
How do neural networks see depth in single images?
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Position vs. apparent size cues

Research goal
Deep neural networks have lead to a breakthrough in 

monocular depth estimation. Recent work shows that neural 

networks can learn to predict depth from single images and 

the quality of these estimates is rapidly increasing. However, 

to the best of our knowledge no work exists that investigates 

how these networks see depth.

Why is it important to know what these networks have 

learned?

1.  Without this knowledge, it is difficult to guarantee correct 

     behavior under unforseen circumstances.

2.  To provide insight into training. Guidelines for the training 

     set and data augmentation may be derived from the 

     learned behavior.

3.  To provide insight into transfer to other setups. How 

     sensitive is the network to changes in e.g. camera pose? 

In this work we take four previously published neural 

networks and investigate what depth cues they exploit in 

order to estimate the distance towards other cars in an 

autonomous driving setting. We use the following networks:

 •  Godard et. al (2017)  (Monodepth)

 •  Zhou et al. (2017)  (SfMLearner)

 •  Kuznietsov et al. (2017)  (semodepth)

 •  Wang et al. (2018)  (LKVOLearner)

We try to explain the behavior of the networks in terms of 

depth cues as observed in humans by looking for 

correlations between modified images of the KITTI 2015 

stereo dataset (Menze et al. 2015) and the resulting depth 

predictions.

Camera pose Obstacle recognition

Conclusions
 •

 •

 •

"No work exists that investigates how 
these networks see depth."

Figure 3. Influence of image position and apparent size cues on depth 
estimates. When both cues are present, all networks (except Wang et 
al.'s) correctly estimate the distance towards the objects. With only the 
position cue, the distance is under- or overestimated and the standard 
deviation increases. With only the apparent size, the networks are no 
longer able to estimate distance. (Shaded regions indicate ±1SD 
(N=1862) for the network by Godard et al.).

All of the investigated networks use the vertical position of 

objects while ignoring their apparent size.

The networks assume a fixed camera pose. Changes in 

camera pose are not fully accounted for by the networks 

and affect the estimated distance towards obstacles.

For Monodepth the detection of objects seems to be 

triggered by the shadow underneath the object. The 

network can detect objects not present in the training set 

if this shadow is present.

Figure 2. Test images and resulting disparity maps from Monodepth. The 
white car on the left is inserted at different positions and sizes. The 
region where the disparity is evaluated is indicated with a white outline in 
the disparity maps. When the position cue is present (with or without the 
apparent size cue), we observe a change in the estimated disparity. 
However, when only the apparent size cue is present the estimated 
disparity remains approximately constant.

Figure 4. True and estimated changes in horizon level when pitching the 
camera. The change in pitch is not fully reflected in the estimated depth 
map.

Figure 5. True and estimated changes in roll angle. The change in roll 
angle is not fully observed by any of the networks.

Figure 6. For the networks by Godard et al. and Kuznietsov et al., a 
change in pitch angle affects the estimated distance towards objects. 
The other networks only predict depth up to an unknown scale and are 
therefore not included in this experiment.

Figure 7. Qualitative example of a strong bias towards a level camera 
pose: the tree trunks in the disparity map appear vertical while they are
clearly tilted in the original RGB image.

"We focus on position and 
apparent size; other cues 
are unlikely to appear in 
these images."

"All networks ignore the 
apparent size of objects 
in favor of their vertical 
position."

"Changes in pitch angle 
affect the estimated distance 
towards obstacles."

Figure 1. Geometry behind position and apparent size cues. Given the 
obstacle's real world size H and apparent size h in the image, the 
distance can be calculated using Z = (f / h) H. This requires the 
obstacle's true size H to be known. Alternatively, the distance can be 
estimated using the vertical position y of the object's ground contact point 
in the image. Given the height Y of the camera and the horizon level in 
the image yh, the distance can be estimated through Z = (f / (y - yh)) Y.

Depth cues

Rather than using an attribution analysis or visualization, we 

try to explain the behavior of the neural networks in terms of 

depth cues as observed in humans. Gibson (1950) and later 

works typically list the following depth cues as appearing in 

single images:

 •  Position in the image

 •  Apparent size

 •  Occlusion

 •  Texture density

 •  Linear perspective

 •  Shading and illumination

 •  Focus blur

 •  Aerial perspective ("fog")

We focus on the cues 

listed  in  bold;  other 

cues  are  unlikely  to 

appear because of the 

low  image  resolution

(texture density, focus blur), limited depth range (aerial 

perspective), or because they are less relevant for absolute 

distance measurements (occlusion, linear perspective, 

shading and illumination).

Experiment and results

To judge the influence of these cues, we measure the 

networks' responses when the cues are presented under 

conflicting conditions. We generated a dataset of modified 

images from the KITTI stereo dataset, where cars are 

inserted with one or both of the cues present (Figure 2).

The resulting distance estimates are shown in Figure 3.

All   networks   except

Wang et al.'s correctly

estimate  distance  on 

the control set where 

both cues are present.

The performance degrades when only the position cue is 

present. The most surprising result is found when only the 

apparent size cue is present: the networks cannot observe a 

change in distance anymore. We find that all networks ignore 

the apparent size of objects in favor of their vertical position. 

This appears to be a general result, as this behavior is found 

for all four networks despite their different training regimes.

To use the position in the image as a depth cue, the pose of 

the camera should be known. But is this pose learned or 

estimated?     The

pose    could    be

inferred  from  the

images, or learned

from  the  training

data since it is approximately constant. The answer directly 

affects the transfer of these networks to other camera 

setups.

We generated a new dataset by cropping the KITTI images 

under varying pitch and roll angles:

In the resulting depth estimates, we measure the horizon 

level and angle of the road surface (Figure 4, 5). We find that 

the networks consistently underestimate the change in 

camera angles. This bias towards a fixed camera pose can 

also be seen in Figure 7.

                                                               With   the   networks 

                                                               unable  to  estimate

                                                               changes  in  camera

                                                               pose, we investigate

how this influences the depth estimates. We find that 

changes in camera pitch affect the estimated distance 

towards obstacles. This also suggests that the networks use 

the vertical position

of   objects   rather

than  their  distance

to the visual horizon;

similar results were found in experiments on humans.

"The position cue requires a 
known camera pose. Is this 
pose learned or estimated?"

Experiment and results

"The networks consistently 
underestimate the change 
in camera angles."

Figure 8. Removing color information or even replacing it by false colors 
does not significantly affect the depth estimate. Removing the texture, 
however, leads to significantly worse results.

Figure 9. Not all parts of the object are required for detection; 
Monodepth can still recognize cars when their outline is present. 
Obstacles do not need a recognizable shape nor texture to be detected.

Figure 10. Objects that do not appear in the training set can be detected, 
but only when a dark shadow is present along their bottom edge.

Figure 11. Objects require a thick, dark bottom edge to be detected as 
obstacles. A dark edge is more reliable than one with realistic textures 
(Tex). Completely filled shapes (F) produce the most accurate results.

Experiment and results

"Obstacles require a 
thick, dark bottom 
edge to be detected."

The use of vertical position should allow the networks to 

estimate distances towards arbitrary obstacles. But how 

does the network recognize obstacles in the first place? 

Figure 8 shows that the recognition depends on texture, but 

not on color. In Figure 9 we show that the trigger for 

detection is contained in the outline of the object, and that its 

shape or texture do not affect the detection. Figure 10 shows 

that arbitrary objects can be detected, but only when a 

shadow  is  present.  Figure

11 shows that a thick, dark

bottom edge is required for

detection.


