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Abstract
We prove a general sparse domination theorem in a space of homogeneous type, in
which a vector-valued operator is controlled pointwise by a positive, local expression
called a sparse operator. We use the structure of the operator to get sparse domination
in which the usual �1-sum in the sparse operator is replaced by an �r -sum. This
sparse domination theorem is applicable to various operators from both harmonic
analysis and (S)PDE. Using our main theorem, we prove the A2-theorem for vector-
valued Calderón–Zygmund operators in a space of homogeneous type, from which
we deduce an anisotropic, mixed-norm Mihlin multiplier theorem. Furthermore, we
show quantitative weighted norm inequalities for the Rademacher maximal operator,
for which Banach space geometry plays a major role.

Keywords Sparse domination · Space of homogeneous type · Muckenhoupt weight ·
Singular integral operator · Mihlin multiplier theorem · Rademacher maximal
operator

Mathematics Subject Classification Primary: 42B20 · Secondary: 42B15, 42B25,
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1 Introduction

The technique of controlling various operators by so-called sparse operators has proven
to be a very useful tool to obtain (sharp) weighted norm inequalities in the past decade.
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E. Lorist

The key feature in this approach is that a typically signed and non-local operator is
dominated, either in norm, pointwise or in dual form, by a positive and local expression.

The sparse domination technique comes from Lerner’s work towards an alterna-
tive proof of the A2-theorem, which was first proven by Hytönen in [38]. In [54]
Lerner applied his local mean oscillation decomposition approach to the A2-theorem,
estimating the norm of a Calderón–Zygmund operator by the norm of a sparse opera-
tor. This was later improved to a pointwise estimate independently by Conde-Alonso
and Rey [15] and by Lerner and Nazarov [57]. Afterwards, Lacey [51] obtained the
same result for a slightly larger class of Calderón–Zygmund operators by a stopping
cube argument instead of the local mean oscillation decomposition approach. This
argument was further refined by Hytönen, Roncal, and Tapiola [35] and afterwards
made strikingly clear by Lerner [55], where the following abstract sparse domination
principle was shown:

If T is a bounded sublinear operator from L p1(Rn) to L p1,∞(Rn) and the grand
maximal truncation operator

MT f (s) := sup
Q�s

ess sup
s′∈Q

|T ( f 1Rn\3Q)(s′)|, s ∈ R
n,

is bounded from L p2(Rn) to L p2,∞(Rn) for some 1 ≤ p1, p2 < ∞, then there is
an η ∈ (0, 1) such that for every compactly supported f ∈ L p(Rn) with p0 :=
max{p1, p2} there exists an η-sparse family of cubes S such that

|T f (s)| �
∑

Q∈S
〈| f |〉p0,Q 1Q(s), s ∈ R

n . (1.1)

Here 〈 f 〉p
p,Q := ∫

Q f p := 1
|Q|

∫
Q f p for p ∈ (0,∞) and positive f ∈ L p

loc(R
n) and

we call a family of cubes S η-sparse if for every Q ∈ S there exists a measurable set
EQ ⊆ Q such that |EQ | ≥ η|Q| and such that the EQ’s are pairwise disjoint.

This sparse domination principle was further generalized in the recent paper [58]
by Lerner and Ombrosi, in which the authors showed that the weak L p2 -boundedness
of the more flexible operator

M#
T ,α f (s) := sup

Q�s
ess sup
s′,s′′∈Q

|T ( f 1Rn\αQ)(s′) − T ( f 1Rn\αQ)(s′′)|, s ∈ R
n,

for some α ≥ 3 is already enough to deduce the pointwise sparse domination as
in (1.1). Furthermore, they relaxed the weak L p1 -boundedness condition on T to a
condition in the spirit of the T (1)-theorem.

1.1 Main Result

Our main result is a generalization of the main result in [58] in the following four
directions:

(i) We replace R
n by a space of homogeneous type (S, d, μ).
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On Pointwise �r -Sparse Domination

(ii) We let T be an operator from L p1(S; X) to L p1,∞(S; Y ), where X and Y are
Banach spaces.

(iii) We use structure of the operator T and geometry of the Banach space Y to replace
the �1-sum in the sparse operator by an �r -sum for r ≥ 1.

(iv) We replace the truncation T ( f 1Rn\αQ) in the grandmaximal truncation operator
by an abstract localization principle.

The extensions (i) and (ii) are relatively straightforward. Themain novelty of this paper
is (iii), which controls the weight characteristic dependence that can be deduced from
the sparse domination. Generalization (iv) will only make its appearance in Theorem
3.2 and can be used to make the associated grand maximal truncation operator easier
to estimate in specific situations.

Let (S, d, μ) be a space of homogeneous type and let X and Y be Banach spaces.
For a bounded linear operator T from L p1(S; X) to L p1,∞(S; Y ) and α ≥ 1 we define
the following sharp grand maximal truncation operator

M#
T ,α f (s) := sup

B�s
ess sup
s′,s′′∈B

∥∥T ( f 1S\αB)(s′) − T ( f 1S\αB)(s′′)
∥∥

Y , s ∈ S,

where the supremum is taken over all balls B ⊆ S containing s ∈ S. Ourmain theorem
reads as follows.

Theorem 1.1 Let (S, d, μ) be a space of homogeneous type and let X and Y be Banach
spaces. Take p1, p2, r ∈ [1,∞) and set p0 := max{p1, p2}. Take α ≥ 3c2d/δ, where
cd is the quasi-metric constant and δ is as in Proposition 2.1. Assume the following
conditions:

• T is a bounded linear operator from L p1(S; X) to L p1,∞(S; Y ).
• M#

T ,α is a bounded operator from L p2(S; X) to L p2,∞(S).
• There is a Cr > 0 such that for disjointly and boundedly supported f1, . . . , fn ∈

L p0(S; X)

∥∥∥T
( n∑

k=1

fk
)
(s)

∥∥∥
Y

≤ Cr

( n∑

k=1

∥∥T fk(s)
∥∥r

Y

)1/r
, s ∈ S.

Then there is an η ∈ (0, 1) such that for any boundedly supported f ∈ L p0(S; X)

there is an η-sparse collection of cubes S such that

‖T f (s)‖Y �S,α CT Cr

(∑

Q∈S

〈‖ f ‖X
〉r
p0,Q 1Q(s)

)1/r
, s ∈ S,

where CT = ‖T ‖L p1→L p1,∞ + ‖M#
T ,α‖L p2→L p2,∞ .

As the assumption in the third bullet of Theorem 1.1 expresses a form of sublinearity
of the operator T when r = 1, we will call this assumption r -sublinearity. Note that it
is crucial that the constant Cr is independent of n ∈ N. IfCr = 1 it suffices to consider
n = 2.
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E. Lorist

1.2 SharpWeighted Norm Inequalities

One of the main reasons to study sparse domination of an operator is the fact that
sparse bounds yield weighted norm inequalities and these weighted norm inequalities
are sharp formany operators. Here sharpness ismeant in the sense that for p ∈ (p0,∞)

we have a β ≥ 0 such that

‖T ‖L p(S,w;X)→L p(S,w;Y ) � [w]βAp/p0
, w ∈ Ap/p0 , (1.2)

and (1.2) is false for any β ′ < β.
The first result of this type was obtained by Buckley [9], who showed that β =

1
p−1 for the Hardy–Littlewood maximal operator. A decade later, the quest to find
sharp weighted bounds attracted renewed attention because of the work of Astala,
Iwaniec, and Saksman [4]. They proved sharp regularity results for the solution to
the Beltrami equation under the assumption that β = 1 for the Beurling–Ahlfors
transform for p ≥ 2. This linear dependence on the Ap characteristic for the Beurling–
Ahlfors transformwas shown by Petermichl andVolberg in [72]. Another decade later,
after many partial results, sharp weighted norm inequalities were obtained for general
Calderón–Zygmund operators by Hytönen in [38] as discussed before.

In Sect. 4, we will prove weighted L p-boundedness for the sparse operators appear-
ing in Theorem 1.1. As a direct corollary from Theorem 1.1 and Proposition 4.1 we
have:

Corollary 1.2 Under the assumptions of Theorem 1.1 we have for all p ∈ (p0,∞) and
w ∈ Ap/p0

‖T ‖L p(S,w;X)→L p(S,w;Y ) � CT Cr [w]max
{

1
p−p0

, 1r

}

Ap/p0
,

where the implicit constant depends on S, p0, p, r , and α.

As noted before, the main novelty in Theorem 1.1 is the introduction of the parameter
r ∈ [1,∞). The r -sublinearity assumption in Theorem 1.1 becomes more restrictive
as r increases and the conclusions of Theorem 1.1 and Corollary 1.2 consequently
become stronger. In order to checkwhether the dependence on theweight characteristic
is sharp, one can employ, e.g., [65, Theorem 1.2], which provides a lower bound for
the best possible weight characteristic dependence in terms of the operator norm of T
from L p(S; X) to L p(S; Y ). For some operators, like Littlewood–Paley or maximal
operators, sharpness in the estimate in Corollary 1.2 is attained for r > 1 and thus
Theorem 1.1 can be used to show sharp weighted bounds for more operators than
precursors like [58, Theorem 1.1].

1.3 How to Apply Our Main Result

Let us outline the typical way how one applies Theorem 1.1 (or the local and more
general version in Theorem 3.2) to obtain (sharp) weighted L p-boundedness for an
operator T :
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On Pointwise �r -Sparse Domination

(i) If T is not linear it is often linearizable, which means that we can linearize it by
putting part of the operator in the norm of the Banach space Y . For example, if
T is a Littlewood–Paley square function, we take Y = L2, and if T is a maximal
operator, we take Y = �∞. Alternatively one can apply Theorem 3.2, which is
a local and more abstract version of Theorem 1.1 that does not assume T to be
linear.

(ii) The weak L p1 -boundedness of T needs to be studied separately and is often
already available in the literature.

(iii) The operatorM#
T ,α reflects the non-localities of the operator T . The weak L p2 -

boundedness ofM#
T ,α requires an intricate study of the structure of the operator.

In many examplesM#
T ,α can be pointwise dominated by the Hardy–Littlewood

maximal operator Mp2 , which is weak L p2 -bounded. This is exemplified for
Calderón–Zygmund operators in the proof of Theorem 6.1. Sometimes, one can
choose a suitable localization in Theorem 3.2 such that the sharp maximal trun-
cation operator is either zero (see Sect. 8 on the Rademacher maximal operator),
or pointwise dominated by T .

(iv) The r -sublinearity assumption on T is trivial for r = 1, which suffices if one is
not interested in quantitative weighted bounds. To check the r -sublinearity for
some r > 1, one needs to use the structure of the operator and often also the
geometric properties of the Banach space Y like type r . See, for example, the
proofs of Theorems 8.1 and [64, Theorem 6.4] how to check r -sublinearity in
concrete cases.

1.4 Applications

The main motivation to generalize the results in [58] comes from the application in
the recent work [64] by Veraar and the author, in which Calderón–Zygmund theory
is developed for stochastic singular integral operators. In particular, in [64, Theorem
6.4] Theorem 1.1 is applied with p1 = p2 = r = 2 to prove a stochastic version
of the vector-valued A2-theorem for Calderón–Zygmund operators, which yields new
results in the theory of maximal regularity for stochastic partial differential equations.
The fact that r = 2 in [64, Theorem 6.4] was needed to obtain a sharp result motivated
the introduction of the parameter r in this paper. In future work, further applications
of Theorem 1.1 to both deterministic and stochastic partial differential equations will
be given, for which it is crucial that we allow spaces of homogeneous type instead of
just R

n , as, in these applications, S is typically R+ × R
n with the parabolic metric.

In this paper, we will focus on applications in harmonic analysis. We will provide
a few examples that illustrate the sparse domination principle nicely and comment on
further potential applications in Sect. 9.

