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a b s t r a c t

Developing mathematical models of dynamic systems is central to many disciplines of engineering and
science. Models facilitate simulations, analysis of the system’s behavior, decision making and design
of automatic control algorithms. Even inherently model-free control techniques such as reinforcement
learning (RL) have been shown to benefit from the use of models, typically learned online. Any model
construction method must address the tradeoff between the accuracy of the model and its complexity,
which is difficult to strike. In this paper, we propose to employ symbolic regression (SR) to construct
parsimonious process models described by analytic equations. We have equipped our method with two
different state-of-the-art SR algorithms which automatically search for equations that fit the measured
data: Single Node Genetic Programming (SNGP) and Multi-Gene Genetic Programming (MGGP). In
addition to the standard problem formulation in the state-space domain, we show how the method
can also be applied to input–output models of the NARX (nonlinear autoregressive with exogenous
input) type. We present the approach on three simulated examples with up to 14-dimensional state
space: an inverted pendulum, a mobile robot, and a bipedal walking robot. A comparison with deep
neural networks and local linear regression shows that SR in most cases outperforms these commonly
used alternative methods. We demonstrate on a real pendulum system that the analytic model found
enables a RL controller to successfully perform the swing-up task, based on a model constructed from
only 100 data samples.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Numerous methods rely on an accurate model of the system.
Model-based techniques comprise a wide variety of methods such
as model predictive control [1,2], time series prediction [3], fault
detection and diagnosis [4,5], or reinforcement learning (RL) [6,7].

Even though model-free algorithms are available, the ab-
sence of a model slows down convergence and leads to ex-
tensive learning times [8–10]. Various model-based methods
have been proposed to speed up learning [11–15]. To that end,
many model-learning approaches are available: time-varying lin-
ear models [16,17], Gaussian processes [18,19] and other prob-
abilistic models [20], basis function expansions [21,22], regres-
sion trees [23], deep neural networks [7,24–29] or local linear
regression [30–32].

All the above approaches suffer from drawbacks induced by
the use of the specific approximation technique, such as a large

∗ Corresponding author at: Czech Institute of Informatics, Robotics, and
Cybernetics, Czech Technical University in Prague, Prague, 16000, Czech
Republic.

E-mail address: erik.derner@cvut.cz (E. Derner).

number of parameters (deep neural networks), local nature of
the approximator (local linear regression), computational com-
plexity (Gaussian processes), etc. In this article, we propose an-
other way to capture the system dynamics: using analytic models
constructed by means of the symbolic regression method (SR).
Symbolic regression is based on genetic programming and it has
been used in nonlinear data-driven modeling, often with quite
impressive results [33–37].

Symbolic regression appears to be quite unknown to the ma-
chine learning community as only a few works have been re-
ported on the use of SR for control of dynamic systems. For
instance, modeling of the value function by means of genetic
programming is presented in [38], where analytic descriptions
of the value function are obtained based on data sampled from
the optimal value function. Another example is the work [39],
where SR is used to construct an analytic function, which serves
as a proxy to the value function and a continuous policy can
be derived from it. A multi-objective evolutionary algorithm was
proposed in [40], which is based on interactive learning of the
value function through inputs from the user. SR is employed to
construct a smooth analytic approximation of the policy in [41],
using the data sampled from the interpolated policy.

https://doi.org/10.1016/j.asoc.2020.106432
1568-4946/© 2020 Elsevier B.V. All rights reserved.
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To our best knowledge, there have been no reports in the liter-
ature on the use of symbolic regression for constructing a process
model in model-based control methods. We argue that the use
of SR for model learning is a valuable element missing from
the current nonlinear control schemes and we demonstrate its
usefulness.

In this paper, we extend our previous work [42,43], which
indicated that SR is a suitable tool for this task. It does not require
any basis functions defined a priori and contrary to (deep) neu-
ral networks it learns accurate, parsimonious models even from
very small data sets. Symbolic regression can handle also high-
dimensional problems and it does not suffer from the exponential
growth of the computational complexity with the dimensionality
of the problem, which we demonstrate on an enriched set of
experiments including a complex bipedal walking robot system.
In this work, we extend the use of the method to the class of
input–output models, which are suitable in cases when the full
state vector cannot be measured. By testing our method with two
different state-of-the-art genetic programming algorithms, we
demonstrate that the method is not dependent on the particular
choice of the SR algorithm.

The paper is organized as follows. Sections 2 and 3 present the
relevant context for model learning and the proposed method.
The experimental evaluation of the method is reported in Sec-
tion 4 and the conclusions are drawn in Section 5. Appendix A
describes the RL method used in this paper.

2. Theoretical background

The discrete-time nonlinear state-space process model is de-
scribed as

xk+1 = f (xk, uk) (1)

with the state xk, xk+1 ∈ X ⊂ Rn and the input uk ∈ U ⊂ Rm.
Note that the actual process can be stochastic (typically when the
sensor readings are corrupted by noise), but in this paper we aim
at constructing a deterministic process model (1).

The full state vector cannot be directly measured for a vast ma-
jority of processes and a state estimator would have to be used. In
the absence of an accurate process model, such a reconstruction is
inaccurate and has a negative effect on the overall performance of
the control algorithm on the real system. Note that this problem
has not been explicitly addressed in the literature, as most results
are demonstrated on simulation examples in which the state
information is available.

Therefore, next to state-space models, we also investigate the
use of dynamic input–output models of the NARX (nonlinear
autoregressive with exogenous input) type. The NARX model
establishes a relation between the past input–output data and the
predicted output:

yk+1 = g
(
yk, yk−1, . . . , yk−ny+1, uk, uk−1, . . . , uk−nu+1

)
, (2)

where ny and nu are user-defined integer parameters based on
the expected system’s order, and g is a static function, different
from the function f used in the state-space model (1).

For the ease of notation, we group the lagged outputs and
inputs into one vector:

ϕk = [yk, yk−1 . . . , yk−ny+1, uk−1, . . . , uk−nu+1]

and write model (2) as:

yk+1 = g (ϕk, uk) . (3)

Note that in this setting, the model function and also the
control policy are found from data samples which live in a space
that is very different from the state space. The lagged outputs
yk, yk−1, . . . , yk−ny+1 are highly correlated and therefore span

Fig. 1. An example of trajectory samples obtained from the real inverted
pendulum (see Section 4.3) in the original state space (a), and in the space
formed by the current and previous output (b).

a deformed space. This presents a problem for many types of
approximators. For instance, basis functions defined by the Carte-
sian product of the individual lagged variables will cover the
whole product space yk × yk−1 × · · · × yk−ny+1, while data
samples only span a small, diagonally oriented part of the space,
as illustrated in Fig. 1. The SR approach described in this paper
does not suffer from such drawbacks.

In this paper, we use reinforcement learning as the control
method of choice. Please refer to Appendix A for details on the
RL method used.

