
 
 

Delft University of Technology

Passenger-Oriented Timetable Rescheduling in Railway Disruption Management

Zhu, Yongqiu

DOI
10.4233/uuid:10f84fa1-f5a2-4c3b-b40b-914d8858f536
Publication date
2019
Document Version
Final published version
Citation (APA)
Zhu, Y. (2019). Passenger-Oriented Timetable Rescheduling in Railway Disruption Management.
[Dissertation (TU Delft), Delft University of Technology]. TRAIL Research School.
https://doi.org/10.4233/uuid:10f84fa1-f5a2-4c3b-b40b-914d8858f536

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:10f84fa1-f5a2-4c3b-b40b-914d8858f536
https://doi.org/10.4233/uuid:10f84fa1-f5a2-4c3b-b40b-914d8858f536


Passenger-Oriented Timetable Rescheduling
in Railway Disruption Management

Yongqiu Zhu

Delft University of Technology, 2019





Passenger-Oriented Timetable Rescheduling in
Railway Disruption Management

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology

by the authority of the Rector Magnificus, Prof. dr. ir. T.H.J.J van den Hagen,

chair of the Board for Doctorates

to be defended publicly on

Monday 16, December 2019 at 10:00 o’clock

by

Yongqiu ZHU

Master of Science in Traffic Transportation Planning and Management,

Southwest Jiaotong University, China,

born in Emei, Sichuan, China.



This dissertation has been approved by the promotor:
Prof. dr. R.M.P. Goverde

Composition of the doctoral committee:
Rector Magnificus Chairman
Prof. dr. R.M.P. Goverde Delft University of Technology, promotor

Independent members:
Prof. dr. ir. S.P. Hoogendoorn Delft University of Technology
Prof. dr. ir. B. van Arem Delft University of Technology
Prof. dr. D. Huisman Erasmus University of Rotterdam
Prof. dr. B. Heidergott Vrije Universiteit Amsterdam
Prof. dr. O.A. Nielsen Technical University of Denmark, Denmark
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Chapter 1

Introduction

1.1 Background

Railway systems are important in passenger transportation. In every day life, many
people take the train for commuting or leisure. In the Netherlands for instance, there
are around 1.3 million trips by train per day (NS, 2018). Thus, train services are
expected to be as reliable as possible to make sure passengers can travel as planned.

Unfortunately, railway systems are vulnerable to various unexpected events, like infra-
structure failures, extreme weather, or accidents. These events are called disruptions,
which usually result in complete or partial track blockages. As a result, the planned
timetable that specifies the departure/arrival time of each train at each station will be
infeasible, and then has to be rescheduled to become feasible again. This is called
disruption management. Ghaemi et al. (2017b) divides a disruption into three phases,
including the transition phase from the planned timetable to the disruption timetable,
the stable phase of performing the disruption timetable, and the recovery phase from
the disruption timetable to the planned timetable.

In practice, disruption management relies on contingency plans that are manually de-
signed beforehand. If a disruption occurs, a suitable plan will be chosen, and further
adjusted by traffic controllers. This is because a contingency plan only deals with the
stable phase of a disruption so that additional adjustments are still needed to this plan to
handle the transition and recovery phases. This usually takes a long time and imposes
much workload on traffic controllers, while the resulting rescheduled timetable may
not be optimal due to the manual adjustments. Furthermore, it is unknown how long a
disruption will last at the moment that the disruption starts. Therefore, traffic control-
lers reschedule the timetable based on a predicted duration, and will repeat doing so if
a new duration is predicted.

It happens that a new disruption occurs when a previous disruption is still ongoing, and
that there are trains that are to run through both disrupted areas on the basis of their
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2 Passenger-Oriented Timetable Rescheduling

original schedules. Currently, no contingency plans are designed for such multiple-
disruption cases, and the contingency plans corresponding to each of these disruptions
may conflict with each other and thus are not helpful. Under these circumstances,
traffic controllers have to reschedule the timetable based solely on their own experi-
ences, which is extremely time-consuming.

Until now, passengers have been barely considered by traffic controllers when res-
cheduling a timetable. It is unavoidable that some trains are cancelled in a rescheduled
timetable, and the passengers who originally planned to take the trains have to re-plan
their journeys. However, based on the current rescheduled timetable, it is usually diffi-
cult for these passengers to find preferred alternatives that do not take longer than their
planned journeys. Sometimes, even though such alternatives are available, passengers
may not be able to board the corresponding trains due to insufficient vehicle capacities
and then have to re-plan again, which normally will increase their travel times further.

To improve railway disruption management so that it becomes more efficient, operator-
friendly, and passenger-friendly, it is necessary to establish an intelligent decision sup-
port system. On the one hand, the support system should be able to handle different
disruption scenarios by rapidly generating the corresponding rescheduled timetables
that can be implemented in practice and are optimal from the perspectives of operat-
ors and passengers. On the other hand, it should be able to predict the distribution of
passengers for a given rescheduled timetable to identify potentially crowded trains and
give insights into possible solutions. This thesis develops methods for both purposes,
particularly focusing on the kind of disruption that results in complete track blockages
between two stations.

1.2 Challenges for railway disruption management

1.2.1 Improving the performance of a rescheduled timetable

The dispatching measures that are commonly used to adjust a timetable include re-
routing, retiming, reordering, cancelling and short-turning trains. The performance
of a rescheduled timetable can be improved by applying more flexible dispatching
measures than the current ones.

Short-turning means that a train ends its operation at a station before the blocked tracks
and the corresponding rolling stock turns at the station to be used by another train in
the opposite direction. Usually, a train is only allowed to short-turn at one fixed station
(Louwerse and Huisman, 2014; Veelenturf et al., 2015), which then has to be com-
pletely cancelled rather than short-turned if the station lacks capacity (e.g. no platform
tracks are available to receive the train). To reduce the possibility of cancelling a train
completely, Ghaemi et al. (2018a) provide each train with two short-turning station
candidates. To decrease the cancelling possibility further, it is better to provide each
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train with all possible short-turning station candidates, which is called flexible short-
turning. This measure has not been considered in the literature.

The optimality of a rescheduled timetable can also be improved by flexible stopping:
for each train the original scheduled stops can be skipped while extra stops can be
added. A skipped stop could reduce the delays of the on-board passengers, and an extra
stop may provide passengers with more alternative paths for rerouting. Meanwhile,
some passengers may be negatively impacted by a skipped stop (the passengers who
plan to board a train at a stop that is skipped) or an added stop (the passengers who are
already on the train before the added stop). Therefore, it is necessary to consider both
the positive and negative impacts on passengers when skipping or adding stops, which
is challenging.

1.2.2 Improving the implementability of a rescheduled timetable

Apart from improving the performance of a rescheduled timetable, improving its im-
plementability in practice is also important.

On the one hand, the implementability is constrained by infrastructure capacity like the
number of tracks between two stations, the number of tracks at a station, and the avail-
ability of turning facilities at a station. Most literature focuses on either single-track
railway lines or double-track railway lines, where different operational regulations
should be respected for train separations. At a station level, distinguishing between
platform tracks and pass-through tracks is seldom considered in the literature, which
however is necessary because a train must be assigned to a platform track at a station
where passengers will board or leave the train. Besides, not every station is capable of
turning rolling stock, and some stations are only able to turn the rolling stock coming
from a specific direction. Whether a station has turning facilities for the rolling stock
coming from different directions should be explicitly considered, but is missing in the
current literature.

On the other hand, the implementability is constrained by rolling stock capacity. For
example, a rescheduled timetable cannot be implemented if there is no sufficient rolling
stock to operate all scheduled train services. To ensure rolling stock availability, the
rolling stock circulations that occur at the terminal stations and the short-turning sta-
tions of trains must be dealt with, but few literature studies include both kinds of rolling
stock circulations when rescheduling a timetable.

1.2.3 Timetable rescheduling for uncertain disruptions

Most literature assumes that a disruption has a fixed duration that can be anticipated
when the disruption starts. In the real world however, the duration of a disruption may
vary over time (Zilko et al., 2016). Until now, only Zhan et al. (2016) and Meng and
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Zhou (2011) have dealt with timetable rescheduling for uncertain disruptions. Both
these studies use rolling horizon approaches but with a deterministic optimization
model and a stochastic optimization model, respectively. To improve the robustness
of a rescheduled timetable towards possibly longer or shorter disruption durations, it is
necessary to take duration uncertainty into account, for which a stochastic model is re-
quired. Although Meng and Zhou (2011) propose a stochastic model, its application is
restricted to a relatively simple case: a single-track railway line using two dispatching
measures: retiming and reordering. No stochastic timetable rescheduling model has
ever been investigated in the literature for a more complicated case: a network with
both single-track and double-track railway lines using more dispatching measures in-
cluding retiming, reordering, cancelling, flexible stopping and flexible short-turning.

1.2.4 Timetable rescheduling for multiple connected disruptions

Until now, most literature has focused on one single disruption, with little attention
paid to multiple disruptions, particularly when multiple complete track blockages oc-
cur at different locations but the corresponding time periods are overlapping and each
disruption is connected to another by at least one train line. The main challenge of
rescheduling a timetable for multiple connected disruptions is that the train service ad-
justments for one disruption may influence the ones for another disruption, and vice
versa. Such influences mainly exist among short-turning decisions: trains might be
short-turned at a station at each side of each disrupted section (a section refers to the
area between two stations), while the short-turning at one station may affect the short-
turning at another station. This is not considered in a single-disruption timetable res-
cheduling model, but should be explicitly formulated in a multiple-disruption timetable
rescheduling model.

1.2.5 Passenger-oriented timetable rescheduling

When rescheduling a timetable, it is necessary to estimate the potential impact of dif-
ferent dispatching measures on passengers and then make passenger-friendly dispatch-
ing decisions. For example, if one of two train services has to be cancelled due to
insufficient rolling stock, then cancelling the train service that carries less passengers
might be the best option. However, most literature assumes that the impact of can-
celling any two train services are the same if both of them are intercity trains or local
trains. Under this circumstance, the train service that carries more passengers could
be cancelled instead in the aforementioned situation, as the impact of cancelling either
train service is no different. This however may not be a passenger-friendly decision.
To make a rescheduled timetable more passenger-friendly, one way is to estimate the
individual impact of each dispatching decision on passengers, which is missing in the
literature.
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Rescheduling a timetable with dynamic passenger demand is another direction, which
considers passenger behaviour in a more realistic way. Veelenturf et al. (2017) embed
a timetable rescheduling model and a passenger assignment model into an iterative
framework where an extra stop is added in each iteration if it reduces passenger in-
convenience. Binder et al. (2017b) integrate timetable rescheduling and passenger
assignment into one optimization model by retiming, reordering, cancelling, global
rerouting, and inserting additional trains. The integrated model is able to generate an
optimal solution, but needs more time for the computation, which affects its applicab-
ility in practice. With more flexible dispatching measures (i.e. flexible stopping and
flexible short-turning) it is even more challenging to formulate a timetable rescheduling
model considering dynamic passenger flows, and design an efficient solution approach
to obtain high-quality solutions in real time.

1.2.6 Dynamic passenger assignment

During a disruption, it is unavoidable that some trains are completely cancelled or
short-turned. Nevertheless, how passengers will respond to such major service vari-
ations has not yet been considered in the existing literature. Due to limited vehicle
capacity, the path choice of a passenger may be affected by the path choice of another
passenger. The information offered to a passenger and the location of this passenger
when receiving the information can also affect the path choice of this passenger. It has
been barely explored how providing information to passengers on changed services or
train congestion at different locations will affect passenger flows and might reduce the
total travel time of all passengers.

1.3 Research objectives and questions

The main objectives of this dissertation are to develop optimization models to gener-
ate rescheduled timetables for different disruption scenarios, and to propose a passen-
ger assignment model to predict passenger flows under a given rescheduled timetable
considering limited vehicle capacity and information interventions during disruptions.
Therefore, the main research question is formulated as:

How to support railway disruption management by rescheduled timetables that are
operator-friendly and passenger-friendly?

To answer the main question, the following key questions are defined:

• How to predict and affect passenger flows for a given rescheduled timetable?
(Chapter 2)

• How to obtain a rescheduled timetable that minimizes the impact on passengers’
travel plans and has a high implementability in practice? (Chapter 3)
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• How to handle a disruption with uncertain duration by robust rescheduled timetables?
(Chapter 4)

• How to deal with multiple connected disruptions in an efficient and operator-
friendly way? (Chapter 5)

• How to formulate a timetable rescheduling model considering dynamic passen-
ger flows, and obtain a high-quality solution rapidly? (Chapter 6)

1.4 Thesis contributions

1.4.1 Scientific contributions

• A dynamic passenger assignment model for disruptions. A new schedule-based
passenger assignment model is proposed for disruptions where cancelling or
short-turning trains are necessary. The model formulates the responses of pas-
sengers who start travelling before, during and after the disruption considering
limited vehicle capacity, and applies different information interventions to af-
fect passenger flows. It helps to evaluate a rescheduled timetable from the per-
spective of passengers, identifies crowded trains, and gives insights into possible
solutions (Chapter 2).

• A new timetable rescheduling model for railway disruptions. The model con-
siders station capacity by distinguishing between platform tracks and pass-through
tracks, includes rolling stock circulations at both short-turning and terminal sta-
tions, and covers all phases of a disruption (Chapters 3, 4, 5 and 6). The dis-
patching measures of flexible stopping (Chapters 3 and 6) and flexible short-
turning (Chapters 3, 4, 5 and 6) are introduced for the first time, and adjusted
train running times due to saved/extra decelerations and accelerations when skip-
ping/adding stops are explicitly formulated (Chapter 3). The model improves
both the implementability and the performance of a rescheduled timetable.

• A novel method to estimate the impact of different dispatching decisions on pas-
sengers. According to passengers’ travel paths on normal days, a method is
proposed to estimate the impact of a decision of cancelling a service (a train
run between two adjacent stations), delaying a train arrival, skipping a stop, or
adding a stop on passengers. The impact of a decision includes both the number
of affected passengers and the resulting lateness/earliness of these passengers,
which is used as the weight of this decision in the objective of minimizing pas-
senger delays. The passenger-dependent objective weights help the timetable
rescheduling model to efficiently compute a more passenger-friendly resched-
uled timetable that can also be preferred by operators (Chapter 3).
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• A new method for handling a disruption with uncertain duration. A rolling-
horizon two-stage stochastic programming model is proposed for generating a
robust rescheduled timetable every time the expected durations of a disruption
are renewed. The model is more likely to result in fewer train cancellations and
delays, compared to a deterministic rolling-horizon approach (Chapter 4).

• A timetable rescheduling model for multiple connected disruptions. A multiple-
disruption timetable rescheduling model is proposed, where the interactions among
short-turning decisions for different disruptions are explicitly formulated. The
model results in less train cancellations and/or delays, compared to the approach
that uses a single-disruption timetable rescheduling model to solve each disrup-
tion sequentially (Chapter 5).

• A solution approach to the multiple-disruption timetable rescheduling model. A
rolling-horizon approach is developed to the multiple-disruption timetable res-
cheduling model, which considers the periodic pattern of the rescheduled train
services in the second phase of a disruption to speed up the computation. This
solution method helps to handle long multiple connected disruptions in a more
efficient way (Chapter 5).

• A passenger-oriented timetable rescheduling model. A new formulation is pro-
posed to integrate timetable rescheduling with passenger assignment with the ob-
jective of minimizing passengers’ generalized travel times, which include wait-
ing times at origin/transfer stations, in-vehicle times and the number of trans-
fers. This passenger-oriented timetable rescheduling model considers timetable-
dependent passenger behaviour, which is more realistic and helps to reduce pas-
sengers’ generalized travel times during railway disruptions (Chapter 6).

• A solution approach to the passenger-oriented timetable rescheduling model. An
iterative solution method is proposed to solve the passenger-oriented timetable
rescheduling model with high-quality solutions in an acceptable time. In each
iteration, the timetable rescheduling problem is solved for all train services with
restricted passenger groups considered (Chapter 6) .

1.4.2 Societal contributions

Operators can apply the developed timetable rescheduling models to deal with dif-
ferent disruption scenarios in a more efficient way and with fewer train cancellations
and/or delays. They can relieve rolling stock rescheduling to a certain extent, be-
cause rolling stock circulations at both short-turning and terminal stations of trains are
handled in all timetable rescheduling models developed in this thesis. The timetable
rescheduling models can provide better alternative travel paths (with less generalized
travel times) to passengers, which helps operators to keep more passengers staying in
the railways after a disruption starts so that revenue loss can be reduced due to this
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disruption. This is also helpful to prevent revenue loss in the long run because pas-
sengers may be less likely to shift from the railways to other transport modes if their
travelling experiences during disruptions are improved. The proposed dynamic pas-
senger assignment model can help operators to foresee the potential crowded trains so
that some strategies (e.g. allocating more vehicles to specific trains) can be taken in
advance to prevent train congestion that may lead to prolonged train running times and
possibly more train delays.

Passengers’ travelling experiences during disruptions can be improved because of the
better alternative train services provided by the timetable rescheduling models and the
useful information on service variations and train congestion provided by the dynamic
passenger assignment model. Under these circumstances, passengers are more likely to
find the train services with acceptable travel times to their destinations and to board the
preferred trains successfully. Therefore, the side-effects of a disruption on passengers’
societal activities (e.g. working and studying) can be reduced.

The models developed in this thesis improve the resilience of the railway systems to-
wards disruptions. By offering more reliable and punctual train services, the railways
can maintain the current passenger demand on the one hand, and attract more passen-
gers to the railways from other transport modes on the other hand. The increase of
the market share of the railways is beneficial to the society, because the railways are
an environment-friendly transport mode, which consumes less energy than e.g. private
cars to serve the same demand.

1.5 Thesis outline

This thesis consists of seven chapters. Chapter 2 is about a passenger assignment
model, while Chapters 3 to 6 focus on timetable rescheduling models. Chapter 7 con-
cludes the thesis and points out future research directions. A visual outline is shown in
Figure 1.1 followed by a brief descriptions of the main chapters.

During disruptions, some trains can become crowded due to detouring passengers
whose planned trains were cancelled. Under this circumstance, some passengers may
be denied to board specific trains due to insufficient vehicle capacities. Taking this into
account, Chapter 2 proposes a schedule-based passenger assignment model to predict
the passenger flows for a given rescheduled timetable, where different information in-
terventions are applied to see how passenger flows will be affected. This model can
also estimate the expected travel plans of passengers in terms of a planned timetable.

Chapter 3 proposes a single-disruption timetable rescheduling model aiming to min-
imize the impact on passengers’ expected travel paths. Passengers’ expected travel
paths are estimated by the passenger assignment model of Chapter 2 according to the
planned timetable. The single-disruption rescheduling model deals with all phases of
a disruption, and considers both station capacity and rolling stock circulations. It is
further extended in three different directions in the following three chapters.
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To handle uncertain disruptions, Chapter 4 realizes a rolling-horizon deterministic ap-
proach based on the single-disruption model, and extends the single-disruption model
to a rolling-horizon two-stage stochastic programming model that generates a robust
rescheduled timetable every time the possible durations of a disruption are renewed. It
is found that in most cases, the stochastic approach results in less train cancellations
and/or delays than the deterministic approach.

To handle multiple connected disruptions, Chapter 5 realizes a sequential approach
based on the single-disruption model to solve each ongoing disruption in a sequential
way, and proposes a combined approach based on a multiple-disruption model. The
combined approach solves all ongoing disruptions together considering their combined
effects. It is found that the solution computed by the combined approach is more
operator friendly than the one by the sequential approach.

To minimize the impact on passengers’ realized travel paths in terms of the rescheduled
timetable, Chapter 6 integrates the extended passenger assignment model of Chapter 2
and the single-disruption timetable rescheduling model of Chapter 3 into one optim-
ization model to compute passenger-friendly rescheduled timetables. In this model,
passengers are allowed to leave the railways if the alternative travel paths provided by
the rescheduled timetable take much longer times than their expected travel paths.

In the end, Chapter 7 concludes the dissertation and gives recommendations to future
research and practice.



Chapter 2

Dynamic passenger assignment for
major railway disruptions considering
information interventions

Apart from minor updates, this chapter has been published as:

Zhu, Y., Goverde, R.M.P., 2019. Dynamic passenger assignment for major railway
disruptions considering information interventions. Networks and Spatial Economics,
in press.

2.1 Introduction

Unexpected events affect railway operations in everyday life, which are either small
service perturbations called disturbances or relatively large incidents called disrup-
tions. During disturbances, train services will be delayed, but not cancelled/short-
turned which however is necessary during disruptions. Due to the complexity of hand-
ling disruptions, contingency plans are designed beforehand for different disruption
scenarios. When a disruption happens, the corresponding contingency plan is selected,
and possibly modified by traffic controllers in terms of the specific condition (Ghaemi
et al., 2017b). However, in either the design or modification procedure, passengers
who should have been put first, are as yet not incorporated directly, because traffic
controllers are unable to anticipate the passenger flows over the network. As a res-
ult, many alternatives for passenger reroutings are not considered, and thus passenger
travel experiences during disruptions are usually less than satisfactory.

To support passenger-oriented train service adjustments, it is necessary to have a pas-
senger assignment model that can anticipate the distribution of passengers. Based
on the model, whether a timetable is passenger-friendly or not can be evaluated, and

11
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further how to adjust the timetable in a passenger-friendly way can be guided. Un-
til now, passenger assignment models are mostly proposed for planning purposes or
disturbance management (generally regarded as delay management), where services
are considered to be reliable or with minor perturbations. When major disruptions
like complete track blockages occur, multiple dispatching measures, e.g., retiming,
reordering, cancelling and short-tuning trains, are commonly applied, which result
in delayed trains, changed train orders, completely cancelled trains and short-turned
trains (Ghaemi et al., 2017a). As a result, the train services available during disrup-
tions are rather different from the ones on normal days, thus leading to rather different
path options to passengers. For passenger assignment models during disruptions, it
is necessary to formulate the major service variations properly and model passenger
responses to such major service variations accurately. Therefore, this chapter proposes
a dynamic passenger assignment model taking major service variations, vehicle ca-
pacity, and time-dependent passenger all into account. A preliminary version of the
model can be found in Zhu and Goverde (2017a), which is improved by introducing
a new network formulation and information interventions for altering passenger beha-
viour in this chapter.

This chapter considers passengers’ en-route travel decisions rather than passengers’
pre-trip travel decisions. This means that passengers are assumed to have planned
paths in mind before they actually arrive at the origin stations, however, possibly they
have to re-plan their paths due to major service variations, denied boardings or train
congestion. Such an assumption is justified, since nowadays passengers can rely on
various travel-planner applications or the official websites of operator companies to
find their preferred paths. This is particularly true for passengers who have a clear
travel purpose (e.g. commuters). Thus, once disruptions occur, passengers would
make en-route travel decisions by comparing the alternative paths during disruptions
with their planned paths.

Passenger attitudes towards path alternatives during disruptions could be different from
the ones on normal days. For example, due to reduced operation frequency during dis-
ruptions, passengers may be willing to spend more waiting times at origin/transfer
stations than usual. Considering this, a new method is proposed to formulate the net-
work with less arcs, which ensures all paths that could be chosen by passengers to be
fully covered. The formulated network is a directed acyclic graph (DAG) with passen-
ger perceived times on arcs, based on which the optimal paths perceived by passengers
can be searched using efficient shortest path algorithms.

Path alternatives can be different if passengers re-plan paths at different locations and
times. This chapter tracks the location of each passenger who starts travelling before,
during, or after the disruption, and decides when and where he/she re-plans the path
based on the information received. Information interventions are considered by deliv-
ering two kinds of information, service variations and train congestion, separately at
different locations. Usually, the congestion effect is considered as the increase in travel
times perceived by passengers (Cats et al., 2016; Larrain and Muñoz, 2008). Instead,
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this chapter aims to avoid travel time increase due to denied boarding, by using con-
gestion information to affect passenger behaviour in the following way. Imagine that a
train is highly congested when departing from a stop, and there are still many passen-
gers wishing to board this train at its next stop. It is possible that the train is unable to
handle all these passengers. Thus, only some of them can board the train successfully,
while the others have to be denied. If there must be some passengers being denied for
boarding a train, avoiding them to choose the train may help them find better altern-
ative paths compared to the ones they can find after being denied. Considering this
situation, if a train is potentially unable to handle all passenger demand at its next stop,
part of these passengers are notified with the congestion information in order to en-
courage them to choose another train, while the other part of these passengers are kept
unaware of such information to ensure they will stay with their choice for this train.

The key contributions of this work are summarized as follows:

• Proposing a new schedule-based passenger assignment model during major dis-
ruptions.

• Developing a new network formulation to formulate the timetable as a directed
acyclic graph (DAG) with passenger perceived times on arcs.

• Taking time-dependent passenger demand, service variations, and vehicle capa-
city constraints into account.

• Formulating passenger responses towards major service variations, like short-
turned or cancelled trains.

• Using information interventions to influence passenger behaviour.

• Dealing with passengers who start travelling before, during and after the disrup-
tion.

The remainder of this chapter is organized as follows. Section 2.2 gives an overview
of the relevant work. Section 2.3 explains the network modelling approach. In Section
2.4, the proposed dynamic passenger assignment framework is shown, followed by the
explanation of the main parts in the framework. Next, the time complexities of the
proposed algorithms are analysed in Section 2.5. Finally in Section 2.6, a case study
of a complete open track blockage in part of the Dutch railway network is performed.

2.2 Literature review

Passenger assignment models for transit systems are typically classified into schedule-
based and frequency-based (Gentile and Noekel, 2016), differing in whether passen-
gers make route choices in terms of the timetable that indicates the departure/arrival
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time of each train at each station. In general, frequency-based models are suitable
for such transit systems where the operations are so frequent that passengers can be
assumed to board the first train when waiting at a station. While in railway systems
where the operation frequency is relatively low, schedule-based models are commonly
used, like Binder et al. (2017a) and Rückert et al. (2015).

Some assignment models are proposed for planning purposes, for example, identify-
ing the phenomenon of macroscopic congestion of a proposed transit system. In these
models, services are assumed to be constant or affected by minor perturbations that do
not require dispatching measures to be applied. For instance, Khani et al. (2015) pro-
pose three path searching algorithms to make the assignment model perform efficiently
on large-scale transit networks, by assuming that the operation is reliable and vehicle
capacity is infinite. With limited vehicle capacity considered, Poon et al. (2004), Ham-
douch and Lawphongpanich (2008), and Binder et al. (2017a) explore the interactions
between the supply and the demand over time, which differ in the used priority rules
for passenger boardings while share the assumption of trains operating precisely on
schedule. In practice, service variations cannot be fully avoided. Thus, Nuzzolo et al.
(2001), Hamdouch et al. (2014), and Cats et al. (2016) take service variations into ac-
count, and describe the variations as irregularities of train dwell and running times that
are thought to be relevant to the passenger loadings of the corresponding trains. The
considered train delays do not need timetable rescheduling, which means that train
orders remain unchanged and no trains are cancelled or short-turned.

When train delays cannot be absorbed completely by the time supplements reserved
in the timetable, timetable rescheduling becomes necessary. A typical question under
such a case is that whether a train should wait for a delayed feeder train or better
depart on time (wait-depart decision). This problem is generally regarded as delay
management, where the relevant work mainly focuses on the optimization and thus
the formulation corresponding to the passenger assignment is usually simplified by
some assumptions. For example, Schöbel (2001) assumes that once passengers miss
a transfer connection, they would wait for a complete cycle time to catch the next
connection. Kanai et al. (2011), Dollevoet et al. (2012), Sato et al. (2013), and Corman
et al. (2016) consider the alternative choices that passengers might have, where the
capacities of vehicles are assumed to be infinite. While most papers consider the train
delays as known input to the optimization, Rückert et al. (2015) observe the train delays
in real time, and predict the passenger flows due to any possible wait-depart decisions
to help the dispatchers make informed decisions. In these papers, train orders can
be changed, but no trains are delayed significantly or cancelled/short-turned, which
however take place during disruptions.

A few papers consider the passenger assignment during disruptions. Cats and Jenelius
(2014) focus on disruptions that result in trains delayed significantly. The considered
case is that the tracks between two stations are totally blocked for 30 minutes, and
trains queue at the station before the blocked tracks during the disruption period. When
the disruption ends, all these trains are again allowed to continue the following opera-
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tions, assuming that all on-board passengers in these delayed trains are unable to alight
from the trains at the holding stations. For a long-duration disruption that lasts for one
hour or even more, it is unlikely to hold trains at stations, but more likely to short-
turn them. In such a case, on-board passengers must alight from the trains, since the
trains can no longer reach their expected destinations. Binder et al. (2017b) formulate
the passenger assignment as a multi-commodity problem and integrate it with the res-
cheduling together constituting a passenger-oriented timetable rescheduling model for
disruptions. The considered demand is the passengers who start travelling during the
disruption. An assumption is implicitly made that all passengers collaborate together
to achieve the system optimum. In the real world, passengers may intend to reduce
their personal inconvenience without considering and of course incapable of consid-
ering the impacts of their choices on the system optimum. Thus, treating passengers
as rational actors is necessary, which can be implemented by introducing priority rules
for passenger boardings.