• As a first application of Theorem 1.1, we prove an A2-theorem for vector-valued
Calderón–Zygmund operators with operator-valued kernel in a space of homo-
geneous type. The A2-theorem for vector-valued Calderón–Zygmund operators
with operator-valued kernel in Euclidean space has previously been proven in [32]
and the A2-theorem for scalar-valued Calderón–Zygmund operators in spaces of
homogeneous type in [3,69]. Our theorem unifies these two results.
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• Using the A2-theorem, we prove a weighted, anisotropic, mixed-norm Mihlin
multiplier theorem, which is a natural supplement to the recent results in [24] and
is particularly useful in the study of spaces of smooth, vector-valued functions.

• In our second application of Theorem 1.1, we study sparse domination and quanti-
tativeweighted norm inequalities for theRademachermaximal operator, extending
the qualitative bounds in Euclidean space in [50]. The proof demonstrates how one
can use the geometry of the Banach space to deduce r -sublinearity for an operator.
As a corollary, we deduce that the lattice Hardy–Littlewood and the Rademacher
maximal operator are not comparable.

1.5 Outline

This paper is organized as follows: After introducing spaces of homogeneous type and
dyadic cubes in such spaces in Sect. 2, we will set up our abstract sparse domination
framework and deduce Theorem 1.1 in Sect. 3. We also give some further generaliza-
tions of our main results. In Sect. 4 we introduce weights and state weighted bounds
for the sparse operators in the conclusions of Theorem 1.1, from which Corollary 1.2
follows. To prepare for our application sections, we will discuss some preliminaries
on, e.g., Banach space geometry in Sect. 5. Afterwards we will use our main result to
prove the previously discussed applications in Sects. 6, 7 and 8. Finally, in Sect. 9 we
discuss some potential further applications of our main result.

2 Spaces of Homogeneous Type

A space of homogeneous type (S, d, μ), originally introduced by Coifman and Weiss
in [14], is a set S equipped with a quasi-metric d and a doubling Borel measure μ.
That is, a metric d which instead of the triangle inequality satisfies

d(s, t) ≤ cd
(
d(s, u) + d(u, t)

)
, s, t, u ∈ S,

for some cd ≥ 1, and a Borel measure μ that satisfies the doubling property

μ
(
B(s, 2ρ)

) ≤ cμ μ
(
B(s, ρ)

)
, s ∈ S, ρ > 0,

for some cμ ≥ 1, where B(s, ρ) := {t ∈ S : d(s, t) < ρ} is the ball around s with
radius ρ. Throughout this paper, we will assume additionally that all balls B ⊆ S are
Borel sets and that we have 0 < μ(B) < ∞.

It was shown in [78, Example 1.1] that it can indeed happen that balls are not Borel
sets in a quasi-metric space. This can be circumvented by taking topological closures
and adjusting the constants cd and cμ accordingly. However, to simplify matters we
just assume all balls to be Borel sets and leave the necessary modifications if this is
not the case to the reader. The size condition on the measure of a ball ensures that
taking the average 〈 f 〉p,B of a positive function f ∈ L p

loc(S) over a ball B ⊆ S is
always well defined.
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On Pointwise �r -Sparse Domination

Asμ is a Borel measure, i.e., a measure defined on the Borel σ -algebra of the quasi-
metric space (S, d), the Lebesgue differentiation theorem holds and as a consequence
the continuous functions with bounded support are dense in L p(S) for all p ∈ [1,∞).
The Lebesgue differentiation theorem and consequently our results remain valid if μ

is a measure defined on a σ -algebra 	 that contains the Borel σ -algebra as long as the
measure space (S, 	,μ) is Borel semi-regular. See [1, Theorem 3.14] for the details.

Throughout we will write that an estimate depends on S if it depends on cd and cμ.
For a thorough introduction to and a list of examples of spaces of homogeneous type
we refer to the monographs of Christ [12] and Alvarado and Mitrea [1].

2.1 Dyadic Cubes

Let 0 < c0 ≤ C0 < ∞ and 0 < δ < 1. Suppose that for k ∈ Z we have an index set
Jk , pairwise disjoint collectionDk = {Q j

k } j∈Jk
of measurable sets and a collection of

points {zk
j } j∈Jk

. We call D := ⋃
k∈ZDk a dyadic system with parameters c0, C0 and

δ if it satisfies the following properties:

(i) For all k ∈ Z we have

S =
⋃

j∈Jk

Qk
j ;

(ii) For k ≥ l, Q ∈ Dk and Q′ ∈ Dl we either have Q ∩ Q′ = ∅ or Q ⊆ Q′;
(iii) For each k ∈ Z and j ∈ Jk we have

B(zk
j , c0δ

k) ⊆ Qk
j ⊆ B(zk

j , C0δ
k);

We will call the elements of a dyadic system D cubes and for a cube Q ∈ D we
define the restricted dyadic system D(Q) := {P ∈ D : P ⊆ Q}. We will say that an
estimate depends on D if it depends on the parameters c0, C0 and δ.

One can view zk
j and δk as the center and side length of a cube Qk

j ∈ Dk . These
have to be with respect to a specific k ∈ Z, as this k may not be unique. We therefore
think of a cube Q ∈ D to also encode the information of its center z and generation k.
The structure of individual dyadic cubes Q ∈ D in a space of homogeneous type can
be very messy and consequently the dilations of such cubes do not have a canonical
definition. Therefore for a cube Q ∈ D with center z and of generation k we define
the dilations αQ for α ≥ 1 as

αQ := B
(
z, α · C0δ

k),

which are actually dilations of the ball that contains Q by property (iii) of a dyadic
system.

When S = R
n and d is the Euclidean distance, the standard dyadic cubes form

a dyadic system and, combined with its translates over α ∈ {0, 1
3 ,

2
3 }n , it holds that

any ball in R
n is contained in a cube of comparable size from one of these dyadic

systems (see, e.g., [43, Lemma 3.2.26]). We will rely on the following proposition for
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the existence of dyadic systems with this property in a general space of homogeneous
type. For the proof and a more detailed discussion, we refer to [40].

Proposition 2.1 Let (S, d, μ) be a space of homogeneous type. There exist 0 < c0 ≤
C0 < ∞, γ ≥ 1, 0 < δ < 1 and m ∈ N such that there are dyadic systems
D1, . . . ,Dm with parameters c0, C0 and δ, and with the property that for each s ∈ S
and ρ > 0 there is a j ∈ {1, . . . , m} and a Q ∈ D j such that

B(s, ρ) ⊆ Q, and diam(Q) ≤ γρ.

The following covering lemma will be used in the proof of our main theorem:

Lemma 2.2 Let (S, d, μ) be a space of homogeneous type and D a dyadic system
with parameters c0, C0, and δ. Suppose that diam(S) = ∞, take α ≥ 3c2d/δ and let
E ⊆ S satisfy 0 < diam(E) < ∞. Then there exists a partition D ⊆ D of S such that
E ⊆ αQ for all Q ∈ D.

Proof For s ∈ S and k ∈ Z let Qk
s ∈ Dk be the unique cube such that s ∈ Qk

s and
denote its center by zk

s . Define

Ks := {
k ∈ Z : E � 2cd Qk

s

}
,

where cd is the quasi-metric constant. If k ∈ Z is such that

diam(2cd Qk
s ) ≤ 4c2dC0δ

k < diam(E),

then E � 2cd Qk
s , i.e., k ∈ Ks so is Ks non-empty. On the other hand, if k ∈ Z is such

that C0δ
k > sups′∈E d(s, s′), then

sup
s′∈E

d(s′, zk
s ) ≤ cd

(
sup
s′∈E

d(s, s′) + d(s, zk
s )

) ≤ 2cdC0δ
k

so E ⊆ 2cd Qk
s and thus k /∈ Ks . Therefore Ks is bounded from below.

Define ks := min Ks and set D := {Qks
s : s ∈ S}. Then D is a partition of S.

Indeed, suppose that for s, s′ ∈ S we have Qks
s ∩ Q

ks′
s′ �= ∅. Then using property

(ii) of a dyadic system we may assume without loss of generality that Qks
s ⊆ Q

ks′
s′ .

Property (ii) of a dyadic system then implies that ks ≥ ks′ . In particular s ∈ Q
ks′
s′ , so

by the minimality of ks we must have ks = ks′ . Therefore, since the elements of Dks

are pairwise disjoint, we can conclude Qks
s = Q

ks′
s′ .

To conclude note that zks
s ∈ Qks

s ⊆ Qks−1
s by property (ii) of a dyadic system, so

d(zks−1
s , zks

s ) ≤ C0δ
ks−1. Therefore using the minimality of ks we obtain

E ⊆ 2cd Qks−1
s = B(zks−1

s , 2cdC0δ
ks−1) ⊆ B

(
zks

s ,
3c2d
δ

· C0δ
ks

)
⊆ αQks

s ,

which finishes the proof. ��
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2.2 The Hardy–LittlewoodMaximal Operator

On a space of homogeneous type (S, d, μ) with a dyadic system D , we define the
dyadic Hardy–Littlewood maximal operator for f ∈ L1

loc(S) by

MD f (s) := sup
Q∈D :s∈Q

〈| f |〉1,Q, s ∈ S.

By Doob’s maximal inequality (see, e.g., [43, Theorem 3.2.2]) MD is strong L p-
bounded for all p ∈ (1,∞) andweak L1-bounded.We define the (non-dyadic)Hardy–
Littlewood maximal operator for f ∈ L1

loc(S) by

M f (s) := sup
B�s

〈| f |〉1,Q, s ∈ S,

where the supremum is taken over all balls B ⊆ S containing s. By Proposition 2.1
there are dyadic systems D1, . . . ,Dm such that

M f (s) �S

m∑

j=1

MD f (s), s ∈ S,

so M is also strong L p-bounded for p ∈ (1,∞) and weak L1-bounded. For p0 ∈
[1,∞) and f ∈ L p0

loc(S), we define

Mp0 f (s) := sup
B�s

〈| f |〉p0,Q = M
(| f |p0

)
(s)1/p0 , s ∈ S,

which is strong L p-bounded for p ∈ (p0,∞) and weak L p0 -bounded. This follows
from the boundedness of M by rescaling.

3 Pointwise �r-Sparse Domination

In this section, wewill prove a local version of the sparse domination result in Theorem
1.1, from which we will deduce Theorem 1.1 by a covering argument using Lemma
2.2. This local version will use an abstract localization of the operator T , since it
depends upon the operator at hand as to the most effective localization. For example,
in the study of a Calderón–Zygmund operator it is convenient to localize the function
inserted into T , for a maximal operator it is convenient to localize the supremum in
the definition of the maximal operator and for a Littlewood–Paley operator it is most
suitable to localize the defining integral.

Definition 3.1 Let (S, d, μ) be a space of homogeneous type with a dyadic systemD ,
let X and Y be Banach spaces, p ∈ [1,∞) and α ≥ 1. For a bounded operator

T : L p(S; X) → L p,∞(S; Y ),
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we say that a family of operators {TQ}Q∈D from L p(S; X) to L p,∞(Q; Y ) is an
α-localization family of T if for all Q ∈ D and f ∈ L p(S; X) we have

TQ( f 1αQ)(s) = TQ f (s), s ∈ Q, (Localization)
∥∥TQ( f 1αQ)(s)

∥∥
Y ≤ ∥∥T ( f 1αQ)(s)

∥∥
Y , s ∈ Q, (Domination)

For Q, Q′ ∈ D with Q′ ⊆ Q we define the difference operator

TQ\Q′ f (s) := TQ f (s) − TQ′ f (s), s ∈ Q′.

and for Q ∈ D the localized sharp grand maximal truncation operator

M#
T ,Q f (s) := sup

Q′∈D (Q):
s∈Q′

ess sup
s′,s′′∈Q′

∥∥(TQ\Q′ ) f (s′) − (TQ\Q′ ) f (s′′)
∥∥

Y , s ∈ S.

