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Summary

Railway track circuits are electrical systems that are used for train detection. For the safety
and availability of railway networks it crucial that the track circuits function properly. In
order to plan the maintenance of the track circuits in a way that ensures they continue to
function properly, it is important to detect the presence of faults in the track circuits as
early as possible. Additionally, the cause of the fault and the severity of the fault should
be determined. In this thesis a method is proposed to accomplish these tasks based on the
commonly available measurement signals.

In this thesis, artificial neural networks are used to perform the fault diagnosis directly from
the measured signals from several track circuits in a geographic area. Although only a small
amount of measurement data was available during the writing of this thesis, it is most likely
that reasonable amounts of (unlabeled) measurement data will become available at a later
time, as the required data logging equipment has already been installed. To train the net-
works, the small available dataset is analyzed and used together with the currently available
qualitative understanding of the effects of faults on the system to construct a generative
model. The synthetic data produced by this model are then used to train and test the neural
networks.

Artificial neural networks have recently achieved state of the art performance on difficult
pattern recognition problems in several different fields such as image recognition and speech
recognition. These recent successes can be largely attributed to the combination of large net-
works and large labeled datasets. In the condition monitoring domain, large labeled datasets
are generally not available. This prevents the use of the large neural networks that have
become so successful in other fields. In-spite of this, some of the ideas that have become pop-
ular in other domains might still have value in the condition monitoring domain. This thesis
focuses on bringing the Long Short-Term Memory architecture and the concept of end-to-end
learning to the condition monitoring domain. In order to use the large fraction of the data
that is expected to be unlabeled in practice, an unsupervised learning strategy is investigated.
This strategy uses unlabeled data to pre-train a network so that it can more efficiently learn
from the scarce labeled data.

The results show that a neural network trained with the end-to-end learning strategy can
detect faults in track circuits and determine their cause very accurately from the synthetic
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data. The fault performance of the neural network strategy, which uses no prior knowledge of
the system, is comparable to that of a hand crafted method that is based on the same prior
knowledge as the generative model. This proves that a neural network trained with end-to-end
learning can detect faults from the data very accurately and on real data, it would probably
outperform methods based on prior knowledge. It is also shown that a neural network can
estimate the severity of a fault. When only a small amount of labeled data is available, it
is shown that using the unsupervised pre-training strategy gives better results than using a
network that is trained directly with end-to-end learning.

Based on the results in this thesis it seems likely that a Long Short-Term Memory Recurrent
Neural Network could outperform fault isolation methods based on prior knowledge on the
track circuit case. However, further improvements in using the unsupervised pre-training
strategy are necessary to ensure that the amount of labeled data that is expected to be
available in practice is sufficient to achieve this performance.
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Chapter 1

Introduction

To enable the safe and efficient operation of a railway network, it is crucial to detect the
presence of trains in the sections of a railway track. The railway track circuit is worldwide
the most commonly used component for train detection [1]. A railway track circuit detects
trains by sending an electrical current from a transmitter at one end of a section, through the
rails and a receiver at the other end of the section, back to the transmitter. When no train is
present in the section this will cause a high current flow through the receiver. When a train
does enter the section, the wheel-sets of the train short this circuit, leading to a low current
flow through the receiver. This principle is illustrated in Figure 1-1. Based on the current
level in the receiver, the section is reported free or occupied.

There are several factors that influence the current flow through the receiver, both when a
train is present in the section and when no train is present. During normal operation these
current levels vary due to influences from the environmental effects and the properties of the
trains passing through the section. In addition to this, faults can develop in the system and
affect the current levels as well. When these faults reach a certain severity, they can influence

NO TRAIN TRAIN

TransmitterTransmitter ReceiverReceiver

Insulated Joint

Wheel-set

Figure 1-1: Basic working principle of a track circuit.
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2 Introduction

the current levels to the extent that it causes a failure; where the track circuit is no longer
able to correctly classify the section as occupied or free.

To prevent accidents, the track circuit system is designed to be fail-safe. As such, when a fault
in the system leads to a failure, the track circuit should report the presence of a train even
when the track is not occupied. However, when this happens, train delays occur. Moreover,
in-spite of the fail-safe design of the track circuit, there are situations in which the railway
section can be incorrectly reported as free, which can potentially lead to dangerous situations.
Both from the availability standpoint and the safety standpoint it is therefore very important
to prevent track circuit failures. This requires a preventive maintenance strategy to ensure
that components are repaired or replaced before a fault develops into a failure. To schedule
the maintenance of the track circuits in the most efficient and effective manner, it is necessary
to detect faults as soon as possible and to determine the cause and severity of the fault.

In this thesis the following terminology is used: fault detection is defined as determining
whether a fault is or is not present in the system. Fault isolation is defined as the combined
problem of the detection of faults and the determination of the cause of the fault when one is
present. In this thesis fault isolation is a classification problem with seven classes; one for the
healthy state and six for the different fault types considered in this thesis. Fault diagnosis is
defined as performing both the fault isolation task and providing an estimate of the severity
of the fault when one is present. The eventual goal of this research is condition monitoring,
which is defined in this thesis as performing fault diagnosis on a system frequently enough to
enable condition based maintenance.

The monitored variable in the track circuits is the root mean squared value of the magnitude
of the electrical current in the receiver. Using only this information, a condition monitoring
system needs to be able to distinguish between six different fault types and the normal
variation of the track circuit currents. This is made possible by combining signals from several
track circuits in a small area, since the fault types can be identified from their spatial and
temporal dependencies [2]. Additionally, although the variables that determine the normal
variation in the current levels (e.g. train properties, weather, etc) are not measured, they
are latent variables that influence not only the track circuit of interest, but also other track
circuits in the neighborhood. This makes it possible to infer these variables from the current
measurements of a group of track circuits, which allows separating the current variations
caused by normal variation factors from the effects caused by faults.

The six fault types considered in this thesis are:

• Rail contamination

• Insulated joint defect

• Conductive object

• Mechanical rail defect

• Electrical disturbances

• Ballast degradation

T. de Bruin Master of Science Thesis
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An explanation of how these faults affect the electrical current in a railway track circuit
and the definition of their spatial and temporal dependencies used in this thesis is given in
Section 2-5-7.

Qualitative knowledge about the spatial and temporal dependencies of the faults considered
is given in [2]. This knowledge can be used to create a condition monitoring system. In
this thesis however, the view is taken that a more precise relationship between the measured
signals and the condition of a track circuit can be learned from historic measurement data.
To this end, an Artificial Recurrent Neural Network called the Long Short-Term Memory
(LSTM) network [3] will be used.

Artificial Neural Networks have recently achieved state of the art performance on a range of
challenging pattern recognition tasks, such image classification [4] and speech recognition [5].
Although neural networks have been used for condition monitoring for some time, the ideas
that have enabled state of the art performance in image recognition and speech recognition do
not appear to be applied in this domain. This can be partly explained by the fact that these
methods require large amounts of labeled data, something that is generally not available in
the condition monitoring domain, especially of faulty systems. However, this thesis takes the
view that some of the ideas that allow neural networks to achieve state of the art performance
in other domains are applicable to the condition monitoring domain. Therefore the feasibility
of applying these concepts to the track circuit case is investigated.

Currently, not enough measurement data are available to train the network and to verify its
performance. Therefore, the available data are combined with qualitative knowledge of the
fault behaviors [2] to construct a generative model. The neural network is trained and tested
with synthetic data produced by this model. Since the relevant data logging equipment is
already installed, it seems reasonable to assume that enough measurement data will become
available at some future time for the training of the networks. Since this measurement data
will be mostly unlabeled, the unsupervised pre-training of the network is investigated to
minimize the amount of labeled data that will be needed.

The rest of this thesis is organized as follows. The generative model used to generate the
synthetic data to train and test the neural networks is discussed in Chapter 2. Chapter 3
discusses the theoretical foundation of the neural networks used in this thesis and motivates
the choices for the structure of the networks. In Chapter 4 the results of training and testing
the networks with the synthetic data are presented. A summary of the results and the
conclusions of this thesis are given in Chapter 5.

Master of Science Thesis T. de Bruin
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Chapter 2

Generative Model

In this chapter, a generative model is constructed to produce sufficiently realistic synthetic
data samples representing both healthy and faulty track circuit behavior. Note that the
purpose of the synthetic data is to test the ability of an artificial neural network to separate
the effects of faults on the currents in the receiver of a track circuit from the normal variations
of those currents. As a consequence, it is more important that the synthetic data exhibits
comparable variations to real data than that the model accurately calculates the currents.

In [2] the nominal working of a track circuit as well as the qualitative effects of faults on the
behavior of the system have been described. In Section 2-1 a summary of the working of
track circuits is given. Based on this knowledge and a dataset with measurements, the model
is constructed. A description of the dataset used is given in Section 2-2.

Initially, the measured data are fitted to an exponential curves model, which is described in
Section 2-3. In Section 2-4, the values of the parameters of this model that have been fitted
to the data are analyzed. The dependencies of these values on the environmental conditions
during the measurements are investigated and a simpler model is constructed based on the
parameter distributions from the initial model. In Section 2-5, the structure of this simplified
model is summarized and the value distributions and dependencies of the parameters are
discussed for both nominal and faulty cases. In Section 2-6, the sampling strategy for the
data is discussed.

2-1 Track circuit working

The generative model described in this chapter is based on the double rail alternating current
track circuits used in the Netherlands. A detailed description of the working of track circuits
and the effects of the faults considered in this thesis can be found in [2]. This section gives a
brief summary.

An electric model of a track circuit is given in Figure 2-1. This model represents the part
of a railway track that is monitored by one track circuit. This part is called a section. The

Master of Science Thesis T. de Bruin



6 Generative Model

...

...
Rf Rr

75 Hz
110 V

Z1

Z2

Z3

Z4

Z2N−1

Z2N

Zb1 Zb2 ZbN Zc

s1

S1

s2

S2

sN

SN
Ic

transmitter receiver

Figure 2-1: Electrical model of a track circuit. The model describes one track section which is
split into N parts in the model.

transmitter on the left of Figure 2-1 sends an alternating electric current signal through the
rails. When the track circuit is working properly, this signal travels through one of the rails
to the opposite end of the track circuit and through the receiver. It then flows back through
the other rail to the transmitter. In this case, the amplitude of the current passing through
the receiver Ic will be high. As soon as a train arrives in the section, the path from the rails
through the wheels and axle of the train to the other rail will form a short circuit. When the
system is functioning correctly, the resistance of this short circuit will be sufficiently low for
the amplitude of the current through the receiver Ic to immediately drop to a very low level.
The amplitude of the current should ideally stay at this very low level until the last wheel set
leaves the section, at which it should quickly return to the high level.

In the electric model given in Figure 2-1, the section of track that is monitored by a single
track circuit is divided into N subsections along the track. For the n-th subsection, Z2n−1

and Z2n are the impedances of the two rails. When a wheel set is present in subsection n the
switch sn is closed. The resistance Sn represents the short circuit path through a wheel set of
the train. The impedance Zbn represents the short circuit path through the ballast between
the rails in the n-th subsection.

Track circuits are installed in sections of track of different lengths. This will influence the
total impedance of the rails. Furthermore, when rails are joined this creates a locally higher
impedance. Finally, the impedance of the ballast is influenced by factors such as the length
of the track, the cleanliness of the ballast and the weather. It is important to ensure that the
current Ic is sufficiently high when no train is present in the section and sufficiently low as
soon as a train enters, in spite of these variations. To achieve this, the adjustable resistances
Rr and Rf are tuned manually for each track circuit.

2-2 Measurement dataset

The dataset that is used in this research to construct a model of the normal (healthy) be-
havior of track circuits contains measurements of the current flowing through 3 track circuits
spread over 2 neighboring tracks that are located at station Beilen in the Netherlands. These
track circuits are indicated with TCA, TCB and TCC . Their relative locations are shown
in Figure 2-2. Track circuits TCA and TCB are located in consecutive sections on the same
track and TCC is on a parallel track next to TCA. All sections are next to platforms in the
station.

T. de Bruin Master of Science Thesis



2-3 Generative model structure 7

TCATCB

TCC

Figure 2-2: Relative locations of the track circuits in the dataset.

Measured data

During a period of 1 year, the following 2 types of measurements have been taken on the 3
track circuits:

1. Train Passing: When the root mean squared value of the receiver current Ic drops
below a certain threshold, a train is presumed to be present in the section. When the
root mean squared current rises above the threshold again the train is assumed to have
left the section. Between these times the train is presumed to be in the section and a
train passing event is occurring. The detection of this event from the measured current
triggers the storage of measurement data. Note that the event is registered when the
current level drops to a sufficiently low level. This means that the data are only stored
correctly when the track circuit does not suffer from a fault that is so severe that it
causes a failure. A fault that has not yet developed into a failure does not affect the
data storage. The following data are stored for each registered train passing event:

(a) The date and time of the train passing event

(b) The root mean squared value of the receiver current Ic(t) from 2 seconds before
the train arrives until 2 seconds after the train leaves the section, measured every
40 milliseconds.

2. Empty track: When no train is present, every 15 minutes a measurement is saved
with the following data:

(a) The date and time of the measurement.

(b) The maximum, average and minimum values of the current during the 15 minutes.

