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Summary

Structural health monitoring (SHM) aims to ensure the reliable operation of structures through the

use of sensors and data analysis. A commonly used approach is to frame the detection of damage

as an inverse problem, where the goal is to estimate uncertain physical parameters, including

damage indicators, from measured structural responses. Bayesian inference offers an attractive

framework for solving such inverse problems, as it not only enables damage detection, but also

provides a measure of uncertainty. The core concept of Bayesian inference is to update a prior

belief of the parameters of interest using observational data, yielding a posterior distribution that

encodes both the most likely parameter values and the uncertainty surrounding them. However,

a challenge in applying Bayesian inference is the need for a likelihood function, which is often

infeasible to define in practice, as exact forward models are unavailable or intractable.

To circumvent this issue, likelihood-free inference (LFI) methods have emerged. These approaches

bypass the need for an explicit likelihood by relying solely on the ability to generate simulated

data from a forward model. One such method is BayesFlow, which is deep learning-based and

amortized. Theoretically, BayesFlow is a suitable method to detect damage in structures, including

uncertainty quantification. However, large amounts of simulation training data are required to

properly train BayesFlow models, which is often expensive to generate. This bottleneck currently

hinders the practical application of BayesFlow to real-world SHM.

This work presents a method to address the problematic simulation data requirements. The

summary network component of BayesFlow, which converts raw data into informative summary

statistics, is identified as an area with potential for enhancement. A physics-informed approach is

proposed, in which the summary network is enriched by integrating knowledge about the physical

structure. Specifically, a Graph Summary Neural Network (GSNN) is designed, leveraging the

sequential nature of sensor measurements and the spatial topology of the structure.

To highlight the effectiveness of the developed method, three case studies of increasing complexity

were considered. First, the detection of a single damaged component in a 2D scenario was

tested. Subsequently, a more difficult 2D scenario was tested, in which twice the number of

elements were eligible to be damaged. Finally, a complex 3D scenario was investigated. In

the simplest 2D test case, the GSNN is able to reduce the number of simulations required to

reach the bound on model performance by 75%. It is noteworthy that in this case, all models

eventually reached a similar performance bound. In the more complex 2D case, the GSNN not

only reduced the required number of simulations by 37.5%, but also achieved overall improved

posterior estimation. The GSNN reached a model performance score of 0.3918, compared to

baseline models, which were only able to achieve model performance scores ranging from 0.5149

to 0.8705. Note that a lower model performance score indicates a better performing model. In the

3D scenario, the advantage of the GSNN over baseline networks in terms of model performance

is further highlighted, as a performance score of 0.467 was reached, compared to baseline models,

which were only able to achieve performance scores ranging from 3.077 to 1.748. These results

indicate that the GSNN surpasses baseline networks in terms of both efficiency and performance,

thus bringing BayesFlow-based SHM closer to real-world deployment.
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1
Introduction

1.1. Structural Health Monitoring
Structures are physical systems designed to withstand loads and provide stability. They are found

in diverse sectors, across a wide range of applications. A few examples include civil infrastructure,

where structures are used in bridges and buildings; aerospace, where structures can be found

in airplanes and spacecrafts; and energy systems, where structures are used in wind turbines

and dams. Regardless of their specific form or function, all structures deteriorate over time due

to operational stressors and environmental factors. Fatigue from repetitive loads is a common

issue that impacts many older structures [1]. Among environmental influences, corrosion can

compromise the structural health [2], while large-scale natural disasters like earthquakes and

hurricanes can also lead to damage [3]. These stressors can degrade the construction materials,

giving rise to damages that can compromise the integrity of the structure [4, 1, 2, 3].

Furthermore, these stressors are often unpredictable and difficult to model [5]. Their nonde-

terministic nature makes it challenging to estimate the condition of a structure based on its

age and usage alone, meaning that the actual structural state may deviate from the predicted

structural state. These deviations between predictions and reality can have large implications.

Misjudging structural integrity can lead to premature decommissioning or unexpected failures,

which can result in severe environmental, financial, and human safety consequences [4, 6, 7]. For

example, in 2018, the Morandi bridge in Genoa collapsed, killing 43 people and leaving many

hundreds homeless. The structural integrity of the bridge’s suspension cables was difficult to

estimate, and it was unclear how the cables were behaving under traffic loads. Despite some

visible signs of deterioration, the true extent of the internal damage was underestimated, leading

to an unexpected failure [8]. If the structure had been monitored more accurately, damage may

have been localized in time, and preventative maintenance action could have been taken.

It is clear that the ability to properly evaluate the integrity of structures holds the potential to

offer significant economic and life-safety benefits. However, assessing the condition of a structure

is a complex task, requiring high levels of specialization [4, 9]. Furthermore, as structures can

be found in such a diverse range of sectors, it is difficult to develop methods that are readily

applicable to different types of structures. Traditionally, the assessment of structures primarily

relies on visual inspections [4, 10]. However, visual inspections are subjective, inconsistent and

inaccurate [11]. Developing new methods that make use of modern sensor technologies and

smart algorithms could significantly improve the quality of the structural health assessments.

The concept of automating damage detection through sensor-based systems that collect data

from the structure under study is referred to as Structural Health Monitoring (SHM) [12, 13,

14]. SHM can be used in five stages to detect, locate, classify, assess, and even predict future
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Figure 1.1: Collapsed Morandi bridge, Genua, Italy [19]

damages [15, 16]. These technologies have the potential to provide accurate information about a

structure’s state whenever necessary, without interrupting its operation (e.g., without closing a

bridge to traffic) [4]. A typical SHM strategy is comprised of several key components. Sensors

must be carefully chosen, placed in optimized positions, and properly set up to ensure effective

monitoring. The collected data must be processed, transforming raw measurements into a form

suitable for analysis. Finally, the probabilistic analysis used to interpret the data has to be accurate

in describing the structural state of the object [12, 14, 17]. As each of these steps is complex in

itself, developing a cohesive SHM strategy requires a well thought-out approach.

Although recent advancements have been made in the field of SHM, the application of the

technology to real structures is still in its infancy [4, 10]. Most existing real-life SHM systems

are still in the experimental phase. The widespread deployment of SHM is currently obstructed

by high equipment and maintenance costs, the complexity of sensor management and data

analysis, and uncertainties in interpreting results [4, 18]. Additionally, the lack of standardized

frameworks and the variability in structural types make it difficult to generalize SHM strategies

across different objects [4]. The full potential of SHM has yet to be realized, motivating the

relevance and value of this thesis. In the next section, a well-established framework for damage

detection is introduced, which forms the basis for the SHM method developed in this work.

1.2. Inverse Methods for Structural Health Monitoring
A widely adopted SHM framework is to formulate damage detection as an inverse problem [9,

20]. This approach relies on a forward model, which maps a vector of physical parameters to a

structural response, i.e.

𝑥 = ℱ (𝜃), (1.1)
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where 𝑥 denotes the structural response computed by the forward model of the structure ℱ , and

𝜃 denotes the parameter vector. To incorporate and reflect the effects of damage in the structural

behavior, we can include damage parameters, denoted as 𝜔, which act as proxies for reductions

in stiffness, strength, or other mechanical properties of the affected components. Each damage

parameter reflects the structural health of a specific element of the structure, indexed by 𝑖. The

set of structural elements that are linked to damage parameters is denoted as ℬ.

Damage detection in the elements of ℬ can then be expressed as an inverse problem: given

measurements from the real structure, 𝑥obs, the goal is to determine the parameter vector 𝜃
such that the forward model’s predicted response matches the observed response as closely as

possible. Since 𝜃 contains the damage parameters of elements in ℬ, the estimated values directly

indicate their structural condition. A substantial increase in the inferred damage parameter for

an element can be interpreted as evidence of damage in that element.

However, computing solutions to inverse problems is challenging, mainly due to inaccuracies

in the forward model and measurement noise caused by imperfect sensors [9, 21]. Modeling

inaccuracies are unavoidable, as modeling complex substructures, such as joints, is difficult

and can only be done through simplifications. Furthermore, modeling structural damage is

also challenging, as it involves defining how variations in the damage parameters translate into

changes in the structure’s mechanical behaviour. For example, damage modeling can range from

a simple stiffness reduction at the affected location to advanced, highly detailed crack models.

In addition to the challenges posed by noise and modeling issues, inverse problems are often

inherently ill-posed, meaning solutions may not exist, may be non-unique, or may be highly

sensitive to small perturbations in the input data [21].

1.3. Solving Inverse Problems with Bayesian Inference
A popular framework for solving inverse problems is Bayesian inference [9]. In this approach, both

prior knowledge and measurement data are used to update beliefs about uncertain parameters.

This is reflected by Bayes’ Theorem

𝑝(𝜃|𝑥obs) =
𝑝(𝑥obs|𝜃) 𝑝(𝜃)

𝑝(𝑥obs)
, (1.2)

where 𝑝(𝜃|𝑥obs) is the posterior distribution after observing 𝑥obs, 𝑝(𝑥obs|𝜃) is the likelihood

function, 𝑝(𝜃) is the prior distribution and 𝑝(𝑥obs) is the evidence, a normalizing constant that

ensures the posterior is a valid probability distribution.

Applying this to the context of SHM, the inverse problem for damage detection described in

section 1.2 can be solved using Bayesian inference. A prior belief of the parameter vector is

created, incorporating expert knowledge, heuristics, and uncertainty. Taking a sample of the

parameter vector from the prior belief allows for simulation of the structural response, i.e.

𝑥 = ℱ (𝜃), 𝜃 ∼ 𝑝(𝜃), (1.3)

where 𝑝(𝜃) represents the prior belief of the parameter vector. Given measurement data from the

real structure, denoted as 𝑥obs, the inverse problem of estimating the damage parameters can then

be solved using (1.2). This yields a posterior distribution, indicating the updated belief about the

most plausible values of the damage parameters given the observed structural response. The

process of using an inverse problem with Bayesian inference for damage detection is depicted

schematically in Figure 1.2.

One of the main reasons Bayesian inference is appealing in this context is that it produces

a complete probability distribution over the unknown parameters rather than a single point

estimate. This enables uncertainty quantification, which is critical in SHM, where measurements

are noisy and damage signatures can be subtle. By combining both measurement data and
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Inference

Forward Problem Inverse Problem

Damage Detection

Comparison

Figure 1.2: Using the inverse problem with Bayesian inference as a framework for SHM. The posterior distribution is

compared to the prior distribution. Any significant changes in the damage parameters can be interpreted as damages.

a prior that encodes existing engineering knowledge, the resulting posterior integrates all

available information into a coherent and interpretable form. In cases where multiple parameter

configurations are consistent with the observations, the posterior can represent the ambiguity

directly, avoiding the false certainty of single-solution approaches.

A practical challenge with this approach is that it requires a well-specified likelihood function.

The likelihood arises from the data generating process; however, in many applications, this is

difficult to quantify, as exact models are not available or computationally expensive [9, 22, 23].

Even when a model is available, it may only be accessible as a complex simulator that does not

provide a closed-form expression for the likelihood. Furthermore, using Bayesian inference for

SHM would require reusing Bayes’ Theorem to calculate a new posterior distribution for each

new measurement, resulting in a large number of expensive calculations over time [24].

To mitigate the issues related to the definition of a likelihood function, a special class of Bayesian

inference methods has been developed that are likelihood-free. Likelihood-free inference (LFI)

refers to a class of methods specifically designed to perform statistical inference using simulators,

eliminating the need for an explicit likelihood function. One of the most well-established

LFI methods is Approximate Bayesian Computation (ABC) [25, 26], which approximates the

likelihood by generating simulations from a model and comparing the simulated data to the

observed data [26]. Although this method circumvents the need for an explicit likelihood

function, it remains computationally inefficient, particularly due to its low acceptance rates and

the large number of required simulations. Furthermore, the fact that a computationally expensive

operation based on Bayes’ Theorem must be repeated for each new measurement remains an

issue [25].

1.4. Amortized & Likelihood-Free Inference with BayesFlow
A novel method that is able to overcome both the issue related to the likelihood function and the

issue related to the repeated application of Bayes’ Theorem is BayesFlow. This method leverages

deep learning to perform amortized Bayesian inference. The amortized nature of BayesFlow

means that once the machine learning model is trained, it is able to generate approximate

posterior distributions for new measurements almost instantaneously [27, 28, 29]. The working

mechanism of the method is discussed in section 2.1.

Although the use of machine learning for SHM is not new, most existing approaches are not

able to provide a reliable measure of uncertainty along with their damage detection. This is

what sets Bayesian inference-based methods apart. BayesFlow is particularly promising within
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the domain of machine learning-based solutions for SHM due to its reliance on a simulator

rather than a real-world dataset. Traditionally, supervised machine learning models require

labeled data across numerous scenarios to be able to properly generalize. In the context of SHM,

this would necessitate intentionally damaging real structures, which is impractical and often

infeasible. This issue can be circumvented using unsupervised machine learning (for example to

detect anomalies and therefore damages), or by using a simulator, as is the case in BayesFlow.

BayesFlow has already been shown to have potential for SHM in existing studies. Previously, the

method was validated by detecting damage in a synthetic, two-dimensional bridge. A posterior

distribution of the model parameters was generated based on synthetic sensor data, allowing for

the successful identification of damage [9]. However, there is still a large obstacle that must be

overcome to facilitate the feasibility of BayesFlow for SHM to real-world structures.

1.5. Challenges of Applying BayesFlow to Structural Health
Monitoring

The primary obstacle preventing the implementation of BayesFlow in real-world SHM applications

lies in its training simulation data requirements. For the machine learning model to effectively

detect damage, it must be trained on simulations representing a wide range of damaged states.

Without such diversity in the training set, the model may fail to generalize, resulting in poor

performance when applied to new, unseen cases [24, 30, 31].

This leads to the current bottleneck: the computational cost of generating a large training set

of high-fidelity simulations. Realistic Finite Element Models (FEMs) are generally used for the

analysis of high-tech engineering structures. These FEMs are highly detailed and complex,

involving a large number of degrees of freedom. This significantly increases the number of

unknowns to solve for, which increases the size of the matrices that need to be processed, and

therefore also the associated computational burden. Moreover, highly detailed simulators may

require iterative or nonlinear solvers, further compounding the computational cost [32, 33].

