
Neuro-GOMEA
Using Modern Evolutionary

Algorithms to Train Neural Networks

Author:
Luc Everse
4470397

Supervisor:
Prof.dr. Peter A.N. Bosman

Committee member:
Dr. Marco Loog

Daily supervisors:
Dr. Marco Virgolin

Arkadiy Dushatskiy, M.Sc.

Algorithmics research group
Department of Software Technology

MSc Computer Science
Faculty of Electrical Engineering, Mathematics & Computer Science

Delft University of Technology

August 4, 2022

https://wukl.net/
https://homepages.cwi.nl/~bosman/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/algorithmics
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology
https://www.tudelft.nl/en/education/programmes/masters/cs/msc-computer-science
https://www.tudelft.nl/en/eemcs
https://www.tudelft.nl/

i

Abstract

Neural networks (NNs) have, in recent years, become a major part of modern pattern
recognition, and both theoretical and applied research evolve at an astounding pace.
NNs are usually trained via gradient descent (GD), but research has shown that GD is
not always capable of training very small networks. As a result, networks trained via
GD are often significantly larger than necessary, demanding more computing power
and energy to evaluate, and thereby hampering adoption on lower-power devices.
This thesis investigates whether evolutionary algorithms (EAs) can successfully train
NNs and if these networks can be smaller than those required by GD. Four algorithms,
namely the GD-based Adam, Adam with cold restarts, and the EAs GOMEA and
BIPOP-CMA-ES, were used to train various configurations of multilayer perceptrons
(MLPs) with one hidden layer for the Exclusive-OR (XOR) problem. Their relative
performance was gauged by comparing the rates at which each algorithm attained an
acceptable loss for a given number of hidden nodes. The main findings are that EAs
could find smaller ReLU-activated networks than GD could, while, oppositely, the
GD could generally find smaller networks for sigmoid-activated networks. However,
GOMEA in particular was able to successfully train XOR networks using the highly
discrete Heaviside activation function, whereas GD could not due gradient erasure.
Problem-specific knowledge in the form of a soft symmetry breaking constraint was
found to be effective to increase success rates in a limited number of cases. These
findings indicate that using EAs is a viable strategy for training NNs, yielding smaller,
and therefore more efficient networks than those trained via GD, provided that the
network topology is suitable for the chosen EA. This opens up future research into,
including but not limited to, the many ways EAs can be scaled up to training larger
NNs, hybridization with GD, and niche network topologies.

ii

Preface

If anyone in 2015 told me I’d eventually graduate in machine learning I would look
at them very funny. My future was in hardware! If any programming were involved
it would be very low-level, think VHDL and—if (un)lucky—C++. But nothing ever
fully goes as planned. Deciding to completely pivot your future adds spice to life
(which is why I’ve done it—twice).

That’s not to say that any of this was my Plan B. I’ve loved nearly every second
I spent on the subject of computer science and even machine learning. It certainly
made me appreciate the latter.

Especially the concept of evolutionary algorithms resonates with me very well.
The course on EAs taught by Peter cemented my appreciation of them. I was over-
joyed when Peter could fit me in his already busy schedule, and on top of that
proposed a project that would need ”someone crazy enough to try it”. I though that
description fit me to a T (which I would prove later on) and that is how this thesis
came to be.

The road toward the document that you are reading right now was long and far
from smooth. I’d like to thank Peter, Marco and Arkadiy for their patience and
seemingly unending willingness to put up with my problems throughout the project.
Without their help this project would have been the academic equivalent of a wild
dumpster fire. The same goes for my friends and family, some of whom had to put up
with me on a near-daily basis at times, and also (or still) gave me excellent feedback
and advice.

With this thesis behind me I know for sure that academic research is not for me,
but I am nevertheless glad to have had the opportunity to do this work with my
advisors, CWI and the TU Delft. I am proud of this thesis and the work behind it
and I hope that you, dear reader, will like it too.

Luc Everse
Delft

September 28, 2022

iii

Contents

Abstract i

Preface ii

1 Introduction 1

2 Background 3
2.1 Neural networks . 3

2.1.1 Activation functions . 5
Sigmoid . 5
Rectified linear unit (ReLU) . 6
Heaviside step function . 6

2.2 Training with gradient descent . 7
2.2.1 Optimizers . 9

Adam . 9
2.2.2 Cold restarts . 9

2.3 Evolutionary algorithms . 10
2.3.1 Basic evolution . 10

Initialization . 10
Selection . 11
Mutation . 11
Crossover . 11
Rinse and repeat . 12

2.3.2 CMA-ES . 12
Covariance matrices . 12
Covariance matrix adaptation 13
BIPOP-CMA-ES . 14

2.3.3 GOMEA . 14
Linkage . 14
Genepool Optimal Mixing . 15
Interleaved Multi-Start . 16
Anticipated Mean Shift . 16

2.4 The Exclusive-OR problem . 16
2.4.1 More than two inputs . 17
2.4.2 Formulated as a network . 17

2.5 Prior research . 18

3 Solving XOR with minimal neural network sizes 20
3.1 Experiment setup . 20

3.1.1 Network initialization . 20
3.1.2 Hyperparameters . 21
3.1.3 Repeats, iterations and limits 22

3.2 Experiment 1: ReLU activation at the hidden layer only 22

iv

3.2.1 Results . 23
3.2.2 Discussion . 23

3.3 Experiment 2: Sigmoid activation at the hidden and output layers . . 24
3.3.1 Results . 25
3.3.2 Discussion . 25

3.4 Experiment 3: Sigmoid with wide initialization 26
3.4.1 Results . 27
3.4.2 Discussion . 27

3.5 Experiment 4: Heaviside activation . 27
3.5.1 Results . 27
3.5.2 Discussion . 30

3.6 Experiment 5: ReLU with output activation and sigmoid-like without 30
3.6.1 Results . 30
3.6.2 Discussion . 31

3.7 General discussion . 32
3.8 Conclusion . 33

4 Applying problem-specific knowledge: asymmetry loss 34
4.1 Experiment setup . 35
4.2 ReLU activation at the hidden layer 36

4.2.1 Discussion . 37
4.3 Sigmoid activation at the hidden and output layers 37

4.3.1 Discussion . 37
4.4 Other networks . 38

4.4.1 Heaviside with and without output activation 38
4.4.2 ReLU with output activation and sigmoid without 39

4.5 General discussion . 40

5 Conclusion and future work 41
5.1 Discussion . 41
5.2 Future work . 41
5.3 Conclusion . 42

A Partial evaluations and linkage 43
A.1 Partial evaluations of neural networks 43

A.1.1 Nonlinearity . 43
Storing intermediate results . 44
Training layer-by-layer . 45

A.1.2 Conclusion . 46
A.2 Problem-specific linkage models . 46

A.2.1 Linkage spanning two layers . 47
Linkage spanning more than two layers 47

B Experiment platforms 49

C Linkage examples 50

D Implementation details 54
D.1 libGOMEA . 54
D.2 mininn . 56
D.3 NNProblem . 57

v

E Found GD and GDCR hyperparameters 58

Bibliography 73

vi

List of Figures

2.1 A node in an NN. 3
2.2 A feed-forward network with four input nodes, two output nodes, and

two hidden layers of five and three nodes, respectively. Activation
functions and weights on the edges are not shown. 4

2.3 The sigmoid activation function. 5
2.4 The ReLU activation function. 6
2.5 The Heaviside activation function. 7
2.6 Three iterations of GD with varying learning rates applied to the exam-

ple parabola. The orange “double-headed arrow” is from GD moving
back and forth between two points. The other arrows are moving to-
wards the minimum, with 𝜂 = 1

3 approaching it much faster than 𝜂 = 1
9 . 8

2.7 The “lumpy staircase” with GD getting stuck at 𝑥 ≈ 4.31. 9
2.8 Various distributions and their covariances and covariance matrices. . 13
2.9 The values of DT(x) for |x| = 6. 15
2.10 Schematic (IEEE) representation of an XOR gate. 17
2.11 A chain of 2-input XOR gates making a 4-input XOR gate. 17
2.12 A tree of 2-input XOR gates making a 4-input XOR gate. 17
2.13 A perfect solution to the 2-input, 2-hidden XOR problem. The top

hidden node outputs 1 iff 𝑥1 = 𝑥2 = 0, while the bottom hidden node
outputs 1 iff 𝑥1 = 𝑥2 = 1. The output nodes implement a logical OR
and NOR, respectively. 18

3.2 The first five graphs show success rates for 𝑛-input ReLU-based net-
works without output activation. The last plot is a summary showing
the minimum number of nodes in the hidden layer necessary for a 95 %
success rate. 24

3.3 The first five graphs show success rates for 𝑛-input sigmoid-based net-
works with output activation. The last plot is a summary showing the
minimum number of nodes in the hidden layer necessary for a 95 %
success rate. 25

3.4 GOMEA final loss value distributions for five- and six-input networks.
For five-input networks, as the hidden layer shrinks, losses tend to
approach 1

4 . For six-input networks this happens across the board. . . 26
3.5 Each row of plots compares the success rates for five- and six-input

sigmoid-based networks for a narrow versus wide initialization, for GD,
GOMEA and BIPOP-CMA-ES, respectively. Previous (narrowly ini-
tialized) results for each algorithm are shown as broken lines, and re-
sults for narrow GD are included as a baseline result to be improved on.
Columns are aligned; values along the x-axis are in the same position
on each graph within a column. 28

vii

3.6 The first five graphs show success rates for 𝑛-input Heaviside-based
networks with output activation. GD and (for more than two inputs)
GDCR appear in the bottom-right corner. The last plot is a summary
showing the minimum number of nodes in the hidden layer necessary
for a 50 % success rate. GD does not appear here as it never attained
a 50 % success rate. 29

3.7 Minimum hidden layer sizes for various networks. The first row shows
the minimum number of nodes in the hidden layer required for success
rates of 50 % and 95 %, respectively, for ReLU-based networks with
activation both at the hidden and output layers. The second row dis-
plays this information for sigmoid networks without activation at the
output layer, and the third for Heaviside networks without output acti-
vation. In the last row GOMEA is close to, but not quite reaching the
required threshold for smaller networks (those with 8 hidden nodes, for
example), leading to large error bars. 31

4.1 Two distinct, but both perfect solutions to the 2-input, 2-hidden XOR
problem. The top network is the same as shown in fig. 2.13, whereas in
the bottom network the two hidden nodes and their associated weights
have been exchanged; now the top node outputs 1 iff 𝑥1 = 𝑥2 = 0 and
the bottom node outputs 1 iff 𝑥1 = 𝑥2 = 1. 35

4.2 The first five graphs show success rates for 𝑛-input ReLU-based net-
works without output activation. Previous results (those without asym-
metry loss applied) are shown as broken lines. The last plot is a sum-
mary showing the minimum number of nodes in the hidden layer nec-
essary for a 95 % success rate, also with previous results included. . . . 36

4.3 The first three graphs show success rates for 𝑛-input sigmoid-based net-
works with output activation. Previous results (those without asymme-
try loss applied) are shown as broken lines. The last plot is a summary
showing the minimum number of nodes in the hidden layer necessary
for a 95 % success rate, also with previous results included. 37

4.4 Minimum hidden layer sizes for Heaviside problems. The first row
shows results for Heaviside-based networks without output activation,
with previous results (where no asymmetry loss was applied) as bro-
ken lines. GD and GDCR without asymmetry loss are included as a
baseline result, but are (mostly) absent due to their inability to train
networks with Heaviside activation as seen in fig. 3.6. BIPOP-CMA-
ES is similarly absent from most of the graphs. The second row shows
results for Heaviside networks without output activation in the same
way. 38

4.5 Minimum hidden layer sizes for various problems. The first row shows
results for sigmoid-based networks without output activation, with pre-
vious results (where no asymmetry loss was applied) as broken lines.
GD and GDCR without asymmetry loss are included as a baseline re-
sult. The second row shows results for ReLU networks with output
activation in the same way. 39

A.1 Two modes of evaluation of a network. 44
A.2 Training a network layer-by-layer. 46
A.3 A linkage set covering two layers, anchored around a bias. 47

viii

C.1 A linkage set covering the first set of input weights on the first layer. . 50
C.2 A linkage set covering the second set of input weights and associated

biases on the first layer. 51
C.3 A linkage set covering the third set of output weights on the first layer. 51
C.4 A linkage set covering the fourth set of output weights and the associ-

ated bias on the first layer. 52
C.5 A linkage set covering all weights of the second layer. 52
C.6 A linkage set covering all biases of the second layer. 53
C.7 A linkage set covering the entire third layer. 53

1

Chapter 1

Introduction

In the past decade, neural networks (NNs) have taken a center spot in the field of
pattern recognition [1]. Vaguely resembling our understanding of biological neural
networks such as brains, neural networks (NNs) can be “trained” by, among other
methods, evaluating them against a previously labeled dataset and continuously cor-
recting their behavior. Once trained, the network can be put to use, obtaining pre-
dictions for new data for which the label is not known. Their main applications range
from image labeling, which not only cover automatically categorizing pet pictures but
can also aid in diagnosing diseases such as skin cancer [2], to a near-human grasp on
natural language with far-reaching consequences [3].

However, with such expressive abilities comes a great need for computational
power. A language model that one can have a conversation with needs billions of
parameters, each of which takes part in the complex calculations mapping the con-
versation to a new response and needs to be carefully trained for the network to
function correctly. While advancements in computer engineering may soon allow
us to train and apply these networks on small, portable, low-power devices such as
smartphones and internet-of-things appliances, right now they need a relatively ex-
pensive hardware, in terms of both money and energy. Furthermore, even if we had
such an amount of computational power, it would be wasteful to keep running these
enormous models if smaller, and therefore more efficient, networks were available to
us.

The currently most popular method for training NNs, namely gradient descents
(GDs), often requires networks to be over-parameterized. An over-parameterized
NN contains more parameters than theoretically should be necessary to solve the
problem. In 2018, Frankle and Carbin posited the “lottery ticket hypothesis”, namely
that GD relies on “winning tickets”: a set of parameters embedded in the randomly
initialized network necessary for the network to be trained successfully [4]. Under
their hypothesis, over-parameterization simply gives the initialization stage a greater
chance of generating a winning ticket.

Much of the research by Frankle and Carbin focused on the Exclusive-OR (XOR)
problem, which is a binary logic problem that is simple to formulate, trivial to verify,
and theoretically requires very small networks to solve. However, GD was found
unable to train networks this small. This thesis investigates whether the training
of these NNs can be improved upon in terms of XOR network size by an entirely
different class of optimization algorithms: evolutionary algorithms (EAs).

Outside NN research, both EAs and GD are widely applied techniques for op-
timization. GD iteratively takes small steps following the gradient of a function to
a minimum; when applied to NNs, the network and its parameters make up the
function to optimize. The vast majority of NNs are trained using GD or a variation
thereof, such as the very popular Adam optimizer [5], and therefore “training a neural
network” often implies the use of GD.

Chapter 1. Introduction 2

EAs, on the other hand, locate a function’s minimum through maintaining a pop-
ulation of solutions that are evaluated, ranked, mutated and recombined in order
to synthesize new solutions. There are many different forms of EAs, of which the
genetic algorithms (GAs) and evolutionary strategies (ES) are of particular interest
in this work, namely GOMEA and BIPOP-CMA-ES. Applications of EAs are (com-
pared to GD) similarly wide, with examples including antenna development [6, 7],
architectural layouts [8] and medical treatments.

Theoretically, there are distinct advantages to using such an evolutionary ap-
proach: most notably, population-based algorithms have a more complete picture of
the solution space and can therefore more easily avoid local minima; do not require
gradients, thereby removing the need for differentiable activation functions (the basic
non-linearity implemented in an NN’s neurons); and allow for the easy and efficient
implementation of multi-objective problems.

It is important to remark that EAs have rarely been applied to train neural
networks due to the great computational and memory costs of maintaining such a
population [9]. In this thesis, we do not consider this a problem as we are investigat-
ing the optimization potential of EAs when applied to small NNs. Often, EAs are
instead used to find a network structure or architecture, sometimes in addition to de-
termining network parameters. Such an approach usually precludes using hand-made
architectures that encode key traits of the problem to solve. This thesis places the
focus on only the training procedure, in order to gauge the performance of EAs when
training the NNs normally trained using GD.

Research objectives
The work performed here aims to answer the question: are EAs capable of successfully
solving networks that are smaller relative to those required by GD? As part of this,
it answers the following sub-questions:

1. Can EAs consistently train smaller NNs for the XOR problem compared to GD?

2. How do different activation functions impact the algorithms’ performance?

3. Can search be improved through the application of problem-specific knowledge?

Outline
To that end, this thesis first discusses the necessary background information and then
investigates the performance when training various small XOR networks with several
evolutionary algorithms versus gradient descent, followed by a look into applying
problem-specific knowledge to improve the training of NNs. This is finalized by a
discussion of the findings and recommendations for future research.

3

Chapter 2

Background

This chapter covers the background information necessary to have a full picture of
the work performed here. First, an overview of NNs, focusing on the construction of
simple feed-forward networks and, in particular, the various activation functions that
are available. After that, the application of GD to train these networks is discussed,
including a short review of some optimizers at our disposal. Next, an introduction
of EAs describes their fundamental ideas and delves deeper into two algorithms that
improve on these, namely GOMEA and CMA-ES. Following that, a formulation of
the XOR problem is given, including a description of the NN architecture that is used
in the subsequent chapters. Last, a brief overview of prior research on the topic of
training NNs through evolution.

2.1 Neural networks
NNs have been a staple of artificial intelligence research for more than half a century.
Their emulation of biological NNs, like those in our own brains, allows for modeling
extremely powerful and expressive functions from only a few simple primitives.

Since research on NNs started, a wide variety of layer types and networks have
been devised. This thesis puts the focus on networks of one of the oldest and simplest
kinds: multilayer perceptrons (MLPs). The central element in an MLP is the node
and is commonly said to be analogous to a neuron. Each node, as part of a directional
graph, has a set of incoming and outgoing weighted edges, a bias, and a nonlinear
activation function. A diagrammatic representation of a node with three inputs, four
outputs, a bias 𝑏 and a sigmoid-shape activation function is shown in fig. 2.1.

Σ𝑤in
𝑖 𝑥𝑖

+𝑏

𝑤in
3

𝑤in
2

𝑤in
1

𝑤out
4

𝑤out
3

𝑤out
2

𝑤out
1

Figure 2.1: A node in an NN.

Each node takes the incoming values multiplied by their respective weights, cal-
culates their sum and adds the node’s bias. Then, an activation function is applied
and the result is distributed to the next nodes in the graph or taken as an output
value.

Chapter 2. Background 4

Nodes are arranged in groups called layers, and the sequence of each layer feeding
the next is what makes up the feedforward network. Layers are named: a feedforward
network has one input layer, where the nodes receive the inputs to the network, any
number of hidden layers, and an output layer, where the outputs of the node are the
outputs of the network:

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13

𝑏14

𝑏15

𝑏21

𝑏22

𝑏23

𝑏31

𝑏32

𝑦1

𝑦2

Figure 2.2: A feed-forward network with four input nodes, two out-
put nodes, and two hidden layers of five and three nodes, respectively.

Activation functions and weights on the edges are not shown.

Every node in each layer depends on all values generated by the previous layer.
There are no cycles in the network and there are no connections within a layer; each
node has a dependency on only the nodes in preceding layers.

Each set of nodes within a layer and their associated incoming weights, biases and
activation function form a transformation of an input vector. Given a layer with 𝑛
inputs and 𝑚 nodes, the weights of the incoming connections can be expressed as an
𝑚 × 𝑛 matrix 𝑊 and the bias as a 𝑚-element vector b:

𝑊 =
⎡
⎢
⎢
⎣

𝑤11 𝑤12 ⋯ 𝑤1𝑛
𝑤21 𝑤22 ⋯ 𝑤2𝑛

⋮ ⋮ ⋱ ⋮
𝑤𝑚1 𝑤𝑚2 ⋯ 𝑤𝑚𝑛

⎤
⎥
⎥
⎦

(2.1)

b =
⎡
⎢
⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥
⎥
⎦

(2.2)

Using this, the sum plus the bias at each of the nodes for an input x𝑖 can be
calculated using a simple matrix product and vector sum, and finally activated using
an activation function 𝑓𝑎:

x𝑖+1 = 𝑓𝑎 (𝑊x𝑖 + b) (2.3)

Chapter 2. Background 5

Here, it is important to note that 𝑊𝑥𝑖+b is a linear transformation, being a series
of multiplications and additions in vector space. The nonlinear activation function is
necessary to achieve any nonlinear behavior by the network, as otherwise the entire
feed-forward network would be no more than a highly parameterized linear map.

2.1.1 Activation functions

Multiple different kinds of activation functions are used in NNs. Here we discuss some
of the most relevant functions.

Sigmoid

The logistic function, or colloquially sigmoid, after its characteristic S-like-shape,
maps values from ℝ to (0, 1). The full definition of the sigmoid function is:

𝑆*(𝑥) = 𝐿
1 + 𝑒−𝑘(𝑥−𝑥0) (2.4)

The most commonly used “standard” variant takes 𝐿 = 1, 𝑘 = 1, 𝑥0 = 0 and
simplifies to:

𝑆(𝑥) = 1
1 + 𝑒−𝑥 (2.5)

This produces a “swish”-style curve symmetric at 𝑥 = 0, where 𝑆(0) = 1
2 , and

quickly but asymptotically approaches 0 and 1 at for negative and positive 𝑥, respec-
tively. As an example of how quick the asymptotes are reached, it is already at 𝑥 = 6
that 𝑆(6) ≈ 998

1000 .

-1

-0.5

 0

 0.5

 1

 1.5

 2

-6 -4 -2 0 2 4 6

Sigmoid

Figure 2.3: The sigmoid activation function.

This activation function was a common choice early on in NN research because of
these properties [10]: no matter the input values and their weights, the output was
guaranteed to be within a reasonable range, while remaining injective. The quick
approach to either 0 or 1 has a major drawback, however: the gradient reaches zero
just as quickly. From the derivative it is clear that the gradient diminishes very fast:

Chapter 2. Background 6

𝑑𝑆
𝑑𝑥

= 𝑆(𝑥) (1 − 𝑆(𝑥)) (2.6)

At 𝑥 = 0, the derivative is 1
4 , while at 𝑥 = 6 the derivative has already reached

approximately 2
1000 . This is known as the vanishing gradients problem [11], where

the gradient diminishes so far that GD is unable to perform meaningful updates.

Rectified linear unit (ReLU)

The ReLU activation function rectifies its input by clamping negative values to 0,
while passing nonnegative values as-is:

ReLU(𝑥) = {
𝑥 if 𝑥 ≥ 0
0 if 𝑥 < 0

(2.7)

-1

 0

 1

 2

 3

 4

 5

 6

-6 -4 -2 0 2 4 6

ReLU

Figure 2.4: The ReLU activation function.

This function is a popular activation function due to its computational speed, as
only a comparison and, sometimes, a value write are necessary [12]. Its derivative of 1
for nonnegative values of 𝑥 also allows perfect propagation of gradients (as explained
in section 2.2), though the gradient of 0 at other values can complicate the training
process for GD, similar to the problems seen with the sigmoid function.

Heaviside step function

The Heaviside step function outputs 1 for positive inputs and 0 for negative inputs;
the behavior at zero is often application-defined. The piece-wise formulation for the
definition used here is as follows:

𝐻(𝑥) =
⎧{
⎨{⎩

1 if 𝑥 > 0
1
2 if 𝑥 = 0
0 if 𝑥 < 0

(2.8)

The step function can be attained through “squeezing” the generalized sigmoid
function 𝑆* in the x-direction by taking the limit of 𝑘 to infinity:

Chapter 2. Background 7

𝐻(𝑥) = lim
𝑘→∞

1
1 + 𝑒−𝑘𝑥 (2.9)

-1

-0.5

 0

 0.5

 1

 1.5

 2

-6 -4 -2 0 2 4 6

Heaviside

Figure 2.5: The Heaviside activation function.

From this definition, taking 𝑥 = 0 makes it easy to see the reasoning behind
deciding on 𝐻(0) = 1

2 . In practice, however, this choice will not matter much because
of the infinitesimal chance of getting a value of exactly 0 at a node before activation.

A form of this activation function was used as part of the perceptron, a very early
single-layer NN also used for classification [13].

For GD this function is an exceptionally poor choice. Considering how sigmoid
poses a problem due to the very small gradients at its extents, the Heaviside function
will erase the gradient everywhere and prevent its propagation along the network.
Effectively, GD will be unable to touch any parameter occurring before this function.
However, it is reasonable to expect that an EA will be more resilient to this problem,
which makes this function interesting for experimentation.

ll

2.2 Training with gradient descent
GD is an iterative optimization method for finding the minimum of a function. It
works by continuously examining the function’s derivative at the current point, which
forms the gradient, and taking small steps in the opposite direction of this gradient.
The process stops when a minimum of the desired quality is found, the iteration limit
is reached, or any other desired stopping criterion is met.

GD works for any number of parameters. The generalized update step for param-
eters x, differentiable multivariate function 𝑓 and learning rate 𝜂 is:

x𝑛+1 = x𝑛 − 𝜂∇𝑓(x𝑛) (2.10)

As an example, one may want to find the minimum of the following parabola
using GD:

𝑓(𝑥) = 𝑥2 + 𝑥

Chapter 2. Background 8

𝑓 ′(𝑥) = 𝑑𝑓
𝑑𝑥

= 2𝑥 + 1

Starting at 𝑥0 = 1, we find 𝑓(𝑥0) = 2 and 𝑓 ′(𝑥0) = 3, strongly pointing towards
a minimum in the negative x-direction. Taking a step at the full magnitude of the
gradient might be too far (certainly in this case), so we pick a learning rate 𝜂 = 1

3 ,
with which we calculate the next point: 𝑥1 = 𝑥0 − 𝜂𝑓 ′(𝑥0) = 0. We repeat the
process:

𝑓(𝑥1) = 0

𝑓 ′(𝑥1) = 1

𝑥2 = 𝑥1 − 𝜂𝑓 ′(𝑥1) = −1
3

Once more:
𝑓(𝑥2) = −2

9

𝑓 ′(𝑥2) = 1
3

𝑥3 = 𝑥2 − 𝜂𝑓 ′(𝑥2) = −4
9

Arbitrarily, we decide to stop here. Our solution, 𝑥3, is fairly close to the true
minimum at 𝑥 = −1

2 . Continuing this process would have encroached upon this
minimum even further.