The dataset that is available will be used to model the normal (fault free) behavior of a track
circuit. It is assumed that the three track circuits in the data set do not suffer from faults.

2-3 Generative model structure

Although the current Ic could be calculated from the electrical model of Figure 2-1, the values
of the impedances and their quantitative dependencies on faults are not known. Addition-
ally, the aim of the generative model is not to exactly model the electrical current in the
receiver, but rather to produce synthetic data that are similar to those from the data logging
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8 Generative Model

equipment connected to the receivers. This measuring equipment has dynamics of its own
that are not included in the electrical model. Therefore, instead of constructing a model
from first principles, a simple model is used instead which is made of several exponential
curves with a structure that was empirically found to fit the real measurements well. This
model is then fitted to a large dataset of measured current values during train passings and
it is attempted to find the quantitative dependencies of the model parameters on the known
influences present during the historical measurements. Based on the parameters found for
the relatively expressive model discussed in this section a simplified model is constructed in
Section 2-4.

During a train passing event, four phases can be distinguished. These phases are indicated
in Figure 2-3:

Time [s]
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Figure 2-3: Measured current in a track circuit while a train passes and a model of the form of
(2-1) fitted to it.

• Phase 1: Between t0 and t1 the train has not yet arrived in the section. During
this phase the current Ic(t) through the receiver should therefore be at the high level:
Ic(t) = Ihigh.

• Phase 2: At t = t1 the first wheel-set of the train enters the section. In Figure 2-1
this can be represented as closing s1. If the resistance S1 of the wheel set short circuit
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2-3 Generative model structure 9

connection is low enough this should result in a very quick drop of Ic(t) to its low
value Ilow. However, in a large portion of the samples in the dataset the current drop
is more gradual. By fitting a number of samples from three different track circuits to
several equations for step responses it was found that this phase could be accurately
and robustly described by a second-order model with the transient response of the form:
Ic(t) = α1e−(t−t1)/τα1 + β1e−(t−t1)/τβ1 .

• Phase 3: Although ideally Ic(t) = Ilow should hold until the last wheel-set of the
train leaves the section, in the majority of the samples in the dataset the current starts
to increase before this time. The curve between t = t2 where the current is at the
lowest level and t = t3 where the last wheel-set leaves the section can take different
forms. These are discussed in section Section 2-4. In almost all cases this curve can be
accurately described by a function of the form: Ic(t) = α2e(t−t2)/τα2 + β2e(t−t2)/τβ2 .

• Phase 4: After the last wheel-set leaves the section at t = t3 the current Ic(t) quickly
increases to a value near Ihigh. On some of the samples some overshoot is observed
and on some samples a trend after the step is observed. Although a first order step
response was found to accurately describe many of the samples, a function of the form
Ic(t) = α3e(t−t3)/τα3 − β3e−(t−t3)/τβ3 was found to represent these less common cases as
well and is therefore chosen for the initial expressive model.

The initial expressive model that is fitted to the measured data has the following form, with
∆Imax = Ihigh − Ilow:

Ic(t) =



























Ihigh for t < t1 (Phase 1)

Ilow + ∆Imax

(

α1e−(t−t1)/τα1 + β1e−(t−t1)/τβ1

)

for t1 ≤ t < t2 (Phase 2)

Ilow + ∆Imax

(

α2e(t−t2)/τα2 + β2e(t−t2)/τβ2

)

for t2 ≤ t < t3 (Phase 3)

Ilow + ∆Imax

(

α3e(t−t3)/τα3 − β3e−(t−t3)/τβ3

)

for t ≥ t3 (Phase 4)

(2-1)

2-3-1 Model fitting

To fit all of the available data to the model given in (2-1), for each of the measurement
sequences from the data logging equipment the times t1, t2 and t3 need to be determined.
This was done by defining the times in the following way:

• t1: the time of the measured sample before the sample with the largest negative one
step difference to the next sample.

• t2: the last index of the 10 sample average with the lowest value.

• t3: the time of the measured sample before the sample with the largest positive one
step difference to the next sample.

After this, the value of Ihigh is taken as the average of the samples up to t1. The value of Ilow

is taken as the lowest 10 sample average. Then, the data from the subsequences representing
phase 2, phase 3 and phase 4 are fitted to the equations given in (2-1) with the lsqnonlin

matlab function.
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10 Generative Model
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Figure 2-4: Train passing measurement with two types of data corruption. The first 8 seconds
are corrupted by a disturbance signal. After about 8 seconds the train is present in the section but
the measurement reaches its maximum length of 40.96 seconds with the train still in the section.

2-3-2 Dataset problems

Problems exist with the dataset. One issue is that the train passing measurements are at
most 40 seconds long. Since all 3 of the track circuits are located next to a platform in a
station, trains quite often stay in the section for longer than this time period. The train
passing measurements that suffer from this type of data corruption have a current level at
the end of the measurement period that is far too low and can be automatically identified.
An additional problem is that when an empty track measurement is taken after one of these
train passing measurements is finished, the minimum and average values of the empty track
measurement are too low as the train is still in the section when the measurement starts.
This type of data corruption was automatically detected in about half of the samples. This
matches up well with the time table of trains scheduled to pass station Beilen. About half of
these trains are scheduled to stop at the station and the other half is not.

Aside from these problems stemming from the limited maximum measurement length, a
significant portion of the data is corrupted by a disturbance signal with a large amplitude.
The origin of this signal is unknown. One possibility is that it is related to the Automatische
Trein Beinvloeding (automatic train influencing) (ATB) signal, which is an electric signal that
is part of a safety system which is transmitted through the same cables. Not all measurements
are affected by the disturbance signal and not all track circuits are affected equally. Most
of the samples with this type of data corruption come from TCB. The samples that are
corrupted by this disturbance signal can be detected automatically fairly reliably from their
one step difference signal. However, this does not ensure that the data are uncorrupted.
An example of a measurement suffering from both the disturbance signal and the limited
measurement length problems is shown in Figure 2-4
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Table 2-1: Dataset properties.

Track circuit TCA TCB TCC

Total train passing events measured 25349 30402 32361

Usable models extracted 12502 6570 10470

Retained data

To ensure that most of the used data is uncorrupted and therefore representative of the normal
behavior of a track circuit, the data of a train passing are fitted to a model which was found
to describe a large number of the train passings accurately. This model is described in the
next section. By only retaining the measurements that are described accurately by the model,
it is ensured that there are no large anomalies in the retained data samples. The criteria that
are used to determine that a fitted model describes the measured data during a train passing
event well enough are:

1. The mean squared error between the measurements and the fitted model is below 6·10−5

2. The absolute value of the mean difference between the measurements and the fitted
model is below 2 · 10−3

These values have been chosen by visually comparing samples of fitted models to the measured
data with increasing errors and determining the minimal error values for which bad samples
started to appear. In Table 2-1 the number of fitted models that have been retained are given
for the three track circuits in the data-set.

2-4 Parameter dependencies and model simplification

In this section the values of the parameters of (2-1) that were found by fitting this model to
the retained measured data are investigated. Based on the parameter distributions found, a
simplified model is proposed.

The influences of the presumed factors of variation on the parameters of interest are verified
using the Analysis of Variance (ANOVA) test. In the figures presented in this section that
investigate these dependencies, the parameters of interest will be given along the vertical axis.
The measurements were grouped according to the suspected factors of variation, given along
the horizontal axis. If the parameter of interest in a figure is indeed dependent on the factor
of variation used for the grouping of the measurements, the means of the different groups
should differ significantly. If the presumed dependency is not present, the different groups
should all be realizations of the same distribution. The ANOVA test gives the probability
p0 that all groups contain realizations from the same distribution. Therefore, lower values of
p0 indicate that it is more likely that there is a dependency between the suspected factor of
variation and the parameter of interest. The value of p0 is included with all figures in this
section that investigate these dependencies.
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Figure 2-5: Cumulative density distributions of Ihigh per track circuit.

Table 2-2: Current values per track circuit based on 80% probability density.

Track circuit TCA TCB TCC

Ihigh lower bound [A] 0.365 0.394 0.436

Ihigh upper bound [A] 0.379 0.444 0.460

Ilow lower bound [A] 0.015 0.019 0.014

Ilow upper bound [A] 0.022 0.023 0.021

2-4-1 High and low current values

The most important parameters in the model are the values of the current with no train in the
section Ihigh and the value when the current is at its lowest Ilow. To investigate the natural
variation of these values, the fitted models of the form of (2-1) have been investigated. Some
extreme values occur that are likely the result of undetected data corruptions or abnormal
behavior of the track circuits. To get an idea of the normal behavior, only the 80% most
common values are considered. For example, in Figure 2-5 the cumulative densities of the
values of Ihigh are given. The lower and upper bounds that will be considered normal behavior
are the values with a cumulative density of 0.1 and 0.9 respectively. Using this method the
ranges of Ihigh and Ilow are collected for all three track circuits and given in Table 2-2.

The values of Ilow are very consistent for all three track circuits. Furthermore, over the period
of a year 80% of the measurements differed at most by 7 · 10−2 A. Since the measurement
resolution is 6 · 10−2 A, these values are presumed constant during normal behavior.

The values of Ihigh show more variation. There is a difference between the different track
circuits which can be the result of the differently tuned resistances Rf and Rr. For each track
circuit there is also variation between the different measurements. An explanation for these
variations can be sought in Figure 2-1. The voltage source, the tuning of the track circuit and
the impedance of the rails are presumed to be constant. Therefore, when no train is present
this variation should be caused by the varying impedance of the ballast Zb. This value is
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Figure 2-6: Dependency of Ihigh on the time of the day [p0 = 1.5 · 10−2].

dependent on the environmental conditions.

To investigate the dependencies that can explain the variations of Ihigh independently of the
tuning of a particular track circuit the values have been normalized through:

INORM
high =

Ihigh − ILOW
high

IHIGH
high − ILOW

high

(2-2)

Where ILOW
high and IHIGH

high are the lower and upper bounds of the 80% most common values
for the same track circuit, as given in Table 2-2. This way, the effects can be more easily
compared and the extent to which a dependency explains the variation becomes more clear.
Track circuits TCA and TCC showed similar responses to different environmental conditions
but track circuit TCB did not show any dependency on environmental conditions. This fact
will be reflected in the generative model by giving each separate track circuit a stochastic
sensitivity to environmental effects. In this section only the behavior of track circuits TCA

and TCC is considered.

Since environmental conditions tend to change throughout the day, the normalized values of
Ihigh are averaged per hour in Figure 2-6. It can be seen that the values of Ihigh follow a
trend that can be approximated by a sine wave. The current with no train present is highest
around 3 at night and lowest around 3 in the afternoon.

The environmental conditions at the times of the measurements can be approximated. For
the two weather stations closest to the location of the track circuit, the daily weather data
were downloaded for all days during the measurement period. Through linear interpolation
based on the distance between the weather stations and the location of station Beilen, the daily
environmental conditions that influenced the condition of the ballast have been approximated.
In Figure 2-7 these conditions are compared to the daily average values of Ihigh for track
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(b) Dependency on precipitation [p0 = 4.1 · 10−8].

Figure 2-7: Dependency of the normalized values of Ihigh on the environmental conditions. The
values for Ihigh are normalized according to (2-2).

circuits A and C. It would seem likely that wet conditions would lead to a lower impedance of
the ballast, leading to a lower value of Ihigh as more current flows between the rails through
the wet ballast instead of through the receiver. This effect can indeed be seen from Figure 2-7.
For high relative humidities the value of Ihigh becomes lower. When it rains this effect is even
stronger.

2-4-2 Phase 2 parameters

The second part of (2-1) describes the current through the receiver from the train entering the
section at t1 until the current reaches its lowest point at t2. This phase of the train passing
events is fitted to the model:

Ic(t) = Ilow + ∆Imax

(

α1e−(t−t1)/τα1 + β1e−(t−t1)/τβ1

)

for t1 ≤ t < t2

When examining the fitted values for τα1 and τα2, it was found that these parameters took
similar values for most measurements in all three track circuits. To simplify the model these
parameters are therefore taken as constants. Their values are taken as the average values for
all 3 track circuits:

• τα1 = 0.108 s

• τβ1 = 0.588 s

Given the form of (2-1) it should hold that α1 + β1 = 1. With τα1 and τβ1 fixed this leaves
just one free variable for this phase. This variable will be called R and leads to a simplified
model for this phase:

Ic(t) = Ilow + ∆Imax

(

(1 − R)e−(t−t1)/τα1 + Re−(t−t1)/τβ1

)

for t1 ≤ t < t2 (2-3)
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(a) Cumulative density of R values per track circuit.
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Figure 2-8: Distribution and dependencies of the R value in (2-3).

The quick step response of a properly working track circuit that shorts well once the first wheel
set enters is represented by τα1. The part represented by τβ1 is much slower and presumably
models the lowering of the train shunt resistance when more wheel sets gradually enter the
section over time. This can be seen in Figure 2-1 as closing subsequent switches s1, s2, s3, ...
over time. With these two explanations of the time constants, the parameter R can be seen
as a measure of the relative resistance of the train shunt Sx compared to the resistance of the
path through the receiver. Higher values of R correspond to a slower drop in the current and
thus a higher resistance of the path through the train.