Implementing BayesFlow in real-life settings would require some of the simplifying assumptions

made in previous research to be revisited. As previous work [9] was mainly meant as a proof

of concept to demonstrate the applicability of BayesFlow to SHM as described in section 1.2,

the research focused on a synthetic model, in which damage was restricted to a small subset of

elements, and only one element was assumed to be damaged at a time. However, in practice,

these assumptions do not hold. Damage can occur in multiple elements simultaneously and is

not confined to predefined locations. Relaxing these assumptions increases both the number of

parameters and the dimensionality of the parameter space. As a result, the number of simulations

required to adequately cover this space grows exponentially, while each individual simulation

remains expensive. This implies that each simulation is not only more costly, but we also require

a greater number of simulations in total.

The combination of high simulation cost and the need for a large, diverse training dataset presents

a fundamental challenge to the practical deployment of BayesFlow for SHM. Overcoming

this issue is crucial for transitioning from synthetic benchmarks to real-world applications of

BayesFlow in SHM.

1.6. Potential for Efficient Learning with a Physics-Informed
Summary Network

A potential strategy to mitigate the need for large and computationally expensive datasets

is to maximize the information extracted from each individual simulation. In the BayesFlow

architecture, this task is performed by the summary network, which compresses high-dimensional

observational data into low-dimensional summary statistics. These summary statistics are then
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used by the inference network to approximate the posterior distribution. While compressing

the raw input data, the summary network ensures that specifically the information that is most

relevant for inferring the model parameters further on in the pipeline is retained [27, 29]. The

quality of the summary network therefore directly affects the efficiency and accuracy of the

entire inference process [24, 34]. More details regarding the use of summary statistics in machine

learning and Bayesian inference processes can be found in Section 2.3.

The proposed strategy in this work is to improve upon the standard summary network by

designing a summary network that reflects the underlying physics and structure of the problem

domain. This aligns with the principles of Physics-Informed Machine Learning (PIML), a field

of machine learning which focuses on integrating domain knowledge into learning algorithms.

Physics is incorporated through biases in the model, as well as by strategically choosing the

training data and by influencing the training process itself. This is discussed in more detail in

section 2.4. Embedding physical priors helps machine learning models focus on meaningful

features, reduce overfitting, and improve generalization to unseen damage scenarios [34]. By

leveraging a physics-informed design, the aim is to ensure the summary network extracts more

useful information from fewer simulations, thereby mitigating the bottleneck of data generation.

In the context of structures, prior knowledge of the topology and data format of the sensor

network can be encoded into the summary network. Accordingly, the Graph Neural Network

(GNN) is identified as an architecture for the summary network that can naturally exploit the

spatial relationships between sensors and the structural connectivity. This concept is described

in more detail in Section 3.2.

1.7. Motivation & Research Question
The previous sections have established a clear motivation for advancing SHM. The limitations of

traditional inspection methods have been illustrated, and the need for reliable monitoring systems

has been emphasized. BayesFlow is presented as a state-of-the-art solution, offering potential for

rapid and uncertainty-quantified damage assessments. However, there is a practical bottleneck

that currently limits its use: the high computational cost associated with the generation of a large

and diverse set of training simulations.

To address this issue, a strategy for tailoring the summary network to the structure and the

context of the available data has been proposed. Such a network could enable likelihood-free,

amortized Bayesian inference, including uncertainty quantification, in real-world SHM settings.

This directly leads to the research gap addressed in this work: the design of physics-informed

summary networks for SHM with BayesFlow remains largely unexplored. By extension, the

additional gain of incorporating physics knowledge into the summary network has not yet been

quantified. This thesis aims to fill these research gaps, guided by the research question:

To what extent can the simulation data requirements for BayesFlow-based structural health monitoring be
reduced by using a Physics-Informed Summary Network tailored specifically to structural health

monitoring data?

1.8. Thesis Outline
The thesis begins by presenting background information, which is necessary to justify the

choices made during the design process of the physics-informed summary network. Next,

the proposed physics-informed summary network for BayesFlow-based SHM is discussed in

detail. Additionally, the developed summary network is used to perform damage detection with

BayesFlow in a several numerical experiments, and its performance is compared to that of several

baseline summary networks. Based on the results of the test case, conclusions are drawn and

recommendations for future work are provided.



2
Background Information

In this chapter, the concepts necessary to understand the development of a physics-informed

summary network, specifically tailored for BayesFlow-based SHM, are explained. This includes

an in-depth explanation of BayesFlow and its working principles, an illustration of the importance

of summary statistics in Bayesian inference and machine learning, and a discussion of the PIML

techniques relevant to this work.

2.1. Working Principles of BayesFlow
We begin by describing the general working principle of BayesFlow. The algorithm consists of a

training and an inference phase [27, 28, 29], depicted in Figure 2.1.

Simulator

Base
Distribution

Training Phase

Optimizer

Prior Research
Domain

Inference Phase

Base
Distribution Posterior

Figure 2.1: Training and Inference Phases of BayesFlow, adapted from [29].
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2.1.1. Training Phase
During the training phase, a summary neural network and an invertible inference neural network

are jointly optimized. Training data is generated by the simulator, which draws samples of 𝜃
from the prior, and passes them to the forward model, resulting in a simulated response

𝑥 = ℱ (𝜃), 𝜃 ∼ 𝑝(𝜃), (2.1)

where 𝑥 denotes the simulated response, ℱ denotes the forward model, and 𝜃 denotes the

parameter vector. Each simulation is then passed through the summary neural network,

producing a summary vector

𝑥̃ = ℎ𝜓(𝑥), (2.2)

where 𝑥̃ denotes the summary vector, and ℎ𝜓 denotes the summary network, which is charac-

terized by weights 𝜓. Next, the sample 𝜃 is passed to the invertible inference network together

with its respective summary vector. The inference network maps the parameter vector to a latent

variable, conditioned on the summary vector, i.e.

𝑧 = 𝑓𝜙(𝜃; 𝑥̃), (2.3)

where 𝑧 is the latent variable, and 𝑓𝜙 denotes the invertible inference network, which is

characterized by weights 𝜙. The final step of an iteration of the training loop is to update

the weights of the summary network and the weights of the inference network to minimize the

loss function. The objective of the loss function is to penalize deviations of the distribution of the

latent variable 𝑧 from a base distribution, which is chosen to be a multivariate Gaussian with

zero mean and a diagonal covariance matrix. The loss function is discussed in more detail in

subsection 2.1.4.

Each update is performed by computing the loss in a forward pass and using backpropagation.

This process is repeated for each batch of simulations, using the updated weights of the neural

networks in each new pass.

2.1.2. Inference Phase
Once the summary and inference networks are sufficiently trained, they can be used to generate

an approximation of the posterior distribution for any new measurement obtained from the

structure [29, 27]. The measured observation is passed through the (now trained and optimized)

summary network, yielding the summary vector of the observed data

𝑥̃obs = ℎ𝜓(𝑥obs), (2.4)

where 𝑥̃obs denotes the summary vector of the measurement. Next, the invertible nature of the

inference network is leveraged, generating a map from the latent variable 𝑧 space to the parameter

𝜃 space, conditioned on the summary vector of the observed dataset. 𝐿 samples are taken from

the 𝑧 space, which is the known base distribution, i.e.,

{𝑧(𝑙)}𝐿
𝑙=1
, 𝑧 ∼ 𝒩(0, 𝐼) (2.5)

Each of these samples is input into the inverted inference network, conditioned on the summary

vector of the observation, generating an estimate of the parameter vector

𝜃(𝑙) = 𝑓 −1

𝜙 (𝑧(𝑙); 𝑥̃obs) (2.6)

This process is repeated for all 𝐿 samples, yielding a collection of estimates of the parameter

vector that can be interpreted as a posterior distribution

{𝜃(𝑙)}𝐿
𝑙=1

∼ 𝑝(𝜃|𝑥obs) (2.7)

The principle of passing samples from the base distribution to the inference network, conditioned

on the summary vector of an observation, is displayed schematically in Figure 2.2.
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Figure 2.2: Schematic illustration of the inference phase working principle, adapted from [29].

2.1.3. The Summary and Inference Networks
In BayesFlow, the summary network serves as an encoder that transforms high-dimensional

simulator outputs into compact, informative feature representations, which are subsequently

used as conditioning inputs for the invertible inference network. The architecture of the summary

network is domain-dependent and can incorporate biases tailored to the application [29].

The inference network is a conditional invertible neural network (cINN), which is a type of

normalizing flow designed for conditional density estimation. Normalizing flows refers to a family

of models that transform a simple base distribution into a complex target distribution through a

sequence of invertible and differentiable mappings. Each transformation is parameterized by a

neural network and designed such that both the forward mapping, which generates samples, and

the inverse mapping, which evaluates densities, can be computed efficiently. This property allows

the model to exploit the change-of-variables theorem, ensuring exact likelihood computation

and stable training via maximum likelihood estimation.

In the context of the cINN, the transformations are conditioned on observed data, enabling the

network to learn the posterior distribution of parameters given observations. Conditioning is

introduced by passing the summary of the observed structural responses into each transformation

block, allowing the latent variable transformations to adapt to different input conditions. The

architecture of a cINN is commonly based on coupling layers or affine transformations, where

only part of the input is transformed at each step while the rest remains unchanged, ensuring

efficient invertibility. The unchanged part is swapped in subsequent layers so that all components

of the input are eventually transformed [35, 36, 29].

2.1.4. The Loss Function
The overall goal of the BayesFlow model is to solve an inverse problem by generating an

approximate posterior distribution, denoted as 𝑝(𝜃|𝑥), that accurately approximates the true

posterior, denoted as 𝑝∗(𝜃|𝑥), for any possible observation 𝑥, i.e.

𝑝(𝜃|𝑥) ≈ 𝑝∗(𝜃|𝑥) ∀𝑥 (2.8)

The difference between the true and the approximated posterior can be quantified using the

Kullback-Leibler (KL) divergence. Plugging the true posterior distribution and the estimation of

the posteriorinto the definition of the KL divergence yields

KL(𝑝∗(𝜃|𝑥)||𝑝(𝜃|𝑥)) = E𝑝∗(𝜃|𝑥)
[
log 𝑝∗(𝜃|𝑥) − log 𝑝(𝜃|𝑥)

]
, (2.9)

where KL denotes the KL divergence. However, since the estimation of the posterior distribution

𝑝(𝜃|𝑥) should be accurate for all possible observations 𝑥, this metric should not just be minimized

for a single 𝑥, but minimized on average across the entire distribution of possible observations.
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This leads to the definition of the loss function as the expectation of the KL divergence over the

marginal data distribution 𝑝(𝑥), i.e.

ℒ = E𝑝(𝑥)
[
E𝑝∗(𝜃|𝑥)

[
log 𝑝∗(𝜃|𝑥) − log 𝑝(𝜃|𝑥)

] ]
(2.10)

First, to illustrate the core mechanism of the loss function, consider a simplified version of

BayesFlow that does not use a summary network, i.e. where the raw data 𝑥 is directly used

for inference. The objective then becomes to find the weights of the inference network 𝜙 that

minimize the loss function, i.e.

𝜙∗ = argmin

𝜙
E𝑝(𝑥)

[
E𝑝∗(𝜃|𝑥)

[
log 𝑝∗(𝜃|𝑥) − log 𝑝𝜙(𝜃|𝑥)

] ]
= argmin

𝜙
E𝑝(𝑥)

[
E𝑝∗(𝜃|𝑥)

[
− log 𝑝𝜙(𝜃|𝑥)

] ]
= argmax

𝜙
E𝑝(𝑥)

[
E𝑝∗(𝜃|𝑥)

[
log 𝑝𝜙(𝜃|𝑥)

] ] (2.11)

Note that the term log 𝑝∗(𝜃|𝑥) does not depend on 𝜙 and can thus be omitted during optimization.

Next, the nested expectation is written as an integral using the definition of the expectation of a

continuous random variable, i.e.

𝜙∗ = argmax

𝜙

∫
𝑝(𝑥)

(∫
𝑝∗(𝜃|𝑥) log 𝑝𝜙(𝜃|𝑥)d𝜃

)
d𝑥 (2.12)

Next, Bayes’ Theorem is used to substitute 𝑝∗(𝜃|𝑥). Additionally, the law of joint probability is

applied, i.e.

𝑝∗(𝜃|𝑥) = 𝑝(𝑥|𝜃)𝑝(𝜃)
𝑝(𝑥) =

𝑝(𝑥, 𝜃)
𝑝(𝑥) ⇒ 𝑝(𝑥)𝑝∗(𝜃|𝑥) = 𝑝(𝑥, 𝜃), (2.13)

allowing us to write

𝜙∗ = argmax

𝜙

∬
𝑝(𝑥, 𝜃) log 𝑝𝜙(𝜃|𝑥)d𝜃 d𝑥

= argmax

𝜙

∬
𝑝(𝑥, 𝜃) log 𝑝𝜙(𝜃|𝑥)d𝑥 d𝜃

(2.14)

Next, we want to express the approximation of the posterior distribution 𝑝𝜙(𝜃|𝑥) in terms of the

known base distribution of the latent variable 𝑧. Since we construct the approximate posterior

by applying an invertible transformation 𝑓𝜙(𝜃; 𝑥) to map samples from the parameter space

to the latent space, we can use the change of variables formula to compute the density in the

original space. Specifically, for an invertible and differentiable function 𝑓𝜙, the density of 𝜃 is

obtained by evaluating the density of its output 𝑧 = 𝑓𝜙(𝜃; 𝑥) in the latent space, and correcting

for the distortion of space introduced by the transformation. This distortion is quantified by the

determinant of the Jacobian matrix of 𝑓𝜙 with respect to 𝜃. As a result, we obtain

𝑝𝜙(𝜃|𝑥) = 𝑝(𝑧)
����det

(
𝜕𝑧

𝜕𝜃

)���� = 𝑝( 𝑓𝜙(𝜃; 𝑥))
����det

(
𝜕 𝑓𝜙(𝜃; 𝑥)

𝜕𝜃

)���� , (2.15)

where the first term evaluates the base density at the transformed point, and the second term

accounts for the local change in volume caused by the transformation. This allows for the

evaluation of the approximate posterior 𝑝𝜙(𝜃|𝑥) without modeling it directly. Plugging (2.15)



2.1. Working Principles of BayesFlow 11

into the objective function yields

𝜙∗ = argmax

𝜙

∬
𝑝(𝑥, 𝜃) log 𝑝𝜙(𝜃|𝑥)d𝑥 d𝜃

= argmax

𝜙

∬
𝑝(𝑥, 𝜃) log

(
𝑝( 𝑓𝜙(𝜃; 𝑥))

����det

(
𝜕 𝑓𝜙(𝜃; 𝑥)

𝜕𝜃

)����) d𝑥 d𝜃

= argmax

𝜙

∬
𝑝(𝑥, 𝜃)

[
log 𝑝( 𝑓𝜙(𝜃; 𝑥)) + log

����det

(
𝜕 𝑓𝜙(𝜃; 𝑥)

𝜕𝜃

)����] d𝑥 d𝜃

= argmax

𝜙

∬
𝑝(𝑥, 𝜃)

[
log 𝑝( 𝑓𝜙(𝜃; 𝑥)) + log

���det

(
𝐽 𝑓𝜙

)���] d𝑥 d𝜃, (2.16)

where a simplification of notation has been introduced, letting 𝐽 𝑓𝜙 denote the Jacobian of 𝑓𝜙
evaluated at 𝜃 and 𝑥, i.e.

