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Abstract

Powerful predictive AI systems have demonstrated great potential in augmenting
human decision-making. Recent empirical work has argued that the vision for opti-
mal human-AI collaboration requires ‘appropriate reliance’ of humans on AI systems.
However, accurately estimating the trustworthiness of AI advice at the instance level
is quite challenging, especially in the absence of performance feedback pertaining to
the AI system. In practice, the performance disparity of machine learning models
on out-of-distribution data makes the dataset-specific performance feedback unreli-
able in human-AI collaboration. Inspired by existing literature on critical thinking and
explanation-based human debugging, we propose the use of debugging an AI system
as an intervention to foster appropriate reliance. In this paper, we explore whether a
critical evaluation of AI performance within a debugging setting can better calibrate
users’ assessment of an AI system and lead to more appropriate reliance. Through
a quantitative empirical study (N = 234), we found that our proposed debugging in-
tervention does not work as expected in facilitating appropriate reliance. Instead, we
observe a decrease in reliance on the AI system after the intervention — potentially
resulting from early exposure to the AI system’s weakness. We explored the dynam-
ics of user confidence to help explain how inappropriate reliance patterns occur and
found that human confidence is not independent of AI advice, which is potentially
dangerous when trying to achieve appropriate reliance. Our findings have important
implications for designing effective interventions to facilitate appropriate reliance and
better human-AI collaboration.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Big leaps in computing power combined with excessive demand have caused unprecedented
growth in the capabilities of Artificial Intelligence (AI) systems. This has allowed these
systems to permeate many different areas, becoming an integral part of many organizations.
One particularly important application of AI is supporting human decision-making, where
AI systems provide humans with advisory solutions or answers to specific problems or de-
cisions. These systems have been widely adopted in areas like criminal justice, finance
[4, 48, 93], healthcare [25, 63], and more [26, 39, 62, 90]. Through leveraging the comple-
mentary skills of humans and AI, a harmonious collaboration is created where humans can
efficiently access the full range of relevant information to make decisions. If done well, this
can result in complementary team performance, which is better performance than would
be achieved by either the AI system or humans separately. In practice, however, it is often
observed that team performance falls short of AI performance. Despite this superior perfor-
mance, many practical, ethical, and judicial considerations make full automation of tasks
undesirable. For team performance to exceed both human- and AI performance, human
decision-makers need to be capable of identifying whenever AI advice is correct (and they
should rely on the system) and when it is incorrect (and they should rely on themselves).
This concept has been defined as appropriate reliance. One way of promoting appropriate
reliance has been through conveying the reasoning behind AI advice to users by generat-
ing meaningful explanations. According to GDPR, human decision-makers are allowed to
receive such meaningful explanations from AI systems they work with [84]. Although this
has been successful to some extent [54, 92], this is not always the case [17]. And even
when explanations are successful, there is no guarantee that team performance will be su-
perior. This has incited much research into this area and many different interventions aimed
at improving appropriate reliance between humans and AI systems have been proposed.

Existing work has explored many different user factors that affect human trust in and
reliance on AI systems like expertise [24, 70], risk perception [38], machine learning liter-
acy [19], and interaction designs (e.g. performance feedback [7, 78, 95], explanation [89],
and user tutorials [55]). These have been successful to varying degrees. A potential inter-
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1. INTRODUCTION

vention that has not been proposed or researched is the usage of debugging exercises as a
way of training users, on a case-by-case basis, to think more critically about whether they
should trust specific AI advice. Debugging an AI system incentivizes users to understand
the system, as to make it easier to find any bugs in the system. It is widely agreed upon
in psychology that critical thinking skills contain both generic and domain-specific aspects
[53, 29]. These skills can be taught through ill-structured problems that require one to go
beyond simply stating previously learned information[53]. As debugging exercises fulfill
these criteria, they can potentially improve the domain-specific critical thinking skills of
humans in the area of human-AI collaboration, thereby enabling users to make better judg-
ments on the trustworthiness of AI advice. In this work, we, therefore, explore the use of a
debugging intervention to facilitate appropriate reliance.

1.2 Research Questions

In many studies in the area of human-AI collaboration, humans are provided with some
form of performance feedback (e.g. accuracy). In practice, however, it is not uncommon for
AI advice to be devoid of such feedback. Extant works rarely treat cases where performance
feedback is absent, which is why research in this area is scarce. This is the setting that will
be applied in our work. To realize the goal of appropriate reliance (AR), humans need to
be able to evaluate the advice and trustworthiness of AI systems. In practice, when users
work together with AI systems, it is common for them to encounter data from unknown
distributions and unknown contexts. Inspired by recent works on explanation-based human
debugging (EBHD) [6, 58], we propose EBHD as a training intervention to increase appro-
priate reliance on AI systems. We posit that such a debugging intervention has the potential
to help users understand the limitations of AI systems — that neither explanations of the
AI advice nor the advice itself are always reliable. Recognizing these limitations can help
users better understand when an AI system is trustworthy and thereby increase appropriate
reliance on the system. In this study, we aim to empirically evaluate the effectiveness of
using a debugging intervention as a means to increase appropriate reliance. To do this, it
is paramount that users are able to judge the trustworthiness of machines at both the global
and instance level. We, therefore, propose the following research questions:

• RQ1: How can a debugging intervention help users to estimate the performance of an
AI system, both at the instance and at the global level?

• RQ2: How does a debugging intervention affect the reliance of users on an AI sys-
tem?

1.3 Contributions

• A comprehensive study on the effects of a debugging intervention on performance
estimation, appropriate reliance, trust, and confidence dynamics.
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1.4. Thesis Outline

• Confirmation of previous works showing that humans may be subject to cognitive
bias arising from the internal ordering of debugging interventions or interventions
similar to it.

• Implications for designing interventions aimed at increasing appropriate reliance of
humans on AI systems.

1.4 Thesis Outline

In chapter 2 we introduce the topics upon which our research is based and cover the rele-
vant research related to our work. Chapter 3 states the hypotheses, and their measures and
explains the intervention in detail, after which chapter 4 will outline the experiment that
has been conducted. The results of this experiment will be shown in chapter 5, where the
data analysis will be covered. Chapter 6 presents the findings from the experiment, their
implications, and limitations. Finally, there will be some concluding remarks and proposed
future work in chapter 7.
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Chapter 2

Background and Related Work

This chapter will cover the background knowledge required to understand the research, its
purpose, context, and methodology. First, we dive deeper into Human-AI interaction, its
dynamics and context. Second, we we talk about Explainable AI (XAI), a tool that is used
during the experiment. After that, there will be a section explaining the reasoning behind
choosing EBHD as an intervention. Finally, there will be a section explaining the concept
of crowd computing, upon which we rely for our experiment.

2.1 Human-AI interaction

Technological advances in the last decade have allowed AI to become an extremely powerful
and useful tool for solving problems. This has allowed it to become a widespread practice
for automation in many domains. Some AI systems have even proven to be more performant
than humans at solving certain problems. However, many practical, ethical, and judicial
considerations make full automation undesirable. AI, therefore, often has a supporting role
by providing predictions to the humans making the final decision. This generic process of
providing predictions will be referred to as human-AI decision-making. One such way
of utilizing AI systems is through Decision Support Systems (DSS). They are a subset
of AI systems that aim to leverage the strengths of humans and AI systems. Throughout
this thesis, when referring to AI systems, we will mainly target these systems. Compared
to humans, AI systems are often very limited in the type of problems they can solve but
possess superior quantitative reasoning skills. This is the ability to solve specific problems
by applying mathematical concepts to analyze large amounts of data. Humans, on the other
hand, outperform AI when it comes to cross-functional reasoning skills. This encompasses
skills that involve reasoning based on a wide variety of areas. In complex environments,
humans are often presented with an amount of data large enough to make analyzing it in its
entirety impractical or impossible. They are therefore often obliged to make decisions based
on their own perceptions, which are not only incomplete but are also subject to (systemic)
bias. By having an AI system aggregate this data, humans can be presented with advice that
relies on a much more complete view of the data. Ideally, this results in complementary
team performance; performance resulting from human-AI interaction that is superior to the
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2. BACKGROUND AND RELATED WORK

performance of either one separately. However, this does not always happen, especially
with well-performing AI systems.