The measured data have been refitted to equation (2-3). From Figure 2-8a the distributions
of the R values for the three track circuits can be seen. It is clear that the values are track
circuit dependent. This can be explained by the fact that R depends on the ratio between
the resistance of the train shunt and the impedance of the path through the rails and the
receiver. This second path includes the tunable resistance Rr.

Apart from the dependence on the track circuit tuning, R should also be dependent on the
train properties. In theory, lightweight trains can have a higher resistance due to the fact that
the contact between the wheels and the rails is less good than for heavy trains. To investigate
this effect, in Figure 2-8b the R value in TCA is compared to the value of R in TCB when the
same train passes. This is achieved by considering train passing events less that 60 seconds
apart. The value of p0 = 1.0 · 10−9 that is the result of the ANOVA test indicates that there
is a dependency of R on the specific train passing event and therefore most likely on the train.
However, this dependency fails to fully explain the variation of the parameter R.

2-4-3 Phase 3 parameters

The third part of (2-1) describes the current through the receiver from the lowest point at t2

until the last wheel-set leaves the section at t3. To the measured data samples of this phase
a model of the following form has been fitted:

Ic(t) = Ilow + ∆Imax

(

α2e(t−t2)/τα2 + β2e(t−t2)/τβ2

)

for t2 ≤ t < t3
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16 Generative Model

For a healthy track circuit the current could be expected to remain at the low level Ilow during
this time. However, as can be seen from Figure 2-3, this is not always the case. By analyzing
the parameters of the curves that were fitted to the data of this phase, it is found that there
are curves with positive, negative and constant derivatives. In track circuits TCA and TCB

most of the measurements showed a mostly linear trend. This does not hold for most of the
measurements of track circuit TCC , which show an asymptotic step response like trend. In
Figure 2-9 representative samples are shown from the three track circuits.

In spite of the fact that it does not accurately describe the current development in track circuit
TCC , a linear function was chosen as a simplified model for this phase. Using a linear function
of time makes it possible to describe the behavior of the current with just two parameters.
These are:

• t2: The time at which the current starts to rise.

• ∆I3: The fraction of ∆Imax that the current has risen between t2 and t3, where t3 is
the moment the last wheel-set leaves the section.

Since with a good wheel-shunt ∆I3 should be near 0, this value should be descriptive of the
quality of the wheel-shunt. The simplified model of the current for this phase is now:

Ic(t) = Ilow + ∆Imax

(

(t − t2)
∆I3

(t3 − t2)

)

for t2 ≤ t < t3 (2-4)

The cumulative densities of the values for ∆I3 that were found by refitting the data to this
simplified model are given in Figure 2-10.

From Figure 2-1 it can be seen that it would only make sense for the current to start rising
significantly when the front of the train has left the section and the rear of the train is
completely in the section. If the length of the train is equal to the length of the section this
point would be about halfway between the first wheel-set entering at t = t1 and the last
wheel-set leaving the section at t = t3. For trains that are shorter or longer than the section
this moment would be later. In Figure 2-11 the cumulative distributions of the normalized
moment the current starts rising (t2 − t1)/(t3 − t1) are given. For track circuits TCB and
TCC the starting moment t2 is indeed about halfway between t1 and t3 and for TCA it is
somewhat later. This makes it likely that t2 can indeed be defined as the moment the last
wheel set is in the section and the first wheel set leaves the section.

Since ∆I3 should be related to the relative resistance of the wheel shunt compared to the
path through the receiver, it should be dependent on the train. In Figure 2-12 the normalized
values of ∆I3 are given for TCA compared to the values associated with the same train in
TCB. It can be seen that most of the variation of ∆I3 is indeed dependent on the train.

Since both R and ∆I3 should be higher for trains with a high shunt resistance it is expected
that there is a strong correlation between these parameters. In Figure 2-13 the normalized
values of R are compared to the normalized values of ∆I3 for the same train passings in TCA.
From this it appears that these parameters are completely unrelated. The ANOVA value of
p0 = 0.54 confirms this. For TCB and TCC the same lack of correlation was found. When
comparing Figure 2-12 to Figure 2-8 it can be seen that ∆I3 is more strongly related to a
specific train than R. This makes it likely that ∆I3 is descriptive of the train shunt resistance
and the variation in R is related to other factors.
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(b) Example from track circuit TCB.
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(c) Example from track circuit TCC .

Figure 2-9: Fit of the simplified model for phase 2 and 3.
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Figure 2-10: Cumulative densities of ∆I3 per track circuit.
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Figure 2-11: Normalized starting moment of the rising current t2−t1
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Figure 2-12: Dependency of ∆I3 on the train [p0 = 5.3 · 10−94].
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Figure 2-13: Relationship between ∆I3 and R [p0 = 5.4 · 10−1].
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(a) Values of τα3 in the original model.
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Figure 2-14: Modeling of the fourth phase of the train passing event.

2-4-4 Phase 4 parameters

The fourth section of the model is the current step that takes place after the last wheel set
of the train leaves the section. A model of the form:

IC(t) = Ilow + ∆Imax

(

α3e(t−t3)/τα3 − β3e−(t−t3)/τβ3

)

for t ≥ t3

has been fitted to all the data samples of this phase. The time constant τβ3 represents the
step and the time constant τα3 represents the behavior after the step.

In Figure 2-14a the cumulative densities of the time constants τα3 are given for the three track
circuits. For track circuits A and B these time constants represent approximately a slight
linear upwards or downwards trend after the initial step. Since the time constants are very
large and distributed evenly around infinity (representing a constant) this part of the model
is replaced with:

Ic(t) = Ilow + ∆Imax

(

1 − e−(t−t3)/τ3

)

for t ≥ t3 (2-5)
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With τ3 = τβ3. The values of τβ3 for the fitted models of the three track circuits were
examined. This revealed that for 80% of the values from track circuits TCA and TCC the
95% rise-time differed less than 0.1 seconds. For track circuit TCB 80% of the 95% rise-
time values were within 0.3 seconds. Additionally, none of the considered faults is expected
to influence this parameter. Therefore it is likely that no relevant information about the
condition of the track circuit is conveyed in this phase. As a result the time constant τ3 is
fixed at the average value:

• τ3 = 0.080 s

For track circuit B it can be seen from Figure 2-14a that the assumption that τα3 = ∞ is a
worse approximation than it is for the other two track circuits. The current in track circuit
TCB tends to drop down after the initial step up. In Figure 2-14b the mismatch between the
simplified model and the measurements is given for τα3 = −8 s. For 90% of the measurements
from track circuit TCB and almost all of the measurements from track circuits TCA and TCC

the mismatch is less than that represented in Figure 2-14b. Based on this observation it seems
that the simplified model of (2-5) fits the data well enough.

2-5 Generating synthetic data

So far, real measured data has been used to create a simple model that describes the behavior
of the measurements from a railway track circuit. In this section it will be discussed how this
model will be used to create synthetic data. The generative model will be used to generate
data sets that contain many input sequences for neural networks, where each sequence contains
current measurements Ic(t) from many train passing events T in several track circuits in a
geographic area. For each of the sequences the properties of the track circuits will be different,
as it has been found in the previous section that each track circuit behaves differently and the
eventual condition monitoring system should work irrespective of which specific track circuit
it is monitoring.

The simplified model that describes the current Ic(t) during a single train passing event in a
single track circuit is:

Ic(t) = Ilow + ∆Imax



























1 for t < t1

(1 − R)e−(t−t1)/τα1 + Re−(t−t1)/τβ1 for t1 ≤ t < t2

(t − t2) ∆I3

(t3−t2) for t2 ≤ t < t3

1 − e−(t−t3)/τ3 for t ≥ t3

(2-6)

With the following values for the time-constants:

• τα1 = 0.108 s

• τβ1 = 0.588 s

• τ3 = 0.080 s
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And ∆Imax = Ihigh − Ilow. It is assumed that the value of Ic(t) between two train passings
will follow a linear trend from the value of Ihigh during the first train passing to the value
of Ihigh during the second train passing. The difference between these values is expected to
be minimal. As a result, for each track circuit, the (synthetic) current value Ic(t) can be
calculated at any time if the values of Ilow, Ihigh, R, ∆I3, t1, t2 and t3 are known for the train
passing events. The time values t1, t2 and t3 are defined in the generative model as:

• t1: the moment the first wheel set enters the section.

• t2: the moment the first wheel set has left the section and the last wheel set is already
in the section.

• t3: the moment the last wheel set leaves the section.

The speed of the trains is presumed constant while they pass through the section, which
makes the calculation of the times t1, t2, t3 relative to the start time of a train passing event
trivial:

t1 = 0 (2-7)

t2 =

{

LS/VT if LT ≤ LS

LT /VT if LT > LS

(2-8)

t3 = (LT + LS)/VT (2-9)

Where LS is the length of the section, LT is the length of the train and VT is the velocity of
the train. The generation of the values of the other variables is discussed in the next section.

2-5-1 Probabilistic parameter values

In Section 2-4 the dependencies of the model variables Ihigh, Ilow, R and ∆I3 on measurable
quantities have been investigated. These dependencies will be used in the generative model.
However, the dependencies found only partly explain the variation over time of these param-
eters that is observed in the measured data. The aim of the generative model is to generate
synthetic data with similar variation as the measured data. This way, the ability of a neural
network to learn to distinguish trends in the data caused by faults from normal variations in
the data can be investigated. To test the learning ability of the network, generating data that
have a realistic amount of variation is more important than making sure the values are based
on well understood dependencies, or even the correctness of the current values generated by
the model. Therefore, several sources of random variation will be added to the model.

2-5-2 Generating Ihigh

By inspecting Figure 2-15a it can be seen that there are a number of properties that determine
the value of Ihigh that differ per track circuit. Not only does the average value of Ihigh differ
per track circuit, but also the amount of variation of Ihigh over short- and over long time-
periods is track circuit dependent. Finally, it can be seen that there are trends that occur
in all track circuits with different intensities. To replicate this behavior several sources of
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(b) Synthetic data sample.

Figure 2-15: Values of Ihigh over the period of a year with no faults.

random variations are added and the sensitivity of the track circuits to these sources are
drawn from probability distributions.

The probability distributions that the track circuit parameters are sampled from are chosen
based on the assumptions that the three track circuits in the available dataset all represent
normal behavior and together span most of the range that defines normal behavior. Therefore,
the track circuit parameters are drawn from distributions that are chosen in such a way
that the behaviors of the three track circuits in the dataset are likely realizations of those
distributions.

The value of Ihigh is generated by the model for every train passing event T and every track
circuit TC according to the following formula:

Ihigh(TC, T ) = IN
high(TC) + IV

high

(

W (t)Sw(TC) + T (T )ST (TC) + R1(T )SR1 + R2(T )SR2

)

+ SW

(

R3(t) + R4(T )
)

+ ∆IF
high (2-10)

With the following parameters:

• IN
high(TC): The nominal value of Ihigh for the given track circuit. This value is deter-

mined when the track circuit is created and does not change over time.

• IV
high(TC): The amount of short-term variation of the particular track circuit per train

passing. In Figure 2-15a it can be seen that in the given dataset the value of Ihigh varies
a lot more per data point for TCB than it does for the other two track circuits. It can
also be seen that the amount of short-term variation is not necessarily related to the
amount of long-term variation.

• W (T ): The short-term environmental influences. Primarily the wetness of the ballast.
This value is calculated as described in Section 2-5-3.
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• T (T ) : The sinusoidal influence of the time of the day on the value of Ihigh as shown in
Figure 2-6.

• Sx(TC): Denotes the sensitivity of the track circuit to changes in variable x. For
example, the sensitivity of the current Ihigh on the weather conditions SW (TC) might
be dependent on the properties of the ballast between the rails. The sensitivities to the
different sources of variation are all presumed independent for simplicity. In reality this
is not likely to be the case.

• R1(T ), R2(T ): Short term random effects. These are drawn from their probability
density functions for every train passing event. The value of R1(T ) is unique for every
track circuit and the value of R2(T ) is shared among all track circuits in the area.

• R3(T ), R4(T ): Long term (seasonal) random effects. These values are used to imitate
the long-term trends found in Figure 2-15a. The value of R3(T ) is track circuit specific
and that of R4(T ) is shared among all track circuits in the area. Since these long-term
effects are presumed to be seasonal, their influence is determined by the track circuits’
sensitivity to the environmental conditions SW (TC). The values are updated during
every train passing by adding a new random number to the bias.

• ∆IF
high: The bias of Ihigh due to the presence of a fault in the track circuit. A failure

is defined in the model as Ihigh being lower than 0.2 A. The severity of a fault F (T )
ranges from 0 (no fault) to 1 when the fault causes a failure. ∆IF

high is calculated as:

∆IF
high(T ) = F (T )(0.2 − IN

high(TC)). The development of F (T ) for different faults is
discussed in Section 2-5-7

The track circuit properties are sampled from the distributions given in Table 2-3. The
values of the short-term random variation sources are drawn from the distributions given in
Table 2-4. The values of the updates to the long-term variance biases are drawn from the
distributions described in Table 2-5.

