θ̂k is obtained from a previous parameter estimation procedure using data from pre-
vious batches, we refer to our framework as Maximum Likelihood given the past and the most recent
batch data (see also Remark 3.1.)
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algorithm. 8

Remark 3.1 In the ML estimation framework, P−1
1 is set to 0 and therefore the initial

estimate θ̂1 has no influence on the future estimates θ̂k, k ≥ 2 in (3.17). In general, it
is also possible to set P−1

1 to a positive definite matrix, i.e. P−1
1 > 0. This choice would

act as a regularization term penalizing the deviation of the estimates θ̂k, k ≥ 2 from the
initial estimate θ̂1. In a Bayesian framework, the estimator (3.17) with P−1

1 > 0 is a
Maximum a Posteriori estimator where a Gaussian prior distribution having mean value
θ̂1 and covariance P1 is assigned to the true parameter vector θo.

Remark 3.2 The inverse P−1
k+1 of the parameter covariance matrix increases from batch

to batch of a term which is equal to the information matrix Ik. (see Equation 3.18). The
control performance increases from batch to batch only if the eigenvalues of the information
matrix are large in certain directions in the parameter space that most influence the control
performance.

Summarizing, in the IIC algorithm at each batch k these steps are executed:

1. The temperature reference Tr
k is set as the input to the temperature con-

troller and the noisy measurements C̃k, T̃k are collected.

2. A corrected model of the dynamics from T r to S is defined as

ŜIIC
k+1(·) = FST r (T

r, θ̂k+1). (3.20)

The updated parameter vector θ̂k+1 is computed as

θ̂k+1 = arg min
θ∈R4

(
1

σ2
C

∥∥∥C̃k − FCT (T̃k, θ)
∥∥∥+

∥∥∥θ − θ̂k∥∥∥2

P−1
k

)
(3.21)

where Σe = σ2
CIN . The inverse of the covariance P−1

k+1 is set to P−1
k+1 =

P−1
k + Ik where Ik is an approximation of the information matrix computed

as

Ik =
∂FCT (T̃k, θ)

∂θ

>

Σ−1
e

∂FCT (T̃k, θ)

∂θ

∣∣∣∣∣
θ=θ̂k

.

and P−1
1 is set to a zero matrix.

3. The corrected model is used to compute the temperature profile for the next
batch as

Tr
k+1 = arg min

Tr∈RN

∥∥∥Sk+1 − ŜIIC
k+1(Tr)

∥∥∥2

. (3.22)

The optimization problems (3.21) and (3.22) are solved numerically using the
active-set method of the Matlab function fmincon. The same single shooting

8We verified the validity of this approximation by performing the estimation using both the noise-
free temperature signal T and the noisy signal T̃. The parameters estimated using the noise-free
temperature signal T were almost identical to the ones obtained using the noisy signal T̃. The results
presented in the simulation study are obtained using the noisy signal T̃.
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strategy used to solve problem (3.28) is used for problem (3.22). For problem
(3.21), the derivatives of the objective function with respect to model parameters
are computed analytically by integrating the sensitivity equations along with the
model equations Rabitz et al. (1983).

3.3.6 Iterative Learning Control

In the literature, different B2B control algorithms are categorized as ILC (Bristow
et al., 2006). In general, they can be described as mappings defining the input in
the next batch based on the nominal model and the previous input-output data.

The ILC algorithm presented here uses as nominal model the dynamics F̂ST r (·)
obtained from the model equations (3.1)-(3.2) using the nominal parameter vector
θ̂1. An additive correction to the nominal model is computed after each batch
considering the measurement collected in the previous batch.

Once the batch k is performed, the measurement ỹk = (T̃k C̃k)> is used to
estimate the control output Sk according to (3.14). The estimate S̃k,f is thus com-
puted as S̃k,f = C̃k,f −Cs(T̃k,f ) where C̃k,f and T̃k,f are obtained by filtering the
signals C̃k and T̃k, respectively through the filter B(z) in both the forward and
backward direction.

The ILC-updated model SILC
k+1(·) from the temperature reference T r to the su-

persaturation S for the batch k + 1 is defined as

ŜILC
k+1(·) = FST r (·, θ̂1) + αk+1 (3.23)

The correction vector αk+1 is an estimate obtained using S̃k,f of the difference
Sk − FST r (Tk ,̂̂ θ1) (see later in this section for the exact definition of αk+1). Let us
assume now for simplicity that αk+1 is exactly equal to Sk − FST r (Tk, θ̂1). In this
case, the output of the ILC-corrected model ŜILC

k+1(·) in response to the temperature
reference Tr

k is equal to the output Sk given by the uncertain data-generating
system in response to the same temperature reference profile Tr

k.
Next, the ILC-updated model (3.23) is used to optimize the reference temper-

ature profile Tr
k+1 for the next batch according to the quadratic criterion

Tr
k+1 = arg min

Tr∈RN

∥∥∥Sr − ŜILC(Tr)
∥∥∥2

(3.24)

where Sr is the supersaturation set-point.
Note that the ILC-corrected model ŜILC

k+1(·) is just an approximation of the of
the data-generating system for the batch k + 1. In fact, the output of the data-
generating system and the ILC-corrected model are the same only for the temper-
ature reference Tr

k, while a different reference Tr
k+1 obtained through (3.24) will

be actually applied in the batch k + 1. Nonetheless, the supersaturation output
Sk+1 obtained with the reference profile Tr

k+1 is still expected to be closer to the
set-point Sr than Sk. Therefore, after a number of batches, the supersaturation is
expected to approach the set-point, while the temperature reference will approach
the optimal value for the uncertain data-generating system.
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The correction vector is actually computed as

αk+1 = arg min
α∈RN

∥∥∥S̃k,f − (FST r (Tr
k, θ̂1) + α

)∥∥∥2

+ λk ‖α−αk‖2 . (3.25)

The first term in (3.25) forces αk+1 to be close to the difference S̃k,f − FST r (·, β̂1).
The second term in (3.25) has a regularization effect and prevents large variation
for the correction vector αk+1 with respect to the previous correction vector αk.
On the one hand, this regularization term is beneficial in order to reduce the in-
fluence of the noise affecting S̃k,f . On the other hand, the regularization term
should not be too large because the actual difference Sk,f − FST r (Tr

k, β̂1) changes
from batch to batch, since the temperature reference Tk also changes from batch
to batch. Thus, the correction vector αk also has to adapt from batch to batch. The
scalar λk is a tuning parameter, possibly iteration-dependent, which represents a
compromise between the two objectives.

Summarizing, for each batch k the following steps are executed:

1. The temperature reference Tr
k is set as the input to the temperature con-

troller and the noisy measurements ỹk = (T̃k C̃k)> are collected.

2. S̃k is computed as S̃k,f = C̃k,f − Cs(T̃k,f ). C̃k,f and T̃k,f are obtained by
filtering the signals C̃k and T̃k, respectively through the filter B(z) in both
the forward and backward direction.

3. The updated model for the batch k + 1 is defined as

ŜILC
k+1(·) = FST r (·, θ̂1) + αk+1 (3.26)

where αk+1 is computed as

αk+1 = arg min
α∈RN

∥∥∥S̃k − (FST r (T
r
k, θ̂1) + α)

∥∥∥2

+ λk ‖α−αk‖2 . (3.27)

The correction vector used in the first batch α1 is set to zero.

4. The corrected model is used to compute the temperature profile for the next
iteration

Tr
k+1 = arg min

Tr∈RN

∥∥∥Sk+1 − ŜILC
k+1(Tr)

∥∥∥2

(3.28)

where Sk+1 is the supersaturation set-point for the batch k + 1.

The optimization problem (3.28) is solved numerically using the active-set
method of the Matlab function fmincon. The optimization is based on a
single shooting strategy that is discussed in Appendix A.

3.4 Simulation Results

In this section we evaluate the performance of the B2B scheme described in the
previous section on two different test cases, namely in presence of parametric



62 Chapter 3 Batch-to-batch control for cooling crystallization

model mismatch only (Case 1) and in presence of a structural mismatch (Case
2). The batch time is tf = 150 min and the total number of batches is n = 30.
The desired supersaturation is the constant value Sk = 0.0025 kg/kg for the first
10 batches and is changed from batch 11 to 30 to a parabola passing through the
points (t, S) = {(0, 0.0025), (100, 0.0012), (150, 0.005)} (min, g/L). 9

The temperature reference at the first batch Tr
1 is set to a linear cooling trajec-

tory from 38 to 10 oC in the time interval [0, tf ], as already shown in Figure 3.2.
For the ILC algorithm, the parameter λk is chosen as

λk =


0, k = 1 and k = 11

1, k = 2, . . . 5 and k = 12, 13, . . . , 15

5, k = 6, 7, . . . , 10 and k = 16, 17, . . . , 29.

(3.29)

Note that λk is zero for the first batch and is kept “small” (λk = 1) in the following
4 batches. Indeed, a large mismatch is expected for the initial model and the ob-
jective of matching the previous measurement is considered more important than
rejecting the disturbances in (3.25). For the batches 6, 7, . . . , 10, the mismatch is
expected to be lower and the tuning parameter is increased (λk = 5) in order to
further improve the tracking performance by filtering out the disturbances from
the correction vector. After the set-point change, the model mismatch is expected
to be large again and λk is set to zero for the batch 11. Similarly, we set λk = 1 for
the batches 12, 13, . . . , 15 and λk = 5 for the batches 16, 17, . . . , 29.

For the IIC algorithm, we found that for this system, at the given experimental
conditions, variations in the parameters kb and b related to the nucleation behavior
have an almost negligible effect (close to numerical precision) on the measured
output y = (C T )>. 10 As a consequence, the result of the estimation for these
parameters is highly unreliable and strongly depends on the choice of the initial
point for the optimization. This was reflected by values close to zero for the third
and fourth diagonal entries of the information matrix Ik computed according to
(3.19) for the full parameter vector θ computed using the data of the first batch.

Performing parameter estimation with a model whose parameters are close to
being unidentifiable may lead to numerical issues in the optimization. Further-
more, the same covariances estimated according to (3.18) for the full parameter
vector θ may be very inaccurate in this case. In order to avoid these issues, we
fixed the value of kb and b to their nominal value and performed the parameter
estimation for a reduced parameter vector β = (kg g). 11

9Note that a constant supersaturation is a common objective for a batch cooling crystallization
process (Gutwald and Mersmann, 1990). Conversely, the parabolic set-point is a rather arbitrary choice
used here to study the effect of a significant change in the set-point on the performance of the two B2B
algorithms.

10 From a physical perspective, this is explained by the fact that we are simulating a full seeded crys-
tallization process (see Section 2.2.8 in the previous chapter) where most of the crystal mass produced
is the result of the growth of the initial seeds. Therefore, the measured concentration (which is related
to the crystal mass produced) contains little information about the parameters related to the nucleation
phenomenon.

11Alternatively, one could estimate for the full parameter vector θ by adding a regularization term
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Figure 3.3: Case 1 ILC: temperature reference T r, supersaturation S, and correc-
tion vector α for the batches 2, 10, 11, and 30.

3.4.1 Case 1

In this subsection, the supersaturation tracking performance obtained using the
two B2B algorithms in presence of parametric model mismatch is evaluated. The
IIC algorithm, which performs a parametric update based on a correct assumption
on the correct model structure, is expected in this case to provide better results
compared to ILC, which performs a more generic nonparametric correction.

As mentioned in Section 3.2, the data generating system is constructed based
on the system equations (3.1)-(3.2) with the true parameter vector θo = [4 1 12 1.4]>,
while the nominal parameter vector θ̂1 = [5 1.1 10.57 1.7]> is used in the design of
the ILC algorithms. For the IIC algorithm, as discussed in the previous subsection
the parameters kb, b are fixed to the nominal values k̂b,1, b̂1, respectively, and the
reduced parameter vector β = (kg g)> is estimated after each batch.

The results of the simulations are shown in Figure 3.3 for ILC and Figure 3.4
for IIC. We report for different batches the temperature reference profile T rk and
the supersaturation Sk, together with the supersaturation set-point Sk. In the case
of ILC, we also report the correction vector αk.

In Batch 2 the tracking error is already small for IIC, while it is still appreciable
for ILC. This confirms the intuition that IIC can be more efficient than ILC in the

penalizing the deviation of kb and b from their nominal value, as discussed in the Remark 3.1.
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Figure 3.4: Case 1 IIC: temperature reference T r and supersaturation S for the
batches 2, 10, 11, and 30.

case where the model-structure used for parameter estimation can describe the
data-generating system. After some iterations, also ILC approaches the set-point
more closely (Batch 10). However, the performance sensibly degrades in Batch 11
for ILC due to the set-point change. This can be expected since the additive model
correction based on the correction vector αk is accurate only around one particular
trajectory. Few iterations of the ILC algorithm are required in order to adapt the
correction vector in order to compensate for the model mismatch along the new
trajectory, and eventually a good tracking performance is recovered (Batch 30).
Note also that the vector αk is smoothened during the iterations owing to larger
value of the tuning parameter λk. In the IIC case, the set-point change does not
lead to any performance loss in Batch 11. Indeed, the parametric model correction
is valid for all the possible system trajectories.

For the IIC algorithm, we also computed the standard 95% confidence intervals
of the parameters k̂g,k and ĝk for k ≥ 2.12 The confidence intervals are numeri-
cal intervals centered around the estimated parameters k̂g,k and ĝk, respectively
where the true parameters kg,o and go are expected to lie in with probability 95%.
The confidence interval are obtained based on the covariance matrix Pk which
in turn is computed according to (3.18) (for the reduced parameter vector β in-
stead of θ). For instance, the 95% confidence interval Dgk of ĝk is computed as
Dgk = [ĝk−1.96σgk , ĝk+1.96σgk ] where σgk =

√
Pk(2, 2) is the standard deviation

of ĝk. The true coefficient go is thus expected to lie with probability 95% inside
this interval.

In Figure 3.5 we report the estimated parameters, together with their 95% con-
fidence interval, and the true value of the parameters. It is shown that kg and g
are effectively estimated in the IIC algorithm. The width of the confidence inter-

12The uncertainty intervals cannot be defined for k = 1 since there is no probability distribution
associated to the nominal parameter vector.
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Figure 3.5: Estimated parameters k̂g,k and ĝk of the model (3.2) in the IIC algo-
rithm vs batch number k in Case 1. The colored area represents the standard 95%
confidence intervals of the estimates.

val reduces significantly over the first 7 batches. The true parameters lie inside
the 95% confidence intervals for all the batches, apart from the batch k = 2.

3.4.2 Case 2

On top of the parametric mismatch already considered in Case 1, a structural
model mismatch is here considered. A temperature-dependent crystal growth
mechanism is introduced in the data-generating system. In order to model such
behavior, the second, third, and fourth elements of the state-space map (3.2) of
data-generating system are multiplied by a term A0 exp(−Ea/R(T + K0)), with
A0 = 1.3 × 107, Ea = 4.2 × 104 J/mol, R = 8.3144 J/mol·K and K0 = 273.15 oC. 13

The modified state equations are

F(x) =


kb
(
C − Cs

(
T
))b

m3

A0 exp(−Ea/R(T +K0))kg
(
C − Cs

(
T
))g

m0

A0 exp(−Ea/R(T +K0))2kg
(
C − Cs

(
T
))g

m1

A0 exp(−Ea/R(T +K0))3kg
(
C − Cs

(
T
))g

m2

− UA
ρcpV

T

 . (3.30)

This structural model mismatch is expected to diminish the performance of the
IIC algorithm, even though the extent of the performance degradation in difficult
to be quantified a-priori. On the contrary, ILC is expected to be less sensitive to the
structural mismatch, since the algorithm does not explicitly use any assumptions
on the model structure in the computation of the model update.

The results of the simulations are reported in Figure 3.6 for ILC and Figure 3.7
for IIC. As in Case 1, we report for a number of batches the temperature reference
T rk , the supersaturation Sk, and the supersaturation set-point Sk. For the ILC

13This kind of temperature dependence is known as Arrhenius-type in literature (Luyben, 2007).
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Figure 3.6: Case 2 ILC: temperature reference T r, supersaturation S, and correc-
tion vector α for the batches 2, 10, 11, and 30.

algorithm, we also report the correction vector αk.
The IIC algorithm leads to a rather poor tracking performance in the first 10

batches (Batch 1, 10). Apparently, due to the structural model mismatch the esti-
mated models cannot represent the dynamics of the data-generating system with
a sufficient accuracy in order to track the desired supersaturation set-point. In
Batch 11 a better result is achieved. The cause of the better result is that the track-
ing of the new set-point requires a lower temperature variation compared to the
previous case. Therefore, the mismatch of the nominal model (that does not in-
corporate the temperature-varying growth behavior) is less detrimental in these
conditions. Note that this better result is not caused by a learning mechanism.
Indeed, no further improvement is obtained in the following batches (Batch 30).

On the contrary the ILC algorithm is still capable to approach the set-point,
even though a number of iterations are required (Batches 10, 30). The flexible,
nonparametric model correction performed in ILC using the correction vector αk
can compensate the nominal model for a large class of structural and/or para-
metric model mismatches. For the IIC algorithm, we report in the Figure 3.8 the
estimated parameters k̂g,k, ĝk, together with their 95% confidence interval (for
k ≥ 2), and the true coefficient kg,o, go.

Note that the confidence intervals do not have a rigorous mathematical mean-
ing in this case since the expression of the covariance Pk (3.18) is not valid when
the model structure used cannot describe the data-generating system. Moreover,
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Figure 3.7: Case 2 IIC: temperature reference T r and supersaturation S for the
batches 2, 10, 11, and 30.

the parameters k̂g,k, ĝk cannot be formally compared to the true parameters kg,o,
go since the latter represent a model in a different model structure than the one
assumed for the estimation. Nonetheless, it is still interesting to observe the re-
sults given by this kind of analysis, which is often performed in practice without
having the possibility of verifying whether or not the model structure selected for
the estimation can describe the true system.

The confidence intervals appear to be larger than in Case 1, but they are still
reducing throughout the iteration. However, the estimated parameters kg,k, bk
seem to converge to values that are different than the “true” ones kg,o, bo. In fact,
the true parameters are not contained in the confidence intervals for any of the
iterations.

This result is not surprising, since we are in the case of a structural model mis-
match. The estimated parameters converge to the ones describing a model that
is the best approximation of the data-generating system within the assumed model
structure. The best approximating model depends in general on the experimental
conditions (i.e. input and initial condition of the system) and on the estimation cri-
terion. Formal results about estimation in the case of structural model mismatches
are well established in the situation when both the assumed model structure and
the data-generating system are linear, and a Prediction Error Identification crite-
rion is used (Ljung, 1999). In this case, the best approximating model is charac-
terized by frequency-domain integral expressions involving the spectrum of the
input signal. Some results also exists for the case when the data-generating sys-
tem is nonlinear, but the assumed model structure is linear. The properties of the
best approximating linear model (also called best linear approximation) of a non-
linear system have been analyzed in Schoukens et al. (2005). Interestingly, it was
found that (unlike in the linear case) the input spectrum is not sufficient to char-
acterize the best linear approximations of the nonlinear system, and also higher
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Figure 3.8: Estimated parameters k̂g,k and ĝk of the model (3.30) in the IIC algo-
rithm vs batch number k in Case 2. The colored area represents the standard 95%
confidence interval of the estimates. A bias can be observed for the parameters kg
and g due to the structural model mismatch.

order statistical properties of the input influence the result.
However, in a full nonlinear framework as the one presented here, it is very

hard to analyze the properties for the best approximating model.

Remark 3.3 If the “correct” structure (3.30) of the state equations was known in Case 2,
the additional parametersA0 andEa could be estimated together with the growth parame-
ters kg and g in the IIC algorithm. By doing this, the IIC-updated models would converge
to the data-generating system and a similar performance as in Case 1 would be achieved.
However, in practice, the correct model structure is not always known. For this reason,
it is interesting to study the performance of the IIC algorithm in presence of a significant
structural model mismatch.

3.4.3 Overall Results and Discussion

The Root Mean Square value of the supersaturation tracking Error (RMSE) is plot-
ted against the iteration number for all cases in Figure 3.9. The different behavior
of the two algorithms is evident in this plot. IIC provides the best performance
when the model structure selected can describe the data-generating system. A
good result is already obtained after the first iteration of the algorithm. Further-
more, the performance is not influenced by the set-point change since the algo-
rithm learns the full model structure (Case 1 IIC). However, the behavior of the
algorithm is hard to predict (and the performance is in general lower) in the case
of structural model mismatches.

The IIC framework indeed strongly relies on the assumption of the model
structure. In the situation considered where a temperature-dependent growth be-
havior is incorporated in the data-generating system and the model structure for
estimation is incorrect, IIC leads to a worse overall performance compared to ILC.

Indeed, ILC is much more robust to model structure mismatches due to the
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Figure 3.9: RMSE of the supersaturation vs. batch number for IIL and ILC in Case
1 and 2.

more generic additive correction performed herein. Even though these mismatches
make the convergence somewhat slower in Case 2, a satisfactory result is eventu-
ally reached. However, after the set-point change more iterations are needed in
order to come close to the optimum again since the additive correction is a valid
approximation of the real dynamics only locally around a particular trajectory.

The complexity of the two solutions has to be considered both in terms of the
computational effort required and in terms of the ease of design. The design of
the parameter update in IIC is rather straightforward by adopting the Maximum
Likelihood approach. However, such an estimation requires the numerical solu-
tion of a nonlinear least-squares problem. On the other hand, the model update
in ILC does not require particularly complex computations. However, the tuning
of the algorithm is more delicate and still requires some trial-and-error.

3.5 Iterative control and dual control

A model update based on parameter estimation generally requires the use of a
sufficiently informative dataset. Intuitively, the influence of all the to-be-estimated
parameters has to be clearly distinguishable in the measured output in order to be
able to perform an effective estimation. More formally, the information content
of a dataset can be quantified in the terms of the information matrix (3.19), which
depends on the system input. A large information matrix guarantees that the
covariance of the estimated parameter vector is small, i.e. the model parameters
can be accurately estimated.

In practice, ad-hoc experiments where the input is chosen e.g. as a step, a
(pseudo)random binary signal or a white noise signal are often executed in order
to obtain an informative dataset. A more advanced solution would be to explicitly
design the input in order to optimize a measure of the information matrix, as often
done in the field of Experiment Design (Atkinson and Donev, 1992; Fedorov and
Hackl, 1996).
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Note however that in the IIC algorithm the parameter estimation procedure is
performed using the data collected from regular batch experiments. In these ex-
periments, the input is determined according to the control objective only, i.e. in
order to track the desired supersaturation. In our case, such input led to datasets
which happened to be sufficiently informative. Even though the input trajectory
was optimized for the control objective, it also provided enough excitation in or-
der to estimate with good accuracy the parameters kg and g, which determine
the supersaturation dynamics to a large extent in our case. Therefore, the models
updated through the parameter estimation procedure were adequate in order to
satisfy the control objective.

A more advanced approach would be to design the input signal with the dual
objective of tracking the desired set-point (control objective) and generating an in-
formative dataset for parameter estimation (identification objective). In an itera-
tive identification/control framework such as the one presented for batch-to-batch
control, this approach is particularly appealing if one recognizes that the accuracy
of the updated model influences the control performance that can be achieved for
the future batches, where the updated model will be used to define the control ac-
tion. The input is said to have a dual effect (Bar-Shalom and Tse, 1974; Tse and Bar-
Shalom, 1973; Tse et al., 1973) since it influences both directly the performance of
the current batch, and indirectly (through the identified model) the performance
for the future batches. Optimizing the overall performance taking explicitly into
account the dual effect of the input is a tough problem known as the dual con-
trol problem. For this problem, approximate solutions have been found only in
few specific cases of model structures and control objectives (Kulcsar et al., 2009;
Pronzato et al., 1996).

The link between the accuracy of an identified model and the performance ex-
pected from a control strategy based on such models has also been studied in the
field of Identification for control (Bombois et al., 2006; Gevers, 2005). One of the
findings was that often few control-relevant properties of the model influence the
control performance to a large extent. Furthermore, these properties are often nat-
urally emphasized by performing the identification in a situation which resembles
the desired controlled behavior of the system. For these reasons, iterative schemes
consisting of successive identification and controller re-design step were found to
be suitable in order to gradually improve the most important control-related char-
acteristic of the identified model (Garatti et al., 2010; Hjalmarsson et al., 1996). In
this sense, the use of iterative identification/control schemes is not only limited
to batch-to-batch control applications, but can also be beneficial for the gradual
improvement of the control performance of a continuous process.

In Chapter 4, we will build up on the results established in the field of Identifi-
cation for Control and, based on modern experiment design tools (Bombois et al.,
2006; Jansson and Hjalmarsson, 2005), we will develop an approximate solution to
the dual control problem in an iterative identification/control scheme. Compared
to the previous solution appeared in the literature, our solution can be applied for
a fairly large class of model structures describing linear dynamical system, and
for different control objectives.

The bottleneck for the application of similar techniques to general, nonlinear
dynamical systems such as the one describing the batch cooling crystallization is
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the lack of efficient experiment design tools which can handle these systems. In
this direction, preliminary results of experiment design for nonlinear dynamical
systems have been developed in this thesis, and will be presented in Chapter 5.

3.6 Conclusion

We have presented a batch-to-batch (B2B) solution for supersaturation control in
batch cooling crystallization. The B2B controller drives the reference of the PI
temperature controller in the B2B+PI configuration. Two B2B algorithms are ex-
amined in this paper, namely an Iterative Learning Control (ILC) and an Iterative
Identification Control (IIC). The behavior of system in the B2B+PI configuration
with the two solutions has been discussed and analyzed in a simulation study.