2.1.1 Trust and AI

Many studies show that humans interact with technology in a similar fashion as they would
with a human collaborator [79]. Extant research suggests that emotional and attitudinal
factors that affect human-to-human interaction may likewise influence human-machine in-
teraction. In these interactions, trust seems to be critically important. In particular, machine
reliance appears to be guided by trust [57], where trusted machines and untrusted machines
are likely to be accepted and rejected, respectively. We define trust as suggested by Mayer,
Davis, and Schoorman [67] to be “the willingness of a party to be vulnerable to the actions
of another party based on the expectation that the other will perform a particular action im-
portant to the trustor, irrespective of the ability to monitor or control that other party”. As
the focus of this research is human-AI collaboration, humans will assume the role of the
trustor, and AI systems the role of trustee. Many studies have shown that AI systems used
as decision support systems are initially highly trusted, which decreases when erroneous be-
havior is observed [21, 23, 66]. Restoring this trust tends to be a lengthy process. A general
tendency that is observed is a drop in trust when users are presented with AI weakness. XAI
backs this up by reporting a drop in trust when low-quality models revealed weaknesses to
the user [85]. Another study in this field observed that, even though machine predictions
were correct, trust decreased whenever discrepancies between the user’s and machine’s rea-
soning occurred (i.e. the prediction is correct, but the human does not agree with the given
explanation) [83]. The trust drop resulting from this can be mitigated by communicating
the AI’s rationale and abilities to the user, which lowers the impractically high initial trust
and increases the recovery rate of trust after erroneous behavior is encountered [44].

2.1.2 Confidence and AI

Through interaction and feedback, humans build mental models. These are internal rep-
resentations of real-world objects or concepts. When interacting with AI systems, human
reliance is guided by their mental models. The way these models are built is dependent
on many factors, an important one being performance feedback. Previous work shows that
presenting users with machine accuracy [54, 95], information on its confidence [97], and
correctness feedback [7, 8] helps build these models, thereby affecting their reliance on an
AI system.

However, performance feedback is not always available, forcing users to rely on other
forms of feedback. Recent work suggests confidence could be a significant influencing
factor in these situations. When users agree on decisions in which they are highly confident,
they tend to rely more on a model. This means that, as long as the users and AI system are
sufficiently adept at performing the task they are presented with, there will be a high level
of appropriate reliance. When this is not the case, however, users might underestimate
machine performance, potentially leading to under-reliance. Additionally, if this occurs
whenever users’ and AI systems’ predictions are not independent, it could lead to over-
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2.2. Explainable AI

reliance on models that are prone to the same fallacies as the user and under-reliance on
complementary models.

In our research, no performance feedback will be provided to users outside of the debug-
ging intervention. We will therefore track their confidence in their decisions, and analyze
how it changes after being subjected to the intervention.

2.1.3 Appropriate Reliance

A critical factor in achieving complementary team performance is appropriate reliance. Hu-
mans appropriately rely on AI systems when they accept correct advice and reject incorrect
advice from an AI system. The widespread usage of AI has incited much research explor-
ing how to increase appropriate reliance. It has been observed that reliance can be affected
by human-, automation-, and context-related factors [69, 81, 15]. In practice, however, the
human’s failure to appropriately rely on the system is often the cause of achieving sub-
optimal performance [74, 28]. This can be described in terms of misuse and disuse, which
respectively refer to relying on automation when it performs poorly and rejecting automated
predictions when it is correct [57]. Figure 2.1 shows how (in)appropriate reliance occurs.
To account for this sub-optimal performance, existing works propose various interventions
like user-tutorials [20, 55], cognitive force functions [12], and improving the AI literacy of
the use case [18]. Other works propose ways of improving the transparency of AI systems
using effective explanations [54, 89], performance feedback [64], and global model proper-
ties [13]. The common denominator between these different approaches is to, in addition to
AI, provide users with additional information about the AI system or change their attitude
towards and knowledge of the system.

2.2 Explainable AI

Explainable AI (XAI) is a relatively new field that aims to help people understand the de-
cisions and predictions made by AI systems. While this research does not focus on XAI
specifically, it still forms an integral part of the experiments. This section will elaborate on
the concept of XAI by explaining why, where, and how it is used. It will also give a brief
overview of the different methods and techniques that currently exist, as well as characterize
them based on aspects that are relevant in Human-AI interaction research.

2.2.1 Reasons for XAI

In general, there are four reasons for using XAI, as posed by Adadi and Berrada [1], which
are to justify, control, improve, and discover.

Justify

Performant AI solutions often utilize machine learning (ML), which uses functions that are
too complex to understand, effectively making them black-box models. To mitigate these
effects, much work has gone into providing explanations for these models. The main focus

7



2. BACKGROUND AND RELATED WORK

Figure 2.1: To appropriately rely on an AI system, users have to adopt AI advice when it is
correct, and reject it when it is incorrect. Failing to do this will lead to misuse or disuse of
the AI system.

of these explanations is to help users understand the system and the decisions it makes.
Especially with potential bias and discrimination that can occur in ML models [14, 46], it
becomes important that it can be shown that predictions were not made erroneously.

Control

When working with AI systems, it is always desired to make as few erroneous predictions as
possible. As explanations provide information on given decisions, they can help rapidly rec-
ognize flaws and vulnerabilities. This can be paramount, especially in high-stakes domains
where decisions have much impact.

Improve

Rather than just recognizing errors and justifying predictions, explanations can help im-
prove existing systems. They can provide information that, based on the prediction, can
highlight sub-optimal procedures or inconsistencies in the AI’s belief system. Traditionally,
this is one of the main contributions of EBHD [58].

2.2.2 Methods and Characteristics

There are several ways to distinguish XAI approaches by their methods and characteristics.
This section will show them from the perspective of their complexity, level of engagement,
and the extent to which they are dependent on a specific model.

8



2.2. Explainable AI

Complexity

There exists a direct correlation between the interpretability and the complexity of a ML
model. Generally speaking, the more complex a model is, the less interpretable it is. Be-
cause of this, it would be useful to have performant models that are intrinsically inter-
pretable. Several works have explored this subset of models [59, 14]. Among the best-
performing Machine Learning models, however, this is very uncommon. Examples of these
models are transformers like XLNet and BERT [88, 94, 22]. The two state-of-the-art meth-
ods of generating explanations for these models are Local Interpretable Model-Agnostic
Explanations (LIME) and SHapley Additive exPlanations (SHAP) [80, 65]. Both are so-
called post-hoc explanation methods, which generate explanations after the model has been
trained and rely on input perturbations to generate their explanations. These are the type of
explanations that have been used in our experiments.

Level of Interpretability

A different way of differentiating between explanations is through their level of Inter-
pretability. Extant work distinguishes between global and local interpretability.

Global interpretability focuses on the model on a holistic level, trying to explain the
belief system of a model and how this correlates with all possible outputs. This information
can be useful when making decisions at a higher level of abstraction (e.g. in the context of
climate change). In such cases, the reasoning of the machine can provide useful insights
into the dynamics of a specific area or field. Drawbacks of these models are that they are
generally hard to create. This gets amplified as models become more complex.

Local interpretability focuses on explanations at the instance level. They are often
unique for every input and therefore different on a case-by-case basis. While there are
many methods for providing local explanations, the most popular ones are the aforemen-
tioned SHAP and LIME.

The explanations provided in our experiments are mainly local, with a small part (ar-
guably) being global.

Model-specificity

Model-specificity is a binary property of XAI methods. It describes whether a method is
model-specific or model-agnostic; whether a method can only be used on one specific model
or whether it can be used independently of the model that is used. The method used in this
research is model-agnostic.