3. Method

In this section, we explain the principle of our method, briefly
describe two variants of genetic programming algorithms used
in this work, and discuss the computational complexity of our
approach.

3.1. Symbolic regression

Symbolic regression is employed to approximate the unknown
state transition function f in the state-space model (1) or g in
the input–output model (2). The analytic expressions describing
the process to be controlled are constructed through genetic
programming. SR methods were reported in the literature to
work faster when using a linear combination of evolved nonlinear
functions instead of evolving the whole analytic expression at
once [44,45]. Therefore, we define the class of analytic state-space
models as:

f (x, u) = β0 +

nf∑
i=1

βifi(x, u) (4)

and the class of analytic input–output (NARX) models as:

g(ϕ, u) = β0 +

nf∑
i=1

βigi(ϕ, u) . (5)

The nonlinear functions fi(x, u) or gi(ϕ, u), called features, are
constructed from a set of user-defined elementary functions.
These functions can be nested and are evolved by means of
standard evolutionary algorithm operations, such as mutation,
so that the mean-square error calculated over the training data
set is minimized. No a priori knowledge on the structure of the
nonlinear model is needed. The set of elementary functions may
be broad to let the SR algorithm select functions that are most
suitable for fitting the given data. However, it is also possible
to provide the algorithm with a partial knowledge about the
problem. A narrower selection of elementary functions restricts
the search space and speeds up the evolution process.
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To avoid over-fitting, we control the complexity of the regres-
sion model by imposing a limit on the number of features nf and
the maximum depth d of the tree representation of the features.
The coefficients βi are estimated by least squares.

3.2. Genetic programming methods used

In order to demonstrate that our method is not dependent
on the particular choice of the SR algorithm, we test our ap-
proach with two different genetic programming methods: a mod-
ified version of Single Node Genetic Programming (SNGP) [46–
48] and a modified version of Multi-Gene Genetic Programming
(MGGP) [37]. Both methods have been successfully used for sym-
bolic regression, with several applications in the RL and robotics
domains [41–43,49].

SNGP is a graph-based genetic programming technique that
evolves a population of nodes organized in the form of an ordered
linear array. The nodes can be of various types depending on
the particular problem. In the context of SR, the node can either
be a terminal, i.e., a constant or a variable, or some operator
or function chosen from a set of functions defined by the user
for the problem at hand. The individuals are interconnected in
the left-to-right manner, meaning that an individual can act as
an input operand only of those individuals which are positioned
to its right in the population. Thus, the whole population repre-
sents a graph structure with multiple expressions rooted in the
individual nodes. Expressions rooted in the function nodes can
represent non-linear symbolic functions of various complexity.
The population is evolved through a local search procedure using
a single reversible mutation operator.

MGGP is a tree-based genetic programming algorithm utilizing
multiple linear regression. The main idea behind MGGP is that
each individual is composed of multiple independent expression
trees, called genes, which are put together by a linear com-
bination to form a single final expression. The parameters of
this top-level linear combination are computed using multiple
linear regression where each gene acts as an independent feature.
In this article, we build upon a particular implementation of
MGGP — GPTIPS2 [50]. This particular instance of MGGP uses two
crossover operators: (i) high-level crossover that combines gene
sets of two parents; (ii) low-level crossover which is a classical
Koza-style [51] subtree crossover operating on corresponding
pairs of parental genes. Also, there are two mutation operators:
(i) subtree mutation, which is a classical Koza-style subtree muta-
tion; (ii) constant mutation, which alters the numerical values of
leaves representing constants. Both the crossover and mutation
operators are chosen stochastically.

Detailed explanation of these algorithms and their parameters
is beyond the scope of this paper and we refer the interested
reader to [48] and [37].

3.3. Computational complexity

The computational complexity of the symbolic regression al-
gorithms used in this work increases linearly with the size of the
training data set as well as with the dimensionality of the prob-
lem. For example, considering a problem with one-dimensional
state, one-dimensional input, one-dimensional output, and a data
set of 1000 samples, a single run of the SNGP or MGGP algorithm
with the default configuration takes about 3 min on a single core
of a standard desktop PC. For a system with a 14-dimensional
regressor and a 6-dimensional input, a single run takes up to
20 min.

Fig. 2. Mobile robot schematic (a) and photograph (b).

4. Experimental results

We have carried out experiments with three nonlinear sys-
tems: a mobile robot, a 1-DOF inverted pendulum and a bipedal
walking robot. The data, the codes and the detailed configuration
of the experiments is available in our repository.1

The simulation experiment with the mobile robot illustrates
the use of the presented method, showing the precision and
compactness of the models found in the case where the ground
truth is known (Section 4.1). We show that the method is not
dependent on the particular choice of the SR algorithm by com-
paring the performance of two SR methods, SNGP and MGGP. The
subsequent experiment with the walking robot presents a more
complex example and shows the performance of the method
in a high-dimensional space (Section 4.2). With this example,
we demonstrate the ability of the method to construct standard
state-space models as well as input–output (NARX) models and
we show how the method performs compared to two deep neural
networks with different architectures. We conclude our set of
experiments with the inverted pendulum system (Section 4.3).
Similarly as in the experiment with the mobile robot, we evaluate
the method with SNGP and MGGP, and we compare the results
to two alternative approaches: neural networks and local linear
regression. In addition to measuring the model prediction error,
we perform real-time closed-loop control experiments with a lab
setup to evaluate the performance of the algorithm in real-world
conditions.

4.1. Mobile robot

The state of a two-wheel mobile robot, see Fig. 2 and [52], is
described by x = [xpos, ypos, φ]

⊤, with xpos and ypos the position
coordinates and φ the heading. The control input is u = [vf , va]

⊤,
where vf represents the forward velocity and va the angular
velocity of the robot.

The continuous-time dynamic model of the robot is:

ẋpos = vf cos(φ),
ẏpos = vf sin(φ),

φ̇ = va .

(6)

4.1.1. Data sets
We generated a noise-free data set by using the Euler method

to simulate the differential equations (6). With a sampling period
Ts = 0.05 s, the discrete-time approximation of (6) becomes:

xpos, k+1 = xpos, k + 0.05 vf , k cos(φ),
ypos, k+1 = ypos, k + 0.05 vf , k sin(φ),
φk+1 = φk + 0.05 va, k .

(7)

1 https://github.com/erik-derner/symbolic-regression.

https://github.com/erik-derner/symbolic-regression
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We generated training data sets of different sizes ns. The initial
state x0 and the control input uk for the whole simulation were
randomly chosen from the ranges:

xpos ∈ [−1, 1]m,
ypos ∈ [−1, 1]m,
φ ∈ [−π, π] rad,

vf ∈ [−1, 1]ms−1,

va ∈

[
−
π

2
,
π

2

]
rad s−1.