In order to obtain interesting results, one needs to be able to recover the boundedness
of T from the boundedness of TQ uniformly in Q ∈ D . The canonical example of an
α-localization family is

TQ f (s) := T ( f 1αQ)(s), s ∈ Q.

for all Q ∈ D and it is exactly this choice that will lead to Theorem 1.1. We are now
ready to prove our main result, which is a local, more general version of Theorem 1.1.

Theorem 3.2 Let (S, d, μ) be a space of homogeneous type with dyadic system D and
let X and Y be Banach spaces. Take p1, p2, r ∈ [1,∞), set p0 := max{p1, p2} and
take α ≥ 1. Suppose that

• T is a bounded operator from L p1(S; X) to L p1,∞(S; Y ) with α-localization family
{TQ}Q∈D .

• M#
T ,Q is bounded from L p2(S; X) to L p2,∞(S) uniformly in Q ∈ D .

• For all Q1, . . . , Qn ∈ D with Qn ⊆ · · · ⊆ Q1 and any f ∈ L p(S; X)

∥∥TQ1 f (s)
∥∥

Y ≤ Cr

(∥∥TQn f (s)
∥∥r

Y +
n−1∑

k=1

∥∥TQk\Qk+1 f (s)
∥∥r

Y

)1/r
, s ∈ Qn .

Then for any f ∈ L p0(S; X) and Q ∈ D there exists a 1
2 -sparse collection of dyadic

cubes S ⊆ D(Q) such that

∥∥TQ f (s)
∥∥

Y �S,D ,α CT Cr

(∑

P∈S

〈‖ f ‖X
〉r
p0,αP 1P (s)

)1/r
, s ∈ Q,

with CT := ‖T ‖L p1→L p1,∞ + supP∈D‖M#
T ,P‖L p2→L p2,∞ .

The assumption in the third bullet in Theorem 3.2 replaces the r -sublinearity
assumption in Theorem 1.1. We will call this assumption a localized �r -estimate.
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Proof Fix f ∈ L p(S, X) and Q ∈ D . We will prove the theorem in two steps: we will
first construct the 1

2 -sparse family of cubes S and then show that the sparse expression
associated to S dominates TQ f pointwise.

Step 1: We will construct the 1
2 -sparse family of cubes S iteratively. Given a col-

lection of pairwise disjoint cubes Sk for some k ∈ N we will first describe how to
construct Sk+1. Afterwards we can inductively define Sk for all k ∈ N starting from
S1 = {Q} and set S := ⋃

k∈N Sk .
Fix a P ∈ Sk and for λ ≥ 1 to be chosen later define

�1
P :=

{
s ∈ P : ‖TP f (s)‖Y > λ CT

〈‖ f ‖X
〉
p0,αP

}

�2
P :=

{
s ∈ P : M#

T ,P ( f )(s) > λ CT
〈‖ f ‖X

〉
p0,αP

}
,

and �P := �1
P ∪ �2

P . Let c1 ≥ 1, depending on S, D and α, be such that μ(αP) ≤
c1 μ(P). By the domination property of the α-localization family we have

‖TP f (s)‖Y ≤ ‖T ( f 1αP )(s)‖Y , s ∈ P,

and by the localization property

M#
T ,P ( f )(s) = M#

T ,P ( f 1αP )(s), s ∈ P.

Thus by the weak boundedness assumptions on T andM#
T ,P and Hölder’s inequality

we have for i = 1, 2

μ(�i
P ) ≤

(‖ f 1αP‖L pi (S;X)

λ
〈‖ f ‖X

〉
p0,αP

)pi =
〈‖ f ‖X

〉pi
pi ,αP

λpi
〈‖ f ‖X

〉pi
p0,αP

μ(αP) ≤ c1
λ

μ(P). (3.1)

Therefore it follows that

μ(�P ) ≤ 2c1
λ

μ(P). (3.2)

To construct the cubes in Sk+1 we will use a local Calderón–Zygmund decomposition
(see, e.g., [26, Lemma 4.5]) on

�P,ρ := {s ∈ P : MD(P)(1�P ) > 1
ρ
}, ρ > 0,

which will be a proper subset of P for our choice of λ and ρ. Here MD(P) is the
dyadic Hardy–Littlewood maximal operator with respect to the restricted dyadic sys-
tem D(P). The local Calderón–Zygmund decomposition yields a pairwise disjoint
collection of cubes SP ⊆ D(P) and a constant c2 ≥ 2, depending on S and D , such
that �P,c2 = ⋃

P ′∈SP
P ′ and

1
c2

μ(P ′) ≤ μ(P ′ ∩ �P ) ≤ 1
2 μ(P ′), P ′ ∈ SP . (3.3)
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Then by (3.2), (3.3) and the disjointness of the cubes in SP we have

∑

P ′∈SP

μ(P ′) ≤ c2
∑

P ′∈SP

μ(P ′ ∩ �P ) ≤ c2 μ(�P ) ≤ 2c1c2
λ

μ(P).

Therefore, by choosing λ = 4c1c2, we have
∑

P ′∈SP
μ(P ′) ≤ 1

2μ(P). This choice
of λ also ensures that �P,c2 is a proper subset of P by as claimed before. We define
Sk+1 := ⋃

P∈Sk SP .
Now take S1 = {Q}, iteratively define Sk for all k ∈ N as described above and set

S := ⋃
k∈N Sk . Then S is 1

2 -sparse family of cubes, since for any P ∈ S we can set

EP := P \
⋃

P ′∈SP

P ′,

which are pairwise disjoint by the fact that
⋃

P ′∈Sk+1 P ′ ⊆ ⋃
P∈Sk P for all k ∈ N

and we have

μ(EP ) = μ(P) −
∑

P ′∈SP

μ(P ′) ≥ 1

2
μ(P).

Step2:Wewill nowcheck that the sparse expression corresponding toS constructed
in Step 1 dominates TQ f pointwise. Since

lim
k→∞ μ

( ⋃

P∈Sk

P
) ≤ lim

k→∞
1

2k
μ(Q) = 0,

we know that there is a set N0 ofmeasure zero such that for all s ∈ Q\N0 there are only
finitely many k ∈ N with s ∈ ⋃

P∈Sk P . Moreover by the Lebesgue differentiation
theorem we have for any P ∈ S that 1�P (s) ≤ MD(P)(1�P )(s) for a.e. s ∈ P . Thus

�P \ NP ⊆ �P,1 ⊆ �P,c2 =
⋃

P ′∈SP

P ′ (3.4)

for some set NP of measure zero. We define N := N0 ∪ ⋃
P∈S NP , which is a set of

measure zero.
Fix s ∈ Q\ N and take the largest n ∈ N such that s ∈ ⋃

P∈Sn P , which exists since
s /∈ N0. For k = 1, . . . , n let Pk ∈ Sk be the unique cube such that s ∈ Pk and note
that by construction we have Pn ⊆ · · · ⊆ P1 = Q. Using the localized �r -estimate of
T we split ‖TQ f (s)‖r

Y into two parts

∥∥TQ f (s)
∥∥r

Y ≤ Cr
r

(∥∥TPn f (s)
∥∥r

Y +
n−1∑

k=1

∥∥TPk\Pk+1 f (s)
∥∥r

Y

)

=: Cr
r

(
A + B

)
.
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For A note that s /∈ NPn and s /∈ ⋃
P ′∈Sn+1 P ′ and therefore by (3.4) we know

that s ∈ Pn \ �Pn . So by the definition of �1
Pn

A ≤ λr Cr
T

〈‖ f ‖X
〉r
p0,αPn

.

For 1 ≤ k ≤ n − 1 we have by (3.2) and (3.3) that

μ
(
Pk+1 \ (�Pk+1 ∪ �Pk )

) ≥ μ(Pk+1) − μ(�Pk+1) − μ(Pk+1 ∩ �Pk )

≥ μ(Pk+1) − 1

2c2
μ(Pk+1) − 1

2
μ(Pk+1) > 0,

(3.5)

so Pk+1 \ (�Pk+1 ∪�Pk ) is non-empty. Take s′ ∈ Pk+1 \ (�Pk+1 ∪�Pk ), then we have

∥∥TPk\Pk+1 f (s)
∥∥

Y ≤ ∥∥TPk\Pk+1 f (s) − TPk\Pk+1 f (s′)
∥∥

Y + ∥∥TPk\Pk+1 f (s′)
∥∥

Y

≤ M#
T ,Pk

f (s′) + ∥∥TPk (s
′)
∥∥

Y + ∥∥TPk+1(s
′)
∥∥

Y

≤ 2λ CT
(〈‖ f ‖X

〉
p0,αPk

+ 〈‖ f ‖X
〉
p0,αPk+1

)
,

where we used the definition of M#
T ,Pk

and TPk+1\Pk in the second inequality and

s′ /∈ �Pk+1 ∪ �Pk in the third inequality. Using (a + b)r ≤ 2r−1(ar + br ) for any
a, b > 0 this implies that

B ≤
n−1∑

k=1

2r2r−1λr Cr
T

(〈‖ f ‖X
〉r
p0,αPk

+ 〈‖ f ‖X
〉r
p0,αPk+1

)

≤
n∑

k=1

4rλr Cr
T

〈‖ f ‖X
〉r
p0,αPk

.

Combining the estimates for A and B we obtain

∥∥TQ f (s)
∥∥

Y ≤ 5 λ CT Cr

( n∑

k=1

〈‖ f ‖X
〉r
p0,αPk

)1/r

= 5 λ CT Cr

(∑

P∈S

〈‖ f ‖X
〉r
p0,αP 1P (s)

)1/r
.

Since s ∈ Q \ N was arbitrary and N has measure zero, this inequality holds for a.e.
s ∈ Q. Noting that λ = 4c1c2 and c1 and c2 only depend on S, α and D finishes the
proof of the theorem. ��

As announced Theorem 1.1 now follows directly from Theorem 3.2 and a covering
argument with Lemma 2.2.
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Proof of Theorem 1.1 We will prove Theorem 1.1 in three steps: we will first show
that the assumptions of Theorem 1.1 imply the assumptions of Theorem 3.2, then we
will improve the local conclusion of Theorem 3.2 to a global one and finally we will
replace the averages over the dilation αP in the conclusion of Theorem 3.2 by the
average over larger cubes P ′.

To start let D1, . . . ,Dm be as in Proposition 2.1 with parameters c0, C0, δ, and γ ,
which only depend on S.

Step 1: For any Q ∈ D1 define TQ by TQ f (s) := T ( f 1αQ)(s) for s ∈ Q. Then:

• {TQ}Q∈D1 is an α-localization family of T .
• For any Q ∈ D1 and f ∈ L p1(S; X) we have

M#
T ,Q f (s) ≤ M#

T ,α( f 1αQ)(s), s ∈ Q.

So by the weak L p2 -boundedness of M#
T ,α it follows that M#

T ,Q f is weak L p2 -

bounded uniformly in Q ∈ D1.
• For any f ∈ L p(S; X) and Q1, . . . , Qn ∈ D1 with Qn ⊆ · · · ⊆ Q1 the functions

fk := f 1αQk\αQk+1 for k = 1, . . . , n − 1 and fn := f 1αQn are disjointly
supported. Thus by the r -sublinearity of T

∥∥TQ1 f (s)
∥∥

Y ≤ Cr

(∥∥TQn f (s)
∥∥r

Y +
n−1∑

k=1

∥∥TQk\Qk+1 f (s)
∥∥r

Y

)1/r
, s ∈ Qn .

