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Abstract
Water quality environmental assessment often requires the joint simulation of several subsystems (e.g. wastewater treatment
processes, urban drainage and receiving water bodies). The complexity of these integrated catchment models grows fast, leading
to potentially over-parameterised and computationally expensive models. The receiving water body physical and biochemical
parameters are often a dominant source of uncertainty when simulating dissolved oxygen depletion processes. Thus, the use of
system observations to refine prior knowledge (from experts or literature) is usually required. Unfortunately, simulating real-
world scale water quality processes results in a significant computational burden, for which the use of sampling intensive
applications (e.g. parametric inference) is severely hampered. Data-driven emulation aims at creating an interpolation map
between the parametric and output multidimensional spaces of a dynamic simulator, thus providing a fast approximation of
the model response. In this study a large-scale integrated urban water quality model is used to simulate dissolved oxygen
depletion processes in a sensitive river. A polynomial expansion emulator was proposed to approximate the link between four
and eight river physical and biochemical river parameters and the dynamics of river flow and dissolved oxygen concentration
during one year (at hourly frequency). The emulator scheme was used to perform a sensitivity analysis and a formal parametric
inference using local system observations. The effect of different likelihood assumptions (e.g. heteroscedasticity, normality and
autocorrelation) during the inference of dissolved oxygen processes is also discussed. This study shows how the use of data-
driven emulators can facilitate the integration of formal uncertainty analysis schemes in the hydrological and water quality
modelling community.

Keywords Bayesian inference . Integrated catchment modelling . Dissolved oxygen simulation .Model emulation

Introduction

Integrated urban water quality modelling focuses on the joint
simulation of processes driving pollution dynamics through
the urban-river system (Muschalla et al. 2009; Rauch et al.

2002). These models jointly evaluate wastewater treatment
processes, urban drainage and river dynamics, which usually
generate a rapid escalation of complexity (Benedetti et al.
2013). The representation of all subsystems involved pro-
duces highly parameterised conceptualisations, requiring a
large amount of data in the calibration process (Langeveld
et al. 2013a). Additionally, the dynamics of interest often oc-
cur at very different time-space scales. For instance, urban
combined sewer overflow (CSO) discharges have a character-
istic timescale of minutes-hours whereas river dissolved oxy-
gen dynamics exhibit hourly to monthly scales. Quantifying
and analysing uncertainties in these platforms is hence re-
quired to avoid over-confidence in modelling results and to
guide further model improvement (Deletic et al. 2012;
Tscheikner-Gratl et al. 2017). However, the computational
effort required is a severe limitation for the applicability of
uncertainty analysis techniques for most real-scale integrated
catchment modelling studies (Tscheikner-Gratl et al. 2019).
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Many uncertainty quantification strategies rely on intensive
model sampling applications (Dotto et al. 2012). For instance,
parametric inference schemes often require a large number of
model evaluations (on the order of 104–105) to reach conver-
gence. This hampers the use of formal uncertainty inversion
methods in real-scale integrated urban water systems.

One approach to speed up convergence time is the use of
optimised sampling schemes. For instance exploiting informa-
tion from parallel model evaluations (Goodman and Weare
2010; Laloy and Vrugt 2012) or by using informed adaptive
Markov chain Monte Carlo schemes (Hoffman and Gelman
2014). However, this still requires a prohibitive number of
model samples, which often fall beyond the computational
budget of most model users. A key strategy for the accelera-
tion of model sampling is the use of data-driven or mechanis-
tic model emulation, where a mathematical representation is
used to approximate an interpolation map between a vector of
parameters-inputs and the dynamic response of the simulator.
Laloy et al. (2013) proposed a two-stage sampling scheme,
first generating a rough estimate from a model surrogate and
later from the simulator itself to perform parametric inference
in a groundwater model. Carbajal et al. (2017) compared the
performance of mechanistic vs. data-driven emulation for ur-
ban drainage simulators, concluding that in general a fully
data-driven approach is to be preferred unless confronted with
highly sparse training datasets. Yang et al. (2018) used a
Gaussian process data-driven emulator to study parameter un-
certainty in a semi-distributed hydrological model.

Data-driven emulators are constructed by drawing samples
of the computationally expensive model at a selected number
of input-parameter combinations. These samples are then used
to build a database of input-output relationships. The emulator
creates an interpolation between the two multi-dimensional
spaces, thus allowing the fast estimation of the response when
using a new parameter-input combination. Unfortunately, most
mathematical structures used to emulate dynamic models (e.g.
polynomial expansions, Gaussian processes) are sensitive to
the dimensionality of the problem. The number of required
samples to train the emulator increases non-linearly with the
dimension of the input space (Xiu and Karniadakis 2002), thus
reaching a point in which the construction of the emulator has
an equivalent computational burden as using the simulator di-
rectly. Consequently, emulators often deal with a low number
of static global parameters and a fixed time-window model
output. The discretisation of input time series (as a parameter
vector) can allow for the emulation of short time series
(Mahmoodian et al. 2018) yet the length of the time series is
limited to a few discrete steps, thus hampering its use in most
cases. Hybrid strategies can be used to encode system knowl-
edge in the data-driven emulator thus representing input dy-
namics. For instance, Moreno-Rodenas et al. (2018) presented
a methodology to emulate hydrodynamic simulators (2D shal-
low water equations) under variations of parameters and time-

dynamic rainfall inputs by encoding unitary response non-
linearities in a polynomial expansion scheme. However, the
generalisation of such input-parametric response emulation
schemes to other variables (e.g. non-conservative water quality
pollutants) still remains unaddressed.

Nevertheless, formal inference and intensive sampling tech-
niques for uncertainty analysis are not being generally applied in
integrated urban water quality modelling studies (Tscheikner-
Gratl et al. 2019). This is primarily due to the high computational
cost involved with such applications. The use of emulators can
facilitate dealing with such large-scale modelling schemes, and
thus further stimulate the consideration of modelling uncer-
tainties in environmental studies. Moreno-Rodenas et al. (2019)
presented an uncertainty analysis for a large-scale integrated
catchment system for the assessment of water quality dynamics
in the Dommel River (the Netherlands). The contribution of
different uncertainty sources in dissolved oxygen depletion sim-
ulations in a highly urbanised river system was quantified.
Forward uncertainty propagation showed that the use of prior
knowledge (extracted from literature, measurements and expert
elicitation) of the river physical and biochemical parameters cap-
tured roughly 70% of the statistical uncertainty in the simulation
of dissolved oxygen dynamics. Performing inference directly on
the original model structure is however prohibitive due to its high
computational cost. An emulator structure was used to accelerate
the model evaluation and thus updates system knowledge based
on local observations. The development of this emulator and the
inference of the model parameters are here presented.