The choice of 𝜂 is important, as illustrated by fig. 2.6. If it is too high, search
will keep jumping around the minimum. In the example, choosing 𝜂 = 1 caused the
algorithm to jump side-to-side in the parabola without end. In less extreme cases,
where 𝜂 is only slightly too high, the search ends up moving from side to side, like
a marble circling a funnel. Meanwhile, setting 𝜂 too low makes the search process
unnecessarily slow and more prone to getting stuck in a local minimum.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-2 -1.5 -1 -0.5 0 0.5 1

x2 + x
η = ¹/₉
η = ¹/₃
η = 1

Figure 2.6: Three iterations of GD with varying learning rates ap-
plied to the example parabola. The orange “double-headed arrow” is
from GD moving back and forth between two points. The other arrows
are moving towards the minimum, with 𝜂 = 1

3 approaching it much
faster than 𝜂 = 1

9 .

Chapter 2. Background 9

2.2.1 Optimizers

Local minima are a problem for GD in general: imagine a “lumpy staircase” function
like 𝑔(𝑥) = ∣sin3(𝑥) + 𝑥∣, shown in fig. 2.7, which has a global minimum at 𝑥 = 0 and
for positive 𝑥 generally trends upward, but also contains local minima. The gradient
periodically moves between approximately -0.15 and 2.15. GD could happen to hit a
negative gradient and get stuck in a local minimum.

 0

 1

 2

 3

 4

 5

 6

 7

-2 -1 0 1 2 3 4 5 6

|sin3(x) + x|
η = ¹/₃

Figure 2.7: The “lumpy staircase” with GD getting stuck at 𝑥 ≈
4.31.

Adam

Multiple improvements upon basic GD have been developed, often to make it more
resilient to local minima and accelerate convergence. For example, Adam [5] is the
combination of two improvements over classic GD, namely RMSProp [14] and Mo-
mentum [15], and has seen overwhelming popularity since its inception. It redefines
the update step as such:

x𝑛+1 = x𝑛 + 𝜂
√ ̂g𝑛+1 + 𝜀

̂v𝑛+1

Adam also performs bias correction on the moving averages to ensure a smooth
start of the training process: ̂v𝑛 is the bias-corrected moving average first-order
gradient and ̂g𝑛 is similar but for the second-order gradient. The rates at which the
averages decay are controlled by the hyperparameters 𝛽1 and 𝛽2, respectively. The
higher their values, the stronger the averaging is. The values are recommended to
be 𝛽1 = 0.9 and 𝛽2 = 0.999, but can be set freely between 0 and 1, as the problem
requires. The 𝜀 term prevents division by zero and is usually set to a very low value
such as 10−8.

2.2.2 Cold restarts

Another way to overcome local minima is by restarting from a different point. Such
a cold restart can be triggered if the solution does not improve (satisfactorily) after a

Chapter 2. Background 10

certain number of iterations or if the gradient falls below a certain threshold and the
target value has not been reached.

In this work, gradient descent with cold restarts (GDCR) is considered, and im-
plemented as an Adam optimizer with an additional parameter 𝑟 that specifies the
minimum 𝐿2 norm of the gradient reshaped as a vector. Once this norm falls below 𝑟,
the problem is re-initialized, without using any information that can be gained from
the current solution, hence the term “cold”.

Choosing a value of 𝑟 can be difficult, because it is highly dependent on the
network architecture: activation functions attenuate gradients differently and larger
or deeper networks tend to have lower gradient values, as each weight or bias has a
lower contribution to the output value, and so its contribution to the error will lower
as well. An 𝑟 that is too high causes restarts almost immediately, turning GDCR
into random search within the initialization range. Too low and restarts are never
triggered, making it equivalent to GD. Therefore, 𝑟 should be tweaked per network.
Here, 𝑟 = 10−8 was chosen as a fairly safe baseline because this was found to be a
good setting from preliminary experiments.

2.3 Evolutionary algorithms
GD is just one kind of optimization algorithm; there are many others. One is the
class of EAs. Inspired by biological evolution, EAs work by taking a population of
solutions and evolving it according to the fitness of each individual in the population.

Individuals are represented by their genome, which encodes a solution to the
problem to be solved. For the algorithms discussed here, genomes are a series of
real-valued numbers. The genome can be evaluated into a fitness value that gauges
the quality of the solution. Like GD, search stops when a solution with a suitable
fitness is found or some other constraint is reached, such as a maximum number of
generations.

2.3.1 Basic evolution

A simple EA works as follows. For illustration purposes, we will use a basic objective
function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2+𝑦2+𝑧2. It is easy to see that the minimum lies at 𝑓(0, 0, 0) =
0 and that there are no other minima—as such it should also be fairly easy for our
EA to find a good solution.

Initialization

A population 𝑋 of 𝑛 genomes with |x| parameters are sampled from an initial dis-
tribution. What kind (uniform, normal, and so on) and the range of this initial
distribution depends on the problem to solve.

For our problem, we choose a fairly default distribution 𝑈(±1) (uniform between
-1 and 1). Our initial population of four genomes looks as follows:

x y z 𝑓(𝑥, 𝑦, 𝑧)
1 -0.5 0.6 -0.6 0.97
2 0.2 -0.4 0.8 0.84
3 -0.1 0.1 0.6 0.38
4 -0.2 1.0 -0.1 1.05

Chapter 2. Background 11

Selection

Each generation, the genomes are ranked using the fitness function that translates
each genome into a single, real-valued objective to be minimized. Then, 𝑘 genomes
are selected. This can simply be the 𝑘 top-performing genomes (named trunctation
selection), but more complex approaches also exist, including weighted choice or
roulette wheel selection (where a more fit genome is more likely, but not guaranteed
to be picked), tournaments (where sub-populations are chosen at random and the
best-performing “wins”), and combinations thereof.

For the example problem, we choose top-2 selection. #2 and #3 have the lowest
objective value so these will be retained:

x y z 𝑓(𝑥, 𝑦, 𝑧)
2 0.2 -0.4 0.8 0.84
3 -0.1 0.1 0.6 0.38

Mutation

New genomes are generated by taking a selected genome and modifying one or more
of its constituent values. A very simple mutation method could have, for each value,
a (small) probability 𝑝 of resampling it from the initialization distribution.

In our case, we create offspring for each of the selected genomes and sample one
randomly-chosen variable from 𝑈(±1) again:

x y z 𝑓(𝑥, 𝑦, 𝑧)
1 0.2 -0.4 0.1 0.21
2 0.2 -0.4 0.8 0.84
3 -0.1 0.1 0.6 0.38
4 -0.1 0.1 0.7 0.51

Genome #1 is an offspring of #2 and genome #4 is an offspring of #3. Mutated
variables are indicated in boldface. The first genome improved significantly on its
parent. The fourth, on the other hand, had a detrimental mutation that harmed its
fitness. That is an unfortunate but hard-to-avoid event in an EA. However, even if
both mutations were harmful to the performance of the genome, keeping the selected
solutions ensures that we do not regress in overall performance. There will be another
attempt in the next generation.

Crossover

Using just mutation is very close to random search from multiple starting points.
While this approach is likely to eventually generate good solutions, it would be ben-
eficial if information could be exchanged horizontally—that is, between potentially
unrelated genomes.

Crossover is such an operator between genomes. Two genomes in the selection
are chosen and parts of them are exchanged. What this achieves is effectively the
transformation of the genome relative to the other’s in the solution space.

For the example problem, we use “one-point crossover” between the new offspring.
One-point crossover works by selecting a random point within the genome, and ex-
changing either the portions left or right between the genomes. As the point we
(randomly) choose the point “between” 𝑥 and 𝑦: both genomes retain their value for
𝑥 while they exchange 𝑦 and 𝑧:

Chapter 2. Background 12

x y z 𝑓(𝑥, 𝑦, 𝑧)
1 0.2 0.1 0.7 0.54
2 0.2 -0.4 0.8 0.84
3 -0.1 0.1 0.6 0.38
4 -0.1 -0.4 0.1 0.18

As with mutation, random crossover can be beneficial or detrimental. Now, #4 is
the best solution found yet, while #1 has regressed significantly. Note that if only 𝑧
had been exchanged, an even better solution would have been found, but alas; such
is the nature of a simple algorithm like this.

Rinse and repeat

The offspring and their parents are then regarded as the new population. Often,
a portion of the previous generation is brought over to the new one as-is. If this
portion consists of the best of the previous generation (as it usually is), this is called
elitism. While this may make the algorithm miss out on opportunities to find even
better solutions, it stabilizes the search and allows for faster convergence: if there are
multiple minima, elitism will increase the similarity of the solutions and crossovers
will be less likely to be detrimental, at a cost of a fuller picture of the solution space.

It should be easy to see that, given enough time, this algorithm will eventually
find an optimal solution to our example problem. Our simple EA will have more
trouble on more complex solution spaces and we have already seen the algorithm make
“questionable” modifications to our solution genomes. To alleviate these problems
and guide the search to better choices, other algorithms have been developed.

2.3.2 CMA-ES

The covariance matrix adaptation evolutionary strategy (CMA-ES) is a particular
instance of an EA belonging to the class of ES. ES algorithms sample new values
from normal distributions that are estimated from the previous iteration: not only
do the solutions evolve, so does the search itself. Usually the additional parameters
are the individual variance for the problem parameters followed by the covariance
matrix.

Covariance matrices

A covariance matrix for 𝑛 variables is an 𝑛×𝑛 mapping that, for each pair of variables
𝑥𝑖, 𝑥𝑘, produces the covariance cov(𝑥𝑖, 𝑥𝑘). If this covariance is positive (cov(𝑥𝑖, 𝑥𝑘) >
0), then if 𝑥𝑖 increases, then it is likely that 𝑥𝑘 also increases, proportional to the
covariance. On the other hand, if cov(𝑥𝑖, 𝑥𝑘) < 0, then an increase in 𝑥𝑖 means
a likely decrease in 𝑥𝑘. If the covariance is zero, then the variables are unrelated.
Figure 2.8 shows example distributions of negative, neutral and positive covariances,
respectively.

Chapter 2. Background 13

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

(a) cov(𝑋, 𝑌) ≈ −1

𝐶 ≈ [2 −1
−1 3]

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

(b) cov(𝑋, 𝑌) ≈ 0

𝐶 ≈ [3 0
0 1]

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

(c) cov(𝑋, 𝑌) ≈ 2

𝐶 ≈ [4 2
2 3]

Figure 2.8: Various distributions and their covariances and covari-
ance matrices.

By sampling new variables using a covariance matrix, related variables are more
likely to jointly “move” into the desired direction. A covariance matrix can be easily
estimated from a set of measurements:

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

𝐶 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑥𝑖 − ̄𝑥)𝑇
(2.11)

Covariance matrix adaptation

CMA-ES estimates a covariance matrix each generation. The estimate is formed by
finding the matrix that leads to the maximum likelihood of generating the current
population relative to the previous ones from earlier generations, akin to the use of
momentum in gradient descent. This is in contrast to estimating it from just the
current generation, which lacks any directional information of the search.

Selection is usually performed by truncation, after which the solutions contribute
to the mean in a weighted fashion, where the more successful solutions contribute
more estimated compared to worse-performing ones. Therefore, the covariance matrix
estimation step of CMA-ES for a selection of 𝜆 individuals at generation 𝑔 + 1 is:

̄𝑥𝑔 =
𝜆

∑
𝑖=1

𝑓(𝑥𝑖)
𝜆

∑
𝑘=1

𝑓(𝑥𝑘)
𝑥𝑖

𝐶𝑔+1 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑔+1,𝑖 − ̄𝑥𝑔)(𝑥𝑔+1,𝑖 − ̄𝑥𝑔)𝑇

(2.12)

Note that a major difference between equations 2.11 and 2.12 is that the vari-
ant used by CMA-ES estimates the covariance of values relative to the mean of the
previous generation, as opposed to the mean of the current generation.

Chapter 2. Background 14

CMA-ES is often seen as a baseline EA, owing to its low number of hyperparam-
eters that need tuning (making application easy) and proven good performance in
previous problems, both theoretical and practical.

BIPOP-CMA-ES

For many of the hyperparameters, the default values work fine for many problems.
Often, only two need to be tweaked per problem: the initialization range and the
population size. Of these two, the population size is more difficult to find.

The bi-population CMA-ES (BIPOP-CMA-ES) variant performs both local and
global search by maintaining two populations: one small that is analogous to local
search and close to the original CMA-ES, and one large for more global search. The
algorithm switches between the two populations depending on which one has a lower
total number of evaluations.

A restart occurs if the algorithm finished running with one of the two populations
following the same termination conditions as used for “vanilla” CMA-ES.

2.3.3 GOMEA

The gene-pool optimal mixing evolutionary algorithm (GOMEA) [16, 17] is similar to
CMA-ES in that it learns a multivariate distribution from the population, but it fur-
ther includes parameter linkage, a multi-start scheme (IMS), mean shift anticipation
(AMS) and other improvements.

Linkage

GOMEA can exploit explicit linkage within a problem’s parameters. Linkage is a
dependency between two or more parameters, such that it is likely beneficial for the
algorithm to cross over the parameters at the same time. Doing so ensures that no
essential combination within this group is broken up.

GOMEA represents linkage as a set of sets of locations in the genome: a family
of subsets (FOS) ℱ of the problem’s parameters 𝑆. It is important that the union
of all subsets fully covers the parameters: ⋃𝑠∈ℱ 𝑠 = 𝑆 must hold. Otherwise, the
parameters not covered will not be considered by the algorithm.

An extreme example of a problem where linkage information is effective is the
discrete concatenated deceptive trap problem. 𝑚 groups of 𝑘 binary values are ran-
domly scattered in a vector x of length ℓ = 𝑚𝑘. A bijective function 𝑔(𝑣 = 𝑖𝑘 + 𝑛)
returns the position of the 𝑛th value in the 𝑖th group in vector x.

The fitness of a group is maximal if all bits are 1. However, it is minimal if all
but one are 1 and increases the more bits are 0:

𝑓trap(𝑥1, … , 𝑥ℓ) =
𝑚

∑
𝑖=0

DT(𝑥𝑔(𝑖𝑘), … , 𝑥𝑔(𝑖𝑘+𝑘−1)) (2.13)

DT(x) = {
𝑘 if ∑ x = 𝑘
𝑘 − 1 − ∑ x if ∑ x ≠ 𝑘

(2.14)

In this problem, variables that are part of the same group are strongly linked:
their contributed fitness is maximal or near maximal if all values are the same. At
the same time, there is no dependency between variables in different groups.

If an algorithm performs one-point crossover, some related values are changed
while others remain fixed. If this happens between two genomes where one group is

Chapter 2. Background 15

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

D
T
(x

)

Σx

Figure 2.9: The values of DT(x) for |x| = 6.

all zeroes (near optimal) and another where that same group is all ones (optimal),
this will generate a new genome for which that group is mixed ones and zeroes and
therefore further from the optimum than either of its parents.

An algorithm informed by linkage can decide to exchange the two groups all at
once, preserving (near-)optimality for the groups in the offspring genomes.

Of course, real-world problems are unlikely to have such a degree of interdepen-
dence between some variables and independence between others. Still, dependencies
do exist (as otherwise covariance-based strategies would not work) and more complex
linkage models are possible, such as linkage trees, forests and graphs.

If no linkage information is available or desired, a univariate model can be con-
structed by placing each variable in its own group, and a fully covariant model can be
constructed by placing all variables in the same one. Both, however, can become slow
as the former has to perform 𝑛 evaluations for 𝑛 parameters, and the latter needs
𝑂(𝑛3) time to estimate a covariance matrix.

Genepool Optimal Mixing

Instead of taking two individuals and performing crossover over some part of the
genome, GOMEA modifies an existing solution by resampling linked variables as in-
dicated by the FOS and only retaining the modification if it leads to an improvement.
Sometimes, by default 5 % of all cases, a worse solution is kept anyway. This perturbs
the population and may help with escaping local minima.

This resampling is done for every set in the linkage model, in random order. Re-
evaluating the entire solution even if only a small number of variables changed may
be very costly. If the problem supports it, GOMEA can use the previous result and
modify it according to the new values without evaluating the entire solution again; in
other words perform a partial evaluation. For example, taking the example problem
𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2, if a mixing step modifies only 𝑧, we can calculate the new
value from a previous result 𝑣 without needing 𝑥 or 𝑦 and involving fewer operations:

𝑓partial(𝑧old, 𝑧new) = 𝑣 − 𝑧2
old + 𝑧2

new (2.15)

Chapter 2. Background 16

This does require that there is a linear or otherwise reversible correspondence
between the modified variable and the objective value. For variables where this is not
the case, a full evaluation must be performed anyway.

Interleaved Multi-Start

The interleaved multi-start (IMS) scheme [18], inspired by the parameter-less GA by
Harik and Lobo [19], removes the need to find an optimal population size by starting
multiple populations of different sizes. It is similar to the BIPOP scheme for CMA-
ES, but it can support more than two populations. The reasoning behind it is the
same however.

An initial population size is selected, along with a maximum number of popula-
tions. Each next population is double the size of the previous one. Larger populations
start only after a few generations of the newest population have run, usually eight.
This way, if only a small population is needed, it is likely to finish before or shortly af-
ter the last population is started. On the other hand, if a small population converges
but does not reach the desired objective value, it can be terminated an computational
resources can be focused on the larger populations.

By default, the smallest population contains 10 genomes and the population is
grown at most 8 times, for a largest population of 1280.

Anticipated Mean Shift

Anticipated mean shift (AMS) can accelerate search by moving part of the population
in the direction it moved in since the previous generation. It is similar to CMA-ES’s
prediction of search steps, but AMS is applied through the addition of the shift to only
a portion of the new samples, whereas CMA-ES models the shift into the covariance
matrix and thereby always incorporates it into the search.

Not only does AMS accelerate search, it can also overcome local minima such as
in the case of the lumpy staircase. In that way it is similar to momentum, because
some genomes keep moving in the direction they moved in previously.

2.4 The Exclusive-OR problem
The XOR is formulated for two inputs as follows: given two inputs 𝑥1, 𝑥2 ∈ {0, 1}
(i.e., binary digits), output 𝑦 ∈ {0, 1}:

𝑦 = 1 ⟺ (𝑥1 = 0 ∧ 𝑥2 = 1) ∨ (𝑥1 = 1 ∧ 𝑥2 = 0) (2.16)

In essence, output 1 iff (if and only if) exactly one of the two inputs is 1. Other-
wise, output 0. An alternative formulation is:

𝑦 = 1 ⟺ Σ𝑖𝑥𝑖 = 1 (mod 2) (2.17)

Which states that the output is 1 iff the binary sum of the inputs is odd.
The inverse of this problem is called the Excusive-NOR or XNOR for short. A

solution can be constructed by inverting the output 𝑦 of an XOR solution as ̄𝑦. An
instance of a solution in real life can be seen in a multiway switching arrangement
where two light switches, usually on different floors, control the same light bulb: the
bulb is lit iff both switches engage the energized wire; in other words, the light is on
if and only if the switches are both up or both down.

Chapter 2. Background 17

XOR gates are common in electronics. Figure 2.10 shows its schematic represen-
tation.

𝑥1𝑥2
𝑦

Figure 2.10: Schematic (IEEE) representation of an XOR gate.

2.4.1 More than two inputs

The two different formulations for two inputs pose a problem for a larger number
of inputs, as both can be expanded to an arbitrary number of binary inputs. This
work uses the latter definition, also known as the Parity or “oddness” problem. This
formulation is much harder to solve than the former (1-Hot), as Parity’s output
exhibits extreme instability due to a change in only one input flipping the output:
for 𝑛 inputs, the 1-Hot definition only has 𝑛 states, out of 2𝑛, where the output is 1,
whereas Parity equally divides the input states into two 2𝑛−1 in size each.

Larger XOR gates can be constructed from smaller XOR gates, as shown in figures
2.11 and 2.12.

𝑥1
𝑥2
𝑥3
𝑥4

𝑦

Figure 2.11: A chain of 2-input XOR gates making a 4-input XOR
gate.

𝑥1
𝑥2
𝑥3
𝑥4

𝑦

Figure 2.12: A tree of 2-input XOR gates making a 4-input XOR
gate.

2.4.2 Formulated as a network

Due to the above properties, the XOR problem is an interesting benchmark for gaug-
ing the performance of NN optimizers. A very small NN with one hidden layer and
only one position with a ReLU activation function is easy to construct:

Chapter 2. Background 18

0

1

1

-1

𝑥1

𝑥2

-1

1

-1

1

1

-1

1

-1

𝑦

̄𝑦

Figure 2.13: A perfect solution to the 2-input, 2-hidden XOR prob-
lem. The top hidden node outputs 1 iff 𝑥1 = 𝑥2 = 0, while the bottom
hidden node outputs 1 iff 𝑥1 = 𝑥2 = 1. The output nodes implement

a logical OR and NOR, respectively.

The first hidden node outputs 1 iff both inputs are 0. It does so by having a
bias of 1 and input weights of -1: equivalent to the expression (1 − 𝑥0 − 𝑥1) > 0
or the logical NOR gate. The second hidden node produces 1 iff both inputs are
1: (−1 + 𝑥0 + 𝑥1) > 0, the AND gate. The output node ̄𝑦 computes the logical
OR. Because the outputs of both hidden nodes are mutually exclusive, a simple sum
ℎ0 + ℎ1 suffices; no bias or nonlinearity are necessary. Finally, output 𝑦 is the logical
negation and therefore computes 1 − ℎ0 − ℎ1 (equiv. to ℎ0 NOR ℎ1), again without
activation.

It is possible to introduce any number of additional nodes here. Simply set their
outgoing weights to 0 and any influence on the output will be zero as well. Alterna-
tively, the level of contribution to the output can be divided between nodes such that
the final sum will always be either 0 or 1, according to the inputs.

Scaling up the problem to 𝑛 inputs, 𝑛 > 2, is more difficult, however. The naïve
approach, a chain of XOR gates like in fig. 2.11, requires 2𝑛 − 2 hidden layers: each
gate can be replaced by a 2-input network. A tree of nodes as in fig. 2.12 requires
2 log𝑛 − 2 hidden layers. Parallel gates can be isolated by setting connecting weights
to zero. However, even a network with just one hidden layer is expressive enough
to encode an XOR gate with any number of inputs, though it is significantly more
difficult to train [20]. This style of network will be used in the rest of the thesis.

Furthermore, other activation functions other than ReLU also work. The outputs
of the hidden layers can remain the same, though weights and biases will need to
change to adapt to the new transformation.

2.5 Prior research
While limited, there has been research into this approach to neuro-evolution. Al-
ready in 1989 Montana and Davis designed a functional GA for evolving small MLPs
[21]. Their algorithm improved upon GD when training a network classifying sonar
recordings. The next year, Fogel et al. designed a similar algorithm but applied it
more generally, including to the XOR problem [22]. They also named GD with both
cold and warm restarts as possible alternative approaches.

That same year, Whitley et al. published a review of evolutionary approaches to
both training and topology generation [9]. Their algorithm, GENITOR, was different
from other algorithms by combining a binary encoding of 8-bit weights and biases in
[−127, 127] and two-point crossover. Interestingly, it performed comparably to the
algorithm used by Fogel et al.

Whitley et al. concluded by anticipating neuro-evolution that generate suitable
topologies instead of or in addition to finding parameters. This was a very accurate

Chapter 2. Background 19

prediction, as subsequent research has mostly focused on this instead of just training,
such as NEAT (NeuroEvolution of Augmenting Topologies) [23–25]. Knowledge from
methods such as these often does not transfer well to fixed-topology training, because
the networks quickly evolve nonstandard connections (such as those skipping one or
more layers [26]) and poor parameter training can be worked around by modifying
the topology. This last aspect is similar to the lottery ticket hypothesis for GD.

Still, even as recently as 2016 research on training-only neuro-evolution contin-
ued, with Morse finding competitive performance with LEEA [27]. This algorithm
performs evaluations on limited numbers of samples as opposed to the entire dataset
(known as mini-batching) and implements a fitness inheritance scheme to help the
algorithm select individuals that were successful on previous batches.

Other attempts employ additional techniques to reduce the size of the genome,
usually through a compression scheme [28] or embryogeny, where the genome describes
how to construct the solution instead of directly encoding it [29].

20

Chapter 3

Solving XOR with minimal
neural network sizes

In order to determine which algorithm is the best at finding minimal networks, we
choose a network architecture and gauge how well the algorithms are at training
instances of this architecture. Finding how small a network each algorithm is capable
of training is interesting not only because smaller networks are more efficient, but
also in the context of the lottery ticket hypothesis: it is reasonable to assume that
EAs are not subject to the same limitations as GD, allowing them to find smaller
solutions.

Multiple architectures are examined to get a better picture of each algorithm’s
strengths and weaknesses. All networks have one hidden layer, but which activations
are used and where they are applied is varied between experiments.

3.1 Experiment setup
All experiments here share a common setup. To make sure that these are repeatable,
fixed RNG seeds were always used and implementations were written to be fully
deterministic where possible. A list of hardware and software used is available in
appendix B.

We choose an activation function and where it is applied, vary the size of the hid-
den layer, and count how many of the randomly initialized networks are successfully
trained. A network is considered successfully trained if the total mean squared error
(MSE) over all possible inputs is less than or equal to 10−3.

Success rate determination for networks with 𝑛 inputs was performed by starting
each algorithm on a network with a hidden layer size of 3 |𝑛|. If the algorithm could
not successfully solve all instances, the hidden layer was grown to at most 4 |𝑛| + 1
nodes. After that, the network was shrunk until the algorithm could solve only less
than 1% of all instances.

3.1.1 Network initialization

Networks for GD and GOMEA are initialized using the method that Pytorch defaults
to [30]. That is, for each layer with 𝑚 × 𝑛 weight matrix 𝑊 and 𝑚-element bias b:

b𝑗, 𝑊𝑖𝑗 ← 𝑈 (±√ 𝑔
𝑛

) (3.1)

Chapter 3. Solving XOR with minimal neural network sizes 21

The initialization gain 𝑔 defaults to 1, but larger values are chosen for some
experiments (so-called “wide initialization”).