So the assumptions of Theorem 3.2 follow from the assumptions of Theorem 1.1.
Step 2: Let f ∈ L p(S; X) be boundedly supported. First suppose that diam(S) =

∞ and let E be a ball containing the support of f . By Lemma 2.2 there is a partition
D ⊆ D1 such that E ⊆ αQ for all Q ∈ D. Thus by Theorem 3.2 we can find a
1
2 -sparse collection of cubes SQ ⊆ D1(Q) for every Q ∈ D with

∥∥T f (s)
∥∥

Y �S,α CT Cr

( ∑

P∈SQ

〈‖ f ‖X
〉r
p0,αP 1P (s)

)1/r
, s ∈ Q,

where we used that TQ f = T ( f 1αQ) = T f as supp f ⊆ αQ. Since D is a partition,
S := ⋃

Q∈D SQ is also a 1
2 -sparse collection of cubes with

∥∥T f (s)
∥∥

Y �S,α CT Cr

(∑

P∈S

〈‖ f ‖X
〉r
p0,αP 1P (s)

)1/r
, s ∈ S, (3.6)

If diam(S) < ∞, then (3.6) follows directly from Theorem 3.2 since S ∈ D in that
case.

Step 3: For any P ∈ S with center z and sidelength δk we can find a P ′ ∈ D j for
some 1 ≤ j ≤ m such that

αP = B(z, αC0 · δk) ⊆ P ′, diam(P ′) ≤ γαC0 · δk .
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Therefore there is a c1 > 0 depending on S and α such that

μ(P ′) ≤ μ
(
B(z, γ αC0 · δk)

) ≤ c1 μ
(
B(z, c0 · δk)

) ≤ c1 μ(P).

So by defining EP ′ := EP we can conclude that the collection of cubes S′ := {P ′ :
P ∈ S} is 1

2c1
-sparse. Moreover since αP ⊆ P ′ and μ(P ′) ≤ c1 μ(P) ≤ c1 μ(αP)

for any P ∈ S, we have
〈‖ f ‖X

〉
p0,αP ≤ c1

〈‖ f ‖X
〉
p0,P ′ .

Combined with (3.6), this proves the sparse domination in the conclusion of Theorem
1.1. ��
Remark 3.3 The assumption α ≥ 3c2d/δ in Theorem 1.1 arises from the use of Lemma
2.2, which transfers the local sparse domination estimate of Theorem 3.2 to the global
statement of Theorem 1.1. To deduce weighted estimates the local sparse domination
estimate of Theorem 3.2 suffices by testing against boundedly supported functions.
However the operator norm ofM#

T ,α usually becomes easier to estimate for larger α,
so the lower bound on α is not restrictive.

Further Generalizations

Our main theorems, Theorems 1.1 and 3.2, allow for various further generalizations.
One can for instance change the boundedness assumptions on T and M#

T ,α , treat
multilinear operators, or deduce domination by sparse forms for operators that do not
admit a pointwise sparse estimate. We end this section by sketching some of these
possible generalizations.

In [58, Section 3] various variations and extensions of the main result in [58] are
outlined. In particular they show:

• The sparse domination for an individual function follows from assumptions on
the same function. This can be exploited to prove a sparse T (1)-type theorem, see
[58, Section 4].

• One can use certain Orlicz estimates to deduce sparse domination with Orlicz
averages.

• The method of proof extends to the multilinear setting (see also [60]).

Our results can also be extended in these directions, which we leave to the interested
reader. In the remainder of this section, we will explore some further directions in
which our results can be extended.

Sparse domination techniques have been successfully applied to fractional integral
operators, see, e.g., [16–18,47]. In these works, sparse domination and sharp weighted
estimates are deduced for, e.g., the Riesz potentials, which for 0 < α < d and a
Schwartz function f : R

d → C are given by

Iα f (s) :=
∫

Rd

f (t)

|s − t |d−α
dt, s ∈ R

d ,
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A key feature of such operators is that they are not (weakly) L p-bounded, but bounded
from L p(Rd) to Lq(Rd), where p, q ∈ (1,∞) are such that 1

p = 1
q + α

d . The sparse
domination that one obtains in this case involves fractional sparse operators, in which
the usual averages 〈| f |〉p,Q are replaced by fractional averages.

These operators fit in our framework with minimal effort. Indeed, upon inspection
of the proof of Theorem 3.2 it becomes clear that the only place where we use the
boundedness of T and M#

T ,α is in (3.1). Replacing the bounds with the off-diagonal
bounds arising from fractional integral operators, we obtain the following variant of
Theorem 1.1.

Theorem 3.4 Let (S, d, μ) be a space of homogeneous type and let X and Y be Banach
spaces. Take p0, q0, r ∈ [1,∞). Takeα ≥ 3c2d/δ, where cd is the quasi-metric constant
and δ is as in Proposition 2.1. Assume the following conditions:

• T is a bounded linear operator from L p0(S; X) to Lq0,∞(S; Y ).
• M#

T ,α is a bounded operator from L p0(S; X) to Lq0,∞(S).
• T is r-sublinear.

Then there is an η ∈ (0, 1) such that for any boundedly supported f ∈ L p0(S; X)

there is an η-sparse collection of cubes S such that

‖T f (s)‖Y �S,α CT Cr

(∑

Q∈S
μ(αP)

r
p0

− r
q0

〈‖ f ‖X
〉r
p0,Q 1Q(s)

)1/r
, s ∈ S,

where CT = ‖T ‖L p0→L p0,∞ + ‖M#
T ,α‖L p0→L p0,∞ and Cr is the r-sublinearity con-

stant.

Proof The proof is the same as the proof of Theorem 1.1, using an adapted version of
Theorem 3.2 with the canonical α-localization family

TQ f (s) = T (1αQ f )(s), s ∈ Q.

The only thing that changes in the proof of Theorem 3.2 is the definition of �1
P and

�2
P and the computation in (3.2). Indeed, we define

�1
P :=

{
s ∈ P : ‖TP f (s)‖Y > λ CT μ(αP)

1
p0

− 1
q0

〈‖ f ‖X
〉
p0,αP

}

�2
P :=

{
s ∈ P : M#

T ,P ( f )(s) > λ CT μ(αP)
1
p0

− 1
q0

〈‖ f ‖X
〉
p,αP

}
,

and then by the assumptions on T and M#
T ,P we have for i = 1, 2

μ(�i
P ) ≤

( ‖ f 1αP‖L p0 (S;X)

λ μ(αP)
1
p0

− 1
q0

〈‖ f ‖X
〉
p0,αP

)q0 =
〈‖ f ‖X

〉q0
p0,αP

λq0
〈‖ f ‖X

〉q0
p0,αP

μ(αP) ≤ c1
λ

μ(P).

which proves (3.2). In Step 2 of the proof of Theorem 3.2, one needs to keep track of

the factor μ(αP)
1
p0

− 1
q0 in the estimates. ��
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In the celebrated paper [6] by Bernicót, Frey, and Petermichl, domination by sparse
formswas introduced to treat operators falling outside the scope ofCalderón–Zygmund
theory. This method was later adopted by Lerner in [56] into his framework to prove
sparse domination for rough homogeneous singular integral operators. As ourmethods
are based on Lerner’s sparse domination framework, our main result can also be
generalized to the sparse form domination setting.

Let (S, d, μ) be a space of homogeneous type with a dyadic system D , let X and
Y be Banach spaces, q ∈ (1,∞), p ∈ [1, q) and α ≥ 1. For a bounded operator

T : L p(S; X) → L p,∞(S; Y ),

with anα-localization family {TQ}Q∈D wedefine the localized sharp grand q-maximal
truncation operator for Q ∈ D by

M#
T ,Q,q f (s) :=
sup

Q′∈D(Q):
s∈Q′

(∫

Q′

∫

Q′

∥∥(TQ\Q′) f (s′) − (TQ\Q′) f (s′′)
∥∥q

Y dμ(s′)dμ(s′′)
)1/q

.

Note that for q = ∞ one formally recovers the operator M#
T ,Q .

We will prove a version of Theorem 3.2 for operators for which the truncation
operators M#

T ,Q,q are bounded uniformly in Q ∈ D using sparse forms. Of course
taking

TQ f (s) := T ( f 1αQ)(s), s ∈ Q.

for Q ∈ D as theα-localization family one can easily deduce a statement like Theorem
1.1 in this setting, which we leave to the interested reader.

Theorem 3.5 Let (S, d, μ) be a space of homogeneous type with dyadic system D and
let X and Y be Banach spaces. Take q0 ∈ (1,∞], r ∈ (0, q0), p1, p2 ∈ [1, q0), set
p0 := max{p1, p2} and take α ≥ 1. Suppose that

• T is a bounded operator from L p1(S; X) to L p1,∞(S; Y ) with an α-localization
family {TQ}Q∈D .

• M#
T ,Q,q0

is bounded from L p2(S; X) to L p2,∞(S) uniformly in Q ∈ D .
• T satisfies a localized �r -estimate.

Then for any f ∈ L p0(S; X), g ∈ L

(
1
r − 1

q0

)−1

(S) and Q ∈ D there exists a 1
2 -sparse

collection of dyadic cubes S ⊆ D(Q) such that

(∫

Q

∥∥TQ f
∥∥r

Y · |g|rdμ
)1/r

�S,D ,α,r CT Cr

(∑

P∈S
μ(P)

〈‖ f ‖X
〉r
p0,αP

〈|g|〉r 1
1
r − 1

q0

,P

)1/r
,

with CT := ‖T ‖L p1→L p1,∞ + supP∈D‖M#
T ,P,q0

‖L p2→L p2,∞ and Cr the constant
from the localized �r -estimate.
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Proof We construct the sparse collection of cubes S exactly as in Step 1 of the proof
of Theorem 3.2, using M#

T ,P,q0
instead of M#

T ,P in the definition of �2
P . We will

check that sparse form corresponding to S satisfies the claimed domination property,
which will roughly follow the same lines as Step 2 of the proof of Theorem 3.2.

Fix f ∈ L p0(S; X) and g ∈ L

(
1
r − 1

q0

)−1

(S). Note that for a.e. s ∈ Q there are only
finitely many k ∈ N with s ∈ ⋃

P∈Sk P . So we can use the localized �r -estimate of T
to split

∫

Q

∥∥TQ f
∥∥r

Y · |g|r ≤ Cr
r

∑

k∈N

∑

P∈Sk

(∫

P\⋃P ′∈Sk+1 P ′

∥∥TP f
∥∥r

Y · |g|r

+
∑

P ′∈Sk+1:P ′⊆P

∫

P ′

∥∥TP\P ′ f
∥∥r

Y · |g|r
)

=: Cr
r

∑

k∈N

∑

P∈Sk

(
AP + BP

)
.

(3.7)

Fix k ∈ N and P ∈ Sk . As in the estimate for A in Step 2 of the proof of Theorem
3.2, we have

AP ≤ λr Cr
T

〈‖ f ‖X
〉r
p0,αP

∫

P
|g|r ≤ λr Cr

T μ(P)
〈‖ f ‖X

〉r
p0,αP 〈|g|〉r

1
1
r − 1

q0

,

using Hölder’s inequality in the second inequality. For P ′ ∈ Sk+1 such that P ′ ⊆ P
we have as in (3.5) that

μ
(
P ′ \ (�P ′ ∪ �P )

) ≥ 1

4
μ(P ′).

