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Abstract—Automatic dysarthric speech recognition (ADSR)
remains challenging due to the irregularities in speech caused
by motor control impairments and the limited availability of
dysarthric speech data. This paper explores the integration of
articulatory features, captured using Electromagnetic Articulog-
raphy (EMA), with both conventional acoustic features and those
extracted from large-scale pretrained models including Whisper
and XLSR-53 as well as the fine-tuned Whisper model. We
propose end-to-end (E2E) Conformer-based acoustic-articulatory
models for ADSR and compare their performance against the
corresponding hybrid TDNNF models. The experimental results
show that using the fine-tuned Whisper features (Whisper-FT)
fused with articulatory features achieves the lowest (10.5%)
word error rate (WER) on dysarthric speech, with particularly
significant improvements for severely dysarthric speech, reaching
a WER of 20.8%.

Index Terms—dysarthric speech recognition, articulatory-
acoustic multi-modal, large-scale pretrained acoustic features

I. INTRODUCTION

Dysarthria is a motor speech disorder caused by a neuro-
motor interface disruption [1] that affects the clarity and
intelligibility of spoken language. Individuals with dysarthria
often struggle to control their articulatory movements, re-
sulting in irregular articulatory patterns and less intelligible
speech. Automatic dysarthric speech recognition (ADSR) is a
highly challenging task due to the large speech variability and
data scarcity. Moreover, due to the large mismatch between
typical and dysarthric speech, mainstream ASR systems, such
as Whisper [2], designed for typical speech do not perform
well on dysarthric speech [3], [4]. There is a growing need for
more robust models capable of recognising dysarthric speech,
especially as individuals with speech impairments increasingly
rely on ASR technologies for their daily communication and
accessibility.

To address these challenges, integrating features from other
modalities that are correlated with the speech signal, such as
visual and articulatory data, has shown potential for improv-
ing ADSR performance [5]–[7]. Articulatory measurements,
which capture the movements of speech articulators such as
lips and tongue reflect a direct representation of the speech

production process. Compared to acoustic features, articu-
latory data has been found to be less sensitive to speaker
variability [8] and more effective in modelling coarticulation
effects [9]. Therefore, incorporating articulatory information
alongside acoustic data has the potential to offer complemen-
tary insights for improving ADSR performance.

Because of the lack of multi-modality dysarthric datasets,
most previous research on dysarthric speech recognition relies
on acoustic features such as mel-frequency cepstral coef-
ficients (MFCCs) [10] or filterbank (FBank) features [11],
[12]. However, these features may not capture the irregular
patterns in dysarthric speech. Articulatory features, derived
from the movements of the speech articulators, have been
shown to provide valuable complementary information [13],
[14], especially when acoustic features alone are insufficient.
End-to-end (E2E) models have been more and more widely
used for dysarthric speech recognition [15]–[17]. However,
due to the limited amount of paired audio and articulatory data,
E2E acoustic-articulatory ASR models are under-explored.

Recently, large-scale models trained on vast amounts of
speech data, such as Whisper [2] and XLSR-53 [18], [19] have
revolutionised ASR by offering robust, pretrained models that
can generalise across different domains and speaker variations
with minimal adaptation. These models extract rich, high-level
acoustic features that have proven effective for a variety of
speech recognition tasks. However, these features have only
been applied to the single-modal ASR system [20], [21] and
little attention has been given to integrating these powerful
features with articulatory data, particularly in the context of
dysarthric speech recognition.