(8)

A test data set was generated in order to assess the quality
of the analytic models on data different from the training set.
The test data set entries were sampled on a regular grid with
11 points spanning evenly each state and action component do-
main, as defined by (8). These samples were stored together with
the next states calculated by using the Euler approximation.

4.1.2. Experiment setup
The purpose of this experiment was to test the ability of the

SNGP and MGGP algorithms to recover from the data the analytic
process model described by a known state-transition function.
In order to assess the performance depending on the size of the
data set and the complexity of the model, different combinations
of the number of features nf and the size of the training set ns
were tested. As the used algorithms only allow modeling one
output at a time, they were run independently for each of the
state components xpos, k+1, ypos, k+1 and φk+1.

The size of the SNGP population was set to 500 individuals
and the evolution duration to 30000 generations. The set of
elementary functions was defined as {∗, +, −, sin, cos}. The
maximum depth d of the evolved nonlinear functions was set
to 7 and the number of features was nf ∈ {1, 2, 10}. To ensure
a fair evaluation, the parameters of the MGGP algorithm were
set similarly to provide both methods with a comparable amount
of computational resources, taking into account the conceptual
differences between the two algorithms.

4.1.3. Results
The models found by symbolic regression were evaluated by

calculating the RMSE median on the test data set over 30 in-
dependent runs of the SR algorithm. Note that each run yields
a different model because the evolution process is guided by
a unique sequence of random numbers. The results are listed in
Table 1.

An example of a process model found by running SNGP with
the parameters nf = 2 and ns = 100 is:

x̂pos, k+1 = 1.0 xpos, k + 0.0499998879 vf , k cos(φk) ,
ŷpos, k+1 = 1.000000023 ypos, k + 0.0500000056 vf , k sin(φk)

+ 0.0000000191 ,

φ̂k+1 = 0.9999982931φk + 0.0500000536 va, k
− 0.0000059844 .

(9)

The coefficients are rounded to 10 decimal digits in order to
demonstrate the magnitude of the error compared to the original
Euler approximation (7). The results show that even with a small
training data set, a precise, parsimonious analytic process model
can be found based on noise-free data.

The results also demonstrate how the number of features nf
plays an important role in the setting of the experiment parame-
ters. In general, the RMSE decreases with an increasing number of
features, whereas the complexity naturally grows by adding more
features to the final model (4). The higher RMSE error when using
only one feature is caused mainly by the fact that all parameters
have to be evolved by the genetic algorithm, which is hard. On

Fig. 3. The walking robot LEO: photograph (a) and simulation model rendering
(b) [54].

the other hand, when using more features, the least squares
method can quickly and accurately find the coefficients of the
features. These results support our choice to define the class of
analytic models as a linear combination of features, as explained
in Section 3.1. As a corollary, if the outline of the model structure
is known in advance, it is recommended to set the number of
features at least equal to the number of terms expected in the
underlying function. Otherwise, it is advisable to set the number
of features large enough, e.g. nf = 10.

4.2. Walking robot

The robot LEO is a 2D bipedal walking robot [53], see Fig. 3.
It has 7 actuators: two in the ankles, knees and hips and one in
its shoulder that allows the robot to stand up after a fall. LEO
is connected to a boom with a parallelogram construction. This
keeps the hip axis always horizontal, which makes it effectively
a 2D robot and thus eliminates the sideways stability problem.

The state vector of LEO x = [ψ, ψ̇]
⊤ consists of 14 compo-

nents, where

ψ = [ψTRS, ψLH , ψRH , ψLK , ψRK , ψLA, ψRA]
⊤ (10)

represents the angles of the torso, left and right hip, the knee and
the ankle. Likewise,

ψ̇ = [ψ̇TRS, ψ̇LH , ψ̇RH , ψ̇LK , ψ̇RK , ψ̇LA, ψ̇RA]
⊤ (11)

are the angular velocities of the torso, hips, knees and ankles. The
action space of LEO comprises the voltage inputs to the seven
joint actuators.

4.2.1. Data sets
In order to apply symbolic regression, the walking robot LEO

was modeled using the Rigid Body Dynamics Library (RBDL) [55]
and the data sets were generated using the Generic Reinforce-
ment Learning Library (GRL) [56], which allowed us to record
trajectories while the robot was learning to walk.

We split the data set into two disjoint subsets: a training set
and a test set. Both subsets are composed of consecutive samples
from the simulation, which was run with a sampling period Ts =

0.03 s.
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4.2.2. Experiment setup
The experiment was designed to evaluate the performance

of our method on a more complex, high-dimensional example
and to construct input–output (NARX) models in addition to the
standard state-space models. We chose to use only the SNGP
algorithm for this experiment and the main parameters were
configured as follows. The population size was set to 500 and the
number of generations to 30000. The depth limit d was fixed to
5 and the number of features was nf ∈ {1, 5, 10}. The elementary
function set was defined as {∗,+,−, sin, cos, square, cube}.

During the simulation used to obtain the data sets, the shoul-
der was not actuated. Therefore, the input vector had only 6 com-
ponents, one for each actuator. As in the case of the mobile robot,
SNGP was run separately for each of the 14 state components.

In Experiment B1, we used SR to generate standard state-space
models. In Experiment B2, we generated input–output models
with the regression vector defined as ϕ = [ψk, ψk−1, uk−1].

4.2.3. Results
In order to evaluate the ability of SNGP to approximate the

state-transition function, we calculated the RMSE medians over
30 runs of the algorithm on the test data set. The results for the
state-space models are reported in Table 2 and for the input–
output models in Table 3.

The results show the expected trend, which can be seen in all
experiments: the quality of the models improves with the size of
the training data set. However, it is noteworthy that the differ-
ence between the RMSE for models trained on 100 samples and
for those trained on 5000 samples are in most cases negligible.
This confirms our earlier observation that SR can be used to find
accurate analytic process models on batches of data as small as
100 samples [42] even for high-dimensional systems.

The results for the input–output models are generally just
slightly worse than those for the state-space models, with the
benefit of speeding up the algorithm by reducing the number of
modeled variables to a half.

4.2.4. Comparison with alternative methods
Deep neural networks are widely used to model an unknown

system. In order to compare our method to alternative state-
of-the-art methods, we have constructed two different neural
networks:

• Deep neural network DNN-A was implemented in PyTorch.
It consists of an input linear layer of size 20 × 200, followed
by three linear layers with the size of 200 × 200, with
a ReLU activation function used after each linear layer. The
output layer has 200 × 14 units. The batch size was set to
32. The SGD algorithm [57] was used with the learning rate
of 8.5 × 10−4.

• Deep neural network DNN-B was implemented in Ten-
sorFlow. It is a fully connected network with 1 hidden
layer, consisting of 512 units with ELU nonlinearity and
50% dropout. The batch size was set to 8. The Adam opti-
mizer [58] was used with a learning rate of 10−3 and early
stopping.