Since BIPOP-CMA-ES requires a normal distribution and performs best when
all parameters are within the same range (because the variance is shared between
parameters), it uses the following initialization and transformation:

b′
𝑗, 𝑊 ′

𝑖𝑗 ← 𝑁 (𝜇 = 0, 𝜎 = 1
4)

b, 𝑊 = b′, 𝑊 ′ × (1
4√ 𝑔

𝑛) (3.2)

The 𝜎 of 1
4 was found by starting from guidelines [31], followed by trial-and-error

on small- and medium-sized networks of two to four inputs. This yields a more narrow
initialization than in section 3.1.1 (considering the 95 % interval), but without this
modification the algorithm performed significantly worse.

3.1.2 Hyperparameters

All examined algorithms have hyperparameters. For GOMEA and BIPOP-CMA-ES,
most were left at their default values.

For GOMEA, a stopping condition based on the population’s objective variance
was set at 10−11. The linkage model was univariate or, for two experiments, fully
covariant.

GD requires more extensive hyperparameter tuning: the Adam optimizer accepts
a learning rate 𝜂 and two betas 𝛽1, 𝛽2, as described in section 2.2.1. GDCR also has
the restart threshold 𝑟.

Hyperparameter search was performed with a particle-swarm optimization (PSO)
algorithm in lieu of more traditional grid search. PSO was chosen because it enables
a larger and finer hyperparameter search space that, over time, concentrates search
on the minima of this space. To speed up this search even more, since the training
of NNs is quite slow, results were memoized and hyperparameters were transformed
and rounded as follows:

𝜂 = 10𝒪(𝑥𝜂,2)

𝛽 = {
1 − 10[𝑥𝛽] if 𝑥𝛽 < −1
9

10𝒪(−𝑥𝛽, 10) if 𝑥𝛽 ≥ −1
𝑟 = 10[𝑥𝑟]

Where 𝒪 is a rounding operation:
𝒪(𝑥, 𝑦) = [𝑥𝑦]

𝑦
(3.3)

(a) Hyperparameter transformation rules

−3 ≤ 𝑥𝜂 ≤ −1
−3 ≤ 𝑥𝛽1

≤ 0
−3 ≤ 𝑥𝛽2

≤ 0
−8 ≤ 𝑥𝑟 ≤ 0 (GDCR only)

(3.4)
(b) Hyperparameter search ranges

The PSO swarm size was set at 100, and search was stopped after 100 iterations,
if the objective value changed less than 10−12 between iterations, or if the success
rate reached 100 %.

To help unsuccessful search converge faster, it was guided towards towards an
artificial minimum based on the hyperparameters. Without this, the particle swarm
would continue to move in random directions and tuning would take unnecessarily
long. The defaults set for Adam were considered “safe” values, because these are

Chapter 3. Solving XOR with minimal neural network sizes 22

proven to be sufficient to train the majority of networks [32]. The objective value for
PSO to minimize therefore is, given a 100-run success rate 𝑣:

−𝑣+10−8 {(log10 𝜂 + 3)
2

+ (𝛽1 − 0.9)2 + (𝛽2 − 0.999)2 + (log10 𝑟 + 8)
2

if 𝑣 < 80%
0 if 𝑣 ≥ 80%

·

(3.5)

For GD without cold restarts, the value 𝑟 was ignored. A default target value of
10−8 was chosen to ensure that failure was not due to excessive restarts, i.e. degen-
eration into random search.

Once PSO terminated, an additional 900 runs for a total of 1000 samples were
performed to find the final success rate of GD and GDCR.

PSO-based hyperparameter search was found to be effective for a CIFAR-10 clas-
sifier [33]. While rounding the values erases local variations and precludes precise
finetuning, the general structure of the fitness space remains and so this approach
should still be successful at finding good values.

The hyperparameters found by PSO are listed in table E.1.

3.1.3 Repeats, iterations and limits

Each experiment for GOMEA and BIPOP-CMA-ES was repeated up to 1009 times
with different RNG seeds. Due to time constraints, some networks could not be run
the full number of times.

GOMEA was allowed to run for up to 20×max (𝑛 − 1, 1) minutes, with 𝑛 equal to
the number of inputs to the network, or until the fitness variance limit was reached.
Each process was allowed min (2max(𝑛−5,0), 20) CPU threads. Across all experiments,
no more than 20 threads could be in use at the same time. All GOMEA processes
were run in a shared memory pool of 16GiB, though this limit was never reached.

GD was allowed up to 10 000 training iterations, but could stop early if the loss
threshold was reached before that. Each experiment could use up to three CPU
threads simultaneously, albeit at the lowest priority to allow room for other processes
on the system.

Because the systems where experiments were run were different and the load
on the systems varied throughout the period in which these experiments were run,
runtimes are not directly comparable.

3.2 Experiment 1: ReLU activation at the hidden layer
only

The aforementioned classic network for solving the XOR problem is a network of an
input layer, a hidden layer and an output layer, all fully connected. The activation
function at the hidden layer is ReLU, and there is no activation function at the output
layer.

This network architecture was also used as the minimal example for the lottery
ticket hypothesis: the network with two hidden nodes could only be solved by GD
for approximately 35% of the initializations. The authors of [4] also found that only
at 5 hidden nodes, GD managed to solve around 95% of all instances.

Chapter 3. Solving XOR with minimal neural network sizes 23

3.2.1 Results

Figure 3.2 shows success rates for GOMEA, BIPOP-CMA-ES, GD and GDCR.
Error bars for these and all following similar graphs are calculated according to

the Wald method with expected proportion 𝑝 = 0.5 and a 95 % confidence interval
𝑍 = 1.96:

̂𝑝 ± 1.96√0.25
𝑛

(3.6)

Summaries are also included. These show the smallest hidden layer size needed
for the algorithm to solve 95 % of cases. Error bars indicate best- and worst-case
performance considering the 95 % confidence interval of the other graphs. ·

Initially, univariate GOMEA, GDCR and BIPOP-CMA-ES perform perfectly with
100% success across the board, much better than GD. The results for GD unsurpris-
ingly match those seen by Frankle and Carbin in 2018. For 3 and 4 inputs GOMEA
is unable to keep up when the hidden layers are very small, with BIPOP-CMA-
ES and GDCR presenting better results and, in a few cases, even GD outperforming
GOMEA. However, at 5 inputs univariate GOMEA beats all other algorithms, except
for a few close calls at the small hidden layer range. All algorithms have significant
trouble training networks with many inputs and a relatively small hidden layer. Fully
covariant GOMEA performs the worst of all in these cases.

3.2.2 Discussion

It is no surprise that the population-based algorithms GOMEA, BIPOP-CMA-ES
and to a lesser extent GDCR have little trouble training very small networks such as
the 2-input, 2-hidden XOR network: these networks have only 12 parameters and so
the solution space is quickly explored. The performance of GDCR, which degenerates
into random search, is a testament to this fact.

The next two cases, where there are three and four inputs, are much more inter-
esting, because univariate GOMEA is suddenly beat by GDCR and BIPOP-CMA-ES
at the lower end. Looking at the number of generations, most runs are far outside the
IMS range of 64 generations (8 populations, and a new population is started after 8
sub-generations). It therefore seems that GOMEA performs best in the IMS regime.
This—too—is not surprising, considering that GDCR and BIPOP-CMA-ES operate
in a similar fashion for a considerable amount of time, namely via the generation of
new individuals as opposed to the improvement of existing solutions. A potential
solution to the poor performance of GOMEA is to simply increase the population
size, but the largest population of 1280 individuals is already very expensive to main-
tain, with GOMEA requiring, on average, more than 100 generations and 16 minutes
to train a 6-input, 6-hidden network. Therefore this is not viable for even larger
problems.

Fully covariant GOMEA failing to keep up with the other algorithms, let alone
univariate GOMEA, is surprising considering that it in theory should behave some-
what similarly to BIPOP-CMA-ES. There are many factors at play here, so additional
work is necessary to determine what causes this poor performance.

Chapter 3. Solving XOR with minimal neural network sizes 24

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)

ReLU, no output act., 2 inputs
2 🠒 · 🠒 R 🠒 2

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)

ReLU, no output act., 3 inputs
3 🠒 · 🠒 R 🠒 2

0%

20%

40%

60%

80%

100%

 2 4 6 8 10 12

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)

ReLU, no output act., 4 inputs
4 🠒 · 🠒 R 🠒 2

0%

20%

40%

60%

80%

100%

 4 6 8 10 12 14 16 18 20 22

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)

ReLU, no output act., 5 inputs
5 🠒 · 🠒 R 🠒 2

0%

20%

40%

60%

80%

100%

 5 10 15 20 25

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)

ReLU, no output act., 6 inputs
6 🠒 · 🠒 R 🠒 2

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)

Minimum hidden layer size for ≥95% success
ReLU, no output act.

Figure 3.2: The first five graphs show success rates for 𝑛-input ReLU-
based networks without output activation. The last plot is a summary
showing the minimum number of nodes in the hidden layer necessary

for a 95 % success rate.

3.3 Experiment 2: Sigmoid activation at the hidden and
output layers

Another interesting architecture is one using the sigmoid activation function at both
the hidden layer and the output layer. Since the sigmoid function symmetrically maps
any input values into the range [0, 1], it is especially interesting for binary applications
such as XOR. Thus, it would be a fair bet to expect that algorithms will perform
better with sigmoid activation rather than ReLU, although vanishing gradients poses
a major problem for GD and GDCR.

Chapter 3. Solving XOR with minimal neural network sizes 25

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)
GOMEA (min. fit. var. 0)

Sigmoid, output activation, 2 inputs
2 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)
GOMEA (min. fit. var. 0)

Sigmoid, output activation, 3 inputs
3 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 2 4 6 8 10 12

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)
GOMEA (min. fit. var. 0)

Sigmoid, output activation, 4 inputs
4 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 5 10 15 20

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)
GOMEA (min. fit. var. 0)

Sigmoid, output activation, 5 inputs
5 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 5 10 15 20 25

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)
GOMEA (min. fit. var. 0)

Sigmoid, output activation, 6 inputs
6 🠒 · 🠒 S 🠒 2 🠒 S

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)
GOMEA (min. fit. var. 0)

Minimum hidden layer size for ≥95% success
Sigmoid, output activation

Figure 3.3: The first five graphs show success rates for 𝑛-input
sigmoid-based networks with output activation. The last plot is a
summary showing the minimum number of nodes in the hidden layer

necessary for a 95 % success rate.

3.3.1 Results

Figure 3.3 shows that, for small input counts (up to four) all algorithms perform fairly
well. It is at four and greater numbers of inputs that BIPOP-CMA-ES and GOMEA
start to struggle, and after five inputs GOMEA falls off the chart completely.

Figure 3.4 illustrates the distributions of loss values found for 5- and 6-input
network by GOMEA. As networks shrink, losses tend to approach 0.25.

3.3.2 Discussion

As expected, GD and GDCR are capable of training this kind of network to success.
What is surprising is how unsuccessful GOMEA is here—if the problem is easier
on GD, why is it harder for GOMEA? Part of the problem is that most randomly

Chapter 3. Solving XOR with minimal neural network sizes 26

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 4 6 8 10 12 14 16 18 20

lo
ss

of hidden nodes

GOMEA Loss Sigmoid, output activation, 5 inputs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 6 8 10 12 14 16 18 20 22 24 26

lo
ss

of hidden nodes

GOMEA Loss Sigmoid, output activation, 6 inputs

Figure 3.4: GOMEA final loss value distributions for five- and six-
input networks. For five-input networks, as the hidden layer shrinks,
losses tend to approach 1

4 . For six-input networks this happens across
the board.

initialized networks will yield a loss value of 1
4 : these networks output a random vector

in [0, 1]2 for each of the 2𝑛 inputs. Assuming random inputs to the last activation
layer, the expected output vector will be (1

2
1
2). Since half the expected values are

(1 0) and the other half (0 1), the expected MSE will be 1
4 . This eliminates a major

opportunity for GOMEA to explore the solution space, as every solution looks the
same, small changes to the first half of the network accomplish little, and so it is
quick to trigger the fitness variance stopping condition. The final populations found
by GOMEA reflect this, as shown in fig. 3.4.

Working in a tight range around 0 is difficult for GOMEA and BIPOP-CMA-
ES because no direct, intra-network gradient information is available: both need to
evaluate changes in the network to find the direction to search in, but the small “view”
of the network’s behavior limit the algorithms’ ability to explore. BIPOP-CMA-ES
fares slightly better because of the integrated search direction, which GOMEA does
not apply to all individuals.

There is not much difference between univariate and fully covariant GOMEA here:
both perform poorly. This could give hints as to why the algorithm fails to properly
train sigmoid-based networks and fully covariant GOMEA does not work well for
ReLU-based networks, but, as before, more work needs to be done to draw conclu-
sions. For the next experiments, fully covariant GOMEA is excluded; all GOMEA
experiments used the univariate model.

To ensure that GOMEA’s failure to fully train these networks was not fully due
to the nonzero minimum fitness variance decided upon in section 3.1.2, experiments
were re-run with it set to zero. GOMEA performed better, but still failed to reach
success rates larger than 80 %.

3.4 Experiment 3: Sigmoid with wide initialization
One way of forcing GOMEA out of this saddle point, where the gradient of the
solution space is zero, but is not a minimum, is to force the values at the nodes
into the extreme parts of the sigmoid curve. This can be achieved by increasing the
initialization range so that randomly generated networks are less likely to sit right on
top of the saddle point.

Also, the large range allows GOMEA to quickly pivot from one side of the curve to
another, which can yield significantly different results and keep the evolution process

Chapter 3. Solving XOR with minimal neural network sizes 27

going. As BIPOP-CMA-ES operates on similar principles, it will likely benefit from
this increased range as well.

Meanwhile, increasing the initialization range for GD can be expected to lower
performance as GD will start to suffer from rapidly vanishing gradients: at 𝑥 ≥ 6,
the gradient of the activation function quickly approaches zero.

For this experiment, an initialization gain 𝑔 = 120 was chosen by trial and error.
Because in the initialization range 𝑔 appears under the square root, the effective range
increase in both directions is

√
120 ≈ 11 times.

3.4.1 Results

To prevent a deluge of crowded graphs, fig. 3.5 shows only those for 5- and 6-input
networks, i.e. the larger problems, and these graphs are split based on their algorithm.
First, GD and GDCR performance is presented to establish a baseline. Then, for
both GOMEA and BIPOP-CMA-ES, their performance is plotted against their and
GD/GDCR’s performance in the narrow scenario.

Expectedly, the figure shows that GD’s performance suffers under the wide ini-
tialization compared to the previous experiment. However, GOMEA and BIPOP-
CMA-ES perform much better, in the same ballpark as GD did originally.

3.4.2 Discussion

The “preferences” for the training methods are different here: GOMEA works best
in the flat parts of the sigmoid curve, while GD needs values around 0 to function
properly. This is not very surprising, because the extremes of the sigmoid curve map
perfectly to the set of binary digits, but the vanishing gradients hamper GD’s search
performance here.

3.5 Experiment 4: Heaviside activation
Now that we know that GOMEA and BIPOP-CMA-ES prefer to work with the flat
parts of the sigmoid curve, we will look at how far we can push it: can they still
successfully train networks activated using only the flat regime, i.e. the Heaviside
activation function?

The derivative of the Heaviside step function is the Dirac delta; the gradient is zero
everywhere except at 𝑥 = 0, where it is infinite. Therefore, the question will be easy
to answer for GD and GDCR: if output activation is used, no gradients are available.
GD will not be able to update any parameters, while GDCR can only restart every
iteration (i.e., perform random search). Not having any output activation at least
allows the second linear transformation to be trained, but the first will remain fixed.
Still, it will be interesting to see these algorithms’ performance, if only to gauge the
training ability of random search versus EAs.

3.5.1 Results

Chapter 3. Solving XOR with minimal neural network sizes 28

0%

20%

40%

60%

80%

100%

 5 10 15 20

su
cc

e
ss

 r
a
te

of hidden nodes

GD
GD (wide init.)

GDCR
GDCR (wide init.)

Sigmoid, output activation, 5 inputs
5 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 5 10 15 20 25
su

cc
e
ss

 r
a
te

of hidden nodes

GD
GD (wide init.)

GDCR
GDCR (wide init.)

Sigmoid, output activation, 6 inputs
6 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 5 10 15 20

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (wide init.)

GD
GDCR

Sigmoid, output activation, 5 inputs
5 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 5 10 15 20 25

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (wide init.)

GD
GDCR

Sigmoid, output activation, 6 inputs
6 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 5 10 15 20

su
cc

e
ss

 r
a
te

of hidden nodes

BIPOP-CMA-ES
BIPOP-CMA-ES (wide init.)

GD
GDCR

Sigmoid, output activation, 5 inputs
5 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 5 10 15 20 25

su
cc

e
ss

 r
a
te

of hidden nodes

BIPOP-CMA-ES
BIPOP-CMA-ES (wide init.)

GD
GDCR

Sigmoid, output activation, 6 inputs
6 🠒 · 🠒 S 🠒 2 🠒 S

Figure 3.5: Each row of plots compares the success rates for five- and
six-input sigmoid-based networks for a narrow versus wide initializa-
tion, for GD, GOMEA and BIPOP-CMA-ES, respectively. Previous
(narrowly initialized) results for each algorithm are shown as broken
lines, and results for narrow GD are included as a baseline result to
be improved on. Columns are aligned; values along the x-axis are in

the same position on each graph within a column.

Chapter 3. Solving XOR with minimal neural network sizes 29

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

Heaviside, output activation, 2 inputs
2 🠒 · 🠒 H 🠒 2 🠒 H

0%

20%

40%

60%

80%

100%

 2 4 6 8 10 12
su

cc
e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

Heaviside, output activation, 3 inputs
3 🠒 · 🠒 H 🠒 2 🠒 H

0%

20%

40%

60%

80%

100%

 2 4 6 8 10 12 14 16

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

Heaviside, output activation, 4 inputs
4 🠒 · 🠒 H 🠒 2 🠒 H

0%

20%

40%

60%

80%

100%

 4 6 8 10 12 14 16 18 20

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

Heaviside, output activation, 5 inputs
5 🠒 · 🠒 H 🠒 2 🠒 H

0%

20%

40%

60%

80%

100%

 5 10 15 20 25

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

Heaviside, output activation, 6 inputs
6 🠒 · 🠒 H 🠒 2 🠒 H

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GDCR

BIPOP-CMA-ES

Minimum hidden layer size for ≥50% success
Heaviside, output activation

Figure 3.6: The first five graphs show success rates for 𝑛-input
Heaviside-based networks with output activation. GD and (for more
than two inputs) GDCR appear in the bottom-right corner. The last
plot is a summary showing the minimum number of nodes in the hid-
den layer necessary for a 50 % success rate. GD does not appear here

as it never attained a 50 % success rate.

Chapter 3. Solving XOR with minimal neural network sizes 30

3.5.2 Discussion

First, GD is unable to find any successful network. Its only, barely visible point on
the graph overlaps the legend, meaning that even the “easy” large networks are not
trainable in the slightest. GDCR fares better, but only because its gradient norm
reaches 0 immediately and it keeps randomly creating networks until a suitable one
is found. Here, the discreteness of the activation function helps, because a network
is producing either incorrect or perfect, 0-loss results.

On the other hand, GOMEA and BIPOP-CMA-ES are performing very well, with
GOMEA having a significant edge over BIPOP-CMA-ES here. This is in contrast to
sigmoid activation—there, BIPOP-CMA-ES could much more effectively search the
solution space than GOMEA could. Thus, GOMEA is very good at searching for a
correct, discretized network, while BIPOP-CMA-ES is relatively better at searching
a gradual, but heavily graded space.

3.6 Experiment 5: ReLU with output activation and
sigmoid-like without

For completeness’ sake, we will also “take the cross-product” and consider ReLU
networks with output activation and sigmoid(-like) networks without.

Adding output activation to already trained ReLU-based networks without can
only improve the performance, because since the output is expected to be in {0, 1},
folding all negative values to 0 makes it adhere better to the output range. Well-
performing networks will therefore likely not behave differently at all after introducing
output activation.

This does not mean that training such output-activated ReLU networks from
scratch is easier. The activation function erases any information about how far the
0 outputs are from correct 1 values; the gradient in the output activation is 0 here.
ReLU here will probably also not help GOMEA in this case, though it can handle
the erasure better than GD as we’ve seen before.

Meanwhile, sigmoid-like networks without output activation require more careful
training, as sums at each node must be near 0 or 1, instead of some arbitrary small or
large value, respectively. GD may perform better here because it was already training
mostly in the small-value range where gradients are preserved better. GOMEA will
likely have an easier time for similar reasons.

Heaviside activation is also considered; removing output activation gives GD a
fighting chance as it can access the gradient up to the hidden layer, but is still forced
to keep the values before it the same.

3.6.1 Results

Due to the large number of graphs required for displaying these results, summaries
are presented instead. Two graphs are shown, one containing the minimum number
of nodes in the hidden layer that each algorithm can solve 50 % of times, and the
other 95 % like before.

Chapter 3. Solving XOR with minimal neural network sizes 31

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

Minimum hidden layer size for ≥50% success
ReLU, output activation

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GDCR

BIPOP-CMA-ES

Minimum hidden layer size for ≥95% success
ReLU, output activation

2

3

4

5

6

7

8

9

10

11

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

Minimum hidden layer size for ≥50% success
Sigmoid, no output act.

2

3

4

5

6

7

8

9

10

11

12

13

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

Minimum hidden layer size for ≥95% success
Sigmoid, no output act.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

Minimum hidden layer size for ≥50% success
Heaviside, no output act.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GDCR

BIPOP-CMA-ES

Minimum hidden layer size for ≥95% success
Heaviside, no output act.

Figure 3.7: Minimum hidden layer sizes for various networks. The
first row shows the minimum number of nodes in the hidden layer
required for success rates of 50 % and 95 %, respectively, for ReLU-
based networks with activation both at the hidden and output layers.
The second row displays this information for sigmoid networks without
activation at the output layer, and the third for Heaviside networks
without output activation. In the last row GOMEA is close to, but
not quite reaching the required threshold for smaller networks (those

with 8 hidden nodes, for example), leading to large error bars.

3.6.2 Discussion

By now, the results should not be very surprising: networks with ReLU output acti-
vation hamper GD’s performance due to unnecessary gradient erasure for half of all
outputs, but the three other algorithms can navigate around this limitation. GDCR
does this by simple restarts, which happens quickly as the gradient diminishes fast.
GOMEA and BIPOP-CMA-ES both beat GDCR for larger networks, with GOMEA
having an extra edge.

Chapter 3. Solving XOR with minimal neural network sizes 32

Sigmoid-based networks with a narrow initialization procedure remain challenging
for GOMEA, while BIPOP-CMA-ES fares somewhat better. Both are performing
worse than GD and GDCR, which effectively utilize the activation function to train
relatively small networks.

Even without any output-layer activation, the gradient-less Heaviside activation
function poses an extreme barrier for GD and GDCR. Between GOMEA and BIPOP-
CMA-ES, GOMEA performs ever so slightly better. Interestingly, BIPOP-CMA-ES
performs about the same as when given Heaviside networks with output activation,
while GOMEA is having much more trouble with this configuration; GOMEA is not
as good as fine-tuning network weights while it excels at searching the discretely-
activated networks.

3.7 General discussion
Not only can GOMEA and BIPOP-CMA-ES successfully train these XOR networks,
in many cases they also perform better than both classical GD and GD with cold
restarts. When ReLU-based networks without output activation are considered,
GOMEA and BIPOP-CMA-ES are well ahead of GD and GDCR.

This partially extends past ReLU-based networks: also sigmoid networks where
the output is activated, and other possible configurations. Interestingly, GOMEA
requires a wide initialization range for sigmoid-based networks such that the acti-
vations tend to be in the flatter parts of the function. This is in stark contrast to
GD, which suffers from vanishing gradients in this configuration. What this indicates
is that GOMEA trains networks in a different manner compared to GD, “sees” the
problems differently, as is obviously to be expected when comparing an EA versus a
gradient-based method.

Meanwhile BIPOP-CMA-ES maintains better performance in the narrowly-initialized
cases, though it also achieves lower success rates than both GD and GDCR. It does
not benefit from increasing the initialization range—in fact, it performs worse, like
GD and GDCR. BIPOP-CMA-ES’s step-based search approaches a gradient-based
method [34, 35], explaining this behavior.

Of the “conventional” architectures, one based on ReLU without output activation
allows GOMEA and BIPOP-CMA-ES to train the smallest networks. For GD and
GDCR the best-fit architecture is sigmoid-based. GOMEA performs best overall
when training Heaviside networks with output activation.

The fact that GOMEA achieves better results in the relatively flat ranges of the
sigmoid curve and GD performs best in the near-linear portion is supported by the
excellent performance of GOMEA for networks using the Heaviside step function. As
expected, GD is incapable of training the Heaviside network with output activation,
due to immediate gradient erasure, and greatly struggles with the network without
as it cannot train the hidden layer and its inputs.

For networks with many inputs and small hidden layers, all algorithms perform
poorly—but what is surprising is how even GD manages to find a better solution
than GOMEA in some cases. Part of this could simply be due to pure luck: only a
limited number of runs were performed and so the results are within the margin of
error. With networks this small, the probability of randomly generating a “winning
ticket”, so to say, is greater. But that would also work in GOMEA’s advantage since
it generates many different networks at the start, so there may be something else
going on as well. The population fitness variance threshold may simply be set too
high, terminating small populations too soon and preventing refinement while larger

Chapter 3. Solving XOR with minimal neural network sizes 33

populations are only starting and can not reach the refinement stage before time runs
out.

There may also be a more fundamental cause to this behavior. The losses gen-
erated by unsuccessful training attempts are often those typical of saddle points. It
seems that, even with AMS forcing search in a given direction, GOMEA is unable
to handle the enormous number of minima these XOR networks have. GD does not
suffer from this, as it has only one perspective on the solution space, and GDCR
simply throws away a network and re-rolls if it seems stuck—no knowledge is passed
on. BIPOP-CMA-ES’s “momentum” can help it overcome these minima, though it
still performs worse in the end.