2.2.3 Techniques

There are several types of techniques for presenting explanations to users. Adadi and
Berrada [1] has broadly categorized them into visualization, knowledge extraction, influ-
ence methods, and Example-based explanations.

9



2. BACKGROUND AND RELATED WORK

Visualization

Visual pattern recognition is something that comes naturally to humans. Much work has
therefore gone into exploring ways of presenting model explanations to humans through
visualizations. Three popular techniques in this area are Surrogate models, Partial De-
pendence Plots, and Individual Conditional Expectations. Surrogate models try to derive
simplified versions of black-box models and visualize them in a way that is understandable
to humans. Partial Dependence Plots aim to provide a graphical representation of complex
models, where the nodes and vertices present relations between one or more input and out-
put variable(s). Individual Conditional Expectations are a refinement of Partial Dependence
Plots.

Knowledge Extraction

Well-performing ML models store their algorithms/belief systems in their network of nodes.
Knowledge Extraction tries to translate (some of) that data into a human-comprehensible
form. The two main techniques in existing work are Rule Extraction and Model Distil-
lation. Rule Extraction tries to find rules that represent the decision-making process of a
model, thereby being a good descriptor of how the system works. Model Distillation tries
to transfer to a more shallow, easily interpretable model while retaining the key properties
of the original model.

Influence Methods

Influence methods rely on perturbations of the input or internal components of a model.
Explanations are derived based on the difference in output resulting from a specific (set of)
perturbation(s). There are three main methods for doing this: Sensitivity Analysis, Layer-
wise Relevance Propagation, and Feature Importance. Sensitivity Analysis looks at whether
a model output stays stable when data is perturbed. It is often used to test a model’s stability
or find unimportant input attributes. Layer-wise Relevance Propagation identifies the core
properties of a model by going over it, starting from the output layer. Feature Importance
decides the importance of input features by permutating them and observing the differences
this causes in the output.

Example-based

Example-based techniques explain machine behavior based on instances from the training
data. Two examples are Prototypes and Criticisms, and Counterfactuals. Prototypes and
Criticisms tries to explain models by finding instances representing the dataset (prototypes)
and instances representing exceptions (criticisms). Counterfactual Explanations denote the
minimum amount of conditions that would have to change before a different decision is
reached.

10
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2.2.4 Effectiveness

As XAI techniques have started to become more widespread, researchers in many areas
have tried to incorporate them into their workflows. Most notable amongst these fields
are healthcare, criminal justice, and military [14, 45, 47, 16, 86, 9, 40, 43], where XAI
could be a promising technology. As mentioned, they aim to help people understand the
decisions and predictions made by AI systems. Many agree, and believe that XAI can
provide additional insights to assist decision-making [56, 89, 54, 92].

The extent to which this is the case, however, is very context-dependent. In section 2, it
was mentioned that complexity can limit the techniques that can be used. Another factor that
might influence this is the data type that is used by machines. Examples of data types that
can be used are text, images, video, audio, and tabular data. Using the same AXI technique
on these types can result in varying effectiveness. An example of this is Alqaraawi et al.
[3] where attention explanations were shown to be limited in their utility on images because
attention data might be noisy and confusing compared to other types like text data, where
attention is presented using highlighted words.

There are several works examining the effects of XAI with respect to trust and appro-
priate reliance. A number of studies support the idea that explanations lead to appropriate
reliance by improving human understanding of the AI model [54, 92]. Additionally, many
studies support the idea that explanations arouse trust in humans. This sometimes leads to
over-reliance and subsequent misuse and is therefore not always desired. Moreover, there
are often covariates involved in engendering trust, like the popularity of the software gen-
erating the applications, or the visual appeal of the explanations. On the other hand, some
research reports trust and reliance do not necessarily increase trust and reliance. Cheng et
al. [17], for example, noticed explanations increased their subjects’ machine comprehen-
sion but failed to increase trust in the system in high-stakes applications.

2.3 Critical Thinking, Belief Systems, and EBHD

The debugging intervention relies on existing work on critical thinking, belief systems, and
debugging. This section will give an overview of relevant information related to those fields
and explain the reasoning for proposing EBHD as an intervention.

2.3.1 Critical Thinking

Human belief systems and decision-making processes can be heavily influenced by the ex-
tent to which critical thinking is performed. This complex subject has no universally ac-
cepted definition. Different academic disciplines offer their own approaches to defining the
subject. To best reflect our concerns, we rely on the work of Robert J. (1986) and define
critical thinking to be the mental processes, strategies, and representations people use to
solve problems, make decisions, and learn new concepts [11]. It is generally agreed upon
that critical thinking has both general- and domain-specific aspects [53, 29] [31, 30, 76].
Some oppose this proposition, maintaining that critical thinking skills and abilities are not
domain-specific [41, 61, 35], and others that critical thinking skills are purely domain-
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2. BACKGROUND AND RELATED WORK

specific [91, 5]. Despite this, the importance of domain-specific aspects has been estab-
lished in much of the existing literature. By altering these aspects in humans, it is therefore
expected to affect their critical thinking. Prior work has evaluated many domain-specific
aspects of Human-AI collaboration, like knowledge [51, 10, 40] and trust [36]. Most re-
searchers agree on the important role of domain-specific knowledge. As McPeck (1990)
notes, to think critically, there needs to be something critical to think about [68]. Also,
well-established is the role of trust in interaction with technology, with low trust leading to
disuse and possible abuse, and high trust potentially causing over-trust which could lead to
undesirable outcomes [57].

2.3.2 Debugging

According to the ANSI/IEEE standard glossary of software engineering terminology de-
bugging is to detect, locate, and correct faults in a computer program [71]. While overall
consensus has been achieved on the meaning of ’bugs’ in software engineering, they have
been ascribed to various meanings in ML research. These definitions range from imple-
mentation errors to particularly damaging or inexplicable test errors. Following the works
of [58] we adopt the definition of Adebayo et al. [2] which defines bugs in ML to be
”contamination in the learning and/or prediction pipeline that makes the model produce
incorrect predictions or learn error-causing associations”. Bugs that might occur include
spurious correlations, labeling errors, and undesirable behavior in out-of-distribution test-
ing. Some conflict exists in the interpretation of the process of debugging. Some consider
it to be purely the identification or uncovering of model errors [75, 37]. Others complement
this definition by stating that, in addition to revealing causes of problems, debugging should
also fix or mitigate them [52, 96]. When designing the debugging intervention, the former
interpretation was adopted. Building on this, and following [58] we define EBHD to be the
process of identifying or uncovering bugs in a trained model using human feedback given
in response to explanations for the model.

2.3.3 EBHD as an Intervention

Debugging is an interactive process that incentivizes efforts to become familiar with a sys-
tem. By subjecting humans to a debugging intervention, we would therefore expect their
belief systems of the AI system to be updated. Specifically, we aim to make users aware
of the limitations of AI systems - that neither explanations of the AI advice nor the advice
itself are always reliable. This could cause them to get a better sense of when to trust and
rely on a system, thereby increasing appropriate reliance.