The literature does not consider passengers’ en-route travel decisions during major
disruptions for which cancelling/short-turning trains are necessary. This chapter fills
the gap by proposing a schedule-based passenger assignment model to formulate the
changes of passenger responses from normal situations to during disruptions.

The model is based on three assumptions, which are also used in Cats and Jenelius
(2014) and Binder et al. (2017b). First, at the beginning of a disruption, the exact
disruption end time is known, which will not be extended or shortened. This assump-
tion can be relaxed by embedding the proposed model into an iterative framework
where at each iteration the disruption end time is updated and the model is performed
again based on the renewed disruption information and the corresponding disruption
timetable. The second assumption is that for the railway operators, the disruption
timetable is available directly at the beginning of the disruption. This is possible when
applying a real-time optimization model (e.g. Ghaemi et al. (2017a)) to compute the
disruption timetable. The third assumption is that the passenger demand during dis-
ruptions is the same as on normal days. This assumption is relaxed due to setting the
maximum acceptable delay of the re-planned path. In the model, a passenger can drop
the railways if the delay due to the re-planned path is not acceptable. Thus, although
a passenger is assumed to come to the railway origin station as planned, he/she could
immediately leave if the planned path is inapplicable and the minimal delay across the
current alternative paths provided by the railways exceeds the maximum acceptable
delay. Such an immediate leaving is actually equal to not coming to the railways.

2.3 Event-activity network

A transit assignment model depends on the network formulation that enables travel
path generation for passengers. This chapter proposes a new approach to formulate
the train services as a weighted DAG based on which the optimal paths perceived by
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Table 2.1: Notation of event attributes

Symbol Description

ste The station of event e
tre The train of event e
πe The occurrence time of event e

Table 2.2: Attributes of different events

Event Attributes

Arrival event: e ∈ Earr (ste, tre,πe)

Departure event: e ∈ Edep (ste, tre,πe)

Duplicate departure event: e ∈ Eddep (ste, tre,πe)

Exit event: e ∈ Eexit ste

passengers can be quickly searched. The characteristics of railway timetables (e.g.
overtakings) and the fact that passengers might choose unusual paths (e.g. the ones
with long waiting/transfer times at stations) during disruptions, are all considered in
the proposed network formulation. As events are used to represent nodes and activities
are used to represent arcs, the formulated network is called an event-activity network.
In the following, different kinds of events and activities that are necessary to formulate
the network are introduced, as well as the passenger preferred weights on the activities.

2.3.1 Events

There are four types of events in the formulated network. They are arrival events,
departure events, duplicate departure events and exit events, which constitute the sets
Earr, Edep, Eddep and Eexit, respectively. Therefore, the set of events is

E = Earr∪Edep∪Eddep∪Eexit. (2.1)

For each event e ∈ E, the attribute ste that indicates the corresponding station of e is
assigned. Additionally for each event e ∈ Earr or Edep, two more attributes tre and πe

are assigned, which refer to the corresponding train and occurrence time of e, respect-
ively. An event e ∈ Eddep is the duplicate of a specific departure event with the exactly
same attributes that the departure event has. One and only one duplicate is created for
each departure event. The reason of creating duplicate departure event is to construct
waiting and transfer activities, which is explained in more detail in Section 2.3.2. The
notation of event attributes is described in Table 2.1 while the attributes of different
events are shown in Table 2.2.
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2.3.2 Activities

There are five types of activities in the formulated network. They are running activities,
dwell activities, wait activities, transfer activities and exit activities, which constitute
the sets Arun, Adwell, Await, Atrans and Aexit, respectively. In addition, Await consists of
two sub-sets that are AddW and AadW, which correspond to the wait activities between
duplicate departure events and the wait activities between arrival events and duplicate
departure events. Namely,

Await = AddW∪AadW. (2.2)

Therefore, the set of activities is

A = Arun∪Adwell∪AddW∪AadW∪Atrans∪Aexit. (2.3)

Running activities enable passengers travelling from one station to another:

Arun =
{(

e,e′
)∣∣e ∈ Edep,e′ ∈ Earr, tre = tre′ and ste is upstream neighbouring to ste′

}
.

(2.4)

Dwell activities enable passengers dwelling at the station in a train:

Adwell =
{(

e,e′
)∣∣e ∈ Earr,e′ ∈ Edep, tre = tre′ and ste = ste′

}
. (2.5)

Wait activities and transfer activities together enable passengers waiting to board trains
at origins or transferring from one train to another at other stations:

AddW = {(e,e′)
∣∣e ∈ Eddep and e′ = argmin{πe′ |πe′ > πe : e′ ∈ Eddep,

tre′ 6= tre,ste′ = ste}} ,
(2.6)

AadW = {(e,e′) |e ∈ Earr and e′ = argmin{πe′ |πe′ > πe : e′ ∈ Eddep,

tre′ 6= tre,ste′ = ste}} ,
(2.7)

Atrans =
{
(e,e′)

∣∣e ∈ Eddep,e′ ∈ Edep, tre = tre′,ste = ste′ and πe = πe′
}
. (2.8)

Here, (2.6) means that each duplicate departure event is linked to the next time-adjacent
duplicate departure event that is at the same station but for another train. Similarly,
(2.7) means that each arrival event is linked to the next time-adjacent duplicate depar-
ture event that is at the same station but for another train. Finally, (2.8) means that each
duplicate departure event is linked to its original departure event.

Exit activities enable passengers to leave the railway system once arriving at the des-
tinations:

Aexit =
{(

e,e′
)∣∣e ∈ Earr,e′ ∈ Eexit,ste = ste′

}
. (2.9)

In Figure 2.1, the formulated event-activity network is shown for an example with
four stations (i.e. A, B, C and D) and three trains numbered 1 to 3. The attributes
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corresponding to each event are enclosed in an ellipse, rectangle or circle that refer
to an arrival/departure event, duplicate departure event or exit event, respectively. For
instance, an ellipse with (dep,1,B) represents the departure event of train 1 at station B.
A path is represented by a series of time-ordered events. For example, one of the paths
available for a passenger who arrives at station A after time t1 but before time t2 and
wishes to travel to station D is: (ddep,2,A)→ (dep,2,A)→ (arr,2,B)→ (ddep,1,B)→
(dep,1,B)→ (arr,1,C)→ (dep,1,C)→ (arr,1,D). This path means that the passenger
boards train 2 at station A, but transfers to train 1 at station B and stays in this train
until the destination (i.e. station D).

dep,1,A

dep,2,A

dep,3,Addep,3,A

ddep,2,A

ddep,1,A

arr,1,B

arr,2,B

dep,1,B

dep,2,Bddep,2,B

ddep,1,B

arr,3,B

dep,3,Bddep,3,B

B

arr,1,C

dep,1,Cddep,1,C

C

arr,2,D

arr,1,D

arr,3,D

arr,3,C

dep,3,Cddep,3,C

DA Station

Time

arrival/departure event exit eventduplicate departure event

run/dwell  activity transfer activitywait activity exit activity

1t

2t

3t

Figure 2.1: Event-activity network

2.3.3 Weights of activities

Usually, paths are perceived differently by passengers due to the path attributes like
waiting time at the origin (torigin), in-vehicle time (tvehicle), waiting time at a transfer
station (ttrans), and number of transfers (ntrans). A utility function is used to quantify the
utility of each path by giving different weights on the path attributes. In this chapter,
the utility of a path r is quantified as:

Ur = β1tr
vehicle +β2(tr

origin + tr
trans)+β3nr

trans, (2.10)
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where β1, β2, β3 are the weights of the corresponding attributes of path r. Here, the
values of β1, β2 and β3 are set as 1, 2 (Wardman, 2004) and 10 (de Keizer et al., 2012)
for each minute, respectively.

In this chapter, the path utility calculation is realized in the procedure of path searching.
This means that once a path is generated by a path search algorithm (e.g. shortest
path algorithm, k-shortest path algorithm, etc.), the distance of this path is actually
the utility of this path. For this purpose, different weights are assigned to different
activities, as follows.

• For each activity a = (e,e′) ∈ Arun∪Adwell, the weight of a is set as β1(πe′−πe).

• For each activity a = (e,e′)∈ AddW∪AadW, the weight of a is set as β2(πe′−πe).

• For each passenger p, the weight of a transfer activity could be different depend-
ing on where the passenger started travelling. For an activity a = (e,e′) ∈ Atrans,
the weight of a is set as zero if ste = op (op is the origin of p). Otherwise (i.e.
ste 6= op), the weight of a is set as a fixed value β3.

• For each activity a ∈ Aexit, the weight of a is set to the same positive value, since
it is not used to distinguish paths.

The utility of a path is the sum of weights of all activities included in this path. The
weights of all activities are contained in the set W . Thus, the formulated event-activity
network is

G = (E,A,W ). (2.11)

2.3.4 Searching the optimal path perceived by passengers

Let a passenger p have the attributes (op,dp, to
p) referring to the origin, destination and

actual arrival time at the origin, respectively. To search the optimal path perceived by
p for the travel from op to dp, a pair of source and sink nodes should be given. Here,
the sink node v is defined as

v =
{

e ∈ Eexit
∣∣ste = dp

}
, (2.12)

and the source node u is defined as

u = argmin
{

πe
∣∣πe ≥ to

p : e ∈ Eddep,ste = op
}
, (2.13)

which means that the source node u is set as the duplicate departure event e at the
origin station op, of which the occurring time πe is closest to the passenger’s arrival
time at the origin to

p. Note that defining the source node this way takes the passenger’s
choice about the boarding train at the origin into account. For example in Figure 2.1,
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suppose (depp,1,A) is chosen as the source node for a passenger who plans to travel
from station A to station D. Then, the passenger could take train 1 as the first boarding
train, or also could wait a bit longer to take train 2 as the first boarding train.

With the assigned pair of source and sink node, the shortest path in utility can be
searched, by performing a shortest path algorithm on the formulated event-activity
network G, which by construction is actually a directed acyclic graph (DAG) with pos-
itive arc weights. Such a shortest path algorithm topologically sorts the nodes of DAG
in passenger perceived times, thus making the predecessor node of an edge always ap-
pear before the successor node of the edge in a linear ordering (Cormen et al., 2009).
Using the topological order, the shortest path is found in time complexity O(A+E).

Here, the optimal path perceived by a passenger p is represented by rp, which is first
searched by the shortest path algorithm and then processed by excluding the duplicate
departure events and the exit event. In other words, rp only consists of the events that
directly serve the path. Based on rp, the departure/arrival events of p are extracted
further, which correspond to the boarding/alighting actions. Here, Bp represents the
set of departure events that correspond to the boarding actions of p at origin and trans-
fer stations (if any), and Lp represents the set of arrival events that correspond to the
alighting actions at transfer stations (if any) and destination.

Note that the way of deciding the source node in (2.13) is only for the passengers who
are at the origins before travelling (and have not been denied for boarding). For the
passengers who have already started travelling within trains, at transfer stations, or at
the stations where they are forced to get off due to cancelled services, the ways of
choosing the source nodes for searching paths are different, which are explained in
Section 2.4.3.4.

2.4 Dynamic assignment model

The framework of dynamic passenger assignment during disruptions consists of three
parts, as shown in Figure 2.2.

• Part I assigns each passenger to a planned path based on the original timetable.

• Part II decides which passengers are affected under the disruption timetable due
to delayed/cancelled services, and also decides when these affected passengers
would re-plan the paths considering different locations of publishing service
variations.

• Part III simulates passenger loading and unloading procedures and also the path
re-plannings of passengers because of service variations, denied boardings, or
train congestion.
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In what follows, the three parts are introduced successively. The used notation is de-
scribed in Appendix 2.A.

Planned Path 
Generation

Re-plan Event Decision

Event-based Passenger 
Assignment

End

Start

Original 
event list

Part I

Network 
Formulation

Disruption 
timetable

Updated 
event list

Part II

Part III

Network 
Formulation

Original 
timetable

Passenger 
demand

Figure 2.2: Framework of the dynamic passenger assignment model during major dis-
ruptions

2.4.1 Passenger planned path assignment (Part I)

In part I, the original timetable is formulated as an event-activity network Gplan where
the arrival events and departure events form the original ordered event list Eplan

train. Pas-
senger demand P is a given input, where each passenger p ∈ P is described with the
attributes (op,dp, to

p) that correspond to origin, destination and arrival time at the ori-
gin, respectively. The planned path rplan

p of a passenger is searched by performing a
shortest path algorithm on Gplan assuming that a passenger chooses the path with the
minimum utility as shown in (2.10) to be the planned path.

2.4.2 Passenger re-plan event decision (Part II)

In part II, the disruption timetable is formulated as an event-activity network Gdis

where the arrival and departure events form the updated ordered event list Edis
train. Com-



22 Passenger-Oriented Timetable Rescheduling

parisons are made between Edis
train and the original event list Eplan

train to define the set Ecancel
train

or Edelay
train , which contains all events that are cancelled or delayed during the disruption.

For each passenger p whose planned path is rplan
p ,

• if rplan
p ∩Ecancel

train 6= /0, then rplan
p is a cancelled path either partially or completely;

• if rplan
p ∩Ecancel

train = /0 and rplan
p ∩Edelay 6= /0, then rplan

p is a delayed path.

For the passengers whose planned paths are cancelled, they must reconsider path op-
tions. For the passengers whose planned paths are delayed only, they are also given
the chance of re-planning paths in the model, while the possibility of staying with
the original planned one is still kept in case no better alternative can be found. Here,
the passengers whose planned paths are cancelled or delayed are called the affected
passengers.

The affected passengers re-plan their paths at different locations and times, which is
influenced by two factors: where they are at the moment the disruption occurs and
how the information of service variations are delivered to them. The main purpose of
Part II is to decide when and where an affected passenger will take the re-plan action,
considering his/her location and two ways of publishing service variations, either at
stations only or at both stations and trains.

2.4.2.1 Information of service variations is published at stations only

Publishing service variations only at stations means that passengers can only know
about the service variations at stations. Under this circumstance, a passenger would
consider re-planning either at the planned origin/transfer station or at the station where
his/her train is short-turned/cancelled. Figure 2.3 (Figure 2.4) shows how to decide
when and where a passenger p with a delayed (cancelled) planned path would re-plan,
which is indicated by δp.

The basic idea of Figure 2.3 is that:

• for a passenger p whose first planned boarding time at the origin is after the
disruption start tstart

dis , p re-plans at the origin (δp = µ),

• for a passenger p whose first planned boarding time at the origin is before tstart
dis

but the ith planned boarding (i≥ 2 here) at a transfer station happens after tstart
dis ,

p re-plans when arriving at the transfer station,

• for a passenger p whose planned boarding time at the origin is before tstart
dis while

p has no planned transfer or the planned transfers all happen before tstart
dis , p will

not re-plan (δp = /0).
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Figure 2.3: Deciding the re-plan events for passengers with delayed planned paths if
disruption info is published at stations only
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Figure 2.4: Deciding the re-plan events for passengers with cancelled planned paths if
disruption info is published at stations only

Figure 2.4 shows how to decide when and where a passenger p with a cancelled
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planned path would re-plan. The basic idea is that:

• for a passenger p whose planned boarding time at the origin is after tstart
dis , p

re-plans at the origin,

• for a passenger p whose planned boarding time at the origin is before tstart
dis but

the ith planned boarding (i≥ 2 here) at a transfer station happens after tstart
dis ,

– p re-plans when arriving at the transfer station, if the transfer station is
upstream relative to the short-turn station,

– p re-plans when being forced to get off from the train at the short-turn sta-
tion, if the transfer station is downstream relative to the short-turn station,

• for a passenger p whose planned boarding times at the origin is before tstart
dis

while p has no planned transfer or the planned transfers all happen before tstart
dis ,

p re-plans when being forced to get off from the train at the short-turn station.

2.4.2.2 Information of service variations is published at both stations and trains

Figure 2.5 shows how to decide when and where a passenger p with delayed/cancelled
planned path would re-plan, if service variations are published at both stations and
trains. The basic idea of Figure 2.5 is that:

• for a passenger p whose planned boarding time at the origin is after the disrup-
tion start tstart

dis , p re-plans at the origin,

• for a passenger p whose planned boarding time at the origin is before tstart
dis , the

type of the latest occurring event e′ of the current train tr when the disruption
starts determines δp:

– δp is set as e′, if e′ is an arrival event,

– δp is set as e′′of which (e′,e′′) is a run activity, if e′ is a departure event.
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Figure 2.5: Deciding the re-plan events for passengers with delayed/cancelled planned
paths if disruption info is published at stations and trains

2.4.3 Passenger realized path confirmation (Part III)

In part III, the passengers’ arrivals at the origins, the loading and unloading procedures
and the re-plan actions are all implemented by discrete event simulation. Publishing
train congestion information on trains or not is considered to constrain some passen-
gers’ re-planned path choices. Note that publishing train congestion information at
stations makes no sense for limiting passenger awareness of such information (i.e. all
passengers can get any information published at stations), while publishing train con-
gestion information at trains can let the passengers who are at the origins be unaware
of such information. Therefore, an adaptive event-activity network G∗dis is introduced,
which is initialized as Gdis and further updated during the assignment by excluding
some run activities of which the corresponding train congestions reach a specified level
ratio. Passengers make re-planned path choices based on either G∗dis or Gdis depending
on whether they are informed with congestion information. This is explained in detail
in Section 2.4.3.4.

In the following, the main algorithm (i.e. Discrete event passenger assignment), to-
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gether with the three supporting algorithms (i.e. UpdateDep, UpdateArr and RePlan)
are introduced successively.

2.4.3.1 Discrete event passenger assignment

Algorithm 2.1: Discrete event passenger assignment
Input: Edis

train, P, tstart
dis , Gdis, ratio,FullInfo,η

Output: Parr, Pdrop
1 G∗dis = Gdis;
2 Let Pcurr,Parr,Pdrop and Econgest all be empty ;
3 clock0← 0;
4 while Edis

train 6= /0 do
5 e← Edis

train(1);
6 clock1← πe;

7 foreach p ∈
{

p′ ∈ P : clock0 < to
p′ ≤ clock1

}
do

8 Pcurr← Pcurr∪{p};
9 if δp = µ then

10 (Pcurr,Pdrop)=RePlan(p,e, tstart
dis ,Pcurr,Pdrop,Gdis,G∗dis,Z1,FullInfo,η) ;

11 P← P\{p};
12 if e is a departure event then
13 Find the set Pboard :=

{
p ∈ Pcurr |Bp(1) = e

}
;

14 if Pboard 6= /0 then
15 Pcurr← Pcurr\Pboard;
16 (Pboard,Pdrop,Econgest,G∗dis)=

UpdateDep
(
e, tstart

dis ,Pboard,Pdrop,Gdis,G∗dis,ratio,FullInfo,Econgest,η
)
;

17 Pcurr← Pcurr∪Pboard ;
18 else if e is an arrival event then
19 Find the set Palight :=

{
p ∈ Pcurr |Lp(1) = e

}
and the set

Preplan :=
{

p ∈ Pcurr |δp = e
}

;
20 if Palight∪Preplan 6= /0 then
21 Pcurr← Pcurr\

(
Palight∪Preplan

)
;

22 (Palight,Preplan,Pdrop,Parr)

=UpdateArr
(
e, tstart

dis ,Palight,Preplan,Pdrop,Parr,Gdis,G∗dis,FullInfo,η
)
;

23 Pcurr← Pcurr∪
(
Palight∪Preplan

)
;

24 if FullInfo = Train then
25 foreach p ∈ Pcurr\(Palight∪Preplan) do
26 Let r be rdis

p if rdis
p is nonempty. Otherwise, let r be rplan

p ;
27 if e ∈ r and Bp(1) ∈ Econgest then
28 (Pcurr,Pdrop) =

RePlan(p,e, tstart
dis ,Pcurr,Pdrop,Gdis,G∗dis,Z4,FullInfo,η);

29 clock0← clock1;
30 Edis

train← Edis
train\{e} ;

31 return Parr, Pdrop

In Algorithm 2.1, different sets are initialized, and the previous system clock time is set
as 0 (lines 1-3). In line 4, each event in Edis

train is iterated over to implement a passenger
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arrival at the origin, and the loading or unloading procedure. Edis
train is a given input,

of which the contained events are previously sorted in time-ascending order and then
in alphabetical order regarding the event type (arrival or departure), to ensure that the
assignment proceeds with time, and an arrival event occurs before a departure event
if their time instants are the same. In lines 5-6, the first element from Edis

train is chosen
as the current event e to be executed, and the current system clock time is set as the
occurence time of e. In the loop starting from line 7, each arrival of a passenger at the
origin between the previous and the current system clock time is simulated. In line 8,
the origin arrival passenger p is included to the set Pcurr that contains all passengers
who are currently staying in the railways. If p needs to re-plan at the origin, the
function RePlan will be called to realize the re-plan action (lines 9-10). In line 11, p is
excluded from P to avoid being included in Pcurr again.

If the current event e is a departure (line 12), then the passengers who want to board
train tre are defined by Pboard (line 13). If Pboard is not empty (line 14), it is excluded
from the set Pcurr (line 15) and the loadings of passengers in Pboard are implemented by
calling the function UpdateDep (line 16). In line 17, the updated Pboard is included to
Pcurr again. The reason of having lines 15 and 17 is that when executing UpdateDep,
some passengers could be removed from Pboard to Pdrop, because they drop the rail-
ways due to denied boardings and no preferred alternatives can be found. Function
UpdateDep also outputs Econgest and G∗dis, which are the set of departure events that
correspond to potential congested run activities, and an adaptive event-activity net-
work that excludes the potential congested run activities from Gdis.

If the current event e is an arrival (line 18), the passengers who want to alight from
the arriving train are defined by Palight and the passengers who will re-plan paths when
e occurs are defined by Preplan (line 19). If at least one of the two sets is not empty
(line 20), the union Palight ∪Preplan is excluded from Pcurr first (line 21) and then the
function UpdateArr is called to implement the unloadings of passengers in Palight and
the re-plan actions of passengers in Preplan (line 22). In line 23, the updated Palight ∪
Preplan is included to Pcurr again. The reason of having lines 21 and 23 is that when
executing UpdateArr, some passengers could be removed from Palight to Parr because
they reach the destinations, and some passengers could be removed from Preplan to
Pdrop because they cannot find preferred re-planned paths and thus drop the railways.
If train congestion information is published on trains (line 24), for each passenger who
is dwelling at train tre and the next boarding train is highly congested as notified (lines
25-27), the passenger is given the chance of re-planning (line 28).

After finishing executing the current event, the previous system clock time is set to the
current system clock time, and the current event is removed from the event list to be
executed (lines 29-30).
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2.4.3.2 Passenger loading

Algorithm 2.2: UpdateDep
Input: e, tstart

dis ,Pboard,Pdrop,Gdis,G∗dis,ratio,FullInfo,Econgest,η

Output: Pboard,Pdrop,Econgest,G∗dis
1 if captre ≥ |Pboard| then
2 captre ← captre−|Pboard| ;
3 foreach p ∈ Pboard do
4 Bp← Bp\{e} ;

5 else if captre < |Pboard| and captre > 0 then
6 captre ← 0 ;

7 Sort Pboard in ascending order according to max
{

to
p, t

alight
p

}
;

8 foreach p ∈ Pboard(1 : captre) do
9 Bp← Bp\{e} ;

10 foreach p ∈ Pboard(captre +1 : end) do
11 λp← λp +1;
12 (Pboard,Pdrop)=RePlan(p,e, tstart

dis ,Pboard,Pdrop,Gdis,G∗dis,Z2,FullInfo,η) ;

13 else if captre = 0 then
14 foreach p ∈ Pboard do
15 λp← λp +1;
16 (Pboard,Pdrop)=RePlan(p,e, tstart

dis ,Pboard,Pdrop,Gdis,G∗dis,Z2,FullInfo,η) ;

17 if Fulltrain = Train then
18 if

(
1− captre/capmax

tre

)
≥ ratio then

19 Find the next run activity of train tre: a = (e′,e′′);
20 Econgest← Econgest∪{e′};
21 G∗dis← G∗dis\{a};
22 return Pboard,Pdrop,G∗dis,Econgest

In Algorithm 2.2, if the available capacity captre of a train tre is sufficient to cover
all passengers Pboard who want to board the train, captre is updated accordingly (lines
1-2). Then, for each p ∈ Pboard, the current event e is excluded from the set Bp that
contains all departure events corresponding to the boarding actions of p (lines 3-4). If
the available capacity of a train can only cover part of the passengers in Pboard (line 5),
captre is updated accordingly (line 6) and then the passengers in Pboard are sorted in
ascending order according to their arriving times at the current stations (line 7). Here,
talight
p refers to the latest alighting time of passenger p, of which the value is initialized

with 0 when p arrives at the origin and further be updated when p alights from a train
at another station. Line 7 ensures the loading rule of first-come-first-served. The first
captre passengers in Pboard can board the train (lines 8-9), while the remainders are
denied for boarding and RePlan is called for re-planning (line 10-12). If the available
capacity of a train is zero, none of the passengers in Pboard can board the train, but only
re-plan paths (lines 13-16).

Furthermore, if train congestion information is published and the congestion ratio of
the train tre,

(
1− captre/capmax

tre

)
, has reached the specified congestion level ratio,
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then the departure event e′ that corresponds to the next run activity a of tre is added
to Econgest (lines 19-20), while a is excluded from the adaptive event activity network
G∗dis (line 21). Here, capmax

tre
represents the maximum number of passengers that train

tre can hold.

2.4.3.3 Passenger unloading

Algorithm 2.3: UpdateArr
Input: e, tstart

dis ,Palight,Preplan,Pdrop,Parr,Gdis,G∗dis,FullInfo,η
Output: Palight,Preplan,Pdrop,Parr

1 foreach p ∈ Palight do
2 captre ← captre +1;
3 Lp← Lp\{e};
4 if Lp = /0 then
5 td

p = πe;
6 Palight← Palight\{p};
7 Parr← Parr∪{p};
8 else
9 talight

p = πe;

10 foreach p ∈ Preplan do
11 (Preplan,Pdrop)= RePlan(p,e, tstart

dis ,Preplan,Palight,Pdrop,Gdis,G∗dis,Z3,FullInfo,η);

12 return Palight,Preplan,Pdrop,Parr

In Algorithm 2.3, for each passenger p who wants to alight from the train tre, the avail-
able capacity of the train is updated accordingly (lines 1-2), and event e is excluded
from the set Lp that contains all arrival events corresponding to the alighting actions of
p (line 3). After that, an empty Lp means that passenger p has reached the destination
(line 4), thus the actual destination arrival time td

p is updated and p is removed from
Palight to Parr (lines 5-7). If Lp is not empty, the latest alighting time talight

p is updated
(lines 8-9). For each passenger who will re-plan path when e occurs, RePlan is called
(lines 10-11).

2.4.3.4 Passenger re-planning

In Algorithm 2.4, the source and sink nodes (i.e. u and v) are determined for searching
the re-planned path of passenger p (line 1). The sink node is always the exit event
corresponding to the destination dp, while the source node u is different under different
re-plan situations.

• If Z j = Z1, u is set as the duplicate departure event that is closest to the passen-
ger’s arrival time at the origin: to

p.

• If Z j = Z2, u is set as the duplicate departure event that is closest to the current
departure event e at the station ste.
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• If Z j = Z3∪Z4, u is set as the current arrival event e.

All re-plan situations are listed in Table 2.3.

Algorithm 2.4: RePlan
Input: p,e, tstart

dis ,Pboard (or Preplan and Palight,or Pcurr),Pdrop,Gdis,G∗dis,Z j, FullInfo,η
Output: Pboard (or Preplan),Pdrop

1 Determine the source node u and sink node v of passenger p according to dp,Z j,
to
p and ste;

2 Determine whether G is set as Gdis or G∗dis according to Z j and FullInfo;
3 Search the optimal path r from u to v on G;
4 Let td

r be the destination arrival time of path r;
5 if

(
td
r − t̂d

p
)
≤ η then

6 rdis
p ← r ;

7 Update Bp and Lp according to rdis
p ;

8 if Z j ∈ {Z3,Z4} and p /∈ Palight then
9 if Lp(1) = e then

10 captre ← captre +1;
11 Lp← Lp\{e};
12 talight

p = πe;
13 else
14 Pdrop← Pdrop∪{p};
15 Pboard (or Preplan,or Pcurr)← Pboard\{p} (or Preplan\{p} ,or Pcurr\{p});
16 return Pboard (or Preplan,or Pcurr),Pdrop

Table 2.3: Re-plan situations

Situation Time and location

Z1: re-plan before travelling due to service variations When arriving at the origin station
Z2: re-plan during travelling due to denied boarding When planning to board at any possible station
Z3: re-plan during travelling due to service variations When arriving at the specified station
Z4: re-plan during travelling due to train congestion When arriving at a station

In line 2 of Algorithm 2.4, the event-activity network G that is used to search the re-
planned path of passenger p, is determined according to the values of FullInfo and
Z j.

• If FullInfo=Train, then train congestion information is published at trains only.
Thus, G is set as G∗dis,

– if Z j = Z2 and ste 6= op, which means passenger p re-plan paths due to
denied boarding at the station that is not his/her origin, or

– if Z j ∈ {Z3,Z4}.