In this paper, we addressed the research gaps mentioned
above by building multi-modal acoustic-articulatory ADSR
systems using Conformer-based E2E models. To the best of
our knowledge, this is the first attempt to leverage the strengths
of large-scale models such as Whisper and XLSR-53 for
acoustic feature extraction, while integrating the real recorded
articulatory data to improve the recognition performance for
dysarthric speech. We compared this approach to models
using conventional acoustic features (i.e., FBank). We alsoIC
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explored the effectiveness of Whisper features extracted from
the fine-tuned Whisper model on the in-domain (i.e., target)
dataset. In addition, we compared the E2E model with the
state-of-the-art hybrid (time delay neural network) TDNNF
model [22], [23] and employed the pretrained Whisper-large
model for zero-shot testing and fine-tuning. We presented
results across various acoustic features, severity levels and
ASR models. Experimental results show up to 3.0% absolute
(22.2% relative) WER reduction for dysarthric speech using
fine-tuned Whisper features (Whisper-FT+EMA vs. Whisper-
FT) when integrating articulatory features.

II. METHODOLOGY

A. Feature extraction

We employed three types of features for the ADSR task in
this paper: conventional acoustic features (i.e., FBank), large-
scale pretrained acoustic features (i.e., XLSR-53 features,
Whisper features, fine-tuned Whisper (Whisper-FT) features),
and articulatory features.

1) Acoustic features: FBank features are commonly used in
standard ASR systems [24], [25] and in acoustic-articulatory
speech recognition systems [13]. In our experiments, we used
80-D FBank features with a frame shift of 10 ms and a
frame length of 25 ms, as a baseline. We extracted large-scale
pretrained features from the XLSR-53 and Whisper1 models.
In particular, given the previous state-of-the-art (SOTA) per-
formance of XLSR-53 features achieved in the ADSR task
[21], we extracted 1024-D XLSR-53 features [19], with 20 ms
frame rate from the model’s 20th2 encoder layer. In addition,
we extracted 1280-D Whisper features with a 20 ms frame
rate from the output of the Whisper model encoder [2].

Considering both XLSR-53 and Whisper models were
trained on large-scale multilingual typical speech, we hypoth-
esise that their extracted features may still mismatch with the
dysarthric speech data. While XLSR-53 is a self-supervised
model that learns robust speech representations without a
decoder, Whisper is a supervised ASR model trained with
a strong decoder. To address this potential mismatch during
feature extraction, we fine-tuned the Whisper model on the
TORGO dataset and used the fine-tuned model to extract
Whisper-FT features.

2) Articulatory features: Each articulatory data sample is
measured by 12 sensors capturing articulatory movements
in three dimensions, returning sensor positions in Cartesian
coordinates (x, y, z) along with the spatial orientation angles
[26], [27]. The sensors are attached to the tongue back (TB),
tongue middle (TM), tongue tip (TT), forehead, bridge of
the nose, upper lip (UL), lower lip (LL), lower incisor, left
and right mouth, left and right ear. The articulatory data
is downsampled and aligned with the acoustic features to
create synchronised feature sequences. We pre-process the

1Throughout this paper, “Whisper” refers to the Whisper-large-V2 model.
2We determined that the 20th layer provided optimal embeddings after

testing various layers of the XLSR-53 model.

articulatory data following the process outlined in [14]. Ac-
cording to previous work and our testing, we used the pair-
wise Euclidean Distance (ED) between the UL and LL as
articulatory features, computed from their respective Cartesian
coordinates (UL x,UL y,UL z) and (LL x,LL y,LL z).

B. ASR models

We employed two types of ASR models in this paper: an
E2E ASR model and a hybrid ASR model. We employed
the Conformer-based E2E model, which has demonstrated
a strong performance in dysarthric speech [21], using the
ESPnet toolkit [28]. We tuned the model to achieve the
best performance for this task3. When using large pretrained
models as a frontend for acoustic feature extraction, we added
a linear projection layer with an output size of 80 [21]. For
the hybrid model, we implemented the TDNNF architecture
following the SOTA approach for hybrid ADSR system [23],
using the Kaldi toolkit [29].

The purpose of comparing the E2E and hybrid models
with the same input features is to assess how these different
architectures handle identical acoustic and articulatory data.
Since E2E models typically require large amounts of data
for training, we are particularly interested in evaluating their
performance in scenarios where only limited paired data is
available. Especially when using large-scale pretrained acous-
tic features, we aim to determine which model—E2E or
hybrid—performs better under these constraints, both with or
without articulatory information.