2-5-3 Generating W (t)

The (short-term) environmental influence W (t) represents the influence of the weather on the
ballast impedance. In Section 2-4-1 the relative humidity and precipitation were identified as
causes of this variation. However, the relative humidity is highest during the night and lowest
during the day which would lead to a value of Ihigh that is lowest during the night and highest
during the day. This directly contradicts Figure 2-6. Therefore, in the generative model only
precipitation is taken into account.

Based on Figure 2-7b light and heavy rain are defined. Whether there is rain is decided per
day. Based on data from the Dutch meteorological institute the chance of a day with rain is
defined as: 140/365. The chance of a rainy day being a day with heavy rain is 25/140.

For every train passing event the variable W (T ) is updated according to:

W (T ) = 0.85W (T − 1) + min(P (T ), 0) (2-11)

Where P (T ) is the added precipitation influence at train passing event T , which is drawn
from the probability function given in Table 2-4 based on the presence of light or heavy rain
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Table 2-3: Track circuit properties. For each created sequence of train passing events the prop-
erties of the considered track circuits are drawn once from these uniform or normal distributions.

Uniform distribution Normal distribution

Variable min max µ σ

IN
high 4.2 · 10−1 2.5 · 10−2

IV
high 2.5 · 10−2 7 · 10−2

IN
low 2 · 10−2 1.7 · 10−3

IV
low 1 · 10−3 3 · 10−3

RN 2 · 10−1 1 · 10−2

RV 1.8 · 10−1 1 · 10−2

∆IN
3 1 · 10−1 2.5 · 10−1

∆IV
3 4 · 10−2 5 · 10−3

SW 8 · 10−1 1.67 · 10−1

Strain 1 · 10−1 1.67 · 10−1

ST 1 · 10−1 2 · 10−2

SR1 1.5 · 10−1 1 · 10−1

SR2 5 · 10−2 8.3 · 10−2

Table 2-4: Short term random variation parameter distributions. For each train passing event
T the values of the variation sources are drawn from these normal distributions.

Variable µ σ

R1, R2, R5, R6 0 5 · 10−1

R10 0 6 · 10−2

R14 0 1 · 10−3

Plight rain −1 · 10−2 8 · 10−2

Pheavy rain −6 · 10−2 1.5 · 10−1

Table 2-5: Long term random variation parameter distributions. for each train passing the values
of the bias terms are updated by adding a sample from these uniform distributions.

Variable min max

R3, R4 −1.5 · 10−4 1.5 · 10−4

R7, R8 −3 · 10−5 3 · 10−5

R9 −1.5 · 10−2 1.5 · 10−2

R11, R12 −2.5 · 10−4 2.5 · 10−4

R13 −1.5 · 10−1 1.5 · 10−1

R15, R16 −2 · 10−4 2 · 10−4
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on the given day. Note that a ’train passing event’ T is used as a measure of time in the
model. The reason for this is given is Section 2-6.

2-5-4 Generating Ilow

The value for Ilow is determined per train passing event for every track circuit according to:

Ilow(TC, t, train) = IN
low(TC) + IV

low(TC)
(

Strain(TC)L(train) + R5(t) + R6(t)
)

+
(

R7(t) + R8(t) + W (t)R9(t)
)

+ ∆IF
low (2-12)

The first part of this equation deals with the short term variance. The variable L(train)
represents the lightness of the train, with lighter trains causing higher values of Ilow due
to the corresponding higher value of the train shunt resistance S. The weight of the train
is drawn from a probability distribution for every train. The probability distribution has
a different mean value for every hour of the day, with the mean of the weight being lower
at night and higher during rush hours. The variables R5(t) and R6(t) are the short term
variation random variables for the track circuit and the area respectively. Similarly, R7(t)
and R8(t) are the long term random variation variables.

The term W (t)R9(t) imitates the spikes visible in Figure 2-16a. These spikes happen only on
occasion, roughly as often as there is rain. Therefore the soil dampness term is multiplied by
a random number from a uniform distribution centered around zero, causing both positive as
well as negative spikes. Here again replicating the variation in the data is favored over the
psychical correctness of the model. In reality the condition of the ballast should have little
effect on Ilow as the electrical path through the wheel sets has a significantly lower resistance
than the path through the ballast.

Measurement day

0 50 100 150 200 250 300 350

I h
 [
A

]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

TC
A

TC
B

TC
C
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(b) Synthetic data sample.

Figure 2-16: Values of Ilow over the period of a year with no faults.

The term ∆IF
low represents the bias of the current due to the presence of a fault in the track

circuit. A failure is defined in the model as Ilow being higher than 0.2 A. The severity of a
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(b) Synthetic data sample.

Figure 2-17: Values of R over the period of a year with no faults.

fault F (t) ranges from 0 (no fault) to 1 when the fault causes a failure. ∆IF
low is calculated

as: ∆IF
low(t) = F (t)(0.2 − IN

low(TC)).

2-5-5 Generating R

The value for R is determined per train passing event for every track circuit according to:

R(TC, t, train) = RN (TC) + RV (TC)
(

Strain(TC)L(train) + R10(t)
)

+
(

R11(t) + R12(t) + W (t)R13(t)
)

+ 2∆IF
low (2-13)

With R10 the short term track circuit specific random variation and R11 and R12 the long
term track circuit specific and area variation respectively. The parameter R13 has been added
for the same reason as R9 in (2-12). Here R13 is always positive to replicate the upwards
spikes seen in Figure 2-17a.

The value of ∆IF
low will be around 0.2 when a fault is present in the track circuit that prevents

a good train shunt. When this is the case R should be higher as well. Therefore the term
2∆IF

low is added to ensure that the value of R is around 0.6 for faulty track circuits.

2-5-6 Generating ∆I3

The value for ∆I3 is determined per train passing for every track circuit according to:

∆I3(TC, t, train) = ∆IN
3 (TC) + ∆IV

3 (TC)
(

Strain(TC) 4L(train) + R14(t)
)

+
(

R15(t) + R16(t)
)

+ 2∆IF
low (2-14)

This equation has a similar structure to (2-13) apart from the larger emphasis on the weight
of the train. This is in accordance with Section 2-4-3 where it was found that ∆I3 is more
strongly related to a specific train than R.
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Figure 2-18: Values of ∆I3 over the period of a year with no faults.

2-5-7 Generating faults

The fault intensity F (t) is generated based on a slightly changed version of the behaviors
described in [2]. For the generated time sequences the track circuits are always healthy at
the start of the experiment. There is at most 1 fault present in the sequence, which starts
developing after an initial fault free period has passed. The length of this fault free period is
sampled from a uniform distribution of between 0.1 and 0.3 times the length of the complete
sequence. This is done to introduce variation in the generated data while ensuring that most
faults will be noticeable before the end of the sequence. There are three types of spatial
dependencies considered in the model. These are:

• D1: Only one track circuit is affected by the fault.

• D2: The fault affects all track circuits on one of the two tracks.

• D3: The fault affects all track circuits on both tracks.

When a fault has more than one possible spatial or temporal dependency listed, one of those
is chosen at random for every sequence generated with that fault. The following fault types
are implemented in the model:

• Rail contamination: In the model it is assumed that the rail contamination is caused
by leaves falling on the rails during autumn. The intensity of the problem is presumed
to follow the first half of a sine wave, with the problem starting when the first leaves
start to fall, intensifying until the most leaves per day fall in the middle of autumn and
then decreasing again until there are no more leaves on the trees to fall. Since the leaves
on the tracks form an insulating layer that increases the resistance of the electrical path
through the wheel sets of the trains this problem influences ∆IF

low(t).

– Spatial dependency: D3.

– Length of autumn period in days: drawn from a normal distribution with: µ =
50, σ = 5.
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– Maximum fault intensity: drawn from a normal distribution with: µ = 0.3, σ = 0.1.

• Insulated joint defect: When the joints that ensure the electrical insulation between
different track circuits wear out, the track circuit current from one track circuit could
leak to a neighboring track circuit. The track circuits have been designed in such a way
that this would not cause the measured current in the track circuit that it leaks into to
increase. However, it would cause the current in the track circuit that it leaks out of
to decrease. As such, this fault influences ∆IF

high(t) for that one track circuit. As this
problem is caused by the wear of the joints it is presumed to increase either linearly or
exponentially with every passing train. The amount of trains that need to pass over the
track circuit before the fault becomes a failure is drawn from a probability distribution.

– Spatial dependency: D1.

– Temporal dependency: linear ∨ exponential.

– Train passings before the fault leads to a failure: drawn from a normal distribution
with µ = 3500, σ = 250.

• Conductive object: A conductive object that is placed on the tracks can create a
partial bypass of the insulated joints. Therefore the effect of this fault is similar to that
of the insulated joint defect. This fault case differs from the last in the sense that the
fault happens abruptly and the intensity does not change over time once the fault has
occurred.

– Spatial dependency: D1.

– Temporal dependency: abrupt.

– Fault intensity: drawn from a normal distribution with: µ = 0.5, σ = 0.2.

• Mechanical rail defect: When a mechanical defect occurs in one of the rails this
will increase the electrical resistance of that rail. Therefore this fault case influences
∆IF

high(t) for that particular track circuit. The damage to the rail gets worse with every
passing train. Additionally, the damage done to the rail will increase as the rail becomes
more damaged. As a result the fault intensity F (t) progresses exponentially. This fault
is presumed to lead to a failure more quickly than an insulated joint defect will. This
ensures that a fault diagnosis method could at least theoretically distinguish between
these faults.

– Spatial dependency: D1.

– Temporal dependency: exponential.

– Train passings before the fault leads to a failure: drawn from a normal distribution
with µ = 1500, σ = 200.

• Electrical disturbances: Electrical disturbances are caused by the fact that the
traction currents from the trains also flow through the rails. This can saturate the rails
which leads to a higher impedance for the track circuit currents and thus influences
∆IF

high(t). This problem affects several track circuits along the same track as the traction
currents are not hindered by the electrical insulation that separates the track circuits.
The problem is intermittent as it would only occur when a train is drawing a lot of
power.
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– Spatial dependency: D2

– Temporal dependency: intermittent; for every train passing event T the probability
of the problem occurring is: 5 · 10−2.

– Each time the problem occurs the fault intensity is drawn from a normal distribu-
tion with µ = 0.5, σ = 0.2 .

• Ballast degradation: The impedance of the ballast between the rails influences the
value of Ihigh as more or less current will leak through the ballast instead of flow through
the receiver. This impedance is influenced by the weather and varies slowly over time.
Both of these effects are not considered faults. It is however possible that the ballast will
continue to degrade slowly over time. This is considered a fault which affects ∆IF

high(t).

– Spatial dependency: D1 ∨ D2.

– Temporal dependency: linear ∨ exponential, with the number of days between the
fault leads to a failure drawn from these normal distributions:

∗ Linear: µ = 400, σ = 10.

∗ Exponential: µ = 380, σ = 10.

In contrast to [2], lightweight trains and ballast variation are not considered to be faults. These
sources of variation are always present. In Figure 2-19 an example is given of a synthetic data
sample with three track circuits in which one has a mechanical rail defect that exponentially
deteriorates until it leads to a failure. A summary of the different fault types and their spatial
and temporal dependencies is given in Table 2-6.

Table 2-6: Fault types and their spatial and temporal dependencies.

Fault type Spatial dependency Temporal dependency Fault rate

Rail contamination D3 half sine -

Insulated joint defect D1 linear ∨ exponential intermediate

Conductive object D1 abrupt -

Mechanical rail defect D1 exponential high

Electrical disturbance D2 intermittent -

Ballast degradation D1 ∨ D2 linear ∨ exponential low

2-6 Sampling strategy

The development of faults is a process that occurs slowly. This means that there are very-long-
term temporal dependencies in the data. Learning algorithms can struggle with these long-
term dependencies so it is important to sample in an effective way to increase the information
density of the signal that is the input of the learning algorithm. Although the current Ic(t)
is the only available input, the variables Ihigh, Ilow, R and ∆I3 are more directly influenced
by the fault intensity. The current Ic(t) will therefore be sampled such that it is maximally
descriptive of these model variables. The relationship between these variables and the current
Ic(t) is given in (2-6). Based on this, the current Ic(t) is sampled at the following times during
a simulated train passing:
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Figure 2-19: Syntactic data sample with a exponentially developing mechanical defect in TC2.

• t = t1: As the train is about to enter the section Ic(t) = Ihigh.

• t = t1 + 0.35s: At about 0.35 seconds after the first wheel set of the train enters the
section the value of the current Ic(t) is influenced most strongly by the variable R.

• t = t2: By sampling at the moment the current Ic(t) is at its lowest the value of Ilow

can be determined.

• t = t3: Just as the last wheel set of the train is about to leave the section the current
Ic(t) will have become equal to Ilow + ∆Imax∆I3.

Note that only sampling the current at these four time instances will mean that the infor-
mation that is gathered on one train passing is susceptible to noise. However, since the
temporal dependencies will develop over a period of many train passing events, this noise can
be compensated for when considering a time series of many train passing events.