This study discusses the application of a fully data-driven
emulation scheme to accelerate the estimation of the dynamics
of dissolved oxygen and river flowwhen varying a set of global
river parameters. An emulator platform (polynomial orthogonal
expansion) is created to represent an interpolation map between
a set of river parameters (four water quantity and eight water
quality process parameters) and the dynamic time series of river
flow and dissolved oxygen concentrations at a location of in-
terest. The training is performed by generating a database of
model parameter to output relationships during the full year of
2012 (hourly frequency). The emulator is then used to imple-
ment a global sensitivity analysis and an inference scheme un-
der various likelihood function conceptualisations.
Consequently, this work shows that the use of a dynamic emu-
lator scheme can facilitate the use of sampling intensive appli-
cations in large-scale simulators for water quality studies.

Materials and methods

The integrated catchment model

This modelling study targets the simulation of dissolved oxygen
dynamics in theDommelRiver. This is a sensitive stream located
in the south of the Netherlands (Fig. 1). The river has a discharge
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between 2 and 20 m3/s, flowing through a mild-sloped lowland
area. The river receives the discharge of 192 combined sewer
overflow structures (CSOs) from several municipal urban drain-
age systems (connected urban area of ~ 4400 ha) and of a waste-
water treatment plant (WWTP) of ~ 750,000 p.e. (population
equivalent). High pollution loads from connected urban areas
result in acute and chronic oxygen depletion events at the receiv-
ingwater body. The integratedmodel accounts for the interaction
between these three subsystems (river, urban drainage and
WWTP). The river model is conceptualised as a tank-in-series
hydrological scheme consisting 65 sections where the pollutant
fluxes and transformation rates are computed (a conceptual
scheme is presented in Annex A). The main river water quality
processes are shown in Table 6 (Annex A). The WWTP was
modelled through an a ASM2d (Gernaey et al. 2004) scheme
representing three biological lines with primary clarifiers, acti-
vated sludge tanks and secondary clarifiers with a total capacity
of 26,000m3/h and a controlled bypass storm settling tankwith a
capacity of 9000 m3/h. Urban drainage flow was represented by
29 lumped rainfall-runoff and sewer transport schemes (Solvi
2006). Sewer water quality was represented by an influent gen-
erator at the WWTP (Langeveld et al. 2017) and by an event
mean concentration multiplier at the CSO-receiving water links
(Moreno-Rodenas et al. 2017b). The fully integrated model was
implemented in the platform WEST (DHI). Further detail in the
model and system characteristics can be found at Langeveld
et al. (2013b) and Moreno-Rodenas et al. (2017a). Figure 14
(Annex A) depicts the model structure scheme. The river dis-
charge and dissolved oxygen concentration were measured at a
local station (M_0121, Fig. 1) with hourly frequency. Table 1
depicts some of the main characteristics of the observed data,

Dynamic emulator

A polynomial chaos expansion (PCE) structure (Xiu (2010))
was used to create an interpolation map between a set of model
parameters and the model outputs of river discharge and dis-
solved oxygen concentration (at the location M_0121, Fig. 1)
at hourly frequency during 1 year (01-01-2012–31-12-2012).
PCE relies on fitting a series of orthogonal polynomials to the
parametric-outputmultidimensional spaces. Themodel (M) con-
sists of a large system of coupled differential equations, which
represents the internal processes of the integrated water system
to be emulated. An arbitrary time-dependent output state vari-
able (Ysim ∈ℝD) can be computed by solving the model:

Y sim ¼ M x0; x; θM ; θIð Þ ð1Þ

given a set of m initial conditions (x0 ∈ℝm), a set of r dynamic
inputs of length F (x ∈ℝrxF) and a group of global model pa-
rameters [θM, θI], which in this case is decomposed as two pa-
rameter subsets; a group of global model parameters (θM ∈ℝS),
which value is fixed by the modeller during the emulation and a
subset of P global model parameters (θI ∈ℝP) for which the
modeller seeks to emulate.

The emulator is composed of a series ofN orthogonal poly-
nomials (ϕ(θI) ∈ℝNx1) such that the value of the dynamic
variable of interest (at a certain combination of emulated pa-
rameters θI) can be approximated:

Y sim t; θIð Þ≈ϕ θIð ÞT � c ð2Þ
where c ∈ℝNxD is a matrix of coefficients which is calibrated
based on samples drawn from the simulator, thus creating a
mapping between the parameter and output spaces (ℝP→
ℝD). The training dataset is pre-computed by evaluating the
model response at a number of K parameter combinations
(θI = qi for i = 1… K). The training dataset is then used to
calibrate the matrix of coefficients (c) such that:

Y sim t; θI ¼ q1ð Þ
⋮

Y sim t; θI ¼ q1ð Þ

2
4

3
5¼

ϕ1 q1ð Þ ⋯ ϕN q1ð Þ
⋮ ⋱ ⋮

ϕ1 qKð Þ ⋯ ϕN qKð Þ

2
4

3
5 �

c1 tð Þ
⋮

cN tð Þ

2
4

3
5 ð3Þ

from which the polynomial values at each parameter sample,
ϕj(qi) and the model output Ysim(t, θI = qi) are known. A least
squares approach was used to calibrate the set of coefficients c
for each variable of interest. Then, Eq. (2) can be used to
approximate the output variable at a new combination of em-
ulated model parameters. Further information about the fit of
polynomial expansions and the selection of orthogonal series
can be found at Hadigol and Doostan (2018), Feinberg (2015)
and Xiu and Karniadakis (2002).

Two polynomial expansions were used to emulate the
modelled flow and DO dynamics at the receiving water body
(1-year, hourly frequency series at the location M_0121, Fig.
1). The model response was emulated for variations of four
(flow) and eight (DO water quality) model parameters respec-
tively. The expansion was created using an orthogonal
Legendre polynomial series (Gautschi 1994), truncated at
3rd order, and 200 training samples were drawn for both
parameter spaces. Table 2 depicts the four river parameters
for the emulation of flow and Table 3 shows the parameters
for the emulation of DO along with their distribution (PCE
training). Training samples were drawn using a Latin hyper-
cube sampling (LHS) scheme.

Table 1 Data characteristics at
the observed period (2012) Variable Units Location Frequency Mean Std Min Max

River discharge m3 · s−1 M_0121 Hourly 6.5 3.3 2.2 23

River DO gO2 · m
−3 M_0121 Hourly 6.9 2.1 0.3 11.6
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The integrated urban water quality model depends on a
large number of dynamic inputs and submodel parameters
(e.g. urban drainage in-sewer parameters, WWTP parameters,
rainfall inputs) some of which were of a stochastic nature. All
model inputs and parameters were fixed to a deterministic
realisation and only the emulated parameters were varied dur-
ing the training database sampling.