III. EXPERIMENT

A. Dataset

The TORGO [26] dataset is the only publicly available
resource containing 13127 aligned audio and articulatory
recordings collected from 14 speakers4. Each articulatory
recording is paired with two sets of audio recordings cap-
tured using a head-mounted microphone and an array micro-
phone. The articulatory measurements were collected using
a 3D AG500 electromagnetic articulography (EMA) system.
The advantages of using real articulatory data, as opposed
to synthetic articulatory data generated through acoustic-to-
articulatory mapping [30]–[32], have been discussed in [14].

We used 70% of the dataset for training, 10% for validation,
and 20% for testing [33]. It is important to ensure that the
same utterance recorded using the head and array microphones
(e.g., F03-Session1-array-0001 and F03-Session1-head-0001),
was included in the same subset-either training or test. Table I
presents the detailed data split including the number of hours,
speakers and utterances allocated to various subsets. The

3The model consists of 12 Conformer encoder layers and 6 Transformer
decoder layers, both with output dimensions of 256. The attention mechanism
uses 4 attention heads. The feed-forward layers have 1024 units in the encoder
and 2048 units in the decoder. The model was trained with a CTC weight of
0.3, an attention weight of 0.7, and 500 BPE units.

4Although the TORGO dataset includes 15 speakers (Eight of the speakers
(5 males, 3 females) of the speakers have dysarthria ranging from mild to
severe, while the remaining seven (4 males, 3 females) are typical speakers.),
articulatory data is not available for speaker F01.
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test set was further divided according to different dysarthria
severity levels and different types of speech (e.g., dysarthric
and typical).

TABLE I
DATA SPLIT FOR TRAINING AND TEST.

Name Dur (h) Spk Utterances
Train 7.27 14 8546
Valid 1.07 14 1232
Test 2.13 14 2459

Test subsets 1
Dys 0.79 7 735
Typ 1.34 7 1724

Test subsets 2
Severe 0.27 3 212
M/S 0.17 1 122
Moderate 0.11 1 141
Mild 0.23 2 260

B. Experiment Setup

All experiments apply two-fold speed perturbation [34] to
the training data with factors of 0.9 and 1.1 using SOX [35].
For the Conformer and the Whisper fine-tuning model, we
used a batch bin size of 800,000 [28], with up to 50 epochs
and 2000 iterations per epoch. Early stopping (patience: 3) was
based on validation loss, and the final model was averaged
from the top 5 with the highest validation accuracy [36].
Decoding used a beam size of 10, and for Whisper zero-
shot testing, the temperature was set to 0 additionally. For
the hybrid TDNNF models, following [23], we trained for 10
epochs with a beam size of 15 and a lattice beam size of 8.
Due to the prompt overlap issue in the TORGO dataset, we
used the out-of-domain Librispeech language model (LM) [37]
for decoding, ensuring fair results [38].

The original articulatory (EMA) features (5 ms frame rate)
were resampled to 10 ms and 20 ms to align with the FBank
and acoustic features extracted from XLSR-53, Whisper, and
Whisper-FT. We applied utterance-level mean-variance nor-
malization to both the EMA and acoustic features before
concatenating them along the time dimension.

IV. RESULTS AND DISCUSSION

The first block in Table II presents the WERs for different
acoustic features, with and without EMA features, across
various severity groups of dysarthric speech and averaged
for both dysarthric (Dys) and typical (Typ) speech, using
the Conformer ASR model. The Whisper-FT+EMA model
achieves the best performance (10.5% WER) for dysarthric
speech, particularly for the severe (20.8%) and moderate-to-
severe (M/S) (7.6%) groups5.