Therefore we can estimate each of the terms in the sum in BP as follows

∫

P ′

∥∥TP\P ′ f
∥∥r

Y · |g|r

≤ 2r
∫

P ′

∫

P ′\(�P∪�P ′ )

∥∥TP\P ′ f (s) − TP\P ′ f (s′)
∥∥r

Y · |g(s)|rdμ(s′)dμ(s)

+ 2r
∫

P ′

∫

P ′\(�P∪�P ′ )

∥∥TP\P ′ f (s′)
∥∥r

Y · |g(s)|rdμ(s′)dμ(s)

≤ 2r+2μ(P ′) inf
s′′∈P ′ M

#
T ,P,q0 f (s′′)r · 〈|g|〉r

1
1
r − 1

q0

,P ′

+ 22rμ(P ′)
∫

P ′\(�P∪�P ′ )

∥∥TP f
∥∥r

Y + ∥∥TP ′ f
∥∥r

Y dμ · 〈|g|〉r
r ,P ′

≤ 4r+2λr Cr
T μ(P ′)

(〈‖ f ‖X
〉r
p0,αP + 〈‖ f ‖X

〉r
p0,αP ′

)〈|g|〉r
1

1
r − 1

q0

,P ′
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wherewe usedHölder’s inequality and the definitions ofM#
T ,P,q0

and TP\P ′ in the sec-
ond inequality and the definitions of �P and �P ′ in the third inequality. Furthermore,
we note that by Hölders inequality we have

∑

P ′∈Sk+1:
P ′⊆P

μ(P ′) 〈|g|〉r
1

1
r − 1

q0

,P ′ ≤
( ∑

P ′∈Sk+1:
P ′⊆P

∫

P ′
|g|

1
1
r − 1

q0 dμ
)1− r

q0 ·
( ∑

P ′∈Sk+1:
P ′⊆P

μ(P ′)
)r/q0

≤
(∫

P
|g|

1
1
r − 1

q0 dμ
)1− r

q0 · μ(P)r/q0 = μ(P)〈|g|〉r
1

1
r − 1

q0

,P

Thus for BP we obtain

BP ≤ 4r+2λr Cr
T

(
μ(P)

〈‖ f ‖X
〉r
p0,αP 〈|g|〉r

1
1
r − 1

q0

,P

+
∑

P ′∈Sk+1:P ′⊆P

μ(P ′)
〈‖ f ‖X

〉r
p0,αP ′ 〈|g|〉r

1
1
r − 1

q0

,P ′
)

Plugging this estimate and the estimate for AP into (3.7) yields

∫

Q

∥∥TQ f
∥∥r

Y · |g|rdμ ≤ 4r+3λr Cr
T Cr

r

∑

P∈S
μ(P)

〈‖ f ‖X
〉r
p0,αP 〈|g|〉r

1
1
r − 1

q0

,P
.

Since λ = 4c1c2 and c1 and c2 only depend on S, α, and D , this finishes the proof of
the theorem. ��

4 Weighted Bounds for Sparse Operators

As discussed in the introduction, one of the main motivations to study sparse dom-
ination for an operator is to obtain (sharp) weighted bounds. In this section we will
introduce Muckenhoupt weights and state weighted L p-bounds for the sparse opera-
tors in the conclusions of Theorems 1.1 and 3.2, which arewell known in the Euclidean
setting.

Let (S, d, μ) be a space of homogeneous type. A weight is a locally integrable
function w : S → (0,∞). For p ∈ [1,∞), a Banach space X and a weight w the
weighted Bochner space L p(S, w; X) is the space of all strongly measurable f : S →
X such that

‖ f ‖L p(S,w;X) :=
(∫

S
‖ f (s)‖p

Xwdμ
)1/p

< ∞.
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For p ∈ [1,∞) and a weight w we say that w lies in the Muckenhoupt class Ap and
write w ∈ Ap if its Ap-characteristic satisfies

[w]Ap := sup
B⊆S

〈w〉1,B〈w−1〉 1
p−1 ,B < ∞,

where the supremum is taken over all balls B ⊆ S and the second factor is replaced
by ess supB w−1 if p = 1. For an introduction to Muckenhoupt weights we refer to
[31, Chapter 7].

Let p0, r ∈ [1,∞), p ∈ (p0,∞),w ∈ Ap/p0 .We are interested in the boundedness
on L p(S, w) of sparse operators of the form

f �→
(∑

Q∈S

〈| f |〉rp0,Q 1Q

)1/r
, (4.1)

which appear in the conclusions of Theorems 1.1 and 3.2. In the Euclidean case such
bounds are thoroughly studied and most of the arguments extend directly to spaces of
homogeneous type. For the convenience of the reader we will give a self-contained
proof of the strong weighted L p-boundedness of these sparse operators in spaces of
homogeneous type, following the proof of [55, Lemma 4.5]. For further results we
refer to:

• Weak weighted L p-boundedness (including the endpoint p = p0), for the sparse
operators in (4.1) can be found [26,42].

• More precise bounds in terms of two-weight Ap-A∞-characteristics for various
special cases of the sparse operators in (4.1) can be found in, e.g., [23,42,45,52].

• Weighted bounds for the fractional sparse operators in Theorem 3.4 can be found
in [23]

• Weighted bounds for the sparse forms in Theorem 3.5 can be found in [6,26].

Proposition 4.1 Let (S, d, μ) be a space of homogeneous type, let S be an η-sparse
collection of cubes and take p0, r ∈ [1,∞). For p ∈ (p0,∞), w ∈ Ap/p0 and
f ∈ L p(S, w) we have

∥∥∥
(∑

Q∈S

〈| f |〉rp0,Q 1Q

)1/r∥∥∥
L p(S,w)

� [w]max
{

1
p−p0

, 1r

}

Ap/p0
‖ f ‖L p(S,w),

where the implicit constant depends on S, p0, p, r and η.

Proof We first note that by Proposition 2.1 we may assume without loss of generality
that S ⊆ D , where D is an arbitrary dyadic system in (S, d, μ). Furthermore, if
p − p0 ≤ r we have max

{ 1
p−p0

, 1
r

} = 1
p−p0

. Since �p−p0 ↪→ �r , the case p − p0 ≤ r
follows from the case p − p0 = r , so without loss of generality we may also assume
p ≥ p0 + r .

For a weight u and a measurable set E , we define u(E) := ∫
E udμ and we denote

the dyadic Hardy–Littlewood maximal operator with respect to the measure udμ by
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MD ,u , which is bounded on L p(S, u) for all p ∈ (1,∞) byDoob’smaximal inequality
(see, e.g., [43, Theorem 3.2.2]). Take f ∈ L p(S, w), set q := (p/r)′ = p

p−r and take

g ∈ Lq(S, w1−q) = (
L p/r (S, w)

)∗
.

Then we have by the disjointness of the EQ’s associated to each Q ∈ S

∑

Q∈S
w(EQ)

(μ(Q)

w(Q)

)q 〈|g|〉q1,Q ≤
∑

Q∈S

∫

EQ

MD ,w(gw−1)qwdμ

≤ ∥∥MD ,w(gw−1)
∥∥q

Lq (S,w)

�p,r ‖g‖q
Lq (S,w1−q )

,

(4.2)

and similarly, setting σ := w1−(p/p0)′ , we have

∑

Q∈S
σ(EQ)

(μ(Q)

σ (Q)

) p
p0

〈| f |p0
〉p/p0
1,Q ≤ ∥∥MD ,σ (| f |p0σ−1)

∥∥p/p0
L p/p0 (S,σ )

�p,p0 ‖ f ‖p
L p(S,w),

(4.3)

using σ · σ−p0/p = w. Define the constant

cw := sup
Q∈D

w(Q)1/r

w(EQ)
1
r − 1

p

σ(Q)1/p0

σ(EQ)1/p

1

μ(Q)1/p0
,

Then by Hölders inequality, (4.2) and (4.3) we have

∫

S

(∑

Q∈S

〈| f |〉rp0,Q 1Q

)
· gdμ =

∑

Q∈S
μ(Q)

〈| f |p0
〉r/p0
1,Q 〈|g|〉1,Q

≤ cr
w

∑

Q∈S

(
σ(EQ)r/p

(μ(Q)

σ (Q)

)r/p0 〈| f |p0
〉r/p0
1,Q

)

×
(
w(EQ)1/q μ(Q)

w(Q)
〈|g|〉1,Q

)

�p,p0,r cr
w

∥∥ f
∥∥r

L p(S,w)
‖g‖Lq (S,w1−q ).

So by duality it remains to show cw � [w]max
{

1
p−p0

, 1r

}

Ap/p0
. Fix a Q ∈ D and note that by

Hölders’s inequality we have

μ(Q)p/p0 ≤ ηp/p0
(∫

EQ

w p0/pw−p0/pdμ
)p/p0 ≤ ηp/p0 w(EQ) σ (EQ)p/p0−1.
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and thus

w(Q)

w(EQ)

( σ(Q)

σ (EQ)

)p/p0−1 ≤ ηp/p0 w(Q)

μ(Q)

(σ(Q)

μ(Q)

)p/p0−1
�S ηp/p0 [w]Ap/p0

.

Therefore we can estimate

cw = sup
Q∈D

[w(Q)

μ(Q)

(σ(Q)

μ(Q)

) p
p0

−1] 1
p ·

[( w(Q)

w(EQ)

) 1
r − 1

p
( σ(Q)

σ (EQ)

) 1
p
]

�S [w]
1
p
Ap/p0

sup
Q∈D

[ w(Q)

w(EQ)

( σ(Q)

σ (EQ)

) p
p0

−1]max
{
1
r − 1

p , 1p
p0

p−p0

}

�S,η [w]
1
p +max

{
1
r − 1

p , 1p
p0

p−p0

}

Ap/p0
= [w]max

{
1

p−p0
, 1r

}

Ap/p0
,

which finishes the proof. ��

5 Banach Space Geometry andR-Boundedness

Before turning to applications of Theorems 1.1 and 3.2 in the subsequent sections,
we first need to introduce some geometric properties of a Banach space X and the
R-boundedness of a family of operators.

5.1 Type and Cotype

Let (εk)
∞
k=1 be a sequence of independent Rademacher variables on�, i.e., uniformly

distributed random variables taking values in {z ∈ K : |z| = 1}. We say that a Banach
space X has (Rademacher) type p ∈ [1, 2] if for any x1, . . . , xn ∈ X we have

∥∥∥
n∑

k=1

εk xk

∥∥∥
L2(�;X)

�X ,p

( n∑

k=1

‖xk‖p
X

)1/p
,

and say that X has non-trivial type if X has type p > 1.We say that X has (Rademacher)
cotype q ∈ [2,∞] if for any x1, . . . , xn ∈ X we have

( n∑

k=1

‖xk‖q
X

)1/q
�X ,q

∥∥∥
n∑

k=1

εk xk

∥∥∥
L2(�;X)

,

and say that X has finite cotype if X has cotype q < ∞. See [44, Chapter 7] for an
introduction to type and cotype.
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5.2 Banach Lattices and p-Convexity and q-Concavity

A Banach lattice is a partially ordered Banach space X such that for x, y ∈ X

|x | ≤ |y| ⇒ ‖x‖X ≤ ‖y‖Y .

On aBanach lattice, there are two properties that are closely related to type and cotype.
We say that a Banach lattice is p-convex with p ∈ [1,∞] if for x1, . . . , xn ∈ X

∥∥∥
( n∑

k=1

|xk |p
)1/p∥∥∥

X
�X ,p

( n∑

k=1

‖xk‖p
)1/p

,

where the sum on the left-hand side is defined through the Krivine calculus. A Banach
lattice is called q-concave for q ∈ [1,∞] if for x1, . . . , xn ∈ X

( n∑

k=1

‖xk‖q
)1/q

�X ,q

∥∥∥
( n∑

k=1

|xk |q
)1/q∥∥∥

X
.

If a Banach lattice has finite cotype then p-convexity implies type p. Conversely
type p implies r -convexity for all 1 ≤ r < p. Similar relations hold for cotype q
and q-concavity. We refer to [63, Chapter 1] for an introduction to Banach lattices,
p-convexity and q-concavity.

5.3 The UMD Property

We say that a Banach space X has the UMD property if the martingale difference
sequence of any finite martingale in L p(�; X) is unconditional for some (equivalently
all) p ∈ (1,∞). The UMD property implies reflexivity, non-trivial type and finite
cotype. For an introduction to the theory of UMD Banach spaces we refer the reader
to [43, Chapter 4] and [73].