Additionally, 100 and 50 random parameter samples were
drawn independently for the flow and DO-simulated outputs
respectively. This independent set was used to test the emula-
tor’s performance by comparing the Nash-Sutcliffe efficiency
(NSE) between the emulator vs. simulator output series at
random parameter realisations.

The fitted coefficients of the polynomial expansion have a
direct interpretability in terms of the sensitivity of the different
parameters (Xiu 2010). Also, the emulator can be used to
cheaply evaluate any combination of the parameters within
the training parameter range, hence facilitating the application
of sampling intensive system analysis tools. In order to de-
scribe the sensitivity of the studied model parameters, the
Sobol global sensitivity analysis (Sobol 1993) was applied
to the flow and DO river dynamics.

Parametric inference

Prior knowledge of the river model parameters was encoded
by means of independent uniform probability density func-
tions. The parameter distribution ranges were defined based
on literature values and expert criteria (non-formal elicitation).
Tables 2 and 3 show the prior probability density function
selected for each parameter.

This prior knowledge was updated by using an observation
layout Yobs ∈ℝ1xL for hourly measured flow and dissolved ox-
ygen concentration at the outlet of the Dommel catchment dur-
ing a period of approximately 7 months (15-Jan-2012–05-Aug-
2012). The basic model observation layout was defined as:

Yobs ¼ M x0; x; θM ; θIð Þ þ Z ð4Þ
where M refers to the integrated catchment model. Initial con-
ditions x0 were computed using a warming up simulation peri-
od of 1 year for the WWTP initial conditions and a dedicated
initialisation of the previous 15 days between 01-Jan-2012 until
15-Jan-2012 for the rest of the variables. The term Z refers to
the residual structure between the simulated and measured se-
ries. This error term lumps measurement and model errors to-
gether. During the inference process, a probabilistic description
of the model-measurement residuals Z is assumed a priori, and
is later validated based on the posterior computed residuals. A
common initial guess is to assume that residuals are indepen-
dent, identically and Gaussianly distributed. This assumption
leads to the following log-likelihood structure:

ℓ YobsjθIð Þ∝− 1

2
log det Σð Þð Þ− 1

2
Yobs−M θIð Þð ÞT ⋅Σ−1⋅ Yobs−M θIð Þð Þ;

ð5Þ
where Σ represents the residual covariance function, which in
this case:

ΣZ ¼ σ2
1 � I ð6Þ

being I ∈ℝLxL the identity matrix and σ2
1 the constant variance

of the residuals.

Table 2 River hydrology
parameter PCE training ranges
(emulation) and prior distribu-
tions (inference)

Name Units Description PCE training Prior distribution

n s · m−1/3 Manning roughness ~U(0.02, 0.15)* ~U(0.025, 0.12)

kz – Embankment slope multiplier ~U(0.3, 2) ~U(0.7, 1.3)

kW – River bed width multiplier ~U(0.3, 2) ~U(0.5, 1.5)

ksurface – Rural flow input multiplier ~U(0.3, 2) ~U(0.7, 1.3)

*~U(a, b) refers to uniformly distributed probability density function between a and b

Table 3 River dissolved oxygen
parameter PCE training ranges
(emulation) and prior distribu-
tions (inference)

Name Units Description PCE training Prior distribution

Kd1 d−1 Decay rate for BOD fast ~U(0.3, 1) ~U(0.3, 0.8)

Kd2 d−1 Decay rate for BOD slow ~U(0.2, 1) ~U(0.2, 0.4)

Vs1 m · d−1 Sedimentation rate for BOD fast ~U(0.2, 40) ~U(0.5, 20)

Vs2 m · d−1 Sedimentation rate for BOD slow ~U(5, 100) ~U(10, 60)

TKd – Temperature coefficient for BOD oxidation ~U(1, 1.1) ~U(1, 1.1)

TKL – Temperature coefficient for reaeration ~U(1, 1.1) ~U(1, 1.03)

TSOD – Temperature coefficient for SOD ~U(1, 1.1) ~U(1, 1.1)

VKL – Velocity reaeration coefficient ~U(2, 8) ~U(2, 5)

Environ Sci Pollut Res (2020) 27:14237 14258– 14241



Flow dynamics are also known to render heteroscedastic er-
ror structures. This implies that residuals trend to be systemati-
cally larger when the discharge is larger. This is often encoded
by assuming that the residual standard deviation follows a linear
relationship with the simulated variable. This results in a log-
likelihood function with the form described in Eq. (5) with the
following covariance matrix:

ΣZ het ¼ σ1 þ QF � σ2ð Þ2 � I ð7Þ
where I ∈ℝLxL is the identity matrix,QF ∈ℝ1xL is the computed
output time series; meanwhile, σ1 and σ2 are the
hyperparameters of the error generating process.

Additionally, the inference of dynamic models often leads
to autocorrelated residual structures. Previous studies in the
hydrological literature have often taken this into account by
the use of a discrete autoregressive model of order p (Bates
and Campbell 2001), or as formulated by Schoups and Vrugt
(2010):

Φp Bð Þ � zt∼N 0;σ1ð Þ ð8Þ

being ΦB Bð Þ ¼ 1−∑p
i¼1pi � zt−i an autoregressive polynomial

of order p for the residual zt, with Gaussian updates.
An equivalent formulation to account for a correlation struc-

ture was discussed by Honti et al. (2013) with the use of a bias
description stochastic process B along with the error generating
model (Z). If assuming a stationary continuous constant bias
and heteroscedastic residuals, Eq. (5) defines the log-likelihood
function, with a covariance matrix defined as:

Σ Z hetþBð Þij¼ σ1 þ QF tið Þ � σ2

� �2
� δij þ σ2

3 � e− di; jj j�τ−1 ð9Þ

which are the i and j elements of the covariance matrix

Σ ZhetþBð Þ∈ℝLxL, with δij, the Kronecker’s delta, QF tið Þ the ex-

pected flow (at time ti), di, j the distance in hours between i and j
elements, σ3 a parameter of the stationary bias and τ an extra
hyperparameter which drives a correlation exponential decay.
Del Giudice et al. (2013) discuss that in practice the model effect
and the bias descriptors can have a poor identifiability, thus in-
ferring both, model parameters and bias hyperparameters, which
often require assigning strong priors to the latter. Table 4 presents
the prior distributions for the hyperparameters of the different
likelihood distribution structures.

Posterior samples were created using a Metropolis-
Hasting algorithm (Hastings 1970; Metropolis et al.
1953). The joint prior probability distributions for the flow
and dissolved oxygen river parameters were updated by
drawing 50,000 samples from their posterior distribution
by means of a Markov chain Monte Carlo sampling
scheme (25,000 burn-in, 5 thinning). The Bayesian infer-
ence implementation was performed using the python
probabilistic programming package PyMC version 2.3.6
(Patil et al. 2010).

