
Usage of Attention in Adaptation of Intelligent
Systems

A systematic literature review

Marie Louise Grundfør1
Supervisors: Bernd Dudzik, Vandana Agarval

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Marie Louise Grundfør
Final project course: CSE3000 Research Project
Thesis committee: Bernd Dudzik, Vandana Agarval, Odette Scharenborg

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

With an increased demand for personalized systems, adaptive systems can support
its users by recognizing their cognitive state, and adapt different elements to improve
the user’s mental state. With a literature survey, the following question has been
answered: how do intelligent systems acquire and use information related to user at-
tention? The answer was found by following the PRISMA guidelines [1], using the
identification flowchart, to ensure reproducibility of the identification and screening
of the papers, in addition to applying consistent criteria to which articles could be
included in the review. This process resulted in 74 papers that fit the criteria. The re-
sults showed a large variety in the sensor input, modeling, objectives and domain, while
the adaptation strategies could be summarized by five categories: UI change, feedback
timing, automation level, difficulty adjustment and behavioral feedback. Combinations
of categories were also present. UI changes and feedback timing were the most pop-
ular categories, especially from 2015 onward. Difficulty adjustments were surprisingly
rarely utilized, especially in articles focused on education, possibly because the adap-
tation requires additional complexity to be added to the system. Challenges described
in the literature were mainly focused on short term improvements, instead of long term
issues.

1 Introduction
Intelligent systems are increasingly prevalent in everyday life, supporting tasks that range
from personalized recommendations to adaptive user interfaces. Their effectiveness depends
on the capacity to model, interpret, and respond to individual users, not only by capturing
long-term preferences, but also by sensing and adapting to dynamic cognitive states such as
attention.

It is well established that diminished attention, or commonly referred to as a lack of focus,
can significantly impair human task performance. As a result, modeling user attention has
become a compelling objective for adaptive systems. By accurately estimating attention
levels, such systems may enhance user effectiveness through timely interventions, such as
stimulating engagement, modulating task difficulty, or mitigating risks in safety-critical
scenarios.

In recent years, the integration of attention into adaptive and intelligent systems has
emerged as a rapidly expanding area of research. This growth has been driven by advances
in both sensing technologies and the increasing sophistication of adaptive systems. However,
the pace of development has made it increasingly difficult to maintain a clear understanding
of how attention is currently being utilized, what methods are most prevalent, and which
challenges or research gaps remain. In order to address these gaps, a literature review was
chosen to systematically analyze the role of attention in adaptive systems. Specifically, it
examines how human attention is sensed and adapted to, identifies recurring patterns and
approaches, and provides a structured overview of the current research landscape to clarify
future directions and opportunities.

1.1 Background
Adaptive systems function through a continuous feedback loop. They gather various bio-
signals associated with attention, such as eye movements, EEG patterns, or reaction times.
These inputs are then processed, classified, and interpreted within context. Based on this
analysis, the system adjusts its behavior to respond to the user. These adaptations, in
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turn, affect the user’s behavior, which feeds back into the system for further refinement.
This ongoing exchange creates a dynamic and responsive interaction cycle. A simplified
illustration of this loop, based on the version from [2], is shown in Figure 1.

Attention is defined as "a state in which cognitive resources are focused on certain as-
pects of the environment rather than on others." [3] While often regarded as a cognitive
process, attention also involves affective components—emotions that influence what indi-
viduals notice and how they react to stimuli. Anderson [4] distinguishes between voluntary
and involuntary attention, noting that both are often shaped by perceived threats and re-
wards.

Although this study focuses primarily on the cognitive dimensions of attention, its emo-
tional aspects remain relevant. Emotional states can modulate attentional focus and respon-
siveness, which in turn has implications for how adaptive systems interpret and respond to
user behavior.