Passenger who satisfies either of the above conditions must have taken a train
where he/she is notified with train congestion information.
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• If FullInfo=none, then train congestion information is published nowhere. Thus,
G is always set as Gdis whatever Z j is.

In line 3 of Algorithm 2.4, the optimal path r is searched through G, of which the
destination arrival time is td

r (line 4). Thus, the resulting delay of r is (td
r − t̂d

p) where
t̂d
p is the planned destination arrival time of p.

If the delay is no longer than passenger’s maximum accepted delay η (line 5), r is
chosen as the re-planned path (line 6), and the sets of events corresponding to the
boardings and alightings are updated accordingly (line 7). Additionally for the re-plan
situation of Z3 or Z4, a passenger who does not plan to alight from the train tre might
now want to get off due to the re-planned path (lines 8-9). In such a case, the available
train capacity, the set of alighting events, and the latest alighting time are all updated
accordingly (lines 10-12).

If the delay of r is longer than η (line 13), the passenger will drop the railway. Thus,
the set Pdrop and the set Pboard (or Preplan) are all updated accordingly (lines 14-15).

2.5 Time complexity

Algorithm 2.1, the main algorithm working for passenger assignment, is based on three
sub-algorithms (i.e. Algorithms 2.2, 2.3 and 2.4), while Algorithms 2.2 and 2.3 also
need to call Algorithm 2.4. Figure 2.6 shows the relations between the algorithms.

Passenger assignment

(Algorithm 2.1)

RePlan

(Algorithm 2.4)

UpdateArr

(Algorithm 2.3)

UpdateDep

(Algorithm 2.2)

Figure 2.6: The relations between algorithms

In RePlan, lines 1, 3 and 7 require non-constant time. Line 1 takes O
(∣∣Eddep

∣∣) time,
where Eddep represents the set of duplicate departure events. Line 3 takes O(|A|+ |E|)
time, where A and E refer to the activities and events contained in the formulated
event-activity network, respectively. Line 7 takes O

(∣∣rdis
p
∣∣) time, where rdis

p refers to



32 Passenger-Oriented Timetable Rescheduling

the re-planned path of passenger p, which contains all events that p will pass through.
Thus, the time complexity of Algorithm 2.4 is

T 4
Alg = O

(∣∣Eddep
∣∣)+O(|A|+ |E|)+O

(∣∣∣rdis
p

∣∣∣) ,
≤ O(|E|)+O(|A|+ |E|)+O(|E|) ,
= O(|A|+ |E|) .

In UpdateArr, the for loop from line 1 to line 9 takes O
(∣∣Palight

∣∣) time, while the
for loop from line 10 to line 11 takes O

(∣∣Preplan
∣∣ · (|A|+ |E|)) time. Thus, the time

complexity of Algorithm 2.3 is

T 3
Alg = O

(∣∣Palight
∣∣)+O

(∣∣Preplan
∣∣ · (|A|+ |E|)) .

In UpdateDep, line 7 takes O(|Pboard| log |Pboard|) time by using heapsort. Thus, lines
1-16 take O(|Pboard| log |Pboard|)+O(|Pboard| · (|A|+ |E|)) time. Because log |Pboard| �
|A|+ |E| and lines 17-21 take constant time, the time complexity of Algorithm 2.2 is

T 2
Alg = O(|Pboard| · (|A|+ |E|)) .

As for Algorithm 2.1, the while loop makes one iteration per event of Edis
train. Let N be

the size of Edis
train, thus in all N while iterations:

• the for loop from line 7 to line 11 takes at most ∑
N
i=1

∣∣Pi
ori

∣∣ ·(|A|+ |E|) operations,
where Pi

ori represents the set of passengers who arrive at the origins in the ith
iteration. This is equal to O(|P| · (|A|+ |E|)) time, where P represents the total
passenger demand.

• due to the calls of UpdateDep, lines 12 - 17 take at most ∑
N
i=1

∣∣Pi
board

∣∣ ·(|A|+ |E|)
operations, where Pi

board represents the set of passengers who wish to board the
train at the ith iteration. By defining m as the maximum number of board-
ings/alightings that a passenger may encounter, there must be ∑

N
i=1

∣∣Pi
board

∣∣ =
m|P|. Because the maximum number of boardings/alightings corresponding to
a passenger must be finite and relatively small, the time complexity is O(|P| ·
(|A|+ |E|)).

• due to the calls of UpdateArr, lines 18-23 take ∑
N
i=1

∣∣∣Pi
alight

∣∣∣+∣∣∣Pi
replan

∣∣∣ ·(|A|+ |E|)
operations, where Pi

alight (Pi
replan) represents the set of passengers who will alight

from the train (re-plan paths) at the ith iteration. This is not larger than m |P|+
|P| · (|A|+ |E|). Thus, lines 18-23 totally take O(|P| · (|A|+ |E|)) time.

• lines 5-6 and lines 29-30 totally take O(N) time, where N is smaller than |E|.
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If train congestion information is not published, the time complexity of Algorithm 2.1
thus is

T 1
Alg = O(|P| · (|A|+ |E|))+O(|P| · (|A|+ |E|))+O(|P| · (|A|+ |E|))+O(N),

= O(|P| · (|A|+ |E|)).

If train congestion information is published, in each while iteration of Algorithm 2.1,
the for loop from line 25 to line 28, at most take |P| operations in case Pcurr = P and
(Palight∪Preplan) = /0. In such a case, T 1

Alg becomes O(N · |P|)+O(|P| · (|A|+ |E|)). As
N < |A|+ |E|, T 1

Alg is still O(|P| · (|A|+ |E|)), although train congestion information is
published.

The notation used is given in Table 2.4.

Table 2.4: Notations used in proving the time complexity of Algorithm 2.1

Symbol Description

Pi
ori The set of passengers who arrive at the origins at the ith while iteration

of Algorithm 2.1

Pi
board The set of passengers who wish to board the train at the ith while iteration

of Algorithm 2.1

Pi
alight The set of passengers who will alight from the train at the ith while iteration

of Algorithm 2.1

Pi
replan The set of passengers who re-plan paths upon arrival event due to service

variations at the ith while iteration of Algorithm 2.1

m The maximum number of boardings/alightings a passenger could encounter

In summary, the time complexity of the proposed passenger assignment model is relev-
ant to the size of the given passenger demand and the scale of the considered network.
To reduce computational burden, one way is to group the passengers who share the
same travel characteristics (e.g. the origins, the destinations, the arrival times at the
origin, etc.). However, this is at the expense of assignment accuracy, since two pas-
sengers who have exactly the same travel characteristics could still be distributed to
different trains if vehicle capacities are in short supply.

2.6 Case study

2.6.1 Description

The model is applied to a subnetwork of the Dutch railways, where 17 stations are loc-
ated and six train lines are operated (see Figure 2.7). The disruption scenario is defined
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as a complete track blockage between stations Hze and Mz, which occurs from 7:57
to 9:00. Here, only the disruption timetable of the corridor where the disruption hap-
pens is shown (see Figure 2.8), as the timetables of the other two corridors remain as
planned. The number of nodes (events) and arcs (activities) in the network formulation
are 2085 and 3539, respectively. In Figure 2.8, the solid lines represent the services
scheduled in the disruption timetable, while the dashed (dotted) lines represent the
original scheduled services that are cancelled (delayed) in the disruption timetable.
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Figure 2.7: The considered network

7:00 7:30 8:00 8:30 9:00 9:30 10:00
Rm

Wt

Mz

Hze

Gp

Ehv

Figure 2.8: Disruption timetable

Passenger demand is generated for the period from 7:00 to 10:00, which contains the
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time frame before the disruption starts, during the disruption and after the disruption
ends, since passengers who start travelling during these hours could be influenced by
the disruption. The total number of passengers who travel in the considered network
during the considered period is 7515.

To consider information interventions, different schemes of information provision are
set, which are listed in Table 2.5. Each row of Table 2.5 indicates the locations where
service variations and train congestion information are published (i.e. ServiceInfo and
FullInfo), the specified train congestion level (i.e. ratio) that triggers updating the con-
gestion information, and the maximum accepted destination delay of each passenger
(i.e. η). For example the current congestion ratio of a train is 0.85; if ratio is set as
0.85, then the operators update the congestion information by telling passengers that
the next run of this train would be highly congested. However, if ratio is set as 0.9,
no such information will be given to passengers, because the current congestion ratio
of the train, 0.85, does not reach the level of 0.9. A train of which the congestion
ratio currently reaches ratio, is thought to be potentially unable to satisfy all boarding
demands for its next run. Thus, notifying some passengers with the congestion inform-
ation can avoid them boarding the next run of the train, while some passengers who
are not notified with information may still keep their choices. As for η , two kinds of
values are set here, which are (t̂d

p− to
p) referring to the planned travel time of passenger

p, and 63 min which is the defined disruption duration. The value of η may affect
the number of passengers who drop the railways, which further affects the congestion
of trains. Also baseline scenarios are created, in which neither service variations nor
train congestion is provided. In these scenarios, passengers can only know the service
variation when they really experience it themselves. For instance, a passenger knows
he/she cannot board a train as planned when the train does not show up at the station
due to delay or cancellation.

Table 2.5: Case study settings

ServiceInfo FullInfo ratio η [min]

Station Train 0.8,0.9,or 1 (t̂d
p− to

p) or 63
Station None – (t̂d

p− to
p) or 63

Station & Train Train 0.8,0.9,or 1 (t̂d
p− to

p) or 63
Station & Train None – (t̂d

p− to
p) or 63

None None – (t̂d
p− to

p) or 63

2.6.2 Results

By applying the model on the defined disruption scenarios with the settings of Table 2.5,
18 results are obtained, which are shown in Table 2.6. In each result, three indicators
are used, which are the number of dropped passengers, the number of denied board-
ings, and the travel time deviation. The computation time for scenario 9 is the least,
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which is 15 seconds, and the computation time for scenario 16 is the most, which is 6
seconds. The computation times for other scenarios are between these two.

Table 2.6: Results of disruption scenarios between stations Hze and Mz

Scenario
η

ServiceInfo FullInfo ratio
# drop # denied Travel time

passengers boardings deviation
[min] [min]

1 t̂d
p − to

p Station Train 0.8 551 0 25,243
2 t̂d

p − to
p Station Train 0.9 551 0 25,243

3 t̂d
p − to

p Station Train 1 551 0 25,243
4 t̂d

p − to
p Station None – 551 0 25,243

5 t̂d
p − to

p Station & Train Train 0.8 551 0 25,187
6 t̂d

p − to
p Station & Train Train 0.9 551 0 25,187

7 t̂d
p − to

p Station & Train Train 1 551 0 25,187
8 t̂d

p − to
p Station & Train None – 551 0 25,187

9 t̂d
p − to

p None None – 565 0 28,399

10 63 Station Train 0.8 118 178 39,758
11 63 Station Train 0.9 113 193 40,687
12 63 Station Train 1 113 193 40,693
13 63 Station None – 113 193 40,693

14 63 Station & Train Train 0.8 116 178 39,707
15 63 Station & Train Train 0.9 110 193 40,590
16 63 Station & Train Train 1 110 193 40,595
17 63 Station & Train None – 110 193 40,595

18 63 None None – 88 358 47,234

The number of dropped passengers is calculated as |Pdrop|, and the number of denied
boardings is calculated as ∑p∈P λp where λp represents the number of times a pas-
senger being denied for boarding and P = Parr ∪Pdrop. The travel time deviation is
calculated as

• ∑
p∈Parr

(
td
p− t̂d

p
)
+ ∑

p∈Pdrop

(
t̂d
p− to

p
)
, when η is set as t̂d

p− to
p, or

• ∑
p∈Parr

(
td
p− t̂d

p
)
+63

∣∣Pdrop
∣∣, when η is set as 63,

where td
p(t̂

d
p) represents the actual(planned) destination arrival time of passenger p, and

to
p represents the actual origin arrival time of passenger p. Note that td

p could be smaller
or larger than t̂d

p , which means the total travel time deviation consists of both negative
and positive individual travel time deviations.
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2.6.2.1 Influence of maximum accepted delay: η

It is found from Table 2.6 that the total travel time deviations in all cases are positive,
which means that the actual travel times increase compared to the planned travel times.
When the maximum accepted destination delay (i.e. η) is set as an individual’s planned
travel time (i.e. t̂d

p − to
p), the travel time increases are the smallest, while the numbers

of dropped passengers (i.e. 551 or 565) are the largest (scenarios 1-9). When η is set
as the disruption length (scenarios 10-18), the travel time increases grow, while the
numbers of dropped passengers reduce. These indicate that

• the provided disruption timetable leads to 565 passengers to whom the increased
travel time in the railways is at least equal to the planned travel time, and

• the limited vehicle capacities lead to more travel time increase when more pas-
sengers remain in the railways to reach the destinations.

If operators aim for a low travel time increase while satisfying passenger demand as
much as possible, one way is to design a disruption timetable that provides faster ser-
vices and ensures less denied boardings by adjusting the schedules to distribute pas-
sengers wisely. However, this is rather challenging, since many factors (e.g. passenger
behaviour, vehicle capacities, infrastructure restrictions, etc.) need to be considered in
the rescheduling. Thus, another way is proposed, information intervention, which is
easier to be implemented in practice. Here, information intervention means that oper-
ators provide passengers at different locations with different information about service
variations or train congestion.

2.6.2.2 Influence of information intervention

When η is set as t̂d
p − to

p or 63 min, compared to not updating passengers with any
information (scenario 9 or 18), providing information for them (scenarios 1-8 or 10-
17) helps to reduce the number of dropped passengers, the number of denied boardings,
and/or the travel time increase. This indicates that it is helpful to update passengers
with certain information during disruptions.

When η is set as t̂d
p − to

p, providing service variations at both stations and trains (scen-
arios 5-8) always lead to less travel time increases compared to the cases in which
service variations are announced at stations only (scenarios 1-4). However, publishing
train congestion information does not make any sense, since no one has been denied
for boarding even though train congestion information is not published. This indicates
that

• if vehicle capacities are not in short supply, publishing service variations at both
stations and trains is able to reduce more travel time increase, compared to pub-
lishing service variations at stations only.
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This is because by additionally receiving service variations on trains, the on-board
passengers at the moment the disruption occurs can re-plan paths just at the next stop
of the train rather than several stops later where they get off from the train, and such
earlier re-plans help to find better alternatives which result in less travel time increases.

When η is set as 63 min, more passengers remained in the railways and thus some
passengers were denied for boarding due to insufficient vehicle capacities. Under this
circumstance, additionally publishing train congestion information on trains helps to
reduce travel time increase, if ratio is set to an appropriate value. For example when
service variations are published at stations only, compared to not publishing train con-
gestion (scenario 13), publishing such information on trains leads to better perform-
ance when ratio is set as 0.8 or 0.9 (scenario 10 or 11), or does not change perform-
ance when ratio is set as 1 (scenario 12). These phenomena are also found in the cases
where service variations are published at both stations and trains (scenarios 14-17).
These indicate that

• if vehicle capacities are in short supply, the performance of publishing train con-
gestion on reducing travel time increase is influenced by the value of ratio.

For example if ratio is set as 0.8 and the current congestion ratio of train tr1 is 0.85,
then the information that tr1 is highly congested is published to on-board passengers,
which prevent them from boarding the next run of tr1, while the passengers who wait at
their origins to board the next run of tr1 still keep their choices. In this way, passengers
who demand for boarding the next run of tr1 are distributed, since tr1 is thought to be
highly congested now and may be unable to satisfy all demands later. If there must be
some passengers being denied for boarding a train, avoiding them to choose the train
may help them find better alternatives compared to the ones they can find after being
denied. It is also possible that all subsequent demands are satisfied if these demands are
small, or lots of passengers get off before the next run, thus avoiding some passengers
boarding the train might not be helpful since the avoided passengers may not be able
to find better alternatives. Clearly, the setting of ratio is important, which decides
whether publishing train congestion is good or not. One way to ensure the accuracy of
ratio is to assign each train with a customized ratio that varies with times and locations
according to the estimated boarding demand and alighting amount. However these are
also hard to be estimated accurately, as during the period from the departure of the
current run to the departure of the next run, there could be extra demand or alightings
emerging. In this chapter, a general value of ratio is set to to all trains, while it would
be interesting to enable a dynamic customized ratio to each train in future research.

2.6.2.3 Impacts on passengers who start travelling before/during the disruption

In the model, the passengers who start travelling before the disruption, but are still
within the railways at the moment the disruption occurs, are also considered expli-
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citly. According to the case study results, these passengers are affected a lot by the
disruption, thus overlooking them in the assignment model is unreasonable.
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Figure 2.9: Individual delays of scenario 1 (η=individual planned travel time)
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Figure 2.10: Individual delays of scenario 10 (η=disruption length)

In Figures 2.9 and 2.10, the individual delays of scenario 1 and 10, are shown respect-
ively, which are distinguished by passengers’ travelling start time. As few passengers
who start travelling after the disruption ends (i.e. 9:00) are delayed (9 individuals in
scenario 1 or scenario 10), only the individual delays of passengers who start travelling
before or during the disruption are shown. It is found that under the same setting of η
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(i.e. the maximum acceptable destination delay), individual delays are not significantly
different. Thus, scenario 1 is chosen as the representative of setting η to individual
planned travel time, and scenario 10 is chosen as the representative of setting η to the
defined disruption lenth. Individual delay is only calculated for the passenger who ac-
tually arrived at the destination later than planned. Thus, individual delay is calculated
as td

p− t̂d
p for p ∈ Parr, if td

p > t̂d
p . For p ∈ Pdrop, individual delay is computed as the cor-

responding value of η . Note that in Figures 2.9 and 2.10, individual delays are shown
in ascending order, and an individual numbered in Figure 2.9 does not correspond to
the individual numbered the same in Figure 2.10.

Figures 2.9 and 2.10 both show that passengers who start travelling before the disrup-
tion are delayed more seriously. Most individual delays are below 50 minutes in Fig-
ure 2.9, while in Figure 2.10, there are a lot of individual delays reaching 60 minutes.
This indicates that most passengers’ planned travel times are below 50 minutes and it
is hard for them to find the alternatives of less than 50 minutes delay under the current
disruption timetable, while the congestion issue increases passenger delays further. To
reduce passenger delays, one way is to improve the disruption timetable by providing
passengers with better alternatives (i.e. less resulting delays), which could be done
by incorporating passenger responses into timetable rescheduling. Additionally, it is
found that there are 21 passengers in scenario 10 being delayed, not because of ser-
vice variations (i.e. their planned paths are not cancelled/delayed) but due to denied
boardings only. Under these circumstances, increasing vehicle capacities or provid-
ing alternatives outside the railways (e.g. shuttle buses), would be helpful to reduce
passenger delays.

2.7 Conclusions and future research

In this chapter, a dynamic passenger assignment model is proposed considering major
disruptions that require trains to be cancelled or short-turned. Information interven-
tions are introduced by delivering the information of service variations and the inform-
ation of train congestion at different locations. By applying the model on part of the
Dutch railway network where a complete track blockage is assumed during one morn-
ing peak hour, it is found that when vehicle capacities are always sufficient (i.e. no
denied boarding), publishing service variations at both stations and trains helps to re-
duce the travel time increase due to the disruption, while additionally publishing train
congestion does not make any sense. When vehicle capacities are in short supply (i.e.
denied boardings exist), additionally publishing train congestion can reduce the travel
time increase due to the disruption, of which the performance depends on how a train
is defined as highly congested in order to proactively avoid some passengers boarding
the next run of the train.

Although only one case is performed in this chapter, more applications could be per-
formed with the proposed model. For example, considering the fluctuation of day-to-
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day passenger demand and the frequency of disruptions, reasonable vehicle capacity
reservations for improving the service resilience during disruptions can be proposed.
Besides, the proposed assignment model will be applied on larger networks and com-
bined with rescheduling models in the future, where passengers will be grouped to
speed the computation.

Appendix 2.A

Table 2.7: Notation

Symbol Description

Eplan
train The set of original departure and arrival events (i.e. original event list)

Edis
train The set of rescheduled departure and arrival events (i.e. updated event list)

Ecancel
train The set of cancelled departure/arrival events: Ecancel

train ⊂ Eplan
train and Ecancel

train ∩Edis
train = /0.

Edelay
train The set of delayed departure/arrival events: Edelay

train ∩Eplan
train = Edelay

train ∩Edis
train, but they

differ in the times of occurrences.

Edis
arr The set of rescheduled arrival events

Econgest The set of departure events that correspond to potential congested run activities

P The set of passengers who plan to travel by train

Pcurr The set of passengers currently staying in the railways (either at stations
or within trains)

Pdrop The set of passengers who drop the railways

Parr The set of passengers who arrive at the destinations by train

Pboard The set of passengers who want to board the same train (local variable)

Palight The set of passengers who want to alight from the same train (local variable)

Preplan The set of passengers who re-plan paths upon the same arrival event (local variable)

op The origin station of passenger p

dp The destination station of passenger p

to
p The arrival time of passenger p at the origin station

rplan
p The planned path of passenger p from op to dp

rdis
p The re-planned path of passenger p from the station where p re-plans to dp

talight
p The latest alighting time of passenger p, which is initialized with the value 0

t̂d
p The planned destination arrival time of passenger p

td
p The actual destination arrival time of passenger p

Bplan
p The set of departure events that correspond to the planned boarding actions of

passenger p

Lplan
p The set of arrival events that correspond to the planned alighting actions of

passenger p

continued on next page
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continued from previous page

Symbol Description

δp The re-plan indication of passenger p, which indicates when and where p would
re-plan the path

λp The number of times of passenger p being denied for boarding a train

µ A unique positive number that is used to indicate that a passenger would re-plan a
path at the origin

stshort The station where trains are short-turned or cancelled

tstart
dis Start time of a disruption

FullInfo The variable indicating the location of publishing train congestion information

FullInfo=Train: publish train congestion information on trains only

FullInfo=None: publish train congestion information nowhere

ratio The specified congestion ratio that triggers updating the corresponding congestion
information of a train

η Maximum passenger accepted destination delay



Chapter 3

Railway timetable rescheduling with
flexible stopping and flexible
short-turning during disruptions

Apart from minor updates, this chapter has been published as:

Zhu, Y., Goverde, R.M.P., 2019. Railway timetable rescheduling with flexible stop-
ping and flexible short-turning during disruptions. Transportation Research Part B:
Methodological 123: 149 –181.

3.1 Introduction

In most countries, the railway plays a major role in people’s daily travelling. Therefore,
reliability of the operations is essential and in particular rapid responses are needed
after disruptive events. To this end, efforts are made either during the planning pro-
cesses to design robust timetables, or during the operations to provide high-quality
rescheduled timetables. The latter are considered as real-time rescheduling problems
that are further classified into disturbance management and disruption management,
depending on the severities of service interruptions.

Usually, disturbance management handles relatively small delays due to, for example,
extended running or dwell times of trains, by rescheduling the timetable only. On
the contrary, disruption management deals with large incidents, like open-track block-
ages, station closures, extreme weather conditions, etc., which consists of not only
timetable rescheduling, but also rolling stock and crew rescheduling (Jespersen-Groth
et al., 2009). An overview of the real-time rescheduling models towards either disturb-
ances or disruptions can be found in Cacchiani et al. (2014).

43



44 Passenger-Oriented Timetable Rescheduling

Until now, many efforts have been put on developing models and algorithms to achieve
automatic disturbance management that actually has been realized in Norway since
February 2014 (Lamorgese and Mannino, 2015). However, automatic disruption man-
agement has not been realized yet. In practice, it is still highly dependent on manual
work to deal with disruptions, which usually results in rescheduling solutions of low
quality and imposes much work load on the traffic controllers (Ghaemi et al., 2017b).
Thus, developing models to generate disruption solutions automatically attracts in-
creasing attention recently, which is exactly the starting point of this chapter.

In this chapter, a Mixed Integer Linear Programming (MILP) model is proposed to
handle the railway timetable rescheduling problem during complete track blockages,
by retiming, reordering, cancelling, flexible stopping, and flexible short-turning. This
is the first time that flexible stopping and flexible short-turning are introduced in one
rescheduling model.

Flexible stopping means that for each train the original scheduled stops could be
skipped while extra stops could be added, considering that during disruptions a skipped
stop could reduce the delays of passengers at their expected destinations, while an ad-
ded stop could provide passengers with more alternative paths for re-routing. How-
ever, a skipped stop will cause inconvenience to some passengers who therefore need
to reroute and possibly arrive with some delay at their destinations; while an added
stop may increase the total travel times of many passengers. When deciding whether
to skip or add stops, the negative and positive impacts on passengers are both con-
sidered while the adjusted train running times due to reduced (extra) decelerations and
accelerations are explicitly taken into account.

Short-turning means that a train ends its operation at a station before the blocked tracks
and the corresponding rolling stock turns at the station to be used by another train in
the opposite direction. Usually, a train is short-turned at one station only. As such, the
train will be cancelled instead of short-turned if the short-turn station lacks capacity. To
reduce the possibility of cancelling trains due to lack of station capacity, we introduce
flexible short-turning by giving each train a full choice of short-turn station candidates
and the proposed model decides the optimal station and time of short-turning the train.
Among all the stations that a train originally serves or passes through, the ones of
which the infrastructure layouts allow short-turning are all chosen as the short-turn
station candidates for the train.

Compared to most literature, our model is more complete by including realistic charac-
teristics of the infrastructure, disruption, and passengers as much as possible. Regard-
ing to the infrastructure, the model focuses on networks of both double-track railway
lines and single-track railway lines (described at a macroscopic level), where multiple
types of headways are considered to prevent operational conflicts at stations/sections.
The platform tracks and pass-through tracks of a station are distinguished to make
sure that each train is assigned to an appropriate track when arriving at the station.
The rolling stock circulations at short-turning and terminal stations are both taken
into account, and whether a station has turning facilities for the trains arriving from
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different directions is explicitly considered. The rolling stock circulations at the ori-
gins/destinations of trains are called OD turns. To be specific, the model ensures that
the rolling stock of a train that reaches its destination turns at the station to operate
an opposite train that departs from the same station as the origin. Regarding to a dis-
ruption, our model considers all disruption phases, i.e., the transition phase from the
original timetable to the disruption timetable, the stable phase where the disruption
timetable is performed, and the recovery phase of the disruption timetable resuming
to the original timetable (Ghaemi et al., 2017b). As for the passengers, a method is
proposed to determine the impacts of dispatching decisions in terms of passengers’
planned paths, which are then used as the decision weights in the objective of minim-
izing passenger delays. The model is tested on real-life instances of a subnetwork of
the Dutch railways, which demonstrates fast computations of rescheduling solutions.

The contributions of this chapter are summarized as follows.

• A new rescheduling model is proposed, which includes both flexible stopping
and flexible short-turning as well as retiming, reordering, and cancelling trains.

• The model deals with all phases of a disruption.

• Adjusted train running times due to saved (extra) decelerations and accelerations
are explicitly considered when skipping (adding) stops.

• Station capacity is considered by ensuring that each train corresponding to pas-
senger boarding/alighting stops at a platform track while the minimum headway
times are taken into account.

• Rolling stock circulations at the short-turning and terminal stations of trains are
included.

• Dispatching decisions are optimized with the objective of minimizing passenger
delays.

In the following, we first give an overview of the literature on timetable rescheduling
models in Section 3.2, followed by the mathematical modelling of the problem in Sec-
tion 3.3. Then, the case study is given in Section 3.4 and finally Section 3.5 concludes
this chapter and points out directions for future research.

3.2 Literature review and problem challenge

In this section, we first give an overview of the publications on timetable rescheduling,
particularly differentiated by the used dispatching measures. Then, the characterist-
ics of papers relevant to disruptions, including the infrastructure modelling level, the
used method, the objective, and whether considering OD turn or station capacity, are
discussed and compared to the ones of this chapter. In the end, the challenges of the
problem considered in this chapter are explained.
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3.2.1 Literature review

During disturbances that cause service perturbations rather than dropped infrastructure
capacity, local re-routing and re-timing are commonly adopted to adjust the timetable.
For example, D’Ariano et al. (2008) and Corman et al. (2010) sequentially determine
train routes and then the arrival and departure times of trains, while Meng and Zhou
(2014) specify the routes and schedules of trains simultaneously. These papers describe
infrastructure at a microscopic level, and so does Pellegrini et al. (2014) where block-
ing times are explicitly formulated. Recently, Pellegrini et al. (2019) propose valid
inequalities that allow reformulating the model presented in Pellegrini et al. (2014)
to boost computation efficiency. A detailed review regarding timetable rescheduling
during disturbances and disruptions can be found in Cacchiani et al. (2014). In the
following we review the literature on timetable rescheduling during disruptions.

Narayanaswami and Rangaraj (2013) establish an MILP model for a track blockage
between two adjacent stations for a single-track railway with the objective of minimiz-
ing the delays of trains at the destinations. In their model, the affected trains that will
run through the disrupted section during the disruption are forced to be delayed to at
least after the disruption ends. Due to this delaying measure, new conflicts may rise
up between these delayed trains and the trains that are originally scheduled after the
time the disruption ends. Thus, binary precedence variables are introduced to allow
re-ordering at stations. Meng and Zhou (2011) also deal with the disruption occurring
in a single-track railway, by additionally considering uncertain disruption length and
varied running times of trains. A stochastic programming model is established and
embedded in a rolling horizon framework, where the measure of delaying trains is ap-
plied. Different scenarios are tested in their model with the objective of minimizing
the expected secondary delays of trains.