5.4 R-Boundedness

Let X and Y be Banach spaces and � ⊆ L(X , Y ). We say that � is R-bounded if for
any x1, . . . , xn and T1, . . . , Tn ∈ � we have

(
E

∥∥
n∑

k=1

εk Tk xk
∥∥2

)1/2
�

(
E

∥∥
n∑

k=1

εk xk
∥∥2

)1/2
,

where (εk)
∞
k=1 is a sequence of independentRademacher variablesThe least admissible

implicit constant is denoted by R(�). R-boundedness is a strengthening of uniform
boundedness and is often a key assumption to prove boundedness of operators on
Bochner spaces. We refer to [44, Chapter 8] for an introduction toR-boundedness.
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6 The A2-Theorem for Operator-Valued Calderón–Zygmund
Operators in a Space of Homogeneous Type

The A2-theorem, first proved by Hytönen in [38] as discussed in the introduction,
states that a Calderón–Zygmund operator is bounded on L2(Rd , w) with a bound that
depends linearly on the A2-characteristic of w. From this sharp weighted bounds for
all p ∈ (1,∞) can be obtained by sharp Rubio de Francia extrapolation [21]. Since
its first proof by Hytönen, the A2-theorem has been extended in various directions.
We mention two of these extensions relevant for the current discussion:

• The A2-theorem for Calderón–Zygmund operators on a geometric doublingmetric
space was first proven by Nazarov, Reznikov, and Volberg [69], afterwards it was
proven on a space of homogeneous type by Anderson and Vagharshakyan [3] (see
also [2]) using Lerner’s mean oscillation decomposition method. It was further
extended to the setting of ball bases by Karagulyan [48].

• The A2-theorem for vector-valued Calderón–Zygmund operators with operator-
valued kernel was proven by Hänninen and Hytönen [32], using a suitable adapted
version of Lerner’s median oscillation decomposition.

In this section we will prove sparse domination for vector-valued Calderón–Zygmund
operators with operator-valued kernel on a space of homogeneous type. This yields
the A2-theorem for these Caldeŕon–Zygmund operators, unifying the results from [3]
and [32].

As an application of this theorem, we will prove a weighted, anisotropic, mixed-
norm Mihlin multiplier theorem in the next section. We will also use it to study
maximal regularity for parabolic partial differential equations in forthcoming work.
In these applications S is (a subset of) R

d equipped with the anisotropic quasi-norm

|s|a :=
( d∑

j=1

|s j |2/a j
)1/2

, s ∈ R
d . (6.1)

for some a ∈ (0,∞)d and the Lebesgue measure.
In a different direction, our A2-theorem can be applied in the study of fundamental

harmonic analysis operators associated with various discrete and continuous orthog-
onal expansions, started by Muckenhoupt and Stein [68]. In the past decade, there
has been a surge of results in which such operators are proven to be vector-valued
Calderón–Zygmund operators on concrete spaces of homogeneous type. Weighted
bounds are then often concluded using [76, Theorem III.1.3] or [77]. With our A2-
theorem, these results can be made quantitative in terms of the Ap-characteristic.
We refer to [7,11,13,70,71] and the references therein for an overview of the recent
developments in this field.

Let (S, d, μ) be a space of homogeneous type, X and Y be Banach spaces and let

K : (S × S) \ {(s, s) : s ∈ S} → L(X , Y ),
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be strongly measurable in the strong operator topology. We say that K is a Dini kernel
if there is a cK ≥ 2 such that

‖K (s, t) − K (s, t ′)‖ ≤ ω
(d(t, t ′)

d(s, t)

) 1

μ
(
B(s, d(s, t))

) , 0 < d(t, t ′) ≤ 1

cK
d(s, t),

‖K (s, t) − K (s′, t)‖ ≤ ω
(d(s, s′)

d(s, t)

) 1

μ
(
B(s, d(s, t))

) , 0 < d(s, s′) ≤ 1

cK
d(s, t),

where ω : [0, 1] → [0,∞) is increasing, subadditive, ω(0) = 0 and

‖K‖Dini :=
∫ 1

0
ω(t)

dt

t
< ∞.

Take p0 ∈ [1,∞) and let

T : L p0(S; X) → L p0,∞(S; Y ),

be a bounded linear operator. We say that T has Dini kernel K if for every boundedly
supported f ∈ L p0(S; X) and a.e. s ∈ S \ supp f we have

T f (s) =
∫

S
K (s, t) f (t)dt .

Theorem 6.1 Let (S, d, μ) be a space of homogeneous type and let X and Y be Banach
spaces. Let p0 ∈ [1,∞) and suppose T is a bounded linear operator from L p0(S; X)

to L p0,∞(S; Y ) with Dini kernel K . Then for every boundedly supported f ∈ L1(S; X)

there exists an η-sparse collection of cubes S such that

‖T f (s)‖Y �S,p0 CT

∑

Q∈S

〈‖ f ‖X
〉
1,Q 1Q(s), s ∈ S.

Moreover, for all p ∈ (1,∞) and w ∈ Ap we have

‖T ‖L p(S,w;X)→L p(S,w;Y ) �S,p,p0 CT [w]max{ 1
p−1 ,1}

Ap
,

with CT := ‖T ‖L p0 (S;X)→L p0,∞(S;Y ) + ‖K‖Dini.
Proof We will check the assumptions of Theorem 1.1 with p1 = p2 = r = 1. The
weak L1-boundedness of T with

‖T ‖L1(S;X)→L1,∞(S;Y ) �S,p CT .

follows from the classical Calderón–Zygmund argument, see, e.g., [76, Theorem
III.1.2]. The 1-sublinearity assumption on T follows from the triangle inequality,
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so the only thing left to check is the weak L1-boundedness of M#
T ,α . Let

α := 3 c2d max
{
δ−1, cK

}

with cd the quasi-metric constant, δ as in Proposition 2.1 and cK the constant from the
definition of a Dini kernel. Fix s ∈ S and a ball B = B(z, ρ) such that s ∈ B. Then
for any s′, s′′ ∈ B and t ∈ S \ αB we have

d(s′, t) ≥ 1

cd
d(z, t) − d(z, s′) ≥ αρ

cd
− ρ ≥ 2 cK cd ρ =: ε

d(s′, s′′) ≤ 2 cd ρ = c−1
K ε,

Therefore we have for any boundedly supported f ∈ L1(S; X)

‖T (1S\αB f )(s′) − TK (1S\αB f )(s′′)‖Y

≤
∫

S\αB

∥∥(
K (s′, t) − K (s′′, t)

)
f (t)

∥∥
Y dμ(t)

≤
∫

d(s′,t)>ε

ω
(d(s′, s′′)

d(s′, t)

) 1

μ
(
B(s′, d(s′, t))

)‖ f (t)‖Xdμ(t)

≤
∞∑

j=0

ω
(
c−1

K 2− j )
∫

2 j ε<d(s′,t)≤2 j+1ε

1

μ
(
B(s′, d(s′, t))

)‖ f (t)‖Xdμ(t)

�S

∞∑

j=0

ω
(
2− j−1)

∫

B(s′,2 j+1ε)

‖ f (t)‖Xdμ(t)

≤ ‖K‖Dini M
(‖ f ‖X

)
(s),

where the last step follows from s ∈ B(s′, 2 j+1ε) for all j ∈ N and

∞∑

j=0

ω
(
2− j−1) ≤

∞∑

j=0

ω
(
2− j−1)

∫ 2− j

2− j−1

dt

t
≤

∞∑

j=0

∫ 2− j

2− j−1
ω(t)

dt

t
= ‖K‖Dini.

So taking the supremum over all s′, s′′ ∈ B and all balls B containing s we find
that M#

T ,α f (s) �S ‖K‖Dini M
(‖ f ‖X

)
(s). Thus by the weak L1-boundedness of the

Hardy–Littlewoodmaximal operator and the density of boundedly supported functions
in L1(S; X) we get

∥∥M#
T ,α

∥∥
L1(S;X)→L1,∞(S;Y )

�S ‖K‖Dini.

The pointwise sparse domination now follows from Theorem 1.1 and the weighted
bounds from Proposition 4.1. ��
Remark 6.2 In the proof of Theorem 6.1 it actually suffices to use the so-called Lr -
Hörmander condition for some r > 1, which is implied by the Dini condition. See
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[60, Section 3] for the definition of the Lr -Hörmander condition and a comparison
between the Lr -Hörmander and the Dini condition.

Note that Theorem 6.1 does not assume anything about the Banach spaces X and
Y and is therefore applicable in situations where, for example, Y = �∞. However,
in various applications, X and Y will need to have the UMD property in order to
check the assumed weak L p0 -boundedness of T for some p0 ∈ [1,∞). For instance,
for a large class of operators, the weak L p0 -boundedness of T can be checked using
theorems like the T (1)-theorem or T (b)-theorem. See [25,39] for these theorems in
the vector-valued setting, which assume the UMD property for the underlying Banach
space.

If S is Euclidean space, one can also use an (operator-valued) Fourier multiplier
theorem to check the a priori L p0 -bound, which we will discuss in the next section.

7 TheWeighted Anisotropic Mixed-NormMihlin Multiplier Theorem

Let X and Y be Banach spaces. Denote the space of X -valued Schwartz functions
by S(Rd; X) and the space of Y -valued tempered distributions by S′(Rd ; Y ) :=
L(S(Rd); Y ). To an m ∈ L∞(Rd ;L(X , Y )) we associate the Fourier multiplier oper-
ator

Tm : S(Rd; X) → S′(Rd ; Y ), Tm f = (m f̂ )∨.

Since S(Rd ; X) is dense in L p(Rd; X) and L p(Rd ; Y ) is continuously embedded into
S′(Rd; X), one may ask under which conditions on m the operator Tm extends to a
boundedoperator from L p(Rd ; X) to L p(Rd; Y ). If this is the casewe callm a bounded
Fourier multiplier. We refer to [43, Chapter 5] for an introduction to operator-valued
Fourier multiplier theory.

One of the main Fourier multiplier theorems is the Mihlin multiplier theorem, first
proven in the operator-valued setting by Weis in [79]. The operator-valued Mihlin
multiplier theorem of Weis has since been extended in many directions. Recently
Fackler, Hytönen, and Lindemulder extended the operator-valued Mihlin multiplier
theorem to a weighted, anisotropic, mixed-norm setting in [24]. This is, for example,
useful in the study of spaces of smooth, vector-valued functions and has applications
to parabolic PDEs with inhomogeneous boundary conditions, see, e.g., [62]. In [24]
the Mihlin multiplier theorem is shown using the following two approaches:

• Using a weighted Littlewood–Paley decomposition, they show a weighted,
anisotropic, mixed-norm Mihlin multiplier theorem for rectangular Ap-weights,
i.e., Ap-weights for which the defining supremum is taken over rectangles instead
of balls.

• Using Calderón–Zygmund theory, they show a weighted, isotropic, non-mixed-
norm Mihlin multiplier theorem for cubicular Ap-weights, i.e., Ap-weights for
which the defining supremum is taken over cubes, which is equivalent to the
definition using balls we used in Sect. 4.
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Both approaches have their pros and cons. The result using a Littlewood–Paley decom-
position only requires estimates of ∂θm for θ ∈ {0, 1}, whereas the approach using
Calderón–Zygmund theory also requires estimates of higher-order derivatives. On the
other hand, the class of rectangular Ap-weights is a proper subclass of the class of
cubicular Ap-weights.

In applications, it is desirable to have the Mihlin multiplier theorem for cubicular
Ap-weights in the anisotropic, mixed-norm setting as well. This would remove the
need to distinguish between the isotropic and anisotropic setting in, e.g., [62, (6) on
p.64]. In order to obtain theMihlin multiplier theorem for cubicular Ap-weights in the
anisotropic, mixed-norm setting one needs Calderón–Zygmund theory inR

d equipped
with an anisotropic norm. Since this is a special case of a space of homogeneous type,
we can use Theorem 6.1 to supplement the results of [24], which will be the main
result of this section.