The IIC and ILC algorithms are shown to have complementary advantages
and disadvantages. On the one hand, IIC provides the best performance when
the assumed model structure can actually describe the data-generating system.
Furthermore, the performance is not sensitive to set-point changes. However, the
performance of IIC is hard to predict (and generally lower) when the true system
is not contained in the assumed model structure, i.e. in the case of a structural
model mismatches. On the other hand, ILC is more robust to structural model
mismatches. Even though these mismatches slow down the convergence, a satis-
factory result is eventually obtained after a number of batches. However, the per-
formance deteriorates after a set-point change and more iterations are required in
order to recover the previous performance level. Furthermore, the tuning of the
ILC algorithm is more delicate than the one of IIC and may require some trial-and-
error. For the reasons above, it would be useful to design a supervisory algorithm
in order to switch from one strategy to the other based on the results obtained in
the previous batches.

Finally, we have noticed that in an iterative control framework such as batch
to batch control, the input for one batch has a dual effect on the performance in
the current and future batches. On the one hand, it influences directly the perfor-
mance achieved in the current batch. On the other hand, it influences indirectly
the performance that will be achieved in the future batches through the model that
will be used to define the control action for the future batches, which is updated
based on the data measured in the current batch. The B2B algorithms presented
in this chapter ignore the dual effect of the input as they design the input only
according to the control criterion for the batch. In the following chapter, we will
present an iterative control algorithm where the input is specifically designed in
order to optimize the performance in the current and future iterations taking the
dual effect explicitly into account.





4 CHAPTER

Iterative model improvement for
model-based control

In this chapter, we present a framework for the gradual improvement
of model-based controllers. The total time during which the system
will be operated is divided into a number of learning intervals. After
a learning interval, the model is refined based on the measured data.
This model is used to synthesize the controller that will be applied
during the next learning interval. Excitation signals can be injected
into the control loop during each of the learning intervals. On the one
hand, the introduction of an excitation signal worsens the control per-
formance during the current learning interval since it acts as a distur-
bance. On the other hand, the informative data generated owing to the
excitation signal are used to refine the model using a closed-loop sys-
tem identification technique. Therefore, the control performance for
the next learning interval is expected to improve. Our objective is to
maximize the overall control performance taking the effect of the ex-
citation signals explicitly into account. However, this is in general an
intractable optimization problem. For this reason, a convex approxi-
mation of the original problem is derived using standard relaxations
techniques for Experiment Design. The approximated problem can be
solved efficiently using common optimization routines. The applica-
bility of the method is demonstrated in a simulation study. 1

4.1 Introduction

It is well known that the performance of a model-based controlled system largely
depends on the quality of the model that is used to synthesize the controller.
System identification provides tools that can be used to construct models using
measured input/output data. Together with the model, most of the identification
methods also provide a measure of the model uncertainty.

1This chapter is based on the results in Forgione et al. (2013) and Forgione et al. (2014b).
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The relation between the uncertainty of an identified model and the expected
control performance has been studied in the field of Identification for Control
(Gevers, 2005). An important finding was that often few dominant features of
the model determine the performance of the controller to a large extent (Gevers,
2002). Therefore, the identification experiments have to be designed in such a
way that these control-relevant features can be accurately identified. In the earli-
est contributions, the identification experiments and the normal operation of the
system were considered as completely distinct phases. In fact, the identification
experiments were collected in open loop, while the model was used to design a
closed-loop controller for the system (Gevers and Ljung, 1986).

During the nineties, closed-loop identification techniques (Van den Hof and
Schrama, 1995) gained increasing attention in the Identification for Control com-
munity. An immediate advantage of closed-loop identification is that the normal
(closed-loop) operation can continue while the identification data are collected. In
this sense, the closed-loop identification procedures are intrinsically less intrusive
than the ones based on open-loop data.

The use of closed-loop identification was also supported by the intuition that
the control-relevant features of the system are naturally emphasized when the sys-
tem is operating in a condition which resembles the desired controlled behavior.
In specific cases, it was formally proven that the optimal experimental condition
for control-oriented identification are met when the optimal controller (with re-
spect to the same control objective) is present in the loop (Gevers, 2002; Hjalmars-
son et al., 1996).

Note however that this optimal controller is always unknown. In fact, its de-
termination is the ultimate goal of the user. Therefore, the optimal experimental
conditions can only be approached by adopting iterative schemes consisting of re-
peated closed-loop identification and model-based control design steps (De Calla-
fon and Van den Hof, 1997; Schrama, 1992).

An aspect that was not thoroughly investigated in these contributions was the
choice of the excitation signals fed to the system during the closed-loop experi-
ments, often simply taken as white noise signals for ease of analysis. However, a
careful choice of the excitation signals can be beneficial both to improve the model
accuracy and to limit the cost of the identification (Bombois et al., 2006).

On the one hand, a high level of excitation leads to informative data sets which
can be used to identify accurate models. On the other hand, the excitation signals
also act as disturbances on the controlled system and consequently lead to a (tem-
porary) performance degradation when they are applied. Therefore, there is a
trade-off between the performance degradation due to the application of the ex-
citation signals and the improvement that is expected due to the increased model
accuracy. In the literature, the excitation is said to have a dual effect on the control
performance (Tse and Bar-Shalom, 1973) for this reason.

In this chapter, we consider the problem of designing the excitation signals in
an iterative identification/controller design scheme aiming to maximize the over-
all control performance, while guaranteeing a minimum performance level at all
times. In our framework, the total time of the closed-loop operation is divided
into a number of learning intervals. Excitation signals can be injected into the con-
trol loop during each of these intervals. After an interval, the measured data are
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used to refine the model using closed-loop identification. Based on that model,
a new controller is designed. The controller is applied during the next learning
interval, and so on and so forth for the following ones.

We define the cost Tk of one interval k as the sum of the performance degra-
dation due to the difference between the true system and the identified model
(modeling error cost), and the one due to the presence of the excitation signal (ex-
citation cost) during that interval. Following, we determine the excitation signals
to be applied in each interval by minimizing the sum

∑
k Tk of the cost over all the

intervals, subject to constraints Tk ≤ T̄k on the cost for each interval. In practice,
these constraints could be useful in order to ensure the safety of the plant and in
order to honor specifications which guarantee minimum product quality.

Note that the modeling error cost in one interval depends on the excitation sig-
nals applied during all the previous intervals since the model is identified based
on the previous data, while the excitation cost depends on the excitation signal
applied during the current interval. Thus, we are here taking the dual effect of the
excitation signals explicitly into account.

It has to be mentioned that the optimization problem that we would like to
solve in order to find these excitation signal is intractable as such. However, using
established relaxation techniques and tools developed in the field of Experiment
Design, we can derive an approximation of the original optimization problem that
is convex and can be solved efficiently.

In fact, the problem of designing excitation signals which guarantee desired
properties for the identified model has been extensively studied in the Experiment
Design field. The classic approaches for experiment design consider only two
distinct phases: an identification phase in which the excitation signal is fed to
the system and a model is identified, and a control phase in which a controller
based on the identified model is applied. The objective generally considered is to
find a compromise between the excitation cost in the identification phase and the
modeling error cost in the control phase (Bombois et al., 2006; Gevers and Ljung,
1986).

A limit of the classic approaches is that if the identification phase is too short, it
might not be possible to satisfy the performance requirement for the control phase
without violating constraints on maximum level of excitation in the identification
phase. It is possible circumvent this issue by extending the duration of the iden-
tification phase, but this implies that one has to wait a longer time before having
any improvement in the control performance.

Our approach can be seen as an extension of the classic experiment design
approaches to a situation with several phases (i.e. the learning intervals), and in
which the dual effect of the excitation signal is considered altogether for all the
learning intervals. As we will show in the numerical example, by considering
several learning intervals we can gradually improve the controller and achieve a
better overall performance than in a classic two-phase framework.

Our approach has also a certain analogy with the actively adaptive learning al-
gorithms discussed in Pronzato et al. (1996), since it takes explicitly into account
the dual effect of the excitation. However, the approach in Pronzato et al. (1996)
leads to stochastic dynamic optimization problems that can be solved only for
very specific model structures and control objectives, while our approach can be
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applied to (almost) any LTI model structure and control objective. There are in-
deed important differences between our approach and the one in Pronzato et al.
(1996). First, in Pronzato et al. (1996) the input is optimized for the identifica-
tion and the control objective altogether, while in our framework the controller
takes care of the control objective and the superposed excitation signal takes care
of the identification objective. Second, the model is updated at each time instant
in Pronzato et al. (1996), while we perform the identification only at the end of a
learning interval. These simplifications allow us to use the classical experiment
design tools to tackle this complicated problem in a wider range of cases.

The rest of this chapter is organized as follows. In Section 4.2 the framework is
discussed in details. In Section 4.3 the experiment design problem is introduced
and the approximated convex optimization problem is derived. The framework is
applied to a simulation study in Section 4.5 and conclusions are drawn in Section
4.6.

4.2 The Framework

The true system So is the linear time-invariant system

y = Go(q
−1)u+

=v︷ ︸︸ ︷
Ho(q

−1)e (4.1)

where u is the input, y is the output, e is white noise with variance σ2
e , and q−1 is

the unit-delay operator. Go and Ho are stable discrete-time transfer functions; Ho

is monic and minimum phase.
So is known to belong to a model setM = {M(θ), θ ∈ Rp}where θ is the model

parameter. We assume that the true system So is described inM by a (unique) true
parameter θo, i.e. ∃!θo | So = M(θo).

In order to reject the disturbance v = Hoe, we would like to operate (4.1) in
closed loop. We assume that an initial controller C(θ̂1) is available and that it sta-
bilizes the true system. However, this controller has been designed with a model
M1 = M(θ̂1) that is a relatively poor representation of the true system, and the
performance of the initial loop [C(θ̂1) So] is rather poor.

In the sequel, we will present an iterative model and controller update proce-
dure whose objective is to gradually improve the accuracy of the model and the
control performance. For this purpose, the period of time during which (4.1) will
be operated is divided into n learning intervals of duration N . During each inter-
val, a specially tailored excitation signal rk is applied to the loop. At the end of the
interval, input and output data are collected and are used to gradually improve
the control performance by finding a better model (with respect to the desired
control application) within the model setM.

Based on the improved model, the controller is updated and applied to the
true system for the next interval. The procedure is illustrated in Figure 4.1 and
will be presented in more details in the next subsection.

Remark 4.1 If the initial model M1 is too poor for the design of a stabilizing controller
for So, the first interval can be performed in open loop.
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Remark 4.2 Our framework can be readily extended to the case of reference tracking.
A nonzero set-point for the controller would provide additional excitation to the system,
while no cost is associated to its application. For this reason, the excitation signals rk are
generally smaller or even are not required in this case.

Remark 4.3 In principle, a better performance can always be obtained by reducing the
interval length N . The controller and the excitation signals could be updated more fre-
quently using a more recent parameter estimate. In this sense, the best choice would be
to set N to just one time sample. However, in the development of the experiment de-
sign procedure we will make use of properties of prediction error identification which are
asymptotic in N . Therefore, we need to choose N sufficiently large for these properties to
hold. Dropping this condition would lead to the same (generally intractable) formulations
obtained in the actively adaptive learning algorithms (Pronzato et al., 1996). It is hard to
quantify the effect of the interval length N on the overall performance in analytical form.
Simulation results with different values of N will be presented in the Section 4.5.
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Figure 4.1: The n learning intervals with successive model and controller updates.

4.2.1 Iterative identification

In interval k, the true system is operated with a controller C(θ̂k) which has been
designed based on an identified model Mk = M(θ̂k). As will become clear in the
sequel, the identified parameter vector θ̂k is normally distributed around θo with
a covariance matrix Pk, i.e. θo − θ̂k ∼ N (0, Pk).

During the N time samples of interval k, an excitation signal rk is applied to
the closed-loop system: uk = rk − C(θ̂k)yk (see Figure 4.1). Even though other
choices are possible, we will restrict in this chapter to excitation signals rk which
are generated by filtering white noise through a certain FIR filter.

At the end of interval k, the data set Zk = {uk(t), yk(t) | t = 1, · · · , N} is col-
lected and is used to obtain a more accurate model Mk+1 = M(θ̂k+1). For this
purpose, the parameter vector θ̂k+1 is identified using not only the new data set
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Zk, but also all previous data sets Zk−1, Zk−2,. . . , Z1. Since θ̂k has been deter-
mined using the previous data sets, this can be done by using θ̂k and its covariance
matrix Pk in a regularization term. Hence, θ̂k+1 is determined as

θ̂k+1 = arg min
θ∈Rp

(
1

σ2
e

N∑
t=1

ε2
k(t, θ) + (θ−θ̂k)>P−1

k (θ−θ̂k)

)
(4.2)

where εk(t, θ) = H(q−1, θ)−1(yk(t) − G(q−1, θ)uk(t)). Since θ̂k+1 is determined
based on kN data and N has been chosen relatively large, it is acceptable to use
the asymptotic properties of the prediction error estimate (Ljung, 1999). Conse-
quently, the parameter vector θ̂k+1 identified in this way is (approximately) nor-
mally distributed around θo with a covariance matrix Pk+1 given by

P−1
k+1 = Ik + P−1

k (4.3)

where Ik � 0 is the information matrix corresponding to the data Zk defined as

Ik(θo) =
N

σ2
e

Ē
(
ψk(t, θo)ψk(t, θo)

>) (4.4)

with ψk(t, θo) = − ∂εk(t,θ)
∂θ

∣∣∣
θ=θo

(see Ljung (1999)). Using the recursive nature

of (4.3), we have also that

P−1
k+1 = Ik + Ik−1 + ...+ I1 + P−1

1 (4.5)

where P1 is the covariance matrix of the initial parameter vector θ̂1. 2

Information matrix

The information matrix Ik defined in (4.4) is an affine function on the spectrum
Φrk(ω) of the excitation signal rk, and it is in general positive semidefinite, i.e.
Ik � 0. In this chapter, we will consider in particular excitation which can be
obtained by filtering white noise through an FIR filter. The reason of this choice is
that for this class of excitation signals the information matrix is guaranteed to be
strictly positive definite, i.e. Ik � 0.

The spectrum Φrk(ω) of a FIR-filtered white noise signal rk(t) can be written as

Φrk(ω) = Rk(0) + 2

m∑
j=1

Rk(j) cos(jω). (4.6)

where Rk ∈ R(m+1)×1 are the autocorrelation coefficients of the signal rk. For
such an excitation signal, the information matrix can be written as (Bombois et al.,

2The covariance matrix P1 is available for instance if the initial model had been previously identi-
fied using the prediction error framework. If that is not the case, and no measure of the accuracy of
the initial parameter is available, P−1

1 can be set to 0 in (4.5). In this way, the information of the initial
will be simply ignored in the computation of the future estimates.
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2006)

Ik(Rk, θo) = F̄ (θo) +

m∑
j=0

Fj(θo, σ
2
e)Rk(j) (4.7)

where the matrices F̄ and Fj are nonlinear functions of the θo, θ̂k and σ2
e . Note

that since Ik is affine in Rk, P−1
k+1 is affine in R1, R2, . . . , Rk due to (4.5).

Uncertainty region

Since the updated parameter is estimated with an increasing number of data after
each interval, its accuracy will increase for increasing k. In fact, we can define for
each estimate θ̂k an uncertainty ellipsoid Dk where the modeling error θo−θ̂k lies in
with a certain probability α as

Dk , {δ ∈ Rp | δ> P−1
k δ ≤ χ2

p(α)} (4.8)

where χ2
p(α) is the α-percentile of the chi-squared distribution having p degrees

of freedom.
Due to (4.3) and since Ik > 0, the volume of the uncertainty regions decreases

after each interval. Note that this property always holds if rk is designed as FIR-
filtered white noise and does not require rk to be designed in an optimal sense.
Therefore, even though we will introduce a number of approximations in the ex-
periment design for the determination of these signals, a decrease in the uncer-
tainty after each interval is still guaranteed.

4.2.2 Controller design

Using the data Zk, we have obtained a more accurate model Mk+1 = M(θ̂k+1).
This new model can be used to design an updated controller C(θ̂k+1). We assume
that a control design method has been fixed a-priori and thus the controller is
a function C(·) of the parameter vector. The choice for the particular controller
design criterion is not important in the development of our framework.

Remark 4.4 Since the model M(θ̂k+1) is expected to be more accurate than M(θ̂k), the
controllerC(θ̂k+1) is very likely to perform better than the controllerC(θ̂k) that was in the
loop during interval k. However, before applying this new controller to the true system,
it is safer to verify whether C(θ̂k+1) stabilizes all the loops [C(θ̂k+1) M(θ̂k+1 + δ)] with
δ ∈ Dk+1. A necessary and sufficient condition to perform this robust stability test can
be found in Bombois et al. (2001). If the controller C(θ̂k+1) passes this test, we have the
guarantee that the loop [C(θ̂k+1) So] is stable (with at least the probability α related to
Dk+1) and the controller C(θ̂k+1) can be applied during the interval k + 1. In the rare
eventuality that robust stability is not validated for the controller C(θ̂k+1), the controller
C(θ̂k) will be kept for the interval k + 1.
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4.2.3 Total cost, modeling error cost, excitation cost

As mentioned in the introduction, one of our objectives is to minimize the overall
cost over the n intervals. We evaluate total cost Tk of interval k considering the
difference between the output yk obtained during this interval, and the output
yo that would have been obtained in an ideal situation, i.e. a situation where we
would perfectly know the true system So. The output yk during interval k is given
by

yk(t) =

=ye,k︷ ︸︸ ︷
Ho

1 + C(θ̂k)Go
e(t) +

=yr,k︷ ︸︸ ︷
Go

1 + C(θ̂k)Go
rk(t), (4.9)

while the output yo of the ideal loop is

yo(t) =
Ho

1 + C(θo)Go
e(t). (4.10)

The differences between (4.9) and (4.10) are the presence of the term yr,k (which
is due to the excitation signal rk) in (4.9), and the different controllers present in
the two loops. Indeed, in the ideal loop the controller C(θo) based on the true
parameter θo is present, while the controller C(θ̂k) actually present in the loop
during the interval k is designed based on the parameter θ̂k.

Total cost

The total cost Tk for one interval can now be defined as the power of the difference
yo − yk between these two outputs:

Tk , Eek,rk [(yo − yk)2] (4.11)

where the operator Eek,rk is the marginal expectation on the noise source ek and
the excitation signal rk.

Since rk and e are independent, we can write the total cost Tk as

Tk︷ ︸︸ ︷
Eek(yo − yk)2 =

Vk︷ ︸︸ ︷
Eek,rk(yo − ye,k)2 +

Ek︷ ︸︸ ︷
Eek,rk(yr,k)2 (4.12)

Modeling error cost

The term Vk in (4.12) is called modeling error cost and represents the performance
degradation caused by the use of the controller C(θ̂k) instead of the optimal con-
troller Co. Using the Parseval relation (Ljung, 1999), we can write Vk as

Vk(θo, θ̂k) =

∥∥∥∥∥ H(θo)

1 + C(θo)G(θo)
− H(θo)

1 + C(θ̂k)G(θo)

∥∥∥∥∥
2

H2

σ2
e . (4.13)
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The modeling error cost Vk(θo, θ̂k) is a nonlinear function of θo and θ̂k having a
global minimum in θo = θ̂k. Indeed, the function takes the value 0 for θo = θ̂k,
while it is equal to or greater than 0 otherwise.

Excitation cost

The term Ek is called excitation cost and represents the performance degradation
caused by the introduction of the excitation signal rk. Using the Parseval relation
we can also write Ek as

Ek =
1

2π

∫ π

−π

∣∣∣∣∣ G(eiω, θo)

1 + C(eiω, θ̂k)G(eiω, θo)

∣∣∣∣∣
2

Φrk(ω) dω . (4.14)

If we use the parametrization (4.6) for the spectrum Φrk , the excitation cost Ek
is linear in the coefficients Rk(j) (Bombois et al., 2006). Thus, it can be written as

Ek(θo, θ̂k, Rk) = R>k c(θo, θ̂k) (4.15)

where c(θo, θ̂k) ∈ R(m+1)×1 is a nonlinear vector function of θo and θ̂k (Bombois
et al., 2006).

Worst-case settings

The terms Vk and Ek cannot be evaluated since they both depend on the unknown
true parameter vector θo. However, we can consider these quantities in a worst-
case sense by computing their maximum value over the ellipsoid Dk:

Vwc
k , max

δ∈Dk
Vk(θ̂k + δ, θ̂k), (4.16)

Ewc
k , max

δ∈Dk
Ek(θ̂k + δ, θ̂k, Rk). (4.17)

Even though robust design tools (Bombois et al., 2010) could be used to find upper
bounds to (4.16) and (4.17), we will here use a simpler approach introduced in
(Hjalmarsson, 2009) and based on a second-order Taylor approximation of the
functions Vk(·, θ̂k) and Ek(·, θ̂k, Rk) around θ̂k:

Vk(θo, θ̂k) ≈ Vk(θ̂k + δ, θ̂k) =
1

2
δ>V ′′(θ̂k)δ, (4.18)

Ek(θo, θ̂k, Rk) ≈ Ek(θk + δ, θ̂k, Rk) =

R>k c(θ̂k, θ̂k) +R>k Jc(θ̂k)δ +
1

2
δ>

 m∑
j=0

Ej(θ̂k)Rk(j)

 δ (4.19)
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with δ = θo − θ̂k. In the last formulas, V ′′(θ̂k) and Ej(θ̂k) are the Hessian matrices
of Vk(·, θ̂k) and of the jth entry of c(·, θ̂k) computed in θ̂k, respectively:

V ′′(θ̂k) =
∂2V(ϑ, θ̂k)

∂2ϑ

∣∣∣∣∣
ϑ=θ̂k

, Ej =
∂2c(ϑ, θ̂k)

∂2ϑ

∣∣∣∣∣
ϑ=θ̂k

(4.20)

and where Jc(θ̂k) is the Jacobian of c(·, θ̂k) computed in θ̂k:

Jc =
∂c(ϑ, θ̂k)

∂ϑ

∣∣∣∣∣
ϑ=θ̂k

. (4.21)

Note that the Hessian matrix V ′′(θ̂k) is positive semidefinite since the function
Vk(·, θ̂k) has a global minimum in θ̂k.

Using the second order approximations (4.18) and (4.19), the optimization prob-
lems (4.16) and (4.17) can be written as quadratic optimization problems with a
single quadratic constraint.

Vwc
k = max

1

2
δ>V ′′(θ̂k)δ such that δ>P−1

k δ ≤ χ2
p(α) (4.22)

and

Ewc
k = maxR>k c(θ̂k, θ̂k) +R>k Jc(θ̂k)δ +

1

2
δ>

 m∑
j=0

Ej(θ̂k)Rk(j)

 δ such that

δ>P−1
k δ ≤ χ2

p(α),

(4.23)

respectively.
These problems are not in general convex. However, as proven in (Boyd and

Vandenberghe, 2004), strong duality holds for this class of problems, i.e. the solu-
tion is equal to the solution of the dual problem (which is always convex) (Boyd
and Vandenberghe, 2004). Therefore, the dual of problem (4.22) will be used to
compute Vwc

k as

Vwc
k = min

λk
λk such that P−1

k � 1

λk

V ′′(θ̂k)χ2
α(p)

2
, (4.24)

and the dual of problem (4.23) will be used to compute Ewc
k as

Ewc
k = min

γk,τk
γk such that (4.25)

τk ≥ 0[
1
2

∑
j Ej(θ̂k)Rk(j)− τk

P−1
k

χ2
1
2 (R>k Jc(θ̂k))>

1
2R
>
k Jc R>k c(θ̂k, θ̂k) + τk − γk

]
� 0

Remark 4.5 The second-order approximations (4.18)-(4.19) will become more accurate
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when θ̂k is closer to θo. Consequently, the effects of this approximation will (automati-
cally) decrease for increasing k.

4.3 Experiment Design

Before interval k = 1, our objective is to determine the excitation signals in the
n learning intervals which will minimize (in a worst-case sense) the overall cost
over the n learning intervals, while guaranteeing that the cost of each interval
remains below a given threshold. Defining T wc

k , Vwc
k + Ewc

k , our objective can be
mathematically formulated using the following experiment design problem

Problem 4.1 (Experiment Design Problem)

Ropt = arg min
R

n∑
k=1

T wc
k such that (4.26)

T wc
k ≤ T̄k, for k = 1, 2, . . . n. (4.27)

where the variable R , {R1, R2, . . . , Rn} contains the coefficients parametrizing
the excitation spectra for all the learning intervals and T̄k is the threshold for the
cost during batch k.

The dual effect of the excitation signal is incorporated in the problem formu-
lation (4.26)-(4.27). On the one hand, if the excitation spectrum Φrk during the
interval k is “large”, the worst-case total cost T wc

k will also be large due to the
contribution of Ewc

k . On the other hand, this large excitation leads to a “small”
covariance matrix Pk+1 which in turn leads to a small modeling error cost Vwc

k+1

for the next interval (see Equation (4.24)).

Further approximations of Vwc
k and Ewc

k

In order to formulate the experiment design problem as a convex problem, we
will use the affine relation existing between the decision variable R and P−1

k and
the fact that P−1

k appears linearly in the constraint of (4.24).
In Equation (4.25), it is unfortunately not the case since P−1

k appears in a prod-
uct with the decision variable τk. To convexify the constraint in (4.25), we can
redefine Ewc

k as the worst-case cost over the initial uncertainty ellipsoid D1 (in-
stead ofDk). This is equivalent with replacing Pk by the initial covariance matrix3

P1 in (4.25). This introduces a conservatism, but Ewc
k remains an upper bound on

Ek. It is furthermore an acceptable approximation since the actual cost Ek (unlike
Vk) is not related to the modeling error and is thus not expected to reduce after
each interval.