Compared to delaying a train, cancelling usually leads to more passenger inconveni-
ence, if the focus is on the cancelled train only. However, if the disruption is rather
long or trains run with high frequencies, cancelling a train might be better than delay-
ing it. Otherwise, more subsequent trains could be delayed, thus resulting in more
passenger inconvenience across the whole network. Under these circumstances, train
cancellation is necessary. Cadarso et al. (2013) propose an integrated optimization
model for rescheduling both timetable and rolling stock. Two dispatching measures
are applied, complete train cancellation and emergency train insertion, with the ob-
jective of minimizing operational cost, cancellations, denied passengers and service
deviations. The departure/arrival times of emergency trains are pre-determined and
fixed in the disruption timetable, and the departure/arrival times of planned trains are
also fixed. Thus, only binary decision variables are needed to decide which planned
trains should be cancelled and which emergency trains should be inserted. An ex-
tension on Cadarso et al. (2013) is made by Binder et al. (2017b) who include three
additional dispatching measures, partial cancellation, delaying, and global rerouting,
into an ILP model with the objective of minimizing operational cost, service deviations
and passenger inconveniences. This model depends on a pre-constructed rescheduling
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graph where delaying and rerouting arcs for planned trains are constructed to make
delaying and global rerouting of trains possible. In addition, conflicting arcs are also
pre-constructed to prevent any conflicts between trains. As a consequence, binary de-
cision variables are needed in the model to decide which arcs are chosen by trains,
to produce a conflict-free disruption timetable. Zhan et al. (2015) propose an MILP
model for timetable rescheduling in case of complete track blockage, by including the
measures of cancelling, retiming, and reordering trains. Disruption length is assumed
to be known and fixed when the disruption starts. Later, they proposed another model
to take uncertain disruption lengths into account, and the target case is changed to par-
tial segment blockage (Zhan et al., 2016). In both models, they aim to minimize train
delays and cancellations. As seat reservations are necessary in Chinese railways, the
measure of short-turning trains is not considered in their models.

Seat reservations are not required in most urban rail transit systems and European
railway systems, which makes short-turning trains widely used there during disrup-
tions. Puong and Wilson (2008) declare that when service disruptions are less than
20 minutes, only holding strategies (i.e. increasing dwell times of trains) are used.
However for longer disruptions, short-turning trains are usually used together with the
holding strategies. The purpose is to keep the headways of both operation directions as
regular as possible (Wilson et al., 1992), or to isolate the disrupted area from the whole
network (Ghaemi et al., 2018a). Short-turning trains is considered by Louwerse and
Huisman (2014) who propose an ILP model to deal with partial or complete blockage
on a double-track railway. In their model, the capacities of short-turn stations are con-
sidered, while assuming the capacities of other stations to be infinite. By extending the
model of Louwerse and Huisman (2014), Veelenturf et al. (2015) take the capacities of
all stations into account, while short-turn stations are fixed to trains. This means that
for each train, the last scheduled stop approaching the disrupted area is set as the only
short-turn station. Instead, Ghaemi et al. (2018a) propose an MILP model where two
short-turn station candidates are provided to each train. The model deals with complete
track blockages and describes the infrastructure at a macroscopic level. To improve the
practicability, another MILP model is proposed by Ghaemi et al. (2017a), which deals
with the same problem but describes the infrastructure at a microscopic level. In both
models, the objectives are minimizing train delays and cancellations. Van Aken et al.
(2017a) establish an MILP model to deal with timetable adjustments for full-day mul-
tiple maintenance possessions (i.e. planned disruptions). Each train has one short-turn
station to be chosen, and whether a train will be short-turned or not is decided in a
preprocessing step. Further, Van Aken et al. (2017b) include short-turning decisions
into the model and each train is provided with more short-turn station options. In their
model, pre-processing is necessary to identify which services corresponding to a train
should be cancelled in case of the train being short-turned or completely cancelled, and
the short-turn durations are fixed.

In addition to the dispatching measures mentioned above, changing stopping patterns
is also widely adopted when passenger inconvenience (e.g. waiting times, total travel
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times, etc.) are taken into account. Among the literature on passenger-oriented timetable
rescheduling, Sato et al. (2013) allow the types of trains to be changed. This means
that the express trains can change to local trains, and vice versa, while the stopping
pattern of each train type is fixed. Gao et al. (2016) and Altazin et al. (2017) both
allow trains to skip certain stops, while Veelenturf et al. (2017) allow additional stops
to be added to trains without considering the extra deceleration and acceleration times.

Most literature is operator-oriented, which usually aims to minimize train delays and
cancellations, where the penalties of both measures are determined without clear rules
and thus varying across papers. It has been reported in Zhan et al. (2015) and Ghaemi
et al. (2017a) that the rescheduling solutions are sensitive to the cancellation and delay-
ing penalties. In other words, different solutions can be obtained when setting different
values to the cancellation and/or delaying penalties although the disruption character-
istics (the disrupted section and the disruption starting/ending time) remain. For ex-
ample, increasing the cancellation penalty without changing the delaying penalty may
lead to less services cancelled but more services delayed. Zhan et al. (2015) conclude
that the penalty choice is a trade-off to be made by railway managers: cancelling less
trains by delaying more trains or the other way around; while Ghaemi et al. (2017) sug-
gest to generate multiple solutions by varying penalties, which then will be evaluated
by experts from different perspectives to decide an overall best solution.

The passenger-oriented rescheduling models for disruptions are limited, but are in-
creasing over the last years. Cadarso et al. (2013) use a frequency-based passenger
assignment model to estimate passengers’ geographic travel paths with no timetable
known yet, and the rescheduling model aims to accommodate the estimated passenger
demand as much as possible. Veelenturf et al. (2017) use a schedule-based passen-
ger assignment model that estimates passengers’ exact travel paths with time inform-
ation. They consider passenger demand in a dynamic way by iteratively adjusting
the timetable by adding a stop in each iteration if it is indicated by the passenger as-
signment model that this stop can reduce passenger inconvenience. The decisions are
limited to adding stops. Until now, Binder et al. (2017b) is the only one that integrates
passenger rerouting with rescheduling in one single model for disruption cases, where
trains can be partially cancelled by neglecting the rolling stock connection between
any two of them (i.e. no short-turning).

3.2.2 Summary and contributions of this chapter

In Table 3.1, the dispatching measures used in the publications on timetable reschedul-
ing during disruptions are summarized, as well as the ones used in this chapter. Other
characteristics like the infrastructure modelling level, the used method, the objective,
and whether considering OD turn or station capacity are also given. The symbol ‘-’
indicates that OD turn or station capacity is neglected in a paper, while the symbol
‘X’ indicates that it is considered. The publications that consider passengers in the
objectives are shown in the lower part.
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This chapter describes the infrastructure also at a macroscopic level to allow fast com-
putations, like most of the existing literature. The problem is formulated as an MILP
model with the objective of minimizing passenger delays. A schedule-based passenger
assignment is adopted to obtain passengers’ planned paths, which are used to estim-
ate passenger-dependent weights for decisions included in the objective function. The
weight of each decision is individually estimated considering the affected passengers
and the impact on them due to the decision. For example, the penalty of skipping a
stop is calculated as the number of passengers who originally plan to board or alight
from the train at the stop multiplied by an assumed delay per passenger considering
that each of these passengers has to reroute. Compared to operator-oriented models,
the model generates more passenger-friendly solutions that are also preferred by train
operators. This is because the passenger-dependent decision weights are calculated
according to passengers’ planned paths estimated based on the planned timetable. In
that sense, our model aims to reduce the impact on passengers’ planned paths, which
is, to some extent, in line with reducing the deviations from the planned timetable,
while less timetable deviations help to reduce the complexity of rescheduling the
rolling stock/crew further. Although passenger demand is considered in a static way,
the model ensures fast computations of solutions, which satisfy the real-time require-
ment. Until now, only a few rescheduling models that consider passenger demand
in a dynamic way (i.e. timetable-dependent passenger behaviour) in case of disrup-
tions. These models can reflect passenger behaviour more accurately but are at the
expense of more computation time (Binder et al., 2017b) that is usually not acceptable
in practice. Different from the existing literature, our model allows more flexibilities
for the timetable rescheduling: 1) delaying, reordering, and cancelling are all allowed;
2) short-turning is considered and in a completely flexible way by giving each train a
full choice of short-turn station candidates; and 3) adding and skipping stops (i.e. flex-
ible stopping) is innovatively introduced with the deceleration and acceleration times
of trains taken into account. To ensure solution feasibility in practice, the rolling stock
circulations at the origins/destinations of trains (i.e. OD turns) and the capacity of each
station are both considered.

3.2.3 Problem challenge

There are three main challenges of handling the problem considered in this chapter.
The first challenge is modelling flexible stopping. In the planned timetable, there are
stops and non-stops only. However in a rescheduled timetable, there could be stops,
non-stops, skipped stops, added stops, and also cancelled stops and cancelled non-
stops due to cancellation measures. These stop types must be recognized by the model
individually, as they have different impacts on station capacity, train running times
and passengers. The second challenge is modelling flexible short-turning. For fixed
short-turning, the station where a train can be short-turned is fixed, thus the decision
is only about which opposite train should be served at the station; whereas for flexible
short-turning, two decisions are needed, which are where to short-turn a train and
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which opposite train to be served at the station. If a train is short-turned, its following
services that were originally scheduled after the short-turn station must be cancelled.
In the literature, this is usually based on a preprocessing step where the cancelled
services of a train are included in a set as input. Without pre-processing, the model has
to decide which services of a train should be cancelled if the train is short-turned. The
third challenge is modelling station capacity under flexible stopping and flexible short-
turning, because whether a train needs a platform track at a station can be different
than planned. For example, it is unnecessary to assign a platform track to a train that
passes through a station. However, a platform track must be assigned: if the train has
an additional stop at the station where passengers will board or alight from the train,
or if the train is short-turned at a station where passengers will alight from the train.
To handle these challenges, a new rescheduling model is proposed.

3.3 Timetable rescheduling model

Timetable rescheduling during complete track blockages adjusts the routes and time-
distance train paths to fit the reduced infrastructure capacity without any conflicts
between trains. In this section, it is formulated as an MILP model based on an event-
activity network that is explained first. Next, the constraints for cancelling, delaying,
reordering, flexible stopping, flexible short-turning, rolling stock circulations at ter-
minal stations, and station capacity are introduced successively. Finally, the objective
is given including the passenger-dependent weight for each decision considering the
affected passengers and the impact on them due to the decision.

3.3.1 Event-activity network

In Chapter 2, the event-activity network is formulated to describe passenger responses
towards a given timetable. Hence, the events (e.g. Eexit) and activities (e.g. Await)
relevant to passengers are included, but not the activities for the adjustments that could
be applied to the timetable (e.g. short-turning activities). In contrast, the event-activity
network formulated in this chapter includes the activities relevant to timetable adjust-
ments, but not the events and activities corresponding to passengers. In the present
chapter, each departure/arrival of a train is formulated as a departure/arrival event e
with corresponding information: original scheduled time oe, station ste, train line tle,
train number tre, and operation direction dre. A train line indicates the origin, the
destination, all intermediate stops between the origin and the destination, and the op-
eration frequency (e.g. every 30 minutes). For the train that passes through a station,
we divide the pass-through action into two events: pass-through departure and pass-
through arrival. The benefit of formulating the pass-through action this way is twofold.
First, it enables the modelling of the case that a train does not stop at a station but could
be short-turned. Second, it makes the modelling of additional stops of a train possible.
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Each activity a is a directed arc from one event to another event, i.e., from tail(a) to
head(a). The type of activities include running activities, dwell activities, pass-through
activities, short-turn activities, OD turn activities and headway activities (arrival head-
way, departure headway, arrival-departure headway, or departure-arrival headway).

• A running activity arun is defined from a departure event to an arrival event with
both events belonging to the same train but occurring at two adjacent stations.
The departure event occurs at the upstream station relative to the station where
the arrival event occurs.
• A dwell (pass-through) activity adwell (apass) is defined from an arrival event to

a departure event that belongs to the same train, occurs at the same station, and
with the departure event occurring later (at the same time as the arrival event).
• An OD turn activity aodturn describes a turn of a train at its destination where the

rolling stock continues to operate an opposite train from the same train line.
• A short-turn activity aturn is defined from an arrival event to a departure event that

occurs at the same station but operates in the opposite direction. Both events are
with the same train line but different trains.

In general, different train lines may use the same or different rolling stock types, and
intercity and local lines use different rolling stock types. Two local lines may use the
same rolling stock type but for rolling sock circulations we prefer to keep the rolling
stock units on the same train line so that they stay in the same circulations, rather than
ending up in complete different areas corresponding to different train line routes. This
eases the recovery after the disruption. Therefore, we only allow a short-turn activity
to be created between two events from the same train line. More details about creating
short-turn activities can be found in Section 3.3.5.

• An arrival-departure headway activity aar,de
head is defined from an arrival event to a

departure event that occurs at the same station, but belongs to a different train
operating in the opposite direction.
• An arrival (departure) headway activity aar

head (ade
head) is defined from an arrival

(departure) event to another arrival (departure) event that occurs at the same
station, operates in the same direction, but belongs to a different train.
• A departure-arrival headway activity ade,ar

head is defined from a departure event to
an arrival event that occurs at the same station but belongs to a different train.

Arrival-departure headway activities are needed for trains operating on single-track
railway lines. This is because any two adjacent stations located on single-track rail-
way lines are linked by one track only, which makes it necessary to keep a headway
between the arrival of a train and the departure of another train that will enter the
open-track section where the arriving train comes from. The area between two adja-
cent stations is an open-track section. On double-track railway lines, any two adjacent
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stations are linked by two tracks where each is used by trains operating in the same dir-
ection. Arrival (departure) headway activities are needed for following trains operat-
ing in either single-track railway lines or double-track railway lines. Departure-arrival
headway activities are needed for trains that use the same track at a station, and also
both departure-arrival and arrival-departure headway activities are used for trains with
crossing routes at stations.

Example: Figure 3.1 shows a timetable where train tr1 runs from station C to station
A with a stop at station B, train tr2 runs from station C to station A directly, and train
tr3 runs from station A to station C directly. It is assumed that stations A, B and C are
located on double-track railway lines, tr1 continues its operation further after station
A, and tr2 ends its operation at station A and the corresponding rolling stock turns to
be used in the operation of tr3.

C

B

A

tr1 tr2

tr3

Figure 3.1: A timetable with three trains and three stations located on double-track
railway lines

The event-activity network formulation of this example is presented in Figure 3.2,
where headway activities are always pairwise created between two events considering
that the order between them may change. A rescheduling solution to the event-activity
network of Figure 3.2 is shown in Figure 3.3, where a stop is added to tr2 at station B
by delaying the departure of tr2 at this station. The activities that are not valid in the
rescheduling solution are all coloured in grey. For example, if there is no short-turning,
the short-turn activity is invalid. Also between two events, one headway activity must
be invalid, with the other one being valid, if these two events are not cancelled. Oth-
erwise, both headway activities between them are invalid. A valid activity in a res-
cheduling solution must satisfy the conditions that 1) the head of the activity occurs no
earlier than the tail of the activity and the time difference between them respects the
required duration, 2) both the head and tail events are not cancelled, and 3) the activity
must be active if it is a short-turn/OD turn activity.
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Arrival or pass-through arrival event Departure or pass-through departure event

Running activity

Headway activityShort-turn activity OD turn activity

tr1 tr2

tr3

de, C

ar, B

ar, A

de, B

de, C

de, Bar, B

ar, A

Dwell activity

de, A

de, Bar, B

ar, C

Pass-through activity

ar, C de, C

Figure 3.2: Event-activity network formulation of Figure 3.1

tr1 tr2

tr3

de, C

ar, B

ar, A

de, B

de, C

de, Bar, B

ar, A de, A

de, Bar, B

ar, C

Figure 3.3: A rescheduling solution to Figure 3.1 by adding stop, reordering and delay-
ing

The notation used for sets and parameters are given in Appendix 3.A. The decision
variables used in the proposed model are described in Table 3.2.

The proposed model is based on three assumptions. First, it is assumed that the
end time of a disruption is given at the moment the disruption starts and will not
change. Although uncertain disruption duration is not considered in our model, it
can be handled by embedding the proposed model in a rolling horizon framework like
Meng and Zhou (2011) and Zhan et al. (2016) did. In the case study, we investigate
how the proposed model reacts to different disruption durations. The second assump-
tion is that trains that have already entered the blocked tracks when the disruption
starts have passed the blocked points already, and thus can run as planned. The third
assumption is that trapped trains that cannot turn at a station before the blocked tracks
will dwell at the last possible station until the disruption ends. The passengers may
be evacuated using bus services to stations with running trains or stay in the train, de-
pending on the disruption length. Our model considers that the passengers in a trapped
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train are delayed at least for the dwelling duration. In the following, the constraints for
cancelling, delaying, reordering, flexible stopping, flexible short-turning, rolling stock
circulations at terminal stations, and station capacity are introduced successively.

3.3.2 Constraints for cancelling and delaying trains

For an event e, the relation between its rescheduled time xe, the cancelling decision ce

and the delaying decision de is formulated by

M1ce ≤ xe−oe ≤M1, e ∈ Ear∪Ede, (3.1)

xe−oe = de +M1ce, e ∈ Ear∪Ede, (3.2)

de ≥ 0, e ∈ Ear∪Ede, (3.3)

de ≤ D, e ∈ (Ear∪Ede)\ENMdelay, (3.4)

where oe is the original scheduled time of e, Ear (Ede) is the set of arrival (departure)
events, and ENMdelay is the set of events that do not have an upper limit on their delays.
The events in ENMdelay correspond to the trains that are originally scheduled to run
through the disrupted section during the disruption but have already departed from
the origins before the disruption starts. Thus, these trains can only be short-turned or
delayed, but not cancelled. In case these trains are unable to be short-turned due to
insufficient station/rolling stock capacity, they have to be delayed at least to the end of
the disruption. Considering these situations, no upper limit is imposed on the delays
of the events corresponding to these trains. Here, we use ENMdelay to contain such
events that do not have an upper limit on their delays. Suppose events e and e′ are the
departure events of train tr at the origin station and the entry station of the disrupted
section, respectively. If event e originally occurs before the disruption starting time
tstart while event e′ originally occurs after tstart, then all departure and arrival events
that correspond to train tr and originally occur after tstart belong to the set ENMdelay.
Constraint (3.1) means that for each event e, the rescheduled time xe is not allowed
to occur earlier than the original scheduled time oe, and it should be removed after
the end of the day if it is cancelled (i.e. ce = 1). As we use minute as the unit for
any xe or oe, M1 is set to 1440 (i.e. one day has 1440 minutes). Thus according to
(3.1), the rescheduled time of a cancelled event is the original scheduled time plus
1440. For a cancelled event, its delay de is equal to 0, while for an non-cancelled
event, its delay is equal to the time difference between the rescheduled time and the
original scheduled time (3.2). Constraint (3.3) means that event delay is non-negative.
Constraint (3.4) means that an event that does not belong to ENMdelay is allowed to
be delayed by at most D minutes, considering that it is not preferred to delay a train
too much. Imagine that a train arrives at a station on time but departs from the station
much later than planned, then a track of the station will be occupied by the train for
a rather long time, which is not good for station capacity utilization. Besides, we
consider a cyclic planned timetable to be rescheduled, thus delaying a train longer than
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the cycle time does not make much sense, since another train with the same origin,
destination and stopping patterns will operate later. Considering these, the parameter
of maximum allowed delay per event, D, is used. This parameter is also adopted by
some rescheduling models for disruptions, like Zhan et al. (2015) and Veelenturf et al.
(2015).

During the disruption period, a departure event that is originally scheduled to occur at
the entry station of the disrupted section is either cancelled or delayed at least to the
end of the disruption,

xe ≥ tend(1− ce), e ∈ Ede,ste = stdre
en , tstart ≤ oe < tend, (3.5)

where stdre
en represents the entry station of the disrupted section considering the oper-

ation direction of the train corresponding to e (i.e. dre). An example of explaining
the entry/exit station of a disrupted section is shown in Figure 3.4 where the section
between stations B and C is completely blocked from tstart to tend, and a short-turning
occurs between the blue and red trains at either station B or C. For the blue train that
operates in downstream direction, the entry (exit) station of the disrupted section is
station C (station B); whereas for the red train that operates in upstream direction, the
entry (exit) station of the disrupted section is station B (station C). The dashed lines
indicate the cancelled services due to the short-turnings. Here, the departure event of
the blue train at station C is the event e of which the original scheduled time oe satisfies
tstart ≤ oe < tend, thus it must be cancelled or delayed after tend according to (3.5). In
this case, e is cancelled (i.e. ce = 1). Imagine that e is not cancelled (i.e. ce = 0),
then 1) both short-turnings indicated in Figure 3.4 will not occur; and 2) the blue train
will depart from station C later than tend. This means that event e will be delayed by at
least tend−oe minutes, thus the blue train will occupy a track of station C for tend−oe

minutes at least. However due to the upper limit on delay D, the train will not occupy
the track for longer than D minutes. An exception could be that a train is dwelling at
the entry station of the disrupted section when the disruption starts but the infrastruc-
ture layout of the station is unable for short-turning; thus the train has to remain at the
station until the disruption ends and the waiting time can be longer than D minutes.
This is defined in the set ENMdelay

A

B

C

D

Time

Station

startt endt

E

e

Figure 3.4: An example used for explaining the entry/exit station of the disrupted
section for a train
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An event that originally occurs before the disruption start tstart cannot be cancelled, and
should run as planned:

ce = 0, e ∈ Ear∪Ede,oe < tstart, (3.6)

xe−oe = 0, e ∈ Ear∪Ede,oe < tstart. (3.7)

A departure event that originally occurs after tend +R cannot be cancelled and should
run as planned:

ce = 0, e ∈ Ede,oe ≥ tend +R, (3.8)

xe−oe = 0, e ∈ Ede,oe ≥ tend +R. (3.9)

Here, R represents the required time length for the disruption timetable resuming to
the original timetable after the disruption ends. Setting R helps to avoid the disruption
affecting the timetable for the entire day, which is also adopted by Veelenturf et al.
(2015). For an arrival event, if its corresponding departure event in the running activity
originally occurs after tend+R, this arrival event cannot be cancelled and should run as
planned:

ce′ = 0, (e,e′) ∈ Arun,oe ≥ tend +R, (3.10)

xe′−oe′ = 0, (e,e′) ∈ Arun,oe ≥ tend +R. (3.11)

Note that for an arrival event that originally occurs after tend+R, its corresponding de-
parture event in the running activity could originally occur before tend+R and possibly
be cancelled/delayed, which makes this arrival cancelled or unable to run as planned.
Constraints (3.8) - (3.11) require a disruption to be fully recovered after tend +R. This
might be impossible if R is set to a very small value like 0, thus resulting in infeasible
solution. Considering that an event that originally occurs during the disruption period
could be delayed by at most D minutes, it is better to set R at least larger than D to
avoid infeasibility.

Any two events that constitute the same running activity are either cancelled or kept
simultaneously:

ce′− ce = 0, (e,e′) ∈ Arun. (3.12)

Any two events that constitute the same station activity are either cancelled or kept
simultaneously, if neither of these two events corresponds to a short-turn activity:

ce′− ce = 0, (e,e′) ∈ Astation,e /∈ E turn
ar ,e′ /∈ E turn

de . (3.13)

A station activity can either be a dwell activity or a pass-through activity. Here,
E turn

ar (E turn
de ) is the set of the tails (heads) of all short-turn activities contained in Aturn.

The tail of a ∈ Aturn must be an arrival event, and the head of a ∈ Aturn must be a
departure event.
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Instead of requiring the running time on an open-track section to respect the minimum
running time, we constrain it at least to respect the original scheduled running time,
in order to keep disruption timetable robustness by the original scheduled time supple-
ments:

xe′− xe ≥ oe′−oe, a = (e,e′) ∈ Arun. (3.14)

During disruptions, small service perturbations could also happen, of which the result-
ing delays are expected to be mitigated by the time supplements kept in the disruption
timetable.

To prevent overlong running in an open-track section, the following constraint is given,

xe′− xe ≤ (1+λ )(oe′−oe), a = (e,e′) ∈ Arun, (3.15)

where λ represents the maximum percentage allowed to the running time extension.
During disruptions, it happens that a train runs with a slower speed than usual if the
station which it is approaching to lacks capacity to receive it. As a result, longer time
is needed for the running. However, a train cannot run too slow, thus a maximum
percentage allowed to the running time extension, λ , is required here.

3.3.3 Constraints for reordering trains

Minimum arrival/departure headways are required between trains running in the same
directions:

xe′− xe ≥ La +M2(qe,e′−1), a = (e,e′) ∈ Aar
head∪Ade

head, (3.16)

qe,e′+qe′,e = 1, (e,e′) ∈ Aar
head∪Ade

head, (3.17)

where the order between events e and e′ is described by the binary decision variable
qe,e′ with value 1 indicating that e occurs before e′. Here, La represents the minimum
duration of activity a, and M2 is set to two times of M1.

Train overtaking on an open-track section is forbidden:

qe1,e′1
−qe2,e′2

= 0, (e1,e′1) ∈ Ade
head,(e2,e′2) ∈ Aar

head,(e1,e2) ∈ Arun,(e′1,e
′
2) ∈ Arun.

(3.18)

For the stations located on single-track railway lines, minimum headway should be
respected between the arrival of a train and the departure of another train that occurs
at the same station but operates in opposite direction. An example of such an arrival-
departure headway is shown in Figure 3.5.

ee

aL

Figure 3.5: Arrival-departure headway on single-track railway lines to ensure at most
one train running in an open-track section: a = (e,e′) ∈ Aar,de

head
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The constraints for ensuring arrival-departure headways are:

xe′− xe ≥ La +M2(qe,e′−1), a = (e,e′) ∈ Aar,de
head ,rste = 1, (3.19)

qe,e′+qe′,e = 1, (e,e′) ∈ Aar,de
head ,rste = 1, (3.20)

where rste is a binary parameter with value 1 indicating that station ste is located on
single-track railway lines; and 0 otherwise.

For a station that is located on double-track railway lines and has two tracks, each track
of the station is used for trains coming from the same direction. Thus, a minimum
headway is required between the departure of a train and the arrival of another train
that uses the same track at the station. Likewise, such a headway is needed when a train
turns at the station and departs towards the other track. In Figure 3.6, two situations
that require such departure-arrival headways are shown.

e e e

aL

e e e

Situation 1: Situation 2:

aL

Figure 3.6: Two situations where departure-arrival headways are required in a station
that has only two tracks and is located on a double-track railway line: a = (e′′,e′) ∈
Ade,ar

head

The constraints for ensuring headways shown in Figure 3.6 are:

xe′− xe′′ ≥ La +M2(qe,e′−1− ce− ce′− ce′′), (e,e′′) ∈ Astation,

a = (e′′,e′) ∈ Ade,ar
head ,Nste = 2,

(3.21)

xe′− xe′′ ≥ La +M2(qe,e′−1− ce− ce′− (1−ma′)), a′ = (e,e′′) ∈ Aturn∪Aodturn,

a = (e′′,e′) ∈ Ade,ar
head ,Nste = 2,

(3.22)

where Nste represents the number of tracks in the corresponding station of event e,
and ma′ is a binary decision variable with value 1 indicating that a short-turn/OD turn
activity a′ is active, and La is the minimum headway duration. Constraints (3.21) and
(3.22) are for situation 1 and situation 2, respectively. In (3.21), the time difference
between events e′ and e′′, xe′−xe′′ , does not need to respect the minimum headway La,
if e, e′ or e′′ is cancelled, or all of them are kept but e occurs after e′ (i.e. qe,e′ = 0).
Also in (3.22), xe′ − xe′′ does not need to respect the minimum headway La, if e or e′
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is cancelled, both of them are kept but the short-turn/OD turn activity a′ relevant to
e is not active (i.e. ma′ = 0), or both e and e′ are kept and a′ is active but e occurs
after e′. The details of short-turn/OD turn activities can be found in Section 3.3.5 and
Section 3.3.6.

3.3.4 Constraints for flexible stopping

Recall that flexible stopping means that scheduled stops can be skipped, and extra
stops can be added. To realize flexible stopping, a binary variable sa is introduced. For
a scheduled stop a ∈ Adwell, sa = 1 indicates that the stop is skipped. For a scheduled
non-stop a ∈ Apass, sa = 0 indicates that a stop is added. It happens that a scheduled
stop or non-stop is cancelled, which means that the stop type of a∈ Adwell (a∈ Apass) in
the disruption timetable is also relevant to cancellation decision. Table 6.4 (Table 6.5)
shows the values of decision variables ce,ce′ and sa that indicate the corresponding
stop type of a ∈ Adwell (a ∈ Apass) in the disruption timetable.