The integration of cognitive and affective aspects of attention is important in designing
adaptive intelligent systems. Such systems adjust their responses based not only on where
a user’s attention is directed but also on their emotional state. For instance, in high-stress
settings like military operations, adaptive technologies can prioritize and modify information
delivery based on attentional and emotional signals, thereby improve safety, performance,
and knowledge retention. [5] Given the limited capacity of human attention [3], attention-
aware systems are also valuable in educational contexts. By tailoring content to a learner’s
attentional state, these systems can support engagement and reduce cognitive overload. [6]

Figure 1: An adaptive system loop, simplified version of illustration presented in [2]

1.2 Related works
Several existing surveys explore topics that intersect with the focus of this work. Notably,
the recent survey by Dritsas et al. [7] demonstrates significant overlap. They offer a com-
prehensive review of multimodal interaction and interfaces, covering a broad range of input
modalities such as gaze, brain-computer interfaces (BCIs), and touch. In addition to input
types, they address various aspects of multimodal systems, including communication, in-
teraction, challenges, applications, and future directions. This survey builds on their work
by narrowing the scope to focus specifically on adaptive systems that utilize attention as a
key input signal. As such, it includes a broad spectrum of both implicit and explicit input
modalities—provided they reflect or convey human attentional states. In doing so, this sur-
vey offers a more targeted perspective on the role of attention within adaptive intelligent
systems.

2



Another related work is the survey by [8], which concentrates on user state recognition
through eye-based input using machine learning techniques. This survey extends this focus
by considering a wider range of recognition technologies beyond eye-tracking. It also encom-
passes adaptive systems more broadly, without restricting them to machine learning-based
approaches, thereby including rule-based and hybrid systems as well.

1.3 Research question
The research question covered in this survey is: How do intelligent systems acquire and use
information related to the cognitive-affective process (of users) of attention? To answer this
question, the research question has been split into multiple sub-questions.

RQ 1 What forms of information related to this type of process has HCAI research used
for adaptation of intelligent systems?

RQ 2 For what objectives has this information been used?

RQ 3a How has this information been used?

RQ 3b Are there any trends or patterns observable in this usage?

RQ 4 In which application domains?

RQ 5a Are there any trends or patterns observable with respect to these aspects?

RQ 5b What challenges and trends exist in recent developments?

2 Method
To address the research questions, a literature survey was conducted following the methodol-
ogy outlined by Boland et al. [9], supplemented by the PRISMA (Preferred Reporting Items
for Systematic reviews and Meta-Analyses) guidelines. [1] The process described by Boland
et al. involves developing a protocol, screening titles and abstracts, selecting full-text arti-
cles, extracting data, and ultimately analyzing and synthesizing the findings. PRISMA was
chosen as the reporting framework to ensure transparency and reproducibility throughout
the review process.

2.1 Protocol
The initial step in the protocol involved identifying the core concepts, which were derived
from key themes and focal points in the research questions. These concepts needed to
be broad enough to capture all relevant literature while still constraining the results in a
systematic and focused manner. The final core concepts selected were attention, representing
the target cognitive-affective state, adaptive systems, referring to the specific class of systems
under investigation, and user, to ensure the results cover specifically human attention and
involved user interaction within the adaptive systems. Related and synonymous terms for
each core concept were also gathered to support the development of the search query used
to retrieve relevant literature. An overview of the core concepts and associated terms is
presented in Table 1.
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user adaptive systems attention
person dynamic systems (in)attentiveness
human personalized systems focus
student adaptive interfaces eye-movement tracking
learner gaze

mind-wandering
absent-minded

Table 1: Overview of concepts used in the queries.

After deciding on the core concepts, the concepts and terms were applied to different
databases: Scopus1, IEEE Xplore2 and Web of Science3. They were chosen because they
have a large library of different publications, and cover a broad area of literature within the
computer science field. These databases were also accessible through the TU Delft Library4,
which was convenient considering the limited time frame of this survey.

2.2 Search criteria
To identify papers relevant to this literature review, specific criteria were established to
ensure consistency in inclusion and exclusion decisions. Notably, no strict inclusion criteria
were applied. Instead, any paper not excluded based on predefined exclusion criteria was
considered potentially relevant for addressing the research question. The exclusion criteria
define the core concepts more carefully, and allows the screening process to be consistent
and transparent. Table 2 shows an overview over the exclusion criteria that was used.

Exclusion Criterion Reason
Papers released after
26.05.2025

Only papers that were released at the time of the survey have
been considered.

Not in English Only papers written in English were considered for the sake of
consistency.

Surveys and reviews The papers considered should be able to answer the research
questions, and look at attention applied to systems.

Not about human at-
tention as input

The paper needs to be about an adaptive system that uses di-
rectly or indirectly human attention as an input.