𝐽 𝑓𝜙 =
𝜕 𝑓𝜙(𝜃; 𝑥)

𝜕𝜃
(2.17)

The integral obtained in equation 2.16 is an expectation over the joint distribution 𝑝(𝑥, 𝜃), and

can therefore also be written as

𝜙∗ = argmax

𝜙
E(𝑥,𝜃)∼𝑝(𝑥,𝜃)

[
log 𝑝( 𝑓𝜙(𝜃; 𝑥)) + log

���det

(
𝐽 𝑓𝜙

)��� ] (2.18)

In practice, (2.18) is not actually computed, due to the fact that 𝑝(𝑥, 𝜃) = 𝑝(𝑥|𝜃)𝑝(𝜃) is not

tractable, as there is no explicit form for 𝑝(𝑥|𝜃). Therefore, it is approximated using the Monte

Carlo approximation and samples from 𝑝(𝑥, 𝜃) by drawing 𝜃(𝑚) ∼ 𝑝(𝜃) and simulating 𝑥(𝑚)
.

Suppose we generate 𝑀 training samples, then we can write

E(𝑥,𝜃)∼𝑝(𝑥,𝜃)
[
log 𝑝( 𝑓𝜙(𝜃; 𝑥)) + log

���det

(
𝐽 𝑓𝜙

)��� ] ≈ 1

𝑀

𝑀∑
𝑚=1

[
log 𝑝( 𝑓𝜙(𝜃(𝑚)

; 𝑥(𝑚))) + log

���det

(
𝐽
(𝑚)
𝑓𝜙

)��� ]
(2.19)

Consequently, the optimization problem is written as

𝜙∗ = argmax

𝜙

1

𝑀

𝑀∑
𝑚=1

[
log 𝑝( 𝑓𝜙(𝜃(𝑚)

; 𝑥(𝑚))) + log

���det

(
𝐽
(𝑚)
𝑓𝜙

)��� ] (2.20)

= argmin

𝜙

1

𝑀

𝑀∑
𝑚=1

[
− log 𝑝( 𝑓𝜙(𝜃(𝑚)

; 𝑥(𝑚))) − log

���det

(
𝐽
(𝑚)
𝑓𝜙

)��� ] (2.21)

Next, the fact that the base distribution of the latent variable should be a standard Gaussian is

used to write

𝑓𝜙(𝜃(𝑚)
; 𝑥(𝑚)) = 𝑧(𝑚) ∼ 𝒩(0, 𝐼) (2.22)

Therefore,

𝑝( 𝑓𝜙(𝜃(𝑚)
; 𝑥(𝑚))) = 𝑝(𝑧(𝑚)) = 1

(2𝜋)(𝐷/2) exp

(
−1

2

||𝑧(𝑚)||2
)

(2.23)

Taking the logarithm yields

log 𝑝( 𝑓𝜙(𝜃(𝑚)
; 𝑥(𝑚))) = log 𝑝(𝑧(𝑚)) = −𝐷

2

log(2𝜋) − 1

2

||𝑧(𝑚)||2 (2.24)
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Plugging this back into the optimization problem and dropping constants yields the final form

that is actually computed , i.e.

𝜙∗ = argmin

𝜙

1

𝑀

𝑀∑
𝑚=1

[
𝐷

2

log(2𝜋) + 1

2



 𝑓𝜙(𝜃(𝑚)
; 𝑥(𝑚))



2 − log

���det

(
𝐽
(𝑚)
𝑓𝜙

)��� ] (2.25)

= argmin

𝜙

1

𝑀

𝑀∑
𝑚=1

[
1

2



 𝑓𝜙(𝜃(𝑚)
; 𝑥(𝑚))



2 − log

���det

(
𝐽
(𝑚)
𝑓𝜙

)��� ] (2.26)

If we introduce a summary network, denoted by ℎ𝜓(𝑥), together with the invertible inference

network, the main objective function from equation 2.11 becomes

𝜙∗ ,𝜓∗ = argmax

𝜙,𝜓
E𝑝(𝑥)

[
E𝑝∗(𝜃|𝑥)

[
log 𝑝𝜙(𝜃|ℎ𝜓(𝑥))

] ]
(2.27)

Similarly, the Monte Carlo estimate changes to

𝜙∗ ,𝜓∗ = argmin

𝜙,𝜓

1

𝑀

𝑀∑
𝑚=1

[
1

2



 𝑓𝜙(𝜃(𝑚)
; ℎ𝜓(𝑥(𝑚)))



2

2
− log

���det

(
𝐽
(𝑚)
𝑓𝜙

)��� ] (2.28)

Intuitively, the first term of (2.28),

1

2

|| 𝑓𝜙(𝜃(𝑚)
; ℎ𝜓(𝑥(𝑚)))||2

2
, (2.29)

penalizes the distance of the distribution of the latent variable from the base normal distribution.

This term encourages the transformed outputs of the inference network to behave like samples

from a standard Gaussian, concentrated around zero with unit variance. The closer the

transformed samples are to this ideal Gaussian distribution, the smaller this penalty becomes.

The second term of (2.28),

− log

���det

(
𝐽
(𝑚)
𝑓𝜙

)��� , (2.30)

accounts for how much the transformation distorts volume when transforming parameters into

the Gaussian space. As the inference network transforms parameters 𝜃 into latent variables 𝑧, it

stretches or compresses regions of the parameter 𝜃 space to match the Gaussian form in 𝑧-space.

This reshaping affects how the probability mass should be redistributed: expanding space should

reduce local density, while compressing space should increase it, to conserve total probability.

The determinant of the Jacobian quantifies this local expansion or compression. Including the

negative log of this determinant in the loss forces the network to adjust densities properly when

transforming from the original parameter posterior to the latent Gaussian.

Without this correction, the networks could incorrectly manipulate densities, such as collapsing

all samples to the center of the Gaussian, without respecting probability conservation. This term

therefore ensures that the uncertainty structure of the posterior is accurately preserved during

the transformation.

2.2. Summary Statistics for Machine Learning & Bayesian In-
ference

Recent advances in simulation and sensor technology have resulted in the use of high-dimensional

data. This also applies to the context of SHM, where networks built up of different types of

sensors can produce vast amounts of high-dimensional data. However, directly using this raw,

high-dimensional data in machine learning is not desirable. The curse of dimensionality leads to
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data sparsity and unreliable distance metrics, increasing the risk of overfitting and escalating

computational costs [37, 38].

Issues related to high-dimensional data also arise when using likelihood-free Bayesian inference

methods, such as Approximate Bayesian Computation (ABC). These approaches bypass direct

likelihood evaluation by comparing observed and simulated data. In classical ABC, parameter

samples are used to compute simulated data, which is compared to observed data. Only those

parameters for which the simulated data is sufficiently close to the observed data are accepted,

forming an approximate posterior [25]. However, as distance metrics become less informative

in high-dimensional spaces, comparisons based on raw data become unreliable [26, 39]. As

BayesFlow is both machine learning based and likelihood-free, addressing the problems caused

by the curse of dimensionality becomes particularly critical.

To address this issue, comparisons between observed and simulated data are performed on

their respective summary statistics, rather than the raw high-dimensional inputs directly. A

summary statistic is a compact, low-dimensional representation of the raw data. Transforming a

high-dimensional input 𝑥 ∈ R𝑛 to a summary statistic 𝑥̃ ∈ R𝑘 involves applying a function 𝒮, i.e.

𝒮 : R𝑛 → R𝑘 , (2.31)

with 𝑘 ≪ 𝑛. Classical examples include the mean, variance, and autocorrelation. However,

dimensionality reduction may discard essential information. For instance, data drawn from two

very different distributions may share the same mean, requiring additional descriptive statistics

to distinguish between them. Effective summary statistics must therefore balance compression

with the retention of relevant information for downstream processes.

If the downstream process is inference, a summary statistic 𝑥̃ = 𝒮(𝑥) is said to be sufficient for a

parameter 𝜃 if the posterior remains unchanged, i.e.

𝑝(𝜃|𝑥) = 𝑝(𝜃|𝜂), (2.32)

where 𝜂 denotes a sufficient summary statistic. In other words, given 𝜂, the raw data 𝑥 offers

no additional information about 𝜃. In practice, sufficiency is rarely achievable for complex

simulators when using low-dimensional summaries [40]. Therefore, the goal becomes to find

approximately sufficient statistics that are low-dimensional enough for efficient comparison,

but rich enough to retain enough information for accurate inference. Poorly chosen summaries

can lead to biased or uncertain posteriors, whereas well-crafted summaries can enable effective

inference without an explicit likelihood. This trade-off underpins how critical the role of the

summary statistic is in LFI, and motivates researching effective approaches to summary statistic

design.

2.3. Neural Networks for Learning Summary Statistics
Traditionally, machine learning and Bayesian inference techniques for SHM have relied on

hand-crafted summary statistics based on expert knowledge. Common examples include modal

features like natural frequencies, and damping ratios [41], as well as spectral features such as

power spectral density [41, 42]. Time-domain features such as peak-to-peak values are also

widely used due to their simplicity and ability to indicate anomalies [41, 43]. These features are

sensitive to structural changes, and therefore useful for damage detection. While interpretable

and grounded in engineering principles, such features often require expert tuning and may not

generalize well to new structures or damage scenarios.

Unsupervised learning methods offer a data-driven alternative by automatically extracting

low-dimensional features without prior knowledge. Principal Component Analysis (PCA) is

a popular technique that captures dominant variance directions by projecting data onto the

leading eigenvectors of its covariance matrix [44, 45]. While effective, PCA features lack the
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interpretability of hand-crafted statistics, such as mode shapes or damping ratios, which are

tied to physical behavior. This highlights a trade-off between interpretability and generalization.

Additionally, unsupervised methods often rely on assumptions like linearity or stationarity,

which may not hold in practice. Nevertheless, they can reveal hidden structures not captured by

manually constructed summary statistics.

An alternative to hand-crafted and unsupervised summary statistics is a third class called learned

summary statistics, which are features that are extracted by machine learning models that have

been trained end-to-end for specific tasks. As a matter if fact, using neural networks to learn

summary statistics is one of the aspects that makes BayesFlow especially effective. As explained

in section 2.1, the summary network learns to generate informative summaries directly from data

during training.

A key feature of these learned summaries is that they are task-aware, unlike hand-crafted or

unsupervised features. This is a consequence of the joint optimization of the summary network

and the inference network, specifically with the goal of improving posterior estimation. The joint

optimization ensures that the extracted features are highly relevant for the inference objective,

often outperforming fixed or unsupervised features [29].

Building on the concept of learned summary statistics, we arrive at the use of physics-informed
summary neural networks. The method proposed in this work is to incorporate prior physical

knowledge into the architecture of the summary network, allowing the model to learn task

specific summary statistics more efficiently. The concepts from PIML that are relevant for the

methodology developed in this work are explained in more detail in section 2.4.

2.4. Physics-Informed Machine Learning
PIML is a field of research that focuses on combining data-driven machine learning models with

physical principles. In PIML, known relationships, symmetries or conservations are incorporated

into the machine learning process, enabling models to capture true system behavior more

efficiently than black-box approaches can [34, 46, 47, 48]. For this reason, PIML methods are

particularly useful in settings where training data is scarce or expensive to generate, as is the case

in simulation based SHM. A common way to categorize PIML approaches is by where the physics

information enters the model. Three biases have been outlined for this purpose: observational

bias (physics enters via the data), inductive bias (physics enters via the network architecture),

and learning bias (physics enters via the training or loss function) [34]. Subsections 2.4.1, 2.4.3,

and 2.4.2 discuss each type of bias in more detail.

2.4.1. Observational Bias
Observational biases are the most fundamental manner of introducing physics into the machine

learning process. As a matter of fact, observational biases form the base of what makes machine

learning possible in general. As machine learning models learn from training data, the data

must obey the underlying laws of physics that the model is aiming to understand. If a dataset

would not reflect the relevant physics, a machine learning model would never be able to learn the

correct relationships from the data. In other words, training on physics-informed data facilitates

the learning of physically correct behavior [34, 46, 48]. Building further on this principle, in some

cases it is possible to augment existing data to expand the training set. This can be done as long

as the transformations applied to the data are consistent with physical laws. For example, in

fluid dynamics, flow fields can be rotated or reflected when symmetry exists in the governing

equations. In image classification, a picture of an animal that is to be classified can be mirrored

without altering the fact that the image contains the same type of animal. Both of these examples

illustrate how data augmentation techniques can help to expand the size of a training dataset

without violating any physics, or requiring the acquisition of completely new data.
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2.4.2. Learning Bias
Learning biases focus on incorporating physics knowledge during the training process. This

is typically done through the loss function, which can include terms that penalize behaviour

that deviates from the laws of physics, or through constraints that explicitly favor convergence

towards solutions that follow physics [34, 46]. A classic example is the physics-informed neural

network, in which the loss function is augmented with a term measuring the residual of a partial

differential equation [49]. The network is trained to not only fit the available data, but also to

minimize the violation of the governing differential equations. Any physics-based penalty or

constraint added to the loss function thus acts as a bias.