Fig. 1 illustrates the performance gain achieved by integrat-
ing EMA features. The left figure in Fig. 1 compares the per-
formance gain for dysarthric (Dys) and typical (Typ) speech.
For dysarthric speech, combining EMA features with Whisper-
FT yields the highest improvement (+22.22%). In contrast,

5We performed statistical significance tests using the Matched Pairs
Sentence-Segment Word Error (MAPSSWE) method [39], following [40].

TABLE II
WERS(%) OF THE ACOUSTIC AND ACOUSTIC-EMA FEATURES

EXPERIMENTS ON TORGO TEST SETS.

Feature Severity group Average
Severe M/S Mod Mild Dys Typ

Conformer model
FBank 66.1 62.3 17.6 8.4 37.1 17.7
XLSR-53 44.6 34.2 10.2 3.2 22.6 11.2
Whisper 60.0 26.0 13.1 3.5 26.6 12
Whisper-FT 32.5 8.8 8.2 1.2 13.5 10.1
FBank+EMA 66.8 75.7 22.9 10.6 41.5 17.1
XLSR-53+EMA 50.5 33.9 13.4 8.8 26.7 16.1
Whisper+EMA 49.2* 27.5 16.9 9.5 26.2 17.1
Whisper-FT+EMA 20.8** 7.6 10.9 1.7 10.5* 11.3

Hybrid-TDNNF model
Whisper 88.5 74.0 80.6 52.2 73.8 65.4
Whisper-FT 47.1 25.2 37.6 18.1 33.3 16.6
Whisper+EMA 71.7 40.6 43.9 21.5 45.8 19.5
Whisper-FT+EMA 54.4 29.0 35.2 18.4 35.3 16.5

Whisper model
Zero-shot test 136.6 42.3 34.4 10.0 59.0 10.8
FT-Whisper 19.0 7.2 10.7 1.5 9.8 2.8

* p < .05; ** p < .001; *** p < .001.
Statistical significance tests were performed between the acoustic-only and acoustic + EMA experiments.

FBank shows a moderate performance drop (-11.86%), indi-
cating that conventional acoustic features do not benefit from
EMA data in the E2E model, unlike the hybrid ASR models in
[38]. XLSR-53 features also show a decline (-18.14%) while
and Whisper features show a slight increase (+1.50%), sug-
gesting that without fine-tuning, large-scale models struggle to
leverage EMA information efficiently. For typical speech, in-
tegrating EMA features results in performance declines across
most features, except for FBank (+3.39%). This indicates
that typical speech is already well-represented by large-scale
pretrained acoustic features, whereas FBank features need
to benefit from additional complementary EMA features to
enhance performance.

The right figure in Fig. 1 helps to better understand how
EMA features impact the performance across different levels
of dysarthric speech severity when using various acoustic
features. It demonstrates that the integration of EMA features
benefits the most for more severely impaired dysarthric speech.
reducing WER by 36% for severe cases when using Whisper-
FT. However, for moderate and mild dysarthria, EMA features
reduce performance across all acoustic features, with Whisper
showing a 171.43% WER increase. Interestingly, the perfor-
mance decline is less pronounced with Whisper-FT (41.67%
vs. 171.43%), further demonstrating the value of fine-tuning
Whisper for feature extraction.

Overall, EMA features are particularly useful for recognis-
ing more severe dysarthric speech, where the acoustic signal
alone may be insufficient. However, as the severity of the
speech impairment decreases, the benefits of EMA features
diminish, and in some cases, their inclusion can reduce model
performance. This highlights the need for selective integration
based on severity.

Fig. 2 shows the training dynamics in terms of CTC-

Authorized licensed use limited to: TU Delft Library. Downloaded on May 01,2025 at 10:13:04 UTC from IEEE Xplore.  Restrictions apply. 



attention loss vs. epoch on the validation set for various acous-
tic feature sets, with and without EMA features. Whisper-
FT features exhibit the fastest convergence and achieve the
lowest validation loss, both with and without EMA features.
The integration of EMA features tends to benefit conventional
acoustic features (i.e., FBank) more noticeably, leading to
faster convergence and improved validation performance6.
However, for large-scale models such as Whisper and XLSR-
53, EMA features have negative impacts, as these models
already capture extensive acoustic information, reducing the
need for complementary articulatory information. When ap-
plying Whisper-FT features, fine-tuning allows the integration
of EMA features to provide slightly additional benefits.