We chose the RMSE medians of SNGP with ns = 1000 and
nf = 10 as the benchmark configuration. State-space models
were used in this scenario. The training and test sets were the
same for all compared methods. Fig. 4 shows an overview of
the performance of the two variants of DNN compared to the
SNGP algorithm and detailed results are presented in Table 4. The
results show that the SNGP algorithm is able to find substantially
better models than the neural networks for the angles, while the
performance on the angular velocities is comparable among all
the tested methods.

Fig. 4. Comparison of two DNN variants with the SNGP algorithm on the walking
robot example. The bars show the mean RMSE over the 7 angles and over the
7 angular velocities on the test data set.

Fig. 5. Inverted pendulum schematic (a) and the real inverted pendulum system
(b).

4.3. Inverted pendulum

The inverted pendulum system consists of a weight of mass m
attached to an actuated link which rotates in the vertical plane,
see Fig. 5(a). The state vector is x = [α, α̇]

⊤, where α is the angle
and α̇ is the angular velocity of the link. The control input is the
voltage u. The continuous-time model of the pendulum dynamics
is:

α̈ =
1
J

·

(
K
R
u − mg l sin(α) − b α̇ −

K 2

R
α̇ − c sign(α̇)

)
(12)

with J = 1.7937 × 10−4 kgm2, m = 0.055 kg, g = 9.81m s−2,
l = 0.042m, b = 1.94 × 10−5 Nms rad−1, K = 0.0536NmA−1,
R = 9.5� and c = 8.5 × 10−4 kgm2 s−2. The angle is α = 0
or α = 2π for the pendulum pointing down and α = π for the
pendulum pointing up.

The reward function used in the RL experiments was defined
as follows:

ρ(xk, uk, xk+1) = −0.5|αr − αk| − 0.01|α̇r − α̇k| − 0.05|uk|,

(13)

where [αr , α̇r ]
⊤ is a constant reference (goal) state.

4.3.1. Data collection
As we will present an experiment with the inverted pendu-

lum performing a control task, we start this section by a short
overview of the data collection methods used. Two different
situations can be distinguished: initial model learning and model
learning under a given policy.
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Initial model learning. At the beginning, when the control policy
is not yet available, the system can be excited by a test signal
in order to obtain a sufficiently rich data set. Various methods
for designing suitable test signals are described in the literature,
such as the generalized binary noise (GBN) sequence [59]. The
important parameters to be selected are the input signal ampli-
tude, the way the random signal is generated (e.g., the ‘switching’
probability) and the experiment duration.

Model learning under a given policy. Once an acceptable control
policy has been learned, the system can be controlled to execute
the required task. Data can be collected while performing the
control task and used to further improve the model. As the infor-
mation captured in the data under steady operating conditions
might not be sufficient in certain situations, the control input
can be adjusted by adding a test signal in this case as well. The
characteristics of this test signal are usually different from the
one used for initial model learning; for instance, it typically has
a lower amplitude.

4.3.2. Data sets
We used both simulated and real measured data in the ex-

periments with the inverted pendulum. In all experiments, the
discrete-time sampling period used was Ts = 0.05 s.

At first, we generated a noise-free data set for Experiment C1
by using the Euler method to simulate the differential equation
(12):
αk+1 = αk + 0.05 α̇k,

α̇k+1 = 0.9102924564 α̇k − 0.2369404025 sign(α̇k)
+ 1.5727561084 uk − 6.3168590065 sin(αk).

(14)

The data set for Experiment C2 was created by integrating
(12) by using the fourth-order Runge–Kutta method and adding
Gaussian noise. The transformation from the original states x =

[α, α̇]
⊤ to the states with Gaussian noise xn = [αn, α̇n]

⊤ is defined
as
αn = α + πλrn,1 ,
α̇n = α̇ + 40λrn,2 ,

(15)

where rn,1, rn,2 are random numbers drawn from a normal dis-
tribution with zero mean and a standard deviation of 1. The
constant λ ∈ {0, 0.01, 0.05, 0.1} controls the amount of noise
and the constants π and 40 make sure that the added noise is
approximately proportional to the range of each variable.

In both Experiments C1 and C2, the initial state was α = 0,
α̇ = 0 and the control input was chosen randomly at each time
step k from the range uk ∈ [−5, 5]V.

The test data sets were created similarly as in Section 4.1.1.
The samples were generated on a regular grid of 31 × 31 × 31
points, spanning the state and action domain: α ∈ [−π, π] rad,
α̇ ∈ [−40, 40] rad s−1 and u ∈ [−5, 5]V. For all samples, the next
states in the test set for Experiment C1 were calculated using the
Euler approximation. In Experiment C2, we generated a noise-free
test set by applying the fourth-order Runge–Kutta method to all
samples on the grid.

The real data for Experiment C3 were measured on the real
inverted pendulum system shown in Fig. 5(b). At first, the system
was excited by applying a uniformly distributed random control
input uk within the range [−5, 5]V at each time step k. The ran-
dom interaction with the system lasted for 5 s and the recorded
data set comprised 100 samples. The data are shown in Fig. 6. The
data set was later enriched by samples recorded while applying
the control policy (A.5) to perform the swing-up task on the real
system, which will be described in the following section.

The sequences recorded for Experiment C3 were split into
training and test subsets. Every third sample was used for the
test set, while the remaining samples formed the training set. In
all experiments, the reported RMSE values were calculated on the
respective test data set.

Fig. 6. Initial data set obtained on the real inverted pendulum system as
a response to the random input shown in the bottom panel.

4.3.3. Experiment setup
Similarly as in the experiment with the mobile robot, the SNGP

and MGGP algorithms were first employed in Experiment C1 to
test the ability of SR to generate precise models for the inverted
pendulum system using a data set generated by the Euler method.
The experiment serves to evaluate how the training data set size
ns and the number of features nf influence the quality of the
model.

Experiment C2 demonstrates how the analytic process models
are evolved using the Runge–Kutta simulation data set with noise.
The maximum number of features nf in the symbolic regression
algorithms was set to 10 in order to facilitate the evolution of
models capturing the more complex underlying function. This
experiment tests the behavior of the method in environments
with noisy measurements.

We conclude the experiments with Experiment C3, which
shows the intended use of the method within RL on the example
of the underactuated swing-up task, performed on a real inverted
pendulum system. The control goal is to stabilize the pendulum
in the unstable equilibrium xr = [αr , α̇r ]

⊤
= [π, 0]⊤. As the

input is limited to the range u ∈ [−2, 2]V, the available torque is
insufficient to push the pendulum directly up from the majority
of initial states, and therefore it has to be first swung back and
forth to gather energy. At first, we constructed 30 analytic models
using the data set recorded under random input and then selected
the model with the lowest RMSE on the test set. This initial
model was employed to calculate the policy for the swing-up
task (see Appendix A). To find an approximation of the optimal
value function, we used the fuzzy V-iteration algorithm [60].
We applied the policy to the real system in four independent
runs, starting at the initial state x0 = [0, 0]⊤. In addition, we
performed other four swing-ups with exploration noise added to
the control input. The exploration noise was normally distributed
with the standard deviation ranging from 0.2 to 0.5V. All eight
sequences, each consisting of approximately 50 measurements,
were added to the initial data set recorded under random input.
Using this extended data set, 30 refined analytic process models
were learned and the model with the lowest error on the test set
was chosen as the final refined model. Like in Experiment C2, the
number of features was set to nf = 10 to facilitate modeling the
more complex state-transition function.