Table 3.3: The stop type of activity
a = (e,e′) ∈ Adwell in the disruption
timetable according to ce,ce′ and sa

ce ce′ sa Stop type
0 0 0 Stop
0 0 1 Skipped stop
1 0 0 Cancelled stop
0 1 0 Cancelled stop
1 1 0 Cancelled stop

Table 3.4: The stop type of activity
a = (e,e′) ∈ Apass in the disruption
timetable according to ce,ce′ and sa

ce ce′ sa Stop type
0 0 0 Extra stop
0 0 1 Non-stop
1 0 1 Cancelled non-stop
0 1 1 Cancelled non-stop
1 1 1 Cancelled non-stop

The constraints deciding the values of ce,ce′ and sa are:

sa ≤ 1− ce, a = (e,e′) ∈ Adwell, (3.23)

sa ≤ 1− ce′, a = (e,e′) ∈ Adwell, (3.24)

sa ≥ ce, a = (e,e′) ∈ Apass, (3.25)

sa ≥ ce′, a = (e,e′) ∈ Apass, (3.26)

xe′− xe ≥ La(1− sa− ce− ce′)−M1ce, a = (e,e′) ∈ Astation, (3.27)

xe′− xe ≤M2(1− sa + ce + ce′), a = (e,e′) ∈ Astation, (3.28)

where Astation = Adwell∪Apass. For a = (e,e′) ∈ Adwell, (3.23) and (3.24) constrain sa to
be 0, if either e or e′ is cancelled. For a = (e,e′) ∈ Apass, (3.25) and (3.26) constrain sa

to be 1, if either e or e′ is cancelled. According to Table 6.4 and Table 6.5, a true stop
in the disruption timetable can only be one of which the corresponding ce, ce′ and sa

are all equal to 0. Constraint (3.27) requires a true stop to satisfy the minimum dwell
duration. Besides, a skipped stop or a non-stop in the disruption timetable can only be
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one of which the corresponding ce and ce′ are both equal to 0, and sa = 1. Constraints
(3.27) and (3.28) together ensure that the duration of a skipped stop or a non-stop is
0. For a cancelled stop (non-stop) that either the corresponding ce or ce′ is equal to 1,
(3.27) and (3.28) also remain feasible.

e ee e

rundwell od turn

e ee e

run dwellpass

e ee e

run passod turn

e ee e

run passpass

e ee e

run dwellod turn

e ee e

run dwelldwell

e ee e

runpass od turn

e ee e

run passdwell

Planned minimum running timePlanned stopping case

Case 2:

Case 1:

Case 3:

Case 4:

Case 5:

Case 6:

Case 7:

Case 8:

 acce dece ,  ' ', ''a a a aL a e e       

 acce dece ,  ' ', ''a a a aL a e e       

 acce dece ,  ' ', ''a a a aL a e e       
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 dece ,  ' ', ''a a aL a e e     

 acce ,  ' ', ''a a aL a e e     

 acce ,  ' ', ''a a aL a e e     

 ,  ' ', ''a aL a e e  

Figure 3.7: Planned stopping patterns of a train at two adjacent stations and the min-
imum running time between these two stations under different cases where e,e′′ ∈
Ear,e′,e′′′ ∈ Ede,(e′,e′′) ∈ Arun

When changing the stopping pattern of a train, an adjusted train running time due to
saved/extra acceleration and deceleration should be considered. Figure 3.7 enumerates
all cases of the planned stopping patterns relevant to a train run a′ = (e′,e′′) ∈ Arun,
as well as the composition of the planned minimum running time La′ in each case.
Here, ∆acce

a′ and ∆dece
a′ represent the acceleration time and the deceleration time needed

for a′, respectively; while τa′ represents the pure running time of a′. Note that time
supplement is not included in either La′ or τa′ , and it is always satisfied that La′ ≥ τa′ .
In Figure 3.7, case 1 means that a train stops at two adjacent stations; case 2 means that
a train stops at a station after which it reaches the destination where the corresponding
rolling stock turns to operate the opposite train (i.e. OD turn); case 3 means that a train
starts from the origin and stops at the next adjacent station; case 4 means that a train
passes through a station but stops at the next adjacent station; case 5 means that a train
passes through a station after which it reaches the destination; case 6 means that a train
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stops at a station but passes through the next adjacent station; case 7 means that a train
starts from the origin and passes through the next adjacent station; and case 8 means
that a train passes through two adjacent stations.

In the rescheduled timetable, the minimum running time of a train between two adja-
cent stations may become longer or shorter than planned, if either of the stopping pat-
terns at these two stations changes. Considering this, the following three constraints
are established for cases 1-3 of Figure 3.7, respectively, each requiring that the min-
imum running time dependent on the changed stopping patterns is respected:

xe′′− xe′ ≥ La′−∆
acce
a′ sa−∆

dece
a′ sa′′ , a = (e,e′) ∈ Adwell,a′ = (e′,e′′) ∈ Arun,

a′′ = (e′′,e′′′) ∈ Adwell,

xe′′− xe′ ≥ La′−∆
acce
a′ sa, a = (e,e′) ∈ Adwell,a′ = (e′,e′′) ∈ Arun,

a′′ = (e′′,e′′′) ∈ Aplan
odturn,

xe′′− xe′ ≥ La′−∆
dece
a′ sa′′ , a = (e,e′) ∈ Aplan

odturn,a
′ = (e′,e′′) ∈ Arun,

a′′ = (e′′,e′′′) ∈ Adwell,

where Aplan
odturn is the set of all planned turnings of rolling stock at terminal stations.

Recall that for a ∈ Adwell, sa = 1 indicates that a is skipped. According to (3.14), we
have xe′′ − xe′ ≥ oe′′ − oe′ with a′ = (e′,e′′) ∈ Arun and oe′′ − oe′ representing the ori-
ginal scheduled running time that includes time supplement. It is always satisfied that
oe′′−oe′ ≥ La′ , which makes xe′′− xe′ ≥ La′ always respected. As such, the three con-
straints shown above are always satisfied, because sa,sa′′ ∈ {0,1} thus either −∆accesa

or −∆decesa′′ must be non-positive. Considering this, these three constraints are not
included in the proposed model.

For cases 4-8 of Figure 3.7, the following constraints are established, respectively.
Each of them requires that the minimum running time depending on the changed stop-
ping pattern is respected. Note that these constraints take effect only if a stop is skipped
or a passage becomes an added stop.

xe′′− xe′ ≥ La′+∆
acce
a′ (1− sa)−∆

dece
a′ sa′′ , a = (e,e′) ∈ Apass,a′ = (e′,e′′) ∈ Arun,

a′′ = (e′′,e′′′) ∈ Adwell, (3.29)

xe′′− xe′ ≥ La′+∆
acce
a′ (1− sa), a = (e,e′) ∈ Apass,a′ = (e′,e′′) ∈ Arun,

a′′ = (e′′,e′′′) ∈ Aplan
odturn, (3.30)

xe′′− xe′ ≥ La′−∆
acce
a′ sa +∆

dece
a′ (1− sa′′), a = (e,e′) ∈ Adwell,a′ = (e′,e′′) ∈ Arun,

a′′ = (e′′,e′′′) ∈ Apass, (3.31)

xe′′− xe′ ≥ La′+∆
dece
a′ (1− sa′′), a = (e,e′) ∈ Aplan

odturn,a
′ = (e′,e′′) ∈ Arun,

a′′ = (e′′,e′′′) ∈ Apass, (3.32)

xe′′− xe′ ≥ La′+∆
acce
a′ (1− sa)+∆

dece
a′ (1− sa′′), a = (e,e′) ∈ Apass,a′ = (e′,e′′) ∈ Arun,

a′′ = (e′′,e′′′) ∈ Apass, (3.33)
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Recall that for a ∈ Apass, sa = 0 indicates that a is added with a stop; while for a ∈
Adwell, sa = 1 indicates that a is skipped.

3.3.5 Constraints for flexible short-turning

Recall that flexible short-turning means that a train is provided with a full choice of
short-turn station candidates and the proposed model decides at which station the train
will be short-turned and which short-turn activity at the station will be selected. In the
following, we first explain how to generate the set of all possible short-turn activities
Aturn by Algorithm 3.1, and then introduce the constraints that decide which short-turn
activities of Aturn can be selected in the rescheduled timetable.

One input of Algorithm 3.1, STtl,dr
turn , contains the short-turn station candidates for the

trains serving train line tl and operating in direction dr. Note that each station con-
tained in STtl,dr

turn is the upstream/same station compared to stdr
en where dr ∈ {up,down}.

Recall that stdr
en is the entry station of the disrupted section for the trains operating in

direction dr. In Figure 3.4, suppose the infrastructure layouts of stations A, B, C, D
and E all allow short-turning trains. Then, for the downstream blue train, its short-turn
station candidates includes station C that is the entry station of the disrupted section
for this train, and also station D that is the upstream station compared to station C.
For the upstream red train, station B is the only short-turn station candidate. Another
input of Algorithm 3.1 is Lturn that contains the minimum short-turn duration required
in each station. The set TLdis includes all train lines that can be affected by the disrup-
tion, which is also input to Algorithm 3.1. A train line of which the planned operation
covers the disrupted section is a train line that could be affected by the disruption.

Algorithm 3.1: Constructing the set of all possible short-turn activities Aturn

Input: STtl,dr
turn ,Ede,Ear, tstart, tend,R,D,Lturn TLdis

Output: Aturn

1 Atl,dr
turn = /0;

2 foreach st ∈ STtl,dr
turn do

3 Define
Edis,tl,dr

de,st = {e′ ∈ Ede |tle′ = tl,dre′ = dr,ste′ = st, tstart ≤ oe′ < tend +R};
4 Define E tn

ar =
{

e ∈ Ear

∣∣∣(e,e′) ∈ Astation,e′ ∈ Edis,tl,dr
de,st

}
;

5 Define
E tn

de = {e′′ ∈ Ede |tle′′ = tl,dre′′ 6= dr,ste′′ = st, tstart ≤ oe′′ < tend +R};
6 foreach e ∈ E tn

ar do
7 foreach e′′ ∈ E tn

de do
8 if oe′′+D−oe ≥ Lst

turn then
9 aturn = (e,e′′);

10 Atl,dr
turn = Atl,dr

turn ∪{aturn};

11 Aturn =
⋃

tl∈TLdis,
dr∈{up,down}

Atl,dr
turn ;
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In Algorithm 3.1, we first initialize Atl,dr
turn as an empty set (line 1). Atl,dr

turn contains all
possible short-turn activities for trains that serve train line tl and operate in direction
dr. Then, we iterate over each station st contained in STtl,dr

turn (line 2) to define the set
Edis,tl,dr

de,st that contains the departure events corresponding to the trains that serve train
line tl, operate in direction dr, and originally occur at station st after the disruption
starts but before the disruption end time plus the recovery time (line 3). For example
in Figure 3.8 or Figure 3.9, e′ ∈ Edis,tl,dr

de,st is a departure event of which the original
scheduled time oe′ is within the time period [tstart, tend +R) and is approaching to the
disrupted area. Such a departure event could be cancelled, thus its corresponding ar-
rival event e in the station activity could be short-turned, which is included in the set
E tn

ar (line 4). Also, we define the set E tn
de to contain the departure events that could be

served by the arrival events in E tn
ar for short-turning (line 5), for example the departure

event e′′ in Figure 3.8 or Figure 3.9. Between any e ∈ E tn
ar and e′′ ∈ E tn

de, a short-turn
activity aturn is constructed only if the required minimum short-turn duration could be
respected in the rescheduled timetable (lines 6-9). Here, oe′′+D is the largest resched-
uled time which departure event e′′ could occur at, and oe is the smallest rescheduled
time which arrival event e could occur at. Lst

turn refers to the minimum short-turn dur-
ation required at station st. For example in Figure 3.9, although e′′ originally occurs
before e, it could be delayed to occur later than e to make the minimum short-turn
duration respected. Thus, a short-turn activity aturn can be constructed from e to e′′.
Any constructed aturn for a train serving train line tl and operating in direction dr is
added to the set Atl,dr

turn (line 10), and the set Aturn is constructed by including all Atl,dr
turn

with tl ∈ TLdis,dr ∈ {up,down} (line 11).

e e e

startt

turna
endt R

Figure 3.8: Construct aturn from e ∈ Ear to e′′ ∈ Ede where (e,e′) ∈ Astation, e′ and e′′

both originally occur after tstart but before tend +R, and e′′ could occur Lst
turn minutes

later than e after (without) being delayed

e ee

turna

startt
endt R

Figure 3.9: Construct aturn from e ∈ Ear to e′′ ∈ Ede where (e,e′) ∈ Astation, e′ and e′′

both originally occur after tstart but before tend +R, and e′′ could occur Lst
turn minutes

later than e after being delayed
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A train may have multiple short-turn activities at each short-turn station candidate.
An example is given in Figure 3.10 where the tracks between stations A and B are
completely blocked from tstart to tend and a blue train tr1 has two short-turn activities
at each of stations B, C, D and E. Among all of these short-turn activities, at most
one can be selected for the blue train. This means that for each train, the proposed
model decides 1) at which station the train will be short-turned; and 2) which short-
turn activity at the station is selected for the train. Considering these, we introduce
a binary variable ye with value 1 indicating that station ste is chosen as the short-turn
station for train tre; and a binary variable ma with value 1 indicating that a short-turn
activity a is selected. Besides, we construct the set E turn

ar (E turn
de ) that contains all arrival

(departure) events that are the tails (heads) of activities included in Aturn. For example
in Figure 3.10, e1,B,e1,C,e1,D ∈ E turn

ar , e′2,B,e
′
2,C,e

′
2,D,e

′
3,B,e

′
3,C,e

′
3,D ∈ E turn

de .

A

B

C

D

E

startt endt

1,Be2,Be 3,Be 3,Be
2,Be 1,Be

2,Ce 2,Ce

2,De 2,De

3,Ce 3,Ce

3,De 3,De

1,Ce 1,Ce

1,De 1,De

1tr 2tr 3tr

Figure 3.10: The possible short-turn activities (black arcs) at each short-turn station
candidate of the blue train

Suppose the blue train in Figure 3.10 is short-turned at station B, then e1,B must be
kept with e′1,B being cancelled (i.e. ce1,B = 0,ce′1,B

= 1). In that sense, the operation
consistency between events e1,B and e′1,B is broken. Thus, deciding where to short-turn
a train is to decide where to break the operation consistency. The operation consistency
can be broken at most one station at each side of the disrupted section for a train.
Considering these, the following constraints are established:

ce ≤ ce′, e ∈ E turn
ar ,(e,e′) ∈ Astation, (3.34)

ce′ ≤ ce + ye, e ∈ E turn
ar ,(e,e′) ∈ Astation, (3.35)

ce′ ≥ ye, e ∈ E turn
ar ,(e,e′) ∈ Astation, (3.36)

ce′ ≤ ce, e′ ∈ E turn
de ,(e,e′) ∈ Astation, (3.37)

ce ≤ ce′+ ye′, e′ ∈ E turn
de ,(e,e′) ∈ Astation, (3.38)

ce ≥ ye′, e′ ∈ E turn
de ,(e,e′) ∈ Astation, (3.39)
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∑
e:tre=tr

ye = ce′, tr ∈ TRturn,e ∈ E turn
ar ,e′ ∈ Ede, tre′ = tr,ste′ = sdre′

en , (3.40)

∑
e′:tre′=tr

ye′ = ce, tr ∈ TRturn,e′ ∈ E turn
de ,e ∈ Ear, tre = tr,ste = sdre

ex , (3.41)

where TRturn is the set of trains that correspond to the events in Ear
turn∪Ede

turn, and sdre
en

(sdre
ex ) represents the entry (exit) station of the disrupted section considering the op-

eration direction of event e. Constraints (3.34) and (3.35) mean that if station ste is
not chosen as the short-turn station for train tre (i.e. ye = 0), then the operation con-
sistency between events e and e′ is kept by requiring them to be cancelled or kept
simultaneously. Constraint (3.36) means that if station ste is chosen as the short-turn
station for train tre (i.e. ye = 1), then the operation consistency between events e and e′

are broken by forcing event e′ to be cancelled (i.e. ce′ = 1) while event e can be either
cancelled or kept according to (3.34). Constraints (3.37) and (3.38) mean that if station
ste′ is not chosen as the short-turn station for train tre′ (i.e. ye′ = 0), then the operation
consistency between events e and e′ are kept by requiring them to be cancelled or kept
simultaneously. Constraint (3.39) means that if station ste′ is chosen as the short-turn
station for train tre′ (i.e. ye′ = 1), then the operation consistency between events e and
e′ are broken by forcing event e to be cancelled (i.e. ce = 1) while event e′ can be
either cancelled or kept according to (3.37). Constraints (3.40) and (3.41) mean that
if the operation of a train in the disrupted section is cancelled, then at each side of the
disrupted section, one station is chosen for the train as the short-turn station.

At the short-turn station, at most one short-turn activity will be selected for the train,
which is formulated as

∑
a∈Aturn,tail(a)=e

ma = ce′− ce, e ∈ E turn
ar ,

(
e,e′
)
∈ Astation, (3.42)

∑
a∈Aturn,head(a)=e′

ma = ce− ce′, e′ ∈ E turn
de ,

(
e,e′
)
∈ Astation, (3.43)

M1ce +2D(1−ma)+ xe′− xe ≥ maLa, a = (e,e′) ∈ Aturn. (3.44)

Constraint (3.42) means that if event e ∈ E turn
ar is kept (i.e. ce = 0) while its corres-

ponding departure event e′ in the station activity is cancelled (i.e. ce′ = 1), one and
only one of the short-turn activities corresponding to e will be selected. If e and e′ are
both cancelled, no short-turn activities will be selected for e. Constraint (3.43) means
that if event e′ ∈ E turn

de is kept (i.e. ce′ = 0) while its corresponding arrival event e in
the station activity is cancelled (i.e. ce = 1), one and only one of the short-turn activ-
ities corresponding to e′ will be selected. If e and e′ are both cancelled, no short-turn
activities will be selected for e′. Constraint (3.44) means that if a short-turn activity
a ∈ Aturn is selected (i.e. ma = 1), it has to respect the minimum short-turn duration
La. For a short-turn activity a that is not selected (i.e. ma = 0), (3.44) also remains
feasible.

To summarize, whether a train will be short-turned or not depends on (3.42) - (3.44),
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while (3.34) - (3.41) together help to decide the values of the variables that are in the
right sides of (3.42) and (3.43).

3.3.6 Constraints for rolling stock circulations at terminal stations

When a train arrives at the destination, the corresponding rolling stock turns at the
station to operate an opposite train that departs from the station as the origin. We
call this an OD turn and take it into account in the proposed model. In the following,
we first explain how to generate the set of all possible OD turn activities Aodturn by
Algorithm 3.2, and then introduce the constraints that decide which OD turn activities
of Aodturn can be selected in the rescheduled timetable.

Algorithm 3.2 construct the set of OD turn activities: Aodturn. We first initialize Aodturn

as an empty set (line 1). Then, we select any arrival (departure) event that corres-
ponds to a planned OD turn activity but the corresponding departure (arrival) event
in this activity originally occurs after tstart but before tend + R (making the planned
OD turn possibly impossible in the disruption timetable). These selected arrivals (de-
partures) constitute the set Eodturn

ar (Eodturn
de ) (lines 2-3). Between any e ∈ Eodturn

ar and
e′ ∈ Eodturn

de , an OD turn activity aodturn is created, if e and e′ correspond to the same
train line, occur at the same station, and the possible largest occurrence time of e′

(i.e. oe′+D) could be Lste
odturn minutes later than the possible smallest occurrence time

of e (i.e. oe) (lines 4-7). Lste
odturn refers to the minimum OD turn duration required

at the corresponding station. In line 8, a created aodturn is added to the set Aodturn.
Algorithm 3.2: Constructing the set of all possible OD turn activities Aodturn

Input: Aplan
odturn,Ear,Ede, tstart, tend,R,D,Lodturn

Output: Aodturn
1 Aodturn = /0;

2 Define Eodturn
ar =

{
e ∈ Ear

∣∣∣(e,e′) ∈ Aplan
odturn, tstart ≤ oe′ < tend +R

}
;

3 Define Eodturn
de =

{
e′ ∈ Ede

∣∣∣(e,e′) ∈ Aplan
odturn, tstart ≤ oe < tend +R

}
;

4 foreach e ∈ Eodturn
ar do

5 foreach e′ ∈ Eodturn
de do

6 if tle′ = tle,ste′ = ste and o′e +D−oe ≥ Lste
odturn then

7 aodturn = (e,e′);
8 Aodturn = Aodturn∪{aodturn};

Based on the constructed Eodturn
ar ,Eodturn

de and Aodturn, we establish the constraints for
rolling stock circulations at terminal stations:

∑
a∈Aodturn,tail(a)=e

ma = 1− ce, e ∈ Eodturn
ar , (3.45)

∑
a∈Aodturn,head(a)=e′

ma = 1− ce′, e′ ∈ Eodturn
de , (3.46)

M1ce +2D(1−ma)+ xe′− xe ≥ maLa, a = (e,e′) ∈ Aodturn. (3.47)
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Constraint (3.45) means that if an arrival event e∈ Eodturn
ar is not cancelled (i.e. ce = 0),

then one and only one of the OD turn activities corresponding to e will be selected.
Otherwise, no OD turn activities corresponding to e will be selected. Constraint (3.46)
means that if a departure event e′ ∈ Eodturn

de is not cancelled (i.e. ce′ = 0), then one
and only one of the OD turn activities corresponding to e′ will be selected. Otherwise,
no OD turn activities corresponding to e′ will be selected. For an selected OD turn
activity, the minimum turn duration must be respected (3.47).

3.3.7 Constraints for station capacities

It is necessary to ensure each arrival train to be assigned with a track to dwell or
pass through within a station. In other words, there should be at least one station track
available for each arrival train. Hence, for each arrival event e′ ∈ Ear, we need to ensure
that when e′ occurs, the number of trains currently occupying the tracks at station ste′ is
smaller than the total number of tracks within this station. Here, we introduce a binary
variable ne,e′ for any two events e,e′ ∈ Ear that ste = ste′, tre 6= tre′ , which indicates
whether train tre is currently occupying a track at station ste when another train tre′ is
approaching to the same station. If yes, ne,e′ = 1. In addition, we use Nst to represent
the total number of tracks at station st. Thus, ensuring e′ ∈ Ear to be assigned with a
station track is actually to make sure that ∑e∈Ear,ste=ste′ ,tre 6=tre′

ne,e′ is smaller than Nst .

e e

e

Figure 3.11: If e′ ∈ Ear occurs before e ∈ Ear, then ne,e′ = 0, where (e,e′′) is a station
activity, a short-turn activity or an OD turn activity

e e

e

Figure 3.12: If e′ ∈ Ear occurs after e′′ ∈ Ede, then ne,e′ = 0, where (e,e′′) is a station
activity, a short-turn activity or an OD turn activity

e e

e

Figure 3.13: If e′ ∈ Ear occurs after e ∈ Ear but before e′′ ∈ Ede, then ne,e′ = 1, where
(e,e′′) is a station activity, a short-turn activity or an OD turn activity
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Figures 3.11 to 3.13 show all cases where the values of ne,e′ could be. When e′ occurs
before e or after e′′ (see Figure 3.11 or 3.12), ne,e′ should be 0. When e′ occurs after e
but before e′′ (see Figure 3.13), ne,e′ should be 1. According to the enumerated cases,
we establish the following constraints to determine the value of ne,e′:

ne,e′ ≤ qe,e′, e,e′ ∈ Ear,ste = ste′, tre 6= tre′, (3.48)

xe′− xe′′ ≥M2(qe,e′−ne,e′−1), e,e′ ∈ Ear,ste = ste′, tre 6= tre′,

(e,e′′) ∈ Astation∪Aturn∪Aodturn, (3.49)

xe′− xe′′ ≤M2(qe,e′−ne,e′), e,e′ ∈ Ear,ste = ste′, tre 6= tre′,

(e,e′′) ∈ Astation∪Aturn∪Aodturn, (3.50)

where qe,e′ is a binary variable indicating whether or not e occurs before e′. If yes,
qe,e′ = 1. Otherwise, qe,e′ = 0.

If e′ occurs before e (i.e. qe,e′ = 0), ne,e′ is forced to be 0 in (3.48). If e′ occurs after e
(i.e. qe,e′ = 1), the value of ne,e′ is further dependent on the occurrence times of e′ and
e′′. This means that if qe,e′ = 1 and xe′ − xe′′ ≥ 0, ne,e′ is forced to be 0 by (3.49) and
(3.50), and if qe,e′ = 1 and xe′− xe′′ ≤ 0, ne,e′ is forced to be 1 by (3.49) and (3.50).

However, it is possible that either e or e′ is cancelled, thus ne,e′ should be 0:

ne,e′ ≤ 1− ce, e,e′ ∈ Ear,ste = ste′, tre 6= tre′, (3.51)

ne,e′ ≤ 1− ce′, e,e′ ∈ Ear,ste = ste′, tre 6= tre′. (3.52)

Considering e ∈ Ear may correspond to one station activity only but not any short-turn
or OD turn activities (i.e. e /∈ E turn

ar ∪Eodturn
ar ), ne,e′ should be 0, if the corresponding

departure event of e in the station activity is cancelled (3.53). Considering e ∈ Ear may
correspond to one station activity and at least one short-turn activity (i.e. e∈E turn

ar ), ne,e′

should be 0, if the corresponding departure event of e in the station activity is cancelled
and none of the short-turn activities relevant to e is selected (3.54). Moreover, e ∈ Ear

could correspond to OD turn activities only, if e is a destination arrival. In such a
case, ne,e′ should be 0, if none of the OD turn activities relevant to e is selected which
actually equals to e is cancelled, according to (3.45). Thus, the value of ne,e′ in this
case can be reflected well by (3.51).

ne,e′ ≤ 1− ce′′ , e ∈ Ear\
(

E turn
ar ∪Eodturn

ar

)
,e′ ∈ Ear,ste = ste′,

tre 6= tre′,(e,e
′′) ∈ Astation, (3.53)

ne,e′ ≤ 1− (ce′′− ∑
a∈Aturn,tail(a)=e

ma), e ∈ E turn
ar ,e′ ∈ Ear,ste = ste′, tre 6= tre′,

(e,e′′) ∈ Astation. (3.54)

Considering these cancellation situations, (3.49) and (3.50) are changed to (3.55) -
(3.58) where La′ is the minimum headway required between the departure of a train
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and the arrival of another train in case they are assigned to the same track at the cor-
responding station.

xe′− (xe′′+La′)≥M2
(
qe,e′−ne,e′−1− ce− ce′− ce′′

)
,

e,e′ ∈ Ear,(e,e′′) ∈ Astation,a′ = (e′′,e′) ∈ Ade,ar
head ,

(3.55)

xe′− (xe′′+La′)≤M2
(
qe,e′−ne,e′+ ce + ce′+ ce′′

)
,

e,e′ ∈ Ear,(e,e′′) ∈ Astation,a′ = (e′′,e′) ∈ Ade,ar
head ,

(3.56)

xe′− (xe′′+La′)≥M2
(
qe,e′−ne,e′−1− ce− ce′− (1−ma)

)
,

e,e′ ∈ Ear,a = (e,e′′) ∈ Aturn∪Aodturn,a′ = (e′′,e′) ∈ Ade,ar
head ,

(3.57)

xe′− (xe′′+La′)≤M2
(
qe,e′−ne,e′+ ce + ce′+1−ma

)
,

e,e′ ∈ Ear,a = (e,e′′) ∈ Aturn∪Aodturn,a′ = (e′′,e′) ∈ Ade,ar
head .

(3.58)

To summarize, (3.48) and (3.51) - (3.58) together decide the value of ne,e′,∀e,e′ ∈
Ear,ste = ste′, tre 6= tre′ . In these constraints, the element qe,e′ that indicates the se-
quence of e and e′ is necessary. Recall that constraints (3.16) and (3.17) decide the
value of qe,e′ but only for such e and e′ that correspond to the same operation dir-
ections. Thus, additional constraint is needed for determining the qe,e′ that e and e′

correspond to different operation directions:

M2(qe,e′−1)≤ xe′− xe ≤M2qe,e′, e,e′ ∈ Ear,ste = ste′,dre 6= dre′, (3.59)

qe,e′+qe′,e = 1, e,e′ ∈ Ear,ste = ste′,dre 6= dre′. (3.60)

Based on ne,e′ , we ensure that each arrival train has at least one station track to dwell
or pass through by

∑
e

ne,e′ ≤ Nst−1, e,e′ ∈ Ear,ste = ste′,st = ste′, tre 6= tre′, (3.61)

where Nst represents the total number of tracks at station st. Here, Nst is the sum
of Np

st and Nth
st that refer to the number of platform tracks and the number of pass-

through tracks at station st, respectively. To ensure that each arrival that corresponds
to passenger boarding/alighting to be assigned with a platform track, additional con-
straints need to be added, which are based on two kinds of decision variables. One is
the binary variable pe, for all e ∈ Ear with value 1 indicating that e needs a platform
track. The other one is the binary variable np

e,e′ for any two events e,e′ ∈ Ear such
that ste = ste′, tre 6= tre′ . np

e,e′ = 1 indicates that train tre is occupying a platform track
at station ste at the moment that another train tre′ arrives at the same station. In the
following, how to decide the values of pe and np

e,e′ are explained successively.