Furthermore, we also have to tackle the so-called “chicken-and-egg” problem,
that is a characteristic of most optimal experiment design frameworks (Ljung,
1999). Indeed, the constraints in (4.24) and (4.25) are functions of the identified pa-
rameter vectors θ̂k that are not available (for k > 1) before the first interval i.e. the
moment when (4.26)-(4.27) has to be solved. As is generally done, θ̂k for all k > 1

3If P1 is not available, the nominal excitation cost R>k c(θ̂k, θ̂k) can be used insead of Ewc
k .
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will be replaced by an initial estimate in the optimization problem. This initial es-
timate will be θ̂1 in this case. We also use θ̂1 as an estimate of θo in the expression
of the information matrix Ik: Ik(θo, Rk) ≈ Ik(θ̂1, Rk). It is to be noted that, as op-
posed to other experiment design frameworks, the effects of the approximations
introduced to tackle the chicken-and-egg problem (and of the replacement of Pk
by P1 in (4.25)) will be mitigated by the receding horizon mechanism proposed
later in this paper (see Section 4.4).

Summarizing, a (further) approximation Ṽwc
k of the worst-case modeling error

cost Vwc
k is obtained using (4.24) with θ̂k = θ̂1 and P−1

k = P̃−1
k :

Vwc
k = min

λk
λk such that P̃−1

k � 1

λk

V ′′(θ̂1)χ2
α(p)

2
, (4.28)

where P̃−1
k is obtained similarly to (4.3), but replacing θo with θ̂1 in the computa-

tion of the information matrices I1, I2, . . . Ik−1 (which is performed according to
(4.4)).

A (further) approximation Ẽwc
k of the worst-case excitation cost Ewc

k is obtained
using (4.25) with θ̂k = θ̂1 and Pk = P1:

Ẽwc
k = min

γk,τk
γk such that (4.29)

τk ≥ 0[
1
2

∑
j Ej(θ̂1)Rk(j)− τk P

−1
1

χ2
1
2 (R>k Jc(θ̂1))>

1
2R
>
k Jc R>k c(θ̂k, θ̂k) + τk − γk

]
� 0

We are now able to formulate our experiment design problem as a convex
optimization problem:

Proposition 4.1 Let us introduce n scalar variables λ , {λ1, λ2, . . . , λn}, n scalar vari-
ables t , {t1, t2, . . . , tn}, n scalar variables γ , {γ1, γ2, . . . , γn}, n scalar variables
τ , {τ1, τ2, . . . , τn} and n matrix variables Q , {Q1, Q2, . . . , Qn}, Qk ∈ Rm×m.
Using the approximation T̃ wc

k , Ṽwc
k + Ẽwc

k for the worst-case total cost T̃ wc
k , the ex-

periment design problem (4.26)-(4.27) is equivalent to the following convex semidefinite
optimization problem

Problem 4.2 (Convex approximation of (4.26)-(4.27))

Ropt = arg min
R,λ,γ,τ,Q

n∑
k=1

λk +

n∑
k=1

γk (4.30)

such that
λk + γk ≤ T̄k (4.31)

P̃−1
k︷ ︸︸ ︷

P̃−1
k−1+ Ik(θ̂1, Rk) � tk

χ2
α(p)V ′′(θ̂1)

2
(4.32)

τk ≥ 0
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[
1
2

∑
j EjRk(j)− τk P

−1
1

χ2
1
2 (R>k Jc)

>

1
2R
>
k Jc R>k c(θ̂1, θ̂1) + τk − γk

]
� 0[

λk 1
1 tk

]
� 0 (4.33)[

Qk −A>QkA C>k −A>QkB
Ck −B>QkA Dk +D>k −B>QkB

]
� 0 (4.34)

for k = 1, . . . , n

with A =
[

0 0
Im−1 0

]
, B = [ 1 0 ... 0 ],

Ck = [Rk(1) Rk(2) ... Rk(m) ], and Dk = Rk(0)
2 .

Proof: The objective function (4.30) is the sum of the worst-case modeling error
costs λk and the worst-case excitation costs γk. The LMIs (4.33) guarantee the
conditions λk ≥ 0, tk ≥ 0 and tk ≥ 1

λk
simultaneously. This in turn implies

that (4.32) is equivalent with the constraint in (4.28). Finally, (4.34) guarantees that
Φrk(ω) ≥ 0 (see Bombois et al. (2006)). 2

4.4 Receding horizon

By solving the optimization problem (4.30)-(4.34) before the first interval we can
design not only the spectrum Φopt

r1 of the signal r1 that will be applied during this
first interval, but also the spectra of the excitation signals r2, r3, . . . , rn for all the
following intervals. During the first interval, we generate a signal r1 having the
desired spectrum Φopt

r1 and apply this signal as excitation to the loop [C(θ̂1) So].
After the execution of this first interval, the data Z1 are collected and a new pa-
rameter vector θ̂2 is identified using (4.2). Based on θ̂2, a new controller C(θ̂2)
is designed and applied to the true system So (after the robust stability check).
We could then proceed with interval 2 by applying to the closed loop [C(θ̂2) So]
a signal r2 having the the spectrum Φopt

r2 obtained from the solution of the previ-
ous optimization problem. However, a better approach is to redesign the spectra
Φrk for k = 2, 3, . . . , n using the newly identified parameter vector θ̂2. Indeed,
this parameter vector is a more accurate estimate of θo than the initial estimate θ̂1

since it has been estimated with twice as much data (and consequently P2 < P1).
Consequently, evaluating Ewc

k at interval k ≥ 2 as the worst case of Ek over the
new uncertainty ellipsoidD2 is less conservative than doing it overD1. Moreover,
replacing θo and θ̂k (for k > 2) by θ̂2 instead of θ̂1 is also more appropriate in order
to tackle the chicken and egg problem since θ̂2 will be generally closer to θo and
θ̂k (for k > 2) than θ̂1.

For the reasons above, the spectra Φrk , k = 2, 3, . . . , n will be redesigned using
a similar optimization problem as the one presented in Section 3, but using the
new estimate θ̂2 and its covariance matrix P2 in order to evaluate Ewc

k and to deal
with the chicken-and-egg problem. This spectrum redesign procedure, inspired
by the receding horizon mechanism in MPC control (Maciejowski and Huzmezan,
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1997), will be performed after each interval. Note that a similar receding hori-
zon mechanism for the adaptive solution of an experiment design problem was
adopted in (Stigter et al., 2006).

Owing to the spectrum redesign procedure, the effects of the approximations
on the obtained spectra will become smaller after each interval and the obtained
spectra will become increasingly more effective to achieve the objectives of the
experiment design. Note that even though the effect of the approximation may be
significant for the very first intervals, our approach will still lead to models having
and increasing accuracy. This is indeed guaranteed whatever the excitation signal
is, as long as it is chosen (like in our case) as filtered white noise.

Remark 4.6 It can happen that, from a certain value of k onwards, the to-be-applied
excitation rk is (almost) zero. This is the sign that the optimal performance has been
reached and the controller update procedure can be stopped. This situation will occur in
the example of the next section.

4.5 Simulation Study

In this section, the iterative identification/controller design framework is applied
in a simulation example. The experiment design procedure developed in Section
4.3 is used to generate the excitation signals for the intervals. We consider the
Box-Jenkins (BJ) model structure M = {M(θ), θ ∈ R6}. A model M(θ) in this
structure has G(q−1, θ) = θ1q

−1+θ2q
−2

1+θ5q−1+θ6q−2 , H(q−1, θ) = 1+θ3q
−1

1+θ4q−1 . The true system
So = M(θo) is described by

θo = [0.8 0 0 −0.6 0.985 0.819]>

and the variance of e is σ2
e = 1. The controllers design function is based on theH2

criterion

C(θ̂k) = arg min
K

∥∥∥∥[ H(θ̂k)

1+KG(θ̂k)

√
βKH(θ̂k)

1+KG(θ̂k)

]>∥∥∥∥2

H2

(4.35)

with β = 0.1.
The initial (stabilizing) controller C1 = C(θ̂1) is designed based on the initial

model M1 = M(θ̂1) where

θ̂1 = [0.676 0.464 0.099 0.6 1.24 0.858]>.

The initial covariance matrix P1 is:

P1 =


0.044 −0.022 0 0 0.007 −0.009
−0.022 0.056 0 0 0.008 0.003

0 0 0.0006 0.0004 0 0
0 0 0.0004 0.0004 0 0

0.007 0.008 0 0 0.007 −0.003
−0.009 0.003 0 0 −0.003 0.005

 .

The parameter θ̂1 and covariance matrix P1 were obtained from a preliminary
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Figure 4.2: Spectra Φrk solution of the first experiment design problem in Case 1

identification based on prediction error identification, using a white noise excita-
tion signal. The worst-case terms are computed with probability α = 0.99. The
experiment design problems formulated in SDP form are solved numerically us-
ing the LMI Lab toolbox (Gahinet et al., 1993).

The true system will be operated in closed loop for a total time corresponding
toNtot = 2400 samples. For the first case considered (Case 1), the total timeNtot is
divided into n = 12 intervals having equal lengthN = 200. The constraints on the
worst-case total cost are set to T̄k = T̄ h = 0.7 for k = 1, . . . , 6 and T̄k = T̄ l = 0.005
for k = 7, . . . , 12. Thus, a rather large cost is allowed for the first half of the exper-
iment. This leaves the possibility to introduce a significant level of excitation in
the corresponding intervals, in order to satisfy the tighter performance constraint
defined for the second half of the experimental time.

A first experiment design problem based on the initial model M(θ̂1) is per-
formed before the execution of interval 1 and the optimal sequence of excitation
spectra {Φr1 ,Φr2 , . . . ,Φrn} is found. The first five spectra of this sequence are re-
ported in Figure 4.2. The following spectra are zero up to numerical precision. An
excitation signal r1 with spectrum Φr1 is generated and it is applied to the system
during interval 1.

After the execution of interval 1, the data Z1 are collected and used to estimate
the parameter θ̂2 and its covariance P2. Following, the controller C2 = C(θ̂2)
is also designed, and the robust stability of the uncertain closed loop system
[C2 M(θ̂2 + δ)] with δ ∈ D2 is verified using the robust stability tools (Bombois
et al., 2001). Subsequently, a new experiment design problem involving the re-
maining intervals is formulated and solved. The result is a new sequence of exci-
tation spectra {Φr2 ,Φr3 , . . . ,Φrn}. The first element of this new optimal sequence
is used to realize the excitation signal r2 implemented in the interval 2 and the
procedure is iterated for all the following intervals.

The spectra of the excitation signals actually fed to the system in the receding
horizon implementation are reported in Figure 4.3. Note that these spectra are
significantly different from the ones computed before the first interval (Figure 4.2).
Furthermore, only the spectra relative to the first 3 intervals are non-zero. Owing
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Figure 4.3: Spectra Φrk of the excitation signals actually applied to the system in
Case 1.

to the receding horizon mechanism, the algorithms detects that the excitation in
the intervals 4 and 5 is no longer required. By removing the excitation in these
intervals, the overall performance improves significantly.

In the top left plot of Figure 4.4 the experimental total cost T ek is reported. T ek is
the sample-based approximation of total cost Tk and is defined as

T ek ,
1

Ntot

Ntot∑
t=1

(yo(t)− yk(t))2.

In the same plot, the constraint T̄k and the worst-case total cost T wc,RH
k are shown.

The latter is the worst-case total cost relative to interval k computed during the
experimental design performed at the start of interval k. 4 T wc,RH

k reaches the
constraint T̄k for the first three intervals and decreases in the following ones, so
that it can satisfy the new level of the constraint for k = 7, . . . , 12. The experimen-
tal total cost T ek is always below T̄k as expected. T ek increases from interval 1 to 2,
since more excitation is applied in the second interval. In the following intervals,
T ek decreases and is close to zero for k ≥ 4. In Figure 4.5 the Bode diagrams of
Go and of the identified models G(θ̂1), G(θ̂2), G(θ̂3), and G(θ̂4) are reported. For
the identified models, the 99% uncertainty region is indicated by the colored area.
The improvement of the models and the reduction of their uncertainty regions
over the first four learning intervals is evident in this plot.

From the result of this simulation, it appears that our experiment design pro-
cedure allows us to satisfy performance constraints and to optimize the overall
performance (for a fixed choice of the interval length) in the iterative identifica-
tion/controller design framework. The advantage of performing the design of
the excitation signals in receding horizon over the intervals is highlighted by the
fact that the spectra actually implemented using the receding horizon mechanism

4 Note that since the experiment design is repeated in receding horizon, the worst-case for interval
k computed in the experiment design kmay be different from the worst-case computed in the previous
experiment design steps.
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Figure 4.4: Total cost T ek , worst-case total cost T wc,RH
k , and constraint T̄k vs. time

t in Case 1 (n = 12), Case 2 (n = 6), Case 3 (n = 4) and Case 4 (n = 2) intervals.
The green circles denote the time instants corresponding to the start of a learning
interval.

are significantly different from the ones that are obtained as solution of the first
experiment design problem.

As mentioned in Remark 4.3, the interval length may have a significant impact
on the performance that can be achieved in the iterative identification/controller
design framework. In general, a better performance is expected using a larger
number of shorter intervals, as long as these intervals are sufficiently long for
the asymptotic assumptions to be (approximately) satisfied. Unfortunately, we
do not have to date the instruments to perform a formal and quantitative analy-
sis clarifying the exact relation between the the interval length and performance.
Nonetheless, we investigated this relation in this simulation study where the it-
erative identification/controller design framework is applied for different choices
of the interval length.

We applied the same framework to the same system in three more cases divid-
ing the total time Ntot = 2400 into n = 6 intervals having equal length N = 400
(Case 2), into n = 4 intervals having equal length N = 600 (Case 3), and into
n = 2 intervals having lengths N1 = 1800, N2 = 600, respectively (Case 4). The
constraints T̄k are set to T̄ h = 0.7 in the first n/2 intervals and to T̄ l = 0.05 for
the last n/2 intervals. All the other settings are kept the same as in Case 1. The
experimental total cost T ek , the worst-case T wc,RH

k and the constraint T̄k for all the
cases are reported in Figure 4.4. It appears that the average over time of both T ek
and T wc,RH

k is lower when a larger number of shorter intervals is selected. The
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Figure 4.5: Bode plot ofGo, G(θ̂1), G(θ̂2), G(θ̂3), G(θ̂4). The colored areas represent
the 99% uncertainty regions.

best performance is obtained in Case 1, followed by the Cases 2, 3, 4. Note that
Case 4, where only n = 2 intervals are considered, corresponds to a classical ex-
periment design problem (Bombois et al., 2006; Gevers and Ljung, 1986) made up
of an identification phase (interval 1) and a control phase (interval 2). Indeed,
the excitation in the last interval is always zero in our framework. In this case,
the constraint T̄ h = 0.7 is kept for a longer time than in the other cases since the
length of the first interval is chosen as N1 = 1800. This was done because it was
not possible to satisfy the constraint T wc

2 ≤ 0.005 without violating the constraint
T wc

1 ≤ 0.7 having two intervals of equal length N = 1200 samples.
These results suggest that the iterative identification/controller design frame-

work can lead to a superior performance compared to the classic two-phase frame-
works documented in the literature.

4.6 Conclusions

In this chapter, we have presented a new procedure for the gradual update of a
model-based controller. Our approach combines the objective of classic and least
costly identification and is based on an iterative identification/controller design
framework where the model and the controller are gradually improved during
the whole time of the operation. Such an approach allows us to maximize a mea-
sure of the overall performance, while guaranteeing at all time a minimum per-
formance level.

The applicability of our procedure has been verified in a simulation study. The
simulation study also shows that the interval length has a significant impact on
the performance that our procedure can deliver. In particular, for a fixed time
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of operation, having a large number of short intervals leads to a superior per-
formance compared to a smaller number of long intervals. Therefore, the iterative
identification/controller design framework has the potential of delivering a better
performance compared to the classic two-phases experiment design frameworks.

However, the intervals also need to be chosen long enough for the asymptotic
properties of the estimated models (which are used in the experiment design) to
hold. Thus, there is a lower bound on the interval length. In order to overcome
this limitation, system identification and experiment design tools which guarantee
uncertainty bounds on finite data sets need to be developed. This is a very tough
challenge, that we did not tackle in this thesis. Some contributions in this direction
are given in Bombois et al. (2008); Dalai et al. (2007); den Dekker et al. (2008).

Another limitation of our framework is the restriction to linear dynamical sys-
tems. As already mentioned in Chapters 1 and 3, the main limitation for the ap-
plication of similar techniques to general nonlinear systems is the lack of efficient
Experiment Design tools which can handle these systems. In this direction, pre-
liminary results of experiment design for nonlinear dynamical systems have been
developed in this thesis, and are presented in Chapter 5.





5 CHAPTER

Experiment design for parameter
estimation in nonlinear systems

based on multilevel excitation

The accuracy of a model whose parameters are estimated from mea-
sured data depend on the experimental conditions under which these
data are collected. A careful choice of these experimental conditions
can lead to a significant increase in the accuracy of the parameter es-
timates, and consequently in the performance of a controller based on
the identified model. While for linear dynamical systems generally ap-
plicable, computationally efficient experiment design tools for the de-
termination of the optimal experimental conditions are available, the
approaches for nonlinear dynamical systems available in the literature
to date have still several shortcomings and limitations. In this chapter,
a novel experiment design procedure for nonlinear dynamical systems
is presented. The input to the system is designed in such a way that
the information content of the data, as measured by a scalar function
of the information matrix, is maximized. By restricting the input to a
finite number of possible levels, the experiment design is formulated
as a convex optimization problem which can be solved efficiently. Our
method is discussed in relation with other approaches for nonlinear
experiment design that have recently appeared in the literature and is
applied to the model of a Continuous Stirred Tank Reactor in a simu-
lation study. The estimation based on the input signal obtained in our
procedure is shown to outperform the one based on random binary
signals.1

1This chapter is based on the results presented in Forgione et al. (2014c).
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5.1 Introduction

In many fields of engineering, we interact with system whose behavior is par-
tially unknown. Prior information is often available, but it is either incomplete or
not accurate enough for the desired application. We can perform one or more ex-
periments on the system and collect measurements, which are possibly corrupted
by sensor noise or perturbed by other disturbances. In this thesis, this situation
has already been encountered in the framework for batch-to-batch supersatura-
tion control presented in Chapter 3, and in the iterative identification/controller
design framework presented in Chapter 4.

The general problem considered in the Experiment Design field is to deter-
mine conditions such that the data collected from the experiments, together with
the prior information available, can be used to construct an accurate model of
the system. In this chapter, we consider in particular a situation where a model
structure which can represent the dynamical system is known (e.g. from first-
principles knowledge), but the values of certain numerical coefficients determin-
ing the “right” model within the structure are uncertain and need to be estimated
from the experimental data. The objective of the experiment design in this case
is to guarantee that accurate estimates for those parameters can be reconstructed
from the data.

A measure of the parameter accuracy can be defined in terms of the so-called
information matrix. A well-known result is indeed that when a statistically efficient
estimation method such as maximum likelihood is used, the variance of the esti-
mated parameters is asymptotically equal to the inverse of the information matrix
(Van den Bos, 2007).

In the Systems Identification field, the experiment design task has been exten-
sively studied for dynamical systems which are linear in the input (Goodwin and
Payne, 1977). In this case, the information matrix is an affine function of the power
spectrum of the input signal. This property has been widely used in the design of
the input signal adopting a two-step design procedure.

Firstly, a power spectrum for the excitation signal which is optimal (according
to the desired criterion) is determined. Exploiting the affine relation between the
information matrix and the spectrum, the latter can often be found as the solution
of a convex optimization problem (Bombois et al., 2006; Jansson and Hjalmarsson,
2005). Secondly, an input signal having the desired power spectrum is generated.
The signal generation can be performed by filtering white noise (which has a flat
power spectrum) through the shaping filter relative to the optimal spectrum. This
two-step design procedure has also been applied in Chapter 4 of this thesis.

However, linear models are often approximations of more complex, nonlinear
phenomena. Therefore, the validity of linear models is usually limited to a cer-
tain operational range. In some cases, linear models may not suffice in order to
describe the underlying dynamics accurately enough for the desired application
and a nonlinear approach may be required. For instance, as seen in the Chapters
2 and 3, a linear model could hardly represent the dynamics of the batch cooling
crystallization process with reasonable accuracy for control applications.

Nonetheless, performing experiment design for nonlinear dynamical systems
is still an open and challenging research topic. Still, the objective can be formu-
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lated in terms of the information matrix as in the linear case. However, in the
nonlinear case the power spectrum is not sufficient for characterizing the infor-
mation matrix completely, i.e. input signals having the same power spectrum can
lead to different information matrices. Therefore, the two-step design procedure
based on the power spectrum cannot be applied.

A possibility is to design the entire probability density function of the input
signal. 2 Since the probability density function appears linearly in the informa-
tion matrix, a similar two-step procedure based on the entire probability density
function of the input signal could be adopted. However, this procedure is much
more involved than the one based on the power spectrum (see Hjalmarsson and
Mårtensson (2007); Larsson et al. (2010); Valenzuela et al. (2013)). To date, it has
been successfully applied only to nonlinear dynamical systems of very limited
complexity such as nonlinear FIR.

An alternative approach is to optimize the input signal directly in the time
domain by solving a dynamic optimization problem involving the information
matrix (Franceschini and Macchietto, 2008). This approach has been followed for
different applications such as a cooling crystallization in Chung et al. (2000) and
a semibatch RODTOX process in Stigter et al. (2006). However, a drawback of
this approach is that the dynamic optimization problems involving the informa-
tion matrix are in general very hard to be solved. Typically, the dependency of
the information matrix on the input signal is severely non-convex. When the op-
timization problem is solved using standard gradient-based algorithms, chances
are high that the numerical solution will lie in the proximity of a local optimum,
which is possibly far away from the global one. Convex relaxation for experi-
ment design problems posed in the time domain have only been developed for
model structure representing linear dynamical systems (see Larsson et al. (2013);
Manchester (2010)).

In this chapter, we present an experiment design procedure which can be ap-
plied to a fairly large class of nonlinear systems, but still relies on convex opti-
mization. More precisely, the method can be applied to the class of fading memory
nonlinear systems, in the sense defined in Boyd and Chua (1985). Loosely speak-
ing, this means that the output of the system mostly depends on the values of the
input in the recent past, while the influence of the input in the remote past (and
the one of the initial condition of the system) gradually fades out. In the field of
process engineering, continuous processes generally satisfy the fading memory
property. However, batch processes may not satisfy this condition. Unfortunately,
the fading memory property does not hold for the batch cooling crystallization
process, where the initial condition of the system has a significant influence on
the future behavior of the system up to the final time. For this reason, in the nu-
merical example we will apply our framework to a different process engineering
system, namely a Continuous Stirred Tank Reactor (CSTR) where a first-order, ir-
reversible reaction takes place. For the CSTR system, the fading memory property
holds.

Our procedure can be seen as a deterministic version of the classical approx-
imate discrete design (Fedorov and Hackl, 1996; Pronzato, 2008) here extended to

2Note that the power spectrum (which is sufficient to characterize the information matrix for linear
dynamical system) only describes the second order statistical properties of the input signal.
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the case of dynamical systems. We restrict the range of the input signal to a finite
number of possible levels and divide the time of the experiment in a number N
of consecutive intervals. During each of the intervals, we keep the input signal
constant at one of the levels. This piecewise constant input signal can be described
by the sequence of N levels that are encountered. We call this sequence the input
sequence. In the input sequence, we can recognize N −m+ 1 shorter subsequences
of length m, partially overlapping each other in the input sequence as shown in
Figure 5.1.

We show that if the fading memory of the system is shorter than m intervals,
the information matrix for the entire experiment is a linear function of the relative
frequency of occurrence of each possible pattern of length m (i.e. each possible
subsequence) in the full input sequence. Owing to linearity, we will be able to
formulate the experiment design problem optimizing a convex measure of the
information matrix using the frequencies as design variables. After solving the
problem, we will generate an input sequence in which the subsequences appear
in numbers proportional to the relative optimal frequencies obtained as solution
of the convex optimization problem.

It has to be mentioned that the use of multilevel signals has been investigated
for a long time in the field of experiment design. The goal usually considered
is to generate multilevel signals whose power spectrum is close to an arbitrary
target (see Rojas et al. (2007)). The objective is to replace the input generation ap-
proach based on filtered white noise in the two-step experiment design procedure
for linear systems discussed above. In fact, even though it is straightforward to
generate an input signal having an arbitrary power spectrum by filtering white
noise, a multilevel realization is often more attractive since multilevel signals can
satisfy by design input amplitude constraints, which are common in many real-life
applications.

Multilevel signals have also been used in Wong et al. (2013) in order to obtain
the best linear approximation of a nonlinear system, defined in response to a white
Gaussian input signal, using a multilevel signal as input for the identification.
Note that the best linear approximation depends on the probability distribution
of the input and for this reason a bias has to be expected when a multilevel sig-
nal (instead of a white Gaussian signal) is used as input for the identification. In
Wong et al. (2013), a moment matching technique was used to obtain a multilevel
sequence whose probability distribution approximates the one of the white Gaus-
sian noise as close as possible. It was shown that the number of moments of the
Gaussian distribution that is possible to match using a multilevel signal grows
linearly with the number of levels in the multilevel signal. Therefore, the bias
between the best linear approximation defined for a white Gaussian input signal
and the one identified using the multilevel input signal can be arbitrarily reduced
by increasing the number of values allowed in the multilevel input signal.

Compared to the contributions above, we are here using multilevel input se-
quences for the estimation of the parameters of a nonlinear system in a full order
model structure. Our approach is closely related to the probabilistic input design
first proposed in Larsson et al. (2010) for nonlinear FIR systems. In that contri-
bution, a convex measure of the expected value of the information matrix is opti-
mized over the probability of the occurrence of the different subsequences within
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the input sequence. Compared to (Larsson et al., 2010), we adapt the framework
in such a way that it can be applied to the larger class of nonlinear fading memory
systems. Moreover, we here follow a deterministic procedure for the generation
of the input signal. For this reason, even though the experiment design optimiza-
tion problem solved in Larsson et al. (2010) and the one solved here are formally
equivalent, the probability of the subsequence is here interpreted as the frequency
of its occurrence in the input sequence.