In all experiments, the size of the SNGP population was set
to 500 and the evolution was limited to 30000 generations. The
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Table 1
Comparison of analytic process models for the experiment with the mobile robot. The table shows the RMSE medians over 30 runs
of the SNGP (black) and MGGP (gray) algorithm for different numbers of features nf and different numbers of training samples ns .

Variable nf Number of training samples ns

20 50 100 200 500 1000

xpos

1 1.77 × 10−1 1.37 × 10−1 9.98 × 10−2 7.88 × 10−1 3.25 × 10−2 2.87 × 10−2

9.03 × 10−1 7.66 × 10−1 6.97 × 10−1 9.16 × 10−1 3.88 × 10−2 3.29 × 10−2

2 6.44 × 10−8 3.19 × 10−9 2.05 × 10−9 3.55 × 10−9 5.93 × 10−9 1.53 × 10−9

2.21 × 10−9 5.64 × 10−10 5.15 × 10−6 1.11 × 10−2 1.30 × 10−10 1.37 × 10−10

10 3.78 × 10−5 2.29 × 10−7 1.09 × 10−7 1.45 × 10−7 5.21 × 10−9 2.68 × 10−9

2.37 × 10−5 1.39 × 10−7 8.50 × 10−9 5.54 × 10−9 2.70 × 10−9 5.26 × 10−10

ypos

1 9.06 × 10−1 4.34 × 10−1 1.39 × 10−1 1.74 × 10−1 3.21 × 10−2 3.16 × 10−2

8.74 × 10−1 9.47 × 10−1 7.75 × 10−1 7.33 × 10−1 3.31 × 10−2 3.16 × 10−2

2 4.87 × 10−1 1.81 × 10−8 1.18 × 10−8 4.09 × 10−9 1.93 × 10−8 2.39 × 10−8

3.39 × 10−1 3.38 × 10−2 2.89 × 10−10 2.76 × 10−10 2.68 × 10−10 2.14 × 10−2

10 4.48 × 10−4 2.04 × 10−7 4.11 × 10−7 1.91 × 10−7 1.60 × 10−8 1.25 × 10−8

9.32 × 10−5 1.16 × 10−7 7.54 × 10−9 6.45 × 10−9 2.34 × 10−9 8.33 × 10−10

φ

1 9.81 × 10−2 2.60 × 10−2 6.44 × 10−4 6.57 × 10−5 6.79 × 10−4 5.55 × 10−3

3.38 × 100 3.19 × 100 2.49 × 10−2 1.34 × 10−3 5.51 × 10−5 5.48 × 10−5

2 7.05 × 10−8 1.36 × 10−8 6.16 × 10−9 3.78 × 10−8 7.78 × 10−9 5.16 × 10−8

1.47 × 10−9 5.08 × 10−10 4.16 × 10−10 4.02 × 10−10 4.00 × 10−10 4.01 × 10−10

10 5.35 × 10−6 1.85 × 10−6 2.09 × 10−6 4.01 × 10−8 6.00 × 10−9 3.69 × 10−8

6.45 × 10−8 9.34 × 10−9 2.87 × 10−9 1.35 × 10−9 4.07 × 10−10 4.00 × 10−10

Fig. 7. A typical real swing-up experiment with the initial model (a) and the refined model (b).

Fig. 8. Comparison of the real swing-up response with the initial model, learnt
from the random data, and the refined model, learnt from the random data
merged with additional data from eight real swing-up experiments.

elementary function set was {∗, +, −, sin, cos, sign}. The max-
imum depth d was set to 7. In Experiment C1, various numbers of
features were tested: nf ∈ {1, 2, 10} for α and nf ∈ {1, 4, 10} for
α̇. The parameters of the MGGP algorithm in Experiment C1 and C2
were set similarly, taking into account the conceptual differences
between the two algorithms to allow for a fair comparison.

Fig. 9. Histograms of 50 real experiments with the initial model and the refined
model measured by the discounted return. The performance improvement is
statistically significant (p = 2 × 10−22).

4.3.4. Results
The results of Experiment C1 are summarized in Table 5 for the

SNGP and MGGP algorithm. Similarly as in the previous examples,
the results indicate that the precision of the models increases
with increasing number of features. The overall performance of
both SR algorithms is comparable.
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Table 2
Comparison of the state-space analytic process models for the walking robot LEO in Experiment B1. The table shows the RMSE
medians over 30 runs of the SNGP algorithm for varying number of features nf and number of training samples ns .