To further optimize the way the synthetic data are used as the input of a neural network the
following simplification is made: Each day there are NP train passing events. These train
passing events are spread out evenly over the day and during such an event there are two
trains that pass the considered track circuits; one for each track. This results in the four
current samples discussed above in all track circuits for one combined train passing event T .
By sampling in this way a neural network can be used that has 4 × NC inputs, where NC

is the number of considered track circuits in the geographic area. Having the whole train
passing event as one input time-step will improve the chances of the network to learn the
long-term temporal dependencies.
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Chapter 3

Artificial Neural Network theory

An Artificial Neural Network (ANN) is a network of computing units (artificial neurons), the
design of which was inspired by the working of the brain [6]. The similar parallel computation
style that the ANNs share with their biological counterparts make them good at tasks that
brains are also good at, such as pattern recognition. Neural networks are very expressive
models that in theory and given enough data, can learn any complex non-linear mapping from
their inputs to their outputs. This ability makes them an attractive option for the condition
monitoring of track circuits, since they might be able to learn to represent the relationship
between the measurement signals and the condition of a track circuit more accurately than
it is currently understood.

In this chapter, the theory behind artificial neural networks is discussed. The focus of this
discussion is on the neural network theory that is relevant to the fault diagnosis problem
considered in this thesis. Additionally, the reasoning behind the choices for the general
network structure and training algorithms is discussed. This chapter starts in Section 3-1
with a description of the artificial neuron, which is the basic building block of a neural
network. In Section 3-2 the ways in which artificial neurons can be combined into a network
are given and the motivation is given for the use of recurrent neural networks in this thesis. In
Section 3-3 the procedure by which neural networks learn from data is explained. Additionally,
this section explains the reason why recurrent neural networks have traditionally struggled
to learn the longterm temporal dependencies that are present in the track circuit case. The
solution to this problem that is used in this thesis is the use of the Long Short-Term Memory
network architecture, which is detailed in Section 3-4. In Section 3-5 the concept of end-to-
end learning is discussed. This concept has enabled state of the art performance in the object
recognition and speech recognition domains. In this section it will be discussed how and why
this concept could also be beneficial in the condition monitoring domain.

In Chapter 4, the exact form of the networks used in this thesis is described and the results
of using these networks with the data from the generative model is presented.
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Figure 3-1: Artificial neuron.

3-1 The artificial neuron

The basic building block of an ANN is the artificial neuron. In Figure 3-1 the structure of
such an artificial neuron unit is shown. The unit has n inputs x1, ..., xn. These inputs xi are
multiplied by a weight wij , where i is the input index and j is the index of the destination
unit. The output (or activation) yj of unit j is then calculated by applying an activation
function ϕ to the sum of these weighted inputs:

yj = ϕ(
n

∑

i=1

wijxi) (3-1)

The argument of the activation function can also include a bias term. However, in much of
the literature (e.g. [6]) this bias term is taken into account by adding an input to the unit that
is always equal to 1. The bias term is then simply replaced by the weight on the connection
from this input.

Activation functions

In the networks used in this thesis, artificial neuron units with different activation functions
ϕ(ζ) are used. These functions are:

Linear

This activation function is simply a linear function of the inputs. Since the offset and the
scaling can all be determined by the weights to the unit, the activation function is just the
identity in this case.

ϕ(ζ) = ζ (3-2)
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Sigmoidal

A commonly used activation function is the (logistic) sigmoidal activation function which
saturates to 0 or 1 for low and high values of ζ respectively and has non-linear behavior in
between.

ϕ(ζ) =
1

1 + e−ζ
(3-3)

Hyperbolic tangent

The hyperbolic tangent activation function is similar to the sigmoidal activation function, but
with the output ranging from -1 to 1.

ϕ(ζ) =
e2ζ − 1

e2ζ + 1
(3-4)

Softmax

The output of a softmax unit j is normalized with other units k in a group such that the
cumulative output of the group is 1. This is useful when the group of units represents
probabilities of mutually exclusive classes, which is the case in the fault isolation problem.

ϕj(ζ) =
eζj

∑

k eζk
(3-5)

3-2 Network structure

A (large) number of the artificial neuron units can be combined into an ANN. A network
consists of a layer with one or more inputs, often one or more hidden layers with each one
or more units and usually an output layer with one or more units. Based on the connections
between the units in the layers, two main types of networks can be distinguished [6].

Feed-forward Neural Networks

A Feed-forward Neural Network (FNN) is a network in which the outputs of one layer are
used as the inputs of the next layer. There are no connections between the units of the same
layer and no output connections to the inputs of a previous layer. An example of a FNN can
be seen in Figure 3-2a. A network in which all outputs are connected to all inputs of the
next layer is called fully connected. Even though networks are often fully connected they can
still have many of their connection weights equal to zero, effectively breaking the connection
between two neurons.
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Figure 3-2: ANN structure types. Each circle represents an artificial neuron unit as depicted in
Figure 3-1.

Recurrent Neural Networks

In a Recurrent Neural Network (RNN), the restrictions on the connections that are present
in a FNN do not apply. The output of any unit can be an input to any other unit (or itself).
In a fully connected RNN all outputs of all units are connected to all inputs of all units. In
Figure 3-2b a RNN is shown in which only the hidden layer is fully connected.

RNNs have, at least in theory, much more potential than FNNs, since their recurrent connec-
tions allow them to store memories. However, exploiting this potential presents problems [6]
which will be discussed in Section 3-3-5. These problems have prevented RNNs from being
widely adopted. Recently however, many successful applications of RNNs have been pub-
lished [7]. The ability of a recurrent network to maintain an internal state that is descriptive
of past inputs makes them very suitable for problems involving time-series. In this thesis a
RNN will therefore be used. This choice is further motivated in Section 3-5.

3-3 Network training

A neural network with a properly chosen structure has the potential to solve very complex
problems. However, unlocking this potential requires finding an adequate set of the weights
W on all the input connections to all the neurons. This can be very difficult and the right
strategy depends on the network architecture, the desired output of the network and the
available data to train the network [6].

The networks in this thesis are trained with the Stochastic Gradient Descent (SGD) opti-
mization procedure described in Section 3-3-1. The optimization procedure will change the
parameters W of the network to minimize a loss function L(W ). The loss functions used in
this thesis are given in Section 3-3-2. To calculate the first order derivatives of the loss func-
tion with respect to the network parameters for a given input, the Back Propagation (BP)
method given in Section 3-3-3 can be used. In this thesis, RNNs are used, which require an
extension of the BP method called Back Propagation Through Time (BPTT). This method
is described in Section 3-3-4.
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3-3-1 Stochastic Gradient Descent

When a neural network is presented with an input x, it will produce an output y. This
output y is a function of both the input x and the tunable parameters W of the network:
y = f(x, W ). These tunable parameters are the weights w on the input connections to the
neuron units in the network (See Figure 3-1). The aim of training the neural network is to
find a set of weights W that will make the output y of the network, given any relevant input
x, as close as possible to the corresponding desired output or target yt. For each input and
correct output pair {x, yt} the loss function L(y, yt) gives the cost involved with predicting y
instead of yt. This cost is a measure of the dissimilarity of y and yt. The loss functions used
in this thesis are given in Section 3-3-2.

To train the networks in this thesis, a large training dataset is used with n input and target
tuples {x1, yt

1}...{xn, yt
n}. The empirical risk E [8] is defined as the average loss over all the

training tuples for a given network:

E =
1

n

n
∑

i=1

L
(

yt
i , f(xi, W )

)

(3-6)

When the training dataset is large enough and the class of possible networks f(W ) is restricted
enough, minimizing the empirical risk will also minimize the loss on tuples that are not in the
training dataset. That is, the network is able to generalize [8]. By monitoring the performance
according to (3-6) on a separate validation dataset that the network is not trained on, it is
ensured that this is indeed the case and that the network does not over-fit on the training
data.

The Gradient Descent (GD) algorithm minimizes (3-6) by iteratively using the following
update equation for the weights W in the network:

Wt+1 = Wt − ǫ
1

n

n
∑

i=1

▽W L
(

yt
i , f(xi, W )

)

(3-7)

where ǫ is the learning rate and ▽W L(yt
i , f(xi, W )) is a vector containing the first order

derivatives of the loss L(yt
i , f(xi, W )) with respect to all of the weights w in the network.

Due to the large size of the training dataset, the computational cost of calculating the deriva-
tives for all data points in the dataset for each update of the weights is prohibitively high.
Therefore, instead of averaging gradients over the whole dataset, only a few randomly chosen
data points are used for each weight update. This technique is called Stochastic Gradient
Descent (SGD). Although the theoretical convergence guarantees are not as good as those
of full GD, in practice this technique gives better results for large neural networks and large
data sets and is therefore used in this thesis. The weight update equation now becomes:

Wt+1 = Wt − ǫ
1

n

B
∑

i=1

▽W L
(

yt
i , f(xi, W )

)

(3-8)

where B is the number of data points that are considered in each weight update. The set of
data points used for a weight update is called a mini batch.
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3-3-2 Loss functions

In this thesis two different loss functions are used for the two different tasks the networks
need to perform; regression and classification.

Regression

For the fault severity estimation sub-problem, the neural network output is a real number
y ∈ R. The loss function used in this case is the squared difference between the predicted
fault severity y and the true fault severity yt at that time-step:

L =
1

2
(y − yt)2 (3-9)

Classification

The fault isolation problem is a classification problem in which it is assumed that there is, at
each time-step, only one correct answer. The loss function used is the negative log likelihood
(cross-entropy) function:

L = −
∑

j

yt
j log yj (3-10)

where j ∈ J are the considered classes and yt
j is 1 for the correct class and 0 for the other

classes. This loss function is used in combination with a softmax output layer (3-5), which
ensures that the outputs for all classes sum up to 1. Therefore, the loss function can only be
minimized by outputting 0 for all the incorrect classes and 1 for the correct class.

3-3-3 Back propagation

To calculate the derivative of the loss function with respect to the weights ▽W L in a FNN, the
BP technique can be applied. The simple structure of a FNN makes it possible to repeatedly
apply the chain rule to propagate the loss derivative from the output of the network backwards
towards the inputs.

Initially, the derivatives of the loss function with respect to the outputs of the network are
calculated. For the regression loss function (3-9) this derivative is:

∂L

∂y
= −(yt

j − yj) (3-11)

For the classification loss function (3-10) this derivative is:

∂L

∂yj
= −yt

j

1

yj
(3-12)

Now, the gradient of the network loss with respect to the total input ζj to the activation
function of unit j can be computed (see Figure 3-1):

∂L

∂ζj
=

dyj

dζj

∂L

∂yj
(3-13)
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where the derivative of the output y of a unit with respect to its summed input ζ is the
derivative of its activation function (Section 3-1) with respect to ζ.

Since the influence of a weight wij (between a unit i in the previous layer and unit j) on the
total summed input to unit j is simply proportional to the activation of unit i, the influence
of the weights on the inputs of unit j on the total network loss can now be calculated as:

∂L

∂wij
=

∂ζj

∂wij

∂L

∂ζj
= yi

∂L

∂ζj
(3-14)

The influence of the output of a unit i in the previous layer on the total network loss derivative
can be calculated by summing the effect it has on the loss derivatives produced by all of the
output units j:

∂L

∂yi
=

∑

j

dζj

dyi

∂L

∂ζj
=

∑

j

wij
∂L

∂ζj
(3-15)

Now the procedure can be repeated and the partial derivatives of the total network loss with
respect to the input weights of this layer can be calculated. Then, the loss derivatives can
again be back-propagated to the preceding layer and the procedure is repeated until the
derivatives of the total network loss with respect to all of the weights in the network are
known.

Pairing of the loss function and output-layer units

The combination of the chosen loss function and the activation functions of the units in the
output layer needs to be chosen properly. For the classification problems in this thesis, a layer
of softmax units is paired with the negative log likelihood loss function. For the regression
problems, a linear output layer is paired with a squared error loss function. In both cases,
the derivative of the network loss with respect to the input to the activation function in the
output layer units is:

∂L

∂ζj
=

dyj

dζj

∂L

∂yj
= yj − yt

j

This ensures a reasonable loss gradient irrespective of the output of the unit. On the contrary,
if for example a softmax output layer is trained with a mean squared error loss function, this
derivative would be:

∂L

∂ζj
=

dyj

dζj

∂L

∂yj
= yj(1 − yj)(yj − yt

j)

Note that in this case when yt
j = 1 (that is, when j is the correct class) and yj is near zero,

the loss derivative is very small even though the loss is as large as possible. This will slow
down the learning considerably.

3-3-4 Back propagation through time

In this thesis, RNNs are used. The recurrent connections require an extension of the back-
propagation procedure called Back Propagation Through Time (BPTT) [9]. This method
works by unfolding the network; for every time-step in a (sub)sequence, a copy of the network
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Figure 3-3: Training a RNN with back-propagation through time by unfolding it.

is made. The recurrent connections lead to the corresponding units in the network for the
next time-step. This is shown in Figure 3-3. The weights of all the copies of the network are
kept equal.

A time-sequence is processed in the forward pass by starting with the inputs at the first
time-step x(1) and calculating the output y(1) and the outputs on the recurrent connections.
Then, these recurrent outputs and the inputs of the second time-step are used to calculate
the outputs in the second network copy. For each time-step this process is repeated. When
the entire sequence is processed, the loss at every time-step can be calculated.