Let us introduce the anisotropic, mixed-norm setting. For a ∈ (0,∞)d let | · |a be
the anisotropic quasi-norm as in (6.1) and define

R
d
a := (Rd , | · − · |a, dt),

where dt denotes Lebesgue measure. Then R
d
a is a space of homogeneous type and,

e.g.,

D :=
{ d∏

j=1

(
2−a j n([0, 1) + m j )

) : m ∈ Z
d , n ∈ Z

}
,

is a dyadic system in R
d
a . We write |a|1 := ∑d

j=1 a j , |a|∞ := max j=1,...,d a j , and

for θ ∈ N
d we set a · θ := ∑d

j=1 a jθ j .

Take l ∈ N, d ∈ N
l and consider the d -decomposition of R

d :

R
d
d := R

d1 × . . . × R
dl .

For a t ∈ R
d
d we write t = (t1, . . . , tl)with t j ∈ R

d j for j = 1, . . . , l and similarly we

write a = (a1, . . . , al). For p ∈ [1,∞)l , a vector of weightsw ∈ ∏l
j=1 Ap(R

d j
a j ) and

a Banach space X we define the weighted mixed-norm Bochner space L p(Rd
d ,w; X)

as the space of all strongly measurable f : R
d
d → X such that

‖ f ‖L p(Rd
d ,w;X) :=

(∫

R
d1

· · ·
(∫

R
dl
‖ f ‖pl

X wldtl
) pl−1

pl · · · w1dt1
) 1

p1 ,

is finite.
We are now ready to state and prove the announced weighted anisotropic, mixed-

norm Mihlin multiplier theorem.

Theorem 7.1 Let X and Y be UMD Banach spaces, set N = |a|1 + |a|∞ + 1 and let
m ∈ L∞(Rd;L(X , Y )). Suppose that for all θ ∈ N

d with a · θ ≤ N the distributional
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derivative ∂θ m coincides with a continuous function on R
d \ {0} and we have the

R-bound

R({|ξ |a·θa · ∂θ m(ξ) : ξ ∈ R
d} \ {0}) ≤ Cm .

for some Cm > 0. Then for every compactly supported f ∈ L1(Rd ; X) there exists
an η-sparse collection of anisotropic cubes S such that

‖Tm f (s)‖Y �X ,Y ,a Cm

∑

Q∈S

〈‖ f ‖X
〉
1,Q 1Q(s), s ∈ R

d .

Moreover, for all p ∈ (1,∞)l and w ∈ ∏l
j=1 Ap j (R

d j
a j ) we have

‖Tm‖L p(Rd
d ,w;X)→L p(Rd

d ,w;Y ) �X ,Y ,d ,a, p,w Cm .

Proof We will check the conditions of Theorem 6.1. By [37, Theorem 3], which
trivially extends to the case X �= Y , we know that Tm is bounded from L2(Rd; X) to
L2(Rd; Y ) with

‖Tm‖L2(Rd ;X)→L2(Rd ;Y ) �X ,Y ,d ,a Cm .

By [61, Lemma 4.4.6 and 4.4.7] we know that qm coincides with a continuous function
on R

d \ {0}, which is bounded away from 0 and

K (t, s) := qm(t − s), t �= s,

is a Dini kernel on the space of homogeneous type R
d
a with

ω(r) = Ca · Cm · rmin a, r ∈ [0, 1].

Now let f ∈ L p(Rd; X) with compact support. Fix a c ∈ R
d \ supp f and take r > 0

such that B(c, 2r) ∩ supp f = ∅. Take a sequence ( fn)∞n=1 in S(Rd ; X) such that
supp fn∩B(c, r) = ∅ and fn → f in L2(Rd ; X). Then T fn → T f in L2(Rd ; X) and,
by passing to a subsequence if necessary, we have fn(t) → f (t) and T fn(t) → T f (t)
for a.e. t ∈ R

d . Fix n ∈ N, then we have for all ϕ ∈ C∞
c (Rd \ supp fn)

〈Tm fn, ϕ〉 =
∫

Rd
m(s) f̂n(s)qϕ(s)ds

=
∫

Rd
qm(s)

∫

Rd
fn(t − s)ϕ(t)dtds

=
∫

Rd

∫

Rd
K (t, s) fn(s)ds ϕ(t)dt
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from which we obtain for a.e. t ∈ B(c, r)

Tm f (t) = lim
n→∞ Tm fn(t) = lim

n→∞

∫

Rd
K (t, s) fn(s)ds =

∫

Rd
K (t, s) f (s)ds

Covering R
d \ supp f by countably many such balls, we conclude that Tm has kernel

K . Therefore the sparse domination, as well as the weighted estimate in case l = 1,
follows from Theorem 6.1.

To conclude the proof we will show the case l = 2, the general case follows
by iterating the argument. Take p ∈ (1,∞)2 and w ∈ Ap1(R

d1
a1) × Ap2(R

d2
a2). For

v1 ∈ Ap2(R
d1
a1), note that

v(t) := v1(t1) · w2(t2), t ∈ R
d1 × R

d2 ,

belongs to Ap2(R
d
a), so by the case l = 1 we have

‖Tm f ‖L p2 (Rd ,v;Y ) �X ,Y ,d ,a,p2,v Cm · ‖ f ‖L p2 (Rd ,v;X),

for all f ∈ L p2(Rd , v; X). Since balls in R
d2 with respect to the quasi-metric | ·− · |a2

form a Muckenhoupt basis, we can use Rubio de Francia extrapolation as in [19,
Theorem 3.9] on the extrapolation family

{(‖Tm f ‖L p2 (Rd2 ,w2;Y ), ‖ f ‖L p2 (Rd2 ,w2;X)

) : f : R
d → X simple

}
,

to deduce

‖Tm f ‖L p(Rd
d ,w;Y ) �X ,Y ,d ,a, p,w Cm‖ f ‖L p(Rd

d ,w;X),

for all simple f , which implies the result by density. ��
Remark 7.2 (i) The weight dependence of the implicit constant in Theorem 7.1 in

the case l = 1 is [w]max{ 1
p−1 ,1}

Ap(Rd
a)

, which is sharp. For l ≥ 2 the dependence our

proof yields is more complicated and not sharp for all choices of p ∈ (1,∞)l .
(ii) In the proof of Theorem 7.1 we only use theR-boundedness of the set

{|ξ |a·θa · ∂θm(ξ) : ξ ∈ R
d \ {0}},

for θ ∈ {0, 1}d . For all other θ ∈ N
d with a · θ ≤ N it suffices to know uniform

boundedness of this set.
(iii) One could reduce the number of derivatives necessary inTheorem7.1, by arguing

as in [36] instead of using [61, Lemmas 4.4.6 and 4.4.7]. See also [24, Section
6].

(iv) Using the sparse domination of Theorem 7.1 one can also deduce two-weight
estimates for Tm as in [24, Section 6].
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8 The Rademacher Maximal Function

In this section, we will apply Theorem 3.2 to the Rademacher maximal function. The
proofs will illustrate very nicely how the geometry of the Banach space plays a role in
deducing the localized �r -estimate for this operator. In particular, we will use the type
of a Banach space X to deduce the localized �r -estimate for the Rademacher maximal
function.

The Rademacher maximal function was introduced by Hytönen,McIntosh and Por-
tal in [34] as a vector-valued generalization of Doob’s maximal function that takes into
account the different “directions” in a Banach space. They used the Rademacher max-
imal function to prove a Carleson’s embedding theorem for vector-valued functions in
connection to Kato’s square root problem in Banach spaces. The Carleson’s embed-
ding theorem for vector-valued functions has since found many other applications,
like the local vector-valued T (b) theorem (see [46]).

Let (S, d, μ) be a space of homogeneous type with a dyadic system D and let X
be a Banach space. For f ∈ L1

loc(S; X), we define the Rademacher maximal function
by

MD
Rad f (s) := sup

{∥∥∥
∑

Q∈D :s∈Q

εQλQ〈 f 〉1,Q

∥∥∥
L2(�;X)

:

(λQ)Q∈D finitely non-zero with
∑

Q∈D
|λQ |2 ≤ 1

}
,

where (εQ)Q∈D is a Rademacher sequence on �. One can interpret this maximal
function as Doob’s maximal function

f ∗(s) := sup
Q∈D :s∈Q

∥∥〈 f 〉1,Q

∥∥
X , s ∈ S,

with the uniform bound over the 〈 f 〉1,Q’s replaced by the R-bound. Here the R-
bound of a set U ⊆ X is the R-bound of the family of operators Tx : C → X given
by λ �→ λx for x ∈ U .

We say that the Banach space X has the RMF property if MD[0,1)
Rad is a bounded

operator on L p([0, 1); X) for some p ∈ (1,∞), where

D[0, 1) := {
2−k[ j − 1, j) : k ∈ N ∪ {0}, j = 1, . . . , 2k}

is the standard dyadic system in [0, 1). It was shown by Hytönen, McIntosh and
Portal [34, Proposition 7.1] that this implies boundedness for all p ∈ (1,∞) and by
Kemppainen [49, Theorem 5.1] that this implies boundedness of MD

Rad on L p(S; X)

for any space of homogeneous type (S, d, μ) with a dyadic system D .
The relation of RMF property to other Banach space properties is not yet fully

understood. However, we do have some necessary and sufficient conditions:

• TheR-bound of a set U ⊆ X is equivalent to the uniform bound of that set if and
only if X has type 2 (see [44, Proposition 8.6.1]). Therefore if X has type 2 we
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have for any f ∈ L1
loc([0, 1); X) that MD[0,1)

Rad f � MD[0,1)(‖ f ‖X ), so X has the
RMF property.

• Any UMD Banach lattice has the RMF property, see also the discussion related to
the Hardy–Littlewood maximal operator at the end of this section.

• Non-commutative L p-spaces for p ∈ (1,∞) have the RMF property, see [34,
Corollary 7.6].

• The RMF property implies non-trivial type, see [49, Proposition 4.2].

It is an open problem whether non-trivial type or even the UMD property implies the
RMF property.

Weighted bounds for the Rademacher maximal function in the Euclidean setting
were studied by Kemppainen [50, Theorem 1]. The proof was based on a good-λ
inequality, which does not give sharp quantitative estimates in terms of the weight
characteristic. Using Theorem 3.2 we can prove sharp quantitative weighted estimates
for theRademachermaximal function through sparse domination.Wewill not consider
the situation in which X has type 2, as this case follows directly from MD[0,1)

Rad f �
MD[0,1)(‖ f ‖X ) and the well-known sparse domination for the Hardy–Littlewood
maximal operator.

We will need a version of the Rademacher maximal function for finite collections
of cubes. For a subcollection of cubes D ⊆ D , we define MD

Rad analogous to MD
Rad.

Theorem 8.1 Let (S, d, μ) be a space of homogeneous type with a dyadic system D
and let X be a Banach space with the RMF property. Assume that X has type r for
r ∈ [1, 2). For any finite collection of cubes D ⊆ D and f ∈ L1(S; X) there exists
an 1

2 -sparse collection of cubes S ⊆ D such that

MD
Rad f (s) �X ,S,D ,r

(∑

Q∈S

〈‖ f ‖X
〉( 1r − 1

2 )−1

1,Q 1Q(s)
) 1

r − 1
2
, s ∈ S.

Moreover, for all p ∈ (1,∞) and w ∈ Ap we have

∥∥MD
Rad

∥∥
L p(S,w;X)→L p(S,w;X)

�X ,S,D ,p,r [w]max
{

1
p−1 , 1r − 1

2

}

Ap
.

Proof Fix a finite collection of cubes D ⊆ D . By [49, Proposition 6.1] MD
Rad is weak

L1-bounded. We will view MD
Rad as a bounded operator

MD
Rad : L1(S; X) → L1,∞(S;L(�2(D), L2(�; X)))

given by

MD
Rad f (s) =

(
(λQ)Q∈D �→

∑

Q∈D :s∈Q

εQλQ 〈 f 〉1,Q

)
, s ∈ S,

where (εQ)Q∈D is a Rademacher sequence on �.
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For Q ∈ D set

D(Q) := {P ∈ D : P ⊆ Q}

and define TQ := MD(Q)
Rad . Then {TQ}Q∈D is a 1-localization family for MD

Rad. Fur-
thermore, we have for f ∈ L1(S; X) and s ∈ Q ∈ D that

M#
MD

Rad,Q
f (s)

= sup
Q′∈D(Q):

s∈Q′

ess sup
s′,s′′∈Q′

∥∥TQ\Q′ f (s′) − TQ\Q′ f (s′′)
∥∥L(�2(D),L2(�;X))

= 0,

where the second step follows from the fact that TQ\Q′ f = MD(Q)\D(Q′)
Rad f is constant

on Q′. So M#
MD

Rad,Q
is trivially bounded from L1(S; X) to L1,∞(S).