Variable nf Number of training samples ns

100 200 500 1000 2000 5000

ψTRS

1 4.09 × 10−2 1.72 × 10−2 4.15 × 10−2 5.38 × 10−2 5.46 × 10−2 5.68 × 10−2

5 1.90 × 10−2 1.55 × 10−2 1.46 × 10−2 1.40 × 10−2 1.39 × 10−2 1.38 × 10−2

10 2.01 × 10−2 1.62 × 10−2 1.44 × 10−2 1.32 × 10−2 1.29 × 10−2 1.25 × 10−2

ψLH

1 2.99 × 10−2 2.99 × 10−2 3.60 × 10−2 2.24 × 10−2 2.34 × 10−2 8.81 × 10−2

5 2.78 × 10−2 2.38 × 10−2 2.15 × 10−2 2.07 × 10−2 2.02 × 10−2 2.01 × 10−2

10 2.99 × 10−2 2.53 × 10−2 2.20 × 10−2 2.06 × 10−2 1.95 × 10−2 1.92 × 10−2

ψRH

1 1.05 × 10−1 9.16 × 10−2 4.01 × 10−2 3.71 × 10−2 3.36 × 10−2 2.84 × 10−2

5 3.81 × 10−2 3.19 × 10−2 2.69 × 10−2 2.71 × 10−2 2.61 × 10−2 2.56 × 10−2

10 4.15 × 10−2 3.54 × 10−2 2.65 × 10−2 2.65 × 10−2 2.46 × 10−2 2.46 × 10−2

ψLK

1 5.52 × 10−2 8.01 × 10−2 2.43 × 10−2 2.35 × 10−2 2.40 × 10−2 2.28 × 10−2

5 3.10 × 10−2 2.68 × 10−2 2.29 × 10−2 2.15 × 10−2 2.06 × 10−2 2.07 × 10−2

10 3.43 × 10−2 2.87 × 10−2 2.22 × 10−2 2.10 × 10−2 1.97 × 10−2 1.89 × 10−2

ψRK

1 2.82 × 10−2 2.36 × 10−2 2.31 × 10−2 2.31 × 10−2 2.15 × 10−2 2.13 × 10−2

5 2.77 × 10−2 2.28 × 10−2 2.01 × 10−2 2.01 × 10−2 2.01 × 10−2 1.90 × 10−2

10 3.08 × 10−2 2.45 × 10−2 1.96 × 10−2 1.87 × 10−2 1.86 × 10−2 1.77 × 10−2

ψLA

1 9.31 × 10−2 1.11 × 10−1 1.10 × 10−1 1.10 × 10−1 7.07 × 10−2 5.74 × 10−2

5 5.18 × 10−2 4.00 × 10−2 3.11 × 10−2 2.95 × 10−2 2.80 × 10−2 2.81 × 10−2

10 5.66 × 10−2 4.31 × 10−2 3.16 × 10−2 2.92 × 10−2 2.73 × 10−2 2.62 × 10−2

ψRA

1 4.65 × 10−2 4.51 × 10−2 4.24 × 10−2 4.54 × 10−2 4.33 × 10−2 7.37 × 10−2

5 4.98 × 10−2 4.49 × 10−2 3.77 × 10−2 3.66 × 10−2 3.65 × 10−2 3.52 × 10−2

10 5.35 × 10−2 4.70 × 10−2 3.84 × 10−2 3.65 × 10−2 3.50 × 10−2 3.39 × 10−2

ψ̇TRS

1 8.91 × 10−1 8.51 × 10−1 8.19 × 10−1 7.99 × 10−1 7.94 × 10−1 7.84 × 10−1

5 1.07 × 100 8.72 × 10−1 7.78 × 10−1 7.19 × 10−1 6.92 × 10−1 6.86 × 10−1

10 1.20 × 100 9.27 × 10−1 7.93 × 10−1 7.00 × 10−1 6.67 × 10−1 6.41 × 10−1

ψ̇LH

1 1.44 × 100 1.23 × 100 1.16 × 100 1.15 × 100 1.14 × 100 1.14 × 100

5 2.22 × 100 1.41 × 100 1.17 × 100 1.15 × 100 1.11 × 100 1.08 × 100

10 2.07 × 100 1.48 × 100 1.20 × 100 1.16 × 100 1.10 × 100 1.06 × 100

ψ̇RH

1 1.49 × 100 1.32 × 100 1.31 × 100 1.28 × 100 1.25 × 100 1.24 × 100

5 1.92 × 100 1.47 × 100 1.38 × 100 1.25 × 100 1.17 × 100 1.14 × 100

10 1.97 × 100 1.57 × 100 1.52 × 100 1.27 × 100 1.17 × 100 1.12 × 100

ψ̇LK

1 1.59 × 100 1.25 × 100 1.14 × 100 1.11 × 100 1.10 × 100 1.09 × 100

5 1.79 × 100 1.47 × 100 1.15 × 100 1.09 × 100 1.05 × 100 9.94 × 10−1

10 1.90 × 100 1.57 × 100 1.20 × 100 1.11 × 100 1.08 × 100 9.87 × 10−1

ψ̇RK

1 1.02 × 100 9.35 × 10−1 9.18 × 10−1 9.24 × 10−1 9.16 × 10−1 9.05 × 10−1

5 1.13 × 100 9.98 × 10−1 9.40 × 10−1 9.29 × 10−1 8.64 × 10−1 8.32 × 10−1

10 1.24 × 100 1.07 × 100 9.83 × 10−1 9.63 × 10−1 8.73 × 10−1 8.20 × 10−1

ψ̇LA

1 1.76 × 100 1.52 × 100 1.32 × 100 1.31 × 100 1.28 × 100 1.26 × 100

5 2.01 × 100 1.63 × 100 1.29 × 100 1.24 × 100 1.14 × 100 1.10 × 100

10 2.18 × 100 1.67 × 100 1.35 × 100 1.25 × 100 1.15 × 100 1.10 × 100

ψ̇RA

1 1.69 × 100 1.64 × 100 1.60 × 100 1.58 × 100 1.58 × 100 1.58 × 100

5 1.84 × 100 1.75 × 100 1.52 × 100 1.48 × 100 1.43 × 100 1.38 × 100

10 1.92 × 100 1.86 × 100 1.62 × 100 1.51 × 100 1.43 × 100 1.35 × 100

An example of an analytic process model found with the
parameters nf = 2 for α, nf = 4 for α̇ and ns = 20 is:

α̂k+1 = αk + 0.05 α̇k − 0.0000000001 ,
ˆ̇αk+1 = 0.9102924745 α̇k − 0.2369403835 sign(α̇k)

+1.5727561072 uk

− 6.3168589936 sin(αk) + 0.0000000013 .

(16)

The error of the analytic model w.r.t. the Euler approxima-
tion (14) is very small. These results confirm that the proposed
method can find precise models even on small data sets.

The results of Experiment C2 presented in Table 6 show that
the analytic models are able to approximate the state-transition
function well even on data with a reasonable amount of noise.
The use of the Runge–Kutta method to generate data sets leads to
substantially more complicated models than when using the data
generated by using the Euler method. Again, the performance of
the SNGP and MGGP algorithm is comparable.

In Experiment C3, we have shown that SR is able to find
analytic process models using data collected on the real system.

Already after a short (5 s) interaction under the random input,
an analytic process model is found which enables RL to per-
form the swing-up, see Fig. 7(a). Performing the swing-up task
allows to collect more data in important parts of the state space
around the trajectory to the goal state. Fig. 7(b) shows that the
performance of the model further improves after adding data
collected while performing the swing-up task with the initial
model. Fig. 8 compares the swing-up response with the initial and
the refined model. The histogram in Fig. 9 and a two-sample t-test
with unpooled variance applied to the discounted return show
that the performance improvement between the policy based on
the initial and the refined analytic process model is statistically
significant (p = 2 × 10−22). The RMSE medians over 30 runs of
the SNGP algorithm were 1.70×10−2 for α and 6.03×10−1 for α̇
in case of the initial model and 1.16×10−2 for α and 3.35×10−1

for α̇ in case of the refined model.

4.3.5. Comparison with alternative methods
We compared our modeling results with local linear regression

(LLR) [30]. We selected the Runge–Kutta data set with 1000
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Table 3
Comparison of the input–output analytic process models for the walking robot LEO in Experiment B2. The table shows the RMSE
medians over 30 runs of the SNGP algorithm for varying number of features nf and number of training samples ns .