2.4 Crowd Computing

As mentioned, computers have distinct qualities that allow them to outperform humans in
specific areas. Because of that, they are often utilized for the automation of a specific subset
of simple and complex tasks, which is very practical when dealing with large workloads.
However, due to the nature of some tasks, automation in this manner might not be a viable
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option and a different solution has to be come up with. One of these solutions is crowd
computing. Crowd computing is a variation of the more common paradigm crowdsourcing,
where a job is traditionally performed by a designated agent (usually an employee) and out-
sourced to an undefined, generally large group of people in the form of an open call [77]. In
crowd computing, the job is often a problem or collection of problems to be solved. These
problems have characteristics that make the use of machines for automation impossible or
impractical. At the same time, they can be easily solved by humans. This low threshold
causes the group to which the task can be outsourced to be very large. One of the areas
where this can be capitalized on is research into human-AI interaction. Researchers create
an AI system with which users can interact and present the system to users through a se-
ries of tasks, questions, or comparable approaches. Through dedicated platforms, they can
reach a large audience which they can filter, based on the parameters of their research. After
the selection, they will present their system to the participants, which will be appropriately
compensated for their efforts. To ensure that the participants supply them with valid data
for their research, additional filtering is applied to remove participants that do not engage
seriously with the presented task. The most popular approach for this filtering is presenting
users with attention checks. Attention checks are easy-to-answer questions that have to be
answered correctly for the user to be allowed to continue their tasks. Incorrectly answering
such a question often indicates a lack of attention from the participants and notifies the re-
searcher of this. We also utilized crowd computing in our research, to analyze the effects
of our intervention. These consisted of instructions disguised as normal tasks or questions.
Figure 2.2 shows an example of one such attention check. The question in the middle gives
instructions to the participant. If they are not paying attention, participants will ignore the
instructions and select an answer at random, likely failing the attention check.

Figure 2.2: Several questions are shown. The first and the last are regular questions, while
the question in the middle gives instructions to the participant. If they are not paying atten-
tion, participants will ignore the instructions and select an answer at random. When they do
this, they will likely fail the attention check.
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Chapter 3

Approach

This section outlines the hypotheses, describes the task that we use and presents the design
of the debugging intervention.

3.1 Hypotheses

The experiment has been designed to reveal the impact of the proposed EBHD intervention
on user estimation performance (i.e. how well the user is able to estimate what its own, as
well as the AI system’s performance, is on a set of tasks), as well as user reliance on AI
systems. By having users challenge AI advice and explanations, and presenting them with
feedback on their performance, it is expected that they will have an improved understanding
of the system. This could improve their sense of the accuracy of the AI system, which
impacts both estimation performance and reliance and increases the extent to which they
appropriately rely on the AI system. We therefore hypothesize:

1. Encouraging users to critically evaluate the trustworthiness of AI advice at the in-
stance level, in a debugging intervention, will improve their assessment of the AI
system’s performance at the instance and global levels.

2. Encouraging users to critically evaluate the trustworthiness of AI advice at the in-
stance level in a debugging intervention will improve the extent to which users ap-
propriately rely on the system.

As the internal task ordering of the intervention can affect its effectiveness, our exper-
iment will consist of various conditions. These conditions will be based on the order in
which the AI system’s strengths and weaknesses are presented. Dependent on the ordering,
users may show different learning effects. We, therefore, hypothesize that:

1. The perceived trustworthiness of AI advice at the instance level in a debugging inter-
vention corresponds to an ordering effect with respect to appropriate reliance.
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3.2 Task: Deceptive Review Detection

AI-assisted decision-making is typically used for tasks that are challenging for humans. AI
systems often outperform humans in these tasks. Our experiment is based on one such
task, called deceptive review detection, where AI advice could be a real need. In each task,
participants are presented with a hotel review, which is either genuine or deceptive. Gen-
uine reviews have been written by people that have actually visited the hotel and described
their experience there. Deceptive reviews have been written by people that have not visited
the hotel and are therefore writing about made-up, fake experiences. It is the task of the
participant to decide whether the review they are presented with is genuine or deceptive.

3.2.1 Highlights as Explanations

During the task, users are not provided with any performance feedback, reflecting a real-
world scenario. To support them in their decision-making, we provide them with predictions
from an AI system, along with explanations in the form of highlights. The AI system is
based on a fine-tuned BERT model and the highlights have been generated using LIME.
The machine prediction only states whether the machine believes the review to be genuine
or deceptive, without providing any additional feedback, like accuracy or confidence. Each
highlight occurs on a single word and is either colored green or red, respectively stating
that the machine believes a word to be more indicative of the review being more genuine
or deceptive. Highlighted words that are more indicative will be highlighted with a more
intense hue. Highlights do not occur in every word. Only the 10 most indicative words will
be highlighted.

3.2.2 Two-stage Decision Making

Following existing empirical study design of human-AI decision-making [55], participants
will complete each task in two stages of decision-making. In the first stage, they will be
presented with the hotel review, without any AI assistance, meaning no predictions or expla-
nations are shown. The decision made in the first stage - the initial decision - will therefore
be completely dependent on the participant. In the second stage, participants are presented
with the same review. Now, however, both machine prediction and explanations will be pro-
vided. Now, participants can make their decision using AI advice. As the task can be quite
challenging, participants will be provided with guidelines to complete the tasks. These
guidelines will be presented before each task batch. Additionally, there will be a button
during the tasks through which they can access the guidelines.

3.2.3 Task UI

Figure 3.1 shows the task interface that users will initially be presented with. As can be seen,
this version does not have any explanations. Users can select their answer by clicking the
genuine or deceptive buttons. After they have provided their answer, participants are asked
how confident they are in their decision. This can be indicated by 5 buttons presenting a
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3.2. Task: Deceptive Review Detection

5-point Likert scale ranging between Very unconfident, Rather unconfident, Neutral, Rather
confident and Very confident.

Figure 3.2 shows the task interface of the second stage. The review is the same, however,
now the AI advice and explanations are also shown. Again, participants have to indicate
their decision and confidence before moving on to the next task instance.

At any point in the process, participants can access the highlights using the button at the
top of the interface.

Figure 3.1: Task UI of the first stage of a trial case.
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Figure 3.2: Task UI of the second stage of a trial case.

3.2.4 Task Selection

Using deceptive review detection as the task for our experiment was inspired by Lai, Liu,
and Tan [55], which used the same task. To train the model and create the task batches, we
also used the same dataset as they did, the Deceptive Opinion Spam Corpus v1.4 [72, 73].

To measure the effects of the debugging intervention, participants will be presented
with task batch before and after the debugging intervention (more on this in section 4.4). To
make sure the result is not influenced by the difficulty of the tasks in the different batches,
we created two batches of tasks with equal difficulty. We did this by conducting a pilot
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study where 10 participants were presented with 20 different deception detection tasks that
were randomly sampled from the validation and test set of the dataset. Each task only had
the initial stage (without any assistance). Based on the average performance of each task,
we created two balanced batches of tasks.

3.3 Debugging Intervention

Our debugging intervention relies on EBHD to help participants more accurately assess
the trustworthiness of AI advice at the instance level and calibrate their reliance on the AI
system.

3.3.1 Setup

The aim of the intervention is to learn participants that (1) AI advice they are presented
with is not necessarily correct and (2) explanations are not always informative and helpful
for identifying the trustworthiness of AI advice. Thus, when selecting the task batch for the
debugging intervention we considered two main factors: (1) the correctness of AI advice,
and (2) whether an explanation is informative (i.e., whether or not such explanations com-
bined with guidelines, can help participants easily identify the correct answer). Taking this
into account, we selected 8 tasks for the debugging intervention.

3.3.2 Task: Explanation-Based Human Debugging

During each task in the debugging intervention, participants are presented with a hotel re-
view with explanatory elements consisting of AI advice in the form of a prediction and
color-coded highlights on the 10 most important features. This can be seen in figure 3.3,
where the interface of a debugging question is shown. Each highlight corresponds, based
on its color, to the contribution of their token to the model prediction. This contribution is
presented by a 5-point Likert scale ranging between Deceptive, Somewhat deceptive, Neu-
tral, Somewhat genuine, and Genuine. Participants are instructed to read the text and, when
deemed necessary, refine the explanations by adjusting the highlights using the panel on
the right. Additionally, they have to indicate whether they think the AI is correct. When
they have done this, they will be presented with a screen providing them with feedback
on their performance, see figure 3.4. The performance feedback consists of every incon-
sistency between the participant’s answers and the correct answers. The highlights that
participants will initially be presented with are the highlights resulting from post-hoc XAI
method LIME. The correct highlights have been created through manual correction of the
researchers and serve as ground truth for the debugging intervention.