2.4.3. Inductive Bias
Inductive bias refers to encoding physical knowledge directly into the model’s architecture [34,

46]. Instead of relying solely on data-driven learning or the enforcing of physical consistency

through loss penalties, the main principle of inductive bias is to ensure the model architecture

itself is designed to inherently respect and leverage any physical relationships. For example, if a

system exhibits spatial invariance, architectures like Convolutional Neural Networks (CNNs)

are preferred, as their local receptive fields and shared weights inherently assume translational

symmetry. If a system evolves over time, architectures like Recurrent Neural Networks (RNNs) or

1D Convolutional Networks are used to reflect causal, sequential dependencies. If relationships

are structured as networks of interactions, GNNs are typically used to encode the topological

structure directly into the model architecture [34]. The key idea is that selecting a model

architecture with a suitable inductive bias effectively integrates physical knowledge directly into

the learning process, even before any data is seen.

2.4.4. Physics-Informed Machine Learning within BayesFlow
After discussing a number of different strategies to inject physical knowledge into machine

learning processes, the logical next step is to determine how to apply PIML concepts within

the BayesFlow framework. Observational biases are inherently present in BayesFlow, as the use

of a simulator already ensures that the training data is consistent with the process generating

it. Learning biases are difficult to introduce into the inference network. This is mainly due to

the fact that during the training phase, the inference network is not optimized to approximate

a physical quantity, but rather to ensure that a latent variable follows a Gaussian distribution.

Therefore, there are no physical relationships to penalize. Similarly, the output of the summary

network is not a physical quantity or known variable, meaning there are no physical constraints

that can be placed upon the summary statistics.

Therefore, the most logical method is to use inductive biases, informing the architectural designs

of the neural networks based on their input data. There are two components in which knowledge

of the physical system could theoretically be integrated using inductive biases: the summary

network and the inference network. However, using inductive biases to inform the inference

network is difficult. The inference network takes the summary vector as an input, which is already

an abstract representation. There is little physical structure left in the input for the inference

network to exploit directly. Furthermore, the inference network has a specific architecture using

normalizing flows that cannot be altered easily, and it must support invertibility. Therefore,

embedding inductive biases here is both difficult and less meaningful.

In contrast, the summary network directly processes physical data, and is therefore the natural

component to include architectural choices that reflect the structure of the physical system.

Designing the summary network architecture in such a way that known symmetries, conservation

laws, or other relationships in the data are leveraged immediately biases the feature extraction

toward physically meaningful representation. In combination with the joint optimization of the

summary and inference networks used in BayesFlow, injecting inductive biases into the summary

network should ensure suitable features for downstream inference.



3
Methodology

The strategy proposed in this work is to inform the design of the summary network based on the

characteristics of SHM data. Therefore, it is essential to first clearly define exactly what prior

physical knowledge is available, and which specific characteristics we intend to leverage. The key

properties that have been identified are sequentiality and spatial connectivity. Based on these

characteristics, a Graph Summary Neural Network (GSNN) is designed, which incorporates both

characteristics into its model architecture. Additionally, a method is developed that allows for

the qualitative comparison of models when performing BayesFlow-based damage detection.

3.1. Leveraging the Characteristics of Health Monitoring Data
This section introduces the format of SHM data and explains the concept of influence lines.

Subsequently, the key characteristics of influence line based SHM data are discussed. The primary

characteristics that have been identified are sequential structure within each influence line and

spatial connectivity between influence lines, i.e. sensor locations.

3.1.1. Structural Health Monitoring using Influence Lines
In the domain of SHM, two commonly used sensor types are displacement sensors and axial

force sensors. The case study investigated in Chapter 4 also assumes a structure equipped with

these sensor types. However, the characteristics described in this thesis generalize to any sensor

type that can be used to measure a structural response at a specific location on the structure.

A tool that allows for the systematical interpretation of the measurements generated by these

types of sensors is the influence line. An influence line characterizes how a structural quantity

varies at a particular point on the structure as a function of the position of a load moving along

the structure. As they are well suited to represent the effects of moving vehicles, they are often

used in settings such as bridges. In contrast to the time-domain or frequency-domain plots

control engineers may be used to, influence lines are plotted with respect to the load position,

linking the spatial position of a load to a structural response. The influence line of sensor 𝑠 is

represented as

𝑥𝑠(𝑛) = [𝑥𝑠(1), 𝑥𝑠(2) . . . , 𝑥𝑠(𝑁)] ∈ R𝑁 , (3.1)

where 𝑥𝑠 denotes the steady state response measured by sensor 𝑠, and 𝑁 denotes the number of

positions along the structure at which a load is applied. Examples can be found in Figures C.1a

and C.1b in Appendix D. As multiple sensors are typically installed to monitor a structure, the

data can be formatted into a matrix 𝑥 ∈ R𝑆×𝑁 , where each row represents the influence line of

sensor 𝑠 = 1, . . . , 𝑆, made up of measurements collected at 𝑛 = 1, . . . , 𝑁 load positions.
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A collection of influence lines contains valuable information, and captures more than just the

local structural response at each specific sensor location. A collection of influence lines also

reflects the global behavior of a structure as an interconnected system. When a load is applied,

its effects propagate throughout the structure, meaning that even distant sensors can register

a response. A collection of influence lines contains information on how the entire structure

redistributes loads applied at different positions through its supports, spans, and joints. As

influence lines encode both local stiffness characteristics and broader system-level interactions,

they are a powerful tool for assessing the health of a structure.

3.1.2. Characteristics of Structural Health Monitoring Data
A collection of influence lines exhibits two key properties: sequentiality and spatial correlation,

rooted in the inherent definition of an influence line and the geometry of the structure. Each

influence line reflects spatial progression, with the index 𝑛 corresponding to the position at

which a load is applied. Permuting the sequence destroys its physical meaning, making the

data inherently sequential. Influence lines exhibit local continuity and smoothness due to the

structure’s physical continuity. Deviations, such as sharp peaks or discontinuities, can indicate

damage, highlighting the importance of preserving sequential structure during analysis.

A collection of influence lines also contains spatial correlations between the sensors (i.e. between

the rows of a data matrix). Sensor readings are influenced by the geometry of the structure,

with sensors on the same load path or in close proximity showing correlated responses. This is

especially true in truss systems, where mechanical interactions clearly follow structural topology.

The data is thus jointly structured: each sensor provides a sequence, and these sequences are

spatially arranged according to the structure’s topology. This dual structure calls for a summary

network that can incorporate both sequential and spatial dependencies.

3.1.3. Representing Sensor Networks as Graphs
The relationship between the sensors naturally lends itself to graph based analysis. A graph

𝒢 = (𝒱 ,ℰ) can be represented using a set of nodes, denoted as 𝒱 , and a set of edges, denoted as

ℰ. A graph can be efficiently captured by its adjacency matrix, denoted as 𝐴. For an undirected

graph, each entry 𝐴𝑖 , 𝑗 is 1 if there is an edge between nodes 𝑖 and 𝑗, and 0 otherwise. In addition

to the adjacency matrix, a graph can also be described using the degree matrix 𝐷, which is a

diagonal matrix where each entry 𝐷𝑖𝑖 equals the degree (i.e., number of connections) of node 𝑖.
For example, the graph shown in Figure 3.1 has adjacency matrix 𝐴 and degree matrix 𝐷:

1

2

3

4

Graph 𝐺

𝐴 =


0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0


Adjacency matrix 𝐴

𝐷 =


3 0 0 0

0 2 0 0

0 0 3 0

0 0 0 2


Degree matrix 𝐷

Figure 3.1: Graph 𝐺 and its corresponding adjacency matrix 𝐴 and degree matrix 𝐷.

An essential aspect of this work is to make use of the fact that structures can be intuitively cast

into a graph, by interpreting sensors as graph nodes and the structural elements connecting the

sensors as edges [50]. The proposed method is to introduce an inductive bias into the summary

network that leverages this graph structure. Incorporating the information about the spatial

connectivity of the sensors should allow the machine learning model to reason more effectively

about how changes in one part of the structure may impact connected regions.
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3.2. Design of a Graph Summary Neural Network
The summary network designed to leverage the physics described in subsection 3.1.2 is a GSNN.

Following the graph notation provided in subsection 3.1.3, a graph 𝒢 = (𝒱 ,ℰ) is constructed for

a given sensor network, where 𝒱 = {𝑣1 , . . . , 𝑣𝑆}, meaning each node corresponds to a sensor

𝑠, and ℰ is chosen so that sensors connected by structural elements in real-life are connected

by edges in the graph. This graph is incorporated in the model architecture, introducing an

inductive bias based on the relationships between sensors.

The GSNN uses a message-passing layer. Each node in the graph is assigned a feature vector,

which is initially the influence line of the sensor corresponding to that node. Note that instead of

using the raw influence line, a preprocessed feature representation of the influence line could also

be used as the feature vector. Each node updates its feature vector by aggregating information

from its neighbors, and integrating this with its own feature vector. The update for node 𝑣𝑠 is

ℎ𝑣𝑠 = 𝜎
©­«𝑊self𝑥𝑣𝑠 +

1

|𝒩 (𝑣𝑠)|
∑

𝑗∈𝒩(𝑣𝑠 )
𝑊msg𝑥𝑣 𝑗 + 𝑏

ª®¬ , (3.2)

where ℎ𝑣𝑠 ∈ R𝐻 is the updated feature vector of node 𝑣𝑠 . Furthermore, 𝑊self ,𝑊msg ∈ R𝑁×𝐻

denote the learnable weight matrices for self and neighbor contributions, 𝑥𝑣𝑠 ∈ R𝑁 denotes the

feature vector of node 𝑣𝑠 , 𝑥𝑣 𝑗 ∈ R𝑁 is the feature vector of node 𝑗, 𝑏 ∈ R𝐻 is a learnable bias

vector, 𝐻 is the message-passing output dimension, and 𝜎(·) is a non-linear activation function.

Equation 3.2 is applied to each node of the graph in a single loop, with the resulting feature

vectors of each node becoming rows of the output of the message passing layer, i.e.,

ℎMPL =
[
ℎ⊤𝑣1

ℎ⊤𝑣2

. . . ℎ⊤𝑣𝑆
]
∈ R𝑆×𝐻 . (3.3)

This loop-based approach computes the mean of transformed neighbor features per node

sequentially. While flexible and easy to understand, it can become computationally inefficient for

larger sensor networks, as each node’s update is handled one by one. To improve computational

efficiency the same operation can be reformulated using matrix multiplication and vectorized

tensor operations. To achieve this, the sensor connectivity is encoded into a row-normalized

adjacency matrix (excluding self-loops) 𝐴̃ ∈ R𝑆×𝑆, constructed according to

𝐴̃𝑖 𝑗 =

{
1

|𝒩 (𝑖)| if 𝑗 ∈ 𝒩(𝑖)
0 otherwise,

(3.4)

Given an input 𝑥 ∈ R𝑆×𝑁 , in which each row corresponds to an influence line, the aggregated

neighbor messages can be computed in a single operation according to

ℎagg = 𝐴̃(𝑥𝑊agg) ∈ R𝑆×𝐻 (3.5)

The self-message is computed in parallel as

ℎself = 𝑥𝑊self ∈ R𝑆×𝐻 , (3.6)

The final update is then computed as

ℎMPL = 𝜎
(
ℎself + ℎagg + 𝑏

)
∈ R𝑆×𝐻 (3.7)

Multiple message passing layers can be used sequentially to propagate the information from

each node throughout the network. To transform the output of the message passing layer into

a fixed-size summary vector, the updated sensor features are flattened across the sensor and

feature dimensions. A flattening function is defined, transforming a matrix into a vector, i.e.

𝑓vec : R𝑚×𝑛 → R𝑚𝑛 (3.8)
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The flattening function is applied to the output of the message passing layers

𝑓vec(ℎMPL) = ℎflat ∈ R𝑆𝐻 , (3.9)

resulting in a vector containing the concatenated feature representations of each node. This vector

is then passed through a fully connected layer, called the output layer, to reduce the dimension

of the vector to the desired size of the summary vector according to

𝑥̃ = 𝜎(𝑊outℎflat + 𝑏out) ∈ R𝑑𝑠 , (3.10)

where𝑊out ∈ R𝑑𝑠×𝑆𝐻 is a matrix containing learnable weights, 𝑏out ∈ R𝑑𝑠 is a vector containing

learnable biases, and 𝜎(·) is a non-linear activation function.

3.3. Evaluating the Quality of a Posterior
In addition to the GSNN, a method has been developed that facilitates quantitative comparison

between BayesFlow models with different summary networks. This is important, as the

performance of the GSNN should be evaluated against baseline neural networks across varying

training dataset sizes to determine whether it is indeed able to learn more efficiently.

The first step in comparing model performances is to define a measure that reflects the quality of

the model output. In other words, defining what makes one posterior more suitable than another.

A posterior represents the updated belief about a parameter after observing data, combining

prior information and observed evidence. Therefore, a suitable posterior is not necessarily one

that is as certain as possible, but rather one that appropriately reflects the true uncertainty in

the inference problem. For example, when data is scarce or noisy, the posterior should express

high uncertainty, rather than overconfident estimates. However, in this work, predicted damage

parameters are compared to ground truth values, which are known exactly. As there is no

uncertainty, the ground truth is a deterministic value rather than a distribution.

When comparing to a deterministic ground truth, a suitable posterior has a mean that is close

to the ground truth and a standard deviation that is as low as possible. To illustrate this, 3 toy

models are compared. In the example, the ground truth of the parameter that is to be estimated

is 0.8. Figure 3.2 shows the posterior distribution for the parameter computed using model 1. As

the mean of the posterior distribution is far from the ground truth, the estimate is inaccurate.

In figure 3.4 the output of model 2 is shown. The mean of the posterior distribution is close to

the ground truth value, but the standard deviation is high. This indicates that the estimate is

accurate, but uncertain. In Figure 3.6, the output of model 3 is shown. The mean of the posterior

distribution is close to the ground truth value, and the standard deviation is low, indicating the

resulting estimate is both accurate and certain.