Variable nf Number of training samples ns

100 200 500 1000 2000 5000

ψTRS

1 5.78 × 10−2 5.77 × 10−2 5.71 × 10−2 5.58 × 10−2 5.60 × 10−2 5.69 × 10−2

5 3.84 × 10−2 3.60 × 10−2 3.15 × 10−2 2.65 × 10−2 2.45 × 10−2 2.33 × 10−2

10 4.07 × 10−2 3.36 × 10−2 2.88 × 10−2 2.48 × 10−2 2.09 × 10−2 2.06 × 10−2

ψLH

1 6.75 × 10−2 6.57 × 10−2 6.57 × 10−2 5.90 × 10−2 1.07 × 10−1 6.67 × 10−2

5 3.80 × 10−2 2.97 × 10−2 2.62 × 10−2 2.71 × 10−2 2.56 × 10−2 2.53 × 10−2

10 3.85 × 10−2 3.15 × 10−2 2.65 × 10−2 2.64 × 10−2 2.46 × 10−2 2.40 × 10−2

ψRH

1 8.04 × 10−2 8.57 × 10−2 6.62 × 10−2 1.14 × 10−1 1.06 × 10−1 7.03 × 10−2

5 4.92 × 10−2 3.81 × 10−2 3.29 × 10−2 3.20 × 10−2 3.11 × 10−2 3.04 × 10−2

10 5.40 × 10−2 4.01 × 10−2 3.25 × 10−2 3.08 × 10−2 2.88 × 10−2 2.85 × 10−2

ψLK

1 8.06 × 10−2 5.52 × 10−2 8.22 × 10−2 7.52 × 10−2 7.52 × 10−2 5.77 × 10−2

5 3.66 × 10−2 2.95 × 10−2 2.46 × 10−2 2.31 × 10−2 2.20 × 10−2 2.10 × 10−2

10 3.96 × 10−2 3.09 × 10−2 2.44 × 10−2 2.21 × 10−2 2.09 × 10−2 2.04 × 10−2

ψRK

1 8.69 × 10−2 3.65 × 10−2 2.99 × 10−2 2.56 × 10−2 8.88 × 10−2 3.83 × 10−2

5 3.20 × 10−2 2.62 × 10−2 2.36 × 10−2 2.26 × 10−2 2.20 × 10−2 2.18 × 10−2

10 3.49 × 10−2 2.76 × 10−2 2.24 × 10−2 2.16 × 10−2 2.08 × 10−2 2.01 × 10−2

ψLA

1 7.50 × 10−2 1.07 × 10−1 4.41 × 10−2 1.03 × 10−1 5.85 × 10−2 1.03 × 10−1

5 5.44 × 10−2 4.22 × 10−2 3.27 × 10−2 3.00 × 10−2 2.89 × 10−2 2.79 × 10−2

10 5.94 × 10−2 4.62 × 10−2 3.26 × 10−2 2.96 × 10−2 2.75 × 10−2 2.66 × 10−2

ψRA

1 1.19 × 10−1 1.20 × 10−1 9.65 × 10−2 9.63 × 10−2 1.02 × 10−1 5.11 × 10−2

5 5.10 × 10−2 4.45 × 10−2 3.79 × 10−2 3.69 × 10−2 3.65 × 10−2 3.60 × 10−2

10 5.51 × 10−2 4.49 × 10−2 3.79 × 10−2 3.59 × 10−2 3.44 × 10−2 3.38 × 10−2

samples and zero noise as a reference training set and the regular
grid as a test set (see Section 4.3.2 for details). The LLR memory
contained 1000 samples and the number of nearest neighbors
was set to 10. The RMSE achieved by LLR was 1.73 × 10−1 for α
and 6.93× 100 for α̇. In both cases, the SNGP algorithm achieved
a better RMSE by at least one order of magnitude (6.11 × 10−3

for α and 5.04 × 10−1 for α̇).
We also compared the results of our method to a neural

network. Given the relative simplicity of the problem, the net-
work had one hidden layer, consisting of 40 neurons, and it was
trained using the Levenberg–Marquardt algorithm. The number of
neurons in the hidden layer was tuned by testing networks with 5
to 100 neurons and choosing the one that performed best on the
test data. The RMSE achieved on the aforementioned reference
data set was 6.82 × 10−2 for α and 2.59 × 100 for α̇. Again,
compared to the RMSE values achieved by our method (stated
at the end of the previous paragraph), symbolic regression finds
substantially better models in terms of RMSE compared to those
found by the neural network.

5. Conclusions

We showed that symbolic regression is a very effective
method for constructing dynamic process models from data. It
generates parsimonious models in the form of analytic expres-
sions, which makes it a good alternative to black-box models,
especially in problems with limited amounts of data. Prior knowl-
edge on the type of nonlinearities and model complexity can
easily be included in the symbolic regression procedure. Despite
the technique is not yet broadly used in the field of robotics and
dynamic systems, we believe that it will become a standard tool
for system identification.

The experiments with the walking robot demonstrate that
symbolic regression can be used to construct precise process
models even for high-dimensional systems. We have confirmed
empirically that the computational complexity of the algorithm
grows linearly with the dimensionality of the system. It is also
worth mentioning that the complexity of the analytic models
does not grow significantly with the complexity of the system.

Table 4
Comparison of the RMSE of the state-space process models calculated on the
test data set for the walking robot LEO using two variants of a deep neural
network (DNN-A and DNN-B) and SNGP. The reference configuration of SNGP
used for this comparison was nf = 10 and ns = 1000.

Variable Method

DNN-A DNN-B SNGP

ψTRS 1.33 × 10−1 9.27 × 10−2 1.32 × 10−2

ψLH 1.86 × 10−1 1.54 × 10−1 2.06 × 10−2

ψRH 2.08 × 10−1 1.23 × 10−1 2.65 × 10−2

ψLK 2.24 × 10−1 1.37 × 10−1 2.10 × 10−2

ψRK 2.02 × 10−1 1.10 × 10−1 1.87 × 10−2

ψLA 1.62 × 10−1 1.24 × 10−1 2.92 × 10−2

ψRA 1.54 × 10−1 9.36 × 10−2 3.65 × 10−2

ψ̇TRS 7.39 × 10−1 6.38 × 10−1 7.00 × 10−1

ψ̇LH 1.13 × 100 1.12 × 100 1.16 × 100

ψ̇RH 1.22 × 100 1.20 × 100 1.27 × 100

ψ̇LK 1.08 × 100 1.06 × 100 1.11 × 100

ψ̇RK 9.49 × 10−1 8.68 × 10−1 9.63 × 10−1

ψ̇LA 1.23 × 100 1.23 × 100 1.25 × 100

ψ̇RA 1.54 × 100 1.42 × 100 1.51 × 100

The real-world experiment with the inverted pendulum shows
that already after 5 s of interaction with the system, an initial an-
alytic process model is found, which not only accurately predicts
the process behavior, but also serves as a reliable model for the
design of an RL controller. By collecting the data during several
executions of the swing-up task using the initial analytic model
and adding them to the data set used by SR to learn the model,
the performance on the swing-up task further improves.