3.3.3 Ordering Effect

As mentioned, internal ordering based on the showing AI strengths and weaknesses can
have an impact on the effectiveness of the debugging intervention. To balance the tasks,
we manually selected four tasks with informative explanations (where explanations and
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Figure 3.3: Task UI a trial case from the debugging intervention. Pressing a highlighted
word will make the panel on the right-hand side of the interface accessible. This panel can
then be used to indicate the color of the selected highlight.

guidelines can help participants easily identify the correct answer) and four tasks with un-
informative explanations. The eight tasks presented in our debugging phase are:

• two tasks with correct AI advice and informative explanations

• two tasks with correct AI advice and uninformative explanations

• two tasks with incorrect AI advice and informative explanations

• two tasks with incorrect AI advice and uninformative explanations

The tasks are balanced based on the correctness of the AI advice and whether their ex-
planations are informative. The (un)informative explanations have been manually selected,
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whereas the correctness of the AI advice is determined randomly. Existing work suggests
first impressions greatly affect human trust in AI systems (see section 2.1.1). With this in
mind, we created three task batches consisting of the same tasks but ordered differently. The
aim of the ordering is to induce positive and negative first impressions of the AI system. The
task batches were ordered in the following way:

• Random order.

• Decreasing impression order (i.e. from good to bad): correct AI advice, informative
explanation → correct AI advice, uninformative explanation → wrong AI advice,
informative explanation → wrong AI advice, uninformative explanation.

• Increasing impression order (i.e. from bad to good): wrong AI advice, uninforma-
tive explanation → wrong AI advice, informative explanation → correct AI advice,
uninformative explanation → correct AI advice, informative explanation.

In the decreasing order, participants will first be presented with correct advice and infor-
mative explanations, after which the quality of the advice and explanations will gradually
deteriorate. It is expected that this will result in a positive first impression of the AI sys-
tem on participants. In the increasing order, we expect the opposite to happen; presenting
participants with incorrect advice and incorrect explanations first is expected to result in a
negative first impression of the AI system.
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Figure 3.4: After adjusting the highlights, users are presented with feedback on their per-
formance.
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Chapter 4

Experimental Setup

This section will cover the experimental, measures, participants, and procedure of the study.
This study was approved by the human research ethics committee of our institution.

4.1 Experimental Conditions

Throughout the study, every participant worked on two batches of the deceptive review
detection task with the two-stage decision-making as described in 2. The difference between
the conditions is whether the debugging condition is present and what its internal ordering
is. The four experimental conditions resulting from this are:

1. Control No debugging intervention is present

2. Debugging-D A debugging intervention is present, with a decreasing impression or-
der

3. Debugging-I A debugging intervention is present, with an increasing impression or-
der

4. Debugging-R A debugging intervention is present, with a random impression order

In conditions with a debugging intervention present, the procedure described in section
4.4 took place for the 8 tasks in the debugging intervention. In the control condition, these
tasks were presented similarly as in the regular task batches (section 4.4). The tasks were
randomized within the limits that the balancing procedure (section 3.3.3) allowed for.

4.2 Measures

To verify our hypotheses, we selected several measures. This section will outline what these
measures are and what they represent.
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4.2.1 Measures Hypothesis 1

To verify hypothesis 1, we need to be able to assess the performance estimation of humans
at the global and instance level.

To measure the performance estimation at the global level, participants were asked two
questions after each regular task batch (non-intervention batch): ”From the previous 10
tasks, on how many tasks do you estimate the AI advice to be correct?” and “From the
previous 10 tasks, how many questions do you estimate to have been answered correctly?”.
By comparing the actual performance of the AI and participant to the estimates of the par-
ticipant, we can calculate the miscalibration between the two. The actual performance of
the AI has been set to 0.8, meaning that out of 10 tasks, it provides the correct advice on 8
of them. The actual performance of the participant is measured throughout the experiment.
Using this information, we calculate the Miscalibration of AI Performance (MAP) and the
Miscalibration of Team Performance (MTP).

To measure the performance at the instance level, we use the participant’s indicated
confidence. When making an AI-assisted decision with high confidence, a participant im-
plicitly indicates whether it believes the machine to be correct or incorrect. We, therefore,
measure the estimation performance at the instance level by filtering out the AI-assisted
tasks where participants indicated they were ”Very confident” and calculating the fraction
of questions that were answered correctly. We refer to this measure as Correct Confident
Answers (CCD)

4.2.2 Measures Hypothesis 2

To verify hypotheses 2 and 3, both reliance and appropriate reliance of the participants on
the AI system was measured.

Measuring reliance was done through the Agreement Fraction and Switch Fraction.
These metrics are widely adopted in existing literature [95, 97, 64]. The former is the extent
to which participants agree with the given advice. The latter represents how often partici-
pants adopt AI advice when it is in disagreement with their initial answer.

di AI advice d f Reliance
0 1 1 Positive AI reliance
0 1 0 Negative self-reliance
1 0 1 Positive self-reliance
1 0 0 Negative AI reliance

Table 4.1: The different appropriate reliance patterns considered in [82]. di and d f refer to
the initial human decision and final human decision respectively. 1 and 0 refer to correct
and incorrect respectively.

Appropriate reliance was measured through the measures proposed in Schemmer et al.
[82]. They base their measures on four reliance patterns: negative AI reliance, positive AI
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reliance, negative self-reliance, and positive self-reliance. These refer to the cases where
users rely on or don’t rely on either themselves or the AI system. Figure 4.2.2 shows an
overview of these four patterns. The proposed measures are calculated in the following way:

Relative positive AI reliance (RAIR) =
Positive AI reliance

Positive AI reliance + Negative self-reliance

Relative positive self-reliance (RSR) =
Positive self-reliance

Positive self-reliance + Negative AI reliance

RAIR is the extent to which a participant relies on correct AI advice when the par-
ticipant’s initial decision is incorrect. RSR is the extent to which a participant relies on
their own, correct, initial decision when the AI system provides incorrect advice. Both are
presented with a number between 0 and 1. The closer these measures are to 1 for a partici-
pant, the more that participant appropriately relies on the AI system. Also, for each batch,
AI-assisted accuracy is considered to measure participants’ performance.

For a deeper analysis of our results, several additional measures were considered based
on observations from existing literature [60, 83, 87]:

• The Trust in Automation (TiA) questionnaire [49], a validated instrument to mea-
sure (subjective) trust [87] consisting of 6 subscales: Reliability/Competence (TiA-
R/C), Understanding/Predictability (TiA-U/P), Propensity to Trust (TiA-PtT), Fa-
miliarity (TiA-Familiarity), Intention of Developers (TiA-IoD), and Trust in Automa-
tion (TiA-Trust).

• The Affinity for Technology Interaction Scale (ATI) [33], administered in the pre-task
questionnaire. Thus, we account for the effect of participants’ affinity with technol-
ogy on their reliance on systems [87].

• The NASA-TLX questionnaire [42] for the working load assessment of the debugging
intervention.

4.3 Participants

4.3.1 Sample Size Estimation

To estimate the number of participants needed for the experiment, we did a power analysis
for a Between-Subjects ANOVA using G*Power [32]. We used a significance level of 0.05,
on which we applied a Bonferroni correction. Because the experiment was used to test
3 hypotheses, the resulting alpha level was 0.05

3 = 0.017. We specified the default effect
size f = 0.25 (i.e., indicating a moderate effect), a statistical power of (1−β) = 0.8, and
that we will investigate 4 different experimental conditions. The resulting required sample
size was 230. To accommodate potential exclusion, we recruited 324 participants from the
crowdsourcing platform Prolific [footnote].
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4.3.2 Compensation

The estimated completion time for the experiment was 30 minutes. We maintained an hourly
wage of £7.6. The participants were therefore rewarded with £3.8 for their efforts. Addi-
tional bonuses were handed out based on their performance during the 20 trial cases. Every
correct (final) decision was rewarded with £0.05. This bonus was handed out to incentivize
the crowd workers to try their best on each task. This approach is widely adopted in existing
research [18, 55].