The system is not an
adaptive computer sys-
tem

This survey is specifically about adaptive computer systems,
and the system described therefore needs to have an adaptation
loop similar to Figure 1.

Table 2: Exclusion criteria.

2.3 Identification and screening
The PRISMA flowchart [1] was used to guide the identification and screening of relevant
papers. Identification was carried out by executing the predefined search queries in each

1Scopus: https://www.scopus.com
2IEEE Xplore: https://xplorestaging.ieee.org
3Web of Science: https://www.webofscience.com
4TU Delft Library: https://www.tudelft.nl/en/library
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selected database. The resulting records were then exported to EndNote 215, where they
were organized into groups based on their source database. Each stage of the PRISMA
process was assigned a dedicated group in EndNote to maintain a clear overview of the
workflow.

The first step involved the removal of duplicate entries. This was initially performed
using EndNote’s automatic duplicate detection, followed by a manual review to remove any
remaining duplicates that were not identified automatically. The subsequent step was the
screening phase, in which titles and abstracts were assessed against predefined exclusion
criteria. Papers that met one or more exclusion criteria were removed, and the reason for
exclusion was documented.

Articles that passed the initial screening were then retrieved. EndNote’s automated
retrieval function was used where possible, and remaining articles were located and down-
loaded manually. In the final screening step, the full-text versions of the retrieved papers
were reviewed using the same exclusion criteria. As before, all exclusions were documented
with justifications.

2.4 Data extraction
Each paper was investigated, and data related to each research question was documented in
a Microsoft Excel6 sheet. The following information from each paper was noted in regards
to the research questions:

• What does the system sense?

• What does the system model?

• What is the objective?

• What is the outcome?

• What are the related domains?

• Are there any recent developments or challenges?

Additionally, the year, country, a short system description, input type and target user
group was documented at the same time. This way, papers could easily be grouped together
for analysis on broader patterns.

3 Results
To answer the research questions, the results of the search and extraction is presented. The
extraction results have been separated into tables and charts covering the different research
questions. The full extraction table can be found here (external link).

5EndNote: https://web.endnote.com
6Microsoft Excel: https://www.microsoft.com/microsoft-365/excel
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3.1 Search results
Using the final developed query for each database, which can be found in Appendix A,
a total of 724 papers were recorded, where 180 duplicates were removed. The screening
process started with 544 papers. A total of 312 papers were excluded in this first round of
screening.

Due to time restraints, 16 papers could not be retrieved for analysis and were therefore
excluded. After retrieval, 214 full length papers could be screened. Based on the full length
screening, a further 145 papers were excluded.

This resulted in 74 papers that could be used for the data extraction step. A visual
overview over the search results and reasons for exclusions can be seen in the flowchart in
Figure 2.

Figure 2: The PRISMA flowchart, adapted from [1].

3.2 Information used for adaptation
Various input modalities were used to capture user attention, with many studies employing
multiple types simultaneously. The majority of papers (45 out of 74) utilized eye-gaze
tracking to monitor where users directed their visual attention during system interaction.
Another frequently used input was brain-computer interfaces (BCI), which, when employed,
were often the sole input method for the system.
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Input Literature

Eye-gaze
[10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]
[26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41]
[42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54]

BCI [16] [20] [23] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64]
Body movement [15] [18] [21] [25] [28] [29] [30] [46] [48] [65] [66] [67] [68] [69]
Body measures [11] [20] [36] [70] [71] [72] [73] [74] [75]
Actions [15] [17] [19] [26] [44] [45] [70] [72] [73] [74] [76] [77] [78] [79]
Speech [11] [45] [49]
Mouse [16] [21] [27] [31] [44] [46] [51] [80] [81]
Keyboard [21] [46] [51] [80]
Questionnaires [57] [71] [78]
External [45] [69] [70] [79] [82]
Unclear [83]

Table 3: Sensor input and related literature, simplified from Table 8

A few studies stood out for not relying on direct physiological recordings. For exam-
ple, [80] modeled user attention using mouse and keyboard activity, while [81] inferred
understanding and attention through mouse movements and latency data. Similarly, [82]
estimated users’ mental workload indirectly using vehicle data (e.g., GPS and vehicle pa-
rameters) influenced by the driver’s actions, rather than monitoring the user directly.