Setq := ( 1r − 1
2 )

−1. To check the localized �q -estimate for MD
Rad take Q1, . . . , Qn ∈

D with Qn ⊆ · · · ⊆ Q1. Let (λQ)Q∈D ∈ �2(D) be of norm one and let (εQ)Q∈D
and (ε′

k)
n
k=1 be Rademacher sequences on � and �′ respectively. Define for k =

1, . . . , n − 1

λk :=
( ∑

Q∈D(Qk+1)\D(Qk )

|λQ |2
)1/2

, λn :=
( ∑

Q∈D(Qn)

|λQ |2
)1/2

Then for f ∈ L1(S; X), setting fQ := εQλQ〈 f 〉1,Q , we have

∥∥∥
∑

Q∈D(Q1)

εQλQ〈 f 〉1,Q

∥∥∥
L2(�;X)

=
∥∥∥ε′

n

∑

Q∈D(Qn)

fQ +
n−1∑

k=1

ε′
k

∑

Q∈D(Qk+1)\D(Qk )

fQ

∥∥∥
L2(�×�′;X)

�X ,r

(
λr

n

∥∥∥
∑

Q∈D(Qn)

λ−1
n fQ

∥∥∥
r

L2(�;X)

+
n−1∑

k=1

λr
k

∥∥∥
∑

Q∈D(Qk+1)\D(Qk )

λ−1
k fQ

∥∥∥
r

L2(�;X)

)1/r

≤
(∥∥∥

∑

Q∈D(Qn)

εQλ−1
n λQ〈 f 〉1,Q

∥∥∥
q

L2(�;X)

+
n−1∑

k=1

∥∥∥
∑

Q∈D(Qk+1)\D(Qk )

εQλ−1
k λQ〈 f 〉1,Q

∥∥∥
q

L2(�;X)

)1/q
,
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using randomization (see [44, Proposition 6.1.11]) in the first step, type r of X in the
second step, and Hölder’s inequality and

∑n
k=1 λ2k = 1 in the last step. Noting that for

k = 1, . . . , n − 1

∑

Q∈D(Qk+1)\D(Qk )

|λ−1
k λQ |2 = 1,

∑

Q∈D(Qn)

|λ−1
n λQ |2 = 1,

this implies the localized �q -estimate for MD
Rad.

Having checked all assumptions of Theorem 3.2 for MD
Lat it follows that for any

Q ∈ D there is a 1
2 -sparse collection of cubes SQ ⊆ D(Q) such that

∥∥TQ(s)
∥∥

Y �X ,S,D ,r ,
(∑

P∈S

〈‖ f ‖X
〉r
p,αP 1P (s)

)1/r
, s ∈ Q.

Let D′ be the maximal cubes (with respect to set inclusion) of D, which are pairwise
disjoint. Then S := ⋃

Q∈D′ SQ is a 1
2 -sparse collection of cubes that satisfies the

claimed sparse domination as TQ(s) = MD
Rad f (s) for any s ∈ Q ∈ D′ and MD

Rad f
is zero outside

⋃
Q∈D′ Q. The weighted bounds follow from Proposition 4.1 and the

monotone convergence theorem. ��
Let us check that the weighted estimate in Theorem 8.1, and consequently also

the sparse domination in Theorem 8.1, is sharp. We take X = �r for r ∈ (1, 2), a
prototypical Banach space with type r . Since R-bounds are stronger than uniform
bounds, we note that for any strongly measurable f : [0, 1) → �q we have

f ∗(s) ≤ MD[0,1)
Rad f (s), s ∈ [0, 1).

Thus by the corresponding result for Doob’s maximal operator (see [43, Proposition
3.2.4]), we have for p ∈ (1,∞)

∥∥MD[0,1)
Rad

∥∥
L p([0,1);�r )→L p([0,1);�r )

≥ p

p − 1
, (8.1)

Now let (en)∞n=1 be the canonical basis of �r and define

f (s) :=
∞∑

n=1

1[2−n ,2−n+1)(s)en, s ∈ [0, 1).

For p ∈ (1,∞) we have

‖ f ‖L p([0,1);�r ) = 1.

To compute ‖MD[0,1)
Rad f ‖L p([0,1);�r ) set I j := [0, 2− j+1], take s ∈ and let m ∈ N be

such that 2−m ≤ s ≤ 2−m+1. Then we have, using λI j = m−1/2 for j = 1, . . . , m
and the Khintchine–Maurey inequalities (see [44, Theorem 7.2.13]), that
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MD[0,1)
Rad f (s) ≥ 1

m1/2

∥∥∥
m∑

j=1

ε j 〈 f 〉1,I j

∥∥∥
L2(�;�r )

� 1

m1/2

∥∥∥
( m∑

j=1

〈 f 〉21,I j

)1/2∥∥∥
�r

� 1

m1/2

∥∥∥
m∑

j=1

e j

∥∥∥
�r

� m1/r−1/2 � log(1/s)1/r−1/2.

Therefore we obtain

∥∥MD[0,1)
Rad f

∥∥
L p([0,1);�r )

�
(∫ 1

0
log(1/s)p/r−p/2ds

)1/p

=
(∫ ∞

1
x p/r−p/2e−xdx

)1/p

≥
( ∞∑

n=2

n p/r−p/2e−n
)1/p

� p1/r−1/2,

where we drop all terms except n = �p� in the last step. Thus combined with (8.1)
we find

∥∥MD[0,1)
Rad

∥∥
L p([0,1);�r )→L p([0,1);�r )

� max
{ 1

p − 1
, p1/r−1/2

}
,

which implies that the weighted estimate in Theorem 8.1 is sharp by [65, Theorem
1.2].

To finish this section, we will compare the sparse domination for the Rademacher
maximal operator in Theorem 8.1 with the sparse domination for the lattice Hardy–
Littlewood maximal operator obtained by Hänninnen and the author in [33, Theorem
1.3]. Let X be a Banach lattice with finite cotype and D the standard dyadic system
in R

d . For a simple function f : R
d → X define dyadic lattice Hardy–Littlewood

maximal operator (see, e.g., [27]) by

MD
Lat f (s) := sup

Q∈D :s∈Q

〈| f |〉1,Q, s ∈ R
d , (8.2)

where the absolute value and the supremum are taken in the lattice sense. By the
Khintchine–Maurey inequalities (see, e.g., [44, Theorem 7.2.13]) we have

MD
Rad f � MD

Lat f

for any simple f : R
d → X . By [8,75] we know that X has the UMD property if and

only if MD
Lat is bounded on L p(Rd ; X) and L p(Rd; X∗) for some (all) p ∈ (1,∞),

which implies that any UMD Banach lattice has the RMF property.
Comparing the sparse domination result in Theorem 8.1 with the corresponding

sparse domination result for the dyadic lattice Hardy–Littlewood maximal operator,
we see that the sparse operator in Theorem 8.1 is smaller than the sparse operator in
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[33, Theorem 1.3]. Moreover, the sparse domination for the lattice Hardy–Littlewood
maximal operator is sharp, as shown in [33, Theorem 1.2]. Therefore on any RMF
Banach lattice that is not ∞-convex, the operators MD

Rad and MD
Lat are incomparable,

i.e., the (dyadic) lattice Hardy–Littlewood maximal operator is strictly larger than the
Rademacher maximal operator. As the only ∞-convex RMF Banach lattices are the
finite dimensional ones, we have the following corollary.

Corollary 8.2 Let X be an infinite dimensional RMF Banach lattice. Then there is no
C > 0 such that for all simple f : R

d → X

MD
Lat f ≤ C MD

Rad f .

9 Further Applications

In this final section, we comment on some further applications of our main theorems,
for which we leave the details to the interested reader.

• Sparse domination and weighted bounds for variational truncations of Calderón–
Zygmund operators were studied in [22,41,66,67]. The arguments presented in
these references also imply the boundedness of our sharp grand maximal trunca-
tion operator and thus by Theorem 1.1 yield sparse domination of the variational
truncations of Calderón–Zygmund operators.

• In [59] Lerner, Ombrosi and Rivera-Ríos show sparse domination for commutators
of a BMO function b with a Calderón–Zygmund operator using sparse operators
adapted to the function b. By a slight adaptation of the arguments presented in the
proof of Theorem 3.2, one can prove the main result of [59] in our framework and
extend it to the vector-valued setting and to spaces of homogeneous type.

• Hörmander–Mihlin type conditions as in [28, Theorem IV.3.9] imply the weak
L p1 -boundedness of our maximal truncation operator for p1 > n/a and thus
sparse domination for the associated Fourier multiplier operator by Theorem 1.1.
Vector-valued extensions under Fourier type assumptions can be found in [30,36]
and Theorem 1.1 may therefore also be used to prove weighted results in that
setting.

• In [53] Lerner used his local mean oscillation decomposition to deduce sparse
domination and sharp weighted norm inequalities for various Littlewood–Paley
operators. These results are also an almost immediate consequence of Theorem
3.2 with r = 2, using a truncation of the cone of aperture in the definition of
a Littlewood–Paley operator in order to make the localized �2-estimate check-
able. Using similar arguments one can also treat the dyadic square function with
Theorem 3.2, which yields the sharp weighted norm inequalities as obtained by
Cruz-Uribe, Martell, and Pérez [20].
Very recently Bui andDuong [10] extended the results in [53] to square functions

of a general operator L which has a Gaussian heat kernel bound and a bounded
holomorphic functional calculus on L2(S), where (S, d, μ) is a space of homo-
geneous type. The arguments they present can also be used to estimate our sharp
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grand maximal truncation operator, so their result is also be treated by Theorem
3.2.

• Fackler,Hytönen, andLindemulder [24] provedweightedvector-valuedLittlewood-
Paley theory on aUMDBanach space in order to prove their weighted, anisotropic,
mixed-norm Mihlin multiplier theorems. Using Theorem 1.1 and Proposition 4.1
on the Littlewood–Paley square functionwith smooth cut-offs one can prove sparse
domination and weighted estimates in the smooth cut-off case. This can then be
transferred to sharp cut-offs by standard arguments, recovering [24, Theorem 3.4].

• In [74] Potapov, Sukochev and Xu proved extrapolation upwards of unweighted
vector-valuedLittlewood–Paley–Rubio de Francia inequalities. Using [74, Lemma
4.5] one can check the weak L2-boundedness of our sharp grand maximal trunca-
tion operator, which by Theorem 1.1 and Proposition 4.1 yields sparse domination
andweighted estimates for vector-valuedLittlewood–Paley–Rubio de Francia esti-
mates. In the scalar case, sparse domination was shown by Garg, Roncal, and
Shrivastava [29] using time-frequency analysis.

• Theorem 3.4 can be used to show sparse domination and sharp weighted estimates
for fractional integral operators as in [16–18,47]. The boundedness of the sharp
grand maximal truncation operator associated to these operators can be shown
using a similar argument as we used in the proof of Theorem 6.1.

• In [6] Bernicot, Frey, and Petermichl show that the sparse domination principle
is also applicable to non-integral singular operators falling outside the scope of
Calderón–Zygmund operators. Sparse domination for square functions related to
these operators was studied in [5]. The methods developed in these papers actually
show the boundedness of the localized sharp grand q-maximal truncation operator
used in Theorem 3.5, so these results also fit in our framework.
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