Another similar experiment design method based on a multilevel input sig-
nal has been recently derived in De Cock et al. (2013). Interestingly, the work in
De Cock et al. (2013) was developed as a generalization of a previous multisine ex-
periment design method for linear systems described in Schoukens and Pintelon
(1991). The approach is described in De Cock et al. (2013) for the particular case
of Wiener systems consisting of a linear FIR filter followed by a static polynomial
nonlinearity. Compared to De Cock et al. (2013) (beside the more general frame-
work allowing nonlinear fading memory systems), we formulate the experiment
design as a convex optimization problem (as was also done in Larsson et al. (2010))
which can be solved efficiently using standard software and algorithms without
introducing further approximations.

5.2 The Framework

5.2.1 Data-generating system and model structure

We assume that a model structure which can describe the data-generating system is
given in state-space ODE representation

ẋ(t) = f(x(t), u(t), θ)

y(t) = g(x(t), θ)
(5.1)

where x(t) is the state, u(t) is the input, y(t) is the output and θ ∈ Rp is the uncer-
tain parameter vector. The initial state x0 = x(0) is fixed and known. We consider
here the SISO and SIMO cases, i.e. u(t) ∈ R and y(t) ∈ Rq , q ≥ 1. 3

We assume that there exists one (and only one) true parameter θo such that the
output of the model constructed using θo is equal to the output of the data gener-
ating system for every possible input signal.

Measurements ỹk of the output y are collected at a constant rate ts and are cor-
rupted by an additive white Gaussian noise source ek having mean 0 and known
covariance Σe: ỹk = y(kts) + ek with ek ∼ N (0,Σe). We assume that the data-
generating system has the fading memory property, in the sense defined in Boyd
and Chua (1985). Loosely speaking, this means that the output of the system
mostly depends on the values of the input in the recent past, while the influence
of the input in the remote past (and the one of the initial condition of the system)
gradually fades out.

3The extension to the MIMO case is possible, but would add notational complexity.
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Figure 5.1: Two consecutive subsequences sj and sj+1 share m− 1 elements.

5.2.2 Input signal

We restrict the range of the input signal u(t) to a finite number of possible levels
α = {α0, α1, . . . , α`−1}. The time of the experiment is divided into a number of
consecutive intervals Ij , j = 0, 1, . . . , N − 1. Each interval has a fixed duration tI
which is a multiple of the sampling time ts: tI = nts where n is a positive, integer
number. The input signal is kept constant to one of the levels in α during each
interval.

The input signal during the experiment can be described by an input sequence
of N levels S = {u0, u1, . . . , uN−1}, uj ∈ α. Each element uj represents the
value of the input signal during the interval Ij . The output y(t) of the system is
in general a function of the input sequence S, the initial condition x0, and the true
parameter θo: y(t) = y(t;S, x0, θo).

Since the system has fading memory, the output during a certain interval Ij
mostly depends on the input during the previous m intervals Ij−m+1, Ij−m+2,
. . . , Ij . For this reason, we recognize in the input sequence S a number N −
m + 1 of shorter subsequences sj = {uj−m+1, uj−m+2, . . . , uj} having length m.
Note that neighboring subsequences overlap each other. In fact, two consecutive
subsequences sj and sj+1 share m− 1 elements (see Figure 5.1).

The numberm of elements in a subsequence is chosen large enough to describe
the transient of the system with good accuracy. Thus, we can approximate the
output of the system during interval Ij as a function of input values contained in
the subsequence sj , neglecting the influence of the input values outside sj and of
the initial condition4, i.e. y(t) ≈ y(t; sj , θo) for t ∈ Ij and j ≥ m− 1.

5.2.3 Subsequence patterns

From a combinatorial consideration, it is easy to see that the total number of possi-
ble patterns of length m which can take ` distinct values is M = `m. For instance,
in the case of binary subsequences (i.e. α = {α0, α1}) and with m = 2, there are
22 = 4 possible subsequence patterns, namely {{α0, α0}, {α0, α1}, {α1, α0}, {α1, α1}}.

For the development and the implementation of the experiment design prob-
lem, it will be useful to enumerate all the possible patterns. To this end, it is
convenient to put the set of these patterns in a 1:1 relation with the set of integer
numbers ranging from 0 to `m− 1. We shall denote as s[h] the subsequence pattern
which corresponds to the integer number h according to the following 1:1 relation.

4The approximation is not accurate for j < m−1, since the influence of the initial condition cannot
be neglected for these intervals.
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Definition 5.1 Given an integer number h, we derive its representation in the base `
and build the subsequence s[h] by appending the levels corresponding to the digits of this
number from left to right. Conversely, given a subsequence s[h], we construct the number
h considering the elements of the subsequences as the digits of an integer number written
in the base `.

For instance, in the case of binary subsequences with m = 2 discussed above, the
4 possible patterns are in 1:1 relation with the integer numbers 0, 1, 2, 3. These
integer numbers can be represented in the base 2 as (00)2, (01)2, (10)2, (11)2. We
have

s[0] = s[(00)2] = {α0, α0},
s[1] = s[(01)2] = {α0, α1},
s[2] = s[(10)2] = {α1, α0},
s[3] = s[(11)2] = {α1, α1}.

The notation (abc)d stands hereafter for the integer number having digits abcwhen
represented in the base d.

5.2.4 Information Matrix

The information matrix F for the entire estimation problem is

F =

N−1∑
j=0

Fj︷ ︸︸ ︷
n−1∑
i=0

ψ((jn+i)ts)Σ
−1
e ψ((jn+i)ts)

>. (5.2)

where ψ(t) = d
dθy(t;S, x0, θ)

∣∣
θ=θo

is the output parameter sensitivity. We see that
the information matrix F is the sum over the intervals of the information matrices
Fj relative to the data contained in the intervals Ij .

For j > m − 1, owing to the fading memory property of the system, the
output of the system in the interval Ij mostly depends on the input values dur-
ing the most recent m intervals. Therefore, Fj is a function of the subsequence
sj = {uj−m+1, uj−m+2, . . . , uj}. Note that the information matrices Fl and Fm rel-
ative to two different intervals l, m are identical if the subsequences sl, sm have
the same pattern.

Definition 5.2 For each of the possible subsequence patterns s[h], h = 1, 2, . . .M − 1,
we define

p([h]) =
number of occurrences of the subsequence pattern s[h] in S

N −m+ 1
(5.3)

as the relative frequency of the subsequence pattern s[h] in the input sequence S.

Definition 5.3 For each of the possible subsequence patterns s[h], h = 1, 2, . . .M−1, we
also define F (s[h]) as the contribution to the information matrix relative to a subsequence
that has pattern s[h].
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In order to compute a term F (s[h]), we can simply simulate the nonlinear sys-
tem together with the parameter sensitivities ψ(t) feeding as input a signal which
corresponds to the subsequence pattern s[h]. 5 Following, we can compute the
information matrix F (s[h]) for the last interval of s[h] as

F (s[h]) =

mn−1∑
i=(m−1)n

ψ(its)Σ
−1
e ψ(its)

>. (5.4)

Using the definitions above, we can easily show that the information matrix F
for the entire estimation problem is proportional to the relative frequency p(h) of
the pattern s([h]) in the input sequence S times the contributions F (s[h]) relative
to the pattern s(h).

Proposition 5.1 Ignoring the contribution from data in the first m − 1 intervals, the
information matrix F in (5.2) can be written as

F = (N −m+ 1)

M−1∑
h=0

p(s[h])F (s[h]). (5.5)

Proof: This proposition is easily proven by grouping in (5.2) the contributions
due to the terms which have the same pattern. 2

5.3 Experiment Design

5.3.1 Relative frequencies as design variables

For a given input sequence S, it is probably more natural to compute the infor-
mation matrix using (5.2). Nonetheless, (5.5) is useful for the design of the input
sequence.

We see indeed that the information matrix F is a linear function of the relative
frequencies p(s[h]). Thus, it is convenient to consider p(s[h]) as design parameters
of the input sequence. Owing to the linear relation, a large class of experiment
design problems can be posed as convex optimization problems in the decision
variables p(s[h]).

However, a number of constraints on the relative frequencies have to be set in
order to obtain a solution which can actually be implemented:

1. The relative frequencies p(s[h]) need to be nonnegative numbers summing
up to 1.

2. An exact discrete design (Fedorov and Hackl, 1996; Pronzato, 2008) requires
the relative frequencies p(s[h]) to be rational numbers in the range QN =
{ kN , k = 0, 1, . . . , N}.

5 The parameter sensitivities can be obtained either from finite differences or integrating the sensi-
tivity equations (Rabitz et al., 1983) associated with the ODE (5.1).
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3. The relative frequencies have to be chosen in such a way that the subse-
quences can be concatenated in the input sequence S as shown in Figure
5.1.

Addressing point 1) is immediate. It implies M linear inequalities and one
linear equality, which can be easily included in a convex optimization problem.

On the contrary, addressing point 2) is not straightforward. Restricting p(s[h])
to QN would lead to a hard combinatorial optimization problem. In practice, it
is possible to relax (i.e. neglect) this constraint and allow the frequencies p(s[h])
to be real numbers. In the experiment design literature, this corresponds to the
so-called approximate discrete design (Fedorov and Hackl, 1996; Pronzato, 2008).

Point 3 is also delicate to address. We have seen that two consecutive subse-
quences sj , sj+1 in the input sequence S have m − 1 elements in common. Let ∗
denote any level αh ∈ α. If the subsequence sj is in the form {∗, u0, . . . , um−2},
the next subsequence sj+1 in S has to be in the form {u0, u1, . . . , um−2, ∗}. Sim-
ilarly, a subsequence in the form {u0, u1, . . . , um−2, ∗} can only appear after by
one the form {∗, u0, u1, . . . , um−2}. Clearly, this sets a constraint on the number of
subsequences which have these two patterns in the input sequence.

A necessary condition for the existence of an input sequence in which the sub-
sequences appear in numbers proportional to the frequencies p(s[h]) is that

`−1∑
h=0

p({αh, u0, u1, . . . , um−2}) =

`−1∑
h=0

p({u0, u1, . . . , um−2, αh}) (5.6)

for all the `m−1 possible of subsequences of lengthm−1 {u0, u1, . . . , un−2} , uj ∈
α. It is easy to show that the condition (5.6) is necessary, but not sufficient for the
existence of an input sequence satisfying the ordering constraints. For instance,
for a binary sequence of length 2, the solution p({α0, α0}) = p({α1, α1}) = 0.5,
p({α1, α0}) = p({α0, α1}) = 0 satisfies the constraints (5.6). However, it is not
possible to switch from the subsequence {α0, α0} to {α1, α1}without introducing
at least one subsequence {α0, α1}.

Remark 5.1 The same issue is present in the approach presented in De Cock et al. (2013)
where the same condition (5.6) has been used. A similar issue occurs in the probabilistic
approach as in Larsson et al. (2010). The condition (5.6) in the probabilistic approach guar-
antees the existence of a stationary distribution for the input sequence such that the subse-
quences have marginal probabilities p({·}) (Grillenberger and Krengel, 1976). However,
the Markov Chain defining this stationary probability distribution may not be irreducible.
Therefore, it may not be possible to generate the subsequences in numbers asymptotically
proportional to p(s[h]) sampling from a single realization in the Markov Chain (i.e. we
may not be in the condition of applying the ergodic theorem (Norris, 1998)). These issues
were not discussed in the contributions De Cock et al. (2013); Larsson et al. (2010).

At the moment, we are not aware of the existence of a general, convex condi-
tion which is necessary and sufficient in order to satisfy the ordering constraints.
Thus, we only include the necessary condition (5.6) in the experiment design and
solve the issues related to transitions similar to the one above by including a (min-
imum) number of additional elements in the input sequence.
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Proposition 5.2 The set of constraints (5.6) can be written conveniently as

`−1∑
h=0

p(s[j+h`m−1])=

−̀1∑
h=0

p(s[`j + h]) for j = 0, 1, . . . `m−1−1. (5.7)

Proof: The equivalence can be verified exploiting the correspondence between the
subsequence {u0, u1, . . . , um−2} and the integer number (u0u1 . . . um−3um−2)`, i.e.
the integer number having digits u0u1 . . . um−3um−2 represented in the base `. 2

5.3.2 Experiment Design Problem

We here consider a D-optimal experiment design problem which aims to maxi-
mize the determinant of the information matrix. Other experiment design prob-
lems considering a convex measure of the information matrix such as E-optimal,
A-optimal and L-optimal (Atkinson and Donev, 1992) could be similarly imple-
mented.

Problem 5.1 The D-optimal experiment design problem is

max
p(s[0]),...,p(s[M−1])

log det

(
M−1∑
h=0

p(s[h])F (s[h])

)
subject to (5.8)

p(s[h]) ≥ 0 for h = 0, 1, . . . ,M − 1 (5.9)
M−1∑
h=0

p(s[h]) = 1 (5.10)

`−1∑
h=0

p(s[j + h`m−1]) =

`−1∑
h=0

p(s[`j + h]) for j = 0, 1, . . . `m−1−1 (5.11)

The logarithm of the determinant of the information matrix (which is a concave function)
is maximized (5.8) subject to the constraints that the relative frequencies are positive (5.9)
and sum up to 1 (5.10). The necessary ordering constraint (5.11) for the subsequences is
also included.

The overall optimization problem (5.8)-(5.11) is convex and can be solved using
standard software and algorithms. In this work, we used the optimization mod-
eling software CVX (Grant et al., 2008) with the solver SDPT3 (Toh et al., 1999).

Remark 5.2 The experiment design framework presented above is computationally at-
tractive when the memory of the system is significantly shorter than the total time of the
experiment. In this case, the length of the subsequences m can be chosen significantly
shorter than the length of the input sequence M . For systems that do not satisfy the
fading memory property, the effect of the initial condition and of the input in the remote
does not decay over time. Therefore, we would need to choose m equal to M in this case.
However, in this case our approach reduces to a trivial, brute-force optimization of all the
possible input sequences. Unfortunately, the fading memory property does not hold for the
batch cooling crystallization process, where the initial condition of the system is known
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to have a significant influence on the future behavior of the system up to the final time.
For this reason, in the numerical example we will apply our framework to another system
from process engineering, namely a continuous stirred tank reactor, for which the fading
memory property holds.

5.3.3 Chicken and the egg issue

In order to solve the optimization problem (5.8)-(5.11), we need to compute the
terms F (s[h]). However, these terms actually depend on the true parameters θo,
which are in general unknown. This situation, already encountered in Chapter 4,
is actually common in most of the experiment design problems (Ljung, 1999) and
is known as the “chicken and the egg” issue. A common workaround to this issue
is to replace the true parameter θo by an initial estimate θ̂init in the experiment
design problem.

5.3.4 Input Realization

Once the problem (5.8)-(5.11) is solved, an input sequence containing the subse-
quences in numbers (approximately) proportional to the optimal frequencies has
to be generated. The input generation problem for dynamical systems is more
complicated than in the static case considered in classical approximate discrete
design (Fedorov and Hackl, 1996) due to the ordering constraints that the subse-
quences have to satisfy. In the numerical example, we will present an ad-hoc input
generation for optimal frequencies obtained in that particular case. The develop-
ment of a general algorithm for the input generation starting from the optimal
frequencies is left for future work. Some ideas in this direction are presented in
the conclusions of this chapter.

5.3.5 Parameter Estimation

Once the input sequence S is found, the corresponding input signal u(t) is given
to the system and the measurements ỹk are collected. The parameter is estimated
according to a maximum likelihood criterion. As stated in the introduction, this
will lead (asymptotically in the number of samples) to a normal parameter esti-
mate whose covariance is equal to the inverse of the information matrix. In our
framework, the maximum likelihood estimator is the weighted least squares estima-
tor

θ̂ = arg min
θ∈Rp

Nn−1∑
k=0

(ỹk−y(kts;S, x0, θ))
>Σ−1

e (ỹk−y(kts;S, x0, θ)). (5.12)

The nonlinear optimization problem (5.12) is solved numerically using the active-
set algorithm embedded in the Matlab function fmincon. The derivatives of the
objective function with respect to model parameters are computed analytically by
integrating the sensitivity equations along with the model equations (Rabitz et al.,
1983).
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5.4 Numerical Example

We consider a CSTR system with jacket cooling in which a first-order, irreversible
reaction A → B takes place. Details on this system can be found in Chapter 3 of
Luyben (2007). An ODE representation of the system is

ĊA =
F

VR
(CA0−CA)− CAk0e

− E
RTR (5.13)

ṪR =
F

VR
(T0−TR)− λCA

ρcp
k0e
− E
RTR − UAJ(TR−TJ)

VRρcp
(5.14)

ṪJ =
FJ
VJ

(Tcin − TJ) +
UAJ
VJρJcJ

(TR − TJ). (5.15)

where CA (kmol/m3) is the concentration of the reactant A in the reactor, TR (K)
is the temperature inside the reactor and TJ (K) is the temperature of the cooling
medium inside the jackets. The input u = FJ (m3/s) is the flow rate of the cooling
medium inside the jackets, the output vector is y = [CA TR]> and the state vector
is x = [CA TR TJ ]>.

The symbols θ = [k0 E λ UAJ ]> represent the uncertain parameters which are
to be estimated. The other symbols represent known, fixed coefficients. The nu-
merical values of the true parameters θo and of the fixed coefficients are reported
in Table 5.1.

Measurements ỹ = [C̃A T̃R]> of y = [CA TR]> are taken at a rate ts = 10 min
and are corrupted by additive white Gaussian noise terms having variance σ2

C =
0.052 and σ2

T = 0.12 respectively: Σe = diag(σ2
C , σ

2
T ). Each interval contains n =

30 time samples. An input subsequence is formed by m = 10 consecutive time
intervals. A binary excitation signal is considered: α = {α0, α1}where α0 = 0.6ū,
α1 = 1.4ū and ū = 11.26 · 10−3. Thus, we have M = 210 = 1024 subsequence
patterns s[h], h = 0, 1, . . . , 1023. For all the possible subsequences, the information
matrix of the data collected in the last element of the subsequence is computed.

The experiment design problem (5.8)-(5.11) is implemented and solved numer-
ically. In order to avoid the chicken-and-the-egg issue, the experiment design is
here based on the true parameters θo. 6

Interestingly, out of the 1024 subsequence patterns s[h], only 5 have strictly
positive optimal frequencies p(s[h]). These five patterns, together with their opti-
mal frequencies, are the following

A = {α0, α0, α0, α0, α0, α0, α0, α0, α0, α0}, p(A) = 0.1

B = {α0, α1, α1, α1, α0, α1, α1, α1, α0, α1}, p(B) = 0.225

C = {α1, α0, α1, α1, α1, α0, α1, α1, α1, α0}, p(C) = 0.225

D = {α1, α1, α0, α1, α1, α1, α0, α1, α1, α1}, p(D) = 0.225

E = {α1, α1, α1, α0, α1, α1, α1, α0, α1, α1}, p(E) = 0.225.

6 Of course, this approach would not be feasible in practice since θo is always unknown. Nonethe-
less, the performance that we obtain using θo represents an upper bound to the performance that can
be achieved adopting a different approximation. Therefore, it is interesting to consider this situation
in this preliminary study on nonlinear experiment design.



5.4 Numerical Example 105

Name Description Value Units
F Flow rate of the feed 0.0044 m3/s
VR Reactor volume 101.6 m3

CA0 Concentration of A in the feed 8.01 kmol/m3

T0 Temperature of the feed 294 K
ρ Density of product stream 801 kg /m3

cp Heat capacity product 3137 J /(K kg)
VJ Jacket volume 33.75 m3

Tcin Temperature of cooling medium 294 K
cJ Coolant density 1000 kg/m3

ρJ Coolant heat capacity 4183 kg /m3

k0 Preexponential factor 20.75 · 106 1/s
E Activation energy 69.771 · 106 J/kmol
UAJ Heat transfer coefficient · jacket area 8.6163 · 104 W/K
λ Heat of reaction 69.771 · 106 J/kmol

Table 5.1: Parameters and fixed coefficients of the CSTR model.
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Figure 5.2: The subsequence patterns A,B,C,D,E. The patterns L1 =
{B,E,D,C} and L2 = {A} form two distinct loops. The loop L1 corresponds
to a square wave, while L2 is the constant “low” value.

Note that we have renamed the patterns to A, B, C, D, and E for notational con-
venience. The patterns are also shown in Figure 5.2.

Given the patterns and the optimal frequencies, an input sequence containing
the patterns in numbers (approximately) proportional to their optimal frequencies
has to be generated. As mentioned in Section 5.3.4, the we did not develop in
this thesis a general input generation algorithm. However, we show that for this
particular case such an input sequence can be readily obtained.

Indeed, it is easy to verify that the patterns A,B,C,D,E can be concatenated
in two separated cycles: L1 = {B,E,D,C} and L2 = {A}. For instance, the ele-
ments from 2 to 10 inside B are equal to the elements from 1 to 9 in E. Therefore, a
subsequence having pattern E can be placed after one having pattern B in an input
sequence. Examining the patterns, it is evident that the loop L1 corresponds to a
square wave, while L2 is simply the constant “low” value (see Figure 5.2).

Furthermore, if we could repeat 9 times the cycle L1 and 4 times the cycle L2,
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(a) Optimal input signal uoed(t) used for all
the Monte Carlo runs in Case 1.
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(b) Random binary signal urbs
1 (t) used for

the first Monte Carlo run in Case 2.

Figure 5.3: Optimal input signal uoed(t) (left) and realization of a random binary
signal urbs

1 (t) (right).

we would have an input sequence S in the form

S =

9 loops L1︷ ︸︸ ︷
BEDCBEDC . . . BEDC

4 loops L2︷ ︸︸ ︷
AAAA

containing 9 ∗ 4 + 4 ∗ 1 = 40 subsequences. In this sequence, the subsequences
would appear in numbers proportional to the desired frequencies. For instance,
the pattern A would appear with frequency 4/40 = 0.1, while the pattern B would
appear with frequency 9/40 = 0.225.

The only problem is that it is not possible to concatenate directly the subse-
quence having pattern C in the last loop L1 with the first subsequence A of the
first loop L2. This is a consequence of the use of the necessary (and not sufficient)
ordering constraints (5.6) in the optimization problem. As discussed in Section
5.3.1, we here circumvent this issue including a (minimum) number of transition
elements in the input sequence. We build an input sequence that contains 9 cycles
of L1, 4 cycles L2, and a minimum number of transition elements.

Our input sequence starts with a full subsequence with pattern B, i.e. with
the elements {α0, α1, α1, α1, α0, α1, α1, α1, α0, α1}. Following, the last elements of
the patterns E,D,C, i.e. {α1, α1, α0}, are appended to the input sequence. In
this way, 3 the subsequences with pattern E,D,C are concatenated to the input
sequence and the first loop L1 is formed. Next, the last elements of the patterns
B,E,D,C, i.e. {α1, α1, α1, α0}, are appended to the input sequence 8 more times,
forming 8 more loops L1. The input sequence defined so far contains 9 loops L1

and terminates with α0, i.e. the last element of a C subsequence. At this point,
nine elements α0 are appended, forming a full subsequence A, which is also a full
cycle L2. Three more elements α0 are appended to the sequence, forming 4 cycles
L2 in total. The input signal uoed(t) corresponding to this sequence consists in
square wave followed by a constant part at the value α0 (Figure 5.3a).

In order to verify the effectiveness of the experiment design procedure, we
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perform two Monte Carlo studies where the parameter estimation is repeated
nmc = 100 times for different realizations of the measurement noise. In the first
Monte Carlo study (Case 1), the input signal is uoed(t) for all the Monte Carlo
runs. In the second Monte Carlo study (Case 2), the input urbsk (t) is a random bi-
nary signal which can take the same values {α0, α1} as the optimal input signal
and switches its value randomly with clock period tI , which is the duration of an
interval in the optimal input signal. In this case, the input urbs

k (t) is stochastic and
the realizations are different for all the Monte Carlo runs.

The objective of these Monte Carlo studies is twofold. First, we want to ver-
ify whether (and to what extent) the optimal signal leads to a more informative
experiment than the random binary signals, as measured by the optimized metric
of the information matrix. The random binary signal is a good candidate for the
comparison since it is a common, non-optimal engineering choice for the genera-
tion informative identification datasets. Furthermore, the particular choice of the
random binary signals that we have performed corresponds to a random search
in the same space of signals that our optimal procedure can generate.

Second, we want to verify whether the metric of the information matrix that is
optimized is actually related to the accuracy of the estimated parameters. For this
to be verified, the relation between the information matrix and the inverse of the
parameter covariance matrix, which holds under asymptotic assumptions, has to
be approximately valid for our finite-time experiment.

The sample-scaled determinant of the information matrices 1
NnI

oed
k and 1

NnI
rbs
k

obtained for the different Monte Carlo iterations in the two cases are reported in
Figure 5.4. Note that the information matrix in our case only depends on the in-
put and therefore Ioed

k = Ioed is the same for all the realizations in Case 1, while
Irbs
k depends on the particular realization of the random binary signal urbsk (t). The

scaled determinant 1
Nn det Ioed is 2.2 · 1014, while the average of the scaled deter-

minants 1
nmc

∑nmc
k=1

1
Nn det Irbs

k over the different Monte Carlo iterations is 1.2·1014.
Thus, in average, the optimal input is approximately 1.8 times more efficient than
the random binary signal.