4.3.3 Filter Criteria

We selected proficient English-speaking participants, all above the age of 18. Each of them
had an approval rate of at least 90%, and more than 80 successful submissions on the Pro-
lific platform. At the start of the experiment, participants were required to read the ba-
sic introduction and guidelines about the deceptive review detection task. After that, they
were presented with two easy questions that followed directly from the introduction. Ad-
ditionally, during the following two steps, before participants had made a significant time
commitment, participants were given two simple instructions (select a specific answer to a
multiple-choice question). Failing to answer the questions correctly or complete the tasks
lead to a direct removal from the study. The questions and tasks were designed to be suffi-
ciently easy that any participant should have been able to answer them correctly if they had
read the introductions carefully. Answering any of them wrong or failing to complete the
tasks correctly, therefore, indicates to us that they have not read the instructions carefully
and, therefore, were not paying attention. This means their data could not be used for our
study, which is why their removal was justified. 90 participants were filtered out in this step.
The resulting sample of 234 participants had an average age of 39 (SD = 13) and a gender
distribution of (48.7% female, 49.6% male, 1.7% other).

4.4 Procedure

A visual representation of the procedure can be found in figure 4.1. As mentioned, at the
start of the experiment participants are presented with a basic introduction to the deceptive
review detection task. According to Lai, Liu, and Tan [55], guidelines about how to identify
deceptive reviews are highly useful in improving user performance on this task, which is
why these were also provided to the users in the introduction. Following the introduction,
the participants were presented with the qualification check, where they had to answer two
questions about the introduction correctly to ensure they are paying attention and under-
stand the task. Participants that passed this test were presented with the (1) TiA-PtT and
TiA-Familiarity part of the TiA questionnaire, and (2) the ATI questionnaire. Following
these questionnaires was the first of two batches of tasks (10 tasks per batch). Which of the
two batches was presented to the participant was randomly decided. Additionally, the task
order within each batch was also randomized. After finishing their first batch of tasks, the
participants had to answer two questions related to the measurement of their performance
estimation (see section 4.4) and answer a post-task questionnaire consisting of the remaining
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Instructions Pre-task
Questionnaire Task Batch 1 Post-task

Questionnaire

Post-task Questionnaire 
Control

Debugging batch 
Tutorial-RNASA-TLX

Debugging batch 
Tutorial-INASA-TLX

Debugging batch 
Tutorial-DNASA-TLX

Task Batch 2Post-task
Questionnaire

ATI, TiA-PtT, 
TiA-Familiarity 10 trial cases 

Assessment (DV), 
Trust (DV) 

8 cases 
Differ in conditions

10 trial casesAssessment (DV), 
Trust (DV)

Start

Done

Figure 4.1: Illustration of the procedure that participants followed within our study. The
blue boxes represent questionnaire phases, the orange boxes represent task phases, and the
red box represents the debugging intervention.

sections of the TiA questionnaire. Following this was the debugging intervention. For par-
ticipants in Control, this meant they had to complete another 8 tasks in the same fashion.
Participants not in Control were subjected to the debugging intervention as described in
section 3.3, after which they had to answer a NASA-TLX questionnaire assessing the work-
load they experienced during the intervention. After the intervention, participants have to
complete the second batch followed by the same questions and post-task questionnaire as
the ones after the first batch.
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Chapter 5

Results and Analysis

This section will present the main results of the study. It starts by stating some descriptive
statistics. These are followed by an analysis of the hypotheses and their measures (see
section 4.2. Finally, an explorative analysis of the data will be covered.

5.1 Descriptive Statistics

As a measure of participant reliability [34], we only consider participants who passed all at-
tention checks. Participants were distributed in a balanced fashion over the four experimen-
tal conditions in the following way: 57 (Control), 59 (Debugging-R), 60 (Debugging-D),
and 58 (Debugging-I). On average, they spent 51 minutes (SD = 14) on our study.

Variable Distribution. The distribution of the covariates is as follows: ATI (M = 3.91,
SD = 0.94, 6-point Likert scale, and 1: low, 6: high), TiA-PtT (M = 2.89, SD = 0.61, 5-
point Likert scale, 1: tend to distrust, 5: tend to trust), TiA-Familiarity (M = 2.29, SD =
1.09, 5-point Likert scale, 1: unfamiliar with AI system used in study, 5: familiar with AI
system used in study).

The working load of the debugging intervention is measured with the NASA-TLX ques-
tionnaire (on a scale of [-7, 7]). For all dimensions except “Performance”, a higher value
indicates a higher working load. In the dimension “Performance”, a smaller value indicates
a higher estimated performance on tasks. The dimensions have been visualized in figure
5.1. In general, participants think the debugging intervention requires a high amount of
“Mental Demand” and “Effort”, but a low amount of “Physical Demand” and “Temporal
Demand”. Most participants do not show high expectations in achieved “Performance”.
They also don’t show much “Frustration”.

Performance Overview. The average accuracy achieved by the participants was 0.64
(SD = 0.11) over the two task batches. This is lower than the aforementioned AI accuracy
of 0.8. The agreement fraction is 0.66 (SD = 0.13), while the switching fraction is 0.31
(SD = 0.22). This means that participants did not always switch to the AI advice in cases
of initial disagreement. Participants, therefore, did not blindly rely on the AI system. In
the two batches of tasks (10 for each batch), the average estimated AI performance is 5.81
(SD = 1.91) and 5.79 (SD = 1.71) respectively; the average estimated team performance is
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Figure 5.1: Box plot illustrating the distribution of the different dimensions in NASA-TLX
questionnaire. M and SD represent mean and standard deviation respectively.

6.64 (SD = 1.74) and 6.44 (SD = 1.87) respectively. Overall, participants underestimated
the performance of the AI system and believed they could outperform the AI system on this
task after receiving AI advice.

5.2 Hypothesis Tests

This section will check for each hypothesis whether it is supported.

5.2.1 H1: The effect of a critical evaluation setting on AI performance
estimation

To verify H1, the Wilcoxon signed-rank test was used to compare all assessment-based de-
pendent variables of participants before and after the debugging intervention. Participants in
Control are not considered in this comparison. The results are shown in table 5.1. Only in
condition Debugging-D, participants showed a significant difference in team-performance
estimation. Using Post-hoc Mann-Whitney tests to make pairwise comparisons of perfor-
mance revealed no significant differences. Thus, H1 is not supported.

5.2.2 H2: the effect of a critical evaluation setting on appropriate reliance

To verify H2, we also used the Wilcoxon signed rank test to compare all reliance-based
dependent variables of participants before and after the debugging intervention. The results
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Condition Debugging Debugging-R Debugging-D Debugging-I
DV T p T p T p T p

MAP 3833 .677 363 .516 358 .475 457 .347
MTP 4006 .085 512 .215 324 .016† 375 .320
CCD 3261 .493 388 .566 325 .680 391 .794

Table 5.1: Wilcoxon signed ranks test results for H1 on AI performance estimation. “†”
indicates the effect of the variable is significant at the level of 0.017 (adjusted alpha).

are shown in figure 5.2. Overall, no statistical difference in reliance is observed when com-
paring all conditions with the debugging intervention. By performing the post-hoc Mann-
Whitney test on the accuracy, we found that after the debugging intervention, the accuracy
drops significantly. For a more fine-grained analysis, we further conducted the Wilcoxon
signed rank tests on each condition with the debugging intervention. As can be seen, partici-
pants in Debugging-I show a significant difference in RAIR, while no significant difference
is found with the post-hoc Mann-Whitney test. The observed results do not support H2.