In terms of application, the most common use of input data (43 papers) was to model user
attention, mental workload, or cognitive state. However, no strong correlation was observed
between specific input types and the particular aspects of attention being modeled.

A summary of the input types used is provided in Table 3, with a more detailed break-
down available in Table 8 in Appendix B. The corresponding modeling purposes are outlined
in Table 4.

Model Literature
Attention [13] [20] [29] [34] [37] [39] [47] [48] [49] [56] [58] [60] [61] [63] [68] [79]
(Cognitive) Workload [19] [21] [23] [36] [54] [55] [57] [64] [70] [73] [74] [82]
(Cognitive) Mental state [21] [24] [26] [28] [50] [52] [55] [57] [65] [72] [73] [76] [77] [78] [80]
Gaze and focus [10] [20] [27] [32] [35] [40] [41] [44]
Performance [10] [36] [45] [62] [67] [76]
Emotions [11] [23] [65] [71] [75]
Knowledge / Understanding [11] [33] [43] [81]
Behavior [12] [16] [45] [46] [80]
Learning [30] [56] [68]
Engagement [15] [42] [57] [61] [62] [75]
Satisfaction [18] [75]
Memory [35] [71] [73]
Intention [31] [38] [53] [59]
Unclear [14] [17] [22] [25] [51] [69] [83]

Table 4: Modeling from sensor inputs

3.3 Objectives of the literature
The literature presents a wide range of objectives, many of which are described with con-
siderable detail. For the purposes of this study, these objectives have been generalized
into broader, more presentable categories. The most common goals were improving user
performance and providing support or guidance, with 11 papers falling into each of these
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categories. Additionally, many studies focused on influencing or managing mental workload.
5 papers did not state their goals clearly enough to be placed in a category.

A few studies had notably distinct objectives. For example, [29] aimed to reduce band-
width consumption in cloud streaming by leveraging user gaze data and an attention model.
Similarly, [34] sought to create a narrative experience, also through the use of gaze data and
attention modeling.

Objectives Literature

Workload
Prevention [17] [54] [55] [82]
Reduction [19] [36] [37] [50] [65] [74] [76] [77] [78]
Optimizing [45]

Concentration Maintaining [36] [51] [73] [80]
Recapture [65] [79]

Performance General improvement [11] [13] [21] [33] [42] [44] [56] [61] [62] [68] [76]
Skill estimation [11]

Action Efficiency improvement [16] [22] [37] [41] [58]

Safety Road [12] [52] [69] [70] [74] [83]
Flight [20]

Engagement Improvement [42] [56]
[67]

Provide

Personalized learning [57] [81]
Communication [40] [60]
Alternative approaches [25] [47] [49]
Information [38]

Training Gaze sharing / following [10]
Gaze in robots / systems [59] [66]

Improvement Well-being [14] [53] [72]
Usability [23] [32]

Support / Guidance [14] [15] [27] [28] [30] [31] [43] [48] [63] [64] [71]
Reduce Bandwidth consumption [29]

Create Narrative [34]
Interface [35] [75]

Unclear [18] [24] [26] [39] [46]

Table 5: Objectives of the input

3.4 Information usage
The collected data was primarily applied in five distinct ways: by changing the user interface
(UI), adapting the feedback timing, change of the automation levels, adaptive difficulty
adjustments and providing behavioral feedback. Several studies also combined up to two of
these adaptation strategies. A detailed overview of how each paper was categorized can be
found in Table 6.

The distribution of these usage types over time is illustrated in Figure 3. The study
by [59] was deliberately excluded from the figure, as the adaptation method described was
ambiguous and could not be reliably classified. From 2015 onward, there is an increase in
the number of publications, particularly those employing UI changes and adaptive feedback
timing. Notably, none of the papers published prior to 2015 employed adaptive difficulty
adjustment.
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Information usage Literature

UI change (UI) [12] [13] [16] [18] [21] [22] [23] [24] [25] [26] [29] [30] [31] [32] [33] [34]
[35] [37] [40] [41] [48] [50] [52] [53] [54] [58] [68] [72] [75]

Feedback timing (FT) [11] [19] [20] [28] [36] [38] [42] [43] [56] [60] [61] [62] [70] [71] [73] [80]
[81] [82] [83]

Automation level (AL) [39] [45] [63] [66] [69] [76] [77]
Difficulty adjustment (DA) [57]
Behavioral feedback (BF) [46] [47] [49]
UI + FT [14] [17] [27] [44] [51] [55] [64] [74] [78] [79]
UI + DA [65]
FT + DA [15] [67]
DA + BF [10]
Unclear [59]

Table 6: Usage of information

Figure 3: Distribution of usage groups per year.