Evaluating the likelihood distribution when using the full
bias-description term involves inverting a covariance matrix
of size n. In this case, this was prohibitively expensive when
using the original measurement layout (n = 4892). Thus, a
shorter period was used to test the inference of the bias de-
scription (26-Jul-2012–14-Sep-2012). In this case, only 4000
accepted samples were used (2000 burn-in, 2 thinning).

Results and discussion

Dynamic emulation of flow and dissolved oxygen
concentrations

The performance of the trained emulator to represent the inte-
grated catchment model outputs (at new parameter combina-
tions) was tested using an independent dataset. Figure 2 shows
the Nash-Sutcliffe efficiency (NSE) between the emulated and
simulated flow time series (1-year, hourly frequency) at 100
random parameter combinations for the flow emulator.
Figure 3 shows the same test performed at 50 random samples
drawn from the dissolved oxygen concentration emulation
scheme. The performance of both emulator implementations
is consistent across the parameter ranges and varies between
0.99–1 NSE. The observed performance during validation
was considered sufficient for the substitution of the simulator
by the emulator during the inference sampling.

Figures 17 and 18 (Annex C) show also a graphical com-
parison between the time series outputs from the emulator and
the simulator at a series of random combinations of parameters
independent from the samples drawn at the training dataset.
Table 5 presents the computational effort required to sample
from the original simulator, training and operation of the em-
ulator. In this case, the computed average timings refer to a
2.2-GHz Intel Core i7 from mid 2014.

Global sensitivity analysis of process parameters

The emulator structure was used to estimate the sensitivity of
the integrated catchment model outputs to variations of the
river physical and biochemical parameters. Figures 4 and 5
depict the first-order Sobol sensitivity indexes from the prior
distribution of parameters at the river flow and DO dynamics.
Figure 4 shows the simulated flow level is highly sensitive on
the parameter ksurface (which drives the river base-flow input)
during dry-weather periods, whereas the manning’s roughness
(n) becomes more sensitive during the rising limb of the
hydrographs. kW (multiplier for the river bed width) shows a
reduced influence. kz (a multiplier for the slope of the embank-
ment) has a similar, yet less pronounced effect when com-
pared with hydraulic roughness.

The results of the study of the sensitivity for the DO con-
centration simulation are shown in Fig 5. The parameter

Environ Sci Pollut Res (2020) 27:14237 14258–14242



controlling the reaeration rate (VKL) dominates the dry-
weather DO variability during summer times. This influence
decreases during winter, where the temperature coefficient for
the sediment oxygen demand (TSOD) becomes increasingly
relevant. This has to do with the temperature inhibition model

structure, which influences the oxidation rate of organic mat-
ter for temperatures differing from 20 °C (Annex A, Table 6).
During oxygen recovery patterns, TSOD is also relatively rel-
evant, since the sediment layer becomes the main oxygen sink
(days after a large storm event). Sensitivity indexes do not

Table 4 Error model
hyperparameters for the different
hypotheses

Hyperparameter Units Description Prior distribution

Flow i.i.d Gaussian

σ1 m3/s σ1, stationary standard deviation error ~U(0, 10)

Flow independent heteroscedastic Gaussian

σ1 m3/s σ1, stationary standard deviation error ~U(0, 10)

σ2 m3/s σ2, stationary standard deviation error ~U(0, 10)

Flow AR(3) Gaussian updating

σ1 m3/s σ1, stationary standard deviation error ~U(0, 10)

p1, 2, 3 – Autocorrelation coefficients p1, p2, p3 ~U(0, 1)

Flow heteroscedastic normal error and exponentially correlated bias

σ1 m3/s σ1, linear intercept standard deviation error ~U(0, 10)

σ2 m3/s σ2, linear slope standard deviation error ~U(0, 10)

σ3 m3/s σ3, bias standard deviation ~U(0, 10)

τ h Tau, bias correlation exponential decay ~U(10, 80)

Dissolved oxygen i.i.d Gaussian

σ1 mgO2/l σ1, stationary error standard deviation ~U(0, 10)

Fig. 2 Nash-Sutcliffe efficiency (NSE) at the flow emulator vs simulation
for a four-dimensional parameter space under validation conditions. The
x-axis shows the 100 combinations of the parameter values (simulation id

0 to 99). Above, the NSE between 1-year hourly frequency time series
simulated by the model and the emulator for each parameter combination

Environ Sci Pollut Res (2020) 27:14237 14258– 14243



show a consistent behaviour during acute oxygen depletion
processes. Some depletion events, as the three occurring dur-
ing July and September (also seen at Fig. 5b), present as dom-
inant parameters kd1 and kd2 which are the oxidation rates for
the two fractions of suspended BOD in the system. However,
the events occurred in June and the three in October showed to
be more sensitive to a different parameter combination as TKL
or TSOD, which are related to temperature-driven reaeration
or oxygen consumption. This is a good example of the com-
plexity of the underlying process, in which interactions are

highly dependent on the dynamic state of the system. For
instance, if a storm event activates predominantly northern
CSOs (Fig. 1), which are closer to the outlet of the catchment,
there is less time for the degradation of suspended matter to
occur than a more upstream storm process. Also, events in
which the WWTP is the main source of discharge (and not
CSOs), the settling facilities of the WWTP might lead to a
lower sediment build-up in the river and thus increasing the
relevance of suspended organic matter degradation.

Parametric inference

A local dataset was used to update the river parameters prior
knowledge. The emulator allowed drawing fast samples
(Table 5) from the posterior distribution of the parameters
given several hypotheses for the error generating process
(Gaussian, independent and homoscedastic for DO dynamics
and Gaussian, independent and heteroscedastic for the river
flow dynamics). Figure 6 displays the comparison of

Fig. 3 Nash-Sutcliffe efficiency of dissolved oxygen emulator vs
simulator for an eight-dimensional parameter space under validation con-
ditions. The x-axis shows the 50 combinations of the parameter values

(simulation id 0 to 49). Above, the NSE between 1-year hourly frequency
time series simulated by the model and the emulator for each parameter
combination

Table 5 Emulation vs. model computational effort for 1-year hourly
frequency series (in seconds)

Sample Flow DO

Simulator sample 3300 s 3300 s

Training database (× 200 simulator samples) 660 × 103 s 660 × 103 s

Emulator training 14 s 61 s

Emulator sample 0.06 s 0.07 s
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measured flow and the inferred mean model response. Also, a
validation period (05-Aug-2012 until 31-Dec-2012) is shown.
Intense dry weather periods induce a systematic overestima-
tion of the flow as seen in July and in the beginning of
September, this however is expected to have a limited influ-
ence in the water quality dynamics. The same comparison
(measurement vs inferred and validation series) can be found
in Fig. 7 for the simulation of dissolved oxygen. The general
dynamics of DO are captured, especially the depletion pro-
cesses, daily and seasonal variation.