Under asymptotic assumptions, the covariance matrix of the estimated param-
eters equals the inverse of the information matrix. Nonetheless, it is important to
verify how accurate this relation is for a finite-time data set. For this reason, we
also compute the sample covariance

Σ̂oed =
1

nmc − 1

nmc∑
k=1

(θ̂oed
k − θ̄)(θ̂oed

k − θ̄)> (5.16)

where θ̄ = 1
nmc

∑nmc
k=1 = θ̂oed

k is the sample mean. The sample covariance Σ̂oed has
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Figure 5.4: Determinant of Ioed
k and Irbs

k vs. iteration number k.

to be compared with the theoretical covariance Σoed
theo , inv(Ioed). We find that

Σ̂oed =


7.2 · 10−2 9.5 · 10−3 7.5 · 10−4 −4.2 · 10−5

9.5 · 10−3 1.3 · 10−3 1.0 · 10−4 −1.0 · 10−5

7.5 · 10−4 1.0 · 10−4 9.1 · 10−5 −4.5 · 10−5

−4.2 · 10−5 −1.0 · 10−5 −4.5 · 10−5 2.6 · 10−5

 ,

Σoed
theo =


8.6 · 10−2 1.1 · 10−2 5.7 · 10−4 1.0 · 10−4

1.1 · 10−2 1.4 · 10−3 8.0 · 10−4 1.0 · 10−5

5.7 · 10−4 8.0 · 10−5 7.3 · 10−5 −3.5 · 10−5

1.0 · 10−4 1.0 · 10−5 −3.5 · 10−5 2.0 · 10−5

 .
The matrices Σ̂oed and Σoed

theo are reasonably close to each other, e.g. the relative

difference ‖
Σoed

theo−Σ̂oed‖F
‖Σoed‖F

of their Frobenius norm is 0.15.
Finally, a scatter plot for the first two coordinates of the nmc estimated parame-

ters for the two cases is reported in Figure 5.5. The estimates θ̂oed
k obtained in Case

1 with the optimal input signal appear to be closer to the true parameter than the
estimates θ̂rbs

k obtained in Case 2 with the random binary input signal. This con-
firms that our experiment design approach leads to an increase in the accuracy of
the estimated parameters compared to a non-optimal, random binary design.

5.5 Conclusions

We have presented an experiment design method that can be applied to a rather
wide class of nonlinear systems, namely to fading memory nonlinear systems.
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The method has been successfully tested on the model of a first-order, irreversible
CSTR system. The signal generated through this method is shown to compare
favorably with random binary signals in a simulation case.

The promising results of this preliminary work leave a number of open ques-
tions and space for future research. First, it would be useful to develop a general
algorithm for the generation of the input sequence starting from the optimal fre-
quencies. In fact, the input generation could be rather involved when several
cycles of subsequences are possible and when the transition between the cycles
requires appending additional elements to the input sequence. Tools from graph
theory could be used to tackle the problem, e.g. to discover all the possible cycles
of subsequences in the optimal solution.

Second, the complexity of our method is proportional to the number of pos-
sible subsequences, which in turn is equal to the number of levels raised to the
power of the number of elements per subsequence. Increasing the number of lev-
els allows one to switch between a larger number of input values. Increasing the
number of elements in a subsequence allows one to switch more often between
the input values. Both choices increase the degrees of freedom in the design and
thus possibly lead to a more effective excitation signal. However, given the limita-
tions on the computational power available, a trade-off between considering more
levels or more elements per subsequence has to be found.

Finally, in the numerical example we have observed that out of the many pos-
sible subsequences, only a few of them have strictly positive optimal frequencies,
and they correspond to two different regimes for the system. This result is very
interesting in relation with the experiment design problems involving linear sys-
tems, where on the contrary it is known that the optimal excitation signal can be
generally chosen as the realization of an ergodic, quasi-stationary stochastic pro-
cess. It would be interesting to investigate whether this property is really induced
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by the nonlinearity of the system, or it is just due to the particular experiment
design method that we have devised, which allows this kind of solutions.



6 CHAPTER

Experimental Results

This chapter describes the results of an experimental campaign on
batch cooling crystallization of Succinic acid from water. The ultimate
goal of the experiments was to test the batch to batch control algo-
rithms previously developed in this thesis. The results of the experi-
ments are very promising. The Root Mean Square of the supersatura-
tion tracking error is shown to decrease owing to the application of the
batch to batch control algorithms. Further investigation is required in
order to make these control techniques robust enough to be applied in
an industrial production environment.1

6.1 Introduction

This chapter describes the results of an experimental campaign on batch cooling
crystallization performed in the ACES department of DSM (Geleen, The Nether-
lands) within the ISPT project PH-00-04. In this campaign, batch cooling crystal-
lization experiments of Succinic acid in water were performed in a 50-liters glass
vessel. The vessel was connected to a skid that was previously developed within
the same project (Kadam et al., 2012) in order to collect process measurements
from a number of different instruments. The skid consists of two parts: a pump
skid and an instrument skid. The slurry is circulated from the crystallizer through
the pump skid to the measurement skid, and then back to the crystallizer. On the
instrument skid analytical instrument are mounted in order to collect different
process measurements.

The objective of the campaign was to test the batch to batch control experi-
ments developed in Chapter 3. In order to achieve this result, the behavior of
the water-succinic crystallization process was first characterized. The solubility
line and the MSZW for the crystallization system at hand have been estimated
performing heat-up and unseeded batch crystallization experiments, respectively.
Next, a seeding procedure was determined and seeded batch crystallization ex-
periments were performed.

1Part of the results presented in this chapter have been used in Forgione et al. (2014a).
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The skid appeared to be of great importance both for the process characteriza-
tion and for the implementation of the B2B control strategies.

The rest of this Chapter is organized as follows. The experimental setup and
the software architecture are described in Section 6.2. Next, the design of the tem-
perature controller is presented in Section 6.3. The results of preliminary crystal-
lization experiments using a pure water-succinic system are presented in Section
6.4. Subsequently, the result of crystallization experiments in the presence of Fu-
maric acid as an additional impurity to the water-succinic system are presented
in Section 6.5. The system in the presence of the impurity appears to be more
suitable for the testing of the batch-to-batch supersaturation control algorithm.
Finally, batch-to-batch supersaturation control experiments are presented in Sec-
tion 6.5. Overall conclusions on this experimental campaign and on the applica-
bility of batch-to-batch control for cooling crystallization are drawn in Section 6.7.
Symbols and units of all the quantities used in this chapter are defined in Section
6.8.

6.2 The experimental setup

A schematic representation of the experimental setup is given in Figure 6.1. The
crystallizer used in the experiments is a 50-liters, jacketed glass vessel (Figure 6.2).
The crystallizer is agitated by an impeller driven by a DC motor. The temperature
in the crystallizer is manipulated by circulating a fluid medium (a solution of wa-
ter and glycol) in the jackets of the vessel. A thermostatic bath (LAUDA RUK 90
S, Figure 6.3) is used to heat up and cool down the fluid medium. The same ther-
mostatic bath is equipped with a pump that allows the circulation of the fluid in
the jackets.

The crystallizer is connected from the bottom valve to the skid through ther-
mally traced, insulated hoses having an internal diameter of 2.54 cm. As previ-
ously mentioned, the skid actually consists of two parts called pump skid and
measurement skid, respectively.

The slurry is circulated from the bottom valve of the crystallizer to the pump
skid, the instrument skid and finally back to the top of the crystallizer with the
help of a lobe pump (Omac BF330) which is mounted on the pump skid. Four in-
struments are mounted on the instrument skid in order to collect different process
measurements:

1. The refractive index sensor K-Patents PR-23 [K-Patents].

2. The ATR-FTIR Spectroscope Bruker MATRIX-MF [Bruker].

3. The Ultrasound extinction sensor Sympatec OPUS/G [Opus].

4. A Perdix ISPV Inline Vision Probe [ISPV].

We will often refer to the instruments using the shorthand name reported between
square brackets.

The K-Patents and the Bruker instruments are meant to measure concentra-
tion, while the Opus and the ISPV provide information about the CSD. Along
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Figure 6.1: A schematic representation of the experimental setup.

Figure 6.2: The 50-liters vessel used as crystallizer for the experiments.
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Figure 6.3: The thermostatic bath LAUDA RUK 90 S.

(a) Pump skid. (b) Measurement skid.

Figure 6.4: Pictures of the pump skid (left) and the measurement skid (right).
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the circulation line, it is possible to measure the temperature at different locations
with PT100 sensors. A PT100 sensor is also mounted inside the vessel in order to
measure the slurry temperature accurately. Each of the instruments is equipped
with a dedicated computer. These computers are located in a pressurized cabinet
located on the instrument skid. The cabinet also hosts a Eurotherm PLC system
which performs a number of low-level control tasks.

The high-level monitoring and control tasks are performed on a separate com-
puter which we will refer to as the DotX PC. The DotX PC is connected with the
computers inside the skid and to the thermostatic bath through Ethernet and serial
interfaces, respectively. Data communication with the computers in the cabinet is
provided by an Ethernet interface positioned on the outside of the cabinet, while
data communication with the thermostatic bath is provided by a serial (RS-232)
interface.

6.2.1 The instruments

K-Patents PR-23. The K-Patents instrument measures the refractive index of the
liquid phase in the slurry. The refractive index depends on both the temperature
of the solution and the concentration of a solute dissolved in it. Since the temper-
ature can be measured independently (for instance from the PT100 sensor), the
concentration can be reconstructed using refractive index measurements (Rozsa,
2006). In principle, the sensor is not sensitive to the presence of a solid phase in
the slurry and for this reason it is suitable for measuring the concentration during
a crystallization process. However, the measurements may be affected by crys-
tal formations growing on the instrument itself (fouling). After a fouling event,
the measurement is not reliable any more until the solution is heated up and the
crystals growing on the sensors are dissolved. In order to reduce the chances of
fouling events, the K-Patents instrument was installed at an angle of 45o with re-
spect to the flow of the slurry. This allows for the self-cleaning effect of the prism.
Even though it is difficult to prevent fouling completely, this phenomenon can be
detected by inspecting a quality measure called slope provided by the instrument
itself. More details on this instrument can be found in K-Patents (2013).

Bruker MATRIX-MF. The Bruker instrument measures the absorption of mid-
infrared radiation of the liquid phase in the range 3000−300cm−1. From the anal-
ysis of the absorption spectra, it is possible to reconstruct the composition and the
concentration of the chemicals dissolved in the liquid phase (Kadam et al., 2010).
Like the K-Patents, the Bruker is not sensitive to the properties of the solid phase
phase. Therefore, it is suitable for measuring the concentration during a crystal-
lization process. However, during the experimental campaign we experienced a
large number of technical failures of the instrument that prevented its usage in the
experiments reported later.

Sympatec OPUS/G. The Opus instrument measures the absorption of ultrasound
waves in the range 1 − 100 Mhz that are passed through a small gap (4 − 8 mm)
where the slurry is circulated. The absorption of ultrasound waves depends on
the amount and the size of the particles that are present in the solid phase, as well
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Figure 6.5: Software architecture of the experimental setup.

as on the properties of the liquid phase (Allegra and Hawley, 1972). However, the
dependency is rather complex and the reconstruction of the CSD from ultrasound
absorption measurements is not straightforward. The OPUS instrument has not
been used in this experimental campaign.

Perdix ISPV Inline Vision Probe. The ISPV instrument consists of two optical
microscopes with a resolution of 10µm/pixel (low magnification) and 2µm/pixel
(high magnification) respectively. In principle, the CSD could be reconstructed
using the images collected by the instrument (Li et al., 2008). However, a reliable
image analysis software was not available during the experiment. For this reason,
the ISPV was only used in a qualitative way to detect the presence of crystals. This
allowed us to observe the onset of nucleation in the unseeded batch experiments
and to verify that the seeds do not dissolve in the solution in the seeded batch
experiments.

6.2.2 Software architecture

A scheme of the software architecture is depicted in Figure 6.5. The design and
implementation of the software architecture was performed in cooperation with
the company DotX.

The control algorithms are implemented in a Matlab program which runs on
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Figure 6.6: The Matlab GUI.

the DotX PC. The Open Platform Communication (OPC) protocol is used to im-
plement read/write communication within the DotX PC, the skid, the instruments
and the thermostatic bath. The Eurotherm PLC, the K-Patents, the ISPV and the
Bruker are equipped with OPC Servers delivered by the respective manufacturer.
For the Opus and the thermostatic bath, two ad-hoc OPC clients were imple-
mented by DotX. In turn, these OPC clients write the data to a Matrikon OPC
Caching Server. Therefore, the OPC Caching Server acts as an OPC server for the
Opus and the Lauda.

An OPC database (Matrikon OPC Desktop Historian) collects measurements
from the different servers at a constant rate and is used to store the data perma-
nently on the DotX PC for off-line analysis.

The Desktop Historian is also used as a read buffer between the Matlab pro-
gram and the OPC server of the instruments. Whenever the Matlab program
needs a measurement (either real-time or historical), it queries the Desktop Histo-
rian instead of the OPC server of the instrument directly.

A screenshot of the graphical user interface (GUI) of the Matlab program is
depicted in Figure 6.6. The GUI allows the user to check the status of the instru-
ments, plot the data and modify the control algorithm. The latter is implemented
as a Matlab script that runs periodically at a constant sampling rate.
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Figure 6.7: The master-slave control scheme for the temperature of the crystallizer.

6.3 Design of the temperature controller

The temperature inside the crystallizer is controlled using the master-slave control
configuration that is represented in Figure 6.7.

A slave PID controller regulates the temperature TJ inside the thermostatic
bath in order to follow the set-point T rJ by providing a heat input Q. The signal
Q is not directly accessible. The user can only provide the set-point TJ for the
PID temperature controller which is directly integrated in the thermostatic bath.
The parameters of this controller can also be tuned. However, the default factory
tuning was found to be satisfactory and was not changed in our experiments.
From a preliminary data analysis, the dynamics of the slave loop were found to
be rather fast (in the order of a minute) compared to the ones of the crystallizer
(which are in the order of an hour). For this reason, the presence of an internal
loop was ignored for the design of the master controller.

From physical considerations, the dynamics from TJ to T is known to be sta-
ble and first-order. A first-order model was estimated based on measured data
of TJ and T using the Matlab System Identification Toolbox (Ljung, 2007). The
identified model is

T (s) = FTTJ (s)TJ =
2.925 · 10−4

s+ 2.53 · 10−4
TJ (6.1)

where s denotes the Laplace variable. The time constant of the model is Tol =
39526 s = 1.1 hours. Given the model, the following master PI controller was
designed

PI(s) =
5.698(s+ 2.53 · 10−4)

s
. (6.2)

The closed-loop system FTT r from T r to T has a linear, first-order behavior 2 with
a time constant Tcl = 600 s = 10 min and static gain exactly equal to one owing to
the integral action of the PI controller

T (s) = FTT r (s)T
r =

1

1 + s
600

T r. (6.3)

2Note that the zero of the PI controller is used to cancel the pole of the open loop system T =
FTTJ (TJ ).
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Figure 6.8: The behavior of the closed-loop temperature dynamics.

The actual command T rJ is generated by a discrete-time version of the con-
troller PI(s) having sampling time ts = 30 s. Furthermore, the command is satu-
rated in the range [5− 90 oC] for safety considerations, i.e.

T rJ = min(max(PI(z)(T − T r), 5 oC), 90 oC). (6.4)

where

PI(z) =
5.698(z − 0.9924)

z − 1
. (6.5)

The behavior of the overall closed-loop system during a typical cooling down
trajectory for batch crystallization is analyzed in the Figure 6.8. The reference T r

is chosen such that the crystallizer temperature T follows the trajectory FTT r (T r).
Such trajectory has a parabolic shape and is almost flat at the start of the batch (at
high temperature) and gets steeper and steeper towards the end of the batch (at
low temperature). From the plot, we see that the jacket temperature TJ follows its
set-point T rJ very closely for most of the batch time. A small deviation between
the two signals can be seen around 19:45 and 20:05 due to the limitation of the
cooling power Q that the thermostatic bath can generate.

The dynamics between the temperature reference T r and the crystallizer tem-
perature T is accurately described by the relation T = FTT r (T

r) up to 20:00. Af-
terwards, the relation is not accurate any more due to the saturation of the jacket
temperature reference T rJ to the minimum value 5 oC. Note that even if we would
not have this saturation the relation T = FTT r (T

r) would eventually become less
accurate since already from 19:45 the jacket temperature TJ does not follow the
reference T rJ very closely due to the limitation of the cooling power Q. In gen-
eral, for batch crystallization experiments an accurate temperature tracking at the
start of the batch is of the highest importance, while it is less critical towards the
end. For this reason, the overall temperature control architecture was considered
satisfactory and was kept for the following experiments.
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6.4 Crystallization experiments using the pure water-
succinic system

6.4.1 Preliminary data and process design

The solubility of Succinic acid in water was first estimated from laboratory anal-
ysis by DSM before the start of the experimental campaign. The solubility was
given in terms of the molar fraction (mol/mol) i.e. the ratio between the moles of
the Succinic acid and the sum of the moles of the Succinic acid and the water as

xs(T ) = e
∆Hsol
R ( 1

Tsol+Ko
− 1
T+Ko

)
(6.6)

where Ko = 273.15 K is the absolute temperature corresponding to 0 oC, R =
8.314 J

mol oC is the universal gas constant, ∆H (J/mol) is the molar heat of dissolu-
tion of Succinic acid in water and Tsol = 180.72 oC. For experimental purpose, it
is convenient to express the solubility and the concentrations in terms of the mass
fraction (kg/kg), i.e. the ratio between the mass of the Succinic acid and the sum
of the masses of the Succinic acid and the water. The solubility in terms of mass
fraction can be written as

Cs,lab(T ) =
xs(T )Ms

xs(T )Ms + (1− xs(T ))Mw
(6.7)

where Ms = 118.089 (g/mol) and Mw = 18.01 (g/mol) are the molar mass of Suc-
cinic acid and water respectively. The solubility line (6.7) is plotted in Figure 6.9.

In practice, it is well known that the measurement of the solubility are rather
sensitive and may change from laboratory to the pilot and industrial scales. The
results may also depend on the sensors that are used and the experimental pro-
cedures that are followed. For this reason, we will verify the solubility using the
instruments of the skid at an early stage in our experiments.

Nonetheless, even a rough approximation of the solubility is a valuable tool
for a preliminary process design. Using the solubility, we can design the satura-
tion temperatures relative to the initial and the final concentration of the batch in
order to obtain a certain solid crystal content at the end of the batch (see Section
3.2). We decided for the experiments to have a saturation temperature around
Tsat(Ci) = 45 oC and a final temperature Tsat(Cf ) = 20 oC. The solid content due
to the crystals at the end of the experiment will be approximately (Cs,lab(Tsat) −
Cs,lab(Tf ))/Cs,lab(Tf ) = 0.1, which is largely within the specifications that can be
safely handled by the equipment at hand.

6.4.2 Calibration of the K-Patents

An experiment was performed in order to calibrate the K-patents for measuring
the concentration of the Succinic acid in water. In this experiment, the crystallizer
was filled with a known amount of water. Next, a number of loads of Succinic
acid were weighed and poured in the crystallized.

After one load of Succinic acid is added, the concentration is known if all the
crystals are dissolved in the solution, i.e. if the solution is clear. This condition can
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Figure 6.9: The solubility line of Succinic acid in water estimated from laboratory
analysis by DSM.

be accurately verified using the ISPV images. The concentration C in this case is
known by definition

C = Cref =
ST

ST + SW
. (6.8)

where ST (kg) is the total amount of Succinic acid and SW (kg) is the total amount
of water present in the crystallizer.

Therefore, when the solution inside the crystallizer is clear the measured value
of the refractive index can be used for calibration.

A difficulty arising in the calibration of the K-Patents is that the refractive in-
dex depends on both the temperature and concentration. Therefore, the measured
values of refractive index have to be calibrated against both the measured values
of temperature and the known values of concentration.

The solubility (6.7) was used in order to design the amounts of the loads and
the temperature at which they were added. Since the temperature range for the
experiments is 45 oC− 20 oC, the concentration range of interest is approximately
0.18 − 0.04 kg/kg (see the solubility line in Figure 6.9). Thus, the crystallizer was
filled with water and six loads of Succinic acid were prepared in order to obtain
concentration values in the desired range. The loads were added at a temperature
close to the saturation for the total amount of Succinic present in the crystallizer.

For each load of Succinic acid, the following operations were performed

1. Weigh the load of Succinic acid and pour it in the crystallizer.

2. Check whether the solution is clear. If so, the concentration is valid and the
data can be used for calibration. Otherwise, heat up until the solution is
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clear. Take note of the instant at which the solution is clear and use the data
for calibration starting from that instant.

3. Heat up to a temperature close to the expected saturation temperature for
the total amount of the Succinic acid in the vessel after the next load.

The amounts of water and Succinic acid actually fed into the crystallizer are
shown in Table 6.1. Note that together with the Succinic acid, water was added
for the first three loads. That was done in order to rinse the walls of the vessel and
the impeller from a portion of the Succinic acid that accidentally was sticking on
them after the load of Succinic acid were poured in.

A number of time profiles relative to this experiments are reported in Fig-
ure 6.10. In Figure 6.10a the measured temperature inside the crystallizer is re-
ported. The temperature during the experiment is increased from 22 oC to 50 oC.
In Figure 6.10b the refractive index nD measured by the K-Patents is shown, to-
gether with an indicator function of the calibration region which takes the value 1
when the solution was observed to be clear , and 0 otherwise. The data collected
by the instrument in the calibration region were used to calibrate the K-Patents.
In Figure 6.10c the reference concentration Cref is shown. The values of the re-
fractive index nd were calibrated against the reference concentration Cref and the
measured temperature T in the region where the the indicator function has the
value 1. A linear model was found to describe the relation between Cref , nD, and
T and in the calibration region:

Cref ≈ C̃(nD, T ) = c0 + c1nD + c2T. (6.9)

The parameters c0 = −12.7117, c1 = 9.5056, c2 = 0.0017 were found through a
least squares fitting procedure.

The quality of the fit of this model can be appreciated in the same Figure 6.10c
where the estimated concentration C̃(nD, T ) is reported. The estimated concen-
tration follows the reference Cref in the calibration region very well. The Root
Mean Square of the residual Cref − C̃(nD, T ) is

σ̂C =

√
1

N
‖Cref − C(nD, T )‖22 = 8.84 · 10−4.

The quantity σ̂C can be seen an estimate of the standard deviation of the concen-
tration noise. Since the typical values of the concentration C are in the order of
10−1 kg/kg, the concentration can be monitored accurately using the K-Patents
sensor. However, our ultimate objective is to use the concentration measurements
in order to estimate the supersaturation S, whose typical values are in the order
of 10−3 kg/kg. Since σ̂C has the same order of magnitude as the supersaturation
S, estimating the latter using the K-Patents could be somewhat involved.

Outside the calibration region, the actual concentration is not known because
part of the Succinic acid is not dissolved in the solution and therefore the actual
concentration is less than Cref . Thus, the model C̃(nD, T ) is the only information
available about the concentration and for this reason a quantitative analysis of the
fit performance is not possible. From a qualitative perspective the model C̃(nD, T )
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Time Amounts added (kg) ST (kg) WT (kg) Cref (kg/kg)
11:16 16.16 W 0 16.16 0
11:34 0.800 S + 0.290 W 0.800 18.89 0.0406
12:18 0.816 S + 0.355 W 1.616 19.18 0.0777
13:49 0.718 S + 0.244 W 2.335 19.53 0.1068
14:05 0.500 S 2.835 19.78 0.1254
15:24 0.799 S 3.635 19.78 0.1553
15:44 0.635 S 4.270 19.78 0.1775

Table 6.1: Loads of water (W) and Succinic acid (S) introduced in the crystallizer
for the calibration experiment.

delivers a result which is in line with our physical insight about the process. The
concentration has step increases in correspondence with the loads of Succinic acid
and it gradually increases during the heat-up when the Succinic acid is being dis-
solved. After all the Succinic acid is dissolved, the concentration remains constant
even if the temperature is increased.

From now on, we will refer to the concentration model C̃(nd, T ) as the mea-
sured concentration C for simplicity.

6.4.3 Determination of the solubility

As already mentioned, the solubility of a component is sensitive to several factors
and the information available from laboratory analysis has to be validated on the
real experimental setup. A precise knowledge of the solubility line is required in
order to characterize the crystallization system, e.g. to compute the supersatura-
tion and evaluate the MSZW.

For this reason, the solubility was redetermined performing an heat-up exper-
iment after the calibration model for the K-Patents was obtained. The experiment
starts with the crystallizer at the temperature Ti = 20.6 oC containing 4.27 kg of
Succinic acid and approximately 19.78 kg of water3. The initial measured concen-
tration is Ci = 0.057. Thus, 1.38 kg of Succinic acid are dissolved in the water,
while the remaining 2.89 kg are present in form of crystals in the suspension. The
crystallizer is slowly heated up and the crystals that were in suspension start to
dissolve. Since the dissolution dynamics is very fast, the concentration remains
always very close to the solubility during the heat-up phase (see Figure 2.1 in
Chapter 2). For this reason, the temperature and concentration data collected in
this experiment can be used in order to reconstruct the solubility.

The time profiles of temperature and concentration of this experiments are
reported in Figure 6.11, while the C−T plane is reported in Figure 6.12. From
these plots it is clear that there is a mismatch between the solubility obtained from
laboratory data Cs,lab(T ) and the actual one. Therefore, the solubility has been
redetermined based on the experimental data. The solubility was modeled using

3These conditions were obtained by cooling down the crystallizer after the K-Patents calibration
experiment. The uncertainty on the amount of water is due to the evaporation of part of the water.
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(a) Temperature T inside the crystallizer.
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(b) Refractive index nd from the K-Patents (black) and clear solution indicator function
(red).