3.8 Conclusion
We can therefore already partially answer the first and second research questions:
yes, EAs are able to train small XOR networks and improve upon GD doing so; and
yes, for these networks the activation functions used does impact the performance,
but in a different way than they do for GD. A key insight is that best practices for
training via GD do not fully transfer to EA-based training procedures, nor can they
necessarily be carried over between different EAs. Even basic choices such as which
activation functions to use, where to apply them and how to initialize networks need
to be reconsidered; networks trained by EAs can be fundamentally different compared
to those by GD.

34

Chapter 4

Applying problem-specific
knowledge: asymmetry loss

The high number of minima of XOR networks is partially caused by the extreme
degree of symmetry within the hidden layers of MLPs. Because these layers are fully
connected to the previous and the next layer, each node within the layer can be
“rearranged” at random, yielding 𝑛! permutations with the exact same loss value.
The larger the hidden layer, the more difficult it will be to compare two random
networks.

High degrees of symmetry hamper the training procedure as the distributions
become highly-modal; each permutation can potentially require its own, distinct pa-
rameter distribution. Preferring a single arrangement reduces the number of possible
solutions greatly and thereby simplify the parameter distributions.

This effect is strongest for very small networks. Consider the ways a small network
can have its hidden layer extended as described in section 2.4.2. If a single node is
added, then it can “share” the duty of another node. Because their contributions
are summed, the distribution scales linearly—even outside [0, 1], as long as it sums
to 1. This can be extended to an arbitrary number of nodes. Doing so heavily
skews the distribution of the associated parameters, as most will tend to zero to
compensate for other nodes contributing the same information. While the problem
is easier, estimating parameter distributions is less useful. The smaller the hidden
layer, the fewer of these opportunities arise, concentrating the “correct” distributions
for parameter values. It is thus here that asymmetry loss helps with further reducing
the number of valid solutions.

BIPOP-CMA-ES works differently. Since it encodes the expected search direction,
as opposed to the distribution itself, it is more directly traversing the gradient of
the function (averaged over the population) and strong individual differences are
diminished.

A symmetry-breaking soft-constraint can be used to penalize networks not follow-
ing an expected layout.

One such penalty term for guiding the networks towards a fixed layout of the
hidden layer is to require that the bias of each node is not greater than that of any
following node: the nodes have to be sorted by the bias in ascending order. For
each pair of nodes where the former has a higher bias than the latter, the difference
plus one is added to the asymmetry loss. This penalty term is then multiplied by an
arbitrary factor of 1000 and added to the original loss. The asymmetry loss is scaled
because bias values (and thus also their differences) tend to be insignificant compared
to the output MSE loss.

Chapter 4. Applying problem-specific knowledge: asymmetry loss 35

0

1

1

-1

𝑥1

𝑥2

-1

1

-1

1

1

-1

1

-1

𝑦

̄𝑦

(a)

0

11

-1𝑥1

𝑥2

-1

1

-1

1 1

-1

1

-1

𝑦

̄𝑦

(b)

Figure 4.1: Two distinct, but both perfect solutions to the 2-input,
2-hidden XOR problem. The top network is the same as shown in
fig. 2.13, whereas in the bottom network the two hidden nodes and
their associated weights have been exchanged; now the top node out-
puts 1 iff 𝑥1 = 𝑥2 = 0 and the bottom node outputs 1 iff 𝑥1 = 𝑥2 = 1.

Thus, for a network with 𝑚 hidden nodes, an additional operation on the loss ℓ
takes place:

ℓ ← ℓ + 1000
𝑚

∑
𝑖=1

𝑖
∑
𝑘=1

{
𝑏𝑘 − 𝑏𝑖 + 1 if 𝑏𝑖 < 𝑏𝑘

0 if 𝑏𝑖 ≥ 𝑏𝑘
(4.1)

This effectively “tilts” the solution space towards the solutions with ascending
biases in the hidden layer. The biases of the output layer are ignored, because the
output order depends on the problem and nodes cannot be permuted at random.

If we were to say that the top hidden node in each network of fig. 4.1 is node 1
(and the other 2), then using this method fig. 4.1a has an asymmetry loss of 3000,
while fig. 4.1b yields 0, meaning that configuration (B) is the preferred one—despite
both being perfect solutions to the XOR problem.

Using this loss for GD does not make much sense as GD does not need to cross
over between multiple solutions. It is not required in order to get a functioning XOR
network; just to help an EA select solutions that are more directly comparable by
focusing on a smaller part of the solution space. If applied to GD, it would only make
the problem more difficult to solve.

4.1 Experiment setup
The experiments performed here are the same as for the previous chapter: for net-
works with 2 to 6 inputs, shrink the hidden layer until less than 1 % of the attempts
successfully trained a network. Except for the introduction of the asymmetry loss
described above, everything else remains the same.

Chapter 4. Applying problem-specific knowledge: asymmetry loss 36

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (asymm. loss)

BIPOP-CMA-ES
BIPOP-CMA-ES (asymm. loss)

GD
GDCR

ReLU, no output act., 2 inputs
2 🠒 · 🠒 R 🠒 2

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (asymm. loss)

BIPOP-CMA-ES
BIPOP-CMA-ES (asymm. loss)

GD
GDCR

ReLU, no output act., 3 inputs
3 🠒 · 🠒 R 🠒 2

0%

20%

40%

60%

80%

100%

 2 4 6 8 10 12

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (asymm. loss)

BIPOP-CMA-ES
BIPOP-CMA-ES (asymm. loss)

GD
GDCR

ReLU, no output act., 4 inputs
4 🠒 · 🠒 R 🠒 2

0%

20%

40%

60%

80%

100%

 4 6 8 10 12 14 16 18 20 22

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (asymm. loss)

BIPOP-CMA-ES
BIPOP-CMA-ES (asymm. loss)

GD
GDCR

ReLU, no output act., 5 inputs
5 🠒 · 🠒 R 🠒 2

0%

20%

40%

60%

80%

100%

 5 10 15 20 25

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (asymm. loss)

BIPOP-CMA-ES
BIPOP-CMA-ES (asymm. loss)

GD
GDCR

ReLU, no output act., 6 inputs
6 🠒 · 🠒 R 🠒 2

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)
GOMEA (asymm. loss)

BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥95% success
ReLU, no output act.

Figure 4.2: The first five graphs show success rates for 𝑛-input ReLU-
based networks without output activation. Previous results (those
without asymmetry loss applied) are shown as broken lines. The last
plot is a summary showing the minimum number of nodes in the hid-
den layer necessary for a 95 % success rate, also with previous results

included.

4.2 ReLU activation at the hidden layer
GOMEA benefits from asymmetry loss: for networks with three to five inputs it
performs slightly better and even gains significantly at the small hidden layer range.
For six inputs, however, asymmetry loss does not make much of an impact. GOMEA
was also already outperforming other algorithms at this point.

BIPOP-CMA-ES on the other hand does not get as strong of a performance boost
compared to GOMEA. In a few cases it achieves better results, but most of it is within
the margin of error. Strikingly, for networks with five inputs, its performance is more
or less equal to the variant without asymmetry loss.

Chapter 4. Applying problem-specific knowledge: asymmetry loss 37

4.2.1 Discussion

Introducing asymmetry loss as a symmetry-breaking constraint is helpful to GOMEA
for small networks, where it yields better results for all sizes, but most importantly
improves the performance when training very small networks. Now, GOMEA is also
competitive at these sizes.

4.3 Sigmoid activation at the hidden and output layers

0%

20%

40%

60%

80%

100%

 2 4 6 8 10 12

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (asymm. loss)

BIPOP-CMA-ES
BIPOP-CMA-ES (asymm. loss)

GD
GDCR

Sigmoid, output activation, 4 inputs
4 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 5 10 15 20

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (asymm. loss)

BIPOP-CMA-ES
BIPOP-CMA-ES (asymm. loss)

GD
GDCR

Sigmoid, output activation, 5 inputs
5 🠒 · 🠒 S 🠒 2 🠒 S

0%

20%

40%

60%

80%

100%

 5 10 15 20 25

su
cc

e
ss

 r
a
te

of hidden nodes

GOMEA
GOMEA (asymm. loss)

BIPOP-CMA-ES
BIPOP-CMA-ES (asymm. loss)

GD
GDCR

Sigmoid, output activation, 6 inputs
6 🠒 · 🠒 S 🠒 2 🠒 S

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (full cov.)
GOMEA (min. fit. var. 0)

GOMEA (asymm. loss)
BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥95% success
Sigmoid, output activation

Figure 4.3: The first three graphs show success rates for 𝑛-input
sigmoid-based networks with output activation. Previous results
(those without asymmetry loss applied) are shown as broken lines.
The last plot is a summary showing the minimum number of nodes in
the hidden layer necessary for a 95 % success rate, also with previous

results included.

Improvements are not as strong as they were for the non-output-activated ReLU
network—except for the case with six inputs, where it helps GOMEA reach much
better success rates than before.

As in the previous case, BIPOP-CMA-ES barely changes in performance.

4.3.1 Discussion

This style of network (with a narrow initialization range) is already difficult for
GOMEA for reasons other than asymmetry, so adding this constraint is not very
effective—except in the case of six inputs, where it suddenly performs much better
for larger networks. Even though it is still far behind GD, introducing asymmetry
loss suddenly made these networks somewhat viable.

Chapter 4. Applying problem-specific knowledge: asymmetry loss 38

Inhibiting asymmetry would allow search to focus on smaller distributions, usually
on one side of the zero: even if individual changes accomplish little, moving search
in a one direction (as opposed to keeping the distribution around zero) will produce
slightly better results. As shown before, larger networks allow weak activations within
the network; thus, even if individual activations are weak (because the parameters
are too small), large networks can accomplish working behavior anyway.

However, this is not what appears to be a full explanation. While a few distri-
butions shrink as expected, the vast majority are still centered around 0. Penalizing
asymmetry helps, but it is for now not clear exactly why.

4.4 Other networks
All other configurations listed in the previous chapter were also tested with asymmetry
loss enabled. Because these are quite numerous, only summaries are shown and
discussed.

4.4.1 Heaviside with and without output activation

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GDCR

BIPOP-CMA-ES
GOMEA (asymm. loss)

BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥50% success
Heaviside, output activation

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
BIPOP-CMA-ES

GOMEA (asymm. loss)
BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥95% success
Heaviside, output activation

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (asymm. loss)
BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥50% success
Heaviside, no output act.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GDCR

BIPOP-CMA-ES
GOMEA (asymm. loss)

BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥95% success
Heaviside, no output act.

Figure 4.4: Minimum hidden layer sizes for Heaviside problems. The
first row shows results for Heaviside-based networks without output ac-
tivation, with previous results (where no asymmetry loss was applied)
as broken lines. GD and GDCR without asymmetry loss are included
as a baseline result, but are (mostly) absent due to their inability to
train networks with Heaviside activation as seen in fig. 3.6. BIPOP-
CMA-ES is similarly absent from most of the graphs. The second row
shows results for Heaviside networks without output activation in the

same way.

Figure 4.4 shows summaries of training results for these networks.

Chapter 4. Applying problem-specific knowledge: asymmetry loss 39

Asymmetry loss has little to no effect on GOMEA’s success with solving output-
activated Heaviside networks. There is not much to gain here: GOMEA already
found very small networks without any symmetry breaking to begin with.

When the network does not have any output activation, GOMEA benefits slightly
from symmetry breaking when given many-input problems.

As before, BIPOP-CMA-ES is performing worse when training with asymmetry
loss.

4.4.2 ReLU with output activation and sigmoid without

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (asymm. loss)
BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥50% success
Sigmoid, no output act.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (asymm. loss)
BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥95% success
Sigmoid, no output act.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GD

GDCR
BIPOP-CMA-ES

GOMEA (asymm. loss)
BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥50% success
ReLU, output activation

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

 2 3 4 5 6

#
 o

f
h
id

d
e
n
 n

o
d

e
s

of input nodes

GOMEA
GDCR

BIPOP-CMA-ES
GOMEA (asymm. loss)

BIPOP-CMA-ES (asymm. loss)

Minimum hidden layer size for ≥95% success
ReLU, output activation

Figure 4.5: Minimum hidden layer sizes for various problems. The
first row shows results for sigmoid-based networks without output ac-
tivation, with previous results (where no asymmetry loss was applied)
as broken lines. GD and GDCR without asymmetry loss are included
as a baseline result. The second row shows results for ReLU networks

with output activation in the same way.

As with sigmoid networks with output activation, those without are still difficult
for GOMEA and enabling asymmetry loss makes them somewhat more viable: there is
at least any result as opposed to none before. This also again shows that symmetry is
not the sole cause of training difficulties when GOMEA is given a narrowly-initialized
sigmoid-based network.

Similarly, BIPOP-CMA-ES does not benefit from a symmetry-breaking constraint
and performs about the same, occasionally worse.

Chapter 4. Applying problem-specific knowledge: asymmetry loss 40

4.5 General discussion
Answering the third research question, imparting problem-based knowledge like asym-
metry constraints does help in a number of cases, but it is not a panacea: it only helps
with smaller networks where GD was able to produce better solutions, but it has next
to no effect on larger network where GOMEA was already performing better. It is
also an imperfect solution: it unnecessarily penalizes good solutions that do not fit the
mold, which leads to a loss of diversity [36]. These lost (partial) generations can be
reduced through an initialization function that automatically generates asymmetric
individuals, where the initialization range is divided over each sequence of biases.

This sort of guidance does not even help any EA, as can be seen from the fact
that BIPOP-CMA-ES does not benefit at all from asymmetry loss.

41

Chapter 5

Conclusion and future work

This chapter concludes the work by discussing the most important , as well as possible
future work.

5.1 Discussion
Chapter 3 showed that GOMEA and BIPOP-CMA-ES can not only successfully train
NNs, they are capable of training smaller networks than GD can. GOMEA also trains
networks that are impossible to train via GD with ease.

However, there are cases where established best practices for GD negatively affect
EAs, such as how a sigmoid-based network is initialized. An EA like GOMEA trains
in a very different manner than GD does, so these differences are not surprising. But,
one must take care when transferring GD-based knowledge to an EA-based training
method, and even basic decisions may need to be reconsidered.

EAs also face problems that for GD are less pronounced or do not exist, making
incorporating problem-specific knowledge beneficial if not necessary. One such trait
of feed-forward NNs is the extreme symmetry within hidden layers. Breaking this
symmetry appears to be helpful to GOMEA in a number of cases, but it fails to solve
other issues and is barely if at all applicable to BIPOP-CMA-ES. Such constraints
also need to be implemented carefully to prevent loss of diversity in a population.

GOMEA in particular provides another powerful way of indicating the intrinsic
qualities of a network, namely via parameter linkage. Linkage can indicate logical
relations within a layer and between consecutive layers, but the nature of feed-forward
networks makes it difficult to find any clear links beyond this.

The elephant in the room here is the computational cost of training a network
via an EA. Sensible population sizes (for the algorithms discussed here) vary from
tens to thousands of networks, each of which needs to be evaluated and mutated.
GOMEA performs “partial evaluations”, which can be applied to NNs in some cases,
but this does not scale well and overhead may make them more costly than simple
full-network evaluations.

Requiring more resources to train NNs can still be beneficial if the trained net-
works end up being smaller than what GD can produce: a network is trained once,
but applied many times. If an EA takes significantly longer to train a network, but
the network is also significantly smaller, then this ends up saving resources in the
long run.

5.2 Future work
The success and flexibility of using EAs to train NNs opens up a vast area of research.

Chapter 5. Conclusion and future work 42

A few features of GOMEA that have been unexplored in this thesis are the appli-
cation of partial evaluations and problem-specific linkage to NNs. Partial evaluations,
as explained in section 2.3.3, can reduce the number of computations necessary to
evaluate a network where only a subset of the parameters have been modified. Com-
bined with a non-fully-covariant linkage model, this can speed up the training of
networks. However, not all network architectures are fully invertible, precluding ef-
ficient partial evaluations. Partial evaluations combine well with problem-specific
linkage models (see section 2.3.3), which inform GOMEA about relations between
parameters intrinsic to the problem. In an MLP, such relations between parameters
exist, such as a bias and its associated incoming or outgoing weights. Specifying these
could allow GOMEA to perform more effective evolution. Appendix A has a compre-
hensive overview of possible approaches to both partial evaluations and linkage when
applied to NNs.

The wall-clock time spent evaluating and mutating all these networks can be de-
creased by moving the training process to GPUs, something which is already common
for GD. GPUs are excellent at parallel processing and matrix manipulation. With a
sufficiently large GPU and a sufficiently small network, an entire population can even
be evaluated at the same time. These devices also usually feature a very wide memory
bus and large caches, potentially making partial evaluations viable for a larger range
of networks.

Linear layers are a common sight in NNs, but they are far from the only ones
available. Image recognition networks often feature many convolutional layers, such
as in VGG [45] and ResNet [46]. The expressive power of linear layers is often not
necessary and their great number of parameters is even for GD quickly too much to
handle. Convolutional layers, on the other hand, have a relatively limited number of
parameters. The arrangement of these parameters as distinct filters also lends itself
very well to explicit intra-layer linkage, and creates more opportunities for effective
cross-layer linkage.

Last in this list of ideas (which is far from complete) is having GD and GOMEA
cooperate, also known as hybridization. EAs are excellent at exploring the search
space, something that GD is less capable of. GDCR works around this by giving up
on bad starting positions and trying again, but in bad cases this turns into random
search. In particular, it would be very interesting to see if an EA like GOMEA could
function as a “winning ticket generator”: the EA selects one or more networks that
perform relatively well, and GD trains these to a final network.

5.3 Conclusion
To conclude, EAs perform well when training NNs and often manage to train very
small networks, something which is much more difficult for GD. However, there are
some cases where GD still performs better, so care must be taken to construct both
a network and an EA that work well together, and what works can not always be
inferred from previous experience with GD. The application of GOMEA for training
NNs opens up an immense world of future research and other opportunities; much is
still to be learned.

43

Appendix A

Partial evaluations and linkage

As described in section 2.3.3, GOMEA is capable of much more advanced linkage and
evaluation methods than used in the previous chapters. Here, we give an overview of
possible future enhancements to the training procedure that may allow GOMEA to
scale to larger networks.

A.1 Partial evaluations of neural networks
The linear transformation that is core to fully-connected feed-forward neural networks
is trivial to evaluate partially. From eq. (2.3), this transformation is as follows:

y = 𝑊x + b (A.1)

There are two possible kinds of modification here: to the weights, and to the
biases. Evaluating a set of bias changes from 𝑏 to 𝑏′ is very simple:

y′ = y − b + b′ (A.2)
= y + (b′ − b) (A.3)

Changing weights 𝑊 to 𝑊 ′ is slightly more complicated as it needs to multiply
with the input vector:

y′ = y − 𝑊x + 𝑊 ′x (A.4)
= y + (𝑊 ′ − 𝑊)x (A.5)

Of course, combined partial evaluations, where both weights and biases have been
changed, are also possible.

If only few values are changed than equations A.3 and A.5 involve a sparse vector
and matrix, respectively. Sparse matrix multiplication (and sparse vector addition)
are cheap to evaluate, and much cheaper than full evaluations if the density is low
enough [37].

A.1.1 Nonlinearity

Unfortunately, a layer in a feed-forward network is usually not just a linear trans-
formation; a nonlinear transformation is applied as well. This is not immediately a
problem: if the transformation is invertible, then it can be inverted, the linear part
evaluated, and finally re-applied. However, many activation functions are not invert-
ible: ReLU and Heaviside are not for example, and ReLU is extremely popular [38].
Many ReLU-like alternatives, such as Swish [39], maintain a non-zero derivative over

Appendix A. Partial evaluations and linkage 44

most of their range, but are still not invertible because of ringing artifacts. Some
others like LeakyReLU [40] and potentially PReLU [41] (if parameter 𝑎 ≠ 0) are,
however.

These alternatives are not drop-in replacements; networks can train and behave
very differently using even subtly different activation functions [42].

Storing intermediate results

If a non-invertible activation function is used and partial evaluations are desired,
then it may be beneficial to store intermediate activations in addition to the final
loss value. Once a linear transformation has been computed, the vector is written to
memory. If a parameter in that layer changed, the un-activated output vector can be
used to compute the new one. Then, the activation function can be applied and the
resulting vector can be passed to the next layer (or output).

There are multiple downsides to this. Now, a network under training no longer
needs to store its parameters, but also the previous outputs of each layer in the
network. Depending on how complex the network is, this is a significant amount of
memory, especially if fairy large populations are used by the EA.

Additionally, there is significant memory bandwidth overhead as these vectors
need to be written to and read from memory for each evaluation. Full evaluations
can discard any previous vector, but still need to write all vectors completely to
memory. Partial evaluations themselves can be lighter on memory bandwidth as
their modifications are local, but this does not hold for layers further downstream.

Because each layer in an MLP is fully connected, changing a weight or bias in an
earlier layer will propagate the modified value to all nodes in subsequent layers. If
the network is especially deep or if the initial layer is large, then partial evaluations
will have little advantage over simply evaluating the entire network with the new
parameters in place.

All this essentially trades computing power for memory bandwidth—which can be
a terrible trade due to the very large and ever-growing processor–memory performance
gap [43].

𝑥
Lin 1 ReLU

1 Lin 2 ReLU
2 Lin 3 Sigm.

1 𝑦

(a) A full evaluation of a network.

Lin 1 ReLU
1 Lin 2 ReLU

2 Lin 3 Sigm.
1 𝑦

(b) A partial evaluation of a network, starting in linear layer #2.

Figure A.1: Two modes of evaluation of a network.

Appendix A. Partial evaluations and linkage 45

Training layer-by-layer

Many of these problems can be alleviated by training a network not in its entirety,
but layer-by-layer. A similar technique has also been successfully applied to GD in
the form of local updates [44].

The network is trained starting from the input layer. Because its output shape
possibly does not match the expected output of the full network, a “reshaping” layer
is appended that transforms the layer-under-training’s output to the expected shape.
This layer is discarded when this training stage has finished.

Obviously, this reshaping is not necessary if the penultimate layer is being trained,
as the last layer is performing the exact same role.

Once a layer has been trained, it can be evaluated against the full dataset, which
can then be used as the input to train the next.

A major downside of training layer-by-layer is that each layer is forced to see the
big picture, as it were, whereas networks trained as a whole allow layers to specialize
in features of the input data. Laskin et al. put forward different ways to group layers
that allow for some inter-layer cooperation, but it will likely always perform worse
than if every layer of the network was trained at the same time.

For the general network it is unreasonable to assume that only the first few layers
are sufficient to form a network capable of solving the problem it is being trained
for; stopping criteria other than a value-to-reach are necessary. Obvious choices
include a maximum runtime or evaluation count, though as layers differ in number
of parameters, these may need to be set on a per-layer basis.

Another possible criterion is the population’s fitness variance; if it looks like search
is starting to converge (especially on a value far from the desired value), it may be
beneficial to stop with the current layer and already start on the next, as otherwise
one may spend too much time fine-tuning the discarded layer, and the next layer
could be able to pick up the slack in the previous.

Of course, if search is converging on a good loss, then search can stop at the trun-
cated network with the reshaping layer attached, yielding a network that is different
than originally intended, but smaller and possibly more efficient.

However, well-performing truncated networks may not always be desired for myr-
iad reasons. For example, the reshaping layer could be too large for the intended
application. This holds especially if non-fully-connected layers are used in the net-
work (though these are outside the scope of this work), but some kinds of network
innately require a certain topology.

One such kind is the autoencoder, where a series of progressively smaller layers
“compress” their input, and then increasingly larger layers “decompress” the internal
encoding back to the original input. For these networks, it is required that that
minimum size is reached, and greedily training this network layer-by-layer means
applying only one compression step, and immediately decompressing it again using
the reshaping layer—vastly simplifying the “problem” from the EA’s point of view,
and missing the point of an autoencoder.

Alleviating this is possible through training the compressing layers as if they
were one, and then training the decompressing stages one-by-one. Unfortunately this
turns half the network into a large monolithic layer, and the effectiveness of partial
evaluations diminishes again.

Appendix A. Partial evaluations and linkage 46

𝑥(0)
Lin 1 ReLU

1
Lin
𝑑(1)

ReLU
𝑑(1)

Lin
(𝑑)

Sigm.
(𝑑) 𝑦

𝑥(1)

(a) Training the first linear layer. The layers marked “(d)” are scratch layers that are discarded once
training has finished.

Lin 1 ReLU
1 Lin 2 ReLU

2 Lin 3 Sigm.
1 𝑦𝑥(1)

(b) Training the last two linear layers. The dataset labeled 𝑥(𝑥) refers to the same in fig. A.2a. That
is, the output of the “ReLU 1” layer for each value in the dataset 𝑥(0).

Figure A.2: Training a network layer-by-layer.

·

A.1.2 Conclusion

Partial evaluations are a powerful tool when training complex networks with GOMEA,
but multiple fundamental aspects of MLPs limit their applicability. Ways around this,
such as artificially reducing the depth of the network, can reduce these limiting effects,
but they come at their own expenses and cannot be greedily applied to any possible
network.

A.2 Problem-specific linkage models
Next to partial evaluations there is another powerful tool at GOMEA’s disposal:
explicit parameter linkage. One can already identify multiple obvious links between
parameters, such as all weights contributing to the same output node, or all weights
coming from the same input node.

The following are possible linkage strategies for a typical linear layer with 𝑛 inputs
and 𝑚 outputs. Not all strategies are meant to be used together—there is significant
overlap between them.

Linkage Example Figure
Inputs {𝑤𝑖, 𝑤𝑖+1, … , 𝑤𝑖+𝑛−1} fig. C.1
Inputs + biases {𝑤𝑖, 𝑤𝑖+1, … , 𝑤𝑖+𝑛−1} ∪ {𝑏1, 𝑏2, … , 𝑏𝑚} fig. C.2
Outputs {𝑤𝑖, 𝑤𝑖+𝑛, … , 𝑤𝑖+𝑚𝑛−𝑛} fig. C.3
Outputs + bias {𝑤𝑖, 𝑤𝑖+𝑛, … , 𝑤𝑖+𝑚𝑛−𝑛} ∪ {𝑏𝑖} fig. C.4
Weights {𝑤11, 𝑤12, … , 𝑤𝑛𝑚} fig. C.5
Biases {𝑏1, 𝑏2, … , 𝑏𝑚} fig. C.6
Full layer {𝑤11, 𝑤12, … , 𝑤𝑛𝑚} ∪ {𝑏1, 𝑏2, … , 𝑏𝑚} fig. C.7

Appendix A. Partial evaluations and linkage 47

A.2.1 Linkage spanning two layers

Linkage spanning layers is not as trivial. Because the layers are fully connected, one
weight in a first layer influences all outputs of the second layer. Still, linkage between
at least two layers can benefit inter-layer cooperation.