The posterior probability density functions of the pa-
rameters for the water quantity and quality of the river
section can be found in Figs. 8 and 9 respectively. The
river variable kW is poorly identified, which is denoted by
the wide range of the posterior distribution (diagonal kW at
Fig. 8). This is also supported by the very low sensitivity of
this parameter to the overall flow dynamics (Fig. 4). The
rest of the parameters appear to be identifiable and are
mostly mutually independent with the exception of a
strong negative correlation between kz and n (Spearman’s
correlation coefficient, ρs = − 0.78). Therefore, the joint
inference/calibration of both elements is not recommend-
ed, since the provided observations lack sufficient informa-
tion to identify these parameters independently. Further use
of this model should therefore prioritize fitting n, since it
exhibits a larger sensitivity than kz.

Water quality variables show a mostly independent joint pos-
terior distributionwith the exception of kd1 and kd2, which show
a mild negative correlation (ρs = − 0.29). This is explained by
the fact that both parameters influence the same process (oxida-
tion of organic matter) at two fractions of BOD for which DO
measurements are probably insufficient to discriminate.

Error-generating process and likelihood description

Bayesian inference relies on the a priori definition of an error-
generating process (Eq. 4), which constitutes the likelihood
structure used during the inference scheme. The error-
generating process is selected based on a series of hypotheses,
which can be encoded by expert guesses on the behaviour of the
system. Yet those assumptions are still a subjective exercise and
its validity should be checked once sampled from the posterior
distribution. In this case, the initial error generation process for
both flow and DO series was conceptualized as an independent,
identically distributed Gaussian distribution. The posterior distri-
bution for the flow process revealed a dependency of the resid-
uals and the inferred flow dynamics. Such phenomena is well
described in the hydrological literature (Sorooshian and Dracup
1980) and was corrected by the use of a linear dependent stan-
dard deviation structure in the river flow error-generating process
(Eq. 7). Figure 10 represents three relevant characteristics of the
residual structure at the posterior samples of river flow,

Fig. 4 Sobol sensitivity indexes (first order) for the flow dynamics. Above, mean flow simulation and the 95% interval for the propagation of the
parametric ranges. Below, sensitivity indexes for the four parameters. In the right, detail of the sensitivity during a medium-high intensity storm event (b)
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comparing the assumed error-generating process (in black) and
the observed one (in blue). Figure 10a shows the heteroscedastic
structure of flow residuals, Fig. 10b shows the comparison of the
residual histograms and Fig. 10c shows the time-autocorrelation
structure. It is apparent that the residual independency assump-
tion is violated, since computed residuals present a strong time
autocorrelation structure.

Fig. 11 shows the comparison of the computed residuals
and the assumed error-generating process (independent, ho-
moscedastic and Gaussian) for the dissolved oxygen in the
river. The variance of the residuals is largely independent
from the DO value. Also, residuals present a clear auto-
correlation structure, albeit shorter than that of the flow
inference.

Fig. 5 Sobol sensitivity indexes (first order) for the dissolved oxygen dynamics. Above, meanDO simulation and the 95% interval for the propagation of
the parametric ranges. Below, sensitivity indexes for the eight parameters. In the right (b) detail of the sensitivity during a high intensity storm event

Fig. 6 Posterior sample for the inferred flow dynamics between 15-Jan-2012 and 05-Aug-2012. In orange, the posterior distribution under validation
conditions 05-Aug-2012 until 31-Dec-2012, in black observed flow at the station M0121
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The time autocorrelation structure in hydrological inference
has been discussed in several studies. For instance, Kuczera
(1983) applied an ARMA (autoregressive moving-average)
model to represent an autocorrelated likelihood structure in a
hydrological model. Bates and Campbell (2001) argued that
ARMA structures lead to local minima, and AR
(autoregressive) models of order p are to be preferred. Schoups
and Vrugt (2010) presented the use of an alternative likelihood
structure, which addresses several common issues; like the non-
normality of residuals, variance non-stationarity and the tempo-
ral correlation of the residuals (captured by an AR(p) model).
Yet all these three studies simulated catchment hydrological
flows at daily scales. In this work, the measurement layout has
an hourly time-step, since relevant processes occur at those
scales. It is expected that the autocorrelation structure becomes
stronger when dealing with shorter timescales. As seen in
Figs. 10 and 11 the correlation is still around 0.5 at 50–100 h
lag time. Honti et al. (2013) and Del Giudice et al. (2013) pre-
sented the direct encoding of a bias description process within
the error model. This was applied to urban drainage hydrody-
namic simulation with time-steps of 1–2 min, which present
strong autocorrelation structures. The bias description can be
conceptualised as function of different variables or inputs, yet
in its basic form, it constitutes a Gaussian multivariate distribu-
tion with an exponential covariance structure as in Eq. 9.

The use of an AR(3) model, in this case, rendered an almost
negligible effect of the autoregressive parameters of higher order
than one (< 0.01), thus generating an equivalent AR(1) model.
Measured series vs. inferred comparison and the residual struc-
ture can be seen in Fig. 15 (Annex B). Although the autocorre-
lation of residuals is better represented, the fit of the mean sam-
ple did not improve, rather was degraded through accounting for
the autocorrelation term. This was also discussed by Evin et al.

(2013), who showed that using AR(1) models for hydrological
inference on the raw residuals can lead to strong interactions
with the inferred parameters and degraded outcomes.

On the other hand, the use of a bias description as in Del
Giudice et al. (2013) becomes prohibitive for long time series.
This implementation requires the inversion of a covariance ma-
trixΣ ∈ℝLxL being L the size of the measurement layout. In this
case, considering an hourly sampling layout during 15-Jan-2012
until 05-Aug-2012 leads to L = 4892 elements. Expected values
of the decay parameter τ are likely to produce a highly sparse
covariance matrix, thus sparse inversion optimisation could be
applied (Betancourt and Alvarado 1986) yet intensive sampling
for populating the posterior is still cumbersome. This large co-
variance matrix inversion renders the evaluation of the likeli-
hood function computationally expensive, thus eliminating the
benefits of the use of the dynamic emulator. A possible solution
is to create a database of likelihood samples from the dynamic
emulator which is used to build a second emulator linking the
parameter space and the response of the likelihood function
(Dietzel and Reichert 2014). An illustrative example of the re-
siduals when using a bias description term is shown in Fig. 16
(Annex B) in which the inference was performed in a shorter
time series (26-Jul-2012–14-Sep-2012). The description of the
autocorrelation structure in the residuals did not allow for a
better description of the process, or a better understanding of
the parametric uncertainty. Ammann et al. (2018) recently stud-
ied the representation of autocorrelated likelihood structures
with the conventional error models for hydrological applica-
tions. They discussed that the use of stationary autocorrelation
models deteriorates the performance of the inferred model sig-
nificantly (degrading even further when increasing the measure-
ment layout frequency). They propose that the use of non-
stationary autocorrelation schemes may overcome this problem,

Fig. 7 Posterior sample for the inferred dissolved oxygen dynamics between 15-Jan-2012 and 05-Aug-2012. In orange, the posterior distribution under
validation conditions 05-Aug-2012 until 31-Dec-2012, in black observed flow at the station M0121
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since hydrological models are expected to lose memory under
storm events (thus dry-weather and wet-weather present differ-
ent residual correlation patterns). This non-stationarity could not
be found in this case, being the correlation structure in dry
weather and wet weather for short scales (0–80 h lag) equivalent
and the large-lag structures only slightly different (Fig. 12).
Also, this is not expected to be applicable for DO series, where
residuals are even less structured as in hydrological flow.