Our evaluation shows that two distinct symbolic regression
algorithms, SNGP and MGGP, perform comparably well on the
evaluated systems. This indicates that the proposed method is
not dependent on the particular choice of the symbolic regression
method. We compared the performance of symbolic regression
with alternative state-of-the-art methods, in particular with neu-
ral networks and with local linear regression. The results show
that the proposed method performs in most cases significantly
better than the alternatives.

Another important outcome is that SR can be used to find both
state-space and input–output models. The use of input–output
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Table 5
Comparison of analytic process models for the inverted pendulum system in Experiment C1. The table shows the RMSE medians over
30 runs of the SNGP (black) and MGGP (gray) algorithm for varying number of features nf and varying number of training samples
ns .
Variable nf Number of training samples ns

20 50 100 200 500 1000

α

1 9.19 × 10−4 3.80 × 10−4 2.45 × 10−2 2.28 × 10−3 1.89 × 10−3 2.38 × 10−3

5.51 × 10−1 3.33 × 10−1 4.46 × 10−1 3.15 × 10−1 2.44 × 10−1 3.25 × 10−1

2 2.09 × 10−7 2.39 × 10−7 1.06 × 10−7 1.82 × 10−9 1.94 × 10−8 4.60 × 10−9

3.94 × 10−10 3.78 × 10−10 3.77 × 10−10 3.76 × 10−10 3.76 × 10−10 3.76 × 10−10

10 5.03 × 10−9 4.44 × 10−7 4.41 × 10−9 1.35 × 10−9 8.45 × 10−10 4.56 × 10−10

4.29 × 10−10 3.87 × 10−10 3.87 × 10−10 3.80 × 10−10 3.77 × 10−10 3.76 × 10−10

α̇

1 7.97 × 10−1 3.17 × 10−1 2.51 × 10−1 2.61 × 10−1 2.34 × 10−1 5.11 × 10−1

9.21 × 10−1 3.64 × 10−1 2.42 × 10−1 1.52 × 10−1 3.42 × 10−1 2.14 × 10−1

4 1.12 × 10−6 5.61 × 10−7 1.19 × 10−6 1.61 × 10−6 8.17 × 10−7 6.75 × 10−7

1.73 × 10−9 1.64 × 10−9 1.56 × 10−9 1.55 × 10−9 1.51 × 10−9 1.50 × 10−9

10 5.16 × 10−7 1.83 × 10−7 2.64 × 10−7 4.40 × 10−7 5.15 × 10−7 2.66 × 10−6

1.90 × 10−9 1.66 × 10−9 1.60 × 10−9 1.56 × 10−9 1.54 × 10−9 1.53 × 10−9

Table 6
Comparison of analytic process models for the inverted pendulum system in
Experiment C2. The table shows the comparison of the RMSE medians over
30 runs of the SNGP (black) and MGGP (gray) algorithm depending on the
Gaussian noise standard deviation coefficient λ and the number of training
samples ns .
Variable λ Number of training samples ns

20 100 1000

α

0 9.58 × 10−2 1.79 × 10−2 6.11 × 10−3

8.13 × 10−2 1.05 × 10−2 1.36 × 10−2

0.01 3.95 × 10−1 1.45 × 10−1 2.80 × 10−2

3.96 × 10−1 1.37 × 10−1 2.85 × 10−2

0.05 1.15 × 100 4.89 × 10−1 1.43 × 10−1

8.69 × 10−1 5.01 × 10−1 1.42 × 10−1

0.1 1.90 × 100 7.61 × 10−1 3.54 × 10−1

2.26 × 100 8.22 × 10−1 3.59 × 10−1

α̇

0 4.56 × 100 7.65 × 10−1 5.04 × 10−1

3.89 × 100 7.56 × 10−1 5.38 × 10−1

0.01 4.22 × 100 2.28 × 100 8.13 × 10−1

4.71 × 100 2.75 × 100 8.18 × 10−1

0.05 7.89 × 100 6.07 × 100 3.14 × 100

7.39 × 100 6.75 × 100 2.76 × 100

0.1 1.26 × 101 9.61 × 100 6.65 × 100

1.26 × 101 8.99 × 100 6.53 × 100

models is beneficial because it does not require the observations
of the full state vector and it also makes the algorithm faster
because of modeling a reduced number of variables.

We have identified several possibilities for future extensions
of this work. The main objective is to apply SR methods within
the entire RL scheme, i.e., also for approximating the V-function,
and also to use analytic models in combination with actor–critic
online RL. In some cases, especially when using many features,
analytic models tend to be unnecessarily complex. In our future
work, we will investigate systematic reduction of analytic models.
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Appendix A. Reinforcement learning

The system for which an optimal control strategy is to be
learnt can be described by the nonlinear state-space model (1) or
the input–output (NARX) model (2). The following text describes
the case using the state-space models. For the input–output mod-
els, the reward function, the return, the value function and the
optimal control action (A.1)–(A.5) can be defined analogously
using the regressor ϕ instead of the state variable x.

The reward function assigns a scalar reward rk+1 ∈ R to the
state transition from xk to xk+1, under action uk:

rk+1 = ρ(xk, uk, xk+1) . (A.1)

The reward function ρ specifies the control goal, typically as the
distance of the current state to a given goal state.

Based on model (1), we compute the optimal control policy
π : X → U such that in each state it selects a control action so
that the expected cumulative discounted reward over time, called
the return, is maximized:

Rπ = E
{ ∞∑

k=0

γ kρ
(
xk, π (xk), xk+1

)}
. (A.2)

Here γ ∈ (0, 1) is a discount factor and the initial state x0 is
drawn from the state space domain X or its subset. Over the
whole state space, the return is captured by the value function
Vπ : X → R defined as:

Vπ (x) = E
{ ∞∑

k=0

γ kρ
(
xk, π (xk), xk+1

)⏐⏐⏐ x0 = x
}
. (A.3)
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An approximation of the optimal V-function, denoted by V̂ ∗(x),
can be computed by solving the Bellman optimality equation

V̂ ∗(x) = max
u∈U

[
ρ
(
x, u, f (x, u)

)
+ γ V̂ ∗

(
f (x, u)

)]
. (A.4)

To simplify the notation, we drop the superscripts; V (x) therefore
denotes an approximation of the optimal V-function. Based on
V (x), the corresponding approximately optimal control action is
found as the one that maximizes the right-hand side of (A.4):

u = argmax
u′∈U

[
ρ(x, u′, f (x, u′)) + γ V (f (x, u′))

]
. (A.5)

In this work, the above equation is used online as the control pol-
icy π with a set of discretized inputs U , so that the near-optimal
control action can be found by enumeration.
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