Of the intra-layer linkages discussed before, a few can be combined into reasonable
sets: the weights and possibly the bias leading to each output node of the first layer
have a direct relationship to the weights leading from the corresponding input node on
the second layer. A linkage set like this describes, in essence, the relation from every
input node on the first layer to every output node on the second layer, controlled by
the output node in the middle of this subgraph.

Another way to see this is as the buildup of a feature detector (the incoming
weights) and its contribution to the output of these layers working in tandem (the
outgoing weights). However, this is a simplistic view and the behavior of complex
networks likely cannot be described in such terms.

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13

𝑏14

𝑏15

𝑏21

𝑏22

𝑏23

𝑏31

𝑏32

𝑦1

𝑦2

Figure A.3: A linkage set covering two layers, anchored around a
bias.

Linkage spanning more than two layers

Linkage sets pivoting around a single node like possible in sets of two consecutive
layers does not scale to larger networks. In the previous case, linkage described a
mapping between all inputs to all outputs of such a set.

Because all layers are fully connected, there is likely little sense in extending
linkage sets much further than this. Some higher-level linkage is likely to be beneficial,
however. Because contributions to the output are fairly distributed throughout the
network, one may be tempted to greedily produce power sets of previous linkage sets
or taking the union of these. The former case produces an extreme number of subsets
and slow down evolution, while the latter starts to approach a fully-covariant strategy
instead; neither particularly efficient and probably not very effective.

Appendix A. Partial evaluations and linkage 48

At this point, because the networks also become very large, a heuristic is necessary.
Inspiration can be taken from random linkage graphs. Randomly chosen pairs of
lower-level (and therefore smaller) linkage sets can be combined to form cross-layer
linkages. These can then be merged again to form even higher-level sets, and the
process can be repeated until a single set is formed. For an average network, this
makes a more-or-less logarithmic number of subsets, ranging from layer-local to global
network linkage, arranged as a mostly balanced tree-like collection of sets.

This graph may still be too large to use effectively, however. A fully covariant
linkage set may not be necessary, so the combining step can terminate at some point
before, such as a maximum tree height or set size. Similarly, there are many very
small sets and these may be too costly to evaluate or of too low impact in such a large
network. These “leaves” can be pruned until, again, a desired tree height is attained
or only sets of a minimum size remain.

49

Appendix B

Experiment platforms

Experiments were performed on a variety of platforms (combinations of hardware and
software). Experiments of the same type were kept on the same platform to avoid
external influences on the performance, most notably where experiments ran under
time constraints.

System 1
System 1 ran GOMEA experiments.

CPU Ryzen 9 3900X 12/24 cores (PBO enabled)

RAM 32 GB DDR4-3200 16-18-18-36

OS Debian testing; Linux 5.17

Compiler GCC 10.3.0

System 2
System 2 ran GD experiments.

CPU Ryzen 7 1700 8/16 cores (ECO mode enabled)

RAM 32 GB DDR4-2400 17-17-17-39 ECC

OS Debian 11 (bullseye); Linux 5.10

Python 3.9.2

Pytorch 1.8.1

System 3
System 3 (the only laptop) ran BIPOP-CMA-ES experiments.

CPU Intel i7-4710MQ 4/8 cores

RAM 8 GB DDR3-1600 11-11-11-28, 16 GB DDR3-1600 10-10-10-27

OS Debian unstable; Linux 5.18

Python 3.10.5

Pytorch 1.11.0

50

Appendix C

Linkage examples

These are examples of single linkage sets according to appendix A.2 generated for the
example network in fig. 2.2.

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13

𝑏14

𝑏15

𝑏21

𝑏22

𝑏23

𝑏31

𝑏32

𝑦1

𝑦2

Figure C.1: A linkage set covering the first set of input weights on
the first layer.

Appendix C. Linkage examples 51

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13

𝑏14

𝑏15

𝑏21

𝑏22

𝑏23

𝑏31

𝑏32

𝑦1

𝑦2

Figure C.2: A linkage set covering the second set of input weights
and associated biases on the first layer.

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13

𝑏14

𝑏15

𝑏21

𝑏22

𝑏23

𝑏31

𝑏32

𝑦1

𝑦2

Figure C.3: A linkage set covering the third set of output weights
on the first layer.

Appendix C. Linkage examples 52

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13

𝑏14

𝑏15

𝑏21

𝑏22

𝑏23

𝑏31

𝑏32

𝑦1

𝑦2

Figure C.4: A linkage set covering the fourth set of output weights
and the associated bias on the first layer.

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13

𝑏14

𝑏15

𝑏21

𝑏22

𝑏23

𝑏31

𝑏32

𝑦1

𝑦2

Figure C.5: A linkage set covering all weights of the second layer.

Appendix C. Linkage examples 53

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13

𝑏14

𝑏15

𝑏21

𝑏22

𝑏23

𝑏31

𝑏32

𝑦1

𝑦2

Figure C.6: A linkage set covering all biases of the second layer.

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13

𝑏14

𝑏15

𝑏21

𝑏22

𝑏23

𝑏31

𝑏32

𝑦1

𝑦2

Figure C.7: A linkage set covering the entire third layer.

54

Appendix D

Implementation details

This chapter gives a broad overview of the implementation of “Neuro-GOMEA”. Most
classes have been documented using Doxygen in case more detail is desired. Refer-
ence implementations are included in the code-base in the form of XorProblem and
MnistProblem.

D.1 libGOMEA
The work performed here included a custom neural network implementation that can
be hooked into SO- or MO-RV-GOMEA. While these do not contribute scientifically,
details on how this was achieved can be helpful in any subsequent work, even if only
to verify results.

The codebase is a mix between C11 and C++20. The original RV-GOMEA imple-
mentation was almost C89; C99 features were used in a few places. Since this part
of the code was fully compatible with C11, the compiler was instructed to compile in
C11 mode and some additional code was written in C11.

GOMEA was turned from an executable into a library and problem registration
hooks were introduced. In addition to the hardcoded list of problems, libGOMEA also
maintains a dynamic list of problems that the user can add problems to (“registra-
tion”). These problems are defined as C++20 classes that hold any hyperparameters
accepted by GOMEA, but most importantly the number of parameters and initial-
ization ranges, full and partial evaluation functions, and a linkage FOS generator.
Many of these are optional, in which case “sensible” values are used. If no partial
evaluation function is given, a full evaluation is performed instead every time.

Each problem is solved in its own process; this is due to the implementation’s
extensive use of global variables, making parallel executions impossible and state re-
use difficult to maintain and therefore risky. The algorithm variant (single- or multi-
objective) is selected dynamically depending on the given problem. Currently, only
the single-objective variant is guaranteed to work; multi-objective problems require
additional modifications to the library.

Further modifications to the GOMEA code include OpenMP support to parallelize
genome evaluation, a multithreading-aware RNG (producing deterministic results as
long as the hyperparameters and number of threads remain equal), and additional
debugging facilities.

#include "Problem.hpp"
#include "RuntimeOptions.hpp"
#include "run.hpp"

#include <memory>
#include <utility>
#include <cstdio>

class SphereProblem : public Gomea::Problem {

Appendix D. Implementation details 55

private:
int num_params;

std::string problem_name = "Sphere";

public:
explicit SphereProblem(int num_params = 3) : num_params(num_params) {}
virtual ~SphereProblem() override = default;

virtual const std::string& get_name() const override {
return this->problem_name;

}

virtual unsigned int get_num_objectives() const override {
return 1;

}

virtual std::pair<double, double> get_param_bounds(unsigned int) const override {
return std::make_pair<double, double>(-1., 1.);

}

virtual Gomea::Hyperparams get_default_hyperparams() const override {
auto defaults = Problem::get_default_hyperparams();
defaults.num_params = this->num_params;
return defaults;

}

virtual void evaluate(
Gomea::Individual&,
const double* parameters,
double* objective_value_result,
double* constraint_value_result,
unsigned int,
long

) override {
double loss = 0;
for (int i = 0; i < this->num_params; ++i) {

loss += parameters[i] * parameters[i];
}
*objective_value_result = loss;
*constraint_value_result = 0;

}

virtual void evaluate_partial(
Gomea::Individual&,
const double* parameters,
unsigned int number_of_touched_parameters,
const unsigned int* touched_parameters_indices,
const double* parameters_before,
const double* objective_values_before,
double constraint_value_before,
double* objective_value_result,
double* constraint_value_result,
unsigned int,
long

) override {
double loss = *objective_values_before;
for (long idx_i = 0; idx_i < number_of_touched_parameters; ++idx_i) {

loss -= parameters_before[idx_i] * parameters_before[idx_i];
loss += parameters[touched_parameters_indices[idx_i]] * parameters[touched_parameters_indices[idx_i]];

}
*objective_value_result = loss;
*constraint_value_result = constraint_value_before;

}
};

int main(void) {
Gomea::Hyperparams hyperparams;
Gomea::RuntimeOptions runtime_options;

hyperparams.linkage_model = 1u;

Appendix D. Implementation details 56

runtime_options.verbose = true;
runtime_options.write_stats_each_gen = true;
runtime_options.target_value = 1e-300;

auto problem = std::make_shared<SphereProblem>();
const auto problem_idx = Gomea::register_problem(problem);
const auto pop = Gomea::run_problem(problem_idx, *problem, hyperparams, runtime_options);

const auto& indiv = pop.front();
const auto& p = indiv.get_parameters();

for (const auto v : p) {
printf("%g ", v);

}
puts("");

}

Source Code D.1: Example implementation of the n-dimensional
sphere problem also used in section 2.3.

D.2 mininn
Also included is mininn, a small implementation of basic neural network primitives
(the linear layer, activation functions, and loss functions), built around the Eigen
library. A Sequential type is also available, which groups layers into one virtual
layer.

Mininn classes are fully templated and therefore extremely flexible: as long as
types can be unified, any combination of layers is possible. Theoretically, a sequence of
layers could be compacted into a single Eigen expression, though some configurations
(such as reshaping) require concrete values and so often intermediate evaluations
are performed. Care must be taken when programming with these classes, as small
mistakes often generate enormous compiler diagnostics, or—worse—access violations
occurring very deep in library code.

The sequential layer is a complex meta-layer that combines the behavior of its
constituent layers. It is a convenient way to interact with a complex network, though
the typical C++ template caveats (long compilation times, difficult-to-comprehend
errors, et cetera) apply.

#include "layer/all.hpp"

#include <cassert>

int main(void) {
Eigen::Matrix2d lin1_weight;
lin1_weight <<

-1, -1,
1, 1;

Eigen::Vector2d lin1_bias = {1, -1};
Mininn::Layer::Linear lin1(2, 2);

Mininn::Layer::ReLU relu;

Eigen::Matrix2d lin2_weight;
lin2_weight <<

1, 1,
-1, -1;

Eigen::Vector2d lin2_bias = {0, 1};
Mininn::Layer::Linear lin2(2, 2);

Eigen::Vector2d x = {0, 0};
Eigen::Vector2d yt = {1, 0};
const auto y = lin2(relu(lin1(x, lin1_weight, lin1_bias)), lin2_weight, lin2_bias);

Appendix D. Implementation details 57

assert(y == yt);
}

Source Code D.2: Testing the evaluation of a two-input, two-
hidden, ReLU-activated XOR network using mininn.

D.3 NNProblem
The synthesis of mininn and libGOMEA is the NNProblem class and its constituent
NNSubproblem. An NNProblem is similar to a mininn Sequential—in that it is a
sequence of NN layers—that can be “trained”.

NNProblem implements the algorithms outlined in appendix A.1.1 (except early
stopping) and appendix A.2 (but not two-layer linkage; a bounded random tree can be
created instead after intra-layer linkages have been generated). Once training starts,
layers that can be trained (i.e., have parameters) are trained, and those that can not
(such as flattening or activation functions) are evaluated immediately. This process
continues until all layers have been trained, after which the parameters describing the
full network are returned.

NNProblem extends a libGOMEA Problem, but it cannot be used as such; it
is used to supply default hyperparameters to automatically generated subproblems.
Often, values support multiple modes, usually integers and percentages. Percentages
scale the number of parameters in the problem. This way, it is possible to always use
random linkage where each group contains 2% of the total parameters, regardless of
how many parameters there are, for example.

58

Appendix E

Found GD and GDCR
hyperparameters

Table E.1: Hyperparameters found for GD and GDCR.

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GD Sigmoid No 1 2 7 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid No 1 2 6 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid No 1 2 5 0.032 0.9 0.99 N/A 100.0 %
GD Sigmoid No 1 2 4 0.0032 0 0.81 N/A 99.6 %
GD Sigmoid No 1 2 3 0.01 0.09 0.99 N/A 99.6 %
GD Sigmoid No 1 2 2 0.1 0.54 0.99 N/A 94.0 %
GD Sigmoid No 1 2 1 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid No 1 3 10 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid No 1 3 9 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid No 1 3 8 0.032 0.9 0.99 N/A 100.0 %
GD Sigmoid No 1 3 7 0.0032 0 0.81 N/A 100.0 %
GD Sigmoid No 1 3 6 0.001 0.18 0.9 N/A 100.0 %
GD Sigmoid No 1 3 5 0.0032 0.9 0.999 N/A 100.0 %
GD Sigmoid No 1 3 4 0.032 0.54 0.9 N/A 99.2 %
GD Sigmoid No 1 3 3 0.001 0.72 0.99 N/A 100.0 %
GD Sigmoid No 1 3 2 0.032 0.81 0.99 N/A 90.1 %
GD Sigmoid No 1 3 1 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid No 1 4 13 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid No 1 4 12 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid No 1 4 11 0.032 0.9 0.99 N/A 100.0 %
GD Sigmoid No 1 4 10 0.032 0.81 0.9 N/A 99.9 %
GD Sigmoid No 1 4 9 0.001 0.18 0.9 N/A 98.8 %
GD Sigmoid No 1 4 8 0.0032 0.9 0.999 N/A 99.9 %
GD Sigmoid No 1 4 7 0.032 0.81 0.99 N/A 98.0 %
GD Sigmoid No 1 4 6 0.0032 0.9 0.99 N/A 99.9 %
GD Sigmoid No 1 4 5 0.0032 0.99 0.99 N/A 98.7 %
GD Sigmoid No 1 4 4 0.0032 0.72 0.99 N/A 93.0 %
GD Sigmoid No 1 4 3 0.01 0.72 0.99 N/A 93.3 %
GD Sigmoid No 1 4 2 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid No 1 5 16 0.01 0.99 0.999 N/A 100.0 %
GD Sigmoid No 1 5 15 0.0032 0.9 0.99 N/A 100.0 %
GD Sigmoid No 1 5 14 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid No 1 5 13 0.0032 0.9 0.999 N/A 100.0 %
GD Sigmoid No 1 5 12 0.032 0.9 0.999 N/A 99.9 %
GD Sigmoid No 1 5 11 0.032 0.9 0.999 N/A 100.0 %
GD Sigmoid No 1 5 10 0.01 0.45 0.999 N/A 98.1 %
GD Sigmoid No 1 5 9 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid No 1 5 8 0.01 0.9 0.999 N/A 99.6 %
GD Sigmoid No 1 5 7 0.0032 0.9 0.99 N/A 99.2 %
GD Sigmoid No 1 5 6 0.01 0.9 0.99 N/A 96.3 %
GD Sigmoid No 1 5 5 0.0032 0.9 0.99 N/A 92.5 %
GD Sigmoid No 1 5 4 0.0032 0.9 0.99 N/A 78.9 %
GD Sigmoid No 1 5 3 0.0032 0.9 0.99 N/A 52.8 %
GD Sigmoid No 1 5 2 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid No 1 6 19 0.032 0.81 0.999 N/A 100.0 %
GD Sigmoid No 1 6 18 0.01 0.99 0.999 N/A 98.8 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 59

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GD Sigmoid No 1 6 17 0.001 0.99 0.99 N/A 99.3 %
GD Sigmoid No 1 6 16 0.032 0.9 0.999 N/A 100.0 %
GD Sigmoid No 1 6 15 0.032 0.9 0.999 N/A 99.4 %
GD Sigmoid No 1 6 14 0.032 0.9 0.999 N/A 99.5 %
GD Sigmoid No 1 6 13 0.032 0.9 0.999 N/A 98.7 %
GD Sigmoid No 1 6 12 0.01 0.9 0.99 N/A 94.9 %
GD Sigmoid No 1 6 11 0.032 0.9 0.999 N/A 97.3 %
GD Sigmoid No 1 6 10 0.032 0.9 0.999 N/A 96.4 %
GD Sigmoid No 1 6 9 0.032 0.9 0.999 N/A 93.6 %
GD Sigmoid No 1 6 8 0.032 0.9 0.999 N/A 89.9 %
GD Sigmoid No 1 6 7 0.032 0.9 0.999 N/A 78.5 %
GD Sigmoid No 1 6 6 0.032 0.9 0.99 N/A 60.0 %
GD Sigmoid No 1 6 5 0.01 0.9 0.99 N/A 39.4 %
GD Sigmoid No 1 6 4 0.01 0.9 0.99 N/A 20.8 %
GD Sigmoid No 1 6 3 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid Yes 1 2 7 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid Yes 1 2 6 0.01 0.99 0.99 N/A 99.9 %
GD Sigmoid Yes 1 2 5 0.032 0.45 0.9 N/A 99.6 %
GD Sigmoid Yes 1 2 4 0.01 0.54 0.99 N/A 98.0 %
GD Sigmoid Yes 1 2 3 0.032 0 0.999 N/A 94.0 %
GD Sigmoid Yes 1 2 2 0.032 0.36 0.999 N/A 66.2 %
GD Sigmoid Yes 1 2 1 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid Yes 1 3 10 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid Yes 1 3 9 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid Yes 1 3 8 0.032 0.9 0.99 N/A 100.0 %
GD Sigmoid Yes 1 3 7 0.0032 0 0.81 N/A 100.0 %
GD Sigmoid Yes 1 3 6 0.032 0.9 0.9 N/A 100.0 %
GD Sigmoid Yes 1 3 5 0.01 0.36 0.99 N/A 100.0 %
GD Sigmoid Yes 1 3 4 0.0032 0.54 0.9 N/A 99.8 %
GD Sigmoid Yes 1 3 3 0.1 0.54 0.99 N/A 99.3 %
GD Sigmoid Yes 1 3 2 0.1 0.9 0.99 N/A 83.4 %
GD Sigmoid Yes 1 3 1 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid Yes 1 4 13 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid Yes 1 4 12 0.01 0.99 0.99 N/A 100.0 %
GD Sigmoid Yes 1 4 11 0.032 0.9 0.99 N/A 100.0 %
GD Sigmoid Yes 1 4 10 0.01 0.09 0.999 N/A 99.8 %
GD Sigmoid Yes 1 4 9 0.032 0.9 0.9 N/A 99.9 %
GD Sigmoid Yes 1 4 8 0.01 0.36 0.99 N/A 100.0 %
GD Sigmoid Yes 1 4 7 0.032 0.81 0.99 N/A 100.0 %
GD Sigmoid Yes 1 4 6 0.032 0.9 0.99 N/A 99.4 %
GD Sigmoid Yes 1 4 5 0.032 0.9 0.99 N/A 98.1 %
GD Sigmoid Yes 1 4 4 0.1 0.9 0.99 N/A 99.0 %
GD Sigmoid Yes 1 4 3 0.1 0 0.99 N/A 87.2 %
GD Sigmoid Yes 1 4 2 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid Yes 1 5 16 0.0032 0.63 0.99 N/A 100.0 %
GD Sigmoid Yes 1 5 15 0.001 0.72 0.27 N/A 99.4 %
GD Sigmoid Yes 1 5 14 0.0032 0.99 0.99 N/A 99.7 %
GD Sigmoid Yes 1 5 13 0.001 0.63 0.9 N/A 99.6 %
GD Sigmoid Yes 1 5 12 0.032 0.9 0.999 N/A 98.7 %
GD Sigmoid Yes 1 5 11 0.01 0.09 0.99 N/A 99.5 %
GD Sigmoid Yes 1 5 10 0.01 0.72 0.99 N/A 99.9 %
GD Sigmoid Yes 1 5 9 0.0032 0.9 0.99 N/A 99.4 %
GD Sigmoid Yes 1 5 8 0.0032 0.9 0.99 N/A 98.6 %
GD Sigmoid Yes 1 5 7 0.0032 0.72 0.99 N/A 92.2 %
GD Sigmoid Yes 1 5 6 0.01 0.72 0.99 N/A 84.0 %
GD Sigmoid Yes 1 5 5 0.032 0.81 0.99 N/A 69.2 %
GD Sigmoid Yes 1 5 4 0.032 0.81 0.99 N/A 58.3 %
GD Sigmoid Yes 1 5 3 0.032 0.9 0.99 N/A 30.0 %
GD Sigmoid Yes 1 5 2 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid Yes 1 6 19 0.032 0.54 0.99 N/A 100.0 %
GD Sigmoid Yes 1 6 18 0.0032 0.9 0.9 N/A 98.7 %
GD Sigmoid Yes 1 6 17 0.032 0.27 0.99 N/A 99.9 %
GD Sigmoid Yes 1 6 16 0.032 0.27 0.99 N/A 99.7 %
GD Sigmoid Yes 1 6 15 0.032 0.54 0.99 N/A 99.0 %
GD Sigmoid Yes 1 6 14 0.032 0.27 0.99 N/A 99.8 %
GD Sigmoid Yes 1 6 13 0.032 0.27 0.99 N/A 99.8 %
GD Sigmoid Yes 1 6 12 0.032 0.09 0.99 N/A 96.4 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 60

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GD Sigmoid Yes 1 6 11 0.032 0.27 0.99 N/A 95.9 %
GD Sigmoid Yes 1 6 10 0.032 0.45 0.99 N/A 91.8 %
GD Sigmoid Yes 1 6 9 0.032 0.54 0.99 N/A 80.7 %
GD Sigmoid Yes 1 6 8 0.032 0.54 0.99 N/A 74.7 %
GD Sigmoid Yes 1 6 7 0.032 0.9 0.99 N/A 72.0 %
GD Sigmoid Yes 1 6 6 0.032 0.9 0.99 N/A 68.8 %
GD Sigmoid Yes 1 6 5 0.032 0.9 0.99 N/A 58.8 %
GD Sigmoid Yes 1 6 4 0.032 0.81 0.99 N/A 15.1 %
GD Sigmoid Yes 1 6 3 0.001 0.99 0.999 N/A 0.0 %
GD ReLU No 1 2 8 0.01 0.36 0.99 N/A 100.0 %
GD ReLU No 1 2 7 0.0032 0.45 0.9 N/A 95.5 %
GD ReLU No 1 2 7 0.032 0.54 0.99 N/A 95.5 %
GD ReLU No 1 2 6 0.01 0.18 0.9 N/A 95.9 %
GD ReLU No 1 2 5 0.01 0.27 0.9 N/A 91.1 %
GD ReLU No 1 2 4 0.01 0.36 0.9 N/A 80.5 %
GD ReLU No 1 2 3 0.01 0.63 0.81 N/A 59.4 %
GD ReLU No 1 2 2 0.01 0.18 0.81 N/A 30.9 %
GD ReLU No 1 2 1 0.001 0.9 0.999 N/A 0.0 %
GD ReLU No 1 3 10 0.032 0.18 0.9 N/A 100.0 %
GD ReLU No 1 3 9 0.01 0 0.999 N/A 97.3 %
GD ReLU No 1 3 8 0.032 0.45 0.99 N/A 95.0 %
GD ReLU No 1 3 7 0.032 0.27 0.999 N/A 88.5 %
GD ReLU No 1 3 6 0.032 0.27 0.99 N/A 82.4 %
GD ReLU No 1 3 5 0.032 0.18 0.9 N/A 67.6 %
GD ReLU No 1 3 4 0.032 0.27 0.99 N/A 41.5 %
GD ReLU No 1 3 3 0.01 0.09 0.9 N/A 16.6 %
GD ReLU No 1 3 2 0.001 0.9 0.999 N/A 0.0 %
GD ReLU No 1 4 13 0.032 0.54 0.99 N/A 100.0 %
GD ReLU No 1 4 12 0.032 0.18 0.9 N/A 99.0 %
GD ReLU No 1 4 11 0.032 0.45 0.54 N/A 95.8 %
GD ReLU No 1 4 10 0.032 0.45 0.9 N/A 92.9 %
GD ReLU No 1 4 9 0.032 0.36 0.99 N/A 90.9 %
GD ReLU No 1 4 8 0.032 0.27 0.81 N/A 79.0 %
GD ReLU No 1 4 7 0.032 0.36 0.99 N/A 69.8 %
GD ReLU No 1 4 6 0.032 0.36 0.81 N/A 46.8 %
GD ReLU No 1 4 5 0.032 0.54 0.9 N/A 27.3 %
GD ReLU No 1 4 4 0.032 0.36 0.99 N/A 17.3 %
GD ReLU No 1 4 3 0.032 0.45 0.9 N/A 7.3 %
GD ReLU No 1 4 2 0.001 0.9 0.999 N/A 0.0 %
GD ReLU No 1 5 17 0.032 0.45 0.9 N/A 100.0 %
GD ReLU No 1 5 16 0.032 0.36 0.9 N/A 95.5 %
GD ReLU No 1 5 16 0.032 0.54 0.99 N/A 95.5 %
GD ReLU No 1 5 15 0.032 0.54 0.9 N/A 95.8 %
GD ReLU No 1 5 14 0.032 0.45 0.99 N/A 93.3 %
GD ReLU No 1 5 13 0.032 0.63 0.99 N/A 86.1 %
GD ReLU No 1 5 12 0.032 0.45 0.99 N/A 76.2 %
GD ReLU No 1 5 11 0.032 0.63 0.99 N/A 66.8 %
GD ReLU No 1 5 10 0.032 0.45 0.99 N/A 52.7 %
GD ReLU No 1 5 9 0.032 0.54 0.99 N/A 40.4 %
GD ReLU No 1 5 8 0.032 0.54 0.99 N/A 26.6 %
GD ReLU No 1 5 7 0.032 0.27 0.9 N/A 10.4 %
GD ReLU No 1 5 6 0.032 0.45 0.72 N/A 8.8 %
GD ReLU No 1 5 5 0.032 0.54 0.99 N/A 4.0 %
GD ReLU No 1 5 4 0.032 0.36 0.9 N/A 1.1 %
GD ReLU No 1 5 3 0.001 0.9 0.999 N/A 0.0 %
GD ReLU No 1 6 25 0.01 0.54 0.99 N/A 100.0 %
GD ReLU No 1 6 24 0.01 0.63 0.99 N/A 97.0 %
GD ReLU No 1 6 24 0.01 0.81 0.999 N/A 97.0 %
GD ReLU No 1 6 23 0.01 0.72 0.99 N/A 96.5 %
GD ReLU No 1 6 23 0.032 0.63 0.99 N/A 96.5 %
GD ReLU No 1 6 22 0.01 0.72 0.99 N/A 93.6 %
GD ReLU No 1 6 21 0.01 0.63 0.9 N/A 87.4 %
GD ReLU No 1 6 20 0.032 0.72 0.99 N/A 85.5 %
GD ReLU No 1 6 19 0.01 0.72 0.99 N/A 84.8 %
GD ReLU No 1 6 18 0.01 0.72 0.99 N/A 74.3 %
GD ReLU No 1 6 17 0.0032 0.72 0.999 N/A 63.5 %
GD ReLU No 1 6 16 0.01 0.81 0.999 N/A 60.5 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 61