A strong autocorrelation structure is expected due to the
nature of the process and the measurement layout. Both flow
and dissolved oxygen concentrations present several dynamic
modes, induced by storm events, daily fluctuation in the
WWTP effluent and variation between dry-wet periods and
temperature seasons. Small temporal shifts are expected due to
model structural misfit (e.g. incorrect CSO timing in the urban
drainage scheme or misrepresentation errors in rainfall data).

The temporal shift will likely render strongly correlated resid-
uals in time. Yet these time-shifts are of limited influence for
the model application. The objective of the model is to repre-
sent dynamics of oxygen in a receiving water body for envi-
ronmental policy assessment studies. These studies use met-
rics which lumps the time-dynamics, as frequency-duration-
concentration tables (FWR 2012); thus, the exact timing of the
oxygen depletion is not highly relevant, but rather the correct
representation of the magnitude and duration of each event.
Consequently, the stiff likelihood conditions required to con-
struct formal inference schemes (as shown in this study) might
not render the most adequate approach when dealing with the
with long-term dissolved oxygen dynamic series (in which the
system exhibit multitude of complex dynamic states).
Approximated Bayesian computation (Toni et al. 2009) could
be of interest by allowing defining metrics which attend to the

Fig. 8 Posterior joint parametric distribution for the inference of the flow model parameters. σ1 and σ2 are hyperparameters of the selected error
generation process (heteroscedastic, independent Gaussian). The spearman’s correlation coefficient (ρs) is shown at each parameter couple
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Fig. 9 Posterior joint-parametric distribution for the inference of the water quality model parameters. σ1 is the hyperparameter of the selected error
generation process (independent, identically distributed Gaussian). The spearman’s correlation coefficient (ρs) is shown at each parameter couple

Fig. 10 Residual structure at the flow posterior mean sample. a Scatter plot variable-residual showing the dependency of the variance. b The residual
probability density. c The autocorrelation plot at different time-lags
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relevant features of the dissolved oxygen output space (e.g.
duration and magnitude of events, slopes of the depletion/
recovery patterns, etc.). The selection of signature-based met-
rics are being increasingly used for the diagnosis of hydrolog-
ical modelling studies (Kavetski et al. 2018; Vrugt and Sadegh
2013) and could also facilitate the identification and calibra-
tion of urban water quality dynamics.

Conclusions

This study presents the emulation and inference of river flow and
dissolved oxygen dynamics in an integrated urban water quality
system. The simulator jointly evaluates wastewater treatment

processes, urban drainage and receiving water quality processes.
The use of an emulation scheme allowed accelerating signifi-
cantly the approximation of the response of the simulator to
variation of a set of global parameters. This facilitated the imple-
mentation of sampling intensive applications (e.g. sensitivity
analysis and formal Bayesian inference schemes).

A polynomial orthogonal expansion emulator was fitted to rep-
resent flow and dissolved oxygen depletion for a 1-year-long time
series (hourly frequency) under four and eight global parameters
respectively. Two hundred model realizations sufficed to generate
an acceptable interpolation in both cases. The emulator was vali-
dated using independent data, rendering a high-quality mapping
between the parametric space and the dynamic response. This
technique still exhibits severe limitations, like the impossibility to

Fig. 11 Residual structure at the dissolved oxygen posterior mean sample. a Scatter plot variable residual showing the dependency of the variance. b The
residual probability density. c The autocorrelation plot at different time-lags

Fig. 12 Autocorrelation structure for flow residuals by magnitude
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include large parametric spaces, dynamic inputs or non-smooth
parametric to output relationships (e.g. bifurcation solution points).

The use of the emulator facilitated the computation of the
sensibility of flow and DO dynamics to river parameters.
Oxygen depletion processes exhibit a non-stationary depen-
dency across storm events. In general, the reaeration rate
showed to be the most relevant parameter during dry weather
flow. Depletion of fast-slow biodegradable matter is often the
responsible for the magnitude of the oxygen depletion event
(attending only to the river process parameters). Meanwhile,
oxygen recovery after a large depletion event is highly influ-
enced by the sediment oxygen demand and reaeration process-
es, with a strong dependence in seasonality (temperature
driven).

A set of observations of river flow and DO was used to
update prior knowledge about the receiving water model
parameters. This was achieved by performing an inference
scheme on the emulator as a substitute of the simulator.
Several hypotheses were used to define the likelihood
structure. A homoscedastic, independent Gaussian distrib-
uted error was applied to the dissolved oxygen error pro-
cess . Meanwhi le , the f low res idua l s showed a
heteroscedastic structure. Both inferred residual series ren-
dered a highly temporally correlated structure, which vio-
lates the assumption of independence. The residual auto-
correlation is related to the measurement layout frequency
(hourly) and the nature of the simulated processes. Both
flow and DO residuals are influenced by a strong memory
effect, model structure-induced time shifts and input er-
rors. Various formulations to deal with the residual auto-
correlation or structural bias were tested. However, the
inferred dynamics either deteriorated or did not improve.
Detailed investigation on the effects of neglecting the cor-
relation structure in the dissolved oxygen residual struc-
ture is still missing. Also, the use of alternative metrics for
the inference of dissolved oxygen dynamics should be fur-
ther studied.

The use of a dynamic emulation scheme allowed gaining
insights on the underlying mechanistic relationships of the inte-
grated urbanwater quality system. This can be easily extended to
similar environmental modelling studies thus facilitating the ap-
plication of sensitivity analysis, inference or calibration under
long time series and low-dimensionality parametric spaces.
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Annex A: River model water quality processes

Table 6 presents the process matrix for the dissolved oxygen
process routine at the river section. Themodel accounts for the
transport and conversion rates of seven concentration state
variables; BOD1 (biological oxygen demand of fast biode-
gradable suspended fraction), BOD2 (biological oxygen de-
mand of slow biodegradable suspended fraction), BOD1p (bi-
ological oxygen demand of fast biodegradable particulate
fraction), BOD2p (biological oxygen demand of slow biode-
gradable particulate fraction), BODs (biological oxygen de-
mand at the sediment section), NH4 (ammonium) and DO
(dissolved oxygen concentration).