If event e ∈ Ear is cancelled, it does not need a platform track:

pe ≤ 1− ce, e ∈ Ear. (3.62)
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Otherwise, e needs a platform track, if e corresponds to a true stop (i.e. sa = 0,ce =

0,ce′ = 0,a = (e,e′) ∈ Astation, see Table 6.4 and Table 6.5):

pe ≥ 1− sa− ce− ce′, e ∈ Ear,a = (e,e′) ∈ Astation, (3.63)

or e corresponds to an selected short-turning/OD turning (i.e. ∑a∈Aturn∪Aodturn,tail(a)=e ma =

1):

pe ≥ ∑
a∈Aturn∪Aodturn,tail(a)=e

ma, e ∈ E turn
ar ∪Eodturn

ar . (3.64)

For arrival event e that is not relevant to any short-turn/OD turn activities, no platform
track is needed by e, if e corresponds to a skipped stop or a non-stop (i.e. ce = 0,ce′ =

0,sa = 1, see Table 6.4 and Table 6.5):

pe ≤ 1− sa, e ∈ Ear\
(

E turn
ar ∪Eodturn

ar

)
,a = (e,e′) ∈ Astation. (3.65)

For an arrival event e that is relevant to short-turn activities, no platform track is needed
by e, if e does not correspond to a true stop and no short-turn activities relevant to e
are selected:

pe ≤ 1− sa + ∑
a∈Aturn,tail(a)=e

ma, e ∈ E turn
ar ,a = (e,e′) ∈ Astation. (3.66)

Based on pe and ne,e′ , we can determine np
e,e′ , of which the value 1 indicating that train

tre is occupying a platform track at the moment that another train tre′ arrives at the
same station. np

e,e′ = 1 happens only if ne,e′ = 1 and pe = 1, which is formulated by

np
e,e′ ≤ ne,e′, e,e′ ∈ Ear,ste = ste′, tre 6= tre′, (3.67)

np
e,e′ ≤ pe, e,e′ ∈ Ear,ste = ste′, tre 6= tre′, (3.68)

np
e,e′ ≥ ne,e′+ pe−1, e,e′ ∈ Ear,ste = ste′, tre 6= tre′. (3.69)

When e′ ∈ Ear needs a platform track (i.e. pe′ = 1), the constraint below ensures that
e′ is assigned with a platform track:

∑
e

np
e,e′ ≤ (Nst−1)(1− pe′)+ pe′(N

p
st−1), e,e′ ∈ Ear,ste = ste′,st = ste′, tre 6= tre′.

(3.70)

3.3.8 Objective

The proposed model is based on constraints (3.1) - (3.48) and (3.51) - (3.70), with the
objective

min ∑
e∈Ear

wdelay
e de + ∑

e∈Ear

wcancel
e ce + ∑

a∈Adwell

wskip
a sa− ∑

a∈Apass

wadd
a (1− sa). (3.71)
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This objective considers the potential impacts of different dispatching measures on
passengers, which include the impacts of delaying and cancelling trains, the negat-
ive impact of skipping stops, and the positive impact of adding stops. Although the
positive impact of skipping stops and the negative impact of adding stops are not dir-
ectly included in the objective, they are actually accounted for by the first term of
the objective. For example, a skipped stop can help a passenger who should have
been delayed to arrive on time (i.e. zero delay) or to be delayed less, while an ad-
ded stop can delay a passenger who should have arrived on time. The weight of each
decision variable is passenger-dependent, which considers the influenced passengers
and the impact on these passengers. Each weight is individually estimated, based on
the data of the passengers’ planned paths that are obtained by the schedule-based pas-
senger assignment model of Chapter 2. In the following, we first introduce how to
obtain passengers’ planned paths and then elaborate how they will be used to estimate
passenger-dependent weights.

The schedule-based passenger assignment model proposed by Chapter 2 is able to
estimate passenger path choices when given a timetable and passenger information re-
garding the origins, the destinations and the arrival times at the origins. In Chapter 2,
the path with the shortest generalized travel time is chosen for each passenger. Gen-
eralized travel time is the weighted travel time considering passenger’s preferences on
waiting time, in-vehicle time, transfer time and the number of transfers. A path is
constituted by a series of time-ordered departure and arrival events corresponding to
the trains that the passenger wishes to take. The departure (arrival) event that corres-
ponds to the boarding (alighting) of the passenger is indicated in the path. This means
that from the path of a passenger, it is able to tell when and where the passenger will
board or alight from which train. Also, the events that are in the path of a passenger
but do not correspond the boarding/alighting of the passenger indicate that when the
passenger will pass through which station by which train. In this chapter, we input
the planned timetable to the schedule-based passenger assignment model to obtain the
planned path of each passenger, namely the path that a passenger wishes to take on nor-
mal days. If a disruption occurs, the planned path of a passenger could be influenced
due to different dispatching decisions applied. For example, if a train skips a stop, then
the passengers who plan to board or alight from the train at the stop will be affected,
and thus have to reroute and arrive possibly with delay at their destinations. In that
sense, the weight of a decision is constituted by two parts: 1) the affected passengers,
and 2) the passenger delays due to the decision. How to estimate these two parts for
each decision is elaborated in the following.

• When delaying an arrival event e ∈ Ear, the affected passengers include 1) the
passengers zalight

e who plan to alight from train tre at station ste; and 2) the pas-
sengers zpass

e who plan to pass through station ste in train tre. The delay to each
of these passengers is de minutes, where de is a decision variable representing
the delay of event e. The weight of delaying an arrival event is:

wdelay
e = zalight

e + zpass
e , e ∈ Ear.
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The resulting passenger delays due to delaying event e ∈ Ear is wdelay
e de.

• When cancelling an arrival event e ∈ Ear, the affected passengers include :1)
the passengers zalight

e who plan to alight from train tre at station ste; and 2) the
passengers zpass

e who plan to pass through station ste in train tre. Because of
the cancellation, these passengers cannot stick to their planned paths but have to
reroute, and the delay due to the rerouting is assumed as α minutes for each of
them. Thus, the weight of cancelling an arrival event is:

wcancel
e = α(zalight

e + zpass
e ), e ∈ Ear,

which represents the resulting passenger delays when e is cancelled (i.e. ce = 1).

• When skipping a stop a = (e,e′) ∈ Adwell where e ∈ Ear,e′ ∈ Ede, the affected
passengers include 1) the passengers zalight

e who plan to alight from train tre at
station ste; and 2) the passengers zboard

e′ who plan to board train tre′ at station ste′ .
Here, tre and tre′ must be the same train and ste and ste′ must be the same station,
since (e,e′) ∈ Adwell. Because of the skipped stop, these passengers cannot stick
to their planned paths but have to reroute, and the delay due to the rerouting is
assumed as β minutes for each of them. Thus, the negative impact of skipping a
stop is:

wskip
a = β (zalight

e + zboard
e′ ), a = (e,e′) ∈ Adwell,

which represents the resulting passenger delays when a ∈ Adwell is skipped (i.e.
sa = 1).

• When adding a stop to a = (e,e′) ∈ Apass where e ∈ Ear,e′ ∈ Ede, passengers can
benefit from the added stop by earlier boarding or earlier alighting. Figure 3.14
shows an example of a passenger boarding earlier due to an added stop. In
Figure 3.14, a passenger who arrives at station B earlier than time oe′ and plans
to board train tr2 that departs later than tr1, may board train tr1 instead if a stop
is added to tr1 at the station. We calculate zEboard

a as the number of passengers
who can benefit from such earlier boarding due to an added stop to a ∈ Apass.
Figure 3.15 shows an example of a passenger alighting earlier due to an added
stop. In Figure 3.15, a passenger plans to pass through station B by train tr1

and then transfer to train tr2 at station C to reach his/her destination station B.
However, if train tr1 is added with a stop at station B, this passenger will alight
from tr1 at station B. We calculate zEoff

a as the number of such passengers who
can benefit from earlier alighting due to an added stop to a ∈ Apass. The saved
time for each passenger who benefits from earlier boarding/alighting is assumed
as γ minutes. Thus, the positive impact of adding a stop is

wadd
a = γ(zEboard

a + zEoff
a ), a ∈ Apass,
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which represents the resulting passenger saved times when a ∈ Apass is added
with a stop (i.e. sa = 0).

e

e 

e

e 

Plan to board tr2: Replan to board tr1:

Adding stop 

tr1 tr2 tr1 tr2

A

B

C

A

B

C

Figure 3.14: Illustration of earlier boarding when adding a stop to a = (e,e′) ∈ Apass

Plan to pass through the station by tr1: Replan to alight from tr1:

Adding stop 

e

e 

tr2

tr1

e

e 

tr2

tr1

A

B

C

A

B

C

Figure 3.15: Illustration of earlier alighting when adding a stop to a = (e,e′) ∈ Apass

Note that the values of α , β and γ depend on many factors, which makes it diffi-
cult to estimate them. For example, α could be affected by the disruption locations,
the disruption durations, the travel times of re-routing paths, the frequencies of ex-
ternal alternatives (e.g. shuttle buses), etc. Therefore, we have to make some assump-
tions here to simplify the estimation of these values in our case study. The delay
of a passenger whose planned path is cancelled and the delay of a passenger whose
planned boarding/alighting is skipped, are both assumed to be the disruption length
(i.e. α = β = tend− tstart). In the case study, we applied the rescheduling model in
a limited network that does not contain the areas that are far beyond the disruption
sections, while adding stops could lead to delay propagation to the considered network
beyond and further increase the passenger inconvenience there. Thus, we only assume
1 minute earliness (i.e. γ = 1) to each passenger who can benefit from adding stops, in
order to offset the underestimation of the negative effects of adding stops.

The formulas of weights and the passenger groups and parameters that are necessary
to determine the weights can be found in Appendix 3.B.
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3.4 Case study

In this section, two experiments are carried out. In the first experiment, the proposed
model is performed for 408 disruption scenarios, in order to explore 1) the effect of
the recovery duration setting; and 2) the effect of the setting for the maximum allowed
delay per event, when applying flexible stopping or applying flexible short-turning.
In this experiment, the disruption duration is fixed for each scenario. However in the
second experiment, different disruption durations are tested to investigate the influence
of the disruption duration on the optimal rescheduling solution. In the end, the com-
putation efficiency of the proposed model is analysed. All computational scenarios
were solved to optimality (with a gap less than 0.00001%) by using the optimization
software GUROBI release 7.0.1 on a desktop with Intel Xeon CPU E5-1620 v3 at 3.50
GHz and 16 GB RAM.
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Train line Type Terminal

800 Intercity

1900 Intercity Venlo (Vl)

3500 Intercity

6400 Sprinter Wt and Eindhoven (Ehv)

9600 Sprinter Dn

32200 Sprinter Roermond (Rm) 

Figure 3.16: The train lines operating in the considered network
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Br

Vl

TgRv

Sm
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WtMzHze
GpEhv

Stations allowing short-turning to both directions

Stations allowing short-turning to one direction (the green side)
Stations prohibiting short-turning to both directions

Figure 3.17: The schematic track layout in the considered network

The network considered is shown in Figure 3.16 where six train lines operate every 30
minutes in either upstream or downstream direction. The black arrows indicate the up-
stream direction, which is the clockwise direction starting from Roermond (Rm) and
back to itself; while the downstream direction is the anticlockwise one. The rolling
stock circulations are only taken into account for the trains of which the terminal sta-
tions are located in the considered network. Such terminal stations are indicated in
Figure 3.16, as well as the type of each train line.
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The schematic track layout in the considered network is shown in Figure 3.17 where
stations Tg, Rv and Sm are located on single-track railway lines while the others are
located on double-track railway lines. Due to the infrastructure layouts, some sta-
tions are unable for short-turning the trains that operate in a specific direction or event
both directions: 1) stations Hze, Hmbv, Hmh and Hmbh are unable for short-turning
the trains operating in both directions (colored in full grey); 2) stations Mz and Gp
are unable for short-turning the trains operating in upstream direction (colored in half
grey); while the others are able for short-turning the trains operating in both directions
(colored in full green).

The parameter settings are detailed here: the minimum short-turn or OD turn duration
is 300 s; the minimum arrival/departure headway on open-track section is 180 s; the
minimum headway of following trains at a station is 180 s; and the minimum dwell
time at a station is 30 s. The maximum percentage allowed to running time extensions
is set to 67%, considering that added stops increase the running times. Note that ex-
cessive running time extensions are unlikely to happen when no stops are added to a
train, because that will lead to train delays that are not preferred by the model. The
acceleration (deceleration) time needed for a train that serves train line 800, 1900 or
3500 is set to 62 s (34 s); the acceleration (deceleration) time needed for a train that
serves train line 6400 or 9600 is set to 39 s (28 s); and the acceleration (deceleration)
time needed for a train that serves train line 32200 is set to 74 s (26 s).

3.4.1 Experiment 1: disruptions with fixed duration

Table 3.5: Disruption scenarios for experiment 1

Scenario No. Disrupted section Stopping Short-turning
Maximum allowed

delay per event [min]
1-6 Rm - Wt Fixed Fixed 5,10,15,20,25 and 30
7-12 Rm - Wt Flexible Fixed 5,10,15,20,25 and 30

13-18 Rm - Wt Fixed Flexible 5,10,15,20,25 and 30
19-24 Rm - Wt Flexible Flexible 5,10,15,20,25 and 30
25-30 Wt - Mz Fixed Fixed 5,10,15,20,25 and 30
31-36 Wt - Mz Flexible Fixed 5,10,15,20,25 and 30
37-42 Wt - Mz Fixed Flexible 5,10,15,20,25 and 30
43-48 Wt - Mz Flexible Flexible 5,10,15,20,25 and 30

...
...

...
...

...
385-390 Sm - Rm Fixed Fixed 5,10,15,20,25 and 30
391-396 Sm - Rm Flexible Fixed 5,10,15,20,25 and 30
397-402 Sm - Rm Fixed Flexible 5,10,15,20,25 and 30
403-408 Sm - Rm Flexible Flexible 5,10,15,20,25 and 30

In this experiment, we construct 408 disruption scenarios that differ in 1) the disrupted
section; 2) whether flexible stopping is applied; 3) whether flexible short-turning is
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applied; and 4) the maximum allowed delay per event. The characteristics of these
disruptions scenarios are shown in Table 3.5.

In each scenario, the disrupted section is assumed with a complete track blockage that
starts at 8:00 and ends at 11:00, thus the passengers who start travelling during the
period of 8:00 - 11:00 can be affected by the disruption. The passengers who start
travelling before 8:00 or after 11:00 could also be affected. For example, a passenger
who boards a train at 7:45 could be forced to alight from the train if the train is short-
turned at a station during the disruption, or a passenger who plans to board a train at
11:15 may be unable to board the train as planned considering that the train could be
delayed during the recovery period. Thus in each scenario, the passengers who start
travelling during the period of 7:00 - 12:00 are all considered by using their planned
paths to estimate the passenger-dependent weight of each decision in the objective. In
other words, we consider the rescheduling impact on these passengers. The method of
estimating passenger-dependent weights based on passengers’ planned paths is intro-
duced in Section 3.3.8. Recall that the planned path of a passenger is a series of time-
ordered departure/arrival events that correspond to the train(s) the passenger plans to
take. The dynamic passenger assignment proposed by Chapter 2 is adopted to estimate
the planned path of each passenger, which uses the planned timetable and the inform-
ation of each passenger (i.e. the origin, the destination, the time he/she arrives at the
origin) as the input. This passenger information is obtained from a full-day OD matrix
of the whole Dutch railways by applying the hourly distribution considering the time
period concerned. The OD matrix is an artificial data representing the reality. The used
full-day OD matrix and the hourly distribution are the same ones as adopted in Ghaemi
et al. (2018b).

For each scenario, the rescheduled timetable is generated and the analysis of the result
is described as follows.

3.4.1.1 The effect of recovery duration

To avoid the disruption affecting the timetable for the whole day, we set the recovery
duration R to ensure that trains run as planned again after R minutes of the disruption
ending time. In each disruption scenario, R is set with the same value as the maximum
allowed delay per event.

The value of R affects solution feasibility. When it is set to 5 or 10 minutes in the
scenarios where section Rm-Wt or Dn-Hrt is disrupted, no solutions can be found
unless increasing R to 15 minutes. In other scenarios where the disrupted section is
neither Rm-Wt nor Dn-Hrt, optimal solutions can be obtained even though R is set to 5
minutes. This indicates that the location of the disruption affects the required recovery
duration. Thus a proper setting of R is necessary. Recall that we set R to the same value
as the maximum allowed delay per event in each scenario. This setting of R ensures
optimal solutions for 392 of the 408 scenarios.
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The value of R affects the number of cancelled train services and the total train delay.
When it is set to a smaller value, more train services are cancelled but with less
train delays. This indicates that shortening the recovery duration aggravates the con-
sequence during the disruption but mitigates the post-disruption consequence due to
less delay propagation. In that sense, the value of R defines the trade-off between the
consequence during the disruption and the post-disruption consequence. This setting
deserves attention particularly when focusing on a large-scale network where a longer
recovery duration may worsen the problem of delay propagation across the network.
Optimizing this parameter is out of the scope for this chapter, but is interesting to be
investigated in future research.

3.4.1.2 The effect of maximum allowed delay per event, flexible stopping or flex-
ible short-turning

To explore the effect of the maximum allowed delay per event, flexible stopping or flex-
ible short-turning, three performance indicators are used: the total number of cancelled
train services, total train arrival delay, and total passenger delay. The total number of
cancelled train services is the number of the train services that are cancelled. A train
service represents the running of a train between two adjacent stations. Total train
arrival delay is the sum of arrival delays of the train services that are not cancelled.
Total passenger delay refers to the objective value. These three indicators are calcu-
lated for the rescheduled timetable of each disruption scenario. The minimal, average,
and maximal values of these indicators over the scenarios that have the same settings
about stopping, short-turning and maximum allowed delay per event are calculated and
shown in Table 3.6.

Setting the maximum allowed delay with a larger value results in less cancelled train
services and less passenger delays, but sometimes more train delays. This is because
when more train services are kept instead of cancelled, more conflicts could emerge
between them, which are resolved at the expense of introducing more train delays.

When applying flexible stopping or flexible short-turning, the average value of total
number of cancelled services decreases, while the corresponding maximal or minimal
value remains. This is because applying flexible stopping or flexible short-turning
helps to reduce the number of cancelled train services in most scenarios, but not in
a few scenarios where the disruption occurs in the area where only one train line op-
erates (e.g. section Tg-Rv) or the disrupted section is Hmbv-Hmh or Hmh-Hm and
the maximum allowed delay per event is set to 5 minutes. This indicates that flexible
stopping or flexible short-turning is more likely to bring benefits in the situations that
1) the operation frequency is relatively high; and 2) a train departure/arrival is allowed
to be delayed for a relatively long time. This is because such a situation provides a
wider search space for the flexible dispatching measures to explore.

When applying flexible stopping and flexible short-turning, the average total passenger
delay is the smallest, compared to the one when either or neither of flexible stopping
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and flexible short-turning is applied. To have a deeper insight on the impact of these
two measures, Table 3.7 shows the details of the rescheduled timetables by applying
flexible stopping and flexible short-turning with the maximum allowed delay per event
set to 30 minutes.

Table 3.7: The results of applying flexible stopping and flexible short-turning with the
maximum allowed delay per event set to 30 minutes

Disrupted # Skipped # Added Total number of Total train arrival Total passenger
section stops stops cancelled train services delay [min] delay [min]

Rm-Wt 6 12 20 240 128,175
Wt-Mz 1 5 48 308 195,580
Mz-Hze 1 5 95 504 528,350
Hze-Gp 0 3 95 465 513,271
Gp-Ehv 0 6 122 633 694,103
Ehv-Hmbv 5 1 76 704 971,251
Hmbv-Hmh 6 1 70 720 958,273
Hmh-Hm 7 1 70 510 966,616
Hm-Hmbh 6 0 44 22 383,259
Hmbh-Dn 6 0 44 278 398,090
Dn-Hrt 1 0 12 69 98,366
Hrt-Br 0 1 10 96 77,066
Br-Vl 1 1 20 330 86,132
Vl-Tg 3 0 24 58 140,020
Tg-Rv 3 0 12 58 75,220
Rv-Sm 0 0 12 52 72,321
Sm-Rm 0 0 20 6 115,154

7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00
Rm

Wt

Mz
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IC800

IC3500

SPR6400

Figure 3.18: The disruption timetable with flexible stopping and flexible short-turning
and maximum allowed delay per event set to 30 minutes for disrupted section Rm-Wt

Table 3.7 indicates that when Rm-Wt is disrupted, the number of added stops is the
largest. The disruption timetable for this case is shown in Figure 3.18 where the dotted
(dashed) lines represent the planned services that are delayed (cancelled) in the disrup-
tion timetable; the solid lines represent the services that are scheduled in the disruption
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timetable; and each red triangle (circle) represents an added (skipped) stop. Stops are
added to five trains from line IC3500 (in pink color) at station Mz. These trains addi-
tionally stop at station Mz to wait for the trains from line SPR6400 (in blue color) to
leave from station Wt, which is assumed to only provide platform tracks for two trains
at the same time. To respect the minimum short-turn duration, six trains from line
SPR6400 (in blue color) depart from station Wt with delays, and these delays continue
to station Gp. As such, six trains from line IC800 (in yellow color) and one train from
line IC3500 (in pink color) have to be delayed at station Gp to respect the minimum
departure headway. These trains are all added with stops at station Gp.

7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00
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IC3500
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Figure 3.19: The disruption timetable with flexible stopping and flexible short-turning
and maximum allowed delay per event set to 30 minutes for disrupted section Gp-Ehv

Table 3.7 indicates that when Gp-Ehv is disrupted, the number of cancelled train ser-
vices is the largest. The disruption timetable for this case is shown in Figure 3.19.
Although only section Gp-Ehv is disrupted, lots of train services between stations Wt
and Gp are cancelled. Recall that due to the infrastructure layouts, stations Gp and
Mz are unable for short-turning the trains operating in upstream direction and station
Hze is unable for short-turning the trains operating in both directions. As such, an
upstream train from line IC3500 (in pink color) cannot be short-turned at station Gp
to serve the opposite operation, thus can only dwell at station Gp until the disruption
ends. This is why lots of train services from line IC3500 (in pink color) are cancelled.
The same reason explains the cancelled train services from line IC800 (in yellow color)
or SPR6400 (in blue color). When a train has to stop at a station where it originally
passes through, the required extra acceleration/deceleration time may cause an infeas-
ible solution, if the resulting extension on the train running times is larger than allowed.
For example, the upstream train from line IC3500 (in pink color) has to stop at station
Gp, and thus extra deceleration time should be added to the train when running from
station Hze to station Gp. The required deceleration time is 34 seconds that accounts
for 22.7% extension on the scheduled running time of 150 seconds for the train from
station Hze to station Gp. Recall that our model avoids overlong running in an open-
track section by constraint (3.15) where a maximum percentage λ allowed to a running
time extension is imposed. If λ is set to 20%, it would cause infeasibility of the ad-
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justed timetable in the example. However in our case study, no infeasible rescheduling
solutions were found due to adding stops, because we set λ to 67%, which is large
enough to avoid the infeasibility caused by adding stops (to short station distances) in
the disruption scenarios considered. We can take a relatively high percentage because
when no stops are added to a train, excessive running time extensions are unlikely to
happen, because that will lead to train delays that are not preferred by the model.

Table 3.7 indicates that when Ehv-Hmbv is disrupted, the total passenger delay is the
largest. The disruption timetable for this case is shown in Figure 3.20. Compared to
Figure 3.19, less train services are cancelled in Figure 3.20; however the services that
are cancelled here correspond to more passenger demand, thus cancelling them results
in more passenger delays. Here, five short-turnings of the IC1900 occur at station Hm,
while one short-turning occurs at an earlier station Dn. This early short-turning is due
to the required recovery duration, which is 30 minutes in this case. If this short-turning
does not occur at station Dn but at station Hm instead, more delays will happen to
trains, which cannot be completely absorbed within the recovery duration.

7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00

Ehv

Hmbv

Hmh

Hm

Hmbh

Dn

Hrt
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Vl
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SPR9600

SPR32200

Figure 3.20: The disruption timetable with flexible stopping and flexible short-turning
and setting allowed delay per event set to 30 minutes for disrupted section Ehv-Hmbv

From experiment 1 it is concluded that 1) although shortening the recovery duration
is at the expense of more train services being cancelled, it can mitigate the problem
of delay propagation; 2); better solutions can be found when setting the maximum
allowed delay per event to a larger value; and 3) applying flexible stopping and flex-
ible short-turning helps to reduce the number of cancelled train services and the total
passenger delay, especially when the disruption occurs in the area where the train op-
eration frequency is relatively high.

3.4.2 Experiment 2: disruptions with different durations

To explore the influence of the disruption duration on the optimal rescheduling solu-
tion, we construct 85 scenarios that differ in 1) the disrupted section and 2) the disrup-
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tion ending time. These scenarios are shown in Table 3.8, where the maximum allowed
delay per event D and the required recovery duration R are both set to 30 minutes.

Table 3.8: Disruption scenarios for experiment 2
Scenario

Disrupted section Start time End time Stopping Short-turning
D R

No. [min] [min]
1 Rm - Wt 8:00 10:00 Flexible Flexible 30 30
2 Rm - Wt 8:00 10:15 Flexible Flexible 30 30
3 Rm - Wt 8:00 10:30 Flexible Flexible 30 30
4 Rm - Wt 8:00 10:45 Flexible Flexible 30 30
5 Rm - Wt 8:00 11:00 Flexible Flexible 30 30
6 Wt - Mz 8:00 10:00 Flexible Flexible 30 30
7 Wt - Mz 8:00 10:15 Flexible Flexible 30 30
8 Wt - Mz 8:00 10:30 Flexible Flexible 30 30
9 Wt - Mz 8:00 10:45 Flexible Flexible 30 30
10 Wt - Mz 8:00 11:00 Flexible Flexible 30 30
...

...
...

...
...

...
...

...
81 Sm - Rm 8:00 10:00 Flexible Flexible 30 30
82 Sm - Rm 8:00 10:15 Flexible Flexible 30 30
83 Sm - Rm 8:00 10:30 Flexible Flexible 30 30
84 Sm - Rm 8:00 10:45 Flexible Flexible 30 30
85 Sm - Rm 8:00 11:00 Flexible Flexible 30 30

For each scenario, the rescheduled timetable is generated and three performance indic-
ators are calculated: the total passenger delay (i.e. the objective value), the number of
cancelled train services, and the total train arrival delay, of which the values are shown
in Figures 3.21-3.23, respectively. The y-axis represents the indicator value, the x-axis
represents the disrupted section, and the legend indicates the disruption ending time
corresponding to each point.

Figure 3.21 indicates that in each disrupted section, the total passenger delay increases
gradually with the extension of disruption duration. From Figures 3.22 and 3.23, we
found that similar patterns exist among disruption ends with an interval of 30 minutes
apart, indicated with lines with the same colors. The green lines correspond to the
scenarios where the disruption ends at 10:00, 10:30 or 11:00, while the pink lines cor-
respond to the scenarios where the disruption ends at 10:15 or 10:45. Recall that in our
case study, the trains from each train line operate every 30 minutes in each direction.
This reveals that the optimal rescheduling solution is sensitive to the disruption dura-
tion, but keeps some regularities if the disruption duration extends periodically. In the
following, an example is given to show how the optimal rescheduling solution changes
when the disruption duration extends with different time lengths.
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Figure 3.21: The total passenger delay in each scenario of Table 3.8
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Figure 3.22: The number of cancelled train services in each scenario of Table 3.8
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Figure 3.23: The total train arrival delay in each scenario of Table 3.8
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10:45

10:30

11:00

Figure 3.24: The rescheduled timetables of three scenarios that only differ in the dis-
ruption ending times

In Figure 3.24, three rescheduled timetables are shown for the scenarios where the
disruptions all start at 8:00, but end at 10:30, 10:45 and 11:00, respectively. The dis-
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ruption ending time is highlighted on the bottom of each timetable and three dotted
black rectangles are used to highlight the parts that are different in these timetables.
When the disruption ends at 10:30, a train from line IC3500 (in pink color) is delayed
at station Wt; while when the disruption ends at 10:45, the train is suggested to short-
turn at station Wt where a following train from line IC3500 (in pink color) is delayed
instead. When the disruption ends at 11:00, more delays are introduced to trains, but
the short-turning patterns and the stopping patterns both look similar to the case where
the disruption ends at 10:30. This indicates that the optimal rescheduling solution is
sensitive to the disruption ending time that affects the decisions of short-turning or
delaying the last trains that approach the disrupted section before the disruption ends
and these decisions will further affect the stopping patterns of trains during the re-
covery period. However, some regularities can be kept in the rescheduled timetables
corresponding to the periodic pattern.