Condition Debugging Debugging-R Debugging-D Debugging-I
Dependent Variables T p T p T p T p

Accuracy 3659 .004† 487 .096 403 .130 351 .059
Agreement Fraction 4993 .207 676 .722 512 .950 482 .058

Switch Fraction 4969 .093 573 .530 724 .870 409 .042
RAIR 4246 .039 454 .341 656 .764 321 .010†

RSR 2162 .528 241 .650 155 .095 292 .921

Table 5.2: Wilcoxon signed ranks test results for H2 on reliance-based dependent variables.
“†” indicates the effect of the variable is significant at the level of 0.017 (adjusted alpha).

While no significant difference is found in the reliance-based measures as a consequence
of the debugging intervention, in general, we did witness a drop in reliance-based mea-
sures: Accuracy (0.67 → 0.63), Agreement Fraction (0.68 → 0.66), Switch Fraction (0.34
→ 0.28), RAIR (0.38 → 0.30), RSR (0.64 → 0.61). This is very obvious on condition
Debugging-I: Accuracy (0.68 → 0.63), Agreement Fraction (0.71 → 0.66), Switch Fraction
(0.39 → 0.29), RAIR (0.43 → 0.29), RSR (0.59 → 0.61). When AI advice disagrees with
users’ initial decisions, users tend to rely on themselves more than they should. This results
in decreased (appropriate) reliance and accuracy. In the deceptive review detection tasks,
the AI system performs generally better than the participants. The reduced reliance may
help explain why, on average, we found a decrease in accuracy.

5.2.3 H3: ordering effects of debugging tasks

To verify H3, we compared (1) the difference of reliance-based dependent variables between
batch 1 and (2) the user reliance on the second batch with participants of all conditions using
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the Kruskal Wallis test. No significant difference was found. The task working load was
compared by conducting the Kruskal-Wallis H-test on the six measures in the NASA-TLX
questionnaire. Again, no significant difference is found. H3, therefore, is not supported.

In order to take a deeper look at the ordering effect of the debugging tasks and see how
it affects the final performance of participants, some additional analysis was performed.
We looked at the participants who achieved an accuracy level of over 80% in the second
task batch and filtered out participants that blindly relied on the AI system. Among these
participants, we found that the number of participants in condition Debugging-D (14) is
clearly more than in condition Debugging-R (9) and Debugging-I (9). In comparison, the
number of participants achieving this level of accuracy in Control is 11. Although the
ordering effect does not show a significant statistical difference, such an observation lends
partial support to H3.

5.3 Explorative Study

In addition to the hypothesis testing, we also performed an explorative study.

5.3.1 Trust analysis

To explore the effects of the debugging intervention on user trust in the AI system, we
compared the trust before and after the intervention using the Wilcoxon signed rank test.
No significant difference was found in the test results. This suggests that the debugging
intervention can calibrate user reliance and estimation of AI performance without directly
shaping their trust.

5.3.2 Covariates Impact on Trust and Reliance

To analyze the impact of covariates on user trust and reliance, Spearman rank-order tests
were conducted with the covariates and average trust and reliance-based dependent variables
on the two batches of tasks. The results show that propensity to trust (TiA-PtT) shows sig-
nificant positive correlations with the following trust-based measures: TiA-R/C (r(234) =
0.270, p= .000), TiA-U/P (r(234)= 0.165, p= .011), TiA-IoD (r(234)= 0.234, p= .000),
TiA-Trust (r(234) = 0.303, p = .000). Additionally, ATI shows a significant positive cor-
relation with the reliance-based measure Agreement Fraction (r(234) = 0.159, p = .015).

5.3.3 Confidence Analysis

The confidence dynamics of the four different conditions are shown in figure 5.2. On av-
erage, participants show positive confidence (above neutral) in their final decisions. Con-
ditions Debugging-I and Debugging-R show an initial decrease in confidence, but this
level comes back to average soon, after which it roughly stays at that level. In contrast,
participants in condition Debugging-D showed increased confidence after the debugging
intervention and keeps relatively stable compared to the other conditions.
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5.3. Explorative Study

Figure 5.2: Illustration of dynamics of confidence change in the 20 tasks of each condition.
The purple dashed line represents the debugging intervention.

We calculated the confidence change after receiving AI advice based on nine different
reliance patterns: whether the initial decision agrees with AI advice, whether the final de-
cision agrees with AI advice, switch behavior, and the four reliance patterns considered in
calculating appropriate reliance (section 4.2.2). The results are shown in 5.3. They show
that, generally, participants exhibit increased confidence when there was an agreement be-
tween their initial decision and the AI advice. When their initial decision did not agree
with the AI advice, they exhibited a decrease in confidence. Even when switching to the AI
advice, given initial disagreement, participants tend to show decreased confidence in their
final decision. Considering the four reliance patterns, participants generally show a confi-
dence drop. This drop becomes more severe when participants insist on their own decision,
instead of adopting AI advice.
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5. RESULTS AND ANALYSIS

Pattern Dependent Varibles M SD

Reliance

Initial agreement
Initial disagreement
Final agreement
Final disagreement
Switch behavior

0.37
-0.41
0.23
-0.44
-0.32

0.75
0.99
0.90
0.90
1.18

Appropriate Reliance

Positive AI reliance
Negative AI reliance
Positive self-reliance
Negative self-reliance

-0.34
-0.23
-0.41
-0.47

1.17
1.18
0.88
0.89

Table 5.3: Reliance and confidence correlation.
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Chapter 6

Discussion

6.1 Key Findings

We proposed a debugging intervention to promote appropriate reliance on AI systems. We
expected it to improve user estimation performance and calibrate user reliance so that they
would more appropriately rely on the AI system. The way the debugging intervention in-
tended to do this was by showing participants that AI systems are not always reliable, and
their explanations are not always informative. The results from the experiment don’t pro-
vide support for this; such a debugging intervention fails to calibrate participants’ estimation
for AI performance at both the global and local levels. The results also show that, after the
debugging intervention, participants tend to rely less on the AI system.

Although almost no significant difference was found between the different ordering of
debugging tasks, early exposure to AI weakness caused participants to show a more obvious
tendency to disuse the AI system. This under-reliance was found to result in sub-optimal
team performance. This is in line with recent work, which found that a bad first impression
of an AI system can lead to an underestimation of AI competence and reduced reliance on
the system [36].

In further analysis of covariates, we found that, in general, the sub-scale propensity to
trust shows a positive correlation with all other trust sub-scales. However, no significant
correlations were found between the propensity to trust and reliance, which indicates that
the increased trust due to the propensity to trust does not translate to reliance behaviors.
Meanwhile, the confidence dynamics in different reliance patterns showed that AI advice
may amplify the confidence of user decisions when in agreement, and decrease user confi-
dence when in disagreement. Under disagreement, users appear to rely more on themselves
(indicated by a confidence decrease), as opposed to adopting AI advice.

6.2 Implications

The findings suggest that the debugging intervention and similar interventions with training
purposes (e.g., user tutorials) may suffer from the cognitive bias brought by the ordering
effect within such interventions. To show users both the strengths and weaknesses of AI
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6. DISCUSSION

systems, these should be presented to them in a balanced fashion. Too much exposure to AI
weakness could leave users with a bad expression, causing them to disuse the AI system,
and should be avoided. At the same time, participants in our study tend to be optimistic
about the team performance while underestimating the AI performance. This is possibly
caused by meta-cognitive bias — the Dunning-Kruger effect [50]. To promote appropri-
ate reliance, helping participants understand AI systems’ strengths and weaknesses is not
enough. Participants also need to be made aware of their own strengths and weaknesses.
These findings can form guidelines for future designs of training interventions intended to
promote appropriate reliance.

The study also shows that the reliance patterns (e.g. agreement, disagreement) have a
clear correlation with the confidence dynamics of its participants. When there is disagree-
ment between participants’ initial decision and the AI advice, a decrease in confidence is
observed. And compared to insisting on their own decision, participants have more confi-
dence when giving agency to AI advice. Such observations may be a dangerous signal for
appropriate reliance, as they indicate users’ and AI systems’ predictions are not indepen-
dent. Further research is required to explore how to cope with confidence dynamics that
emerge when users are exposed to AI disagreement.