3.3.1. The Continuous Ranked Probability Score
The Continuous Ranked Probability Score (CRPS) is used to quantify the quality of the posterior

when comparing to a deterministic value. CRPS is a scoring rule that is often used to evaluate the

accuracy of probabilistic forecasts. It measures the difference between the predicted cumulative

distribution function (CDF) and the CDF of the ground truth posterior. A lower CRPS value

therefore indicates a better match between the predicted distribution and the ground truth. The

CRPS is defined as

CRPS(𝑝(𝜃|𝑥obs), 𝜃∗) =
∫ ∞

−∞
(CDF(𝜃) − ℋ{𝜃 ≥ 𝜃∗})2 d𝜃, (3.11)

where 𝜃∗
is the ground truth, CDF(𝜃) =

∫ 𝜃

−∞ 𝑝(𝑡|𝑥obs)d𝑡 is the CDF of the posterior 𝑝(𝜃|𝑥obs),
and ℋ{𝜃 ≥ 𝜃∗} is the step function centered at 𝜃∗

, which is 0 when 𝜃 < 𝜃∗
and 1 otherwise.
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Figure 3.2: PDF of the posterior computed using model 1 vs ground truth. The mean of the posterior is far from the

ground truth, meaning the estimate is inaccurate.
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Figure 3.3: Due to the offset of the mean of the posterior, the area between the CDF and ground truth step function is

large, resulting in a large CRPS.

Figure 3.4: PDF of the posterior computed using model 2 vs ground truth. The mean of the posterior distribution is close

to the ground truth value, but the standard deviation is large. The estimate is accurate, but uncertain.
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Figure 3.5: The offset of the mean of the posterior is small. However, due to the large standard deviation, the slope of the

CDF is low, increasing the area between the CDF and ground truth step function, resulting in a larger CRPS.
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Figure 3.6: PDF of the posterior computed using model 3 vs ground truth. The mean of the posterior distribution is close

to the ground truth value, and the standard deviation is low. The estimate is accurate and certain.
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Figure 3.7: The offset of the mean of the posterior is small. Due to the low standard deviation, the slope of the CDF is

steep, decreasing the area between the CDF and ground truth step function, resulting in a lower CRPS.

When the predictive distribution is represented via 𝑁 samples, denoted as {𝜃𝑖}𝑁𝑖=1
∼ CDF(𝜃),

instead of closed-form distributions, the CRPS can be approximated as

CRPS({𝜃𝑖}, 𝜃∗) = 1

𝑁

𝑁∑
𝑖=1

|𝜃𝑖 − 𝜃∗| − 1

2𝑁2

𝑁∑
𝑖=1

𝑁∑
𝑗=1

��𝜃𝑖 − 𝜃𝑗
��

(3.12)

The same example used in subsection 3.3.1 is used to demonstrate how the CRPS penalizes

inaccurate posteriors when comparing to a deterministic ground truth. Figure 3.3 shows the

CRPS computed for the posterior generated using model 1. Due to the offset of the mean of the

posterior, the area between the CDF and ground truth step function is large, resulting in a large

CRPS. Figure 3.5 shows the CRPS computed for the posterior generated using model 2. The offset

of the mean of the posterior is small. However, due to the large standard deviation, the slope of

the CDF is low, increasing the area between the CDF and ground truth step function, resulting in

a larger CRPS. Figure 3.7 shows the CRPS computed for the posterior generated using model 3.

The offset of the mean of the posterior is small. Due to the low standard deviation, the slope of

the CDF is steep, decreasing the area between the CDF and ground truth step function, resulting

in a lower CRPS.

3.3.2. Evaluating a Model
As the CRPS is a metric for one posterior, it only conveys how well the damage parameter of one
element within the structure is estimated. However, the goal is to create a metric that reflects

the accuracy of the model when estimating an entire parameter vector. Therefore, a weighted

average of the CRPS of each estimated damage parameters is used. As the damage parameter

of the damaged bar is the parameter we are most interested in, the CRPS of this parameter is

awarded a heavier weight. However, it is still important to include the CRPS of the other bars to

reflect the model’s ability to correctly identify undamaged elements and avoid false positives,

ensuring that the posterior is not only accurate in detecting damage but also well-calibrated

across the entire parameter space.
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An instance of a ground truth parameter vector, together with its corresponding simulated

structural response is referred to as a scenario. For each scenario, a weighted score is computed,

which reflects how well the model recovers the true damage parameters based on the given

observation. The weighted score 𝛼 of scenario 𝑗 is calculated as

𝛼(𝑗) =
𝑤𝑖=𝑖

dam
CRPS

(𝑗)
𝑖=𝑖

dam

+∑
𝑖≠𝑖

dam

𝑤𝑖≠𝑖
dam

CRPS

(𝑗)
𝑖∑

𝑤
, (3.13)

where 𝑤𝑖 denotes the weight for the CRPS of element 𝑖. The performance of an entire model,

denoted as 𝛽, given a set of 𝐽 scenarios, is computed by averaging 𝛼(𝑗)
over the scenarios, i.e.

𝛽 =
1

𝐽

𝐽∑
𝑗=1

𝛼(𝑗) , (3.14)

3.4. Baseline Summary Networks
The GSNN is compared against several baseline summary network architectures. These architec-

tures incrementally incorporate more knowledge about the physical system.

The first baseline summary network is a fully connected, dense feedforward neural network. This

architecture does not make use of any inductive bias, meaning it does not exploit any spatial or

sequential structure of the sensor data. Instead, it treats the input data as a flat array of features.

While such a network can, in principle, approximate any mapping given sufficient capacity and

data, it relies entirely on the learning process to extract meaningful patterns from raw values. As

a result, these neural networks often require significantly more training data to reach competitive

performance, making them a useful lower bound for comparison.

The second baseline network is referred to as a sequential network. It takes into account the

sequential nature of the influence lines, but does not leverage any spatial structure between the

sensors. The network applies 1D convolutions to each sensor’s influence line independently to

extract local sequential features, and then uses an LSTM followed by a dense layer to aggregate

these features into a fixed-length summary vector. The processing is sensor-wise and independent,

meaning that potential correlations or interactions between sensors are not modeled explicitly.

This architecture is based on an existing summary network in the BayesFlow package, and was

previously used by researchers at TNO [9] for similar BayesFlow-based SHM applications. Its

performance therefore serves as a reference for methods that exploit sequential dynamics but no

spatial relationships.

The third baseline is the 2D-CNN summary network, which processes the influence line data as if

it were a grayscale image, where the first axis corresponds to the sensor index and the second to

the load application location. The data is passed through a series of convolutional blocks that

capture local patterns across both axes, followed by a global average pooling layer to produce

the summary vector. This allows the network to model limited spatial interactions between

neighboring sensors, but only through a predefined ordering in the sensor dimension. While

this ordering can be chosen to reflect physical relationships, this spatial modeling is much less

representative than when using an explicit graph.

All baseline summary networks are implemented to be fully compatible with the BayesFlow

framework, ensuring they can be used interchangeably within the same amortized Bayesian

inference pipeline. They process the same raw influence line data and are configured to output

summary vectors of the same dimensionality, denoted as 𝑑𝑠 . Fixing this dimension ensures that

differences in performance can be attributed to architectural choices. More mathematical details

about each of the baseline summary networks can be found in Appendix G.
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Experiments and Simulations

The performance of the GSNN is compared to benchmark summary networks, which progressively

incorporate more physics knowledge into their design. The comparison is conducted through a

case study in which BayesFlow-based SHM is applied to three different synthetic idealizations of

a model bridge. For each idealization, performance was evaluated across varying training data

sizes to highlight the difference in training efficiency between the machine learning models.

4.1. System Description
The case study is based on a small-scale bridge, constructed in 2024 by Bundesanstalt für

Materialforschung und -prüfung (BAM) and TNO, shown in Figure 4.1. The model consists

of ABS plastic elements, with an aluminum core anchoring steel cables for vertical stability. A

flexible roadbed on top of the plastic elements is used to guide a self-driving car across the bridge.

Figure 4.1: Small scale model of a cable-stayed truss bridge, constructed in 2024 by BAM and TNO [51].
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The model represents a cable-stayed truss bridge. This entails that the bridge deck is supported by

a truss, which is a framework composed of straight elements connected at nodes to form triangular

units. Trusses ensure that loads are effectively distributed through axial forces in individual

members. As a result, the structure can carry significant loads with relatively little material.

Additionally, the deck is supported by inclined cables anchored to towers. The small-scale bridge

is equipped with both vertical displacement sensors and axial cable force sensors. Damage in

the structure can be emulated by replacing the ABS elements with lower-stiffness variants to

simulate a reduction in elastic modulus. In the case study covered in this work, the goal is to

detect damage in idealized versions of this small-scale bridge.

4.2. Experiment Setup
Damage detection in the idealized models is performed by estimating the damage parameters

of certain truss elements, as described in section 1.2. To verify if the GSNN does indeed learn

more efficiently, model performance was evaluated across varying training data sizes for each

of the baseline models and the GSNN. This section outlines the setup and procedure of these

experiments.

4.2.1. Idealization Scenarios
Idealization 1: The first idealization is a two-dimensional simplification of the bridge, created

using the structure’s transversal symmetry. The mesh of the idealization is shown in Figure 4.2,

consisting of 45 bars and 4 cables arranged in a Pratt truss configuration. It is assumed that all 22

unconstrained nodes, depicted in red, are equipped with vertical displacement sensors, and all 4

cables are equipped with axial force sensors, yielding a total of 𝑆 = 26 sensors. An important

addition is the assumptions made in this idealization. It is assumed that only bars in the bottom

chord (bars 12 through 21) are able to be damaged, and at most one bar can be damaged at a time.

Figure 4.2: Mesh of the first and second idealizations of the small-scale model bridge.

Idealization 2: The second idealization uses the same mesh as the first idealization, displayed in

Figure 4.2. The key difference lies in the assumptions. In this idealization, it is assumed bars in

both the top and bottom chords (bars 0 through 21) are able to be damaged. This increases the

parameter space significantly, as 12 additional damage parameters are introduced. Again, it is

assumed that only one bar can be damaged at a time.
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Idealization 3: The third idealization focuses on a more complex, three-dimensional mesh,

displayed in Figure 4.3. The mesh consists of 138 bars and 8 cables. It is assumed that all

44 unconstrained nodes are equipped with vertical displacement sensors, and all 8 cables are

equipped with axial force sensors, yielding a total of 𝑆 = 52 sensors. For this idealization, the

assumption is made that all bars in the bottom chord of the bridge (bars 12 through 21 and 99

through 108) are able to be damaged, and at most one bar can be damaged simultaneously.

Figure 4.3: Mesh of the third idealization of the small-scale model bridge.

4.2.2. Forward Model
A FEM, able to compute the reactions of a structure for a given parameter vector and load, is

used as the simulator. The output of the FEM is used to construct an influence line for each

sensor present in the simplification of the bridge. An example output for the 2D mesh is plotted

in Figures C.1a and C.1b. More information about the working principles and validation process

of the FEM can be found in Appendix B.

4.2.3. Prior Definitions
For each idealization, the parameter vector 𝜃 includes the base Young’s modulus of the bars,

denoted as 𝐸bar, and the base Young’s modulus of the cables, denoted as 𝐸cable. Additionally,

damage parameters 𝜔 are added to the prior for a selected subset of the bars, denoted as ℬ. To

define which bars are added to ℬ, the bar elements in truss are indexed using 𝑖, corresponding

to the numeration displayed in Figure 4.2 for idealizations 1 and 2, and corresponding to Figure

4.3 for idealization 3. The set of damage parameters can thus be defined as

𝜔 = {𝜔𝑖} ∀𝑖 ∈ ℬ , (4.1)

where 𝜔𝑖 ∈ [0, 1] denotes the relative stiffness reduction of bar 𝑖. The damage parameters reduce

the base stiffness of the bar elements according to

𝐸𝑖 = 𝐸bar · (1 − 𝜔𝑖), ∀𝑖 ∈ ℬ (4.2)
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To constrain the inference problem, it is assumed that only one bar in the damageable set can

be damaged bar at a time. That is, the damaged bar index is drawn from a uniform discrete

distribution over ℬ, i.e.

𝑖dam ∼ 𝒰(ℬ), (4.3)

where 𝑖dam is the index of the damaged bar, and 𝒰(ℬ) is the uniform distribution over the

elements of ℬ. The damage severity of bar 𝑖damaged is drawn from a uniform prior, i.e.

𝜔𝑖
dam

∼ 𝒰([𝜔min, dam , 𝜔max, dam]), (4.4)

where, 𝜔min, dam is the lower bound of the damage parameter of the damaged bar, and 𝜔max, dam

is the upper bound of the damage parameter of the damaged bar. The damage parameters of all

other bars are drawn from a narrow triangular distribution centered at 0, i.e.

𝜔𝑖 ∼ 𝒯 (𝜔min, undam , 𝜇, 𝜔max, undam), ∀𝑖 ≠ 𝑖dam (4.5)

where 𝒯 denotes a triangular distribution, 𝜔min, undam denotes the lower bound of the damage

parameter of an undamaged bar, 𝜇 denotes the center of the triangular distribution, 𝜔max, undam

denotes the upper bound of the damage parameter of an undamaged bar.

Idealization 1: In this case, the 10 bars along the bridge bottom chord are assumed to be

damageable, i.e.

ℬ = {12, 13, . . . , 21}, (4.6)

The choice for this relatively small set is made in order to constrain the parameter space and keep

the inference process relatively simple for demonstration purposes. This results in a prior built

up of 12 parameters in total: 2 elastic moduli and 10 damage parameters, of which only one is

active.

Idealization 2: In this case, the bars along both the top and bottom chords are assumed to be

damageable, i.e.

ℬ = {0, 1, . . . , 21}, (4.7)

This results in a prior built up of 24 parameters in total: 2 elastic moduli and 22 damage

parameters, of which only one is active.

Idealization 3: In this case, the bars along both the bottom chord of the 3D mesh are assumed to

be damageable, i.e.

ℬ = {12, . . . , 21} ∪ {99, . . . , 108}, (4.8)

This results in a prior built up of 22 parameters in total: 2 elastic moduli and 20 damage

parameters, of which only one is active. Table 4.1 summarizes the prior distributions for each of

the idealizations.

Table 4.1: Prior distributions of model parameters for the three idealizations

Parameter Unit Distribution Hyperparameters Idealization

𝐸bar GPa Normal (𝜇, 𝜎2
) = (2.3, 0.46) 1–3

𝐸cable GPa Normal (𝜇, 𝜎2
) = (210, 20) 1–3

𝜔𝑖 , 𝑖 ≠ 𝑖dam [-] Triangular (lb, 𝜇, ub) = (-0.1, 0, 0.1) 1–3

𝜔𝑖 , 𝑖 = 𝑖dam [-] Uniform (lb, ub) = (-0.1, 1) 1–3

𝑖dam [-] Discrete Uniform (lb, ub) = (12, 21) 1

𝑖dam [-] Discrete Uniform (lb, ub) = (0, 21) 2

𝑖dam [-] Discrete Uniform (lb, ub) = (12, 21) ∪ (99, 108) 3
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4.2.4. Generation of Training Data
Synthetic training data is generated using the simulator, i.e. the FEM. For each idealization,

samples of the parameter vector are drawn from their respective prior. For each sampled

parameter vector, the influence lines of all 𝑆 sensors are computed by applying identical vertical

loads at 𝑁 equidistant positions along the deck of the bridge, resulting in a data matrix

𝑥FEM = ℱ (𝜃) ∈ R𝑆×𝑁 (4.9)

The clean FEM output for sensor is then corrupted with noise to simulate measurement uncertainty.