Starting from the final time-step, these losses are back-propagated through the entire sequence
in the backward pass. Finally, the gradients with respect to the weights at all time-steps are
averaged and used in the optimization procedure.

If the sequence that is used for the BPTT procedure is part of a longer sequence, the recurrent
activations at the final time-step are saved and used as the inputs to the corresponding units
in the first copy of the network for the next subsequence. When a new sequence is started
the initial activations are all reset to 0.

3-3-5 The exploding / vanishing gradient problem

During the forward pass, inputs are applied to an artificial neural network and the resulting
outputs are calculated. The outputs (or activations) of the individual artificial neurons with
non-linear activation functions are always within a certain range. This is a consequence of
the activation functions given in Section 3-1. For this reason, the activation functions are
sometimes also referred to as squashing functions.

During the backward pass, the loss is back-propagated through the network from the outputs
to the inputs. This phase is completely linear, which can cause problems [6]. When back-
propagating the loss derivative through many artificial neurons, the loss derivative signal is
multiplied each time by the weights on the connections between the neurons. When all of
these weights are small, this will cause the loss derivative signal to become very small, leading
to slow learning. When the weights are large, the loss derivative signal will become very large,
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leading to unstable learning. This problem is known as the exploding or vanishing gradient
problem of deep learning. Deep learning refers to the fact that the signals travel through
many neurons on their way between the input and output [7].

When learning the weights of a FNN with a few layers the problem is not too severe, but
when learning the weights of a RNN with long-term time dependencies (e.g. where the correct
output of the network can depend on inputs that occurred 100 time-steps earlier) the problem
is much worse. Careful initialization of the weights can help somewhat, but generally does
not solve the problem [6]. In the track circuit case, very long-term time-dependencies are
present.

There are several possible solutions to this problem for RNNs that have to learn long-term
time dependencies. One solution is the use of the Echo State Network (ESN) [10], which uses
very carefully chosen initial connection weights. Only the weights of the output layer are
learned in this method. Alternatively, the network can be initialized like an ESN and all the
weights can be learned using back-propagation with momentum [6]. Another possibility is to
use a second order gradient descent optimization method, such as Hessian Free Optimization
[11].

The solution used in this thesis is the use of the Long Short-Term Memory (LSTM) network
architecture. This method has recently been successfully applied to several long-term time
dependency problems [12]. Examples include handwriting recognition and generation [13],
speech recognition [14], machine translation [15], caption generation for images [16], predicting
the output of computer programs [17] and recognizing emotions expressed in music [18]. The
LSTM method will be described in the next section.

3-4 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a RNN method based on a special network architecture
that is capable of capturing very long-term time dependencies [3]. This makes it an interesting
choice for the condition monitoring of track circuits, since very long term time dependencies
are expected to be characteristic for some faults. In contrast to other methods it can learn
relationships between events spaced out in time even when there is no local regularity. It is
also robust to noisy sequences [7].

LSTM architecture

A neural network with LSTM units is able to store information for long periods of time by
introducing memory cells and gate units into the network architecture. The memory cells
are linear neurons that have a recurrent self connection with weight 1. This enables them
to remember a value over subsequent time-steps. To prevent the memory in the memory
cell from becoming overwritten by irrelevant inputs, LSTM uses an input gate unit that can
determine when inputs are passed to the memory cell and when they are not. Additionally,
there is a forget gate that can erase the contents of the memory cell and an output gate that
controls when the LSTM unit outputs its memory to the rest of the network. An LSTM
unit can be thought of as a differentiable bit of computer memory with read, write and reset
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Standard RNN LSTM block

Output unit

Hidden unit

Input unit

Time-step 11 22 33 44 55

Figure 3-4: The vanishing gradient problem explained from the forward pass. The shade of the
units indicates their sensitivity to a relevant input at time-step 1. Although recurrent connections
enable the storage of a memory, a standard RNN has problems learning long-term time depen-
dencies as new irrelevant inputs will overwrite the original memory. An LSTM memory block
mitigates this problem by introducing gate units that can prevent irrelevant inputs from entering
the memory cell. The forget gate furthermore allows the memory to be forgotten when it is no
longer relevant and the output gate will only send the memory to subsequent units when the
memory is relevant.

inputs [19]. The benefit of controlling the flow of information to and from the memory cell
in this way with the gate units is illustrated in Figure 3-4.

The gate units, which are neurons with a sigmoidal activation function (3-3), work by multi-
plying the signals going to and from the memory cell with their outputs. When the output of
the gate unit is close to zero this effectively blocks the signal. When the output of the gate
is close to 1 the signal is passed on unaltered. The architecture of an LSTM unit is shown in
Figure 3-5, where the multiplications are indicated by the black dots.

The equations describing an LSTM unit are:

i(t) = sigm (Wxix(t) + Whih(t − 1) + bi) (3-16)

f(t) = sigm (Wxf x(t) + Whf h(t − 1) + bf ) (3-17)

a(t) = tanh (Wxax(t) + Whah(t − 1) + ba) (3-18)

o(t) = sigm (Wxox(t) + Whoh(t − 1) + bo) (3-19)

M(t) = f(t)M(t − 1) + i(t)a(t) (3-20)

b(t) = tanh(M(t)) (3-21)

y(t) = o(t)b(t) (3-22)

In these equations, i(t), f(t), and o(t) are the outputs of the input, forget and output gates at
time-step t respectively. The input and output nonlinearities are a(t) and b(t). M(t) is the
output of the memory cell at time-step t and y(t) is the output of the LSTM unit. The inputs
to the unit consist of two vectors of signals. The first is x(t), which contains the outputs from
the previous layer at the same time-step. The second vector is h(t − 1), which contains the
outputs from the units in the same layer at the previous time-step. Note that in the networks
used in this thesis, the layers with LSTM units are fully recurrently connected.
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Figure 3-5: Architecture of the LSTM unit. The units a and b are hyperbolic tangent (3-4) input
and output neurons. M is the memory cell, which is a linear (3-2) neuron with a recurrent self
connection with weight 1. The black dots indicate a multiplication of the outputs of the sigmoidal
(3-3) gate neurons denoted by i, oand f with the outputs of the other units. This allows the input
gate neuron i and output gate neuron o to selectively block or pass the signals from and to the
memory unit and it allows the forget gate neuron f to reduce or reset the value of the memory
unit.
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A RNN with LSTM units can be trained with the BPTT algorithm discussed in Section 3-3-4
[19]. The architecture of the LSTM unit helps solve the exploding / vanishing gradient
problem discussed in Section 3-3-5. This can be seen when examining equations for the
backwards pass through the unit. Let qζ denote the input sum to neuron q (see Figure 3-1).
For example: iζ(t) = Wxix(t) + Whih(t − 1) + bi (see (3-16)). Then the following equations
describe the backward pass through the LSTM unit:

∂L

∂oζ
(t) = sigm′

(

oζ(t)
)

b(t)
∂L

∂y
(t) (3-23)

∂L

∂M
(t) = o(t)tanh′

(

M(t)
)∂L

∂y
(t) + f(t + 1)

∂L

∂y
(t + 1) (3-24)

∂L

aζ
(t) = i(t)tanh′

(

aζ(t)
) ∂L

∂M
(t) (3-25)

∂L

f ζ
(t) = sigm′

(

f ζ(t)
)

M(t − 1)
∂L

∂M
(t) (3-26)

∂L

iζ
(t) = sigm′

(

iζ(t)
)

a(t)
∂L

∂M
(t) (3-27)

Note from (3-24) that if the output gate is closed (o(t) = 0) and the forget gate stays open
(f(t+1) = 1), the loss derivative in the memory cell stays unchanged: ∂L

∂M (t) = ∂L

∂M (t+1). The
loss gradient no longer explodes or vanishes. This allows the network to learn dependencies
between outputs and inputs that are spaced many time-steps apart by learning to ’trap’ the
loss gradient in the memory cell.

3-5 End-to-end learning

Artificial Neural Networks have recently achieved state of the art performance on several
pattern recognition tasks. One reason for these successes is the use of a strategy called ’end-
to-end learning’. This strategy is based on moving away from hand-crafted feature detectors
and manually integrating prior knowledge into the network. Instead, networks are trained
to produce their end results directly from the raw input data. To use end-to-end learning,
a large labeled data set is required. When this requirement is met, the benefits of a holistic
learning approach tend to be larger than the benefits of explicitly using prior knowledge [14].

One example of a field in which this strategy has been successfully applied is image recognition.
For this problem, convolutional networks achieve state of the art performance by using raw
pixel values, instead of using hand-crafted feature detectors as inputs [4]. Another example is
speech recognition, in which methods using phonemes as an intermediate representation are
being replaced by methods transcribing sound data directly into letters [5, 14].

This shift towards end-to-end learning seems to be a logical result of the increasing availability
of training data and larger computational budgets in these fields. As it becomes possible to
train larger neural networks on more data, less restrictions to the problem definition are
needed for the problem to be solvable. As a result, the neural network can move from solving
only a sub-problem towards solving the whole problem directly.

In the fault isolation literature, neural networks are often still solving sub-problems. One
popular method is to use a multiple model strategy. This strategy involves training a separate
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Figure 3-6: The multiple model strategy that is common in the fault isolation literature compared
to the concept of end-to-end learning. Note that for the track-circuit case, the output of the
system is the electrical current of the track circuit of interest. The inputs are latent variables
(e.g. train properties, weather conditions and seasonal changes) that can be inferred from the
current values measured in the other track circuits.

neural network for each fault mode. These networks then predict the output of the system
for that fault mode given the inputs. A separate module compares these output predictions
to the output of the real system. The fault isolation is based on which network output best
explains the true system output. This principle is illustrated in Figure 3-6a and used in recent
papers such as [20] and [21].

The neural network multiple-model strategy might be sub-optimal for several reasons. Firstly,
when training a separate neural network as a model of the system for each fault case, only
labeled data of that fault case can be used to train that specific model. However, apart
from the faults, all models describe the same system and should therefore have a lot in
common. The data that describes the other fault modes should therefore also be relevant.
This means that having completely separate models for each fault case presumably leads to an
inefficient use of the available training data. Secondly, as seen from the papers in other fields
that use end-to-end learning, dividing the problem into sub-problems can hurt the eventual
performance. It might therefore be beneficial not to separate the different fault models and
the fault isolation step, but rather to train one network to produce the fault isolation directly
from all the available measurements. This proposed end-to-end neural network fault isolation
strategy is depicted in Figure 3-6b.

In the literature where fault detection or fault isolation is done directly from an input time-
sequence, e.g. [22], a FNN is often used. Since a FNN has no memory, the complete time-
sequence to be considered needs to be presented to the network at the same time. This requires
the network to have separate input units for every considered input time-step, resulting in
a fault isolation output that is always based on a fixed number of time-steps. In this thesis
a RNN is used instead. This preference can also be explained in the context of end-to-end
learning. Firstly, the choice of the number of time-steps to be considered for the fault isolation
in a FNN is based on prior knowledge of the system dynamics. The idea of end-to-end learning
is not to use prior knowledge, but instead have the network learn the dependencies. By using
an LSTM RNN the network can learn how many previous time-steps to consider by storing
information in its memory cells.

Another way in which using a RNN is more in line with the idea behind end-to-end learning
is that it moves away from (over) simplifying the problem. Historically, although they are
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in theory more appropriate for time-series problems, RNNs were found too difficult to train
on problems with medium to long-term time dependencies. This led to the use of FNNs on
these problems, since these networks are less complex and thus easier to train. Now that the
LSTM structure has been shown to solve the learning problem, the simplification of using a
FNN is no longer required and better performance is expected from a RNN.
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Chapter 4

Network implementation and results

In this chapter, the implementation of the Artificial Neural Network (ANN) strategy outlined
in Chapter 3 is discussed. The resulting networks are trained and tested with synthetic data
from the generative model described in Chapter 2.

In Section 4-1 the basics of the implementations are discussed. In Section 4-2 the results of
the network for fault isolation are discussed. Section 4-3 discusses the results for the fault
severity estimation network. To gain some insights into how the ANN is solving the fault
isolation problem, the t-SNE technique is used in Section 4-4. To better understand the
performance of the ANN method, the results of a fault isolation network are compared to the
results of a hand crafted multiple model fault isolation method in Section 4-5.

The results discussed in Section 4-2 until Section 4-5 are based on the assumption of the
availability of large amounts of labeled data. Since this assumption is not realistic, the
consequences of using less labeled data are investigated in Section 4-6. Unsupervised pre-
training is investigated as a way to reduce the need for labeled data.

4-1 Implementation and datasets

The neural networks in this thesis are implemented in the scientific computing framework
Torch [23]. Parts of the code are adapted from the implementation of [17].

In order to take the spatial dependencies of the faults into account, the network input consist
of the electrical current signals from five separate track circuits. This flow of information
in shown in Figure 4-1 for the fault isolation network. The signals come from the track
circuit that is being diagnosed IA(t), as well as two other track circuits on the same track
{IB1(t), IB2(t)} and two track circuits on an adjacent track {IC1(t), IC2(t)}. The input to the
networks at each time-step T consists of the four current measurements discussed in Section 2-6
from each of the five considered track circuits, resulting in 20 current values per time-step .