6.3 Limitations

This section will cover the limitations and threats to the validity of the study. The three
main threats and limitations that were present are task selection, bias, and internal factors.

6.3.1 Task selection

As mentioned, the task that was used to conduct the experiment was deceptive review detec-
tion. This has previously been identified as a particularly hard task, especially when com-
paring it to others like spam detection, topic classification, and sentiment analysis. While
using a hard task has its merits, there are some potential downsides. It can discourage them
from carefully completing the tasks and increases the chances of having participants submit
random guesses as an answer. Additionally, the debugging intervention might be less ef-
fective. The intervention is focused on increasing the understanding of the AI system using
highlights as explanations. As tasks get more challenging, the patterns recognized by the
machine can become more obscure, potentially resulting in highlights that are unclear or
counterintuitive for participants. This is very harmful to the effectiveness of the debugging
intervention.

6.3.2 Bias

As pointed out by Draws et al. [27], cognitive biases introduced by task design and work-
flow may have a negative impact on crowdsourcing experiments. With the help of the
Cognitive Biases Checklist introduced [27], we analyzed potential bias in our study.
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6.3. Limitations

Self-interest bias

is possible because the crowd workers we recruited from the Prolific platform were moti-
vated through monetary compensation. Thus, it would be challenging to keep participants
engaged in the debugging intervention and highly motivated to learn from the weakness of
the AI system. For their efforts, participants were compensated at a rate of £7.6, minimum
wage. This compensation might not offer them enough incentive to commit fully to the
tasks. Especially when working with a hard task, which might be mentally demanding, they
might feel like they are not compensated well enough. If they do not fully commit to com-
pleting the tasks successfully, they might not experience the full extent of the intervention’s
benefits. To alleviate any participants with low effort results, we put attention checks to
remove ineligible participants from our study. The observation of reduced reliance brought
by bad first impressions also happens with Anchoring Effect. Meanwhile, the participants
generally underestimate the AI performance and believe they can outperform the AI system,
which also may fall into Overconfidence or Optimism Bias.

6.3.3 Internal factors

During the debugging intervention, the highlights presented to participants were generated
by the AI system. These reviews with their accompanying explanations were handpicked
from the training data, as to make sure they fulfilled the requirements posed by the experi-
ment design. This selection was carried out by two of the researchers. While we consider
this selection to be completed successfully, there is no guarantee they were exempt from any
mistakes or misinterpretations of the researchers. In addition to that, the ground-truth values
of the explanations have also been decided upon by the researchers. Not only introduces
this possibility of bias but when explanations become sufficiently obscure, the researchers
might also be affected by the phenomenon described in section 6.3.1. The extent to which
the determination of the ground truth is correct is therefore dependent on the researchers’
knowledge of the task and AI system. This, also, could harm the effectiveness of the debug-
ging intervention.
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Chapter 7

Conclusions and Future Work

To conclude this thesis, we will summarize the purpose and findings of this research. Fi-
nally, some directions for possible future work will be provided.

7.1 Summary

In this thesis, we present an empirical study to understand the impact of a debugging inter-
vention on the estimation of AI performance and user reliance on an AI system. Through
our experiment, we measured its effect on humans’ estimation performance and (appropri-
ate) reliance. Additionally, we explore the effects of internal ordering on these measures.
While our experimental results do not provide support to our original hypotheses, we can
not determine with certainty that a debugging intervention does not help facilitate appropri-
ate reliance on AI systems. Our results suggest that we should be careful when presenting
users with AI weakness, to avoid any anchoring effects that may result in under-reliance.
Our exploratory study suggests that user reliance and estimation performance can be cali-
brated without directly shaping trust, and confidence is amplified or decreased when there
is agreement or disagreement with the AI system, respectively.

7.2 Future work

As mentioned, there are some limitations to this research. Future work could focus on these
and explore the effects of a debugging intervention when the tasks presented to participants
are not as challenging, and there is a more clear notion of ground truth.

Another potential area that may be explored is how to mitigate potential bias of users.
Our results showed that users tend to overestimate self-performance while underestimating
AI performance. Mitigating these effects could result in a better judgment of AI trustwor-
thiness, thereby improving appropriate reliance.

Finally, further research is required to explore how to cope with confidence dynamics
that emerge when users are exposed to AI disagreement. When there is disagreement be-
tween participants’ initial decision and the AI advice, a decrease in confidence is observed.
Additionally, when compared to insisting on their own decision, participants have more
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confidence when giving agency to AI advice. Such observations may be a dangerous signal
for appropriate reliance and research is required to find ways of mitigating these effects.
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Appendix A

Appendix

A.1 Additional Experimental Details

Guidelines. Following Lai et al. [55], we provided the following guidelines in the user
study:

• Deceptive reviews tend to focus on aspects that are external to the hotel being re-
viewed, (e.g. husband, business, vacation).

• Deceptive reviews tend to contain more emotional terms; positive deceptive reviews
are generally more positive and negative deceptive reviews are more negative than
genuine reviews.

• Genuine reviews tend to include more sensorial and concrete language, in particular,
genuine reviews are more specific about spatial configurations, (e.g. small, bathroom,
on, location).

• Deceptive reviews tend to contain more verbs, (e.g. eat, sleep, stay).

• Deceptive reviews tend to contain more superlatives, (e.g. cleanest, worst, best).

• Deceptive reviews tend to contain more pre-determiners, which are normally placed
before an indefinite article + adjective + noun, (e.g. what a lovely day!).

Timer. Besides attention checks, we also added a timer to ensure each participant spent
enough time on the questionnaires, task instructions, and decision tasks. A conservative
estimate through trial runs reflected that participants would take at least 25 seconds to com-
plete each decision task and 30 seconds to complete each debugging task. We reduced the
time for the decision-making in the second stage to 15 seconds. Since attention check pages
do not require deliberation, we reduced that time to 0 seconds, and participants were al-
lowed to leave this question open. This, however, was tracked and when a participant left
an attention check open or answered one incorrectly a second time, they were removed from
the study.
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A. APPENDIX

Qualification Test. To ensure participants carefully read the task instruction and under-
stand the task, we used two questions for the qualification test.

• In this study, the deceptive reviews written by? Option 1: An AI system, option 2:
People without actual experience.

• Indicate whether the following statement is true or false: ”Guidelines are provided
for finding deceptive reviews”. Option 1: True, option 2: False.

Variable Type Variable Name Value Type Value Sale

Assessment (DV)
MAP
MTP
CCD

Continuous, Interval
Continuous, Interval
Continuous, Interval

[0, 10]
[0, 10]
[0, 10]

Reliance (DV)

Agreement Fraction
Switch Fraction

RAIR
RSR

Continuous, Interval
Continuous, Interval
Continuous, Interval
Continuous, Interval

[0.0, 1.0]
[0.0, 1.0]
[0.0, 1.0]
[0.0, 1.0]

Performance (DV) Accuracy Continuous, Interval [0.0, 1.0]

Trust (DV)

TiA-R/C
TiA-U/P
TiA-IoD

TiA-Trust

Likert
Likert
Likert
Likert

5-point, 1: poor, 5: very good
5-point, 1: poor, 5: very good
5-point, 1: poor, 5: very good

5-point, 1: strong distrust, 5: strong trust

Covariates
ATI

TiA-PtT
TiA-Familiarity

Likert
Likert
Likert

6-point, 1: low, 6: high
5-point, 1: tend to distrust, 5: tent to trust
5-point, 1: not familiar, 5: very familiar

Table A.1: The different variables considered in our experimental study. “DV” refers to the
dependent variable.

Variables. To have a more comprehensive view of variables used in our experimental
analysis, we listed the main variables in table A.1. Notice that we did not add the confidence
and dimensions from the NASA-TLX questionnaire into it.
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