Different noise levels are used for cable force and displacement sensors to reflect the higher

sensitivity of the displacement sensors. For cable force sensors, noise is drawn from a Gaussian

distribution with zero mean and variance 𝜎2

force
, i.e.

𝜖force ∼ 𝒩(0, 𝜎2

force
) (4.10)

For vertical displacement sensors, noise is drawn from a different Gaussian distribution, again

with zero mean but this time with variance 𝜎2

disp
, i.e.

𝜖disp ∼ 𝒩(0, 𝜎2

disp
) (4.11)

Each data matrix, augmented with noise, is also referred to as a simulation. Before being fed to

the machine learning models, the training simulations are normalized by subtracting the mean

and dividing by the standard deviation per variable independently.

4.2.5. Network Settings
The inference network is kept identical across all comparisons. A coupling flow is chosen with

the same number of layers as parameters to be estimated, as prescribed in [29]. As the goal is to

demonstrate the training efficiency of the GSNN, BayesFlow models are created using several

different summary networks as baselines, allowing for comparison. These summary networks

include a Dense Feedforward Neural Network, a 2D-CNN, and a Sequence Network. Each of

these summary networks is discussed in more detail in section Appendix G. When using a GSNN,

the connectivity graph is constructed from the structure geometry as explained in section 3.1.3.

An illustration of the sensor connectivity graph for the first and second idealizations is depicted

in Figure 4.4. It is clear that sensors neighboring in the mesh become neighbors in the graph.

Figure 4.4: Connectivity graph of the mesh in Figure 4.2.
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An illustration of the sensor connectivity graph for the third idealization is depicted in Figure 4.5.

Again, sensors neighboring in the mesh become neighbors in the graph. The hyperparameters of

all networks can be found in Appendix H.

Figure 4.5: Connectivity graph of the mesh in Figure 4.3.

4.2.6. Training Process
The amount of training data available to the model is taken as a dependent variable in this

work, and is therefore incrementally increased between models. All other aspects of the training

process are kept equal. The largest number of training simulations used per comparison is

determined based on the performance of the models, where the goal is to ensure each model

has the opportunity to finish learning. All models are trained for 50 epochs, using a batch size

of 32 training simulations, the Adam optimizer with a learning rate of 1e-4, and the same 200

validation simulations.

4.2.7. Testing Process
The performance of each model is verified using a set of ground truth scenarios. The ground

truth scenarios that are used include a completely undamaged scenario (𝜔𝑖 = 0, ∀𝑖), and one

scenario per damageable bar, in which the damaged bar 𝑖 has damage parameter 𝜔𝑖
dam

= 0.8
and all other bars are undamaged. Example influence lines generated for these ground truth

parameter vectors for the first idealization can be found in Appendix D, Figures D.1a and D.1b.

The weights of the CRPS scores of undamaged bars and the damaged bar used to determine the

model performance score 𝛽 are 0.1 and 0.9 respectively.
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Results

This chapter evaluates the performance of the GSNN against the baseline models across the

three idealizations of increasing complexity described in Chapter 4. The primary metrics for

comparison are data efficiency, meaning the number of training simulations required to achieve

the bound on performance, and final model accuracy, quantified by the model score at the

performance bound, where a lower score indicates a better performance. The results, summarized

in Table 5.1, are discussed separately for each idealization.

5.1. Idealization 1: 2D Model, Bottom Chord
We begin by presenting the results for the simplest idealization, i.e. the 2D mesh in which only

the bottom bridge chord is assumed to be damageable. Figure 5.1 shows the model score as a

function of the training dataset size for each different summary network. Exponential curves

have been fitted to the data points to highlight the asymptotic convergence of the model score.
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Figure 5.1: Size of training dataset vs performance with fitted exponential decay curves. The GSNN learns most

efficiently, followed by the 2D-CNN, Dense Network and finally the Sequential Network.
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The Sequential Network, which was used in previous work on BayesFlow based SHM [9], requires

the most simulations (≈80,000) to reach peak performance. The Dense Network stabilizes after

≈40,000 simulations. The 2D-CNN converges after ≈30,000 simulations. Notably, the GSNN

reaches its final performance after just ≈20,000 simulations. This indicates the GSNN indeed

requires fewer (75% less) training simulations in comparison to the original Sequential Network.

Another notable result is the fact that the performance of the 2D-CNN and Dense Networks

plateaus at a higher model score than the Sequence Network and GSNN. After analyzing the

posteriors, it is evident that the difference in performance score is caused by the fact that the

2D-CNN and Dense Networks produce posteriors in which the uncertainty is slightly higher

than in the posteriors produced by the Sequence Network and GSNN.

To show how model performance differs at the point where adding more data provides little

further benefit to the GSNN, Figures 5.2, 5.3, 5.4, and 5.5 show the posteriors produced by each

model trained with 10,000 simulations for a scenario in which bar 𝑖 = 15 is damaged.
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Figure 5.2: Posterior generated using a Dense summary network with 10,000 training simulations.
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Figure 5.3: Posterior generated using a Sequential summary network with 10,000 training simulations.
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Figure 5.4: Posterior generated using a 2D-CNN with 10,000 training simulations.
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Figure 5.5: Posterior generated using a GSNN with 10,000 training simulations.

Figure 5.5 indicates that the GSNN is already able to localize and quantify the damage relatively

accurately, including a high level of certainty. In contrast, the posterior generated by the Sequential

Network, depicted in Figure 5.3 is very inaccurate and clearly indicates the model does not grasp

the relationship between damage parameters and structural responses. Although the posterior

indicates the model is aware there is damage in the vicinity of bars 12, 13, 14 and 15, it is not

able to confidently identify specifically which bar has been damaged or to what extent. The

performance of the Dense Network is slightly better, as depicted in Figure 5.2. The model is

only unsure whether the damage is in bar 14 or 15. Figure 5.4 shows that the 2D-CNN is able to

suitably identify the bar with damage, but is less certain about its prediction than the GSNN.

5.2. Idealization 2: 2D Model, Expanded Parameter Space
Figure 5.6 shows the results for the second idealization, in which the same 2D mesh is used, but

22 damage parameters are estimated in addition to the base Young’s Moduli of the bars and

cables (as opposed to 10 damage parameters in the first idealization).
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Figure 5.6: Size of training dataset vs performance including exponential decay curves. The GSNN learns most

efficiently, followed by the 2D-CNN. The Dense Network and Sequential Network perform similarly.

All models require significantly more data to reach their peak performance, as is to be expected

when estimating more parameters. Here, the advantage of the GSNN becomes even more

apparent. It not only requires the fewest simulations to converge (≈75,000) but, as shown in Table
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5.1, it also achieves a significantly better final model score (0.3918) than all baseline models. To

place this into perspective, the Sequential and Dense Networks require over 200,000 simulations

and only reach scores of 0.5149 and 0.8705, respectively. It can also be observed that the final

performance of the GSNN is substantially better than that of the 2D-CNN, with the difference

being more prominent than in the first idealization. This suggests that as the parameter space

grows, the unguided learning approach of the baseline models becomes less effective, while the

physics-informed GSNN continues to extract more relevant features efficiently.

5.3. Idealization 3: 3D Model
The third and final idealization is the most complex challenge: a full 3D bridge model with 52

sensors and 20 possible damage locations in the bottom chords of the bridge. The results, shown

in Figure 5.7, reveal a dramatic divergence in the capabilities of the summary networks.
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Figure 5.7: Size of training dataset vs performance including exponential decay curves.

The GSNN is the architecture that clearly demonstrates the most effective learning in this scenario.

Its performance score improves quickly, with a steep learning curve as larger training datasets

are used. Furthermore, the GSNN reaches a final score of 0.467, which is almost an order of

magnitude better than its competitors.

The other three baseline networks learn much less effectively. The Dense Network and Sequential

Network are able to learn some of the investigated relationships, although their performances

plateau at poor scores (1.748 and 3.077, respectively). Most strikingly, the 2D-CNN, which was a

respectable performer in the 2D cases, fails to learn completely, yielding the worst final score of

3.750. This highlights the limitation of its inductive bias. Treating the sensor data as a 2D image

is a viable approximation for a simple, 2D sensor layout, but breaks down when faced with the

complex and non-uniform spatial arrangement of sensors on a 3D structure.

The GSNN, however, is not constrained by such assumptions. By design, it directly encodes the

physical connectivity of the sensor network, regardless of its geometric complexity. This allows it

to effectively model the propagation of structural responses through the bridge. These results

underscore the central hypothesis of this work: for complex, real-world structures, incorporating

an accurate, physics-informed inductive bias into the summary network is not just beneficial, but

essential for enabling accurate amortized SHM.
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Table 5.1: Results for all Idealization Experiments

Idealization Summary
Network

Simulations Required
to Reach Peak Performance

Final
Score

Improvement
over Sequential

1

Sequential 80,000 0.2168 [-]

Dense 40,000 0.4535 50%

2D-CNN 30,000 0.4057 37.5%

GSNN 20,000 0.2157 75%

2

Sequential >200,000 0.5149 [-]

Dense 200,000 0.8705 0%

2D-CNN 150,000 0.8217 25%

GSNN 75,000 0.3918 37.5%

3

Sequential [-] 3.077 [-]

Dense [-] 1.748 [-]

2D-CNN [-] 3.750 [-]

GSNN [-] 0.467 [-]
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Conclusion

The main contribution of this work is the development of a GSNN that can be used as the

summary network component of BayesFlow, improving both the simulation efficiency and

approximated posterior quality, thereby paving the way to amortized, likelihood-free SHM with

uncertainty quantification in real-life settings.

To demonstrate the potential of the developed method, three progressively more complex case

studies were investigated. The first involved identifying a single damaged element in a 2D setting.

Subsequently, a more challenging 2D case was covered, in which additional bars were eligible

to be damaged. Last, a 3D case was investigated, with a significantly larger and more complex

structure. In the simplest case, the GSNN reduced the number of simulations needed to reach

the performance bound by 75%. Note that in this case, all models were eventually able to reach a

similar performance bound. In the more complex 2D setting, the GSNN not only decreased the

required number of simulations by 37.5% but also yielded superior posterior estimates, reaching

a model performance score of 0.3918, while baseline networks only reached scores between

0.5149 and 0.8705. In the 3D scenario, the advantage of the GSNN over baseline networks in

terms of model performance is further highlighted, as a performance score of 0.467 was reached,

compared to baseline models which were only able to achieve performance scores ranging from

3.077 to 1.748. These results indicate that the GSNN surpasses baseline networks in terms of

both efficiency and performance. This is a valuable development, as it highlights the potential of

the GSNN to open the door to amortized, likelihood-free SHM with uncertainty quantification in

real-life settings.

Although this work used a cable-stayed truss bridge as a case study to demonstrate the feasibility

of amortized Bayesian inference with a GSNN as the summary network, the approach is not

limited to this specific bridge, or even bridges in general. Using the topology of a structure

to inform the construction of the GSNN can be generalized. Structures such as space frames,

transmission towers, lattice girders, and crane booms all consist of discrete elements connected

at nodes, forming a natural graph representation. The same modeling approach can be directly

applied to these systems, requiring only adjustments to the graph to reflect the specific topology

of each structure.

In addition, the method can be extended to non-truss structures by abstracting the physical system

into a representation appropriate for applying graph theory. In FEMs of plates or solid structures,

individual elements can serve as nodes, with edges defined based on mesh connectivity or

physical adjacency. Alternatively, in large-scale structures such as bridges, buildings, or offshore

platforms, a more conceptual graph representation can be adopted. Here, major structural

components, such as foundations, columns, beams, girders, and slabs, can be treated as graph

nodes, and their supports, joints, or interfaces can define the graph edges. For instance, in a
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highway bridge, the foundation, piers, crossheads, girders, and deck could be modeled as nodes,

connecting them according to their load transfer relationships. This flexibility in representing

different structural systems as graphs suggests that the developed GSNN could be adapted for

damage detection tasks in a broad range of SHM applications.

While the current implementation of the GSNN has demonstrated strong capabilities, future

work could focus on incorporating additional physics knowledge into the model. The most

direct way to infuse more physics into the GSNN is by treating the edges of the graph not just as

connections, but as the physical elements they represent. For example, the length of a member is

directly related to its axial stiffness. For a given material and cross-section, a longer member is

more flexible. Including member length as an edge feature would allow the GSNN to learn this

relationship explicitly. Additionally, the angle of a truss member determines how its internal

axial force resolves into horizontal and vertical components at the nodes. By providing the

orientation as an edge feature, the GSNN could be able to learn how forces are distributed along

different directions at the nodes.

Furthermore, it would be valuable to apply the methods described in this work to more

complex cases. Expanding the test case by using the physical bridge demonstrator would add

valuable insights that are not covered in synthetic cases. Working with real-life structures

and measurements is vastly more difficult, as demonstrated in Appendix J, which contains

the first steps towards the application of the method described in this work to the real-life

bridge demonstrator. One obstacle is the logistical issue of collecting data, which is challenging

due to practical limitations in sensor placement and the accessibility of structural components.

Additionally, the collected data typically has higher levels of noise and stochasticity, as external

influences and sensor imperfections introduce uncertainties and disturbances that are absent in

controlled simulations.

Another challenge that arises when extending this work to real-life scenarios is the issue of

model discrepancies. In the test cases discussed in this thesis, the simulator used to generate

the training data is identical to the model generating the synthetic observations. However, in

reality, the physical structure will never be represented perfectly by the numerical model, as

simplifications, approximations, and uncertainties in material properties, boundary conditions,

and loading scenarios inevitably introduce mismatches. These discrepancies mean that the

inference network, which is trained purely on synthetic data, may not generalize well when

applied to real measurements, as the process generating observed responses may deviate from

the model behaviour learned during training.