3.5 Application domains
The data extraction revealed a range of application domains. The education sector ac-
counted for the largest portion, consisting of nearly 23% (17 out of 74) of the studies. This
category includes research on adaptive learning platforms, educational environments, and
tutor support systems. An overview of the identified domains is presented in Table 7.

Many robotics-related papers were excluded during the screening phase, as they did not
incorporate human attention in their adaptation mechanisms. Notably, [66] was the only
study in the robotics domain that remained. Additionally, [64] was the sole paper focused
on music, standing out from the more function-oriented categories. 6 papers did not clearly
specify a domain based on the available information. Furthermore, [59] lacked both a clearly
defined adaptation strategy and an identifiable application domain.

3.6 Trends and patterns in recent development
To identify trends and patterns in recent developments, the distribution of input types over
time is illustrated in Figure 4. A gradual increase in the use of eye-gaze tracking technology
can be observed, with notable upticks beginning in 2011 and again in 2019. Although
[76] noted that eye-gaze tracking technology existed as early as 1993, they opted for an
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Domain Sub-domain Literature

Task
Management [36] [50] [77] [78]
Improvement [17] [51]
Performance [13] [23] [58]

Education [10] [11] [15] [30] [42] [43] [44] [56] [57] [60] [61] [62] [65]
[68] [76] [79] [81]

Accessibility [16] [22] [25] [32] [33] [35] [41] [47] [48] [49]
Driving Safety [12] [39] [52] [69] [70] [74] [82] [83]
Video games [28] [29] [46] [49]
Well-being Improvement [14] [21] [63] [72]
Aviation [20] [24] [37] [45]
Productivity Improvement [55] [73] [80]
Behavioral adjustment [10] [75]
Navigation Assistance [19] [54]
Rehabilitation [67] [71]
Travel [27] [31]
Robots [66]
Art [34]
Music [64]
No apparent domain [18] [26] [38] [40] [53] [59]

Table 7: System domains and related literature

alternative method to assess user state due to challenges in processing the data, specifically
the individual variability and the sheer volume of data.

In [32], the authors reported accuracy issues with eye-tracking equipment and relied on
a commercially available device for their user study. By contrast, more recent studies such
as [40], which employed a newer version of the same brand of eye-tracker, and [47], which
used a different approach based on camera images and a large dataset, reported no problems
related to eye-tracking. This suggests improvements in eye-tracking technology and data
processing capabilities over time.

The use of brain-computer interfaces (BCIs) has been sporadic since 2011. However,
no significant changes in methodology or application are evident. For example, EEG-based
approaches were used in both [23] and [58], with comparable purposes and techniques across
the years.

Figure 4: Distribution of type of input per year.
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3.7 Challenges in the long term
During the data extraction process, few papers addressed long-term challenges. Most stud-
ies concentrated on immediate progress and short-term goals specific to their individual
research goals, making it difficult to categorize overarching long-term issues. Nonetheless, a
few relevant challenges were identified. For example, [55], which utilized a BCI with func-
tional near-infrared spectroscopy (fNIRS, an alternative to EEG) to filter notifications and
information, highlighted the limitation of relying on specialized, non-portable hardware. As
a result, they identified the development of portable solutions compatible with commercial
devices as a key next step. Similarly, [31] discussed the constraint of conducting their user
study on a desktop computer, despite the intended use of their adaptive map system being
on mobile platforms.

4 Responsible Research
Ethical considerations related to conducting a literature survey on cognitive-affective adap-
tive systems must be acknowledged. These are discussed in the following sections.

4.1 Reproducibility and replicability
A key aspect of a structured literature survey is ensuring its reproducibility and replicability.
To support this, each step of the methodology has been described as clearly as possible,
with particular commitment to the PRISMA guidelines [1], which are specifically designed
to promote transparency and reproducibility in systematic reviews. Additional effort was
made to document reasons for paper exclusion earlier in the process than typically required
by PRISMA, providing greater clarity on the decision-making throughout the review.