To keep the temporal dependencies from becoming too long-term, 20 time-steps T are consid-
ered per day. All sequences that are generated have a length of 100 days. This means that
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Figure 4-1: Fault identification process overview. For each time-step T the currents of five track
circuits (I) are sampled (II) when a train passes. These samples are the input to the neural
network (III) which uses them to update the likelihood of the seven different fault isolation
classes.
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every input sequence contains 2000 time-steps with 20 measurement values per time-step. To
speed up the learning process the input data are normalized to have a mean of zero and a
standard deviation of 1 [24].

To train and validate the neural networks, three separate data sets are generated. The first
one is a training data set, the second is a validation data set and the last is a test data set.
For each sequence in the datasets the properties of the track circuits and the properties of
the fault are stochastically determined.

The networks are trained only with data from the training data set. During training, the
network performance on the validation data set is checked periodically. This is done for two
reasons. The first is to guard against over-fitting. When the performance on the training
data set keeps improving while the performance on the validation dataset deteriorates, the
network is over-fitting. This would hurt its ability to generalize. Therefore the weights of
the network that produced the best performance on the validation dataset are used after the
training has stopped. The second reason is to lower the learning rate when the performance
on the validation dataset stops improving. This was found to make the learning procedure
more robust with respect to the chosen hyper parameters. Training is stopped once network
performance no longer changes significantly. To prevent too large changes to the weights, the
norm of the gradients is constrained through [17] :

(

∂L

∂W

)

C
=







M

| ∂L

∂W |
∂L

∂W if
∣

∣

∣
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∣

∣
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∂L
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∣

∣

∣
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∣

∣

∣ ≤ M
(4-1)

Where
(

∂L

∂W

)

C
is the constrained version of the vector with the partial derivatives of the loss

with respect to all the weights in the network and M is the maximum gradient norm.

The test data set is only used after the training of the networks has stopped. The results of
testing the networks on this data set are given in this chapter.

4-2 Fault isolation

The fault isolation network has two LSTM layers with 250 units in each layer. It has a
softmax output layer with 7 units; 1 for the healthy state and 6 for the fault types that are
considered in this thesis.

The network is trained to give a classification of the sequence at every time-step T . The
target for this classification yt(T ) is the healthy state, unless the sequence contains a fault
for which the severity at that time-step T is above 0.15. The severity of the fault is between
0 and 1. A fault with a severity of 0 will have no influence on the electrical current levels
and a fault with a severity of 1 will influence the current enough to cause a failure, where the
track circuit is no longer able to function correctly. The value of 0.15 is chosen to detect the
faults as early as possible without having any false positive fault detections.

4-2-1 Fault detection

For the fault detection part of the fault isolation problem, it is important to detect the presence
of a fault long before it leads to a failure, while not classifying the normal variations in the
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Figure 4-2: Fault isolation performance.

healthy data sequences as faulty. The test dataset contains 100 sequences that were generated
to be fault free. The highest likelihood that the ANN has assigned to the presence of a fault
for the 200.000 time-steps in these sequences is 0.15. The average likelihood the network
assigns to the presence of a fault during the 200.000 time-steps in the healthy sequences was
2.1 · 10−5. This shows that the network does not suffer from false positive fault detections.

When the detection of a fault is defined as assigning a likelihood of less than 0.5 to the healthy
state, the network detects all faults where the fault intensity is above 0.28; long before it leads
to a failure. The average likelihood that the network assigns to faults of a certain severity is
shown per fault type in Figure 4-2.

4-2-2 Fault cause determination

For the fault isolation problem it is not only necessary to determine when a fault is present
in the system, but also to determine the cause of the fault. In Table 4-1 the ability of the
network to distinguish between different fault types is reported. In this table, the average
likelihood over all time steps of all sequences in the test data set that the network assigns to
the different classes is given per true class. The rows of the table represent the true class and
the columns represent the estimated class. It can be seen that the network has no problems

Table 4-1: Fault isolation confusion matrix for the network trained with end-to-end learning.

True class / assigned likelihood H RC IJ CO MRD ED BD

Healthy 0.99 0.00 0.00 0.00 0.00 0.00 0.00

Rail Contamination 0.01 0.99 0.00 0.00 0.00 0.00 0.00

Insulated Joint 0.03 0.00 0.96 0.00 0.00 0.00 0.01

Conductive Object 0.01 0.00 0.01 0.99 0.00 0.00 0.00

Mechanical Rail Defect 0.03 0.00 0.00 0.00 0.97 0.00 0.00

Electrical Disturbance 0.09 0.00 0.00 0.00 0.00 0.91 0.00

Ballast Degradation 0.19 0.00 0.00 0.00 0.00 0.00 0.81
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with distinguishing the different fault types. The highest likelihood that is assigned to a wrong
fault type occurs when an insulated joint defect is present. On average a likelihood of 0.0096
is then assigned to the ballast degradation class. The reason for this is that the insulated
joint defects and ballast degradation faults both can have the same spatial and temporal
dependencies. However, since it is assumed in the generative model that ballast degradation
develops more slowly, the ANN is still able to distinguish between these different fault types
very successfully, since the average likelihood that the network assigns to the correct class is
0.9593. Note that from Table 4-1 it might appear that the network is not good at detecting
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Figure 4-3: Network inputs and output for one realization of a ballast degradation fault sequence.
The detection time TD marks the detection threshold. Before this point the correct classification
is healthy and after this point the correct classification is ballast degradation (BD).

ballast degradation faults. As can be seen from Figure 4-2 however, this is not the case. The
lower likelihood that is on average assigned to the correct class stems from the fact that the
ballast degradation faults develop very slowly. This results in more time-steps where the fault
severity is close to the detection threshold of 0.15. In Figure 4-3 an example is given of a
sequence of inputs to and outputs from the fault isolation network for a ballast degradation
sequence. The detection threshold is shown in the figure.
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(a) Rail contamination example.
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(b) Mechanical defect example.

Figure 4-4: Examples of the output of the fault severity estimation network.

4-3 Fault severity estimation

The fault severity estimation network has two LSTM layers with 250 units in each layer. It
has a linear output layer with one unit. The target output for the network at each time-step
is the true fault severity at that time-step.

In Figure 4-4 examples are shown of the outputs of the fault severity network on sequences
from the test data set. It can be seen that the network has learned to give an estimate of
the severity. However, from Figure 4-4b it can be seen that the network sometimes is slow
in recognizing the presence of a fault, which limits its usefulness. In addition to this, the
networks are trained with the true fault severity as a target at every time-step. It does not
seem reasonable that this information will be available when training with real data. For
these reasons, the rest of this thesis will focus on the fault isolation network.

4-4 Investigating network properties using t-SNE

To gain more insight into what the fault identification network has learned, the internal repre-
sentations of the network after presenting the whole input sequences to it will be investigated.
After presenting 1500 sequences to the network the state of the memory units in the LSTM
cells and the activations of the output units of the two recurrent layers in the network are
stored. These activations are the network’s internal representation of the sequence of events
that has preceded the final time-step and of the last input.

To compare these unit activation vectors, t-SNE [25] is used. This technique makes it possible
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Figure 4-5: t-SNE representation of the activity vectors of the output units in the first recurrent
layer at the last time-step of the sequences in the test data set ( h1(2000) ).

to embed these 250-dimensional vectors in a 2-dimensional image in such a way that the
vectors that are close together in the 250 dimensional space are also close together in the 2
dimensional plot. Therefore, input sequences that are similar according to the network will
occur close together in the plots.

Role of the layers

The network has two recurrent layers. The inputs to the first layer are the current measure-
ments from the track circuits. The outputs of this layer are the inputs to the second layer.
The outputs of the second layer are used as the inputs to the softmax classification layer. The
idea behind having multiple layers is that each subsequent layer might use the outputs of the
previous layer and form higher level abstractions of the data. To investigate whether this has
happened, the activation vectors of the output units of both layers are plotted. Figure 4-5
shows the activations of the output units in the first recurrent layer at the last time-step for
all 1500 sequences in the test set. Figure 4-6 shows the same for the second layer.

From Figure 4-5a it can be seen that the outputs of the first recurrent layer of the classification
network are not too sensitive to the temporal dependencies in the data, as sequences from
different classes are close together in the plot. From Figure 4-5b it can be seen that the
similarity of the outputs of the first layer seem to be based mostly on the fault severity at
the final time-step as sequences with similar fault intensities are close together.

The activation vectors of the output units in the second layer are labeled by the true fault
isolation class in Figure 4-6a. The grouping here seems based mostly on the true class and
therefore on the underlying dependencies that define these classes.

In Figure 4-7a the state of the memory units in the second layer can be seen in the final
time-step of the sequences. It is interesting to note that the classes are less clearly separated
here than they are in the output units of this layer. Presumably the information about
the fault severity coming from the first layer at the same time-step is used to improve the
classification. Alternatively it might mean that the network remembers more information
about the sequence than what is passed on at any given time to the softmax layer.
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Figure 4-6: t-SNE representation of the activity vectors of the output units in the second

recurrent layer at the last time-step of the sequences in the test data set ( h2(2000) ).
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Figure 4-7: t-SNE representation of the state of the memory units in the second recurrent layer
at the last time-step of the sequences in the test data set ( M2(2000) ).
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Figure 4-8: Ballast degradation sequences labeled per spatial dependence.
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To gain more insights into how the network learns to isolate faults, it can also be attempted
to deduce how the network distinguishes between the conductive object- and the electrical
disturbance fault types. Both faults abruptly lower the value of the current when a train is not
present in the section. But while the current subsequently stays low for the conductive object
fault, it is only intermittently low for the electrical disturbance. Furthermore, an electrical
disturbance affects multiple track circuits along the same track where a conductive object
impacts only one. From Figure 4-7b it can be seen that the network keeps a memory of a
conductive object being present in the network. It does not however keep a memory of the
fact that electrical disturbances have been observed earlier in the sequence, as the sequences
for which this is the case are not separated from those of the healthy sequences. In fact, in
Figure 4-7a it can be seen that also for the sequences that are at that time-step undergoing
an electrical disturbance, the state of the memory is similar to those in the healthy state.

Spatial dependencies

As discussed in Section 3-5, the prior knowledge of the spatial and temporal fault dependencies
is not explicitly used in the network. Doing so on real data could introduce a bias if the
prior knowledge turns out to be inaccurate. Since the model is here trained and tested
with synthetic data that is generated by a model that is based on the prior knowledge it is
interesting to see to what extent the network has learned to identify these dependencies by
itself.

Clearly, since the fault types differ only based on their spatial and temporal dependencies and
the network manages to correctly classify them, it has learned to distinguish between these
dependencies. However, the spatial dependencies are not strictly necessary to distinguish
between these 5 faults. Therefore it is interesting to see if the network has learned these
dependencies or not. One example is the degradation of the ballast, which can affect either
one track circuit or several along the same track. These spatial dependencies are identified
with D1 and D2 respectively. For each sequence with a ballast degradation fault one of these
options is picked with equal probability. In Figure 4-8 the sequences suffering from the ballast
degradation fault are shown. It appears from the plot that, although these sequences are very
similar, the network does distinguish between these spatial dependencies.

4-5 Method comparison

In Section 4-2 it has been shown that the fault isolation network has successfully learned
the tasks of detecting faults and determining their cause. However, it is difficult to judge
the performance of the network on this task without comparing it to an alternative method.
Fortunately, another method is being developed [26] to solve the same fault isolation problem.
This method is developed to work with the data from the generative model described in
Chapter 2. The method uses a multiple model strategy. The different models are based on
the prior knowledge from [2] that the generative model of Chapter 2 is also based on. Since
the fault models are not learned from data, the method does not suffer from the problems
mentioned in Section 3-5.

When the comparison was made, the multiple model strategy used only the electrical cur-
rent measurements from three unoccupied track circuits and a precipitation measurement to
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perform the fault isolation of three fault types. A new neural network was trained to use
these same inputs to isolate the same faults. Since the neural network does not use any prior
knowledge this change did not require any significant change to the code.

In Figure 4-9 a comparison is given of the mean squared errors between the true classification
of all considered time-steps and the output of the two methods. The figure shows that the
neural network achieves the best performance on the sequences representing healthy track
circuit behavior and sequences representing ballast degradation. The multiple model method
achieved the best performance in isolating faults caused by conductive objects and electrical
disturbances. It was observed that the performance of both methods is very similar. A slight
change in the parameters in either method could change which method outperformed the other
on all classes, with neither method ever outperforming the other on all classes simultaneously.
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Figure 4-9: Comparison between the method proposed in this thesis and the hybrid multiple
model approach proposed in [26].

Since the multiple model method is based on the same prior knowledge of the fault depen-
dencies that the generative model is, it is good to see that the neural network has comparable
performance on the synthetic data from the generative model. This proves the ability of the
neural network to, given enough labeled data, learn these dependencies accurately.