Addressing this model misspecification is a difficult task. Recommended directions to tackle this

issue include using state-of-the-art modeling techniques, such as well-developed FEMs, able to

accurately capture the structural behavior, along with hybrid approaches that can enrich physics-

based simulations with data-driven corrections. Additionally, advanced system identification

methods should be used to accurately identify the base structural properties and dynamic

behavior from measurements, ensuring that models are properly calibrated to reflect the real

system.
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Appendix A. Justification of a Summary Network
In this appendix, a proof is given to show that a perfectly trained inference network is able to

perfectly reproduce the posterior. This further justifies the use of a summary network instead of

handcrafted or unsupervised statistics.

If the invertible neural network is perfectly trained, the latent variables 𝑧 always follow the same

standard multivariate Gaussian distribution regardless of the data 𝑥. In other words: 𝑧 and 𝑥
are independent. If the network is trained perfectly, the global minimum of the loss function in

equation 2.10 is reached. As the KL-divergence is always larger than or equal to zero, the global

minimum is achieved when the argument becomes 0. This implies

KL(𝑝∗(𝜃|𝑥)||𝑝(𝜃|𝑥) = 0 ∀𝑥 (1)

Using the fact that the KL-divergence is preserved under smooth, invertible transformations

(which we enforce our neural network to be),

KL(𝑝∗(𝜃|𝑥)||𝑝(𝜃|𝑥) = KL(𝑝∗(𝑧)||𝑝(𝑧|𝑥) = 0 (2)

Therefore, the two distributions must be identical, and no matter what 𝑥 is, 𝑧 will always follow

the standard Gaussian distribution, i.e.

𝑝∗(𝑧) = 𝑝(𝑧|𝑥) ⇔ 𝑧 ⊥ 𝑥 (3)

This is important, as in this case, sampling 𝑧 ∼ 𝒩(0, 𝐼) and passing the samples through the

inverse network outputs valid samples from the true posterior 𝑝∗(𝜃|𝑥).

Appendix B. Finite Element Model Details
This Appendix describes the FEM base, which was used as the simulator. The FEM provided

training data, validation data and synthetic observations used as test data. The FEM was validated

using COMSOL Multiphysics. The assumptions and working principles are discussed in detail.

Appendix B.1 Assumptions of the Finite Element Model
The FEM assumes the geometry consists only of straight line trusses, which are assumed to be

massless and have a constant cross-sectional area. The trusses are modeled to only carry axial

forces (tension/compression), ignoring any bending and shear. Nodes are modeled as points

with no physical size, shape, mass or rotational properties. Nodes are assumed to have only

degrees of freedom in the translation directions. Details of the structure, such as stiffeners, gusset

plates, or diaphragms are neglected. The coarse mesh fails to capture stress gradients accurately.

Regarding material properties, the deformation of the trusses is assumed to follow a linear elastic

model, dependent on the Young’s modulus and the cross-sectional area. The cables and bars each

have their own cross-sectional area and Young’s modulus. It is also important to note that there is

currently no implementation of the fact that cables are not able to handle any compressive force.

Next, the boundary condition assumptions are discussed. The nodes connecting the structure to

the ground and the nodes connecting the cables to the frame are assumed to be completely fixed,
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meaning they do not have the freedom to translate or rotate in any direction. Although these

boundary conditions may be perfectly rigid supports, in reality some flexibility exists.

The final set of assumptions are the loading condition assumptions. In the FEM, forces are

applied as static, concentrated loads directly at the nodes. It also assumes that the forces are

instantaneously applied, uniformly distributed, and remain constant over time, neglecting any

dynamic effects of moving loads such as acceleration of a vehicle.

Appendix B.2 Mathematical Basis of the Finite Element Model
Each truss element is modeled to only carry axial forces (tension or compression). No bending

moments, shear forces, or torsional effects are included. The joints connecting the elements are

idealized as frictionless and pin-connected. The model assumes linear elasticity, meaning that

the relationship between stress and strain is linear and follows Hooke’s Law. Furthermore, the

model does not account for initial geometric imperfections, residual stresses, or pre-stress in the

elements. All elements are assumed to be stress-free in their undeformed configuration.

The FEM base is built as a Python class, which can be used to compute the displacements and

internal forces of the structure when under load. The FEM base is supplied with a mesh file

containing the geometry of the structure, defined by a set of nodes and trusses. Each node 𝑖 is

defined by its index, coordinates (𝑥𝑖 , 𝑦𝑖), and a Boolean flag indicating whether it is constrained

or not. Nodes are instances of the Node class and have two degrees of freedom: horizontal and

vertical displacements. The global degrees of freedom for node 𝑖 are given by

dofs𝑖 = [2𝑖 , 2𝑖 + 1] (4)

Each truss element connects two nodes and is defined by its own index 𝑡, the indexes of its start

and end nodes, and its type (either ‘bar‘ or ‘cable‘). These are instances of the Truss class. The

use of a mesh describing the nodes and truss elements means that the FEM base is reusable for

different bridges, as the geometry can be altered easily. To illustrate the FEM, the mesh of the

idealization shown in Figure 4.2 is used. Blue elements 0–44 represent steel bars building up the

bridge truss. Elements 45–48 represent the steel cables. Nodes 0, 12, and 13 are shown in black,

indicating that they are constrained. All other (red) nodes have two degrees of freedom.

After defining the overall geometry, the material properties are assigned. Each truss element is

assumed to behave according to linear elasticity and is characterized by its axial stiffness 𝐸𝐴,

where 𝐸 is the Young’s modulus and 𝐴 is the cross-sectional area. Each bar is assumed to have

the same base cross-sectional area 𝐴bar and base stiffness 𝐸bar. Similarly, each cable is assumed

to have the same base cross-sectional area 𝐴cable and base stiffness 𝐸cable. As the cables have a

uniform cylindrical shape, 𝐴cable is estimated using the known diameter of the cables 𝑑cable as

𝐴cable =
𝜋𝑑2

cable

4

(5)

The initial length of the truss element is denoted as 𝑙0. Using the material properties and length

of the element, the local stiffness matrix in the local coordinate system is constructed as

𝑘local =
𝐸𝐴

𝑙0


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 (6)

This matrix is then transformed to the global coordinate system using the rotation matrix R,

which depends on the angle 𝜃 of the element relative to the global 𝑥-axis. The rotation matrix is

given by
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𝑅 =


cos𝜃 sin𝜃 0 0

− sin𝜃 cos𝜃 0 0

0 0 cos𝜃 sin𝜃
0 0 − sin𝜃 cos𝜃

 , (7)

where the directional cosines are computed as

cos𝜃 =
𝑥2 − 𝑥1

𝑙0
, sin𝜃 =

𝑦2 − 𝑦1

𝑙0
(8)

The global element stiffness matrix is then obtained as

𝑘global = 𝑅⊤𝑘local𝑅 (9)

The global stiffness matrix of the entire structure, 𝐾 ∈ R2𝑛×2𝑛
, is assembled by summing all

individual element contributions according to the connectivity of the elements. For each element,

the global degrees of freedom are identified, and its 𝑘global is inserted into the corresponding

block of 𝐾. Once the global stiffness matrix has been assembled, external loads are applied via

the global force vector 𝐹 ∈ R2𝑛
, where each entry corresponds to a nodal force. In our case,

vertical loads are used to simulate a vehicle moving across the bridge. These loads can be applied

directly to a node or interpolated across neighboring nodes. The equilibrium equation of the

FEM system is given as

𝐾𝑢 = 𝐹 (10)

To enforce boundary conditions, a penalty method is applied. For each constrained degree of

freedom 𝑑, the corresponding row and column of 𝐾 are zeroed out, and the diagonal entry is set

to one. The corresponding entry in 𝐹 is also set to zero, i.e.

𝐾𝑑𝑑 = 1, 𝐾𝑑𝑖 = 𝐾𝑖𝑑 = 0 ∀𝑖 ≠ 𝑑, 𝐹𝑑 = 0 (11)

This yields a constrained system, given as

𝐾𝑐𝑢 = 𝐹𝑐 , (12)

which is solved using LU decomposition to obtain the displacement vector u, containing all

degrees of freedom in the structure.

The axial force in a truss element is computed by transforming the global displacements into the

element’s local coordinate system and evaluating the strain

𝜀 =
𝑢local,2 − 𝑢local,1

𝑙0
, (13)

which gives the axial force

𝐹axial = 𝐸𝐴 𝜀 (14)

To compute influence lines for displacements or axial cable forces, a moving point load is

sequentially applied at various positions along the bridge. For each load position, the FEM

system is solved and the sensor outputs (displacements or forces) are recorded.
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Appendix C. Example 2D FEM Output (Undamaged Case)

0 500 1000 1500
Position (mm)

0

2

4

6

D
is

pl
ac

em
en

t (
m

m
) Cable Sensor 45

0 500 1000 1500
Position (mm)

0

2

4

6

Cable Sensor 46

0 500 1000 1500
Position (mm)

0

2

4

6

Cable Sensor 47

0 500 1000 1500
Position (mm)

0

2

4

6
Cable Sensor 48

2D FEM | Cable Influence Lines

No damages (Noisy) No damages (No Noise)

(a) Synthetic (noisy) axial force influence lines of the cables in the mesh depicted in Figure 4.2 in an undamaged scenario.
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(b) Synthetic (noisy) vertical node displacement influence lines of the nodes in the mesh depicted in Figure 4.2 in an undamaged scenario.

Figure C.1: Synthetic influence lines produced using the 2D FEM and mesh from Figure 4.2 in an undamaged scenario.
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Appendix D. Ground Truth Influence Lines (No Noise)
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(a) Synthetic cable force influence lines generated by the 2D FEM using the ground truth parameter vectors.
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(b) Synthetic node displacement influence lines generated by the 2D FEM using the ground truth parameter vectors.

Figure D.1: Synthetic influence lines produced using the 2D FEM and ground truth parameter vectors.
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Appendix E. Ground Truth Influence Lines (With Noise)
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(a) Synthetic noisy cable force influence lines generated by the 2D FEM using the ground truth parameter vectors.
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(b) Synthetic noisy node displacement influence lines generated by the 2D FEM using the ground truth parameter vectors.

Figure E.1: Synthetic noisy influence lines produced using the 2D FEM and ground truth parameter vectors.
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Appendix F. COMSOL Validation of the FEM
A model of the 3D bridge mesh was replicated in COMSOL Multiphysics, shown in Figure F.1.

This allowed for the validation of the 3D FEM. As the displacements and cable forces returned by

the FEM were identical to those computed in COMSOL, the FEM was concluded to be accurate.

Figure F.1: COMSOL model of the 3D Mesh, used to validate the FEM.

Appendix G. Baseline Summary Network Designs
In this appendix, the baseline summary network architectures used for comparison are described

in detail. The input tensor, which is identical for all architectures, consists of 𝐵 data instances

(simulations or observations) making up a batch. Each batch is made up of data 𝑥 ∈ R𝐵×𝑆×𝑁 ,

a collection of 𝐵 matrices in which each row is the influence line of sensor 𝑠 = 1, . . . , 𝑆, made

up of measurements collected at 𝑛 = 1, . . . , 𝑁 load position. Within each summary network,

all operations are vectorized across the batch dimension 𝐵. This entails that the same weights

are applied to every sample in batch 𝑏 = 1, . . . , 𝐵. To simplify notation and improve clarity, the

batch dimension is omitted in the descriptions of the networks. The input tensor to each neural

network is therefore simplified to 𝑥 ∈ R𝑆×𝑁 .
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Appendix G.1 Dense Feedforward Neural Network
The first baseline summary network is a dense, fully connected, feedforward neural network.

The architecture of the dense neural begins by flattening the input with a flattening function as

defined in (3.8), which transforms a matrix into a vector. The flattening function is applied to an

instance of training data 𝑥 ∈ R𝑆×𝑁 according to

𝑓vec(𝑥) = ®𝑥 ∈ R𝑆𝑁 (15)

The flattened sample is then passed through a total of 𝐿 fully connected dense layers, according to

ℎ
1
= 𝜎(𝑊1 ®𝑥 + 𝑏1)

ℎ
2
= 𝜎(𝑊2ℎ

1
+ 𝑏2)

...

𝑥̃ = 𝜎(𝑊𝐿ℎ𝐿−1
+ 𝑏𝐿),

(16)

where ℎ𝑙 ∈ R𝑑𝑙 is the hidden representation output after layer 𝑙, 𝑊𝑙 is a matrix containing

learnable weights for layer 𝑙, 𝑏𝑙 is a corresponding vector containing learnable biases for layer 𝑙,
𝜎( ) is a non-linear activation function, and 𝑥̃ ∈ R𝑑𝑠 is the summary vector. Note that the sizes of

𝑊𝑙 and 𝑏𝑙 can differ per layer. Their sizes can be generalized according to

𝑊𝑙 ∈ R𝑑𝑙×𝑑𝑙−1 , 𝑏𝑙 ∈ R𝑑𝑙 , 𝑑0 = 𝑆𝑁, 𝑑𝐿 = 𝑑𝑠 (17)

Appendix G.2 Sequential Neural Network
The second baseline network is referred to as a sequential network. The input is treated as a

collection of 𝑆 independent 1D sequences of length 𝑁 , with no interaction between them. Each

sensor’s influence line 𝑥𝑠 ∈ R𝑁 , corresponding to a row of 𝑥, is individually passed through a 1D

convolutional block. Within this 1D convolutional block, a 1D convolutional layer is created for

each kernel size in a set of kernel sizes 𝒦 .

In each 1D convolutional layer, corresponding to a kernel size 𝑘 ∈ 𝒦 , a total of 𝐹 learnable

filters are applied separately to each sensors influence line, treating each influence line as an

independent 1D signal along the load position axis. The set of filters is shared across all sensors.