The complete search queries are available in Appendix A, and the exclusion criteria are
outlined in Table 2. By applying these elements to the same databases, it should be possible
to reproduce the exact set of results, even at a later point in time.

4.2 Selection bias
During the screening process, there is a risk of selection bias, or "cherry-picking." This can
occur when a paper does not clearly meet the exclusion criteria, or when relevant information
is obscured within the text, which is an issue that becomes more pronounced when screening
a large number of papers simultaneously. To reduce this risk, the exclusion criteria were
designed to be as clear, objective, and defensible as possible, minimizing ambiguity and
helping to prevent papers from falling into a gray area between inclusion and exclusion.
Nevertheless, it is important to recognize that personal bias may still influence the screening
process, as it is not possible to eliminate such bias entirely.

5 Discussion
The results indicate that eye-gaze tracking is the most commonly used input method for
capturing user attention. However, brain-computer interfaces (BCIs) also remain relatively
prevalent compared to other input types. What distinguishes BCIs is the stability in their
usage over time—remaining consistent since 2011—while eye-gaze tracking has seen a no-
ticeable rise, particularly from 2019 onward. Several factors may explain this trend. One
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possibility is that BCIs may be less compatible with adaptive systems, prompting more
recent studies to explore alternative methods for attention detection. For example, EEG
signals are highly sensitive to user movement. As highlighted in [56], this sensitivity posed
a limitation during their user testing, where participants were instructed to minimize move-
ment as a workaround. Another factor could be limited access to BCI equipment. [59] notes
that EEG is becoming more consumer-friendly but does not clarify whether it is widely
accessible.

A noteworthy observation is the relatively infrequent use of adaptive difficulty adjust-
ment as an adaptation technique. Among the 17 papers categorized in the education do-
main, only four employed this approach. Although these studies do not explicitly discuss
the challenges involved in implementing difficulty adjustments, one might presume that
such systems are more complex and resource-intensive to develop compared to alternatives
like feedback, suggestions, or hints. Furthermore, the added complexity may not lead to
significant improvements in learning outcomes, potentially discouraging broader use.

Another interesting finding is the wide range of application domains covered in the litera-
ture, including some that are initially unexpected. The link between attention and domains
such as education and driving is intuitive. In educational contexts, sustained attention is
often considered essential for effective learning, while in driver safety, attentiveness is cru-
cial for quick reactions and situational awareness. What stands out, however, is the notable
number of adaptive systems designed for motor-impaired individuals and the elderly. Upon
closer inspection, this is understandable given the promise of eye-gaze technology as an
alternative to traditional input devices like the mouse and keyboard. For instance, [22]
developed a gaze-controlled virtual keyboard with an adaptive layout based on common
typing patterns, and [49] proposed a system that maps gaze to mouse and keyboard inputs.
By lowering the fine motor skill requirements associated with conventional input devices,
such technologies can greatly enhance accessibility for elderly or disabled users, potentially
improving their independence, quality of life, and social inclusion. [35]

6 Conclusions and Future Work
This survey successfully addressed the central research question: how intelligent systems ac-
quire and use information related to cognitive-affective processes of attention. The findings
reveal a broad range of input modalities used to record user attention, with eye-gaze track-
ing, brain-computer interfaces (BCI), and head or facial recordings emerging as the most
commonly employed methods. While no consistent relationship was found between input
type and the specific modeling approach, most studies focused on modeling user attention,
mental workload, and cognitive state—concepts that are closely interrelated.

The objectives of the reviewed studies were similarly diverse. However, enhancing user
performance, providing support and guidance, and managing cognitive workload emerged
as the most frequent goals. Other common goals included improving road safety and task
efficiency.