For a fair comparison as mentioned in Section II-B, we
trained four hybrid TDNNF ADSR systems using the follow-
ing inputs: (1) Whisper, (2) Whisper-FT, (3) Whisper+EMA,
and (4) Whisper-FT+EMA. As shown in the middle block of
Table II, although integrating EMA features with Whisper fea-
tures significantly improves performance compared to Whisper
features alone (45.8% vs. 73.8%), the hybrid TDNNF systems
consistently perform worse than the corresponding Conformer
models across all severity groups. This further highlights the
effectiveness of the Conformer architecture, especially when
using large-scale pretrained features and integrating EMA
features, making it the more effective choice for ADSR.

In addition to primary experiments, we implemented zero-
shot testing using Whisper and a fully fine-tuned Whisper
model (FT-Whisper (Note that FT-Whisper refers to the fine-
tuned Whisper ASR model, while Whisper-FT refers to the
acoustic features extracted from the fine-tuned Whisper model,
which are then used in either the Conformer or TDNNF ASR
models.), where only speech data can be used during fine-
tuning. As shown in the bottom block of Table II, the zero-shot
testing results are much worse while FT-Whisper achieves a
significantly lower WER across all dysarthria severity levels.
Although these results outperform our proposed Whisper-
FT+EMA Conformer model, we attribute this to the strong
language modelling capabilities of the decoder in the Whisper
model [2] which was fine-tuned on the TORGO training set’s
prompts (less-variant and easy-learned-read prompts). While
our Conformer models do not use LMs and the TDNNF
models leverage a Librispeech LM for decoding, to avoid
unfair decoding advantages caused by the overlapped training
and test prompts [38]. In addition, Whisper-FT benefits from
a large amount of out-of-domain data in the acoustic model,
while the Whisper-FT+EMA Conformer is trained solely on
in-domain data. Despite this, the Whisper-FT+EMA Con-
former system achieves comparable results (10.5% vs. 9.8%).
Therefore, despite the slightly lower WER achieved by the FT-
Whisper model, we believe our proposed Whisper-FT+EMA
Conformer model remains the best-performing system when
evaluated on a fair and consistent basis.

6Note that the validation loss is averaged across both Dys and Typ speech.
While WER increases for Dys, it decreases for Typ speech, leading to overall
performance improvement.
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V. CONCLUSION

This paper explored the integration of articulatory fea-
tures with acoustic features extracted from large-scale mod-
els (Whisper, XLSR-53 and fine-tuned Whisper) using
Conformer-based E2E models for ADSR. We also compared
the performance with hybrid TDNNF models and the Whisper
ASR models. The results demonstrate that the choice of acous-
tic features and the integration of articulatory data improve
performance, particularly for more severely impaired speech.
The Whisper-FT+EMA Conformer model achieves the best
performance, with a WER of 10.5% for dysarthric speech
and a 36% improvement for the severe group, significantly
outperforming conventional FBank features.

Articulatory features were most beneficial for severely
impaired speech, while their impact on mild dysarthria and
typical speech was limited or negative. Large-scale pretrained
acoustic features such as Whisper and XLSR-53 performed
well, but fine-tuning is important for fully leveraging the
articulatory data. This highlights the importance of using large-
scale pretrained acoustic features and fine-tuning to enhance
model performance. These findings emphasise the importance
of selectively integrating articulatory features based on speech
severity and acoustic features, and perhaps acoustic models.
Future work includes exploring the usefulness of other modal-
ities and further optimising the integration of articulatory
features with large-scare pretrained acoustic features in E2E
models.
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