Each filter 𝑓 ∈ {1, . . . , 𝐹} associated with kernel size 𝑘 is defined by a learnable kernel and a bias

term. The 1D convolution operation of filter 𝑓 over the influence line of sensor 𝑠 produces a

feature map

ℎ
( 𝑓 )
𝑠 = 𝜎(𝑥𝑠 ∗ 𝑤( 𝑓 ) + 𝑏( 𝑓 )), (18)

where ℎ
( 𝑓 )
𝑠 ∈ R𝑁 is the feature map produced by filter 𝑓 for the influence line of sensor 𝑠, the

convolution operator is denoted as ∗, 𝜎 is the non-linear activation function, and 𝑤( 𝑓 ) ∈ R𝑘 and

𝑏( 𝑓 ) ∈ R are the learnable kernel and bias of filter 𝑓 . At each load position 𝑛, the output of the

convolution is

ℎ
( 𝑓 )
𝑠 [𝑛] =

𝑘−1∑
𝑖=0

𝑤
( 𝑓 )
𝑖
𝑥𝑠, 𝑛−𝑖 + 𝑏( 𝑓 ) , (19)

where ℎ
( 𝑓 )
𝑠 [𝑛] ∈ R is the output value at position 𝑛 for sensor 𝑠 after applying filter 𝑓 , 𝑤

( 𝑓 )
𝑖

∈ R is

the 𝑖-th weight of the kernel corresponding to filter 𝑓 , and 𝑥𝑠, 𝑛−𝑖 ∈ R is the value of the influence

line of sensor 𝑠 at position 𝑛 − 𝑖. To ensure that the convolution is well-defined at the boundaries

of the input sequence, causal padding is applied such that 𝑥𝑠, 𝑛−𝑖 = 0 if 𝑛 − 𝑖 < 1. This allows

the output ℎ
( 𝑓 )
𝑠 [𝑛] to be computed for all 𝑛 ∈ 1, . . . , 𝑁 , ensuring that the feature map has the

same length as the original influence line.
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Since each sensors influence line is processed independently, applying a single filter 𝑓 with

kernel size 𝑘 produces a single feature map for each sensor

ℎ
( 𝑓 )
𝑠 ∈ R𝑁 , for 𝑠 = 1, . . . , 𝑆 (20)

By collecting the feature maps across all sensors, we obtain a 2D matrix for each filter

ℎ( 𝑓 ) =
[
ℎ
( 𝑓 )
1

ℎ
( 𝑓 )
2

. . . ℎ
( 𝑓 )
𝑆

]
∈ R𝑁×𝑆 , (21)

where each column corresponds to the feature map of one sensor. After applying all 𝐹 filters for

kernel size 𝑘, we obtain a 3D tensor

ℎ(𝑘) ∈ R𝑁×𝑆×𝐹
(22)

where the third dimension stacks the feature maps across filters. Finally, for all kernel sizes

𝑘 ∈ 𝒦 , the outputs ℎ(𝑘) are concatenated along the feature dimension

ℎ = concat(ℎ(𝑘) ∀ 𝑘 ∈ 𝒦) ∈ R𝑁×𝑆×(𝐹 |𝒦 |)
(23)

This tensor contains multiple learned features for each sensor and load position, extracted using

multiple kernel sizes, allowing the network to capture patterns at different scales within the

influence lines. Multiple convolutional blocks may be stacked sequentially to extract increasingly

abstract features from the input data. To prepare the features for temporal processing by a

recurrent layer, the sensor and feature dimensions are flattened into a single combined feature

axis. This is done by reshaping the tensor to

ℎ = (ℎ1 , . . . , ℎ𝑁 ) ∈ R𝑁×𝐷 , (24)

where notation has been simplified by using 𝑆𝐹|𝒦 | = 𝐷. In this reshaped form, the load position

dimension 𝑁 is preserved, and for each load position the corresponding entry ℎ𝑛 ∈ R𝐷 is a

concatenation of all feature representations of all sensors.

This flattening operation ensures that the LSTM receives a standard input shape where sequential

dependencies across load positions can be extracted while still retaining information from all

sensors and all convolutional filters. The LSTM takes the sequence of feature vectors (ℎ1 , . . . , ℎ𝑁 )
as an input, and updates its hidden state ℎ̃𝑛 ∈ R𝑈 (with𝑈 the number of hidden units) and cell

state 𝑐𝑛 ∈ R𝑈 at each load position 𝑛 ∈ {1, . . . , 𝑁} as

𝑖𝑛 = 𝜎
(
𝑊𝑖ℎ𝑛 + 𝑅𝑖 ℎ̃𝑛−1 + 𝑏𝑖

)
𝑓𝑛 = 𝜎

(
𝑊𝑓 ℎ𝑛 + 𝑅 𝑓 ℎ̃𝑛−1 + 𝑏 𝑓

)
𝑜𝑛 = 𝜎

(
𝑊𝑜ℎ𝑛 + 𝑅𝑜 ℎ̃𝑛−1 + 𝑏𝑜

)
𝑐𝑛 = tanh

(
𝑊𝑐ℎ𝑛 + 𝑅𝑐 ℎ̃𝑛−1 + 𝑏𝑐

)
𝑐𝑛 = 𝑓𝑛 ⊙ 𝑐𝑛−1 + 𝑖𝑛 ⊙ 𝑐𝑛

ℎ̃𝑛 = 𝑜𝑛 ⊙ tanh(𝑐𝑛),

(25)

where ℎ𝑛 ∈ R𝐷 is the input feature vector at load position 𝑛, ℎ̃𝑛 ∈ R𝑈 is the hidden state, 𝑐𝑛 ∈ R𝑈

is the cell state, 𝑖𝑛 , 𝑓𝑛 , 𝑜𝑛 ∈ R𝑈 are the input, forget, and output gates, respectively, 𝑐𝑛 ∈ R𝑈 is the

candidate cell state, 𝜎 is the sigmoid activation function, ⊙ denotes element-wise multiplication,

𝑊 ∈ R𝑈×𝐷
are input weight matrices, 𝑅 ∈ R𝑈×𝑈

are recurrent weight matrices, and 𝑏 ∈ R𝑈 are

the bias vectors.

After the processing of the full sequence, the final hidden state ℎ̃𝑁 ∈ R𝑈 serves as the output of

the LSTM. This is then passed to a fully connected dense layer with a linear activation function to

reduce the size of the summary vector to the desired dimension, i.e.,

𝑥̃ =𝑊out ℎ̃𝑁 + 𝑏out ∈ R𝑑𝑠 , (26)

where𝑊out ∈ R𝑑𝑠×𝑈 and 𝑏out ∈ R𝑑𝑠 are a trainable weight matrix and bias vector.
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Appendix G.3 2D Convolutional Neural Network
The 2D-CNN summary network processes influence line data using a series of convolutional

blocks, followed by a global average pooling layer. Before applying 2D convolutions, the input is

reshaped into a tensor suitable for 2D image processing. Specifically, a channel dimension is

added, resulting in

𝑥img ∈ R𝑆×𝑁×1

(27)

The reshaped input is interpreted as a grayscale image with height 𝑆, width 𝑁 , and 1 input

channel.

The reformatted input is passed to a 2D convolutional layer, which applies a set of learnable

filters to this input tensor. Each filter is a tensor

𝑤( 𝑓 ) ∈ R𝑘𝑆×𝑘𝑁×𝐶in , (28)

where 𝑘𝑆 and 𝑘𝑁 are the kernel sizes along the sensor and load position axes, respectively, and

𝐶in is the number of input channels. Initially, 𝐶in = 1. The convolution operation slides each filter

across the sensor and load axes of the input, computing a weighted sum at each spatial location.

For a given filter 𝑓 , the output value at location (𝑠, 𝑛) ∈ {1, . . . , 𝑆} × {1, . . . , 𝑁} is given by

ℎ( 𝑓 )[𝑠, 𝑛] =
𝑘𝑆−1∑
𝑖=0

𝑘𝑁−1∑
𝑗=0

𝐶in−1∑
𝑐=0

𝑤
( 𝑓 )
𝑖 , 𝑗 , 𝑐

𝑥img, 𝑠+𝑖 , 𝑛+𝑗 , 𝑐 + 𝑏( 𝑓 ) , (29)

where 𝑏( 𝑓 ) ∈ R is the bias term associated with filter 𝑓 , and zero-padding is applied if necessary to

ensure that the convolution is defined near the boundaries. The result of applying this operation

across the entire spatial domain is a feature map ℎ( 𝑓 ) ∈ R𝑆×𝑁 . All filters operate independently,

and their outputs are stacked to form the full output tensor of the convolutional layer, i.e.,

ℎ ∈ R𝑆×𝑁×𝐶out , (30)

where 𝐶out is the number of filters in the layer. A non-linear activation function is applied

element-wise to this output, which introduces non-linearity into the model, enabling it to

represent complex mappings from input to output, i.e.,

ℎactivated = 𝜎(ℎ), (31)

where 𝜎 is the nonlinear activation function. This process of convolution followed by activation

transforms the input into a richer set of local features, learned from spatially localized patterns

across sensors and load positions. By stacking multiple such convolutional blocks the network

progressively builds more abstract representations, capable of capturing complex patterns in the

influence line data.

To reduce the output of the convolutional layers into a fixed-size feature vector while retaining

the most essential information, a global average pooling operation is applied. This operation

computes the mean value of each feature map across the entire spatial domain. That is, for each

channel 𝑐 ∈ {1, . . . , 𝐶∗}, the pooled output is

𝑧𝑐 =
1

𝑆∗𝑁 ∗

𝑆∗∑
𝑠=1

𝑁∗∑
𝑛=1

ℎ[𝑠, 𝑛, 𝑐], (32)

resulting in a vector 𝑧 ∈ R𝐶
∗
. The final summary vector is produced by a dense output layer,

according to

𝑥̃ = 𝜎(𝑊out𝑧 + 𝑏out), (33)

with 𝑊out ∈ R𝑑𝑠×𝐶
∗

and 𝑏out ∈ R𝑑𝑠 , resulting in the desired summary vector 𝑥̃ ∈ R𝑑𝑠 . All

operations are vectorized across the batch dimension.
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Appendix H. Summary Network Hyperparameters
Table H.1: Hyperparameters of the Summary Network Architectures.

Model Hyperparameter Value / Description

Dense

Activation ReLU

Layer 1 Weights 𝑊1 ∈ R256×(𝑆𝑁)

Layer 2 Weights 𝑊2 ∈ R128×256

Layer 3 Weights 𝑊3 ∈ R𝑑𝑠×128

Dropout rate 0.1 (after each hidden layer)

Sequential

Activation ReLU

Conv Layers 2

Padding same

Filters 𝐹 = 32

Kernel sizes 𝑘 ∈ {1, 2}
Conv weights 𝑊

( 𝑓 )
conv

∈ R𝑘 , ∀ 𝑓 = 1, . . . , 𝐹

Conv biases 𝑏
( 𝑓 )
conv

∈ R, ∀ 𝑓 = 1, . . . , 𝐹
LSTM units 𝑈 = 128

Dense output R𝑑𝑠×𝑈

2D-CNN

Activation ReLU

Conv Layers 4

Conv filters {8, 16, 32, 64}

Kernel size 3 × 3

Strides {(2,2), (2,2), (2,2), (1,1)}

Padding same

Global Avg. Pooling After final Conv2D layer

Dense Layer 1 & 2 128, 𝑑𝑠

GSNN

Activation (Message) ReLU

Output dim (Message) 50

Connectivity dictionary Provided externally

Message passing weights 𝑊self ,𝑊msg ∈ R𝐹×50

Bias vector 𝑏 ∈ R50

Activation (Output) ReLU

Dense weights (Output) 𝑊out ∈ R𝑑𝑠×(50𝑆)

Dense biases (Output) 𝑏out ∈ R𝑑𝑠
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Appendix I. Example Training Loss Plot

Figure I.1: Typical training loss over epochs plot.

Appendix J. Application to Real-Life Scenario
This appendix contains the first steps towards the application of the method described in this

work to the real-life bridge demonstrator. The real demonstrator is equipped with 6 vertical

displacement sensors and 8 cable force sensors.

Appendix J.1 Data Collection and Processing
All sensors are activated, and the self-driving vehicle is turned on. Once the car has fully crossed

the bridge, the sensors are deactivated. The resulting measurements are shown in Figure J.1.
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Figure J.1: Original measurements.
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The first step is to automatically detect the timestamps at which the car drives onto the bridge

and exits the bridge. By cropping off the measurements taken outside of this time frame, the

resulting measurement resembles an influence line. To automatically detect the start and end of

the experiment, we first filter the signals. The result is shown in Figure J.2.
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Figure J.2: Filtered measurements (for determining the cutoff timestamps).

Next, the time stamps at which the car enters and exits the bridge were determined, using the

deviations of sensor signals from their initial steady state, combined with stabilization criteria

at the end, to identify the start and cutoff indices per measurement. These indices were then

averaged across sensors (after removing outliers) and mapped to the corresponding adjusted

time stamps for plotting. Results are shown in Figure J.3.
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Figure J.3: Original measurements with cutoff timestamps.
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Next, the bias was removed by subtracting the mean sensor value recorded before the car

entered the bridge. For each measurement, the mean up to the detected no-movement index was

computed per sensor and subtracted from the entire signal. This ensured that all signals were

zero-centered at the start of the experiment. Results are shown in Figure J.4.
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Figure J.4: Unbiased measurements with cutoff timestamps.

Next, a filter was applied to the measurement data, removing the worst sensor noise. The results

can be found in Figure J.5.
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Figure J.5: Unbiased, filtered measurements with cutoff timestamps.
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Finally, the values outside of the relevant time stamps were removed from the data, yielding

influence line-like data for each sensor. The results can be found in Figure J.6.
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Figure J.6: Processed measurements emulating influence lines.

Appendix J.2 Model Misspecification
A FEM model was created to generate training simulations for the real-life scenario. This FEM

was based on the same information used in the synthetic scenarios covered in this work, with a

number of tweaks to ensure it closer emulates reality. The base stiffness of the materials was

identified, as displayed in Figure J.7.

Figure J.7: Identification of Suitable Base Stiffnesses
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However, the linear FEM was not able to capture the non-linear and irregular behaviour of the

real bridge. Therefore, a neural network was trained to correct any residuals, attempting to close

the gap between the modeled and simulated responses. The results can be seen in Figure J.8,

in which the simulated responses (dotted lines) and the measured responses (solid lines) are

plotted for various damage scenarios.
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Figure J.8: Measured vs Simulated Responses of the Bridge Demonstrator

Unfortunately, the match between the real data generation process and the simulator was

not close enough to perform proper damage detection using BayesFlow. This highlights the

critical importance of accurate modeling. While the neural network correction helped to reduce

systematic residuals, it could not fully compensate for structural dynamics and complex boundary

effects that were absent from the FEM model. As a result, the inference task became ill-posed,

underscoring the need for either more expressive physics-based models or hybrid approaches

that integrate richer data-driven corrections.
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