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GD ReLU No 1 6 15 0.0032 0.81 0.999 N/A 47.6 %
GD ReLU No 1 6 14 0.01 0.81 0.999 N/A 41.6 %
GD ReLU No 1 6 13 0.0032 0.9 0.999 N/A 35.7 %
GD ReLU No 1 6 12 0.01 0.81 0.99 N/A 24.4 %
GD ReLU No 1 6 11 0.0032 0.81 0.999 N/A 11.9 %
GD ReLU No 1 6 10 0.0032 0.9 0.999 N/A 11.2 %
GD ReLU No 1 6 9 0.01 0.45 0.99 N/A 3.4 %
GD ReLU No 1 6 8 0.032 0.54 0.99 N/A 4.7 %
GD ReLU No 1 6 7 0.032 0.81 0.99 N/A 1.2 %
GD ReLU No 1 6 6 0.0032 0.63 0.81 N/A 0.1 %
GD ReLU Yes 1 2 9 0.032 0.54 0.45 N/A 39.0 %
GD ReLU Yes 1 2 8 0.1 0.54 0.18 N/A 43.1 %
GD ReLU Yes 1 2 7 0.1 0.9 0.9 N/A 39.9 %
GD ReLU Yes 1 2 6 0.1 0.81 0.63 N/A 33.7 %
GD ReLU Yes 1 2 5 0.1 0.54 0.9 N/A 30.1 %
GD ReLU Yes 1 2 4 0.01 0.81 0.36 N/A 28.8 %
GD ReLU Yes 1 2 3 0.1 0.27 0.9 N/A 19.0 %
GD ReLU Yes 1 2 2 0.032 0.36 0.99 N/A 9.5 %
GD ReLU Yes 1 2 1 0.001 0.9 0.999 N/A 0.0 %
GD ReLU Yes 1 3 13 0.1 0.54 0.72 N/A 62.0 %
GD ReLU Yes 1 3 12 0.032 0.54 0.18 N/A 57.0 %
GD ReLU Yes 1 3 12 0.1 0.54 0.9 N/A 57.0 %
GD ReLU Yes 1 3 11 0.032 0 0.999 N/A 53.1 %
GD ReLU Yes 1 3 11 0.1 0.27 0.54 N/A 53.1 %
GD ReLU Yes 1 3 10 0.032 0.27 0.99 N/A 50.7 %
GD ReLU Yes 1 3 10 0.032 0.72 0.99 N/A 50.7 %
GD ReLU Yes 1 3 9 0.032 0.09 0.99 N/A 50.2 %
GD ReLU Yes 1 3 8 0.032 0.81 0.99 N/A 44.9 %
GD ReLU Yes 1 3 7 0.032 0.36 0.99 N/A 42.4 %
GD ReLU Yes 1 3 6 0.032 0.09 0.99 N/A 38.5 %
GD ReLU Yes 1 3 5 0.032 0 0.99 N/A 27.6 %
GD ReLU Yes 1 3 4 0.032 0.45 0.99 N/A 17.4 %
GD ReLU Yes 1 3 3 0.0032 0.09 0.999 N/A 4.6 %
GD ReLU Yes 1 3 2 0.001 0.9 0.999 N/A 0.0 %
GD ReLU Yes 1 4 17 0.032 0.45 0.36 N/A 81.0 %
GD ReLU Yes 1 4 16 0.032 0.09 0.99 N/A 70.3 %
GD ReLU Yes 1 4 15 0.032 0.72 0.99 N/A 67.9 %
GD ReLU Yes 1 4 14 0.01 0.27 0.18 N/A 64.2 %
GD ReLU Yes 1 4 14 0.01 0.45 0.36 N/A 64.2 %
GD ReLU Yes 1 4 13 0.032 0.45 0.81 N/A 65.6 %
GD ReLU Yes 1 4 13 0.032 0.63 0.36 N/A 65.6 %
GD ReLU Yes 1 4 12 0.032 0.09 0.9 N/A 65.1 %
GD ReLU Yes 1 4 11 0.032 0.27 0.99 N/A 61.1 %
GD ReLU Yes 1 4 10 0.032 0.36 0.99 N/A 54.8 %
GD ReLU Yes 1 4 9 0.032 0.72 0.99 N/A 45.5 %
GD ReLU Yes 1 4 8 0.01 0 0.99 N/A 42.0 %
GD ReLU Yes 1 4 7 0.032 0.09 0.81 N/A 34.6 %
GD ReLU Yes 1 4 6 0.032 0.09 0.63 N/A 23.0 %
GD ReLU Yes 1 4 5 0.01 0.18 0.99 N/A 10.6 %
GD ReLU Yes 1 4 4 0.0032 0.63 0.54 N/A 4.2 %
GD ReLU Yes 1 4 3 0.0032 0.9 0.9 N/A 1.6 %
GD ReLU Yes 1 4 2 0.001 0.9 0.999 N/A 0.0 %
GD ReLU Yes 1 5 21 0.01 0.36 0.54 N/A 87.0 %
GD ReLU Yes 1 5 20 0.01 0.27 0.99 N/A 79.5 %
GD ReLU Yes 1 5 19 0.01 0 0.999 N/A 78.6 %
GD ReLU Yes 1 5 19 0.01 0.27 0.45 N/A 78.6 %
GD ReLU Yes 1 5 18 0.01 0.72 0.72 N/A 72.1 %
GD ReLU Yes 1 5 17 0.01 0.18 0.63 N/A 73.9 %
GD ReLU Yes 1 5 17 0.01 0.27 0.99 N/A 73.9 %
GD ReLU Yes 1 5 16 0.032 0.72 0.99 N/A 72.1 %
GD ReLU Yes 1 5 15 0.01 0.09 0.99 N/A 71.2 %
GD ReLU Yes 1 5 14 0.01 0.45 0.999 N/A 64.3 %
GD ReLU Yes 1 5 13 0.01 0.09 0.99 N/A 58.5 %
GD ReLU Yes 1 5 12 0.032 0.54 0.81 N/A 52.8 %
GD ReLU Yes 1 5 11 0.01 0.09 0.999 N/A 40.6 %
GD ReLU Yes 1 5 10 0.032 0.54 0.99 N/A 31.9 %
GD ReLU Yes 1 5 9 0.01 0.36 0.999 N/A 24.3 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 62

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GD ReLU Yes 1 5 8 0.01 0.45 0.99 N/A 13.6 %
GD ReLU Yes 1 5 7 0.01 0.09 0.9 N/A 5.4 %
GD ReLU Yes 1 5 6 0.001 0.54 0.63 N/A 2.1 %
GD ReLU Yes 1 5 5 0.032 0.36 0.54 N/A 1.7 %
GD ReLU Yes 1 5 4 0.0032 0.99 0.999 N/A 0.2 %
GD ReLU Yes 1 6 25 0.01 0.63 0.999 N/A 88.0 %
GD ReLU Yes 1 6 24 0.01 0.27 0.81 N/A 82.4 %
GD ReLU Yes 1 6 23 0.01 0.09 0.99 N/A 76.0 %
GD ReLU Yes 1 6 22 0.01 0.54 0.9 N/A 77.9 %
GD ReLU Yes 1 6 22 0.01 0.81 0.999 N/A 77.9 %
GD ReLU Yes 1 6 21 0.01 0.54 0.99 N/A 77.7 %
GD ReLU Yes 1 6 20 0.01 0.72 0.999 N/A 72.9 %
GD ReLU Yes 1 6 19 0.01 0.63 0.9 N/A 66.9 %
GD ReLU Yes 1 6 18 0.001 0.9 0.999 N/A 58.9 %
GD ReLU Yes 1 6 17 0.01 0.45 0.999 N/A 55.8 %
GD ReLU Yes 1 6 16 0.0032 0.9 0.99 N/A 47.1 %
GD ReLU Yes 1 6 15 0.01 0.81 0.99 N/A 40.8 %
GD ReLU Yes 1 6 14 0.01 0.72 0.999 N/A 34.8 %
GD ReLU Yes 1 6 13 0.0032 0.81 0.999 N/A 26.1 %
GD ReLU Yes 1 6 12 0.0032 0.9 0.999 N/A 20.1 %
GD ReLU Yes 1 6 11 0.01 0.72 0.99 N/A 11.5 %
GD ReLU Yes 1 6 10 0.01 0.81 0.999 N/A 7.5 %
GD ReLU Yes 1 6 9 0.0032 0.81 0.99 N/A 4.1 %
GD ReLU Yes 1 6 8 0.0032 0.9 0.999 N/A 2.0 %
GD ReLU Yes 1 6 7 0.01 0.9 0.99 N/A 0.6 %
GD Heaviside No 1 2 9 0.001 0.9 0.999 N/A 63.0 %
GD Heaviside No 1 2 8 0.001 0.81 0.99 N/A 58.4 %
GD Heaviside No 1 2 8 0.001 0.9 0.999 N/A 58.4 %
GD Heaviside No 1 2 7 0.001 0.9 0.999 N/A 49.3 %
GD Heaviside No 1 2 6 0.001 0.9 0.999 N/A 36.9 %
GD Heaviside No 1 2 5 0.001 0.9 0.999 N/A 30.4 %
GD Heaviside No 1 2 4 0.001 0.9 0.999 N/A 17.7 %
GD Heaviside No 1 2 3 0.001 0.9 0.999 N/A 8.0 %
GD Heaviside No 1 2 2 0.001 0.9 0.999 N/A 1.5 %
GD Heaviside No 1 2 1 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 3 13 0.001 0.9 0.999 N/A 46.0 %
GD Heaviside No 1 3 12 0.001 0.9 0.999 N/A 39.7 %
GD Heaviside No 1 3 11 0.001 0.81 0.99 N/A 29.2 %
GD Heaviside No 1 3 11 0.001 0.9 0.999 N/A 29.2 %
GD Heaviside No 1 3 10 0.001 0.9 0.999 N/A 21.4 %
GD Heaviside No 1 3 9 0.001 0.9 0.999 N/A 14.8 %
GD Heaviside No 1 3 8 0.001 0.9 0.999 N/A 7.9 %
GD Heaviside No 1 3 7 0.001 0.9 0.999 N/A 4.1 %
GD Heaviside No 1 3 6 0.001 0.9 0.999 N/A 0.9 %
GD Heaviside No 1 4 17 0.001 0.9 0.99 N/A 4.0 %
GD Heaviside No 1 4 16 0.001 0.9 0.99 N/A 4.0 %
GD Heaviside No 1 4 15 0.001 0.9 0.999 N/A 1.2 %
GD Heaviside No 1 4 14 0.001 0.81 0.99 N/A 0.5 %
GD Heaviside No 1 4 14 0.001 0.9 0.999 N/A 0.5 %
GD Heaviside No 1 4 13 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 5 21 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 5 20 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 5 19 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 5 18 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 5 17 0.001 0.81 0.99 N/A 0.0 %
GD Heaviside No 1 5 16 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 6 25 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 6 24 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 6 23 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 6 22 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 6 21 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside No 1 6 20 0.001 0.81 0.99 N/A 0.0 %
GD Heaviside No 1 6 19 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 2 9 0.001 0.9 0.999 N/A 1.0 %
GD Heaviside Yes 1 2 8 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 2 7 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 3 13 0.001 0.9 0.999 N/A 0.0 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 63

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GD Heaviside Yes 1 3 12 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 3 11 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 3 10 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 4 17 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 4 16 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 4 15 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 4 14 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 4 13 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 5 21 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 5 20 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 5 19 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 5 18 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 5 17 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 5 16 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 6 25 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 6 24 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 6 23 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 6 22 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 6 21 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 6 20 0.001 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 1 6 19 0.001 0.9 0.999 N/A 0.0 %
GD Sigmoid No 120.0 2 7 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid No 120.0 2 7 0.01 0.9 0.9999 N/A 100.0 %
GD Sigmoid No 120.0 2 6 0.01 0.36 0.99 N/A 100.0 %
GD Sigmoid No 120.0 2 5 0.032 0.9 0.9999 N/A 100.0 %
GD Sigmoid No 120.0 2 4 0.01 0.27 0.999 N/A 100.0 %
GD Sigmoid No 120.0 2 3 0.032 0.36 0.99 N/A 100.0 %
GD Sigmoid No 120.0 2 2 0.0032 0.9 0.99 N/A 95.7 %
GD Sigmoid No 120.0 2 1 0.01 0.9 0.999 N/A 0.0 %
GD Sigmoid No 120.0 3 10 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid No 120.0 3 10 0.01 0.9 0.9999 N/A 100.0 %
GD Sigmoid No 120.0 3 9 0.01 0.36 0.99 N/A 100.0 %
GD Sigmoid No 120.0 3 8 0.032 0.9 0.9999 N/A 100.0 %
GD Sigmoid No 120.0 3 7 0.01 0.27 0.999 N/A 100.0 %
GD Sigmoid No 120.0 3 6 0.032 0.36 0.99 N/A 100.0 %
GD Sigmoid No 120.0 3 5 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid No 120.0 3 4 0.032 0.9 0.999 N/A 95.7 %
GD Sigmoid No 120.0 3 3 0.0032 0.9 0.99 N/A 91.3 %
GD Sigmoid No 120.0 3 2 0.032 0.9 0.999 N/A 34.8 %
GD Sigmoid No 120.0 3 1 0.0032 0.9 0.999 N/A 0.0 %
GD Sigmoid No 120.0 4 13 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid No 120.0 4 13 0.01 0.9 0.9999 N/A 100.0 %
GD Sigmoid No 120.0 4 12 0.01 0.36 0.99 N/A 100.0 %
GD Sigmoid No 120.0 4 11 0.032 0.9 0.9999 N/A 100.0 %
GD Sigmoid No 120.0 4 10 0.01 0.27 0.999 N/A 100.0 %
GD Sigmoid No 120.0 4 9 0.032 0.36 0.99 N/A 100.0 %
GD Sigmoid No 120.0 4 8 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid No 120.0 4 7 0.032 0.72 0.99 N/A 100.0 %
GD Sigmoid No 120.0 4 6 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid No 120.0 4 5 0.01 0.81 0.99 N/A 69.6 %
GD Sigmoid No 120.0 4 4 0.032 0.81 0.99 N/A 47.8 %
GD Sigmoid No 120.0 4 3 0.0032 0.9 0.99 N/A 34.8 %
GD Sigmoid No 120.0 4 2 0.032 0.09 0.999 N/A 0.0 %
GD Sigmoid No 120.0 5 16 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid No 120.0 5 16 0.032 0.54 0.9999 N/A 100.0 %
GD Sigmoid No 120.0 5 15 0.0032 0.9 0.999 N/A 100.0 %
GD Sigmoid No 120.0 5 14 0.01 0.99 0.999 N/A 100.0 %
GD Sigmoid No 120.0 5 13 0.01 0.45 0.99 N/A 100.0 %
GD Sigmoid No 120.0 5 12 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid No 120.0 5 11 0.032 0.45 0.999 N/A 100.0 %
GD Sigmoid No 120.0 5 10 0.032 0.9 0.999 N/A 100.0 %
GD Sigmoid No 120.0 5 9 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid No 120.0 5 8 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid No 120.0 5 7 0.01 0.9 0.99 N/A 91.3 %
GD Sigmoid No 120.0 5 6 0.01 0.45 0.99 N/A 65.2 %
GD Sigmoid No 120.0 5 5 0.01 0.54 0.99 N/A 43.5 %
GD Sigmoid No 120.0 5 4 0.032 0.9 0.99 N/A 34.8 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 64

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GD Sigmoid No 120.0 5 3 0.032 0.72 0.99 N/A 13.0 %
GD Sigmoid No 120.0 5 2 0.01 0.27 0.99 N/A 0.0 %
GD Sigmoid No 120.0 6 19 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid No 120.0 6 19 0.032 0.54 0.9999 N/A 100.0 %
GD Sigmoid No 120.0 6 18 0.01 0.36 0.999 N/A 100.0 %
GD Sigmoid No 120.0 6 17 0.032 0.72 0.999 N/A 100.0 %
GD Sigmoid No 120.0 6 16 0.032 0.72 0.999 N/A 100.0 %
GD Sigmoid No 120.0 6 15 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid No 120.0 6 14 0.032 0.63 0.99 N/A 100.0 %
GD Sigmoid No 120.0 6 13 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid No 120.0 6 12 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid No 120.0 6 11 0.032 0.9 0.99 N/A 91.3 %
GD Sigmoid No 120.0 6 10 0.01 0.9 0.99 N/A 95.7 %
GD Sigmoid No 120.0 6 9 0.01 0.9 0.99 N/A 91.3 %
GD Sigmoid No 120.0 6 8 0.032 0.72 0.99 N/A 65.2 %
GD Sigmoid No 120.0 6 7 0.01 0.9 0.99 N/A 65.2 %
GD Sigmoid No 120.0 6 6 0.01 0.9 0.99 N/A 26.1 %
GD Sigmoid No 120.0 6 5 0.01 0.81 0.99 N/A 17.4 %
GD Sigmoid No 120.0 6 4 0.0032 0.9 0.99 N/A 4.3 %
GD Sigmoid No 120.0 6 3 0.01 0.45 0.9999 N/A 0.0 %
GD Sigmoid Yes 120.0 2 7 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 2 6 0.01 0.36 0.99 N/A 93.5 %
GD Sigmoid Yes 120.0 2 6 0.01 0.9 0.9999 N/A 93.5 %
GD Sigmoid Yes 120.0 2 5 0.01 0.36 0.99 N/A 93.5 %
GD Sigmoid Yes 120.0 2 5 0.01 0.9 0.99 N/A 93.5 %
GD Sigmoid Yes 120.0 2 4 0.032 0.63 0.9999 N/A 100.0 %
GD Sigmoid Yes 120.0 2 3 0.01 0.72 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 2 2 0.01 0.45 0.99 N/A 34.8 %
GD Sigmoid Yes 120.0 2 2 0.032 0 0.999 N/A 34.8 %
GD Sigmoid Yes 120.0 2 1 0.032 0.45 0.99 N/A 0.0 %
GD Sigmoid Yes 120.0 3 10 0.01 0.9 0.999 N/A 97.8 %
GD Sigmoid Yes 120.0 3 10 0.01 0.99 0.99 N/A 97.8 %
GD Sigmoid Yes 120.0 3 9 0.01 0.63 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 3 8 0.01 0.81 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 3 7 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 3 6 0.032 0.18 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 3 5 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 3 4 0.01 0.9 0.99 N/A 84.8 %
GD Sigmoid Yes 120.0 3 4 0.032 0.9 0.99 N/A 84.8 %
GD Sigmoid Yes 120.0 3 3 0.032 0.9 0.99 N/A 60.9 %
GD Sigmoid Yes 120.0 3 3 0.032 0.9 0.999 N/A 60.9 %
GD Sigmoid Yes 120.0 3 2 0.032 0.9 0.99 N/A 19.6 %
GD Sigmoid Yes 120.0 3 2 0.032 0.9 0.999 N/A 19.6 %
GD Sigmoid Yes 120.0 3 1 0.0032 0.9 0.999 N/A 0.0 %
GD Sigmoid Yes 120.0 4 13 0.0032 0.9 0.99 N/A 97.8 %
GD Sigmoid Yes 120.0 4 13 0.01 0.9 0.999 N/A 97.8 %
GD Sigmoid Yes 120.0 4 12 0.032 0.45 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 4 11 0.01 0.81 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 4 10 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 4 9 0.032 0.18 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 4 8 0.01 0.27 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 4 7 0.01 0.63 0.999 N/A 95.7 %
GD Sigmoid Yes 120.0 4 7 0.01 0.9 0.99 N/A 95.7 %
GD Sigmoid Yes 120.0 4 6 0.032 0.9 0.99 N/A 87.0 %
GD Sigmoid Yes 120.0 4 6 0.032 0.9 0.999 N/A 87.0 %
GD Sigmoid Yes 120.0 4 5 0.01 0.99 0.99 N/A 76.1 %
GD Sigmoid Yes 120.0 4 5 0.032 0.9 0.99 N/A 76.1 %
GD Sigmoid Yes 120.0 4 4 0.032 0.81 0.99 N/A 43.5 %
GD Sigmoid Yes 120.0 4 3 0.032 0.81 0.99 N/A 26.1 %
GD Sigmoid Yes 120.0 4 2 0.01 0.9 0.99 N/A 0.0 %
GD Sigmoid Yes 120.0 5 16 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 5 15 0.01 0.9 0.9999 N/A 100.0 %
GD Sigmoid Yes 120.0 5 14 0.01 0.36 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 5 13 0.0032 0.18 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 5 12 0.01 0.27 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 5 11 0.032 0.36 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 5 10 0.01 0.9 0.99 N/A 100.0 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 65

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GD Sigmoid Yes 120.0 5 9 0.032 0.72 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 5 8 0.032 0.36 0.999 N/A 95.7 %
GD Sigmoid Yes 120.0 5 7 0.032 0.72 0.99 N/A 91.3 %
GD Sigmoid Yes 120.0 5 6 0.032 0.9 0.99 N/A 87.0 %
GD Sigmoid Yes 120.0 5 5 0.032 0.81 0.99 N/A 39.1 %
GD Sigmoid Yes 120.0 5 4 0.032 0.36 0.999 N/A 8.7 %
GD Sigmoid Yes 120.0 5 3 0.032 0.36 0.99 N/A 4.3 %
GD Sigmoid Yes 120.0 5 2 0.01 0.63 0.999 N/A 0.0 %
GD Sigmoid Yes 120.0 6 19 0.01 0.9 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 6 18 0.01 0.9 0.9999 N/A 100.0 %
GD Sigmoid Yes 120.0 6 17 0.01 0.36 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 6 16 0.032 0.9 0.9999 N/A 100.0 %
GD Sigmoid Yes 120.0 6 15 0.01 0.27 0.999 N/A 100.0 %
GD Sigmoid Yes 120.0 6 14 0.032 0.36 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 6 13 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 6 12 0.032 0.72 0.99 N/A 95.7 %
GD Sigmoid Yes 120.0 6 11 0.01 0.9 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 6 10 0.01 0.81 0.99 N/A 100.0 %
GD Sigmoid Yes 120.0 6 9 0.032 0.81 0.99 N/A 91.3 %
GD Sigmoid Yes 120.0 6 8 0.032 0.9 0.99 N/A 82.6 %
GD Heaviside Yes 120.0 2 9 0.01 0.45 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 2 8 0.032 0.72 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 2 7 0.01 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 3 13 0.032 0.63 0.9999 N/A 0.0 %
GD Heaviside Yes 120.0 3 12 0.01 0.45 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 3 11 0.032 0.72 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 3 10 0.01 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 4 17 0.0032 0.99 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 4 16 0.032 0.63 0.9999 N/A 0.0 %
GD Heaviside Yes 120.0 4 15 0.01 0.45 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 4 14 0.032 0.72 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 4 13 0.01 0.9 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 5 20 0.0032 0.99 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 5 19 0.032 0.63 0.9999 N/A 0.0 %
GD Heaviside Yes 120.0 5 18 0.01 0.45 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 5 17 0.032 0.72 0.999 N/A 0.0 %
GD Heaviside Yes 120.0 5 16 0.01 0.9 0.999 N/A 0.0 %
GDCR Sigmoid No 1 2 7 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid No 1 2 6 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid No 1 2 5 0.01 0.9 0.999 -4 100.0 %
GDCR Sigmoid No 1 2 4 0.032 0.81 0.9 -4 100.0 %
GDCR Sigmoid No 1 2 3 0.01 0.09 0.99 -5 99.6 %
GDCR Sigmoid No 1 2 2 0.0032 0.9 0.99 -4 100.0 %
GDCR Sigmoid No 1 2 1 0.001 0.9 0.999 -8 0.0 %
GDCR Sigmoid No 1 3 10 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid No 1 3 9 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid No 1 3 8 0.01 0.9 0.999 -4 100.0 %
GDCR Sigmoid No 1 3 7 0.032 0.81 0.9 -4 100.0 %
GDCR Sigmoid No 1 3 6 0.01 0.09 0.99 -5 100.0 %
GDCR Sigmoid No 1 3 5 0.0032 0.9 0.999 -4 100.0 %
GDCR Sigmoid No 1 3 4 0.032 0.54 0.9 -8 99.2 %
GDCR Sigmoid No 1 3 3 0.0032 0.45 0.99 -7 99.6 %
GDCR Sigmoid No 1 3 2 0.032 0.81 0.99 -4 100.0 %
GDCR Sigmoid No 1 3 1 0.001 0.9 0.999 -8 0.0 %
GDCR Sigmoid No 1 4 13 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid No 1 4 12 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid No 1 4 11 0.01 0.9 0.999 -4 100.0 %
GDCR Sigmoid No 1 4 10 0.032 0.81 0.9 -4 99.9 %
GDCR Sigmoid No 1 4 9 0.032 0.9 0.999 -4 100.0 %
GDCR Sigmoid No 1 4 8 0.0032 0.9 0.99 -4 99.9 %
GDCR Sigmoid No 1 4 7 0.01 0.9 0.63 -4 99.4 %
GDCR Sigmoid No 1 4 6 0.0032 0.9 0.99 -5 99.9 %
GDCR Sigmoid No 1 4 5 0.032 0.9 0.9 -8 98.9 %
GDCR Sigmoid No 1 4 4 0.01 0.9 0.99 -4 99.6 %
GDCR Sigmoid No 1 4 3 0.01 0.9 0.99 -5 97.1 %
GDCR Sigmoid No 1 4 2 0.001 0.9 0.999 -8 0.0 %
GDCR Sigmoid No 1 5 16 0.01 0.99 0.999 -4 100.0 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 66

