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Research goal

Deep neural networks have lead to a breakthrough in
monocular depth estimation. Recent work shows that neural
networks can learn to predict depth from single images and
the quality of these estimates is rapidly increasing. However,
to the best of our knowledge no work exists that investigates
how these networks see depth.

"No work exists that investigates how
these networks see depth."

Why is it important to know what these networks have

learned?

1. Without this knowledge, it is difficult to guarantee correct
behavior under unforseen circumstances.

2. To provide insight into training. Guidelines for the training
set and data augmentation may be derived from the
learned behavior.

3. To provide insight into transfer to other setups. How
sensitive is the network to changes in e.g. camera pose?

In this work we take four previously published neural
networks and investigate what depth cues they exploit in
order to estimate the distance towards other cars in an
autonomous driving setting. We use the following networks:

* Godard et. al (2017) (Monodepth)

 Zhou et al. (2017) (SfMLearner)

* Kuznietsov et al. (2017) (semodepth)

 Wang et al. (2018) (LKVOLearner)

We try to explain the behavior of the networks in terms of
depth cues as observed in humans by looking for
correlations between modified images of the KITTI 2015
stereo dataset (Menze et al. 2015) and the resulting depth
predictions.

Conclusions

 All of the investigated networks use the vertical position of
objects while ignoring their apparent size.

* The networks assume a fixed camera pose. Changes in
camera pose are not fully accounted for by the networks
and affect the estimated distance towards obstacles.

* For Monodepth the detection of objects seems to be
triggered by the shadow underneath the object. The
network can detect objects not present in the training set
iIf this shadow is present.

Position vs. apparent size cues

H
T VT
v YWy o L
/ (Z,Y)

Figure 1. Geometry behind position and apparent size cues. Given the
obstacle's real world size H and apparent size h in the image, the
distance can be calculated using Z = (f / h) H. This requires the
obstacle's true size H to be known. Alternatively, the distance can be
estimated using the vertical position y of the object's ground contact point
in the image. Given the height Y of the camera and the horizon level in
the image y,, the distance can be estimated through Z=(f/(y - y;)) Y.
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Figure 2. Test images and resulting disparity maps from Monodepth. The
white car on the left is inserted at different positions and sizes. The
region where the disparity is evaluated is indicated with a white outline in
the disparity maps. When the position cue is present (with or without the
apparent size cue), we observe a change in the estimated disparity.
However, when only the apparent size cue is present the estimated
disparity remains approximately constant.

Depth cues

Rather than using an attribution analysis or visualization, we
try to explain the behavior of the neural networks in terms of
depth cues as observed in humans. Gibson (1950) and later
works typically list the following depth cues as appearing in
single images:

* Position in the image * Linear perspective
 Apparent size « Shading and illumination
* Occlusion * Focus blur

» Texture density  Aerial perspective ("fog")

We focus on the cues  "We focus on position and

isted In bold; other  5nharent size; other cues

cues are unlikely to are unlikely to appear in

appear because of the th : .
low image resolution €5€ 1IMAages.

(texture density, focus blur), limited depth range (aerial
perspective), or because they are less relevant for absolute
distance measurements (occlusion, linear perspective,
shading and illumination).
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Figure 3. Influence of image position and apparent size cues on depth
estimates. When both cues are present, all networks (except Wang et
al.'s) correctly estimate the distance towards the objects. With only the
position cue, the distance is under- or overestimated and the standard
deviation increases. With only the apparent size, the networks are no
longer able to estimate distance. (Shaded regions indicate =1SD
(N=1862) for the network by Godard et al.).

Experiment and results

To judge the influence of these cues, we measure the
networks' responses when the cues are presented under
conflicting conditions. We generated a dataset of modified
images from the KITTI stereo dataset, where cars are
inserted with one or both of the cues present (Figure 2).
The resulting distance estimates are shown in Figure 3.
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both cues are present.
The performance degrades when only the position cue is
present. The most surprising result is found when only the
apparent size cue is present: the networks cannot observe a
change in distance anymore. We find that all networks ignore
the apparent size of objects in favor of their vertical position.
This appears to be a general result, as this behavior is found
for all four networks despite their different training regimes.

Camera pose
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Figure 4. True and estimated changes in horizon level when pitching the
camera. The change in pitch is not fully reflected in the estimated depth
map.
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Figure 5. True and estimated changes in roll angle. The change in roll
angle is not fully observed by any of the networks.
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Figure 6. For the networks by Godard et al. and Kuznietsov et al., a
change in pitch angle affects the estimated distance towards objects.
The other networks only predict depth up to an unknown scale and are
therefore not included in this experiment.
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Figure 7. Qualitative example of a strong bias towards a level camera
pose: the tree trunks in the disparity map appear vertical while they are
clearly tilted in the original RGB image.

Experiment and results

To use the position in the image as a depth cue, the pose of
the camera should be known. But is this pose learned or

estimated? The "Th o .
pose could be € position cue requires a

nferred from the  Known camera pose. Is this
images, or learned  pose learned or estimated?”

from the training

data since it is approximately constant. The answer directly
affects the transfer of these networks to other camera
setups.

We generated a new dataset by cropping the KITTI images
under varying pitch and roll angles:

In the resulting depth estimates, we measure the horizon
level and angle of the road surface (Figure 4, 5). We find that
the networks consistently underestimate the change iIn
camera angles. This bias towards a fixed camera pose can
also be seen in Figure 7.

"The networks consistently
underestimate the change
in camera angles."

With the networks
unable to estimate
changes in camera
pose, we investigate
how this influences the depth estimates. We find that
changes in camera pitch affect the estimated distance
towards obstacles. This also suggests that the networks use

the vertical position "Changes in pitch angle

of objects rather . fr..t the estimated distance

than their distance g
to the visual horizon; towards obstacles.

similar results were found in experiments on humans.

Obstacle recognition
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Figure 8. Removing color information or even replacing it by false colors
does not significantly affect the depth estimate. Removing the texture,
however, leads to significantly worse results.

Figure 9. Not all parts of the object are required for detection;
Monodepth can still recognize cars when their outline is present.
Obstacles do not need a recognizable shape nor texture to be detected.

Figure 10. Objects that do not appear in the training set can be detected,
but only when a dark shadow is present along their bottom edge.
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Figure 11. Objects require a thick, dark bottom edge to be detected as
obstacles. A dark edge is more reliable than one with realistic textures
(Tex). Completely filled shapes (F) produce the most accurate results.

Experiment and results

The use of vertical position should allow the networks to
estimate distances towards arbitrary obstacles. But how
does the network recognize obstacles in the first place?
Figure 8 shows that the recognition depends on texture, but
not on color. In Figure 9 we show that the trigger for
detection is contained in the outline of the object, and that its
shape or texture do not affect the detection. Figure 10 shows
that arbitrary objects can be detected, but only when a
shadow Is present. Figure
11 shows that a thick, dark
bottom edge is required for
detection.

"Obstacles require a
thick, dark bottom
edge to be detected."