Table 6 Process matrix for the river water quality model structure

State variable BOD1 BOD1p BOD2 BOD2p BODs NH4 DO Rate

gO2/m
3 gO2/m

3 gO2/m
3 gO2/m

3 gO2/m
3 gN/m3 gO2/m

3

Process
1a. Oxidation of fast-suspended fraction (BOD1) −1 −1 TKdTwat−20 � Kd1 � BOD1 � DO

KO2þDO
1b. Oxidation of fast-particulate fraction (BOD1p) −1 −1 TKdTwat−20 � Kd1 � BOD1p � DO

KO2þDO
2a. Oxidation of slow-suspended fraction (BOD2) −1 −1 TKdTwat−20 � Kd2 � BOD2 � DO

KO2þDO
2b. Oxidation of slow-particulate fraction (BOD2p) −1 −1 TKdTwat−20 � Kd2 � BOD2p � DO

KO2þDO
3a. Sedimentation of BOD1p −1 +1 Vs1 · BOD1p
3b. Sedimentation of BOD2p −1 +1 Vs2 · BOD2p
4. Oxidation of organic matter in the sediment −1 −1 TSODTwat−20 � KBOD � BODsd � DO

KSOþDO
5. Constant sediment oxygen demand −1 TSODTwat−20 � SODd � DO

KSOþDO
6. Nitrification -1 −4.57 TKnitTwat−20 � Knit � NH4 � DO

KNO2þDO
7. Photosynthesis macrophyte +1 TKpTwat−20 � kprodM � Io � MB

d
8. Macrophyte oxygen consumption −1 TKpTwat−20 � kpcons � MB

d
9. Reaeration +1 TKLTwat−20 � VKL � CS−DOð Þ
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The river flow was conceptualized as a tank in series
lumped scheme, in which each tank is a well-stirred
reactor in which the biochemical processes take place
(Fig. 13). The mass balance equation is computed at
each node:

dVi

dt
¼ Qini−Qouti ; ð1Þ

where Vi is the volume at tank i and Qini the sum of

inflows from CSOs, upstream sections or rural hydrolo-
gy. Qouti is the outflow from the tank at each instance

and is computed as a free-surface flow following the
Gauckler-Manning equation:

Qouti ¼ A � R2
3
H � slp1

2 � n−1; ð2Þ

being A and RH the area and hydraulic radius for a trapezoidal
section with a given slope (slp) and bedManning’s roughness (n).

Figure 14 depicts the whole integrated system scheme
which comprises the urban drainage networks connected to
the area of interest in the Dommel, the WWTP of
Eindhoven and the river stretch considered in the water quality
model along with the parameter and input model spaces.
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Fig. 13 Tank in series river flow scheme
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Annex B: Accounting for the autocorrelation
structure

Fig. 15 Autoregressive model order 3, comparison of measured and inferred dynamics and residual structure
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Fig. 16 Bias description, comparison of measured and inferred dynamics and residual structure
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Annex C: Test output series
for the emulator-simulator comparison

Fig. 17 Emulator vs. simulator flow time series graphical comparison for different test parameter combinations

Environ Sci Pollut Res (2020) 27:14237 14258–14256



Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

Ammann L, Reichert P, Fenicia F (2018) A framework for likelihood
functions of deterministic hydrological models. Hydrol Earth Syst
Sci Discuss 2018:1–39

Bates BC, Campbell EP (2001) AMarkov chain Monte Carlo scheme for
parameter estimation and inference in conceptual rainfall-runoff
modeling. Water Resour Res 37(4):937–947

Benedetti L, Langeveld J, Comeau A, Corominas L, Daigger G, Martin
C, Mikkelsen PS, Vezzaro L, Weijers S, Vanrolleghem PA (2013)
Modelling and monitoring of integrated urban wastewater systems:
review on status and perspectives. Water Sci Technol 68(6):1203–
1215

Betancourt R, Alvarado FL (1986) Parallel inversion of sparse matrices.
IEEE Trans Power Syst 1(1):74–81

Carbajal JP, Leitão JP, Albert C, Rieckermann J (2017) Appraisal of data-
driven and mechanistic emulators of nonlinear simulators: the case
of hydrodynamic urban drainage models. Environ Model Softw 92:
17–27

Del Giudice D, Honti M, Scheidegger A, Albert C, Reichert P,
Rieckermann J (2013) Improving uncertainty estimation in urban
hydrological modeling by statistically describing bias. Hydrol
Earth Syst Sci 17(10):4209–4225

Deletic A, Dotto CBS,McCarthy DT, KleidorferM, Freni G,Mannina G,
UhlM, HenrichsM, Fletcher TD, RauchW, Bertrand-Krajewski JL,
Tait S (2012) Assessing uncertainties in urban drainage models.
Physics and Chemistry of the Earth, Parts A/B/C 42-44:3–10

Dietzel A, Reichert P (2014) Bayesian inference of a lake water quality
model by emulating its posterior density. Water Resour Res 50(10):
7626–7647

Dotto CB, Mannina G, Kleidorfer M, Vezzaro L, Henrichs M, McCarthy
DT, Freni G, Rauch W, Deletic A (2012) Comparison of different
uncertainty techniques in urban stormwater quantity and quality
modelling. Water Res 46(8):2545–2558

Evin G, Kavetski D, Thyer M, Kuczera G (2013) Pitfalls and improvements
in the joint inference of heteroscedasticity and autocorrelation in hydro-
logical model calibration. Water Resour Res 49(7):4518–4524

Fig. 18 Emulator vs. simulator dissolved oxygen time series graphical comparison for different test parameter combinations

Environ Sci Pollut Res (2020) 27:14237 14258– 14257



Feinberg J (2015) Some improvements and applications of non-intrusive
polynomial chaos expansions. PhD Thesis, University of Oslo

FWR (2012) Urban pollution management manual. Foundation forWater
Research, Marlow

Gautschi W (1994) Algorithm 726: ORTHOPOL- a package of routines
for generating orthogonal polynomials and gauss-type quadrature
rules. ACM Trans Math Softw 20(1):21–62

Gernaey KV, van Loosdrecht MC, Henze M, Lind M, Jørgensen SB
(2004) Activated sludge wastewater treatment plant modelling and
simulation: state of the art. Environ Model Softw 19(9):763–783

Goodman J, Weare J (2010) Ensemble samplers with affine invariance.
Communications in Applied Mathematics and Computational
Science 5(1):65–80

Hadigol M, Doostan A (2018) Least squares polynomial chaos expan-
sion: a review of sampling strategies. Comput Methods Appl Mech
Eng 332:382–407

Hastings WK (1970) Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57(1):97–109