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GDCR Sigmoid No 1 5 15 0.0032 0.9 0.99 -8 100.0 %
GDCR Sigmoid No 1 5 14 0.0032 0.99 0.99 -5 99.9 %
GDCR Sigmoid No 1 5 13 0.001 0.63 0.9 -5 99.9 %
GDCR Sigmoid No 1 5 12 0.01 0.72 0.99 -6 99.4 %
GDCR Sigmoid No 1 5 11 0.01 0.9 0.99 -6 100.0 %
GDCR Sigmoid No 1 5 10 0.032 0.9 0.999 -5 99.8 %
GDCR Sigmoid No 1 5 9 0.01 0.9 0.99 -6 100.0 %
GDCR Sigmoid No 1 5 8 0.01 0.9 0.999 -8 99.6 %
GDCR Sigmoid No 1 5 7 0.0032 0.9 0.99 -6 99.2 %
GDCR Sigmoid No 1 5 6 0.01 0.9 0.99 -7 96.3 %
GDCR Sigmoid No 1 5 5 0.0032 0.9 0.99 -6 93.8 %
GDCR Sigmoid No 1 5 4 0.0032 0.9 0.99 -8 78.9 %
GDCR Sigmoid No 1 5 3 0.0032 0.9 0.99 -6 58.7 %
GDCR Sigmoid No 1 5 2 0.001 0.9 0.999 -8 0.0 %
GDCR Sigmoid No 1 6 19 0.032 0.81 0.999 -8 100.0 %
GDCR Sigmoid No 1 6 18 0.001 0.99 0.99 -7 99.5 %
GDCR Sigmoid No 1 6 17 0.032 0.9 0.999 -7 99.6 %
GDCR Sigmoid No 1 6 16 0.032 0.9 0.999 -6 100.0 %
GDCR Sigmoid No 1 6 15 0.001 0.99 0.99 -6 96.6 %
GDCR Sigmoid No 1 6 14 0.032 0.9 0.999 -6 99.5 %
GDCR Sigmoid No 1 6 13 0.032 0.9 0.999 -7 98.7 %
GDCR Sigmoid No 1 6 12 0.032 0.9 0.999 -7 98.3 %
GDCR Sigmoid No 1 6 11 0.032 0.9 0.999 -8 97.3 %
GDCR Sigmoid No 1 6 10 0.032 0.9 0.999 -8 96.4 %
GDCR Sigmoid No 1 6 9 0.032 0.9 0.999 -8 93.6 %
GDCR Sigmoid No 1 6 8 0.032 0.9 0.999 -8 89.9 %
GDCR Sigmoid No 1 6 7 0.032 0.9 0.999 -7 78.5 %
GDCR Sigmoid No 1 6 6 0.032 0.9 0.99 -5 56.4 %
GDCR Sigmoid No 1 6 5 0.01 0.9 0.99 -8 39.4 %
GDCR Sigmoid No 1 6 4 0.01 0.9 0.99 -6 23.2 %
GDCR Sigmoid No 1 6 3 0.001 0.9 0.999 -8 0.0 %
GDCR Sigmoid Yes 1 2 7 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid Yes 1 2 6 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid Yes 1 2 5 0.01 0.9 0.999 -4 100.0 %
GDCR Sigmoid Yes 1 2 4 0.1 0.9 0.999 -4 100.0 %
GDCR Sigmoid Yes 1 2 3 0.1 0.99 0.999 -3 100.0 %
GDCR Sigmoid Yes 1 2 2 0.032 0.72 0.99 -5 100.0 %
GDCR Sigmoid Yes 1 2 1 0.001 0.99 0.999 -8 0.0 %
GDCR Sigmoid Yes 1 3 10 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid Yes 1 3 9 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid Yes 1 3 8 0.01 0.9 0.999 -4 100.0 %
GDCR Sigmoid Yes 1 3 7 0.032 0.81 0.9 -4 100.0 %
GDCR Sigmoid Yes 1 3 6 0.01 0.09 0.99 -5 100.0 %
GDCR Sigmoid Yes 1 3 5 0.0032 0.9 0.999 -4 100.0 %
GDCR Sigmoid Yes 1 3 4 0.1 0.18 0.9 -8 99.7 %
GDCR Sigmoid Yes 1 3 3 0.1 0.54 0.99 -4 100.0 %
GDCR Sigmoid Yes 1 3 2 0.032 0.81 0.99 -6 97.7 %
GDCR Sigmoid Yes 1 3 1 0.001 0.99 0.999 -8 0.0 %
GDCR Sigmoid Yes 1 4 13 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid Yes 1 4 12 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid Yes 1 4 11 0.01 0.9 0.999 -4 99.8 %
GDCR Sigmoid Yes 1 4 10 0.032 0.81 0.9 -4 100.0 %
GDCR Sigmoid Yes 1 4 9 0.01 0.09 0.99 -5 99.9 %
GDCR Sigmoid Yes 1 4 8 0.01 0.9 0.99 -8 99.8 %
GDCR Sigmoid Yes 1 4 7 0.01 0.9 0.63 -4 99.8 %
GDCR Sigmoid Yes 1 4 6 0.0032 0.9 0.99 -5 98.9 %
GDCR Sigmoid Yes 1 4 5 0.032 0.9 0.99 -6 99.7 %
GDCR Sigmoid Yes 1 4 4 0.032 0.9 0.99 -5 99.8 %
GDCR Sigmoid Yes 1 4 3 0.032 0.72 0.99 -5 94.4 %
GDCR Sigmoid Yes 1 4 2 0.001 0.9 0.999 -8 0.0 %
GDCR Sigmoid Yes 1 5 16 0.0032 0.9 0.99 -7 100.0 %
GDCR Sigmoid Yes 1 5 15 0.0032 0.36 0.9 -6 100.0 %
GDCR Sigmoid Yes 1 5 14 0.0032 0.99 0.99 -7 99.7 %
GDCR Sigmoid Yes 1 5 13 0.001 0.9 0.99 -6 99.9 %
GDCR Sigmoid Yes 1 5 12 0.01 0.72 0.99 -6 100.0 %
GDCR Sigmoid Yes 1 5 11 0.0032 0.36 0.54 -5 99.8 %
GDCR Sigmoid Yes 1 5 10 0.032 0.9 0.99 -5 99.5 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 67

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GDCR Sigmoid Yes 1 5 9 0.032 0.36 0.99 -7 99.2 %
GDCR Sigmoid Yes 1 5 8 0.01 0.72 0.81 -4 99.8 %
GDCR Sigmoid Yes 1 5 7 0.01 0.72 0.99 -6 98.7 %
GDCR Sigmoid Yes 1 5 6 0.1 0.81 0.99 -5 94.4 %
GDCR Sigmoid Yes 1 5 5 0.1 0.63 0.99 -5 67.8 %
GDCR Sigmoid Yes 1 5 4 0.032 0.81 0.99 -8 58.0 %
GDCR Sigmoid Yes 1 5 3 0.032 0.9 0.99 -8 29.7 %
GDCR Sigmoid Yes 1 5 2 0.001 0.9 0.99 -8 0.0 %
GDCR Sigmoid Yes 1 6 19 0.0032 0.9 0.99 -7 100.0 %
GDCR Sigmoid Yes 1 6 18 0.032 0.9 0.9 -7 99.5 %
GDCR Sigmoid Yes 1 6 17 0.01 0.9 0.99 -7 99.9 %
GDCR Sigmoid Yes 1 6 16 0.032 0.9 0.99 -8 100.0 %
GDCR Sigmoid Yes 1 6 15 0.032 0.27 0.99 -7 100.0 %
GDCR Sigmoid Yes 1 6 14 0.032 0.9 0.99 -6 100.0 %
GDCR Sigmoid Yes 1 6 13 0.032 0.27 0.99 -7 99.8 %
GDCR Sigmoid Yes 1 6 12 0.032 0.9 0.99 -6 99.2 %
GDCR Sigmoid Yes 1 6 11 0.032 0.45 0.99 -7 99.4 %
GDCR Sigmoid Yes 1 6 10 0.1 0.54 0.99 -5 96.1 %
GDCR Sigmoid Yes 1 6 9 0.032 0.81 0.99 -7 84.7 %
GDCR Sigmoid Yes 1 6 8 0.1 0.72 0.99 -6 84.3 %
GDCR Sigmoid Yes 1 6 7 0.032 0.9 0.99 -8 75.1 %
GDCR Sigmoid Yes 1 6 6 0.032 0.9 0.99 -8 69.5 %
GDCR Sigmoid Yes 1 6 5 0.032 0.9 0.99 -8 58.6 %
GDCR Sigmoid Yes 1 6 4 0.032 0.9 0.99 -8 17.9 %
GDCR Sigmoid Yes 1 6 3 0.001 0.9 0.999 -8 0.0 %
GDCR ReLU No 1 2 7 0.01 0.99 0.999 -4 100.0 %
GDCR ReLU No 1 2 6 0.032 0.54 0.9 -4 100.0 %
GDCR ReLU No 1 2 5 0.01 0.9 0.999 -4 100.0 %
GDCR ReLU No 1 2 4 0.0032 0.9 0.999 -7 99.8 %
GDCR ReLU No 1 2 3 0.032 0.9 0.999 -4 100.0 %
GDCR ReLU No 1 2 2 0.01 0.09 0.99 -2 100.0 %
GDCR ReLU No 1 2 1 0.001 0.9 0.999 -8 0.0 %
GDCR ReLU No 1 3 10 0.0032 0.63 0.99 -4 100.0 %
GDCR ReLU No 1 3 9 0.001 0.9 0.9 -3 100.0 %
GDCR ReLU No 1 3 8 0.0032 0.72 0.99 -3 100.0 %
GDCR ReLU No 1 3 7 0.0032 0.99 0.99 -3 98.7 %
GDCR ReLU No 1 3 6 0.0032 0.9 0.99 -4 99.9 %
GDCR ReLU No 1 3 5 0.0032 0.45 0.999 -2 97.4 %
GDCR ReLU No 1 3 4 0.01 0.63 0.99 -4 93.7 %
GDCR ReLU No 1 3 3 0.032 0.54 0.9 -2 83.8 %
GDCR ReLU No 1 3 2 0.001 0.99 0.999 -8 0.0 %
GDCR ReLU No 1 4 13 0.032 0.54 0.99 -7 100.0 %
GDCR ReLU No 1 4 12 0.0032 0.9 0.99 -4 98.5 %
GDCR ReLU No 1 4 11 0.01 0.36 0.999 -2 98.7 %
GDCR ReLU No 1 4 10 0.032 0.45 0.99 -2 98.8 %
GDCR ReLU No 1 4 9 0.032 0.63 0.999 -2 94.6 %
GDCR ReLU No 1 4 8 0.032 0.36 0.99 -2 92.9 %
GDCR ReLU No 1 4 7 0.032 0.45 0.9 -2 88.7 %
GDCR ReLU No 1 4 6 0.032 0.54 0.9 -2 73.9 %
GDCR ReLU No 1 4 5 0.01 0.36 0.99 -2 48.2 %
GDCR ReLU No 1 4 4 0.01 0.81 0.99 -3 22.5 %
GDCR ReLU No 1 4 3 0.01 0.72 0.9 -2 15.6 %
GDCR ReLU No 1 4 2 0.001 0.99 0.999 -8 0.0 %
GDCR ReLU No 1 5 16 0.01 0.72 0.99 -3 100.0 %
GDCR ReLU No 1 5 15 0.0032 0.81 0.999 -2 97.6 %
GDCR ReLU No 1 5 14 0.032 0.63 0.9 -2 97.3 %
GDCR ReLU No 1 5 13 0.01 0.81 0.999 -2 93.9 %
GDCR ReLU No 1 5 12 0.01 0.72 0.99 -2 90.5 %
GDCR ReLU No 1 5 11 0.032 0.63 0.99 -2 76.8 %
GDCR ReLU No 1 5 10 0.01 0.72 0.99 -2 67.0 %
GDCR ReLU No 1 5 9 0.032 0.54 0.9 -2 42.5 %
GDCR ReLU No 1 5 8 0.032 0.54 0.99 -3 26.9 %
GDCR ReLU No 1 5 7 0.032 0.45 0.81 -5 12.1 %
GDCR ReLU No 1 5 6 0.032 0.45 0.72 -7 8.8 %
GDCR ReLU No 1 5 5 0.032 0.54 0.99 -8 4.0 %
GDCR ReLU No 1 5 4 0.032 0.36 0.9 -8 1.1 %
GDCR ReLU No 1 5 3 0.001 0.9 0.999 -8 0.0 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 68

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GDCR ReLU No 1 6 22 0.0032 0.9 0.99 -3 100.0 %
GDCR ReLU No 1 6 21 0.0032 0.9 0.99 -2 98.9 %
GDCR ReLU No 1 6 21 0.01 0.72 0.99 -2 98.9 %
GDCR ReLU No 1 6 20 0.0032 0.9 0.99 -2 97.9 %
GDCR ReLU No 1 6 19 0.0032 0.9 0.99 -3 96.5 %
GDCR ReLU No 1 6 18 0.01 0.81 0.99 -2 91.9 %
GDCR ReLU No 1 6 17 0.0032 0.9 0.99 -2 87.0 %
GDCR ReLU No 1 6 16 0.0032 0.9 0.99 -2 78.5 %
GDCR ReLU No 1 6 15 0.0032 0.9 0.99 -2 63.7 %
GDCR ReLU No 1 6 14 0.01 0.81 0.999 -3 44.6 %
GDCR ReLU No 1 6 13 0.0032 0.9 0.999 -3 40.4 %
GDCR ReLU No 1 6 12 0.01 0.81 0.999 -4 25.4 %
GDCR ReLU No 1 6 11 0.01 0.81 0.999 -8 14.9 %
GDCR ReLU No 1 6 10 0.0032 0.9 0.999 -3 11.9 %
GDCR ReLU No 1 6 9 0.01 0.45 0.99 -8 3.4 %
GDCR ReLU No 1 6 8 0.032 0.54 0.99 -8 4.7 %
GDCR ReLU No 1 6 7 0.032 0.81 0.99 -8 1.2 %
GDCR ReLU No 1 6 6 0.0032 0.54 0.999 -8 0.2 %
GDCR ReLU Yes 1 2 7 0.01 0.99 0.999 -4 100.0 %
GDCR ReLU Yes 1 2 6 0.0032 0.63 0.99 -4 99.9 %
GDCR ReLU Yes 1 2 5 0.1 0.9 0.999 -2 100.0 %
GDCR ReLU Yes 1 2 4 0.01 0.18 0.999 -3 99.6 %
GDCR ReLU Yes 1 2 3 0.01 0.9 0.999 -3 100.0 %
GDCR ReLU Yes 1 2 2 0.01 0.72 0.99 -2 100.0 %
GDCR ReLU Yes 1 2 1 0.001 0.9 0.999 -8 0.0 %
GDCR ReLU Yes 1 3 10 0.0032 0.63 0.99 -4 100.0 %
GDCR ReLU Yes 1 3 9 0.0032 0.63 0.99 -4 100.0 %
GDCR ReLU Yes 1 3 8 0.0032 0.72 0.99 -4 99.8 %
GDCR ReLU Yes 1 3 7 0.01 0.54 0.99 -2 100.0 %
GDCR ReLU Yes 1 3 6 0.01 0.45 0.45 -2 99.6 %
GDCR ReLU Yes 1 3 5 0.1 0.9 0.999 -2 99.8 %
GDCR ReLU Yes 1 3 4 0.1 0.9 0.99 -2 95.9 %
GDCR ReLU Yes 1 3 3 0.032 0.54 0.99 -2 72.3 %
GDCR ReLU Yes 1 3 2 0.001 0.9 0.999 -8 0.0 %
GDCR ReLU Yes 1 4 13 0.0032 0.63 0.99 -4 100.0 %
GDCR ReLU Yes 1 4 12 0.032 0.63 0.72 -2 99.8 %
GDCR ReLU Yes 1 4 11 0.01 0.18 0.99 -2 98.6 %
GDCR ReLU Yes 1 4 10 0.032 0.36 0.99 -2 96.9 %
GDCR ReLU Yes 1 4 9 0.01 0.36 0.99 -2 96.9 %
GDCR ReLU Yes 1 4 8 0.032 0.72 0.9 -2 91.6 %
GDCR ReLU Yes 1 4 7 0.032 0.54 0.81 -2 82.4 %
GDCR ReLU Yes 1 4 6 0.032 0.54 0.99 -2 62.2 %
GDCR ReLU Yes 1 4 5 0.01 0.54 0.99 -2 33.8 %
GDCR ReLU Yes 1 4 4 0.032 0.72 0.63 -2 17.0 %
GDCR ReLU Yes 1 4 3 0.032 0.63 0.9 -2 7.2 %
GDCR ReLU Yes 1 4 2 0.001 0.9 0.999 -8 0.0 %
GDCR ReLU Yes 1 5 16 0.01 0.54 0.999 -2 100.0 %
GDCR ReLU Yes 1 5 15 0.01 0.81 0.9 -2 97.4 %
GDCR ReLU Yes 1 5 14 0.032 0.63 0.9 -2 97.3 %
GDCR ReLU Yes 1 5 13 0.032 0.63 0.9 -2 96.5 %
GDCR ReLU Yes 1 5 12 0.01 0.63 0.99 -2 89.6 %
GDCR ReLU Yes 1 5 11 0.01 0.72 0.99 -2 81.4 %
GDCR ReLU Yes 1 5 10 0.032 0.54 0.9 -2 62.9 %
GDCR ReLU Yes 1 5 9 0.01 0.54 0.99 -2 41.8 %
GDCR ReLU Yes 1 5 8 0.01 0.81 0.99 -3 20.4 %
GDCR ReLU Yes 1 5 7 0.01 0.09 0.9 -8 6.3 %
GDCR ReLU Yes 1 5 6 0.01 0.63 0.63 -2 5.8 %
GDCR ReLU Yes 1 5 5 0.032 0.36 0.54 -8 1.8 %
GDCR ReLU Yes 1 5 4 0.0032 0.99 0.999 -8 0.2 %
GDCR ReLU Yes 1 6 21 0.0032 0.9 0.99 -3 100.0 %
GDCR ReLU Yes 1 6 20 0.0032 0.9 0.99 -2 98.9 %
GDCR ReLU Yes 1 6 20 0.01 0.81 0.99 -2 98.9 %
GDCR ReLU Yes 1 6 19 0.01 0.81 0.99 -2 98.0 %
GDCR ReLU Yes 1 6 18 0.01 0.81 0.99 -2 93.2 %
GDCR ReLU Yes 1 6 17 0.01 0.81 0.99 -2 91.3 %
GDCR ReLU Yes 1 6 16 0.01 0.9 0.99 -2 78.1 %
GDCR ReLU Yes 1 6 15 0.01 0.81 0.99 -3 58.7 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 69

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GDCR ReLU Yes 1 6 14 0.01 0.81 0.999 -2 48.4 %
GDCR ReLU Yes 1 6 13 0.01 0.9 0.99 -2 36.4 %
GDCR ReLU Yes 1 6 12 0.0032 0.81 0.999 -4 20.3 %
GDCR ReLU Yes 1 6 11 0.01 0.9 0.99 -2 14.0 %
GDCR ReLU Yes 1 6 10 0.01 0.81 0.999 -8 7.9 %
GDCR ReLU Yes 1 6 9 0.0032 0.81 0.99 -8 4.3 %
GDCR ReLU Yes 1 6 8 0.0032 0.9 0.99 -4 2.3 %
GDCR ReLU Yes 1 6 7 0.01 0.9 0.99 -8 0.6 %
GDCR Heaviside No 1 2 7 0.0032 0.63 0.99 -4 100.0 %
GDCR Heaviside No 1 2 6 0.0032 0.63 0.99 -4 100.0 %
GDCR Heaviside No 1 2 5 0.0032 0.72 0.99 -4 99.6 %
GDCR Heaviside No 1 2 4 0.01 0.54 0.99 -2 100.0 %
GDCR Heaviside No 1 2 3 0.032 0.54 0.99 -3 100.0 %
GDCR Heaviside No 1 2 2 0.1 0.45 0.999 -3 99.8 %
GDCR Heaviside No 1 2 1 0.001 0.99 0.999 -8 0.0 %
GDCR Heaviside No 1 3 10 0.01 0.9 0.99 -4 100.0 %
GDCR Heaviside No 1 3 9 0.032 0.9 0.99 -3 99.9 %
GDCR Heaviside No 1 3 8 0.1 0.81 0.999 -3 99.9 %
GDCR Heaviside No 1 3 7 0.1 0.63 0.99 -3 98.6 %
GDCR Heaviside No 1 3 6 0.1 0.72 0.99 -3 86.1 %
GDCR Heaviside No 1 3 5 0.1 0.54 0.99 -3 56.8 %
GDCR Heaviside No 1 3 4 0.1 0.72 0.9 -2 28.6 %
GDCR Heaviside No 1 3 3 0.1 0.63 0.9 -2 9.7 %
GDCR Heaviside No 1 3 2 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside No 1 4 17 0.1 0.9 0.999 -3 70.0 %
GDCR Heaviside No 1 4 16 0.1 0.9 0.999 -3 59.1 %
GDCR Heaviside No 1 4 15 0.1 0.81 0.99 -3 33.6 %
GDCR Heaviside No 1 4 14 0.01 0.9 0.99 -3 18.0 %
GDCR Heaviside No 1 4 14 0.1 0.81 0.999 -3 18.0 %
GDCR Heaviside No 1 4 13 0.1 0.81 0.99 -3 10.0 %
GDCR Heaviside No 1 4 12 0.001 0.9 0.999 -8 0.1 %
GDCR Heaviside No 1 5 21 0.001 0.54 0.999 -8 0.0 %
GDCR Heaviside No 1 5 20 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside No 1 5 19 0.001 0.999 0.9 -8 0.0 %
GDCR Heaviside No 1 5 18 0.001 0.9 0.99 -8 0.0 %
GDCR Heaviside No 1 5 17 0.001 0.999 0.99 -8 0.0 %
GDCR Heaviside No 1 5 16 0.001 0.99 0.999 -8 0.0 %
GDCR Heaviside No 1 6 25 0.001 0.63 0.45 -8 0.0 %
GDCR Heaviside No 1 6 24 0.001 0.54 0.999 -8 0.0 %
GDCR Heaviside No 1 6 23 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside No 1 6 22 0.001 0.999 0.9 -8 0.0 %
GDCR Heaviside No 1 6 21 0.001 0.9 0.99 -8 0.0 %
GDCR Heaviside No 1 6 20 0.001 0.999 0.99 -8 0.0 %
GDCR Heaviside No 1 6 19 0.001 0.99 0.999 -8 0.0 %
GDCR Heaviside Yes 1 2 9 0.001 0.9 0.999 -8 58.0 %
GDCR Heaviside Yes 1 2 8 0.001 0.9 0.999 -8 58.7 %
GDCR Heaviside Yes 1 2 7 0.001 0.9 0.999 -8 59.3 %
GDCR Heaviside Yes 1 2 6 0.001 0.9 0.999 -8 59.5 %
GDCR Heaviside Yes 1 2 5 0.001 0.9 0.999 -8 57.6 %
GDCR Heaviside Yes 1 2 4 0.001 0.9 0.999 -8 51.5 %
GDCR Heaviside Yes 1 2 3 0.001 0.9 0.999 -8 44.7 %
GDCR Heaviside Yes 1 2 2 0.001 0.9 0.999 -8 23.3 %
GDCR Heaviside Yes 1 2 1 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 3 13 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 3 12 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 3 11 0.001 0.9 0.999 -8 1.0 %
GDCR Heaviside Yes 1 3 10 0.001 0.9 0.999 -8 1.0 %
GDCR Heaviside Yes 1 4 17 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 4 16 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 4 15 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 4 14 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 4 13 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 5 21 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 5 20 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 5 19 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 5 18 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 5 17 0.001 0.9 0.999 -8 0.0 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 70