11:00 12:00 13:00 14:00 15:00 16:00 17:00
0

0.1

0.2

Time (HH:MM)

C
o
n
c
e
n
tr

a
ti
o
n
 (

k
g
/k

g
)

 

 

11:00 12:00 13:00 14:00 15:00 16:00 17:00

0

1

C
a
lib

ra
ti
o
n
 r

e
g
io

n

Cref

C̃(nd, T)
Calibration region

(c) Reference concentration Cref (blue), concentration model C̃(nD, T ) (black) and
clear solution indicator function (red).

Figure 6.10: Time profiles for the calibration experiment.
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(a) Measured temperature inside the crystallizer.

14:30 15:00 15:30 16:00 16:30
0

0.05

0.1

0.15

0.2

Time (HH:MM)

C
o

n
c
e

n
tr

a
ti
o

n
 (

k
g

/k
g

)

 

 
C

C
s,lab

C
s,exp

(b) Solubility from laboratory analysis Cs,lab(T ), measured concentration C, and experi-
mental solubility Cs,exp(T ).

Figure 6.11: Time profiles of the heat-up experiment for the determination of the
solubility.

the second order polynomial

Cs,exp(T ) = a0 + a1T + a2T
2. (6.10)

The parameters a0 = 1.3388, a1 = −6.250 · 10−5, a2 = 5.2164 · 10−6 were estimated
using a least squares fitting procedure based on the concentration C and temper-
ature T measured during the heatup phase until the solution became clear. The
curve Cs,exp(T ) is also reported in the C−T plane in Figure 6.12.

For the rest of this section, will refer to the experimental solubility Cs,exp(T ) as
Cs(T ) and we will use it to compute the supersaturation as S = C − Cs,exp(T ).
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Figure 6.12: C−T plane of the heatup experiment for the determination of the
solubility. The solubility Cs,exp is interpolated based on the measured concentra-
tion and temperature data. There is a mismatch between Cs,exp and the solubility
obtained from laboratory data Cs,lab.

6.4.4 Unseeded batch cooling experiment

An unseeded batch experiment was performed to build up insight in the pro-
cess and the measuring equipment. The crystallizer was cooled down following
a linear profile from Ti = 47 oC to Tf = 21oC in approximately 4 h. The initial
concentration is Ci = 0.1541 kg/kg and the solution in the crystallizer is clear. The
saturation temperature is indeed Tsat,i = C−1

s (Ci) = 43.5 oC. The final concen-
tration is expected to be very close to Cs(Tf ) = 0.0585 kg/kg. Therefore, the final
mass fraction of the crystals will be Ci − Cs(Tf ) = 0.0956 kg/kg.

The time profiles of temperature, concentration and supersaturation are pre-
sented in Figure 6.13. The nucleation event is evident from the concentration
and supersaturation plots. Indeed, the concentration is constant until 10:43 and
rapidly drops close to the solubility in the following few minutes. Since the solu-
tion was previously clear, this is a consequence of the nucleation event and of the
subsequent growth of the crystals. Afterwards, the concentration remains very
close to the solubility for the rest of the experiment.

The supersaturation takes its maximum value of 0.01 kg/kg at 10:43 and rapidly
drops close to 0 where it remains for the rest of the experiment.

The C−T plane of the experiment is reported in Figure 6.14. From the C−T
plane we observe that the concentration starts to drop when the temperature is
41.5 oC. Since the initial saturation temperature was Tsat,i = 43.5 oC, the MSZW
is 2 oC.

The images collected by the ISPV microscope (low magnification) are reported
in Figure 6.15. The first crystal is observed at 10:35, few minutes before the drop
of the concentration was observable.

We also see that it is possible to distinguish single crystals in the images only
when the solid content is rather low (0 − 1.5%), while for higher densities the
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images are very dark and crystals overlap on each other in the images. Note that
this is not a severe limitation since in general in a crystallization experiment the
first part of the process (where the crystal content is low) is the most critical.

6.4.5 Seeded batch experiment

An experiment was performed to verify the effect of seeding on the crystalliza-
tion process. The crystallizer was cooled down following a linear profile from
Ti = 47 oC to Tf = 21oC in approximately 4 h. The initial concentration is
Ci = 0.1688 kg/kg and the solution in the crystallizer is clear. The saturation
temperature is Tsat = C−1

s (Ci) = 46.2 oC.
Seeding with 163 g of coarse Succinic acid (mean size ≈ 150µm) was applied

at 16:23 PM. The seed material was directly poured into the crystallizer. This form
of seeding where the solid crystals are poured directly in the crystallizer is known
as dry seeding. At the moment of the seeding, the solution was clear and the
temperature was 45.9 oC.

Few seconds after the seeding, crystals were observed with both the ISPV mi-
croscopes. This is a clear indication that the seeds actually survived in the crys-
tallizer. The concentration rapidly drops and approaches the solubility in the fol-
lowing minutes. Therefore, the supersaturation drops to 0. Afterwards, the con-
centration remains close to the solubility for the rest of the experiment and the
supersaturation remains always close to 0. The supersaturation seems to be actu-
ally lower than 0 in certain time instants, which has no physical explanation for a
crystallization experiment. Possible causes could be a minor shift in the solubility
or a small bias of the concentration measurements.

6.4.6 Conclusions on the preliminary experiments

The preliminary experiments were useful to calibrate the K-Patents instrument
to measure the concentration and to build up preliminary experience about the
process and the equipment. The following conclusions were drawn:

• The K-Patents can be used in order to measure the concentration of the
Water-Succinic crystallization system throughout the batch crystallization
process. However, estimating the supersaturation using the K-Patents could
be complicated since the supersaturation has the same order of magnitude
of the standard deviation of the noise of the concentration measurements.

• The ISPV can be used in order to observe crystal formations when the solid
content of the vessel is in the range (0 − 1.5%). This is sufficient in order to
observe the onset of nucleation in an unseeded batch and to verify that the
seeds do not dissolve in a seeded batch.

• The actual solubility is considerably different from the one obtained from
laboratory analysis. Furthermore, minor changes in the solubility may have
happened during the experiments. It is necessary to verify the solubility
throughout the experiments in order be able to interpret the results correctly.
The solubility can be easily verified performing an heat-up experiment.
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(a) Temperature T inside the crystallizer.

10:00 11:00 12:00 13:00 14:00 15:00
0.05

0.1

0.15

0.2

0.25

Time (HH:MM)

C
o

n
c
e

n
tr

a
ti
o

n
 (

k
g

/k
g

)

 

 
C

C
s

(b) Concentration C (red) and solubility Cs (black line). At around 10:45 the concentration
drops and remains very close the solubility for the rest of the experiment.
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(c) The supersaturation S reaches a maximum at around 10:45 and drops to 0 afterwards.

Figure 6.13: Time profiles of the unseeded batch experiment.
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Figure 6.14: C−T plane of the unseeded batch crystallization experiment. The
Metastable Zone Width is approximately 2 oC.

• The MSZW is rather narrow (approximately 2 oC). Performing seeded ex-
periments with such narrow MSZW is technically challenging. Furthermore,
the choice of the initial supersaturation is limited.

• The crystallization dynamics of the crystals is very fast. In the seeded and
the unseeded experiments, the concentration dropped in few minutes close
to the solubility after seeding and primary nucleation respectively. There-
fore, the supersaturation is very small during most of the experiment and
it is difficult to measure with the given equipment, even when cooling at
the maximum speed. This leaves limited possibilities for supersaturation
control.
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(a) t=10:30, T = 41.71 oC, Csolid = 0.
The solution is clear.
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(b) t=10:40, T = 41.71 oC, Csolid ≈ 0.
The first crystal formations are visible.

(c) t=10:45, T = 41.3 oC, Csolid = 0.8%.
The crystals grow and increase in number
due to nucleation. Most of the crystals are
still individually distinguishable.
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(d) t=10:52, T = 40.64 oC, Csolid = 1.4%.
More and more crystals are present. Some
of the crystal start to overlap on each other
on the image.

(e) t=11:19, T = 37.29 oC, Csolid = 3%.
The crystals keep on increasing in number
and in size. The image get darker and it
becomes more and more difficult to distin-
guish individual crystals.




( )
o

C 
o

G0

k
e

k
y 


( )ˆ

k
C  o

G0 k
y

k
r









o
H

k
e

o
H

(f) t=12:05, T = 32.10 oC, Csolid = 5.3%.
The solid content is very high and the im-
age is almost completely dark. single crys-
tals are hardly distinguishable even for a
human eye.

Figure 6.15: Images captured by the ISPV probe (low magnification) for the un-
seeded batch experiment.
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(a) Temperature T inside the crystallizer.

16:00 16:30 17:00 17:30 18:00
0.1

0.12

0.14

0.16

0.18

Time (HH:MM)

C
o
n
c
e
n
tr

a
ti
o
n
 (

k
g
/k

g
)

 

 
C

C
s

(b) Concentration C (red) and solubility Cs (black line). Soon after the seeding the concen-
tration drops and remains very close the solubility for the rest of the experiment.
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(c) The supersaturation S reaches a maximum soon after the seeding and drops to 0 after-
wards.

Figure 6.16: Time profiles of the first seeded batch crystallization experiment.
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Figure 6.17: C−T plane of the first seeded crystallization experiment.

6.5 Crystallization experiments in the presence of Fu-
maric acid as impurity

In the following experiments, a small amount of impurity (Fumaric acid) was
added to the water-succinic system. The presence of the impurity is expected to
slow down the growth rate of the crystals. In turn, this would slow down the dy-
namics of the supersaturation giving better chances for control. Furthermore, it is
known that impurities are often present in industrial crystallization processes and
for this reason it is relevant to consider their presence in the control experiments.

For the following experiments, the crystallizer was loaded with 45.221 kg of
water, 8.646 kg of Succinic acid and 0.400 kg of Fumaric acid.

6.5.1 Determination of the solubility line in the presence of Fu-
maric Acid

Due to the change in the composition, a change in the solubility line is to be ex-
pected. For this reason, the solubility was redetermined based on an experiment
similar to the one presented in Section 6.4.3.

The new experimental solubility is

Cs,exp,fum(T ) = a0 + a1T + a2T
2 + a3T

3. (6.11)

with a0 = 0.0152, a1 = 0.0013, a2 = 4.8803 · 10−5, a3 = −1.5245 · 10−08. The new
solubility Cs,exp,fum(T ) is reported in the Figure 6.18 together with the previous
experimental solubility based on the pure water-succinic system Cs,exp(T ) and
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Figure 6.18: Experimental solubility with Fumaric acid Cs,exp,fum(T ), experimen-
tal solubility based on the pure system Cs,exp(T ) and solubility from laboratory
analysis Cs,lab(T ).

the initial solubility line obtained from laboratory analysis Cs,lab(T ).
The mismatch between the three curves is evident in the plot. From now on,

we will refer to the new solubility Cs,exp,fum(T ) as Cs(T ) for simplicity and we
will use it to compute the supersaturation as S = C − Cs,exp,fum(T ).

The solubility was verified several times during the experimental campaign
by repeating the heat-up experiment and it was found to be consistent.

6.5.2 Unseeded batch experiments

An increase of the MSZW is also to be expected for the crystallization in pres-
ence of the impurity. Different unseeded batch experiments similar to the one
presented in Section 6.4.4 were performed. The measured width of the MSZW for
these experiments was around 2.7 oC. Note that we have a certain increase with
respect to the 2.0 oC MSZW of the pure system.

6.5.3 Seed preparation

In the rest of the experimental campaign, seeded batch crystallization experiments
with the impure system were performed. Milled crystals of mean size 25 µm were
made available by DSM for seeding. For each seeded batch experiment 5 g. of
seeding material was used. The seeds were introduced into the vessel in the form
of a suspension in a saturated solution. This form of seeding is called wet seeding
and it is expected to be more effective in order to limit the secondary nucleation
and obtain a growth-dominated crystallization process. The procedure followed
in order to obtain the seeds is the following
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Figure 6.19: The second flask is stirred for 10 minutes with a magnetic stirrer. A
well-dispersed seed suspension is obtained.

1. Weigh 10 gram of coarse Succinic acid crystals in a 100 ml Erlenmeyer flask.
Add water up to 100 ml at room temperature.

2. Add 4 drops of Polysorbate 80 using a syringe-needle.

3. Stir for 30 minutes at room temperature to obtain a saturated solution.

4. Weigh 5.0 gram of seed material having mean size 25 µm in a second 100 ml
Erlenmeyer flask.

5. Decant about 80 ml of saturated solution from the first to the second flask.

6. Stir the second flask for 10 minutes (Figure 6.19).

The saturated solution is prepared in the first flask and it is poured to the
second flask where the seeds were previously added. The Polysorbate 80 is used
to favor the dispersion of the seeds in the saturated solution. Thus, at the end
of the procedure, seeds in the form of a well-dispersed suspension in a saturated
solution are obtained in the second flask.

6.5.4 Nominal seeded batch experiment

A seeded batch crystallization was performed to verify the behavior of the crys-
tallization system in the presence of the impurity and the new seeding procedure.
This experiment is also considered as a “nominal case” for the following B2B con-
trol experiments.

The initial concentration was Ci = 0.1739 kg/kg and the corresponding satura-
tion temperature is Tsat,i = C−1

s (Ci) = 45.7 oC. The seeds were prepared accord-
ing to the procedure presented in the previous subsection and introduced in the
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crystallizer at the temperature Tseed = 45 oC. After the seeding, the crystallizer
was cooled from 45 oC to 20 oC in 3 hours following a linear temperature pro-
file. The time profiles for temperature, concentration and supersaturation starting
from the moment of the seeding to the end of the experiment are reported in Fig-
ure 6.20, while the C−T plane is reported in Figure 6.21. A number of pictures of
the crystallizer collected during this experiment are reported in Figure 6.22.

We observe that the dynamics of the supersaturation is now slower compared
to the one of the seeded experiment with pure Succinic acid. After the seeding, it
takes approximately one hour for the supersaturation to go to zero.

The data collected from this experiment were also used in order to identify a
model of the system dynamics to be used in the B2B control experiments. The
measured temperature T and concentration C were used to estimate the kinetic
parameters kg and g of the model (2.44)-(2.48). The estimated parameters were
θ̂0 = [k̂g,0 g0]> = [6.77 1.05]>. These parameters are used to construct a model
FST (·, θ̂0) from the crystallizer temperature T to the supersaturation S. The out-
put of supersaturation given by the identified model FST (T, θ̂0) fed by the mea-
sured temperature T is also reported in Figure 6.20c. From this plot, the model
seems to describe the dynamics rather accurately.

The model FST (·, θ̂0) is integrated with the model of the temperature dynamics
FTT r (·) already estimated in Section 6.3 and an input/output model FST r (·, θ0)
from the temperature reference T r to the supersaturation S is obtained:

S = FSTr (·) = FST (FTTr (·)). (6.12)

6.5.5 Conclusions on the experiments in the presence of the im-
purity

The behavior of the system in the presence of Fumaric acid as an impurity is rather
different from the one of the pure water-succinic system. In particular, the follow-
ing observations are made

• The supersaturation dynamics is considerably slowed down. After the seed-
ing, the supersaturation takes approximately one hour to move close to the
solubility compared to the few minutes required for the pure system.

• The MSZW is increased from 2 oC to 2.7 oC.

• The solubility has significantly changed and it has been redetermined exper-
imentally.

The slower supersaturation dynamics and the larger MSZW leave better chances
for control. For these reasons, the B2B control experiments presented in the fol-
lowing section are based on the crystallization system in the presence of Fumaric
acid.
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(a) Temperature T inside the crystallizer.
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(b) Concentration C and solubility Cs.
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(c) The supersaturation S reaches a maximum soon after the seeding and drops to 0 after-
wards.

Figure 6.20: Time profiles of the nominal seeded batch experiment.



6.5 Crystallization experiments in the presence of Fumaric acid as impurity 137

20 25 30 35 40 45
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Temperature (
o
C)

C
o

n
c
e

n
tr

a
ti
o

n
 (

k
g

/k
g

)

 

 
C

C
s

Figure 6.21: C−T plane of the nominal seeded batch experiment.
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(a) The temperature in the crystallizer is
45 oC and the solution is clear.
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(b) The seeds are poured from the flask into
the crystallizer.

(c) Soon after seeding, the seeds are visible
as a turbid cloud inside the crystallizer.
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(d) During the cooling down, the solid con-
tent in the crystallizer increases and the
slurry gets more and more turbid.

Figure 6.22: Pictures of the crystallizer during the nominal seeded batch experi-
ment.



6.6 Batch to batch control experiments 139

6.6 Batch to batch control experiments

The batch to batch control experiments were performed with the water-succinic
crystallization in the presence of Fumaric acid as an impurity described in the
previous section. The temperature set-point T r for each batch was optimized in
order to keep the supersaturation at a constant value Sr for the time of the batch.
The model used to optimize the temperature trajectory for one batch was updated
based on the the data collected from the previous batch performing IIC-type or
ILC-type corrections.

6.6.1 Control architecture

The control architecture used for the batch to batch experiments is reported in
Figure 6.23. In the scheme, continuous lines represent signals that are updated on-
line during a batch, while dashed lines represent signal that are updated only from
one batch to the other. The B2B controller optimizes the set-point T r of the master
temperature controller in order to keep the supersaturation S close to the reference
Sr for the time of the batch. After a batch is performed, the B2B controller first
updates the model based on the data collected during the batch. Subsequently, it
uses the model to optimize the temperature reference profile T r for the next batch
in order to fulfill the control objective.

The performance of the controller is evaluated by considering the Root Mean
Square (RMS) of the supersaturation tracking error S − Sr for the first two hours
of the experiment. The data after 2 hours was ignored for the performance anal-
ysis because the measured supersaturation dropped to values close to 0 (or even
negative) after 2 hours for all the experiments.

6.6.2 Experimental Procedure

The following experimental procedure was followed for each of the B2B experi-
ments (see Figure 6.24)

1. Heat up the crystallizer to the temperature Th = 50 oC such that all the
crystals have been dissolved in the reactor.

2. Keep the temperature at Th for 15 min.

Master T
Controller

(PI)

Slave T 
controller 

(PID)

Thermostatic 
bath

r
JTrT


Q JT

Crystallizer

T



B2B 
Controller C

Figure 6.23: The control architecture for batch to batch control.
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Figure 6.24: The steps of the experimental procedure for the B2B experiments.
The B2B algorithm is used to determine the cooling trajectory at the step 6 of the
procedure.

3. Cool down from Th to Tseed = 45 oC in 30 min.

4. Keep the temperature at Tseed for 15 min.

5. Introduce the seeds prepared according to the procedure described in Sec-
tion 6.5.3.

6. Cool down from Tseed to Tf according to the optimal input profile generated
by the B2B algorithm.

The initial concentration was around Ci = 0.1731 and the corresponding satu-
ration temperature is Tsat,i = C−1

s (Ci) = 45.6 oC. The initial supersaturation is
Si = Ci − Cs(Tseed) = 0.0034 kg/kg. However, it has to be noted that due to tech-
nical difficulties the actual values of Th, Tseed, Ci and Si have a certain variability
from one batch to the other. The final temperature Tf is not fixed and depends
on the particular temperature reference profile T r that is generated by the B2B
algorithm.

6.6.3 Batch to batch supersaturation control experiments

B2B experiment 1: tracking of Sr = 0.0028 kg/kg using IIC. In this experi-
ment, the objective was to track a constant supersaturation Sr = 0.0028 kg/kg.
The reference temperature profile was optimized based on the model estimated
on the nominal seeded batch experiment (see Section 6.5.4) in order to track the
supersaturation set-point Sr = 0.0028 kg/kg. This value for the supersaturation
set-point was chosen as the average of the supersaturation in the first two hours of
the nominal seeded experiment. This can be considered as an IIC model correction
starting from the nominal process trajectory.

The time profiles of the reference temperature T r1 , the measured temperature
T1, the temperature model FTT r (T r1 ), and the supersaturation S1 for this experi-
ment are reported in Figure 6.25. The temperature T1 is described by the model
FTT r (T1) as expected for most of the experiment and moves slightly off towards
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the end (after 20:00) indicating that the constraint on the maximum cooling power
of the thermostatic bach has been reached.

Compared with the nominal seeded batch experiment, we see that the maxi-
mum of the supersaturation is slightly lower (0.012 kg/kg instead of 0.014 kg/kg).
However, the supersaturation is still rather far from the set-point Sr = 0.0028 kg/kg.
The RMS of the supersaturation tracking error for the first 2 hours of experiment 4

is 0.0042 kg/kg. In the supersaturation plot the output of the previously identified
model FST (T1, θ̂0) fed with the measured reactor temperature T1 is reported. We
see that the output of the model FST (T1, θ̂0) is very far from the measured super-
saturation S1. This suggests that there might be a severe mismatch between the
model and the actual system dynamics.

B2B experiment 2: same input as B2B experiment 1. The unexpected result of
the B2B experiment 1 was tested for reproducibility. The B2B experiment 2 was
performed with the same temperature reference as in the B2B experiment 1, i.e.
T r2 = T r1 .

The time profiles of the reference temperature T r2 , the measured temperature
T2, the temperature model FTT r (T r2 ) and the supersaturation S2 for this experi-
ment are reported in Figure 6.26. The results of this experiment is similar to the
previous case. The RMS of the supersaturation tracking error for the first 2 hours
of experiments is 0.0040 kg/kg. This consolidates the hypothesis of a model mis-
match.

The measured temperature T2 and concentration C2 collected from 17:30 to
19:10 were used to update the estimates for the parameters kg and g.5 The esti-
mated parameters were θ̂2 = [k̂g,2 ĝ2]> = [1.78 1.00]>. The output of the new
model FST (T2, θ̂2) and of the previous model FST (T2, θ̂0) are reported in the Fig-
ure 6.26b. Note that even the new model FST (T2, θ̂2) does not interpolate the data
very closely and it seems to be a compromise to describe a growth dynamics that
is slower in the first part of the experiment (where the model predicts lower super-
saturation than the measurements) and larger towards the end (where the model
predicts a lower supersaturation than the measurements).

In order to confirm this hypothesis, we estimated the model parameters again
using only the data from 17:30 to 18:30 where the growth dynamics seems to be
slow. The estimated parameters were θ̃2 = [k̃g,2 g̃2]> = [0.55 1.03]>. The re-
sponse of the model FST (T2, θ̃2) is also represented in the Figure 6.26b and it fits
accurately the identification data (i.e. the response from 17:30 to 18:30), but is
completely off the measurement afterwards where it underestimates the actual
growth. Apparently, the actual growth behavior is more complicated than the one
that the model can capture. In other words, we are in the presence of a structural
model mismatch.

In the B2B experiments 1 and 2, it appeared to be difficult to follow the super-

4In all the experiments, the measured supersaturation is very close to 0 (or even negative) after 2
hours. For this reason, we consider the supersaturation tracking only in the first 2 hours.

5 The data after 19:10 was ignored because the measured supersaturation is lower than zero, which
has no physical meaning that can be captured by our model.
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saturation set-point Sr = 0.0028 kg/kg for this crystallization system. At the start
of the batch, the growth seems to be very small and the supersaturation builds up
to values much higher than Sr = 0.0028 kg/kg before it starts being consumed.
For this reason, in the following B2B experiments we increased the supersatura-
tion set-point to an higher value Sr = 0.006 kg/kg.

B2B experiment 3: tracking of Sr = 0.006 kg/kg using IIC+ILC. The set-point
of the supersaturation was increased to Sr = 0.006 kg/kg. In order to compensate
for the structural model mismatch verified in B2B experiments 1 and 2, an ILC
correction based on the model FST (·, θ̂2) was performed. The correction vector α3

was computed as α3 = H(q)(S2 − FST r (T2, θ̂2)) where S2 is the measured output
from the previous experiment and H(q) is a low-pass filter having a bandwidth
of 5 minutes. The ILC-corrected model is FST (·, θ̂2) + α3. This can be considered
as a combined IIC+ILC step from the B2B experiment 2 since the parameters of
the model FST (T, θ̂2) are also estimated on the data of the B2B experiment 2. The
temperature profile was optimized based on the the model FST (·, θ̂2) + α3. The
time profiles of the reference temperature T r3 , the measured temperature T3, the
temperature model FTT r (T r) and the supersaturation S3 for this experiment are
reported in Figure 6.27. Note that the reference T r3 decreases very slowly for the
first part of the experiment, where the consumption of concentration due to the
growth of the crystal is also low. As a result, the supersaturation remains rela-
tively close to the reference for the first part of the batch. Towards the end of the
batch, the reference T r3 decreases very fast since a much higher growth is expected.
However, the actual crystallizer temperature cannot decrease as fast as required
due to the limitations of the thermostatic bath (note that T3 moves away from the
model FTT r (T r3 )) and the supersaturation S3 drops to values lower than the ref-
erence Sr. The RMS of the supersaturation tracking error for the first 2 hours of
experiments is 0.0025 kg/kg, which is a significant improvement with respect to
batch 2.

B2B experiment 4: tracking of Sr = 0.006 kg/kg using ILC. A final B2B iteration
was performed with the same set-point Sr = 0.006 kg/kg. An ILC correction
based on the data from the previous experiment was performed. The correction
vector α4 was computed as α4 = H(q)(S3 − FST r (T3, θ̂2)).

The ILC-corrected model was found as FST (·, θ̂2) + α4 and the temperature
profile T r4 was found based on this model.

The time profiles of the reference temperature T r4 , the measured crystallizer
temperature T4, the temperature model FTT r (T4) and the supersaturation S4 for
this experiment are reported in the Figure 6.28. The cooling is still very slow at
the start of the batch. Owing to the ILC correction, the temperature reference T r

decreases very slowly for an even longer time than in the previous experiment.
Subsequently, it decreases even faster for the last part of the experiment.

However, the actual temperature T4 still cannot decrease as fast as required to-
wards the end of the batch and therefore the supersaturation tracking is lost. The
RMS of the supersaturation tracking error for the first 2 hours is now reduced to
0.0013 kg/kg which is a significant improvement with respect to the B2B experi-



6.6 Batch to batch control experiments 143

ment 3.