The performance of the multiple model method on real track circuits will depend on the
accuracy of the prior knowledge that this method is based on. The multiple model method is
therefore likely to work less good in reality than it does on the synthetic data. Similarly, the
neural network will loose performance on real track circuit data as it is unlikely that enough
labeled data are available to train it with the same accuracy as the model used in this section.
Which method works best on real track circuits is therefore likely dependent on the amount
of available training data and the accuracy of the prior knowledge from [2].
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4-6 Unsupervised pre-training

In the preceding sections of this chapter it has been shown that, given a large amount of
labeled data, a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) can
learn to identify faults from the provided measurement data. Unfortunately, the assumption
that large amounts of labeled measurement data will be available is not realistic. Therefore,
in this section, unsupervised pre-training will be investigated as a way to reduce the amount
of labeled data needed to train the networks.

In this section it is assumed that for each of the seven fault isolation classes, there are only five
labeled sequences available for training. It is also assumed that a large amount of unlabeled
measurement data is available.

There are two main problems with having only a small amount of data available to train a
neural network. The first is that the underlying dependencies are not accurately represented
in the available data. This problem can unfortunately only be solved by acquiring more data.
The second is that a large neural network can over-fit to the training data. The network will
find a way to minimize the error on the training data that does not minimize the error on
data that is not in the training data set.

While training the network described in Section 4-2 on a large amount of labeled data the loss
on the training and test data sets are about equal, with the loss on the test set being 0.0335.
When training the same network on only the 35 labeled sequences considered in this section,
the loss on the training set becomes 0.0001 with the losses on the test set deteriorating to
1.76; clearly the network is over-fitting rather badly. This can also be seen from Figure 4-10,
which shows two sequences with a ballast degradation fault. Both sequences are very similar
and yet the output of the network on the sequence from the training set is perfect, while the
output of the network when tested on a sequence that it was not trained on is very bad. It
appears the network has managed to memorize the sequences in the training set, which badly
hurts its ability to generalize.

To solve the over-fitting problem several methods are available. The most simple solution is to
use a smaller network and stop the training of the network as soon as the performance on the
validation data stops improving. Another method is to use a regularization technique such
as dropout [27]. The best solution however would be to simply have more data. Therefore in
this thesis it will be attempted to learn from unlabeled data as well as labeled data.

Since the equipment that measures the track circuit current has already been installed, it
seems reasonable to assume the availability of large amounts of unlabeled measurement data.
The presumed lack of labeled measurement data stems from the fact that since no fault
isolation method is currently available, the labeling would have to be done by hand.

Even though the unlabeled data can not be used directly to train the network to perform the
fault isolation task, it does contain valuable information about the system. Especially since
most of the complexity of the system is in the variation of the current values as a consequence
of factors like the weather. These variations are present in data from all fault isolation classes.
It might therefore be beneficial to try and learn about the behavior of the system from the
unlabeled data. The understanding of the system that is acquired in this way can then be
used to learn more efficiently from the labeled data.
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Figure 4-10: The over-fitting problem. The correct classification for both sequences is healthy

until the vertical line in the inputs and ballast degradation(BD) afterwards.
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Figure 4-11: Unsupervised pre-training (adapted from [28]).

A recent paper that used LSTM RNN networks to learn from unlabeled data is [28]. This
paper used an encoder network that was presented with a number of frames from videos. After
every input time-step the internal state of the encoder network - the values in the memory
neurons of the LSTM units - was copied to two different decoder networks. The first decoder
network is trained to reconstruct the inputs that were presented to the encoder. The second
decoder needs to use the same initial internal state to predict a number of future inputs. This
idea is shown in Figure 4-11. The idea behind both reconstructing the past and predicting
the future based on the same initial internal state is that in order to do this, the state should
contain useful information about the trends in the data. The derivatives of the losses that the
two decoder networks make with respect to their internal state are back-propagated through
time and passed to the encoder network. This way the encoder network is trained to read a
sequence of inputs and to produce a descriptive representation of the state of the system.

For the track circuit case this idea is implemented with an encoder network that has two
recurrent layers with 250 LSTM cells in each layer. For each subsequent time-step that is
presented to the encoder, the state of its 500 memory cells passed to the two decoders which
use these 500 values to reconstruct the inputs of the last 100 time-steps and predict the inputs
of the next 100 time-steps. In Figure 4-12 the outputs of the decoders are shown compared
to the true inputs. It appears that the encoder network has successfully learned to use the
500 memory neurons to store information about concepts such as the place in the day-night
cycle (Figure 2-6), the nominal current levels and the amount of variation of current levels
for the different track circuits. Most importantly, it has stored information that allows the
decoders to accurately recall and predict the negative trend that can be seen for one of the
track circuits in Figure 4-12.

The representation that the encoder network extracts from an input sequence could be useful
for the fault isolation task. To use this knowledge, a classification layer with softmax units is
added to the network, where the inputs to the softmax units are a linear combination of the
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Figure 4-12: Encoder Decoder performance. In this example, the true network inputs have
been presented to the encoder network until time-step 1700. The state of the encoder is then
used by the decoders to reconstruct the last 100 input time-steps and predict the next 100 input
time-steps.
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Table 4-2: Fault isolation confusion matrix for the small network trained directly with end-to-end
learning.

True class / assigned likelihood H RC IJ CO MRD ED BD

Healthy 0.95 0.01 0.01 0.01 0.01 0.00 0.02

Rail Contamination 0.09 0.91 0.00 0.00 0.00 0.00 0.00

Insulated Joint 0.56 0.00 0.17 0.19 0.03 0.00 0.04

Conductive Object 0.22 0.00 0.22 0.44 0.10 0.00 0.01

Mechanical Rail Defect 0.31 0.00 0.11 0.26 0.29 0.00 0.02

Electrical Disturbance 0.91 0.00 0.01 0.01 0.02 0.00 0.03

Ballast Degradation 0.83 0.00 0.05 0.05 0.02 0.00 0.04

Table 4-3: Fault isolation confusion matrix for the unsupervised pre-training strategy.

True class / assigned likelihood H RC IJ CO MRD ED BD

Healthy 0.92 0.01 0.01 0.02 0.02 0.00 0.01

Rail Contamination 0.06 0.82 0.00 0.01 0.01 0.00 0.01

Insulated Joint 0.31 0.00 0.21 0.30 0.12 0.01 0.05

Conductive Object 0.11 0.00 0.15 0.51 0.19 0.01 0.03

Mechanical Rail Defect 0.13 0.00 0.11 0.34 0.38 0.01 0.02

Electrical Disturbance 0.77 0.01 0.04 0.05 0.08 0.02 0.03

Ballast Degradation 0.62 0.00 0.11 0.14 0.04 0.01 0.08

outputs of the encoder. To prevent over-fitting, only the weights on these linear connections
are trained, using the 35 sequences in the labeled training data set.

The results of using the unsupervised pre-training strategy can be compared to those of
using a small network that is trained exclusively on the labeled data. For the training of a
small network on the 35 labeled sequences, the best results were achieved with a network
that had 1 recurrent layer with 50 LSTM units. The averaged loss on the test data set
was 0.414 for this network. The unsupervised pre-training strategy achieved an average
loss of 0.362. In Table 4-2 the confusion matrix of the small network strategy is given. In
Table 4-3 the confusion matrix is given for the unsupervised pre-training strategy. It can be
seen by comparing these tables that although the pre-training does improve the performance
somewhat, the results are still quite poor. It is likely that the results can be improved further
by adding dropout [27] and experimenting more with the size of the encoder network and the
length of the reconstruction and prediction sequences. It does not seem likely however that
the results will improve enough to make a neural network based approach preferable above
other approaches (e.g. [26]) without the availability of a larger amount of labeled data than
was presumed in this section.
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Chapter 5

Conclusions

The goal of this thesis was to develop a condition monitoring method that could detect faults
in railway track circuits and determine the cause and severity of the faults, based only on
commonly available measurement signals. In this chapter, the main results of this thesis are
summarized and recommendations for further research are given.

5-1 Summary and results

In this thesis, a neural network based approach has been proposed for fault diagnosis of railway
track circuits. Artificial neural networks have recently achieved state of the art performance
on difficult pattern recognition problems in several different fields such as image recognition
and speech recognition. These recent successes can be largely attributed to the combination
of large networks and large datasets. In the condition monitoring domain large datasets are
generally not available. This prevents the use of the large neural networks that have become
so successful in other fields. In-spite of this, some of the ideas that have become popular in
other domains might still have value in the condition monitoring domain. This thesis has
focused primarily on the use of the Long Short-Term Memory (LSTM) architecture and the
concept of end-to-end learning. A recent method for unsupervised pre-training has also been
applied to the condition monitoring problem to make use of the unlabeled data when not
enough labeled data are yet available.

Since the required data logging equipment has already been installed on several track circuits,
it is presumed in this thesis that a large amount of unlabeled data will become available.
In addition to this, when maintenance is performed on a track circuit in which a fault is
developing, the measurement data from that track circuit might be labeled by the maintenance
crew. This would lead to the availability of some labeled data. To train and test a machine
learning method before these data become available, a generative model has been made.

The results of creating the generative model, training an LSTM network in an end-to-end
fashion on a large set of labeled data and the results of pre-training an LSTM network on
unlabeled data to make better use of a small labeled data set are given below.
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5-1-1 Generative model

By analyzing the historic measurements from 29.542 trains that have passed over 3 track
circuits, a generative model has been made that describes the transient behavior of the current
in the receiver of a track circuit during the passing of a train. The effects of faults on these
currents that are described in [2] have been implemented in the model. Some dependencies
of the currents on external factors have also been quantified. These external factors include
precipitation, the time of day and the specific train that passes through a section. As these
dependencies only explained part of the variations in the historical measurement data, several
stochastic variables have been added to introduce random variations with different temporal
and spatial properties. This ensured that the synthetic data from the generative model
exhibited comparable variation to the real measurement data. This way, the ability of the
artificial neural network to separate the effects of faults on the currents from the normal
variations of the currents can be better examined.

5-1-2 End-to-end learning

It has been shown in several domains that training a neural network to produce an end result
directly from raw input data can work better than explicitly integrating prior knowledge
into the network or trying to simplify the problem. In this thesis, this end-to-end learning
strategy has been applied to the track circuit condition monitoring case using Long Short-
Term Memory networks.

It has been shown that a neural network trained with this strategy can detect faults accurately.
A network that was trained to detect faults with a fault severity of above 0.15 (on the scale
from 0 to 1) never made a false positive fault detection on the test data set. All faults in
the data set with a severity of 0.28 or above were detected, with most faults detected when
their severity was around 0.18. The network also correctly identified the fault causes, with on
average at least 98.6% of the likelihood assigned to the correct fault type. The performance
of the neural network strategy, which uses no prior knowledge of the system, is comparable
to that of a hand-crafted method that is based on the same prior knowledge as the generative
model. This proves that a neural network trained with end-to-end learning can learn to isolate
faults from the data very accurately and would probably outperform methods based on prior
knowledge on real data. It has also been shown that using a separate neural network, an
estimation of the fault severity can be made.

5-1-3 Unsupervised pre-training

It can be assumed that the majority of the data that will be available in practice will be unla-
beled. To extract the knowledge of the system that is embedded in this data, an unsupervised
pre-training strategy has been used. It has been shown that when only a small amount of
labeled data is available, using a pre-trained network works better than using end-to-end
learning. However, when trained with only 5 labeled example sequences of each fault type,
the pre-trained network only detected faults from four out of the six fault types. Of these,
only two fault types were correctly identified with more than 50% confidence.
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5-2 Future work and recommendations

It is likely that significant further improvements can be made to the unsupervised pre-training
strategy. One useful addition would be a regularization technique such as dropout [27] to
further prevent over-fitting. In addition to this, there is a number of hyper parameters
that can be optimized to achieve better results. The high computational cost of training
a large neural network has made it infeasible to properly optimize the hyper parameters of
the networks and the training algorithm in this thesis. Especially for the unsupervised pre-
training strategy it might be beneficial to try out networks with a different number of LSTM
units and layers and to try different lengths for the sequences that the decoders are required
to reconstruct and predict.

By training and testing the neural networks with the synthetic data from the generative
model, it has been shown that these networks can learn the type of fault dependencies that
are expected to be present in the data from real track circuits. It was also shown that they can
learn to distinguish the trends in the data caused by faults from some of the normal variation
that is expected to occur. However, these proofs were based on some simplifications that need
to be addressed before the method can be applied in practice. One of these simplifications
is the fact that in the generative model, train passings always occur with constant time
intervals. As a result, the model can not distinguish the effect of the passing of a train on the
development of a fault from the effect of the passing of time on the development of a fault.
Another simplification that has been made in this thesis is that for the pre-training strategy,
unlabeled data was used which contained a fault in around 26% of the samples. In reality the
amount of samples that represent faults will be much lower.

Based on the results in this thesis it seems likely that a Long Short-Term Memory Recurrent
Neural Network could outperform fault isolation methods based on prior knowledge on the
track circuit case. However, further improvements in using the unsupervised pre-training
strategy are necessary to ensure that the amount of labeled data that is expected to be
available in practice is sufficient to achieve this performance.
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Glossary

List of Acronyms

ANN Artificial Neural Network

ATB Automatische Trein Beinvloeding (automatic train influencing)

ANOVA Analysis of Variance

FNN Feed-forward Neural Network

RNN Recurrent Neural Network

BP Back Propagation

BPTT Back Propagation Through Time

SGD Stochastic Gradient Descent

GD Gradient Descent

LSTM Long Short-Term Memory

ESN Echo State Network
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