Adaptation in these systems typically occurred through personalized user interface (UI)
changes or adjustments to the timing of feedback, with several studies combining both
strategies. In contrast, automation level adjustments, adaptive difficulty, and behavioral
feedback were used less frequently. Since 2015, the use of UI changes and adaptive feedback
timing has notably increased and remained prevalent. Notably, no studies published before
2015 utilized difficulty adjustment techniques.
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In terms of application domains, the reviewed literature was again highly varied. The
three most prominent domains were education, accessibility, and driver safety. The amount
of education-focused articles is unsurprising, given the strong link between attention and
learning. The prominence of accessibility-focused applications, while initially unexpected,
is understandable in light of the potential for eye-gaze technology to serve as an alternative
to traditional input devices, which is particularly beneficial for elderly and disabled users.

Looking at trends in technological adoption, eye-gaze tracking has seen increased use
beginning in 2011, with another rise in 2019. Over time, studies have demonstrated growing
confidence in this technology, evolving from concerns about data processing and variability
to successfully using gaze as a standalone input method, such as controlling a mouse cursor.
BCI, while consistently present, has not experienced similar growth. This is likely due to
ongoing practical challenges in usability and movement sensitivity, which is unfavorable in
a commercial system.

Long-term challenges were rarely addressed across the literature. Most papers focused
on short-term system improvements and current performance, making it difficult to identify
patterns or trends related to future obstacles or development needs.

For future research, deeper investigation into the modeling of attention, especially within
the specific context of adaptive systems, could offer valuable insights, building on initial
efforts such as those presented in [7]. Additionally, a systematic review evaluating which
adaptation strategies achieved their intended outcomes, and which did not, would be highly
beneficial for guiding the design and development of future adaptive systems.
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Appendix

A Full Queries Used

A.1 Scopus
TITLE-ABS-KEY (( "user* attention" OR "visual attention" OR "involuntary attention"
OR "subject attention" OR "attenti* level" OR "level of attention" OR "human attention"
OR "attenti* state" OR attentive* OR "user focus" OR "visual focus" OR "eye movement
track*" OR "eye-movement track*" OR "mind-wander*" OR "mind wander*" OR gaze OR
"mental state" OR "cognitive engage*" OR inattention OR inattentive* OR distract* OR
"absent-minded" OR "absent minded" OR daydream* OR "day dream*" )

OR (attention W/2 (user OR student OR learner OR person OR human)))
AND TITLE-ABS-KEY ("adaptive system*" OR "system adapt*" OR "personalized

system*" OR "personalised system*" OR "adaptive interface" OR "adaptive UI")
AND TITLE-ABS-KEY (user OR student OR learner OR person OR human)

A.2 IEEE Xplore
((("All Metadata":"user* attention" OR "All Metadata":"visual attention" OR "All Meta-
data":"involuntary attention" OR "All Metadata":"subject attention" OR "All Metadata":
"attenti* level" OR "All Metadata":"level of attention" OR "All Metadata":"human atten-
tion" OR "All Metadata": "attenti* state" OR "All Metadata":"attentive*" OR "All Meta-
data":"user focus" OR "All Metadata":"visual focus" OR "All Metadata":"eye movement
track*" OR "All Metadata":"eye-movement track*" OR "All Metadata":"mind-wander"
OR "All Metadata":"mind wander" OR "All Metadata":"mind-wandering" OR "All Meta-
data":"mind wandering" OR "All Metadata":"gaze" OR "All Metadata":"mental state" OR
"All Metadata":"mental states" OR "All Metadata":"cognitive engage*" OR "All Meta-
data":"inattention" OR "All Metadata":"inattentive*" OR "All Metadata":"distract*" OR
"All Metadata":"absent-minded" OR "All Metadata":"absent minded" OR "All Metadata":
"daydream" OR "All Metadata":"day dream" OR "All Metadata":"daydreaming" OR "All
Metadata":"day dreaming" OR ("All Metadata":"attention" NEAR/2 ("All Metadata":"user"
OR "All Metadata":"users" OR "All Metadata":"student" OR "All Metadata":"learner"
OR "All Metadata":"person" OR "All Metadata":"human")))

AND ("All Metadata":"adaptive system" OR "All Metadata":"adaptive systems" OR
"All Metadata":"system adapt*" OR "All Metadata":"personalized system" OR "All Meta-
data":"personalized systems" OR "All Metadata":"personalised system" OR "All Meta-
data":"personalised systems" OR "All Metadata":"adaptive interface" OR "All Metadata":
"adaptive interfaces" OR "All Metadata":"adaptive UI")