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GDCR Heaviside Yes 1 5 16 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 6 25 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 6 24 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 6 23 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 6 22 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 6 21 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 6 20 0.001 0.9 0.999 -8 0.0 %
GDCR Heaviside Yes 1 6 19 0.001 0.9 0.999 -8 0.0 %
GDCR Sigmoid No 120.0 2 7 0.01 0.9 0.999 -7 100.0 %
GDCR Sigmoid No 120.0 2 7 0.01 0.9 0.9999 -7 100.0 %
GDCR Sigmoid No 120.0 2 6 0.01 0.36 0.99 -4 100.0 %
GDCR Sigmoid No 120.0 2 5 0.032 0.9 0.9999 -4 100.0 %
GDCR Sigmoid No 120.0 2 4 0.01 0.27 0.999 -7 100.0 %
GDCR Sigmoid No 120.0 2 3 0.032 0.36 0.99 -6 100.0 %
GDCR Sigmoid Yes 120.0 2 7 0.01 0.9 0.999 -7 100.0 %
GDCR Sigmoid Yes 120.0 2 7 0.01 0.9 0.9999 -7 100.0 %
GDCR Sigmoid Yes 120.0 2 6 0.01 0.36 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 2 5 0.032 0.9 0.9999 -4 100.0 %
GDCR Sigmoid Yes 120.0 2 4 0.01 0.27 0.999 -7 100.0 %
GDCR Sigmoid Yes 120.0 2 3 0.032 0.36 0.99 -6 100.0 %
GDCR Sigmoid Yes 120.0 2 2 0.032 0.45 0.99 -4 95.7 %
GDCR Sigmoid Yes 120.0 2 1 0.01 0.9 0.999 -3 0.0 %
GDCR Sigmoid Yes 120.0 3 10 0.01 0.9 0.9999 -4 100.0 %
GDCR Sigmoid Yes 120.0 3 9 0.032 0.99 0.999 -8 100.0 %
GDCR Sigmoid Yes 120.0 3 8 0.01 0.99 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 3 7 0.0032 0.27 0.999 -5 100.0 %
GDCR Sigmoid Yes 120.0 3 6 0.01 0.45 0.999 -5 100.0 %
GDCR Sigmoid Yes 120.0 3 5 0.032 0.18 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 3 4 0.01 0.9 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 3 3 0.032 0.36 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 3 2 0.01 0.81 0.99 -5 60.9 %
GDCR Sigmoid Yes 120.0 3 1 0.032 0.99 0.99 -3 0.0 %
GDCR Sigmoid Yes 120.0 4 13 0.01 0.9 0.9999 -4 100.0 %
GDCR Sigmoid Yes 120.0 4 12 0.032 0.99 0.999 -8 100.0 %
GDCR Sigmoid Yes 120.0 4 11 0.01 0.99 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 4 10 0.0032 0.9 0.999 -5 100.0 %
GDCR Sigmoid Yes 120.0 4 9 0.01 0.9 0.99 -7 100.0 %
GDCR Sigmoid Yes 120.0 4 8 0.01 0.54 0.9999 -4 100.0 %
GDCR Sigmoid Yes 120.0 4 7 0.01 0.99 0.99 -5 100.0 %
GDCR Sigmoid Yes 120.0 4 6 0.032 0.18 0.999 -4 100.0 %
GDCR Sigmoid Yes 120.0 4 5 0.032 0.9 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 4 4 0.032 0.9 0.99 -8 43.5 %
GDCR Sigmoid Yes 120.0 4 3 0.032 0.81 0.99 -8 26.1 %
GDCR Sigmoid Yes 120.0 4 2 0.01 0.18 0.9999 -4 0.0 %
GDCR Sigmoid Yes 120.0 5 16 0.01 0.9 0.999 -7 100.0 %
GDCR Sigmoid Yes 120.0 5 16 0.01 0.9 0.9999 -7 100.0 %
GDCR Sigmoid Yes 120.0 5 15 0.01 0.36 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 5 14 0.032 0.9 0.9999 -4 100.0 %
GDCR Sigmoid Yes 120.0 5 13 0.01 0.27 0.999 -7 100.0 %
GDCR Sigmoid Yes 120.0 5 12 0.032 0.36 0.99 -6 100.0 %
GDCR Sigmoid Yes 120.0 5 11 0.01 0.9 0.99 -6 100.0 %
GDCR Sigmoid Yes 120.0 5 10 0.032 0.9 0.999 -8 100.0 %
GDCR Sigmoid Yes 120.0 5 9 0.01 0.99 0.99 -7 100.0 %
GDCR Sigmoid Yes 120.0 5 8 0.01 0.9 0.99 -5 100.0 %
GDCR Sigmoid Yes 120.0 5 7 0.032 0.81 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 5 6 0.032 0.63 0.99 -5 100.0 %
GDCR Sigmoid Yes 120.0 5 5 0.032 0.36 0.99 -5 43.5 %
GDCR Sigmoid Yes 120.0 5 4 0.032 0.9 0.99 -5 8.7 %
GDCR Sigmoid Yes 120.0 5 3 0.032 0.54 0.99 -6 4.3 %
GDCR Sigmoid Yes 120.0 5 2 0.032 0.9 0.99 -5 0.0 %
GDCR Sigmoid Yes 120.0 6 19 0.01 0.9 0.999 -7 100.0 %
GDCR Sigmoid Yes 120.0 6 19 0.01 0.9 0.9999 -7 100.0 %
GDCR Sigmoid Yes 120.0 6 18 0.01 0.36 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 6 17 0.032 0.9 0.9999 -4 100.0 %
GDCR Sigmoid Yes 120.0 6 16 0.01 0.27 0.999 -7 100.0 %
GDCR Sigmoid Yes 120.0 6 15 0.032 0.36 0.99 -6 100.0 %
GDCR Sigmoid Yes 120.0 6 14 0.01 0.9 0.99 -6 100.0 %

Continued on next page...

Appendix E. Found GD and GDCR hyperparameters 71

Algo. Act. fn. O. act. I.g. Inp. Hdn. 𝜂 𝛽1 𝛽2 log10 𝑟 Succ. r.
GDCR Sigmoid Yes 120.0 6 13 0.032 0.9 0.999 -8 100.0 %
GDCR Sigmoid Yes 120.0 6 12 0.032 0.81 0.99 -4 100.0 %
GDCR Sigmoid Yes 120.0 6 11 0.032 0.54 0.999 -8 100.0 %
GDCR Sigmoid Yes 120.0 6 10 0.01 0.36 0.99 -5 100.0 %
GDCR Sigmoid Yes 120.0 6 9 0.01 0.63 0.99 -5 95.7 %
GDCR Sigmoid Yes 120.0 6 8 0.032 0.9 0.99 -5 87.0 %
GDCR Sigmoid Yes 120.0 6 7 0.032 0.72 0.99 -6 69.6 %
GDCR Sigmoid Yes 120.0 6 6 0.032 0.81 0.99 -8 34.8 %
GDCR Sigmoid Yes 120.0 6 5 0.032 0.9 0.999 -8 13.0 %
GDCR Sigmoid Yes 120.0 6 4 0.032 0.18 0.999 -7 0.0 %
GDCR Heaviside No 120.0 2 7 0.01 0.36 0.999 -7 100.0 %
GDCR Heaviside No 120.0 2 7 0.032 0.99 0.9999 -5 100.0 %
GDCR Heaviside No 120.0 2 6 0.01 0.81 0.999 -4 100.0 %
GDCR Heaviside Yes 120.0 2 9 0.01 0.45 0.999 -3 56.5 %
GDCR Heaviside Yes 120.0 2 9 0.032 0.63 0.9999 -8 56.5 %
GDCR Heaviside Yes 120.0 2 8 0.0032 0.99 0.999 -7 60.9 %
GDCR Heaviside Yes 120.0 2 8 0.032 0.72 0.999 -1 60.9 %
GDCR Heaviside Yes 120.0 2 7 0.01 0.9 0.999 -7 73.9 %
GDCR Heaviside Yes 120.0 2 7 0.01 0.99 0.9999 -6 73.9 %
GDCR Heaviside Yes 120.0 2 6 0.01 0.99 0.9999 -4 65.2 %
GDCR Heaviside Yes 120.0 2 5 0.01 0.09 0.9999 -5 65.2 %

72

Glossary

AMS anticipated mean shift. 14, 16, 33

BIPOP-CMA-ES bi-population CMA-ES. i, iii, vi, vii, 2, 14, 21–23, 25–28, 30–34,
36–41

CMA-ES covariance matrix adaptation evolutionary strategy. 3, 12–14, 16, 72

EA evolutionary algorithm. i, 1–3, 7, 10–12, 14, 20, 27, 32, 33, 35, 40–42

ES evolutionary strategy. 2, 12

FOS family of subsets. 14, 15

GA genetic algorithm. 2, 18

GD gradient descent. i, v–vii, 1–3, 6–10, 18–25, 27–33, 35, 37–42, 58–71

GDCR gradient descent with cold restarts. v, vii, 10, 21–25, 27, 29–33, 38, 39,
58–71

GOMEA gene-pool optimal mixing evolutionary algorithm. i, vi, vii, 2, 3, 14, 15,
20–23, 25–28, 30–33, 36, 37, 39–42

IMS interleaved multi-start. 14, 16, 23

MLP multilayer perceptron. i, 3, 18, 34, 42

MSE mean squared error. 20, 26, 34

NN neural network. i, vi, 1–3, 5, 7, 17, 21, 41, 42

PSO particle-swarm optimization. 21, 22

ReLU rectified linear unit. i, iii, iv, vi, vii, 6, 17, 18, 22, 24, 26, 30–32, 36, 37, 39,
46, 60–62, 67–69

RNG random number generator. 20, 22

XNOR Excusive-NOR. 16

XOR Exclusive-OR. i, iii, vi, vii, 1–3, 16–18, 20–35

73

Bibliography

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H.
Arshad, “State-of-the-art in artificial neural network applications: A survey,”
Heliyon, vol. 4, no. 11, e00938, 2018. doi: 10.1016/j.heliyon.2018.e00938.

[2] T. J. Brinker et al., “Skin cancer classification using convolutional neural net-
works: Systematic review,” Journal of Medical Internet Research, vol. 20, no. 10,
e11936, Oct. 17, 2018, Company: Journal of Medical Internet Research Distrib-
utor: Journal of Medical Internet Research Institution: Journal of Medical In-
ternet Research Label: Journal of Medical Internet Research Publisher: JMIR
Publications Inc., Toronto, Canada. doi: 10.2196/11936. [Online]. Available:
https://www.jmir.org/2018/10/e11936.

[3] T. B. Brown et al., “Language models are few-shot learners,” arXiv:2005.14165
[cs], Jul. 22, 2020. arXiv: 2005.14165. [Online]. Available: http://arxiv.org/
abs/2005.14165.

[4] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, train-
able neural networks,” arXiv:1803.03635 [cs], Mar. 9, 2018, version: 1. arXiv:
1803.03635. [Online]. Available: http://arxiv.org/abs/1803.03635.

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 [cs], Jan. 29, 2017. arXiv: 1412 . 6980. [Online]. Available:
http://arxiv.org/abs/1412.6980.

[6] G. Hornby, A. Globus, D. Linden, and J. Lohn, “Automated antenna design
with evolutionary algorithms,” in Space 2006, San Jose, California: American
Institute of Aeronautics and Astronautics, Sep. 19, 2006, isbn: 978-1-62410-
049-9. doi: 10.2514/6.2006-7242. [Online]. Available: http://arc.aiaa.
org/doi/10.2514/6.2006-7242.

[7] V. Kuroda, M. Allard, B. Lewis, and M. Lindsay, “Comm for small sats: The
lunar atmosphere and dust environment explorer (LADEE) communications
subsystem,” p. 11, 2014. [Online]. Available: https://digitalcommons.usu.
edu/cgi/viewcontent.cgi?article=3075&context=smallsat.

[8] D. Chia and L. While, “Automated design of architectural layouts using a multi-
objective evolutionary algorithm,” in Proceedings of the 10th International Con-
ference on Simulated Evolution and Learning - Volume 8886, ser. SEAL 2014,
Berlin, Heidelberg: Springer-Verlag, Dec. 15, 2014, pp. 760–772, isbn: 978-3-
319-13562-5. doi: 10 . 1007 / 978 - 3 - 319 - 13563 - 2 _ 64. [Online]. Available:
https://doi.org/10.1007/978-3-319-13563-2_64.

[9] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neu-
ral networks: Optimizing connections and connectivity,” Parallel Computing,
vol. 14, no. 3, pp. 347–361, Aug. 1, 1990, issn: 0167-8191. doi: 10.1016/0167-
8191(90)90086-O. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/016781919090086O.

https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.2196/11936
https://www.jmir.org/2018/10/e11936
https://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.2514/6.2006-7242
http://arc.aiaa.org/doi/10.2514/6.2006-7242
http://arc.aiaa.org/doi/10.2514/6.2006-7242
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3075&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3075&context=smallsat
https://doi.org/10.1007/978-3-319-13563-2_64
https://doi.org/10.1007/978-3-319-13563-2_64
https://doi.org/10.1016/0167-8191(90)90086-O
https://doi.org/10.1016/0167-8191(90)90086-O
https://www.sciencedirect.com/science/article/pii/016781919090086O
https://www.sciencedirect.com/science/article/pii/016781919090086O

Bibliography 74

[10] D. E. Rumelhart and J. L. McClelland, “Learning internal representations by
error propagation,” in Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition: Foundations. 1987, pp. 318–362.

[11] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural
nets and problem solutions,” International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, vol. 06, no. 02, pp. 107–116, Apr. 1998. doi:
10.1142/s0218488598000094. [Online]. Available: https://doi.org/10.
1142/s0218488598000094.

[12] M. Zeiler et al., “On rectified linear units for speech processing,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, 2013,
pp. 3517–3521. doi: 10.1109/ICASSP.2013.6638312.

[13] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4,
pp. 115–133, Dec. 1943. doi: 10.1007/bf02478259. [Online]. Available: https:
//doi.org/10.1007/bf02478259.

[14] G. Hinton, N. Srivastava, and K. Swersky, Neural networks for machine learning,
2011. [Online]. Available: http://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf (visited on 04/28/2022).

[15] B. T. Polyak, “Some methods of speeding up the convergence of iteration meth-
ods,” USSR Computational Mathematics and Mathematical Physics, vol. 4,
no. 5, pp. 1–17, Jan. 1, 1964, issn: 0041-5553. doi: 10.1016/0041-5553(64)
90137-5. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0041555364901375.

[16] D. Thierens and P. A. Bosman, “Optimal mixing evolutionary algorithms,” in
Proceedings of the 13th annual conference on Genetic and evolutionary com-
putation - GECCO ’11, Dublin, Ireland: ACM Press, 2011, p. 617, isbn: 978-
1-4503-0557-0. doi: 10.1145/2001576.2001661. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=2001576.2001661.

[17] A. Bouter, T. Alderliesten, C. Witteveen, and P. A. N. Bosman, “Exploiting
linkage information in real-valued optimization with the real-valued gene-pool
optimal mixing evolutionary algorithm,” in Proceedings of the Genetic and Evo-
lutionary Computation Conference, Berlin Germany: ACM, Jul. 2017, pp. 705–
712, isbn: 978-1-4503-4920-8. doi: 10.1145/3071178.3071272. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3071178.3071272.

[18] N. H. Luong, H. La Poutré, and P. A. Bosman, “Multi-objective gene-pool
optimal mixing evolutionary algorithm with the interleaved multi-start scheme,”
Swarm and Evolutionary Computation, vol. 40, pp. 238–254, Jun. 2018, issn:
22106502. doi: 10.1016/j.swevo.2018.02.005. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S2210650217304765.

[19] G. R. Harik and F. G. Lobo, “A parameter-less genetic algorithm,” in Proceed-
ings of the 1st Annual Conference on Genetic and Evolutionary Computation
- Volume 1, ser. GECCO’99, Orlando, Florida: Morgan Kaufmann Publishers
Inc., 1999, pp. 258–265, isbn: 1558606114. doi: 10.5555/2933923.2933949.

[20] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989,
issn: 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/0893608089900208.

https://doi.org/10.1142/s0218488598000094
https://doi.org/10.1142/s0218488598000094
https://doi.org/10.1142/s0218488598000094
https://doi.org/10.1109/ICASSP.2013.6638312
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://doi.org/10.1145/2001576.2001661
http://portal.acm.org/citation.cfm?doid=2001576.2001661
http://portal.acm.org/citation.cfm?doid=2001576.2001661
https://doi.org/10.1145/3071178.3071272
https://dl.acm.org/doi/10.1145/3071178.3071272
https://doi.org/10.1016/j.swevo.2018.02.005
https://linkinghub.elsevier.com/retrieve/pii/S2210650217304765
https://linkinghub.elsevier.com/retrieve/pii/S2210650217304765
https://doi.org/10.5555/2933923.2933949
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208

Bibliography 75

[21] D. J. Montana and L. Davis, “Training feedforward neural networks using ge-
netic algorithms,” p. 6, 1989.

[22] D. B. Fogel, L. J. Fogel, and V. W. Porto, “Evolving neural networks,” Bio-
logical Cybernetics, vol. 63, no. 6, pp. 487–493, Oct. 1, 1990, issn: 1432-0770.
doi: 10.1007/BF00199581. [Online]. Available: https://doi.org/10.1007/
BF00199581.

[23] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through aug-
menting topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99–127,
Jun. 2002, issn: 1063-6560, 1530-9304. doi: 10.1162/106365602320169811.
[Online]. Available: https://direct.mit.edu/evco/article/10/2/99-
127/1123.

[24] K. Stanley, B. Bryant, and R. Miikkulainen, “Real-time neuroevolution in the
NERO video game,” IEEE Transactions on Evolutionary Computation, vol. 9,
no. 6, pp. 653–668, Dec. 2005, issn: 1089-778X. doi: 10.1109/TEVC.2005.
856210. [Online]. Available: http://ieeexplore.ieee.org/document/1545941/.

[25] X. Zhou, A. K. Qin, M. Gong, and K. C. Tan, “A survey on evolutionary con-
struction of deep neural networks,” IEEE Transactions on Evolutionary Com-
putation, vol. 25, no. 5, pp. 894–912, Oct. 2021, Conference Name: IEEE Trans-
actions on Evolutionary Computation, issn: 1941-0026. doi: 10.1109/TEVC.
2021.3079985.

[26] K. Stanley and R. Miikkulainen, “Efficient evolution of neural network topolo-
gies,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02
(Cat. No.02TH8600), vol. 2, Honolulu, HI, USA: IEEE, 2002, pp. 1757–1762,
isbn: 978-0-7803-7282-5. doi: 10.1109/CEC.2002.1004508. [Online]. Available:
http://ieeexplore.ieee.org/document/1004508/.

[27] G. Morse and K. O. Stanley, “Simple evolutionary optimization can rival stochas-
tic gradient descent in neural networks,” in Proceedings of the Genetic and Evo-
lutionary Computation Conference 2016, ser. GECCO ’16, New York, NY, USA:
Association for Computing Machinery, Jul. 20, 2016, pp. 477–484, isbn: 978-
1-4503-4206-3. doi: 10.1145/2908812.2908916. [Online]. Available: https:
//doi.org/10.1145/2908812.2908916.

[28] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune,
“Deep neuroevolution: Genetic algorithms are a competitive alternative for
training deep neural networks for reinforcement learning,” arXiv:1712.06567
[cs], Apr. 20, 2018. arXiv: 1712.06567. [Online]. Available: http://arxiv.
org/abs/1712.06567.

[29] K. O. Stanley and R. Miikkulainen, “A taxonomy for artificial embryogeny,”
vol. 9, no. 2, p. 39, 2003. doi: 10.1162/106454603322221487.

[30] “Linear — PyTorch 1.11.0 documentation.” (Mar. 10, 2022), [Online]. Available:
https://pytorch.org/docs/1.11/generated/torch.nn.Linear.html#
torch.nn.Linear.

[31] “CMA evolution strategy source code.” (Jun. 3, 2011), [Online]. Available: https:
//cma-es.github.io/cmaes_sourcecode_page.html (visited on 04/26/2022).

https://doi.org/10.1007/BF00199581
https://doi.org/10.1007/BF00199581
https://doi.org/10.1007/BF00199581
https://doi.org/10.1162/106365602320169811
https://direct.mit.edu/evco/article/10/2/99-127/1123
https://direct.mit.edu/evco/article/10/2/99-127/1123
https://doi.org/10.1109/TEVC.2005.856210
https://doi.org/10.1109/TEVC.2005.856210
http://ieeexplore.ieee.org/document/1545941/
https://doi.org/10.1109/TEVC.2021.3079985
https://doi.org/10.1109/TEVC.2021.3079985
https://doi.org/10.1109/CEC.2002.1004508
http://ieeexplore.ieee.org/document/1004508/
https://doi.org/10.1145/2908812.2908916
https://doi.org/10.1145/2908812.2908916
https://doi.org/10.1145/2908812.2908916
https://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
https://doi.org/10.1162/106454603322221487
https://pytorch.org/docs/1.11/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/1.11/generated/torch.nn.Linear.html#torch.nn.Linear
https://cma-es.github.io/cmaes_sourcecode_page.html
https://cma-es.github.io/cmaes_sourcecode_page.html

Bibliography 76

[32] R. M. Schmidt, F. Schneider, and P. Hennig, “Descending through a crowded
valley - benchmarking deep learning optimizers,” in Proceedings of the 38th
International Conference on Machine Learning, M. Meila and T. Zhang, Eds.,
ser. Proceedings of Machine Learning Research, vol. 139, PMLR, 18–24 Jul
2021, pp. 9367–9376. [Online]. Available: https://proceedings.mlr.press/
v139/schmidt21a.html.

[33] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor, “Par-
ticle swarm optimization for hyper-parameter selection in deep neural net-
works,” in Proceedings of the Genetic and Evolutionary Computation Con-
ference, ser. GECCO ’17, New York, NY, USA: Association for Computing
Machinery, Jul. 1, 2017, pp. 481–488, isbn: 978-1-4503-4920-8. doi: 10.1145/
3071178.3071208. [Online]. Available: https://doi.org/10.1145/3071178.
3071208.

[34] Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi, “Theoretical foundation for
CMA-ES from information geometry perspective,” en, Algorithmica, vol. 64,
no. 4, pp. 698–716, Dec. 2012.

[35] Z. Li and Q. Zhang, “What does the evolution path learn in CMA-ES?” In Par-
allel Problem Solving from Nature – PPSN XIV, ser. Lecture notes in computer
science, Cham: Springer International Publishing, 2016, pp. 751–760.

[36] A. Prugel-Bennett, “Symmetry breaking in population-based optimization,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 1, pp. 63–79, 2004.
doi: 10.1109/TEVC.2003.819419.

[37] D. Yan, T. Wu, Y. Liu, and Y. Gao, “An efficient sparse-dense matrix multi-
plication on a multicore system,” in 2017 IEEE 17th International Conference
on Communication Technology (ICCT), 2017, pp. 1880–1883. doi: 10.1109/
ICCT.2017.8359956.

[38] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation func-
tions: Comparison of trends in practice and research for deep learning,” CoRR,
vol. abs/1811.03378, 2018. arXiv: 1811.03378. [Online]. Available: http://
arxiv.org/abs/1811.03378.

[39] P. Ramachandran, B. Zoph, and Q. V. Le, Searching for activation functions,
2017. doi: 10.48550/ARXIV.1710.05941. [Online]. Available: https://arxiv.
org/abs/1710.05941.

[40] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve
neural network acoustic models,” in in ICML Workshop on Deep Learning for
Audio, Speech and Language Processing, 2013. doi: 10.1.1.693.1422.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification,” in 2015 IEEE Inter-
national Conference on Computer Vision (ICCV), 2015, pp. 1026–1034. doi:
10.1109/ICCV.2015.123.

[42] D. Pedamonti, “Comparison of non-linear activation functions for deep neu-
ral networks on MNIST classification task,” CoRR, vol. abs/1804.02763, 2018.
arXiv: 1804.02763. [Online]. Available: http://arxiv.org/abs/1804.02763.

[43] J. D. McCalpin. “Memory bandwidth and system balance in HPC systems.”
(2016), [Online]. Available: https://repositories.lib.utexas.edu/handle/
2152/86843.

https://proceedings.mlr.press/v139/schmidt21a.html
https://proceedings.mlr.press/v139/schmidt21a.html
https://doi.org/10.1145/3071178.3071208
https://doi.org/10.1145/3071178.3071208
https://doi.org/10.1145/3071178.3071208
https://doi.org/10.1145/3071178.3071208
https://doi.org/10.1109/TEVC.2003.819419
https://doi.org/10.1109/ICCT.2017.8359956
https://doi.org/10.1109/ICCT.2017.8359956
https://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
https://doi.org/10.48550/ARXIV.1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://doi.org/10.1.1.693.1422
https://doi.org/10.1109/ICCV.2015.123
https://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1804.02763
https://repositories.lib.utexas.edu/handle/2152/86843
https://repositories.lib.utexas.edu/handle/2152/86843

Bibliography 77

[44] M. Laskin et al., “Parallel training of deep networks with local updates,” arXiv:2012.03837
[cs], Jun. 15, 2021. arXiv: 2012.03837. [Online]. Available: http://arxiv.org/
abs/2012.03837.

[45] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014. doi: 10.48550/ARXIV.1409.1556. [Online]. Available:
https://arxiv.org/abs/1409.1556.

[46] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-
nition, 2015. doi: 10.48550/ARXIV.1512.03385. [Online]. Available: https:
//arxiv.org/abs/1512.03385.

https://arxiv.org/abs/2012.03837
http://arxiv.org/abs/2012.03837
http://arxiv.org/abs/2012.03837
https://doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

	Abstract
	Preface
	Introduction
	Background
	Neural networks
	Activation functions
	Sigmoid
	relu (relu)
	Heaviside step function

	Training with gradient descent
	Optimizers
	Adam

	Cold restarts

	Evolutionary algorithms
	Basic evolution
	Initialization
	Selection
	Mutation
	Crossover
	Rinse and repeat

	CMA-ES
	Covariance matrices
	Covariance matrix adaptation
	bipop

	GOMEA
	Linkage
	Genepool Optimal Mixing
	Interleaved Multi-Start
	Anticipated Mean Shift

	The Exclusive-OR problem
	More than two inputs
	Formulated as a network

	Prior research

	Solving xor with minimal neural network sizes
	Experiment setup
	Network initialization
	Hyperparameters
	Repeats, iterations and limits

	Experiment 1: relu activation at the hidden layer only
	Results
	Discussion

	Experiment 2: Sigmoid activation at the hidden and output layers
	Results
	Discussion

	Experiment 3: Sigmoid with wide initialization
	Results
	Discussion

	Experiment 4: Heaviside activation
	Results
	Discussion

	Experiment 5: relu with output activation and sigmoid-like without
	Results
	Discussion

	General discussion
	Conclusion

	Applying problem-specific knowledge: asymmetry loss
	Experiment setup
	relu activation at the hidden layer
	Discussion

	Sigmoid activation at the hidden and output layers
	Discussion

	Other networks
	Heaviside with and without output activation
	relu with output activation and sigmoid without

	General discussion

	Conclusion and future work
	Discussion
	Future work
	Conclusion

	Partial evaluations and linkage
	Partial evaluations of neural networks
	Nonlinearity
	Storing intermediate results
	Training layer-by-layer

	Conclusion

	Problem-specific linkage models
	Linkage spanning two layers
	Linkage spanning more than two layers

	Experiment platforms
	Linkage examples
	Implementation details
	libGOMEA
	mininn
	NNProblem

	Found gd and gdcr hyperparameters
	Bibliography