18:00 18:30 19:00 19:30 20:00
20

25

30

35

40

45

50

Time (HH:MM)

T
e
m

p
e
ra

tu
re

 (o
C

)

 

 
T

1

T
r

1

F
TT

r(T
r

1
)

(a) Reference temperature T r
1 , measured crystallizer temperature T1 and temperature

model FTTr (T r
1 ). The measured crystallizer temperature T1 is close to the temperature

model FTTr (T r
1 ), as desired.

18:00 19:00 20:00
−5

0

5

10

15
x 10

−3

Time (HH:MM)

S
u

p
e

rs
a

tu
ra

ti
o

n
 (

k
g

/k
g

)

 

 
S1

Sr

FST (T1, θ̂0)

(b) The supersaturation S1 reaches a maximum value of 0.012 kg/kg at 18:30 and decreases
afterwards. The trajectory is rather far from the set-point Sr .

Figure 6.25: Time profiles of the B2B experiment 1.
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(b) The supersaturation S2 reaches a maximum of 0.1 kg/kg at 18:20 and decreases after-
wards. The tracking performance is similar to the one of B2B experiment 1. None of the
supersaturation models can describe the actual supersaturation dynamics with reasonable
accuracy.

Figure 6.26: Time profiles of the B2B experiment 2.
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(b) The supersaturation S3 is relatively close to the set-point Sr for the first part of experi-
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Figure 6.27: Time profiles of the B2B experiment 3.
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(b) The supersaturation S3 gets closer to the set-point Sr .

Figure 6.28: Time profiles of the B2B experiment 4.
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6.6.4 Conclusions for the B2B experiments

The RMSE of the supersaturation tracking for the B2B experiment is reported in
Table 6.2.

Experiment RMSE Sr

B2B experiment 1 0.0042 0.0028
B2B experiment 2 0.0040 0.0028
B2B experiment 3 0.0025 0.006
B2B experiment 4 0.0013 0.006

Table 6.2: The RMSE of the supersaturation tracking error for the experiments.

The RMSE is similar for the first two experiments where the same input was
used. Subsequently, it decreases for the experiment 3 due to the combined IIC+ILC
step (and the set-point change) and for experiment 4 due to the ILC step. These
results are very encouraging, even though further investigation is required.

First, achieving constant supersaturation seems to be an unfeasible objective
for this process towards the end of the batch. The required temperature trajectory
in order to obtain constant supersaturation is almost flat at the start of the batch
and very steep towards the end. However, a very fast cooling cannot be imple-
mented in practice due to the limitations on the minimum temperature and the
cooling power of the thermostatic bath.

Second, we found that there is a severe structural mismatch between the avail-
able crystallization model and the actual process dynamics. This limits to a large
extent the performance of the IIC model updates. In order to overcome the prob-
lem of the structural model mismatch, we combined IIC-type and ILC-type model
corrections. However, the ILC algorithm requires the same initial conditions for
each batch. From a practical perspective, we found that bringing the system to the
same initial condition of temperature, concentration and supersaturation is rather
difficult. The initial supersaturation is very sensitive to small changes of the seed-
ing temperature. The temperature dynamics are rather slow and therefore adjust-
ing the temperature with precision requires a long settling time. However, wait-
ing a long time in the metastable region before the seeding is not desirable since it
may cause an undesired primary nucleation event. Starting with the same initial
concentration is also not straightforward due to evaporation of the water from the
crystallizer, which has to be accurately compensated for before each batch.

More experiments would have been required in order to evaluate the use of
a different control objective and to further investigate the nature of the model
mismatch. However, we could not perform more experiments due to the limited
time availability of the experimental set-up.

6.7 Conclusions

In the first part of this experimental campaign we investigated the behavior of
the water-succinic crystallization system. The preliminary experiments aimed to
build up experience about the process and the instruments in the skid. The work
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included the calibration of the K-Patents sensor, the determination of the solu-
bility line, the use of Fumaric acid as an impurity and the design of the seeding
procedure. Finally, a well-behaved nominal seeded batch crystallization process
suitable for the investigation of the B2B control algorithms was obtained.

In the second part of the experimental campaign, B2B control algorithms were
applied in order to achieve a constant supersaturation. The results of these exper-
iments are promising, but further investigation is still required. Different practical
and conceptual challenges have to be solved in order to bring similar B2B control
strategies to an industrial environment.

First, achieving a constant supersaturation seems to be an unfeasible objective
for this process towards the end of the batch since a very fast cooling rate is re-
quired. In practice, a very fast cooling cannot be implemented due to limitations
on the actuator. Therefore it may be questioned whether a different control objec-
tive could be chosen (at least for the last part of the batch).

Second, we found that there is a severe structural mismatch between the avail-
able crystallization model and the actual process dynamics. This limits to a large
extent the performance of the IIC model updates. Therefore, there is the need for
a model structure able to capture the complex growth behavior that we verified in
our experiments.

In order to overcome the problem of the structural model mismatch, we com-
bined IIC-type and ILC-type model corrections. However, the ILC algorithm re-
quires the same initial conditions for each batch. From a practical perspective,
we found that bringing the system to the same initial condition is rather involved
even in a laboratory environment and would hardly be possible to incorporate
into standard industrial procedures. In this sense, it would be useful to develop
an ILC strategy that is robust to changes in the initial condition.

6.8 Symbols and units
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Symbol Description Units
a0 Coefficient 0 solubility dimensionless
a1 Coefficient 1 solubility 1/oC
a2 Coefficient 2 solubility 1/oC2

C Concentration of Succinic acid in water kg/kg
Cs Solubility of Succinic acid in water kg/kg
Cs,lab Solubility of Succinic acid in water based on

laboratory data
kg/kg

Cs,exp Solubility of Succinic acid in water based on
experiments

kg/kg

g Growth exponent coefficient dimensionless
kg Growth base coefficient m/min
Ko Absolute temperature corresponding to 0 oC K
nD Refractive index dimensionless
R Universal gas constant J/(mol oC)
S Suspersaturation kg/kg
Sr Reference supersaturation kg/kg
T Crystallizer temperature oC
T r Crystallizer reference temperature oC
TJ Jacket temperature oC
T rJ Jacket reference temperature oC
xs Solubility of Succinic acid in water mol/mol
∆Hsol Heat of dissolution of Succinic acid in water J/mol

Table 6.3: Symbols and units used in this chapter.





7 CHAPTER

Conclusions

In this chapter, the research objective and the most important results
achieved in this thesis are revisited. This helps us to draw conclusions
and to identify further objectives and opportunities for future research.

7.1 Contribution of this thesis

The primary objective of this thesis was to develop strategies to improve the per-
formance of model-based control for batch processes using data measured from
previous batches. We have given particular focus to a specific control objective for
a specific batch process, namely the tracking of a supersaturation set-point for a
batch cooling crystallization process.

Data-based modeling of batch processes is hindered by the nonlinear dynamic
behavior and the possible presence of significant structural mismatches with re-
spect to the first-principles models. In this thesis, we have developed the paramet-
ric model update strategy Iterative Identification Control and the nonparametric
model update strategy Iterative Learning Control for the batch cooling crystal-
lization process. We have applied these techniques to a pilot-scale crystallizer in a
campaign of experiments. Furthermore, we have investigated the opportunity to
ameliorate the performance of parametric strategies similar to Iterative Identifica-
tion Control using excitation signals.

The main contributions of this thesis are here summarized in the following:

1. Development and experimental validation of the batch-to-batch model improvement
approaches Iterative Identification Control and Iterative Learning Control for model-
based control of batch cooling crystallization. We have developed in Chapter
3 two strategies for batch-to-batch model improvement in a batch cooling
crystallization process, namely Iterative Identification Control (IIC) and Iter-
ative Learning Control (ILC). Both algorithms update a model representing
the uncertain process dynamics based on the measurement collected from
the previous batches. Subsequently, they use the updated model to deter-
mine the temperature reference profile for the next batch in order to track
the desired supersaturation set-point. This temperature reference profile is

151
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given to a lower-level temperature controller whose role is to reduce the ef-
fect of possible disturbances affecting the temperature dynamics.

The nature of the model update is different in the two algorithms. In IIC,
the physical parameters of the process model are iteratively estimated using
the measured data in such a way that their accuracy increases from batch to
batch. In ILC, the process model is adjusted by an additive, nonparamet-
ric correction term which depends on the difference between the measured
output and the model output in the previous batch.

We have shown in a simulation study that the two approaches have comple-
mentary advantages and disadvantages. On the one hand, IIC provides the
best performance (measured in terms of the root mean square of the track-
ing error) when the assumed model structure can actually describe the data-
generating system. However, the performance of IIC is hard to predict (and
generally lower) when the data-generating system is not contained in the
assumed model structure, i.e. in the case of a structural model mismatches.
On the other hand, ILC is more robust to structural model mismatches. Even
though these mismatches slow down the learning process, a satisfactory re-
sult is eventually obtained after a number of batches.

We have demonstrated the applicability of the two strategies performing
experiments on a pilot-scale crystallization setup. The experimental results
are presented in Chapter 6. These experiments confirm the potential of the
IIC and ILC strategies for the batch-to-batch improvement of model-based
control in batch cooling crystallization.

2. Investigation of the use of excitation in an iterative identification/controller design
scheme. Inspired by the IIC approach, we have investigated the use of ex-
citation signals in an iterative identification/controller design scheme. In
the framework developed in Chapter 4, the total time of operation of the
model-based control system is divided into a number of learning intervals.
For the case of batch systems, the learning intervals correspond to the dif-
ferent batch runs. After an interval, the measured data are used to refine
the estimate of the model parameters, and a new controller is designed. The
controller will be applied in the next interval, and so on and so forth for the
following intervals. Excitation signals can be superposed to the normal con-
trol input in all the intervals. On the one hand, applying an excitation signal
during an interval leads to a performance degradation during the current
interval, since it acts as an disturbance on the control system. On the other
hand, the informative dataset obtained owing to the excitation signal can be
used to identify a more accurate model, and thus improve the performance
for the following intervals. The problem considered is to design the exci-
tation signal in order to maximize the overall performance taking this dual
effect of the excitation signals explicitly into account.

For the case of linear dynamical systems, we have developed a general,
tractable solution to the optimal design of the excitation signals in the itera-
tive identification/controller design framework. Our solution uses method-
ologies from the field of Identification for Control and standard experiment
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design tools for linear systems. We have shown in a simulation example
that the design of the excitation signal in the iterative identification/con-
troller design framework guarantees a superior overall performance than
the one performed in the classic two-phases approaches documented in the
literature.

3. Development of experiment design tools for nonlinear systems. A limitation of the
approach discussed in the previous point is the restriction to linear dynam-
ical systems. This restriction was necessary since generally applicable and
computationally efficient experiment design tools for nonlinear dynamical
systems are not available to date. Experiment Design for nonlinear dynami-
cal systems is still a very open and challenging research area. The methods
suggested in the literature are either computationally expensive, or only ap-
plicable for very specific classes of nonlinear systems. Motivated by the lim-
itations of the state-of-the-art methods, we conducted research towards the
development of novel Experiment Design tools applicable to a fairly wide
class of nonlinear systems, but still relying on computationally efficient con-
vex optimization routines.

The method that we devised is presented in Chapter 5 of this thesis. We re-
strict out attention to multilevel excitation signals, i.e. signals which admit
a finite number of possible levels. A multilevel excitation signal can be de-
scribed by the sequence of the levels appearing in it. Within this sequence,
we recognize a number of shorter subsequences. Under certain conditions,
the information matrix for the full sequence is proportional to the contribu-
tion due to each subsequence, times the frequency at which the subsequence
appears in the full sequence. Owing to the linear relation between the in-
formation matrix and these frequencies, we are able to formulate a convex
experiment design problem using the frequencies as optimization variables.
The convex problem can be solved efficiently using standard software and
algorithms.

The applicability of our method is demonstrated in a simulation study using
the model of a first-order, irreversible reaction system. We have shown that
the optimal multilevel excitation signal found using our approach for this
system has two distinct regimes. This result is very interesting in relation to
Experiment Design problems for linear systems, where on the contrary the
optimal excitation signal can always be found in the class of the stationary
signals. Furthermore, we have shown that the design based on the optimal
multilevel excitation signal outperforms the one based on random binary
signals, which is a common choice in engineering practice.

7.2 Recommendations for future research

In light of the research objective of the thesis and the results achieved, we have
identified the following opportunities for future research:

1. Modeling of the batch cooling crystallization process. In our experiments, we
have verified that there is a severe, structural mismatch between our crys-
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tallization model and the actual process dynamics. Moreover, the presence
of impurities (which are common in industrial environments) modifies the
process dynamics dramatically (see Chapter 6). For this reason, the model
of a batch cooling crystallization process should be maintained during the
whole life-time of the operation. Unfortunately, the presence of structural
model mismatches limits to a large extent the applicability of parametric
model learning approaches such as IIC.

The development of more accurate model structures describing the batch
cooling crystallization process is of paramount importance for the improve-
ment of the related model-based control techniques. These model structures
need to be validated both for pure crystallization systems and in the pres-
ence of impurities, since the dynamics are substantially different in the two
cases. For the model development and validation, the availability of addi-
tional process measurements such as the CSD would be of great help.

2. Control objective for the batch cooling crystallization process. In our experiments,
we have fixed as control objective the tracking of a constant supersaturation
set-point. However, we observed that this objective does not seem to be
feasible for the experimental set-up at hand towards the end of the process
(see Chapter 6). Therefore, it may be questioned whether a different control
objective should be selected.

Defining the control objective directly in terms of the CSD would probably
be the most effective solution, since the product requirements are also of-
ten specified in the terms of this quantity. However, direct control of the
CSD also requires the availability of adequate measurements of this process
variable.

3. Effect of structural model mismatches on the parametric model learning approach.
The properties of a parametric model learning approach such as IIC are well
understood (and optimal) only when the assumed model structure contains
the data-generating system. However, this is an ideal situation that never re-
ally occurs in practice. In fact, all model structures used in engineering are
either obtained under some simplifying hypotheses and assumptions (in the
case of physical modeling), or are simply general approximation of dynam-
ical systems (in the case of black-box modeling). For batch cooling crys-
tallization in particular, we have observed in this thesis that the structural
model mismatch is a serious issue. Since the structural model mismatches
cannot completely be avoided, it would be important to quantify their im-
pact on the model accuracy, and thus on the control performance given by a
model-based controller designed using an identified model.

In the case of structural model mismatches, the identified model converges
to a system that is the best approximation (with respect to the particular
identification dataset and identification criterion) of the data-generating sys-
tem within the model structure. To date, the properties of the best approxi-
mating model are well understood when both the assumed model structure
and the data-generating system are linear in the input (Ljung, 1999). In this
case, the best approximating model is characterized by frequency-domain
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integral expressions involving the spectrum of the input signal. Some re-
sults also exists for the situation where the data-generating system is non-
linear, but the assumed model structure is linear. The properties of the best
approximating linear model of a nonlinear system have been discussed in
Schoukens et al. (2005). However, in a full nonlinear context, it is very hard
to analyze the properties for the best approximating model, and thus the ef-
fect of a structural model mismatch on the performance of a model-based
controller based on an identified model. Due to the complexity of the re-
quired analysis, it would be sensible to first tackle it considering very sim-
ple nonlinear structures such as low-order, nonlinear FIR. A formal result in
this direction would still be a novel contribution to the field of Systems and
Control.

4. Combination of parametric and nonparametric learning approaches. The use a
parametric and a nonparametric learning approaches has been shown to
have complementary advantages (see Chapter 3). On the one hand, the para-
metric approach allows for a faster learning, since it produces a parsimo-
nious representation of the system. Furthermore, a physically parametrized
model retains all the physical insight. On the other hand, the nonparamet-
ric approach can cope effectively with the serious issue of structural mis-
matches owing to the use of a more flexible representation. A natural ques-
tion is whether it is possible to combine the two approaches in a convenient
way in order to benefit from the advantages of both worlds.

Different black-box model structures where the whole dynamics is repre-
sented adopting very general parameterizations, or in a completely non-
parametric way have been presented in the literature (Ljung et al., 2011;
Sjöberg et al., 1995). In principle, these structures can approximate wide
classes of nonlinear dynamical systems with arbitrary precision. It may look
tempting to use these structures to model batch processes, since the first-
principles approach often leads to severe structural mismatch issues. How-
ever, in our opinion, a fully nonparametric, black-box approach has limited
possibility of success in the field of process engineering. Learning a fully
non-parametric model requires huge amounts of data, since all the a pri-
ori knowledge is disregarded and the model is searched in a vast search
space. Furthermore, nonparametric, black-box models would not be easily
accepted by process experts, who are often interested in the physical inter-
pretation of their models, beside of their prediction capability.

In the systems usually encountered in the field of process engineering, there
are parts such as mass and energy balances that are very well understood.
For these parts, the measured data should only be used to estimate (if any)
the uncertain constants of their first-principles representation. Other parts,
such as the growth and the birth dynamics in the crystallization process, are
subject to more severe uncertainties. In order to model the behavior of these
parts with the required accuracy, a non-parametric approach may be really
required.

A convenient representation for a process system could be an interconnec-
tion of physically parametrized blocks representing the behavior of the first
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parts, and nonparametric blocks representing the behavior of the latter. Such
representation would exploit as much as possible the a priori knowledge
and retain the physical insight, while using the flexibility of the non-parametric
approach in order to describe the most uncertain parts. The difficulty in
identifying such a system is that the different blocks interact with each other
and all contribute to the observed input/output behavior of the system. So
far, similar identification problems have been considered for systems de-
scribed as the interconnection of linear dynamics with known structure, and
static nonlinearities represented in a non-parametric way (see Hsu et al.
(2008)). It would be interesting to investigate whether a similar modeling
framework could be useful to describe process systems.

5. Experiment design for nonlinear systems. In this thesis, we have presented a
novel experiment design method for nonlinear systems based on multilevel
excitation signals. The merit of our method in comparison with similar ones
that have recently appeared in the literature is its applicability to a wider
class of nonlinear systems.

However, several questions related to our method were not answered in this
thesis (see the conclusions of Chapter 5). In particular, we have shown that
the optimal multilevel excitation signal for the first-order, irreversible reac-
tion system considered in the numerical example is composed of two dis-
tinct regimes. This result is very interesting in relation with the experiment
design problems involving linear systems, where on the contrary it is known
that the optimal excitation signal can always be found in the class of the sta-
tionary signals. Solutions having multiple regimes were not even found in
the previous contributions on experiment design for nonlinear systems, in
which much simpler nonlinear model structures were examined. We would
like to understand whether this property is really induced by the nonlinear-
ity of the system, or it is just due to the particular experiment design method
that we have devised, which allows this kind of solutions.

A possibility to address this question could be to study the experiment de-
sign problem for classes of nonlinear systems that still have significant de-
scriptive capability, but present some characteristic that ease a formal anal-
ysis. Good candidates for this study could be LPV or nonlinear ARX model
structures.



A APPENDIX

Applied Dynamic Optimization

Dynamic Optimization Problems occur in several fields of science and
engineering. In process engineering they are used for instance for con-
trol, parameter estimation, reactor design and optimization, optimal
start-up and shut-down, and scheduling (Biegler, 2010). In this ap-
pendix, we briefly present three approaches for the solution of Dy-
namic Optimization Problems. The approaches considered are the
Pontryagin Maximum Principle, the simultaneous optimization ap-
proach, and the sequential optimization approach. We describe a pos-
sible implementation of these methods using the software environ-
ments Matlab and GAMS.

In this appendix, we briefly present three approaches for the solution of Dynamic
Optimization Problems (DOP). For the sake of concreteness, we apply these ap-
proaches to a specific DOP:

Problem A.1 (Dynamic Optimization Problem)

min
u

E︷ ︸︸ ︷∫ tf

0

u2(t) dt (A.1)

such that

ẋ = ax+ bu

x(0) = x0

x(tf ) = xf .

(A.2)

In this problem, we look for an optimal input uo(t), t ∈ [0, tf ] that steers the sys-
tem from the initial state x0 to the final state xf in the time [0, tf ] minimizing the
total energy E of the input signal. We fix in this problems the numerical quanti-
ties, tf = 1, x0 = 1, xf = 5, a = −2, and b = 1. Note that the DOP at stake is
infinite dimensional since the input u(t) is a function of the continuous time. For
this reason, generic optimization strategies cannot be directly applied.
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In this appendix, we obtain a solution of this DOP using three different ap-
proaches, namely the Pontryagin Maximum Principle, the simultaneous optimiza-
tion approach, and the sequential optimization approach. We here focus on the
implementation aspects of these approaches using the software environments Mat-
lab and GAMS. Our implementation strategies are inspired from (Huesman, 2003,
2005). For a more general presentation of the methods, see also (Cervantes and
Biegler, 1999).

1. Pontryagin Maximum Principle (PMP). The first-order necessary condition for
optimality are obtained using the PMP principle. This results in a two-point
boundary value problem which can be solved using different techniques.

2. Simultaneous optimization approach. The input and states trajectories are dis-
cretized altogether by applying an ODE integration scheme. By doing this,
the dynamic model equations of the system are approximated with a set
of equality constraints and the original DOP is transformed into a finite-
dimensional (approximated) optimization problem. The latter can be solved
using standard optimization software.

3. Sequential optimization approach. A finite-dimensional parametrization of the
input signal is first selected. For a certain parameter describing an input
signal, the objective function and the constraints of the problem can be eval-
uated by integrating the system equations with the help of an ODE solver.
In the sequential approach, the DOP is solved restricting the input signal to
the space of signal that can be described by the parametrization. The opti-
mization routing “calls” the ODE solver in order to evaluate the objective
function and the constraints for different parameters describing different in-
put signals.

A.1 Pontryagin Maximum Principle

In this section, we obtain the solution of the DOP (A.1) using the PMP approach.
As mentioned before, the PMP approach leads to a two-point BVP problem which
can be solved in general using different techniques. For the particular DOP (A.1),
the resulting BVP can be solved analytically. 1 This allows us to verify the correct
implementation of the other two methods, which conversely always provide an
approximated numerical solution. The analytical solution obtained using the PMP
approach is useful in order to verify the correct implementation of the two other
approaches, which instead always provide an approximated numerical solution.

First, we write the Hamiltonian of the DOP

H = u2 + λ1(ax+ bu).

Minimizing the Hamiltonian with respect to u, we have for the optimal input uo

the condition
∂H

∂u
= 0 ⇒ uo = −λ1b

2
. (A.3)

1Note that this is not in general the case and is due to the very simple structure of the DOP at stake.
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In order to determine uo, we have to solve the following two-point Boundary
Value Problem (BVP):

ẋo = axo + buo

λ̇o1 = −∂H
∂x

= −λo1a

xo(0) = x0

xo(tf ) = xf .

(A.4)

Solving the differential equation for λ1, we have

λ1(t) = c1e
−at

where c1 is a generic real-valued constant. Using (A.3), we can write the optimal
input signal uo(t) as

uo(t) = −bc1
2
e−at.

Thus, we can simplify the two-point BVP (A.4) to another BVP that involves the
state variables x only:

ẋo = axo − b2c1
2
e−at (A.5)

xo(0) = x0 (A.6)
xo(tf ) = xf . (A.7)

Let us first assume that a 6= 0. In this case, the general integral of the differential
equation A.5 is

xo(t) = c2e
at +

b2c1
4a

e−at.

We find the actual values of c1 and c2 by requiring that the state xo has the desired
initial and final values x0 and xf :

xo(0) = c2e
0 +

b2c1
4a

= x0

xo(tf ) = c2e
atf +

b2c1
4a

e−atf = xf .

(A.8)

The last equation can be written as[
b2

4a 1
b2

4ae
−atf eatf

] [
c1
c2

]
=

[
x0

xf

]
. (A.9)

Since we assumed a 6= 0, the matrix is invertible and the problem has a unique
solution for any tf 6= 0.
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Figure A.1: Optimal input uo(t), state xo(t), and energy Eo(t) obtained using the
PMP principle and solving the associated BVP analytically.

If on the contrary a = 0, the resulting BPV reduces to:

ẋo = −b
2c1
2

(A.10)

xo(0) = x0 (A.11)
xo(tf ) = xf . (A.12)

The general integral of (A.10) is

xo(t) = c2 −
b2c1
2a

t. (A.13)

In this case, c1 and c2 are given by the solution of the linear system[
0 1

−b2c1
2 tf 1

] [
c1
c2

]
=

[
x0

xf

]
.

For the numerical values of the problem tf = 1, x0 = 1, xf = 5, a = −2, and
b = 1, we find using (A.9) that c1 = −5.3652 and c2 = 0.3294. The optimal input
uo(t), state xo(t), and energyEo(t) are shown in Figure A.1. The Matlab code used
to obtain and plot the solution is reported below.