Hoffman MD, Gelman A (2014) The no-U-turn sampler: adaptively set-
ting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res
15(1):1593–1623

Honti M, Stamm C, Reichert P (2013) Integrated uncertainty assessment
of discharge predictions with a statistical error model. Water Resour
Res 49(8):4866–4884

Kavetski D, Fenicia F, Reichert P, Albert C (2018) Signature-domain
calibration of hydrological models using approximate Bayesian
computation: theory and comparison to existing applications.
Water Resour Res 54(6):4059–4083

Kuczera G (1983) Improved parameter inference in catchment models: 1.
Evaluating parameter uncertainty. Water Resour Res 19(5):1151–
1162

Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of
hydrologic models using multiple-try DREAM (ZS) and high-
performance computing. Water Resour Res 48(1). https://doi.org/
10.1029/2011WR010608

Laloy E, Rogiers B, Vrugt JA, Mallants D, Jacques D (2013) Efficient
posterior exploration of a high-dimensional groundwater model
from two-stage Markov chain Monte Carlo simulation and polyno-
mial chaos expansion. Water Resour Res 49(5):2664–2682

Langeveld J, Nopens I, Schilperoort R, Benedetti L, de Klein J,
Amerlinck Y, Weijers S (2013a) On data requirements for calibra-
tion of integrated models for urban water systems. Water Sci
Technol 68(3):728–736

Langeveld JG, Benedetti L, de Klein JJM, Nopens I, Amerlinck Y, van
Nieuwenhuijzen A, Flameling T, van Zanten O, Weijers S (2013b)
Impact-based integrated real-time control for improvement of the
Dommel River water quality. Urban Water J 10(5):312–329

Langeveld J, Van Daal P, Schilperoort R, Nopens I, Flameling T, Weijers
S (2017) Empirical sewer water quality model for generating influ-
ent data for WWTP modelling. Water 9(7):491

Mahmoodian M, Carbajal JP, Bellos V, Leopold U, Schutz G, Clemens F
(2018) A hybrid surrogate modelling strategy for simplification of
detailed urban drainage simulators. Water Resour Manag 32(15):
5241–5256

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E
(1953) Equation of state calculations by fast computing machines.
J Chem Phys 21(6):1087–1092

Moreno-Rodenas AM, Cecinati F, Langeveld J, Clemens FHLR (2017a)
Impact of spatiotemporal characteristics of rainfall inputs on inte-
grated catchment dissolved oxygen simulations. Water 9(12):926

Moreno-Rodenas AM, Langeveld J, Clemens FHLR (2017b) Accounting
for correlation in uncertainty propagation. a copula approach for
water quality modelling. Prage, Czech Republic

Moreno-Rodenas AM, Bellos V, Langeveld JG, Clemens F (2018) A
dynamic emulator for physically based flow simulators under vary-
ing rainfall and parametric conditions. Water Res 142:512–527

Moreno-Rodenas AM, Tscheikner-Gratl F, Langeveld JG, Clemens
FHLR (2019) Uncertainty analysis in a large-scale water quality
integrated catchment modelling study. Water Res 158:46–60

Muschalla D, Schutze M, Schroeder K, Bach M, Blumensaat F, Gruber
G, Klepiszewski K, Pabst M, Pressl A, Schindler N, Solvi AM,
Wiese J (2009) The HSG procedure for modelling integrated urban
wastewater systems. Water Sci Technol 60(8):2065–2075

Patil A, Huard D, Fonnesbeck CJ (2010) PyMC: Bayesian stochastic
modelling in Python. J Stat Softw 35(4):1–81

Rauch W, Bertrand-Krajewski J, Krebs P, Mark O, Schilling W, Schutze
M, Vanrolleghem P (2002) Deterministic modelling of integrated
urban drainage systems. Water Sci Technol 45(3):81–94

Schoups G, Vrugt JA (2010) A formal likelihood function for parameter
and predictive inference of hydrologic models with correlated,
heteroscedastic, and non-Gaussian errors. Water Resour Res
46(10). https://doi.org/10.1029/2009WR008933

Sobol IM (1993) Sensitivity estimates for nonlinear mathematical
models. Mathematical Modelling and Computational Experiments
1(4):407–414

Solvi A-M (2006) Modelling the sewer-treatment-urban river system in
view of the EUWater Framework Directive. Doctoral Thesis, Ghent
University, Belgium

Sorooshian S, Dracup JA (1980) Stochastic parameter estimation proce-
dures for hydrologie rainfall-runoff models: correlated and
heteroscedastic error cases. Water Resour Res 16(2):430–442

Toni T, Welch D, Strelkowa N, Ipsen A, StumpfMP (2009) Approximate
Bayesian computation scheme for parameter inference and model
selection in dynamical systems. J R Soc Interface 6(31):187–202

Tscheikner-Gratl F, Lepot M, Moreno-Rodenas A, Schellart A (2017) A
frame-work for the application of uncertainty analysis. https://doi.
org/10.5281/zenodo.1240926

Tscheikner-Gratl F, Bellos V, Schellart A, Moreno-Rodenas A,
Muthusamy M, Langeveld J, Clemens F, Benedetti L, Rico-
Ramirez MA, de Carvalho RF, Breuer L, Shucksmith J, Heuvelink
GBM, Tait S (2019) Recent insights on uncertainties present in
integrated catchment water quality modelling. Water Res 150:368–
379

Vrugt JA, Sadegh M (2013) Toward diagnostic model calibration and
evaluation: approximate Bayesian computation. Water Resour Res
49(7):4335–4345

Xiu D (2010) Numerical methods for stochastic computations: a spectral
method approach. Princeton university press

Xiu D, Karniadakis GE (2002) The wiener–Askey polynomial chaos for
stochastic differential equations. SIAM J Sci Comput 24(2):619–
644

Yang J, Jakeman A, Fang G, Chen X (2018) Uncertainty analysis of a
semi-distributed hydrologic model based on a Gaussian process em-
ulator. Environ Model Softw 101:289–300

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Environ Sci Pollut Res (2020) 27:14237 14258–14258

https://doi.org/10.1029/2011WR010608
https://doi.org/10.1029/2011WR010608
https://doi.org/10.1029/2009WR008933
https://doi.org/10.5281/zenodo.1240926
https://doi.org/10.5281/zenodo.1240926

	Parametric emulation and inference in computationally expensive integrated urban water quality simulators
	Abstract
	Introduction
	Materials and methods
	The integrated catchment model
	Dynamic emulator
	Parametric inference

	Results and discussion
	Dynamic emulation of flow and dissolved oxygen concentrations
	Global sensitivity analysis of process parameters
	Parametric inference
	Error-generating process and likelihood description

	Conclusions
	Annex A: River model water quality processes
	Annex B: Accounting for the autocorrelation structure
	Annex C: Test output series for the emulator-simulator comparison
	References