In real life, the disruption ending time is uncertain, which means that the first predicted
ending time may be extended to another new one that could also be extended further
(Zilko et al., 2016). Under these circumstances, the rescheduled timetable has to be
updated every time a new disruption ending time is renewed. A direct solution to
this problem is to apply the model at the time when the disruption ending time is
renewed, where the current time (the renewed ending time) is regarded as the disruption
starting (ending) time and the train arrivals/departures that have already been realized
are respected with the previous rescheduled timetable as the reference. In this way,
a rescheduled timetable can be obtained for the extended disruption. Including the
uncertainty of disruption duration during the rescheduling helps to generate a robust
solution. This is out of scope of this chapter but is interesting to be investigated further.

3.4.3 Computation efficiency analysis

Among the 408 scenarios of experiment 1 (see Table 3.5), only 7 take more than 15
seconds (but less than 80 seconds). These scenarios are the ones where both flexible
stopping and flexible short-turning are applied and the maximum event per delay is set
to 30 minutes. Figure 3.25 illustrates the impact of dispatching measures and para-
meter settings on computation time, based on the results of the scenarios in Table 3.5
where the disruptions have the same duration (3 hours). Here, each circle represents the
average computation time over the scenarios that only differ in the disrupted sections.
The average computation time grows with the increase of maximum allowed delay
per event. With the same setting of maximum allowed delay per event, longer com-
putation times are needed when more flexible dispatching measures are applied. This
is because more binary variables about stopping (short-turning) decisions are needed
when applying flexible stopping (short-turning), thus increasing the computation com-
plexity. Compared to applying flexible short-turning, more binary variables are needed
when applying flexible stopping, which is why the average computation times due to
flexible stopping and fixed short-turning are longer than the ones due to fixed stopping
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and flexible short-turning.
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Figure 3.25: The average computation times over the scenarios that use the same dis-
patching measures and the same setting of maximum allowed delay per event
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Figure 3.26: The maximal, average, and minimal computation times over the scenarios
that have the same disruption durations

Figure 3.26 shows the impact of disruption duration on computation time, based on
the results of the scenarios in Table 3.8. Recall that in these scenarios, flexible stop-
ping and flexible short-turning are both applied, and the maximum event per delay and
the required recovery duration are both set to 30 minutes. In Figure 3.26, each square,
circle and triangle represent the maximal, average, and minimal computation time over
the scenarios that only differ in the disrupted sections, respectively. The average and
minimal computation time both grow gradually with the extension of disruption dura-
tion; whereas a steep growth is observed for the maximal computation time when the
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disruption duration extends from 2 hours and 45 minutes to 3 hours. Nevertheless,
the maximal value of the computation time is 80 seconds, which is still acceptable in
practice.

In the Dutch railways, the average disruption duration was 2 hours and 40 minutes over
the time period from Jan, 2011 to Sep 14, 2018 (data source: www.rijdendetreinen.nl).
Once a disruption occurs, it is expected to be handled as soon as possible. For an up to
three-hour disruption, the proposed model is able to generate an optimal rescheduling
solution in an average of 13 seconds approximately, and thus can be applied for real
time dispatching.

3.5 Conclusions and future directions

In this chapter, an MILP model is proposed for rescheduling a timetable during railway
disruptions, where flexible stopping and flexible short-turning are innovatively integ-
rated with delaying, cancelling and reordering. The deceleration and acceleration times
are considered when changing the stopping patterns, and each train that corresponds
to passenger boarding/alighting at a station is ensured with a platform track. To make
the disruption timetable passenger-friendly, each decision in the objective is assigned
with an individual weight that is estimated from time-dependent passenger demand. In
the case study, hundreds of disruption scenarios are established on a subnetwork of the
Dutch railways. By the proposed model, the optimal rescheduling solutions to these
scenarios were generated mostly within 13 seconds, and the worst case cost no longer
than 80 seconds. The results indicate that flexible stopping and flexible short-turning
are more likely to work in the situations where the operation frequency is relatively
high and trains are allowed to be delayed with a relatively long time, because such
situations provide a wider search space for the flexible dispatching measures to ex-
plore. It is found that applying flexible stopping and flexible short-turning results in
less passenger delays, compared to applying either or neither of them. Moreover, short-
ening the recovery duration is good for mitigating the post-disruption consequence by
less delay propagation, but is at the expense of more cancelled train services during
the disruption. It will be interesting to explore how to make the trade-off between
the consequence during the disruption and the post-disruption consequence, particu-
larity when focusing on a large-scale network where a longer recovery duration may
worsen the problem of delay propagation across the network. Also, it is found that the
optimal rescheduling solution is sensitive to the disruption duration, but keeps some
regularities when the disruption duration extends periodically.

In this chapter, passenger demand is handled in a static way. In other words, the dy-
namic interaction between passengers and the disruption timetable is neglected. To
consider such dynamic interaction, one way is to embed the timetable rescheduling
model and the passenger assignment model in an iterative framework where in each
iteration a disruption timetable is generated and the resulting passenger inconvenience
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is evaluated and then included to the rescheduling model in the next iteration as feed-
back from the passengers. Another way is to consider passenger reactions towards the
disruption timetable during the rescheduling process (i.e. integrating passenger routing
and timetable rescheduling in one single model). We will further explore both ways by
considering the trade-off between the solution quality and the computational efficiency
in future work. In real life, the duration of a disruption is uncertain, thus another future
direction is extending the model to deal with uncertain disruption duration.

Appendix 3.A. Sets and parameters

Table 3.9: Sets
Notation Description
Ede Set of departure and pass-through departure events
Ear Set of arrival and pass-through arrival events
E turn

ar The subset of Ear, which includes all tails of activities in Aturn

E turn
ar =

⋃
a∈Aturn

{tail (a)}
E turn

de The subset of Ede, which includes all heads of activities in Aturn

E turn
de =

⋃
a∈Aturn

{head (a)}
Eodturn

ar The subset of Ear, which includes all tails of activities in Aodturn

Eodturn
ar =

⋃
a∈Aodturn

{tail (a)}
Eodturn

de The subset of Ede, which includes all heads of activities in Aodturn

Eodturn
de =

⋃
a∈Aodturn

{head (a)}
ENMdelay Set of events that are not given the upper limit on their delays
TL Set of train lines
TLdis Set of train lines that are affected by the disruption: TLdis ⊆ TL
TRturn Set of trains that correspond to the events contained in E turn

ar ∪E turn
de

Arun Set of running activities
Adwell Set of dwell activities
Apass Set of pass-through activities
Astation Set of station activities: Astation = Adwell∪Apass

Aar
head Set of arrival headway activities for following trains

Ade
head Set of departure headway activities for following trains

Aar,de
head Set of arrival-departure headway activities for crossing trains and trains

operating on single-track railways

Ade,ar
head Set of departure-arrival headway activities for crossing trains and trains using

the same track at a station

Atl,dr
turn Set of short-turn activities for trains serving train line tl and operating in

direction dr, Atl,dr
turn ⊂ Aturn

Aturn Set of short-turn activities
Aodturn Set of OD turn activities

continued on next page
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continued from previous page

Notation Description
Aplan

odturn Set of planned OD turn activities: Aplan
odturn ⊂ Aodturn. The activities in Aplan

odturn are
the planned turnings of rolling stock at terminal stations

STtl,dr
turn Set of short-turn station candidates for the trains serving train line tl and

operating in direction dr. Each station contained in STtl,dr
turn must be the

upstream/same station compared to stdr
en

Lturn Set of minimum short-turn times at stations

Lodturn Set of minimum OD turn times at stations

Edis,tl,dr
de,st A local set used in Algorithm 1, which contains the departure events of the

trains that serve train line tl, operate in direction dr, and occur at station st
after tstart but before tend +R

E tn
ar A local set used in Algorithm 1, which contains the corresponding arrival events

of Edis,tl,dr
de,st in station activities

E tn
de A local set used in Algorithm 1, which contains the departure events that could

be served by the arrival events of E tn
ar for short-turning

Table 3.10: Parameters
Notation Description
ede Departure or pass-through departure event: ede ∈ Ede

ear Arrival or pass-through arrival event: ear ∈ Ear

oe The original time of event e
ste The corresponding station of event e
tre The corresponding train of event e
tle The corresponding train line of event e
dre The operation direction of event e, which is either upstream or downstream:

dre ∈ {up,down}
rst A binary parameter indicating whether or not station st is located on single-track

railway lines. If yes, rst = 1.
arun Running activity: arun ∈ Arun

arun = (e,e′), e ∈ Ede,e′ ∈ Ear, tre = tre′ ,dre = dre′ ,ste is upstream neighbouring
to ste′

adwell Dwell activity: adwell ∈ Adwell

adwell = (e,e′), e ∈ Ear,e′ ∈ Ede, tre = tre′ ,dre = dre′ ,ste = ste′ ,oe < oe′

apass Pass-through activity: apass ∈ Apass

apass = (e,e′), e ∈ Ear,e′ ∈ Ede, tre = tre′ ,dre = dre′ ,ste = ste′ ,oe = oe′

aar
head Arrival headway activity: aar

head ∈ Aar
head

aar
head = (e,e′), e,e′ ∈ Ear, tre 6= tre′ ,dre = dre′ ,ste = ste′

ade
head Departure headway activity: ade

head ∈ Ade
head

ade
head = (e,e′), e,e′ ∈ Ede, tre 6= tre′ ,dre = dre′ ,ste = ste′

continued on next page
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continued from previous page

Notation Description
aar,de

head Arrival-departure headway activity: aar,de
head ∈ Aar,de

head
aar,de

head = (e,e′), e ∈ Ear,e′ ∈ Ede, tre 6= tre′ ,dre 6= dre′ ,ste = ste′

ade,ar
head Departure-arrival headway activity: ade,ar

head ∈ Ade,ar
head

ade,ar
head = (e,e′), e ∈ Ede,e′ ∈ Ear, tre 6= tre′ ,ste = ste′

aturn Short-turn activity: aturn ∈ Aturn

aturn = (e,e′), e ∈ Ear, e′ ∈ Ede, tre 6= tre′ ,dre 6= dre′ ,ste = ste′ , tle = tle′ ,
ste ∈ STtle,dre

turn

aodturn OD turn activity that refers to the rolling stock of one train turning at a terminal
station to operate an opposite train from the same train line: aodturn ∈ Aodturn,
aodturn = (e,e′),e ∈ Ear,e′ ∈ Ede, tre 6= tre′ ,dre 6= dre′ ,ste = ste′ , tle = tle′

stdr
en The entry station of the disrupted section for trains operating in direction

dr ∈ {up,down}
stdr

ex The exit station of the disrupted section for trains operating in direction
dr ∈ {up,down}

tail(a) The tail of activity a, which is the event that a starts from
head(a) The head of activity a, which is the event that a points to
tstart The start time of the disruption
tend The end time of the disruption
La The minimum duration of activity a
Lst

turn The minimum short-turn time at station st
λ The maximum percentage allowed to running time extension
D The maximum allowed delay per event
R The required recovery duration after the disruption end time.
M1 A positive large number that is set to 1440
M2 A positive large number that is set to twice of M1: M2 = 2M1

Np
st The number of platform tracks at station st

Nth
st The number of pass-through tracks at station st

Nst The number of tracks at station st: Nst = Np
st +Nth

st

τa Pure running time that does not include acceleration time, deceleration time,
and time supplement: a ∈ Arun

∆acce
a Acceleration time needed for a train run: a ∈ Arun

∆dece
a Deceleration time needed for a train run: a ∈ Arun
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Appendix 3.B. Weights of decisions, and the passenger
groups and parameters used for estimating the weights

Table 3.11: The descriptions of weights
Weight Description
wdelay

e The weight of delaying an arrival event e
wcancel

e The weight of cancelling an arrival event e
wskip

a The negative impact of skipping a stop
wadd

a The positive impact of adding a stop

Table 3.12: The passenger groups and parameters used for estimating the weights
Symbol Description
zalight

e The number of passengers who plan to alight from train tre at station ste, e ∈ Ear

zpass
e The number of passengers who plan to pass through station ste in train tre,e ∈ Ear

zboard
e The number of passengers who plan to board train tre at station ste,e ∈ Ede

zEboard
a The number of passengers who may benefit from earlier boarding, a = (e,e′) ∈ Apass

It is calculated as the number of passengers who arrive at station ste before time
oe and plan to board another train that departs later than train tre′ ,(e,e′) ∈ Apass

zEoff
a The number of passengers who may benefit from earlier alighting, a = (e,e′) ∈ Apass

It is calculated as the number of passengers who plan to pass through station ste
by train tre while their destinations are ste,(e,e′) ∈ Apass

α The delay of a passenger whose planned path is unavailable due to
partial/complete train cancellation

β The delay of a passenger whose planned alighting/boarding is impossible due to
a skipped stop

γ The saved time of a passenger who has earlier alighting/boarding option
compared to his/her planned path due to an added stop

Appendix 3.C. Standard abbreviations of stations

Table 3.13: The standard abbreviation of each station considered in the case study
Station Abbreviation Station Abbreviation
Blerick Br Horst-Sevenum Hrt
Deurne Dn Maarheeze Mz
Eindhoven Ehv Reuver Rv
Geldrop Gp Roermond Rm
Heeze Hze Swalmen Sm
Helmond Hm Tegelen Tl
Helmond Brandevoort Hmbv Venlo Vl
Helmond Brouwhuis Hmbh Weert Wt
Helmond’t Hout Hmh





Chapter 4

Dynamic and robust timetable
rescheduling for uncertain railway
disruptions

Apart from minor updates, this chapter has been submitted as:

Zhu, Y., Goverde, R.M.P., 2019. Dynamic and robust timetable rescheduling for uncer-
tain railway disruptions. Best Papers Special Issue of RailNorrköping 2019 of Journal
of Rail Transport Planning & Management, under review.

4.1 Introduction

Railway systems are vulnerable to unexpected disruptions caused by for instance in-
cidents, infrastructure failures, and extreme weather. A typical consequence of a dis-
ruption is that the tracks between two stations are completely blocked for a few hours.
Under this circumstance, trains are forbidden to enter the blocked tracks, and therefore
the planned timetable is no longer feasible. Thus, traffic controllers have to reschedule
the timetable for which they usually apply a pre-designed contingency plan specific to
the disruption. Since the contingency plan is manually designed, its optimality cannot
be guaranteed, and sometimes cannot even meet all operational constraints (Ghaemi
et al., 2017b). For this reason, increasing attention is being paid to developing optim-
ization models for computing rescheduling solutions. A detailed review can be found
in Cacchiani et al. (2014).

Until now, many timetable rescheduling models have been proposed to deal with dis-
ruptions, which differ in e.g. the complexity of the network, the infrastructure mod-
elling, the used dispatching measures, the objective, and the number of disruptions
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considered. For instance, Zhan et al. (2015) propose a Mixed Integer Linear Program-
ming (MILP) model to reschedule the timetable in case of a complete track blockage
by delaying, reordering and cancelling trains. They focus on a Chinese high-speed rail-
way corridor where seat reservations are necessary for passengers, and therefore the
measure of short-turning trains is not applicable. Veelenturf et al. (2015) propose an
ILP model to handle partial or complete track blockages focusing on a part of the Dutch
railway network where short-turning trains is commonly used during disruptions. They
assign each train with the last scheduled stop before the blocked track as the only short-
turn station. If the short-turn station lacks capacity to short-turn a train then it has to be
cancelled completely. To reduce complete train cancellations, Ghaemi et al. (2018a)
propose an MILP model to decide the optimal time and station of short-turning a train
by assigning two short-turn station candidates. This has also been implemented in
Ghaemi et al. (2017a) where the infrastructure is modelled at a microscopic level to
improve solution feasibility in practice. The aforementioned papers aim to minimize
train cancellations and delays. To reduce passenger inconveniences during disruptions,
Chapter 3 proposes an MILP model where more short-turn station candidates are given
for each train and also the stopping patterns of trains can be changed flexibly (i.e. skip-
ping stops and adding stops). Binder et al. (2017b) integrate passenger rerouting and
timetable rescheduling into one ILP model where limited vehicle capacity is taken into
account. While most literature focus on a single disruption, Zhu and Goverde (2019)
propose an MILP model to deal with multiple disruptions that have overlapping peri-
ods and are pairwise connected by at least one train line. Most literature share the
assumption that the disruption duration is known and will not change over time. How-
ever in practice, a disruption may become shorter or longer than predicted (Zilko et al.,
2016), thus dynamic adjustments are required.

To deal with the uncertainty of the disruption duration, Zhan et al. (2016) embed their
rescheduling model into a rolling horizon framework where the timetable is adjusted
gradually with renewed disruption durations taken into account. Ghaemi et al. (2018b)
develop an iterative approach to reschedule the timetable in each iteration when a new
disruption duration is updated. In both cases, deterministic models are used for the
rescheduling. To obtain a robust solution, Meng and Zhou (2011) propose a stochastic
programming model that takes the uncertainty of the disruption duration into account.
The model reschedules the timetable dynamically by a rolling horizon approach for
single-track railway lines using two dispatching measures: delaying and reordering.
Quaglietta et al. (2013) also propose a rolling horizon approach to manage stochastic
disturbances (small train delays) using retiming and reordering, where at regular res-
cheduling intervals the current delays are measured and the associated conflicts are
predicted over a prediction horizon of fixed length. Then rescheduling solutions are
generated for the entire prediction horizon but only the first part is implemented in the
next rescheduling interval.

This chapter deals with uncertain disruptions using two methods. We implemented a
deterministic rolling-horizon approach based on the deterministic timetable reschedul-
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ing model of Chapter 3. Also, we propose a stochastic rolling-horizon approach based
on a two-stage stochastic timetable rescheduling model. Different from the existing
literature, both methods are devoted to more complicated conditions, where 1) single-
track and double-tack railway lines both exist; 2) a wide range of dispatching measures
is allowed: delaying, reordering, cancelling, adding stops and flexible short-turning; 3)
rolling stock circulations at terminal stations are considered, and 4) station capacity is
taken into account. The rescheduling solution is computed until the normal schedule
has been recovered.

The main contributions of this chapter are summarized as follows:

• A rolling horizon two-stage stochastic timetable rescheduling model is proposed
to handle uncertain disruptions by robust solutions.

• The proposed model allows delaying, reordering, cancelling, adding stops and
flexible short-turning, and considers station capacity and rolling stock circula-
tions at terminal stations.

• We test the stochastic method on a part of the Dutch railways, and compare it to
a deterministic rolling-horizon method.

The remainder of the chapter is organized as follows. Section 4.2 introduces the de-
terministic and stochastic methods. Both methods are tested with real-life instances in
Section 4.3. Finally, Section 4.4 concludes the chapter.

4.2 Methodology

A brief introduction is given to the basics considered in the deterministic and stochastic
methods. After that, both methods are explained.

4.2.1 Basics

4.2.1.1 Event-activity network

The rescheduling model is based on an event-activity network formulated by the method
introduced in Chapter 3. An event e is either a train departure or arrival that is asso-
ciated with the original scheduled time oe, station ste, train line tle, train number tre,
and operation direction dre. All departure (arrival) events constitute the set Ede (Ear).
An activity is a directed arc from an event to another. Multiple kinds of activities
are established, including running activities Arun, dwell activities Adwell, pass-through
activities Apass, headway activities Ahead, short-turn activities Aturn, and OD turn activ-
ities Aodturn. We refer to Chapter 3 for the details.
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4.2.1.2 Decision variables

Any event e∈Ede∪Ear corresponds to the following decision variables: 1) the resched-
uled time xe, 2) the delay de, 3) and the binary decision ce with value 1 indicating that
e is cancelled. Particularly for an event e∈ E turn

de ∪E turn
ar , a binary decision ye is needed,

of which value 1 indicates that train tre is short-turned at station ste. Here, E turn
de (E turn

ar )
is the set of departure (arrival) events that have short-turning possibilities. To deal with
station capacity, for any arrival event e∈ Ear, two binary decision variables are needed:
1) ue,i with value 1 indicating that train tre occupies the ith platform of station ste, 2)
and ve, j with value 1 indicating that train tre occupies the jth pass-through track of
station ste.

A short-turn (OD-turn) activity a ∈ Aturn (a ∈ Aodturn) corresponds to a binary decision
variable ma with value 1 indicating that a is selected. A pass-through activity a ∈ Apass

corresponds to a binary decision variable sa with value 1 indicating that a is added with
a stop. For any two different events e,e′ ∈ Ede∪Ear, we have a binary decision variable
qe,e′ with value 1 indicating that e occurs before e′.

Note that due to our formulation, once the decisions regarding xe, de, ce and ye are
determined, the other decisions are also determined.

4.2.1.3 Disruptions

This chapter considers a disruption that occurs at tstart and is predicted to end within the
period

[
tmin
end , t

max
end
]
. The disruption duration is a random input that is assumed to have

a finite number of possible realizations, called scenarios, 1, . . . ,W , with correspond-
ing probabilities, p1, . . . , pW , satisfying ∑

W
w=1 pw = 1. Each scenario w has a unique

disruption duration
[
tstart, tw

end

]
where tmin

end ≤ tw
end ≤ tmax

end .

During a disruption, the range of the disruption end time may change when new in-
formation is received from the disruption site. Therefore, we define the concept of
stages at which the estimated range of the disruption end time is updated, which trig-
gers a rescheduling model to compute a new solution based on the updated range. The
range of the disruption end time updated at stage k is defined as

[
tk,min
end , tk,max

end

]
, where

tk,min
end (tk,max

end ) refers to the minimal (maximal) disruption end time predicted at stage k
with tk,max

end ≥ tk,min
end . It is assumed that tk,min

end ≥ tk−1,min
end , while tk,max

end is allowed to be
equivalent to, smaller, or larger than tk−1,max

end . This paper is also based on the following
assumptions:

• At stage k = 1, the range of the disruption end time
[
tk,min
end , tk,max

end

]
is obtained at

the disruption start time tstart

• At stage k ∈ [2,K − 1], the range of the disruption end time
[
tk,min
end , tk,max

end

]
is

updated before time tk−1,min
end − `
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• At final stage K, the exact disruption end time tend is received at time tK−1,min
end −`,

and tend ≥ tK−1,min
end

Here, ` is a given parameter relevant to the update time, which must ensure a timely
implementation of a new rescheduling solution based on the updated information. The
value of ` is relevant to the traffic density of the considered network and the extent of
the deviation from the planned timetable. A network that has a denser traffic and the
corresponding rescheduled timetable has more deviations than the planned one may
need longer time for implementing the rescheduled timetable.

The notation of sets and parameters is described in Table 4.1.

Table 4.1: Sets and parameters
Notation Description
Ear Set of arrival events

Ede Set of departure events

E Set of events: E = Ear∪Ede

E turn
ar Set of arrival events that have short-turning possibilities

E turn
de Set of departure events that have short-turning possibilities

E turn Set of events that have short-turning possibilities: E turn = E turn
ar ∪E turn

de

oe The original scheduled time of event e ∈ Ear∪Ede

pw The occurrence probability of scenario w ∈ {1, . . . ,W}
pwk,n The occurrence probability of scenario wk,n,n ∈ {1, . . . ,Wk}
rk−1

e The rescheduled time of event e determined at stage k−1, which is a known
value at stage k

Rk The recovery time length at stage k ∈ {1, . . . ,K}
Rwk,n

k The recovery time length of scenario wk,n,n ∈ {1, . . . ,Wk} at stage k ∈ {1, . . . ,K}
ste The station corresponding to event e ∈ Ear∪Ede

tre The train corresponding to event e ∈ Ear∪Ede

tstart The actual disruption starting time

tend The actual disruption ending time

tmin
end The predicted minimal disruption ending time

tmax
end The predicted maximal disruption ending time

tw
end The predicted disruption ending time of scenario w ∈ {1, . . . ,W}:

tmin
end ≤ tw

end ≤ tmax
end

tk,min
end The predicted minimal disruption ending time at stage k ∈ {1, . . . ,K}

tk,max
end The predicted maximal disruption ending time at stage k ∈ {1, . . . ,K}

twk,n
end The predicted disruption ending time of scenario wk,n,n ∈ {1, . . . ,Wk}:

tk,min
end ≤ twk,n

end ≤ tk,max
end

continued on next page
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continued from previous page

Notation Description
wk,n The nth scenario defined at stage k, where n ∈ {1, · · · ,Wk} ,k ∈ {1, · · · ,K}
Wk The total number of scenarios defined at stage k

X Set of the 1st-stage decisions in the two-stage stochastic model

Xk Set of the 1st-stage decisions in the two-stage stochastic model formulated at
update stage k ∈ {1, · · · ,K}

Y (w) Set of the 2nd-stage decisions of scenario w ∈ {1, · · · ,W} in the two-stage
stochastic model

Yk(wk,n) Set of the 2nd-stage decisions of scenario wk,n,n ∈ {1, · · · ,Wk} in the two-stage
stochastic model formulated at
update stage k ∈ {1, · · · ,K}

ZI Set of constraints for the 1st-stage decisions X

ZII(X ,w) Set of constraints for the 2nd-stage decisions given X in scenario w ∈ {1, · · · ,W}
` A given time period ensuring a timely implementation of a new

rescheduling solution

βc The penalty of cancelling a train run between two adjacent stations

4.2.2 Deterministic rolling-horizon method

A deterministic rescheduling model can only consider one possible disruption duration[
tstart, t

wk,n
end

]
at stage k, where tk,min

end ≤ t
wk,n
end ≤ tk,max

end ,wk,n ∈
{

wk,1, · · · ,wk,Wk

}
. Here, wk,n

refers to the nth scenario defined in stage k, and 1 ≤ n ≤Wk, where Wk is the total
number of scenarios defined in stage k. The choice of t

wk,n
end depends on the adopted

strategy. For example, the value of t
wk,n
end is chosen as 1) tk,min

end in an optimistic strategy,
2) tk,max

end in a pessimistic strategy, 3) or ∑
Wk
n=1 pwk,nt

wk,n
end in an expected-value strategy.

In the remainder of this section, we give an example of a rolling horizon approach for
a deterministic rescheduling model with a pessimistic strategy, see Figure 4.1. Note
that a new stage starts when a new prediction about the range of the disruption ending
time is updated.

At stage k ∈ [1,K− 1], the prediction
[
tk,min
end , tk,max

end

]
is updated. Using a pessimistic

strategy, a control horizon is then defined as
[
tstart + `, tk,max

end

]
if k = 1, where ` is a

time period ensuring the decisions determined for the control horizon at stage 1 to
be successfully implemented. It is assumed that the planned timetable is applied for
the period [tstart, tstart + `) during which some trains may have to wait at the last sta-
tions before the blocked tracks. A recovery horizon is defined as

(
tk,max
end , tk,max

end +Rk

]
if k = 1. Here, Rk represents the recovery time length after tk,max

end , which is not a
given input to the rescheduling model but an output that can only be known after
the rescheduling solution has been computed. The deterministic rescheduling model
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computes a rescheduling solution over the combined control and recovery horizons.
When k ≥ 2, the rescheduling solution respects the previous disruption management
decisions up to (1) tk−1,max

end if tk,max
end ≥ tk−1,max

end or (2) tk,max
end if tk,max

end < tk−1,max
end , and thus[

tstart + `, tk−1,max
end

]
or
[
tstart + `, tk,max

end

]
is regarded as the rescheduled timetable hori-

zon. Figure 4.1 is an example of case (1). The proposed rolling-horizon approach also
applies to case (2) in which the current time point (the update time) is ensured to be
before tk,max

end because it is assumed that the update at stage k occurs before tk−1,min
end − `

that holds for tk−1,min
end − `≤ tk,min

end ≤ tk,max
end . A rescheduling solution is constituted by a

set of disruption management decisions (e.g. cancelling trains and short-turning trains)
that were introduced in Section 4.2.1.

At the final stage K, an exact disruption end time tend is assumed to be known. If tend =

tK−1,max
end , the rescheduling solution obtained at stage K−1 is used without any further

adjustments. If tend 6= tK−1,max
end , the rescheduling model is solved again by respecting

the previous disruption management decisions up to 1) tK−1,max
end if tend ≥ tK−1,max

end , or

2) tend if tend < tK−1,max
end . In case 1) the control horizon is

[
tK−1,max
end , tend

]
, while in case

2) the control horizon is zero. In both cases, the recovery horizons are (tend, tend +RK]

Time

Time

Time

startt

startt

startt

Stage 1

Stage  2

Stage  K

…
…

Rescheduled timetable horizon

1,max

endt

2,max

endt1,max

endt

endt

Control horizon

Time

startt
Stage  3

3,max

endt2,max

endt

Current time point

1R

2R

3R

KR

Recovery horizon

Figure 4.1: The rolling horizon approach based on a deterministic rescheduling model
using a pessimistic strategy

This chapter uses the rescheduling model of Chapter 3 for the deterministic rolling-
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horizon method, where the dispatching measure of skipping stops is removed due to
the new objective of minimizing train cancellation and delay, and the station capacity
part is reformulated as in Zhu and Goverde (2019) for faster computation.

4.2.3 Stochastic rolling-horizon method

The timetable rescheduling problem taking into account the uncertainty of the dis-
ruption duration is formulated as a rolling horizon two-stage stochastic program in
deterministic equivalent form (Birge and Louveaux, 2011). For clarity, the stochastic
timetable rescheduling model is introduced first without considering different update
stages of the disruption durations, which are explicitly included later when describing
the corresponding rolling horizon approach.