AND ("All Metadata":"user" OR "All Metadata":"users" OR "All Metadata":"student"
OR "All Metadata":"students" OR "All Metadata":"learner" OR "All Metadata":"learners"
OR "All Metadata":"person" OR "All Metadata":"persons" OR "All Metadata":"human"
OR "All Metadata":"humans")))

A.3 Web of Science
TS=(( "user* attention" OR "visual attention" OR "involuntary attention" OR "subject
attention" OR "attenti* level" OR "level of attention" OR "human attention" OR "attenti*
state" OR attentive* OR "user focus" OR "visual focus" OR "eye movement track*" OR
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"eye-movement track*" OR "mind-wander*" OR "mind wander*" OR gaze OR "mental
state" OR "cognitive engage*" OR inattention OR inattentive* OR distract* OR "absent-
minded" OR "absent minded" OR daydream* OR "day dream*" ) OR (attention NEAR/2
(user OR student OR learner OR person OR human)))

AND TS=("adaptive system*" OR "system adapt*" OR "personalized system*" OR
"personalised system*" OR "adaptive interface" OR "adaptive UI")

AND TS=(user OR student OR learner OR person OR human)
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B Full Tables

Input Literature

Eye-gaze

Fixation [10] [11] [12] [17] [19] [29] [35] [38] [42] [48] [49]
[50] [53] [54]

Blink rate [11] [19] [50] [54]
Pupil diameter [11] [19] [35] [36] [42] [48] [50] [53] [54]
Saccades [12]
EOG [41]
Angle [53]
Unspecified [13] [14] [15] [16] [18] [20] [21] [22] [23] [24] [25]

[26] [27] [28] [30] [31] [32] [33] [34] [37] [39] [40]
[43] [44] [45] [46] [47] [51] [52]

BCI
EEG [20] [23] [56] [57] [58] [59] [60] [61] [62]
fNIRS [55] [64]
Unspecified [16] [63]

Physical condition [70] [73]
Heart rate [11] [20] [36] [71] [74] [75]

Head and face movement [15] [18] [21] [28] [29] [30] [46] [48] [65] [66] [68]
[69]

Arm and hand movement [18] [21] [25] [46] [67]
Blood pressure [20] [75]
Skin conductance [20] [36] [75]
Nasal temperature [72]
Behavior [17] [26] [45] [70] [72] [73] [79]
Task performance [15] [19] [26] [45] [74] [76] [77] [78]
Responsiveness [15] [44] [78]
Speech [11] [45] [49]
Mouse [16] [21] [27] [31] [44] [46] [51] [80] [81]
Keyboard [21] [46] [51] [80]
Questionnaires [57] [71] [78]

External Environment [45] [70] [79]
Vehicle status [69] [82]

Unclear [83]

Table 8: Sensor input and related literature
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C Usage of AI
ChatGPT has been used to facilitate the writing process of this document.

Example prompt 1: In Overleaf, I want to add a link to an external website at the
bottom of the page, and have a little reference in the text. It should look like this: Text^1,
and then at the bottom of the page: ^1 Here is link: url. How can I do that?

Answer: To add a small reference in the text like Text¹ and place a clickable URL at
the bottom of the page in Overleaf (LaTeX), you can use the \footnote{} command along
with \href{} from the hyperref package. Here’s how to do it:

Minimalist Example:
\{article}
\usepackage{hyperref} Enables clickable links
\begin{document}
This is some example text\footnote {Here is the link: \href{https://example.com}
{https://example.com}} with a footnote.
\end{document}

Explanation:

• \footnote{...} creates a numbered footnote at the bottom of the page.

• Inside the footnote, \href{URL}{text} makes the URL clickable.

• The superscript number is automatically handled by \footnote.

You can also change the text of the link (instead of showing the raw URL):
\footnote{For more info, see \href{https://example.com}{this website}.}

Let me know if you want to style the footnote marker differently (e.g., using symbols
instead of numbers).

Example prompt 2: Can you rephrase this? "There are ethical aspects regarding a
literature survey about cognitive-affective adaptive systems that need to be addressed. This
is covered in the following sections."

Answer: Certainly! Here’s a more polished version of your sentence: Ethical considera-
tions related to conducting a literature survey on cognitive-affective adaptive systems must
be acknowledged. These are discussed in the following sections.
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