Listing A.1: ’Exact solution using the PMP principle’
addpath ( ’ e x p o r t f i g ’ ) ;

%% PROBLEM PARAMETERS %%

a=−2;
b =1;
x0 =1;
xf =5;
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t f =1 ;

%% EXACT SOLUTION − MAXIMUM PRINCIPLE %%
syms C2 C1 t ;

% e x a c t s o l u t i o n x = d s o l v e ( ’Dx = a∗x −b ˆ2∗ c /2∗ exp(−a∗ t ) ’ , ’ t ’ ) ;
x=C2∗exp ( a∗ t ) +(b ˆ2∗C1 ) /(4∗a ) ∗exp(−a∗ t ) ;

% Boundary prob l em s o l u t i o n %
A = [ b ˆ2/(4∗ a ) 1 ; b ˆ2/(4∗ a ) ∗exp(−a∗ t f ) exp ( a∗ t f ) ] ;
B = [ x0 xf ] ’ ;
P = l i n s o l v e (A, B ) ;
C1 = P ( 1 ) ;
C2 = P ( 2 ) ;

syms l 1 u t E ;
l 1 = C1∗exp(−a∗ t ) ; %lambda1
u = −l 1 ∗b /2; %u
x=subs ( x ,{ ’C2 ’ , ’C1 ’ } ,{C2 , C1} ) ; %x
E = u∗u ;

f =f igure ( 1 ) ;
s e t ( f , ’ c o l o r ’ , ’w’ ) ;
h=subplot ( 3 , 1 , 1 ) ;
ezplo t ( x , [ 0 1 ] , f ) ;
t i t l e ( h , ’ x ˆ o ( t ) ’ ) ;

h=subplot ( 3 , 1 , 2 ) ;
ezplo t ( u , [ 0 1 ] ) ;
t i t l e ( h , ’u ˆ o ( t ) ’ ) ;

h=subplot ( 3 , 1 , 3 ) ;
ezplo t ( i n t ( E ) , [0 1 ] ) ;
t i t l e ( h , ’E ˆ o ( t ) ’ ) ;

e x p o r t f i g ( ’ a n a l y t i c a l s o l u t i o n ’ , ’−pdf ’ ) ;

A.2 Numerical solution using the simultaneous opti-
mization approach

In the simultaneous approach, the DOP is first discretized by applying an ODE
integration scheme. By doing this, the dynamic model equations are transformed
into a set of equality constraints and the original problem is transformed into a
finite-dimensional optimization problem, which can be solved using standard op-
timization software.

In this example, we have selected the Explicit Euler (EE) integration scheme.
The problem A.1 discretized using the EE integration scheme becomes

Problem A.2 (Dynamic Optimization Problem - simultaneous approach)

min
u

N∑
i=1

u(i− 1)2 (A.14)
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such that

x(i) = ∆T (ax(i− 1) + bu(i− 1) ∀i ∈ [1 . . . N ]

x(0) = x0

x(N) = xf

(A.15)

with
∆T =

tf
N
. (A.16)

Note that the system equations and the input vector are discretized altogether.
This is the reason why this method is called simultaneous. The simultaneous
approach leads to an problem with a large number of equality constraints (in our
case 2N − 2) and optimization variables (in our case 3N − 3);

Two software implementations of the problem are here proposed. The first
one is based on Matlab and the function fmincon, the second one is based on the
optimization modeling software GAMS.

A.2.1 Matlab Implementation

The Matlab implementation is based on the files DOsim1.m, objsim1.m, and
consim1.m.

Listing A.2: ’DOsim1.m’
c l e a r ;
global con nx ;
nx = 5 0 ; % Number o f d i s c r e t i z a t i o n p o i n t s

%% O p t i m i z a t i o n o p t i o n s %%
Ooptions = optimset ;
Ooptions . Display = ’ i t e r ’ ;
Ooptions . MaxSQPIter = 2 0 0 ;
Ooptions . MaxIter = 4000 ;
Ooptions . TolFun = 1e−4;
Ooptions . MaxFunEvals = 4e5 ;

x0 = 2 ;
xf = 5 ;
f0 = 0 ;
t f = 1 ;
a = −2;
b = 1 ;
l = −a∗xf/b ;

%% S t a r t v a l u e d e c i s i o n v a r i a b l e s %%
px = 0 .9∗ xf∗ones ( ( nx−2) , 1 ) ;
pe = 0∗ones ( nx−1 ,1) ;
pu = l ∗ones ( nx , 1 ) ;
p = [ px ; pe ; pu ] ;

%% Bounds on t h e d e c i s i o n v a r i a b l e s %%
lb = [ ] ;
ub = [ ] ;
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%% C a l l o p t i m i z a t i o n r o u t i n e %%
[pm, fva l , e x i t f l a g , output ] = fmincon ( ’ objsim1 ’ ,p , [ ] , [ ] , [ ] , [ ] , lb , ub , ’ consim1

’ , Ooptions ) ;

Listing A.3: ’objsim1’
function obj = objsim1 ( p )
global con nx

%% Set−up d e c i s i o n v a r i a b l e s %%
x0 = 2 ;
xf = 5 ;
a = −2;
b = 1 ;
t0 = 0 ;
t f = 1 ;

x = zeros ( nx , 1 ) ;
e = zeros ( nx , 1 ) ;
u = zeros ( nx , 1 ) ;

x ( 1 ) = x0 ;
x ( 2 : nx−1) = p ( 1 : nx−2) ;
x ( end ) = xf ;

e ( 1 ) = 0 ;
e ( 2 : nx ) = p ( ( nx−1) : ( 2∗ nx−3) ) ;

u = p ( ( 2∗nx−2) : end ) ;

%% O b j e c t i v e Func t i on %%
obj = e ( end ) ;

%% C o n s t r a i n t s %%
h = ( t f−t 0 ) /(nx−1) ;

for i = 1 : ( nx−1)
conX ( i ) = ( x ( i +1)−x ( i ) ) /(h ) − ( a∗x ( i ) + b∗u ( i ) ) ;
conE ( i ) = ( e ( i +1) − e ( i ) ) /(h ) − u ( i ) ∗u ( i ) ;

end

con = [ conX conE ] ;
a s s i g n i n ( ’ base ’ , ’ conX ’ , conX ) ;
a s s i g n i n ( ’ base ’ , ’ conE ’ , conE ) ;

Listing A.4: ’consim1.m’
function [ conin , coneq ] = consim1 ( p )
global con Np
conin = [ ] ;
coneq = con ;
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A.2.2 GAMS Implementation

The GAMS implementation is based on the files simplest rocket.gms. A Mat-
lab interface used to set up the problem variables and export the result of the
GAMS optimization into Matlab is implemented in the file simplest rocket.m.

Listing A.5: ’simplest rocket.gms’
$ s e t matout ” ’ rocket output . gdx ’ , t , x , u , E ” ;

$ i f s e t n $ s e t nh %n%
$ i f not s e t nh $ s e t nh 300

Set h i n t e r v a l s /h0∗h%nh%/

Scalars
a /−2/
b /1/
nh /%nh%/
x0 /2/
xf /5/
t f /1/
umax /1000/
step step s i z e ;

Parameters
t ( h ) time ;

$ i f e x i s t matdata . gms $include matdata . gms

Variable EF t o t a l energy consumed ;

P o s i t i v e var iables
x ( h ) p o s i t i o n at time h
u ( h ) input a t time h
E ( h ) energy consumed at time h ;

Equations
x eqn ( h )
E eqn ( h )
ob j ;

s tep = t f /nh ;
t ( h ) = ( ord ( h ) ) ∗ s tep ;

ob j . . EF =e= E ( ’ h%nh% ’) ;

x eqn ( h−1) . . x ( h ) =e= x ( h−1) + step∗a∗x ( h−1) + step∗b∗u ( h−1) ;
E eqn ( h−1) . . E ( h ) =e= E ( h−1) + step∗u ( h−1)∗u ( h−1) ;

∗x . lo ( h ) = x0 ;
∗x . up ( h ) = xf ;
u . up ( h ) = umax ;
u . lo ( h ) = −umax ;
x . fx ( h ) $ ( ord ( h ) = 1) =x0 ;
∗ BUGFIX even x ( h−1) = xf f o r eu le r i n t e g r a t i o n . . . ;
∗x . fx ( h ) $ ( ord ( h ) = card ( h )−2) = xf ;
∗x . fx ( h ) $ ( ord ( h ) = card ( h )−1) = xf ;
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x . fx ( h ) $ ( ord ( h ) = card ( h ) ) = xf ;
∗ I n i t i a l guess f o r u : steady s t a t e xf
∗u . l ( h ) = −a∗xf/b ;

model s i m p l e s t r o c k e t / a l l / ;
so lve s i m p l e s t r o c k e t using nlp minimizing EF ;
∗display x . l , u . l ;
∗display c ;
execute unload %matout%;

Listing A.6: ’simplest rocket.gms’
gamso . form= ’ f u l l ’ ;
gamso . input= ’ exec ’ ;

a . val = −2;
a . type = ’ parameter ’ ;
a . name = ’ a ’ ;

b . val = 1 ;
b . type = ’ parameter ’ ;
b . name = ’ b ’ ;

x0 . val = 1 . 0 0 ;
x0 . type = ’ parameter ’ ;
x0 . name = ’ x0 ’ ;

x f . val = 5 . 0 0 ;
x f . type = ’ parameter ’ ;
x f . name = ’ xf ’ ;

t f . val = 1 . 0 0 ;
t f . type = ’ parameter ’ ;
t f . name = ’ t f ’ ;

%x0 . l o a d = ’ r e p l a c e ’ ;

um. val = 1 2 0 ;
um. type = ’ parameter ’ ;
um. name = ’umax ’ ;
%um . l o a d = ’ r e p l a c e ’ ;

[ tg , xg , ug , Eg]=gams ( ’ s i m p l e s t r o c k e t ’ , x0 ,um, a , b , t f ) ;

f igure ( 1 ) ;
subplot ( 3 , 1 , 1 ) ;
% p o s i t i o n
plot ( tg . val , xg . val , ’ r ’ ) ;
subplot ( 3 , 1 , 2 ) ;
% f u e l
plot ( tg . val , ug . val , ’ g ’ ) ;
subplot ( 3 , 1 , 3 ) ;
% ene rgy consumpt ion
plot ( tg . val , Eg . val , ’ b ’ ) ;

Some considerations:

• The initial guess for u is set to the equilibrium value for xf
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• Different integration schemes are also possible.

• The integration step ∆T has to be chosen wisely

A.3 Numerical solution using the sequential optimiza-
tion approach

As explained before, in the sequential approach a finite-dimensional parametriza-
tion of the input signal is first selected. In our case, the input sequence is parametrized
as a piecewise linear function interpolating np = 11 points. Thus, the to-be-
optimized input parameter is a quantity p ∈ R11.

For a certain parameter p describing an input signal u, the objective function
and the constraints of the DOP can be (approximately) evaluated by integrating
the system equations with the help of an ODE solver. The system equations are
here integrated using the EE integration scheme fixed step ∆T =

tf−t0
N .

The Matlab function fmincon is used to optimize the parameter p in order to
minimize the energy E and to satisfy the constraint x(tf ) = xf .2 The optimization
problem solved in the sequential approach is the following:

Problem A.3 (Dynamic Optimization Problem - sequential approach)

po = arg min
p
E(p) s.t.

x(tf ) = xf (p)
(A.17)

where E(p) and xf (p) are computed by integrating the state equation using the
EE scheme.

A.3.1 Matlab Implementation

The Matlab implementation is based on the files DOsim.m, objsim.m, and consim.m.

Listing A.7: ’DOsim.m’
global con ;
Ooptions = optimset ;
Ooptions . Display = ’ i t e r ’ ;
Ooptions . MaxSQPIter = 2 0 0 ;
Ooptions . TolFun = 1e−6;
Ooptions . MaxFunEvals = 2500 ;

np = 1 1 ;

x0 = 2 ;
xf = 5 ;
a = −2;
b = 1 ;
l = −a∗xf/b ;

2 Note also that the initial condition x(0) = x0 can be satisfied by construction setting the initial
state of the simulation in the ODE solver to x0.
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p = l ∗ones ( 1 , np ) ;
lb = [ ] ;%−3000.∗ ones ( 1 , np ) ;
ub = [ ] ;%3000 .∗ ones ( 1 , np ) ;
[pm, fva l , e x i t f l a g , output ] = fmincon ( ’ objsim ’ ,p , [ ] , [ ] , [ ] , [ ] , lb , ub , ’ consim ’ ,

Ooptions ) ;

Listing A.8: ’objsim.m’
function obj = objsim ( p )
global con ;
% D i s c r e t i s a t i o n , i n i t i a l i s a t i o n and p a r a m e t e r s
t ( 1 ) = 0 ;
t f = 1 ;
x0 = 2 ;
xf = 5 ;
a = −2;
b = 1 ;
np = length ( p ) ;
dt = l inspace ( t ( 1 ) , t f , np ) ;
du = p ;
N = 3 0 0 ;
h = ( t f − t ( 1 ) ) /N;
x ( 1 ) = x0 ;
E ( 1 ) = 0 ;
uu ( 1 ) = 0 ;
% E u l e r
for i = 2 :N+1
t ( i ) = t ( 1 ) + h∗ ( i−1) ;
u = interp1 ( dt , du , t ( i ) ) ;
uu ( i ) = u ;
x ( i ) = x ( i−1) + h∗ ( a∗x ( i−1) + b∗u ) ;
E ( i ) = E ( i−1) + h∗ (u∗u ) ;
end
% S t a t e s
obj = E (N+1) ;

% C o n s t r a i n t s
con = x (N+1)−xf ;

Listing A.9: ’objsim.m’
function [ conin , coneq ] = consim ( p )
conin = [ ] ;
coneq = con ;





B APPENDIX

Numerical solution of Partial
Differential Equations

We describe in this appendix the finite-volume discretization scheme
used in this thesis to obtain numerical solution for the Partial Differen-
tial Equation used in the modeling of the batch crystallization process
as the Population Balance Equation.

B.1 Problem Formulation

Consider the one-dimensional Partial Differential Equation (PDE) in-
tegration problem

Problem B.1 (PDE integration problem)

∂n(L, t)

∂t
+
∂f(n(L, t))

∂L
= 0, (B.1)

n(t, 0) = n0(L) (B.2)
n(0, t) = h(t) (B.3)

with L ∈ [0,∞], t ∈ [0,∞], and f ≥ 0.

The PDE (B.1) is complemented by an initial condition (B.2) and a
boundary condition (B.3). The solution of the PDE integration prob-
lem B.1 is a function n(L, t). Note that this PDE is used in this thesis as
to describe the amount of crystals of different lengths in the batch cool-
ing crystallization process adopting the Population Balance modeling
framework (Ramkrishna, 2000).

169
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B.2 Finite volume discretization scheme

In order to obtain a numerical solution to the problem B.1, we adopt a
finite-volume discretization scheme. We first define the points

Li , i∆L

and divide the spatial domain [0, Lmax] into a finite number of volumes
vi, i = 1, 2, . . . , N having equal size ∆L = Lmax/N . Each volume vi is
centered around the length Li and spans the interval [Li−1/2, Li+1/2].

For a certain volume vi, we can write the average value ni(t1) of the
function n(L, t) at the time t1 inside the volume as

ni(t1) =
1

∆L

∫
vi

n(L, t1) dL. (B.4)

For the same volume vi, at a different time instant t2, we have

ni(t2) =
1

∆L

∫
vi

n(L, t2) dL. (B.5)

Integrating the expression (B.1) in time, we get

n(L, t2) = n(L, t1)−
∫ tf

t0

∂f

∂L
dt. (B.6)

Thus, the Equation (B.5) can be written as:

ni(t2) =
1

∆Li

∫
ci

[
n(L, t1)−

∫ tf

t0

∂f

∂L
dt

]
dL =

= ni(t1)− 1

∆Li

∫ tf

t0

f+
i︷ ︸︸ ︷

f(n(Li+1/2), t)−

f−i︷ ︸︸ ︷
f(n(Li−1/2, t) dL. (B.7)

Differentiating with respect to time, we get semi-discrete equations in
the form:

dni
dt

= − 1

∆Li

[
f+
i − f

−
i

]
(B.8)

which in principle can be solved numerically by applying an ODE in-
tegration scheme.

Note that Equation (B.8) holds exactly. However, the terms f+
i and f−i

cannot be evaluated exactly whenever the function f depends on the
solution n(L, t). In these cases, f+

i and f−i have to be approximated
using a finite-volume approximation scheme.
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B.3 First-order upwind approximation scheme

The simplest finite-volume approximation scheme is the first-order
upwind. Let us introduce for convenience the notation fi , f(n(Li, t)).
In the first-order upwind scheme, the terms f+

i and f−i are approxi-
mated as

f+
i = fi

f−i = fi−1 = f+
i−1

The first-order upwind scheme is given by:

dni(t)

dt
= − 1

∆Li

(
fi − fi−1

)
, i = 1, 2, . . . , N.

n0(t) = h(t)

ni(0) =

∫
vi

n0(L) dL

(B.9)

Thus, using the first-order integration scheme, a set of ODEs can be
generated. Subsequently, the set of ODE can be integrated in time us-
ing an ODE solver, providing a numerical solution to the problem B.1.

B.4 Second-order approximation schemes

The accuracy of the first-order upwind approximation scheme may be
limited due to numerical diffusion. In order to overcome this limita-
tion, we used in this thesis a second-order approximation scheme.

A family of second-order approximation schemes may be defined as

f+
i =

(
fi +

1 + κ

4
(fi+1 − fi) +

1− κ
4

(fi − fi−1)

)
, (B.10)

f−i = f+
i−1, (B.11)

κ ∈ [−1, 1]. (B.12)

For κ = −1, one gets the second-order accurate fully one-sided up-
wind scheme, while for κ = 1, one gets the standard second-order
accurate central scheme. For all other values of κ ∈ [−1, 1], a weighted
blend between the two schemes is obtained. In this thesis, we used a
second-order approximation scheme with κ = 1/3 as in Koren (1993).
Substituting κ = 1/3 in (B.10), we get

f+
i = fi +

1

3
(fi+1 − fi) +

1

6
(fi − fi−1). (B.13)
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B.4.1 Flux limiter function

In spite of the fact that second-order schemes suppress numerical dif-
fusion to a large extent, they often leads to numerical oscillations (wig-
gles) due to shocks, discontinuities, or sharp changes in the flux.

The problem can be circumvented by switching to a first-order scheme
in the regions where the flux presents these characteristics. For this
purpose, the scheme (B.13) is rewritten in the form

f+
i = fi +

[
1

2

(1

3
+

2

3
r+
i

)
(fi − fi−1)

]
(B.14)

where
r+
i =

fi+1 − fi + ε

fi − fi−1 + ε
(B.15)

and ε is a small number which is introduced to avoid the possibility of
a division by zero in a uniform flow region (Koren, 1993).

When the ratio r+
i is close to one, the flux is regular. Therefore, the

second-order approximation is reliable and has to be preferred since it
limits the numerical diffusion. Conversely, when the ratio r+

i negative,
close to 0, or much larger than one, the flux has a sharp change and a
first order scheme has to be preferred.

For this reason, a flux limiter function is introduced. Equation (B.14) is
modified to

f+
i = fi +

[
1

2
φ(r+

i )(fi − fi−1)
)]

(B.16)

where φ(r+
i ) is the flux limiter function.

In this thesis, we adopted the Koren flux limiter function (Koren, 1993)
defined as

φ(r+
i ) = max

(
0,min

(
2r+
i ,min(

1

3
+

2

3
r+
i , 2)

))
. (B.17)
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Summary

Batch-to-batch learning for model-based control of process systems
with application to cooling crystallization

Marco Forgione

From an engineering perspective, the term process refers to a conver-
sion of raw materials into intermediate or final products using chemi-
cal, physical, or biological operations. Industrial processes can be per-
formed either in continuous or in batch mode. There exist for instance
continuous and batch units for reaction, distillation, and crystalliza-
tion. In batch mode, the raw materials are loaded in the unit only at
the beginning of the process. Subsequently, the desired transformation
takes place inside the unit, and the products are eventually removed
altogether after the processing time. In order to obtain the desired pro-
duction volume, several batches are repeated.

In an industrial process, several variables such as temperatures, pres-
sures, and concentrations have to be regulated in order to ensure safety,
maintain the product quality, and optimize economic criteria. In prin-
ciple, model-based control techniques available in the literature could
be systematically utilized in order to achieve these goals. However, a
limitation to the applicability of model-based techniques for batch pro-
cess control is that the available models of batch processes often suffer
from severe uncertainties.

In this thesis, we have investigated the use of measured data in or-
der to improve the performance of model-based control of batch pro-
cesses. Our approach consists in using the measured data in order to
refine from batch to batch the model that is used to design the con-
troller. By doing so, the performance delivered by the model-based
controller is expected to improve. We have developed the parametric
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model update technique Iterative Identification Control (IIC) and non-
parametric model update technique Iterative Learning Control (ILC).
While in IIC the measured batch data are used to update from batch
to batch parameter estimates for the uncertain physical coefficients, in
ILC the data are used to compute a non-parametric, additive correc-
tion term for a nominal process model.

We have tested the ILC and IIC algorithms for the batch cooling crys-
tallization process both in a simulation environment and on a real
pilot-scale crystallization setup. We have shown that the two approaches
have complementary advantages. On the one hand, the parametric
approach allows for a faster learning since it produces a parsimonious
representation of the process. On the other hand, the nonparametric
approach can cope effectively with the serious issue of structural mis-
matches owing to the use of a more flexible representation.

Furthermore, we have investigated the use of excitation signals to en-
hance the performance of parametric model update techniques in an
iterative identification/controller design scheme similar to IIC. The ex-
citation signals have a dual effect on the overall control performance.
On the one hand, the application of an excitation signal superposed
to the normal control input leads after identification to an increased
model accuracy, and thus a better control performance. On the other
hand, the excitation signal also causes a temporary performance degra-
dation, since it acts as a disturbance while it is applied to control sys-
tem. For linear dynamical systems, we have shown that the problem of
designing the excitation signals aiming to maximize the overall control
performance can be approximated as a convex optimization problem.

The lack of generally applicable and computationally efficient experi-
ment design tools for nonlinear systems is the main bottleneck for the
optimal design of the excitation signals in the case of batch processes.
In this thesis, we have developed a novel experiment design method
applicable to the class of fading memory nonlinear system. Limiting
the excitation signals to a finite number of levels, the information ma-
trix can be expressed as a linear function of the frequency of occur-
rence of each possible pattern having duration equal to the memory
of the system. Exploiting the linear relation between the frequencies
and the information matrix, several experiment design problems can
be formulated as convex optimization problems.



Samenvatting

Batch-na-batch modelverfijning voor de modelgebaseerde regeling
van processystemen met als toepassing cooling kristallisatie

Marco Forgione

Vanuit het oogpunt van een ingenieur duidt de term “proces” een con-
versie aan van onbewerkte materialen naar tussen- of eindproducten
door middel van chemische, fysische, of biologische handelingen. In-
dustrile processen kunnen in een continue of in een batch modus uit-
gevoerd worden. Voorbeelden hiervan zijn eenheden voor distillatie
en kristallisatie. In de seriegewijze modus worden de onbewerkte ma-
terialen aan het begin van het proces de eenheid ingebracht, waarna
binnen de eenheid de conversie plaatsvindt. Na een zekere tijd wor-
den de eindproducten uit de eenheid gehaald. Om voor voldoende
productie volume te zorgen worden verschillende seriegewijze han-
delingen herhaald.

In een industrieel proces moeten verschillende variabelen zoals tem-
peratuur, druk, en concentraties nauwkeurig gereguleerd worden ten-
einde veiligheids-, kwaliteits-, en winstnormen te waarborgen. In ze-
kere zin bestaan er in de literatuur al modelgebaseerde regeltechnie-
ken die aan deze eisen kunnen voldoen. Een beperking van deze mo-
delgebaseerde regeltechnieken is echter hun toepasbaarheid op batch-
processen, gezien het feit dat huidige modellen voor deze processen
onderhevig zijn aan enorme onzekerheden.

Dit proefschrift bevat nieuwe methodieken die de prestatie van de mo-
delgebaseerde regeling van batch-processen verhoogd. De methodes
maken gebruik van meetdata om het model dat gebruikt wordt om
de regelaar te ontwerpen te verfijnen na elke batch. Twee verschil-
lende technieken zijn ontwikkeld: Iterative Identification Control (IIC)
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en Iterative Learning Control (ILC). In de IIC methode worden de meet-
data, die tijdens de laatste batch zijn verzameld, gebruikt gebruikt om
de nauwkeurigheid van de parameters van het procesmodel na elke
batch te vergroten, waarentegen de ILC methode deze data gebruikt
om een niet-parametrische additieve correctie term te berekenen voor
een nominaal model van het proces.

We hebben de ILC en IIC methodieken getest op een batch-kristallisatie
proces in een simulatie omgeving alsook in een echte, doch kleinscha-
lige, kristallisator. Hieruit bleek dat elk algoritme zijn voordelen heeft.
De IIC methodiek heeft een snelle leercurve door de vaste modelstruc-
tuur waarbinnen de parameters verfijnd worden. Daarentegen heeft
de ILC methodiek als voordeel zijn flexibelere representatie van het
proces om zo effectief om te gaan met structurele afwijkingen.

Verder is onderzocht hoe, door gebruik te maken van speciaal ontwor-
pen signalen, de prestatie van verfijntechnieken voor parametrische
modellen in een iteratieve identificatie/regelaar ontwerp omgeving te
verbeteren. Deze signalen hebben twee effecten op de regulatiepresta-
tie. Aan de ene kant zorgt de toepassing van de ontworpen signalen
voor een verhoogde precisie van het model na een identificatie proce-
dure en hierdoor voor een verbeterde regulatieprestatie. Aan de an-
dere kant zorgen deze signalen, wanneer toegepast op het systeem,
voor een tijdelijke verslechtering van de prestaties. Voor lineaire dy-
namische systemen tonen we dat het probleem van het ontwerpen van
de signalen met als doel het maximaliseren van de regulatieprestatie,
kan worden omgezet in een convex optimalisatie probleem.

Voor de niet-lineaire batch-processen was er een tekort aan algemeen
toepasbare en efficinte methodes om optimale signalen te ontwerpen.
In dit proefschrift is een nieuwe methodiek ontworpen die toepas-
baar is op de klasse van niet-lineaire systemen met een langzaam-
verdwijnend geheugen (fading memory). Door ons te beperken tot sig-
nalen met een eindig aantal niveaus kan de informatie matrix uitge-
drukt worden als een lineaire functie van de frequentie van voorvallen
van elk mogelijk patroon met een lengte die gelijk is aan het geheugen
van het systeem. Daarnaast kunnen, door gebruik te maken van het
lineaire verband tussen deze frequenties en de informatie matrix, ver-
schillende optimalisatie problemen geformuleerd worden als convexe
optimalisatie problemen.
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