4.2.3.1 Stochastic timetable rescheduling model

The stochastic rescheduling model considers multiple possible disruption durations
at each computation as follows. The set of disruption management decisions are di-
vided into two groups: 1) the 1st-stage decisions that have to be taken before the exact
scenario with a given disruption duration is known are called control decisions and the
horizon when these decisions are applied is called control horizon, and 2) the 2nd-stage
decisions that could be taken after the exact scenario with a given disruption duration
is known are called look-ahead decisions with corresponding look-ahead horizon. Re-
call that we have an estimated range of disruption end time

[
tmin
end , t

max
end
]

to represent
the stochastic part of disruption duration, and each scenario w ∈ {1, · · · ,W} is defined
with a unique disruption duration

[
tstart, tw

end

]
where tmin

end ≤ tw
end ≤ tmax

end .

In each scenario w,
[
tstart + `, tmin

end
]

is defined as the control horizon, while
(
tmin
end , t

w
end +Rw]

is defined as the look-ahead horizon, where ` refers to a time period ensuring the
control decisions to be timely implemented, and Rw represents the recovery time to
the planned timetable. The planned timetable is applied for the period [tstart, tstart + `)

where some trains might be forced to wait at the last stations before the blocked tracks.
Recall that Rw can only be known after the disruption management decisions for scen-
ario w are determined, and so the value may vary across scenarios. A look-ahead
horizon consists of a disruption horizon

(
tmin
end , t

w
end

]
in which the disruption is ongoing,

and a recovery horizon
(
tw
end, t

w
end +Rw] that goes from the end of the disruption un-

til completely resuming to the planned timetable. The 1st-stage control decisions are
scenario independent and are thus the same over all scenarios. The 2nd-stage look-
ahead decisions are scenario dependent, which can be different among scenarios. As
shown in Figure 4.2, determining the control decisions up to tmin

end is the first stage of
the stochastic timetable rescheduling model, and determining the look-ahead decisions
within the period

(
tmin
end , t

w
end +Rw] for any scenario w is the second stage. The control

decisions determined at the first stage affect the look-ahead decisions determined at
the second stage.
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Look-ahead decisions 
(scenario 1)

Look-ahead decisions 
(scenario 2)

Look-ahead decisions 
(scenario W)

Control decisions 
(same to scenarios 1,..., W)

The first stage

The second stage

…
…

Figure 4.2: Illustration of the two stages in the stochastic timetable rescheduling model

The two-stage stochastic timetable rescheduling model can be formulated in a more
compact form as

min QI(X)+Ew
[
min QII (Y (w))

]
, (4.1)

s.t. X ∈ ZI, (4.2)

Y (w) ∈ ZII (X ,w) , w ∈ {1, . . . ,W} (4.3)

where X are the 1st-stage decisions defined as the scenario-independent disruption
management decisions associated with the train arrival and departure events e of which
the original scheduled times oe are in the control horizon

[
tstart + `, tmin

end
]
,

X =
{
{ce,de,xe} : oe ∈ [tstart + `, tmin

end ],e ∈ E
}
∪
{

ye : oe ∈ [tstart + `, tmin
end ],e ∈ E turn

}
,

and Y (w) are the 2nd-stage decisions of scenario w, which are defined as the disrup-
tion management decisions associated with the train arrival and departure events e of
which the original scheduled times oe are in the look-ahead horizon

(
tmin
end , t

w
end +Rw]

of scenario w,

Y (w) =
{
{cw

e ,d
w
e ,x

w
e } : oe ∈ (tmin

end , t
w
end +Rw],e ∈ E

}
∪{

yw
e : oe ∈ (tmin

end , t
w
end +Rw],e ∈ E turn

}
,w ∈ {1, . . . ,W}.

Y (w) is dependent on X since X and Y (w) are jointly optimized in (4.1)-(4.3). Here, ce

represents the decision to cancel event e ∈ E, de represents the delay of event e ∈ E, xe

represents the rescheduled time of event e ∈ E, and ye represents the decision to short-
turn train tre at station ste considering event e ∈ E turn. Recall that E is the set of arrival
and departure events, and E turn is the set of arrival and departure events that have short-
turning possibilities. In the 2nd stage the same notation is used with a superscript w
to indicate the scenario. The developed two-stage stochastic timetable rescheduling
model includes more decision variables (see Section 4.2.1.2) than those shown in the
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formulation of (4.1)-(4.3). We only show the event-related decision variables with
respect to cancelling, delaying, re-timing, and short-turning in the compact formulation
because once these decisions are determined the other decisions will be determined
implicitly as well. QI(·) is the cost function for X , and QII(·) is the cost function for
Y (w), which are formulated respectively as follows:

QI(X) = βc ∑
e∈Ear: ce∈X

ce + ∑
e∈Ear: de∈X

de,

QII(Y (w)) = βc ∑
e∈Ear: cw

e ∈Y (w)
cw

e + ∑
e∈Ear: dw

e ∈Y (w)
dw

e , w ∈ {1, . . . ,W} ,

where parameter βc refers to the cost of cancelling a train run between two adjacent
stations. The cost function QI(·) (QII(·)) measures the train cancellations and arrival
delays within the control horizon (look-ahead horizon) relevant to the first stage (the
second stage) of the stochastic timetable rescheduling model. The objective (4.1) is to
minimize the train cancellations and arrival delays within the control horizon plus the
expectation of the train cancellations and arrival delays within the look-ahead horizons
of all scenarios. The expectation Ew[·] is defined as ∑

W
w=1 pw ·QII(Y (w)), where pw

represents the occurrence probability of scenario w. In (4.2), ZI refers to the constraint
set for X . In (4.3), ZII (X ,w) refers to the constraint set for Y (w) given X under scenario
w. Y (w) is required to be consistent with X . For any scenario w ∈ {1, . . . ,W}, the
decisions X and Y (w) together constitute a feasible rescheduling solution satisfying
the constraints in ZI∪ZII (X ,w) for the time horizon

[
tstart + `, tw

end +Rw].
The two-stage stochastic timetable rescheduling model of (4.1)-(4.3) is based on a
compact representation of scenarios as shown in the left part of Figure 4.3, where each
root-to-leaf path refers to a specific scenario w. For simplicity, we used a splitting
variable representation (Escudero et al., 2013) as shown in the right part of Figure 4.3.
In this way, the first-stage decisions X is duplicated for each scenario w ∈ {1, . . . ,W}
as X(w).

0

1

2

W

…
…

w=1

w=2

w=W

X

1st stage 2nd stage

0 1

2

W

…
…

w=1

w=2

w=W

X(1)=X(2)=…=X(W)

1st stage 2nd stage

0

0

…
…

Compact representation Splitting variable representation

X(2)

X(1)

X(W)

Figure 4.3: Illustration of scenarios
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Based on the splitting variable representation,, we reformulated the two-stage stochastic
timetable rescheduling model of (4.1)-(4.3) with explicit nonanticipativity constraints
considering stage k = 1 (the range of the disruption end time is updated for the first
time),

min
W1
∑

n=1
pw1,n

βc ∑

e∈Ear: c
w1,n
e ∈X1(w1,n)

cw1,n
e + ∑

e∈Ear: d
w1,n
e ∈X1(w1,n)

dw1,n
e

+βc ∑

e∈Ear: c
w1,n
e ∈Y1(w1,n)

cw1,n
e + ∑

e∈Ear: d
w1,n
e ∈Y1(w1,n)

dw1,n
e

 (4.4)

s.t. X1(w1,n) ∈ ZI
1(w1,n), n ∈ {1, . . . ,W1} , (4.5)

Y1(w1,n) ∈ ZII
1 (X1(w1,n),w1,n) , n ∈ {1, . . . ,W1} , (4.6)

X1(w1,n) = X1(w1,m), n,m ∈ {1, . . . ,W1} : n 6= m, (4.7)

where the first-stage decisions X1(w1,n) of scenario w1,n is

X1(w1,n) =
{
{cw1,n

e ,dw1,n
e ,xw1,n

e } : oe ∈ [tstart + `, t1,min
end ],e ∈ E

}
∪{

yw1,n
e : oe ∈ [tstart + `, t1,min

end ],e ∈ E turn
}
,n ∈ {1, . . . ,W1},

and the second-stage decisions Y1(w1,n) of scenario w1,n is

Y1(w1,n) =
{
{cw1,n

e ,dw1,n
e ,xw1,n

e } : oe ∈ (t1,min
end , tw1,n

end +Rw1,n
1 ],e ∈ E

}
∪{

yw1,n
e : oe ∈ (t1,min

end , tw1,n
end +Rw1,n

1 ],e ∈ E turn
}
,n ∈ {1, . . . ,W1}.

Here, w1,n represents the nth scenario defined at stage 1, W1 refers to the number
of scenarios defined at stage 1, and t1,min

end is the minimal disruption end time up-
date at stage 1. Note that X1(w1,n) = X1 for some optimally determined X1 for all
w1,n,n ∈ {1, . . . ,W1}. The formulation of (4.4)-(4.7) can be seen as W1 separate de-
terministic Mixed-Integer Linear Programming (MILP) timetable rescheduling mod-
els linked together by the so-called nonanticipativity constraints (4.7) (Escudero et al.,
2010), which force the 1st-stage decisions X1(w1,n) to be the same in any scenario
w1,n,n ∈ {1, . . .W1}. To be more specific, (4.7) requires each decision of X1(w1,n) to
be equivalent to the same type of decision corresponding to the same event in X1(w1,m)

considering two different scenarios w1,n and w1,m. For example, cw1,n
e = cw1,m

e , where
cw1,n

e ∈ X(w1,n),c
w1,m
e ∈ X(w1,m),n 6= m. In (4.5), ZI

1(w1,n) refers to the constraint set
for X1(w1,n). In (4.6), ZII

1 (X1(w1,n),w1,n) refers to the constraint set for Y1(w1,n) given
X1(w1,n) under scenario w1,n. The objective (4.4) is to minimize the expected con-
sequences measured in train cancellations and arrival delays both in the 1st stages and
2nd stages of all scenarios.

To establish (4.4)-(4.7), we construct, for each scenario w1,n,n ∈ {1, . . . ,W1}, an inde-
pendent deterministic MILP timetable rescheduling model by the method of Chapter 3,
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of which the variables are
{

X1(w1,n),Y1(w1,n)
}

, and the constraints are{
ZI

1(w1,n),ZII
1 (X1(w1,n),w1,n)

}
that ensure feasible rescheduling solutions adjusted by

delaying, reordering, cancelling, adding stops and flexible short-turning trains. For a
detailed MILP constraint formulation we refer to Chapter 3. The variables⋃

n∈{1,...,W1}
{

X1(w1,n),Y1(w1,n)
}

and constraints
⋃

n∈{1,...,W1}
{

ZI
1(w1,n),ZII

1 (X1(w1,n),w1,n)
}

are established for all scenarios that are used in the stochastic timetable rescheduling
model with also nonanticipativity constraints (4.7).

The notation of the decision variables are described in Table 4.2.

Table 4.2: Part of decision variables
Notation Description
cw

e Binary variable with value 1 indicating that event e is cancelled in
scenario w, and 0 otherwise

dw
e Delay of event e in scenario w

xw
e Rescheduled time of event e in scenario w

yw
e Binary variable with value 1 indicating that train tre is short-turned at

station ste in scenario w, and 0 otherwise

The rescheduling solution formed by X1 will be delivered to the traffic controllers
directly. As for the scenario-dependent 2nd-stage decisions Y1(w1,n),n ∈ {1, · · · ,W1},
only one of them will be delivered at time t1,min

end −` when the exact scenario is foreseen
to be a specific scenario w1,n. ` is set to an appropriate value (e.g. 10 minutes) to
ensure that the 2nd-stage decisions can be implemented in time. If none of the defined
scenarios correspond to the exact scenario, the rescheduling model computes a new
solution considering one single scenario with disruption duration

[
t1,min
end , tend

]
, which

should be consistent with the 1st-stage decisions up to t1,min
end . Here, tend represents the

exact disruption end time. Note that in this case, nonanticipativity constraints are not
needed.

4.2.3.2 Rolling horizon approach based on stochastic model

During the disruption, the range of the disruption end time
[
tmin
end , t

max
end
]

may change
several times. Under this circumstance, we have a multiple-stage stochastic timetable
rescheduling problem. We solve this problem by a rolling horizon approach with suc-
cessive application of the two-stage stochastic timetable rescheduling model every time
an estimated range of the disruption end time is updated in a new stage. The rolling
horizon approach is based on the assumptions given in Section 4.2.1.3. An example of
the rolling-horizon stochastic method is shown in Figure 4.4.

At stage k ∈ [1,K− 1], the prediction
[
tk,min
end , tk,max

end

]
is updated. Thus, Wk scenarios

are defined where each has a unique disruption duration
[
tstart + `, t

wk,n
end

]
, and tk,min

end ≤
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t
wk,n
end ≤ tk,max

end ,wk,n ∈
{

wk,1, . . . ,wk,Wk

}
. Recall that wk,n refers to the nth scenario defined

at stage k, and the planned timetable is applied for the period [tstart, tstart + `). Based
on the new scenarios defined at stage k, the two-stage stochastic optimization is per-
formed, and the 1st-stage decisions Xk from the optimization are delivered to the traffic
controllers directly. The 1st-stage decisions Xk are for the period

[
tstart + `, tk,min

end

]
if

k= 1 or the period
[
tk−1,min
end , tk,min

end

]
if k≥ 2, which will no longer change at later stages.

This is why the period
[
tstart + `, tk−1,min

end

]
is regarded as the rescheduled timetable ho-

rizon when k ≥ 2. The 2nd-stage decisions Yk(wk,n) of scenario wk,n is for the period(
tk,min
end , t

wk,n
end +R

wk,n
k

]
that consists of the disruption horizon

(
tk,min
end , t

wk,n
end

]
and the re-

covery horizon
(

t
wk,n
end , t

wk,n
end +R

wk,n
k

]
.
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Figure 4.4: The rolling-horizon two-stage stochastic timetable rescheduling model to
solve the multiple-stage stochastic timetable rescheduling problem

The two-stage stochastic timetable rescheduling model is then used for each following
stage where new scenarios are defined according to the updated range of disruption end
time. The two-stage stochastic timetable rescheduling model with nonanticipativity
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constraints for stage 1≤ k ≤ K−1 is

min
Wk
∑

n=1
pwk,n

βc ∑

e∈Ear: c
wk,n
e ∈Xk(wk,n)

c
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e + ∑
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wk,n
e ∈Xk(wk,n)

d
wk,n
e
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e ∈Yk(wk,n)

c
wk,n
e + ∑

e∈Ear: d
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e ∈Yk(wk,n)

d
wk,n
e

 (4.8)

s.t. Xk(wk,n) ∈ ZI
k(wk,n), n ∈ {1, . . . ,Wk} , (4.9)

Yk(wk,n) ∈ ZII
k (Xk(wk,n),wk,n), n ∈ {1, . . . ,Wk} , (4.10)

Xk(wk,n) = Xk(wk,m), n,m ∈ {1, . . . ,Wk} : n 6= m, (4.11)

where the first-stage decisions
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if 2≤ k ≤ K−1, (4.12)

and the second-stage decisions
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,n ∈ {1, . . . ,Wk} ,

if 2≤ k ≤ K−1, (4.13)

in which oe is the original scheduled time of event e, rk−1
e is a known value representing

the rescheduled time of event e determined at the previous stage k−1, and wk,n refers
to the nth scenario defined at stage k. Note that Xk = Xk(wk,n),n ∈ {1, . . . ,Wk} ,1 ≤
k ≤ K − 1. In (4.9), ZI

k(wk,n) refers to the constraint set for Xk(wk,n). In (4.10),
ZII

k

(
Xk(wk,n),wk,n

)
refers to the constraint set for Yk(wk,n) given Xk(wk,n) under scen-

ario wk,n.

For the final stage K, the exact disruption end time tend is received. If a disrup-
tion end time of a scenario wK−1,n defined at the previous stage is equal to tend (i.e.
twK−1,n
end = tend), then the corresponding 2nd-stage decisions YK−1(wK−1,n) will be de-

livered to the traffic controllers directly. If none of the previous scenarios corresponds
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to the exact scenario, the rescheduling model can simply compute a new solution con-
sidering the single scenario with the disruption duration

[
tK−1,min
end , tend

]
, which should

be consistent with the previous control decisions up to tK−1,min
end . In this case, nonanti-

cipativity constraints are not needed in the rescheduling model.

4.3 Case study

The deterministic and stochastic methods are tested on a part of the Dutch railway
network. Section 4.3.1 investigates the impact of the range of the disruption end time,
and Section 4.3.2 analyses the computation performances of both methods.

Figure 4.5 shows the schematic track layout of the considered network with 38 stations
and both single-track and double-track railway lines.
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Figure 4.5: The schematic track layout of the considered network

In the considered network, 10 train lines operate half-hourly in each direction. Fig-
ure 4.6 shows the scheduled stopping pattern of each train line. Table 4.3 lists the
terminals of the train lines that are located in the considered network, while the ter-
minals outside the considered network are neglected. The deterministic and stochastic
rescheduling models both consider trains turning at the terminals to operate the return
direction (i.e. OD turnings). We distinguish between intercity (IC) and local (called
sprinter (SPR) in Dutch) train lines. Both rescheduling models were developed in
MATLAB and solved using GUROBI release 7.0.1 on a desktop with Intel Xeon CPU
E5-1620 v3 at 3.50 GHz and 16 GB RAM.
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Figure 4.6: The train lines operating in the considered network

Table 4.3: Train lines in the considered network
Train line Terminals in the considered network

IC800 Maastricht (Mt)
IC1900 Venlo (Vl)
IC3500 Heerlen (Hrl)
SPR6400 Eindhoven (Ehv) and Wt
SPR6800 Roermond (Rm)
SPR6900 Sittard (Std) and Hrl
SPR9600 Ehv and Dn
SPR32000 —
IC32100 Mt and Hrl
SPR32200 Rm

The penalty βc of cancelling a train run between two neighbouring stations is set to 100
min, and the time period ` that ensures a new rescheduling solution to be implemented
is set to 10 min. Besides, we set the minimum duration required for short-turning or
OD turning to 300 s, the minimum duration required for each headway to 180 s, the
maximum delay allowed for each train departure/arrival to 15 min, and the minimum
dwell time of an extra stop to 30 s.
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We consider a complete track blockage between station Bk and station Lut starting at
7:56 (see Figure 4.6). The range of the disruption end time update at each stage is
indicated by Table 4.4, which is uniformly distributed to 7 scenarios with the same
probabilities: 1/7. Three cases are considered: cases I and II differ in the range of the
disruption end time update at the 1st stage, and cases II and III differ in the range of
the disruption end time update at the 2nd stage. At each stage, the stochastic method
considers 7 disruption scenarios simultaneously, whereas the deterministic method
considers one single disruption scenario of which the corresponding end time using
optimistic, expected-value, and pessimistic strategies are colored in green, blue and
red, respectively. Recall that the optimistic strategy considers the minimum disrup-
tion end time tk,min

end , the pessimistic strategy considers the maximum disruption end
time tk,max

end , and the expected-value strategy considers the expected disruption end time
∑

Wk
n=1 pwk,nt

wk,n
end at update stage k.

Table 4.4: The predicted disruption end times at each stage of three cases

Case
Stage Disruption end time

k twk,1
end twk,2

end twk,3
end twk,4

end twk,5
end twk,6

end twk,7
end

I
1 9:51 9:56 10:01 10:06 10:11 10:16 10:21
2 10:36 10:41 10:46 10:51 10:56 11:01 11:06

II
1 10:06 10:11 10:16 10:21 10:26 10:31 10:36
2 10:36 10:41 10:46 10:51 10:56 11:01 11:06

III
1 10:06 10:11 10:16 10:21 10:26 10:31 10:36
2 10:51 10:56 11:01 11:06 11:11 11:16 11:21

Optimistic; Expected-value; Pessimistic

4.3.1 The influence of the range of the disruption end time

Table 4.5 shows the results of the deterministic method at stage 1, including the ob-
jective values, the numbers of cancelled services, and the total train delays. Cases II
and III have the same result since the range of the disruption times are the same to
both cases at stage 1. No matter which case, the optimistic strategy generated the best
solution, the pessimistic strategy generated the worst solution, and the expected-value
strategy was in between. It is obvious that for the deterministic method the optimal
solution considering one disruption duration satisfies the shorter the better.

Table 4.5: Results of the rescheduled timetables by the deterministic method at stage 1

Approach
Case I Case II or III

Predicted Obj # Cancelled Total train Predicted Obj # Cancelled Total train
end time [min] services delay [min] end time [min] services delay [min]

Optimistic 9:51 2,967 26 367 10:06 3,078 28 278
Expected-value 10:06 3,078 28 278 10:21 3,641 32 351
Pessimistic 10:21 3,641 32 441 10:36 3,751 34 351

Table 4.6 shows the results of the stochastic method at stage 1. In each case, 7 res-
cheduled timetables are obtained, where the services rescheduled up to 9:51 are forced
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Table 4.6: Results of the rescheduled timetables by the stochastic method at stage 1

Approach
Case I Case II or III

Predicted Obj # Cancelled Total train Predicted Obj # Cancelled Total train
end time [min] services delay [min] end time [min] services delay [min]

Stochastic

9:51 3,078 28 278 10:06 3,394 30 394
9:56 3,078 28 278 10:11 3,394 30 394

10:01 3,078 28 278 10:16 3,399 30 399
10:06 3,078 28 278 10:21 3,751 34 351
10:11 3,122 28 322 10:26 3,751 34 351
10:16 3,192 28 392 10:31 3,751 34 351
10:21 3,641 32 441 10:36 3,751 34 351

to be the same in case I, and the services rescheduled up to 10:06 are forced to be the
same in case II and III. In case I, the first 4 scenarios have the same result, although
the corresponding disruption end times are different. The reason is that no further
train services were affected when the disruption end time was extended from 9:51 up
to 10:06, due to the service pattern of the planned timetable. In this chapter, we use a
cyclic planned timetable that has a cycle time of 30 minutes, which is why we observed
a similar phenomenon in case II and III that no changes happened to the results when
the disruption end time was extended from 10:21 up to 10:36.

At stage 1, the stochastic method generated solutions that were no better than the de-
terministic method, due to the anticipation towards longer disruptions that was con-
sidered. Just because of the anticipation, at later stages when the ranges of the disrup-
tion end times are updated, better solutions can be obtained by the stochastic method
compared to the deterministic method. The results of both methods at the final stage
are shown in Table 4.7, Table 4.8 and Table 4.9 for cases I, II, and III, respectively,
including the average performances.

We consider 7 different actual disruption end times, 10:36, 10:41, 10:46, 10:51, 10:56,
11:01, 11:06, in cases I and II that have the same range of the disruption end time
at stage 2. As for case III which has a different range of the disruption end time at
stage 2, the considered actual disruption end times are: 10:51, 10:56, 11:01, 11:06,
11:11, 11:16, 11:21. Recall that the actual end time tend updated at the final stage K is
not smaller than the minimum end time tK−1,min

end updated at the previous stage. Under
such settings of actual end times, the stochastic method obtained the final resched-
uled timetables at stage 2, while in most situations the deterministic method needed to
recompute new solutions based on the solutions from stage 2 and thus the final stage
were stage 3 (see Tables 4.7 to 4.9). In Tables 4.7 to 4.9, also the value of the stochastic
solution (VSS) is shown, which quantifies the cost of ignoring uncertainty in decision
making. It is calculated as VSS=EEV-RP, where EEV is the expected result of using
the expected-value solution and RP is the optimal solution of the two-stage stochastic
model (Birge and Louveaux, 2011). In our case (a minimization problem), the higher
the VSS is, the better the stochastic solution will be. The improvement percentages
with respect to VSS were also calculated, which were between 6.1% and 10.2% in our
cases, demonstrating the benefit of the stochastic formulation. The relevant results can
be found in Tables 7 to 9.. The relevant results can be found in Tables 4.7 to 4.9.
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Table 4.7: Results of the final rescheduled timetables in Case I
Actual

Approach
Obj # Cancelled Total train Final

end time [min] services delay [min] stage

10:36

Stochastic 4,452 40 451 2
Optimistic 4,135 38 335 2
Expected-value 4,135 38 335 3
Pessimistic 4,452 40 451 3

10:41

Stochastic 4,452 40 451 2
Optimistic 4,180 38 380 3
Expected-value 4,667 42 467 3
Pessimistic 4,808 44 408 3

10:46

Stochastic 4,457 40 457 2
Optimistic 4,250 38 450 3
Expected-value 4,685 42 485 3
Pessimistic 4,808 44 408 3

10:51

Stochastic 4,808 44 408 2
Optimistic 4,698 42 498 3
Expected-value 4,698 42 498 2
Pessimistic 4,808 44 408 3

10:56

Stochastic 4,808 44 408 2
Optimistic 5,193 48 393 3
Expected-value 5,509 50 509 3
Pessimistic 4,808 44 408 3

11:01

Stochastic 4,808 44 408 2
Optimistic 5,193 48 393 3
Expected-value 5,509 50 509 3
Pessimistic 4,808 44 408 3

11:06

Stochastic 4,808 44 408 2
Optimistic 5,193 48 393 3
Expected-value 5,509 50 509 3
Pessimistic 4,808 44 408 2

Average

Stochastic 4,656 42 428 –
Optimistic 4,691 43 406 –
Expected-value 4,959 45 473 –
Pessimistic 4,757 43 414 –

VSS 4,959−4,656 = 303
Improvement 303/4,959 = 6.1%

In case I (Table 4.7), the optimistic strategy performed better than the stochastic method
when the actual disruption end time was from 10:36 up to 10:51, whereas the stochastic
method performed no worse than any deterministic strategy when the actual disruption
end time was from 10:56 up to 11:06. On average, the stochastic method is the best,
which is slightly better than the optimistic strategy which is the best among all determ-
inistic strategies.

Compared to case I (Table 4.7), in case II (Table 4.8) the stochastic method performed
much better than the deterministic method: for each considered actual disruption end
time (except 10:36), the stochastic method was better than any deterministic strategy.
This is because the ranges of the disruption end times update at stage 1 are different in
cases I and II, and thus result in different robust solutions by the stochastic method at
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stage 1, which further affect the robust solutions at stage 2. The pessimistic strategy
resulted in the best solution when the actual end time was 10:36, because it was the
optimal solution obtained at stage 1 where 10:36 is the considered disruption end time
for the pessimistic strategy (see Table 4.4).

Table 4.8: Results of the final rescheduled timetables in Case II
Actual

Approach
Obj # Cancelled Total train Final

end time [min] services delay [min] stage

10:36

Stochastic 4,067 36 467 2
Optimistic 4,135 38 335 2
Expected-value 4,452 40 452 3
Pessimistic 3,751 34 351 3

10:41

Stochastic 4,067 36 467 2
Optimistic 4,180 38 380 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

10:46

Stochastic 4,073 36 473 2
Optimistic 4,250 38 450 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

10:51

Stochastic 4,424 40 424 2
Optimistic 4,698 42 498 3
Expected-value 4,808 44 408 2
Pessimistic 4,808 44 408 3

10:56

Stochastic 4,424 40 424 2
Optimistic 5,193 48 393 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

11:01

Stochastic 4,424 40 424 2
Optimistic 5,193 48 393 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

11:06

Stochastic 4,424 40 424 2
Optimistic 5,193 48 393 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 2

Average

Stochastic 4,272 38 443 –
Optimistic 4,691 43 406 –
Expected-value 4,757 43 415 –
Pessimistic 4,657 43 400 –

VSS 4,757−4,272 = 485
Improvement 485/4,757 = 10.2%

The stochastic method also performed much better than any deterministic strategy for
each considered actual disruption end time in case III (Table 4.9), which has the same
range of the disruption end time at stage 1 as in case II. The average performance
of the stochastic method in case III is even better than the one in case I (Table 4.7),
although case III considers longer actual disruption end times. The reason is related to
the robust solution obtained at stage 1, which is affected by the corresponding range
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of the disruption end time. In case III (Table 4.9) the result of the stochastic method
is all the same when the actual end time is 10:51 up to 11:06, and the result of any
deterministic strategy is all the same when the actual end time is 10:56 up to 11:06.
These also happen in case I (Table 4.7) or case II (Table 4.8). The reason is that
no further train services were affected when the disruption end time was extended
from 10:51 up to 11:06 for the stochastic method, or from 10:56 up to 11:06 for the
deterministic method. Recall that this is due to to the service pattern of the timetable.

Table 4.9: Results of the final rescheduled timetables in Case III
Actual

Approach
Obj # Cancelled Total train Final

end time [min] services delay [min] stage

10:51

Stochastic 4,424 40 424 2
Optimistic 4,698 42 498 2
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

10:56

Stochastic 4,424 40 424 2
Optimistic 5,509 50 509 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

11:01

Stochastic 4,424 40 424 2
Optimistic 5,509 50 509 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

11:06

Stochastic 4,424 40 424 2
Optimistic 5,509 50 509 3
Expected-value 4,808 44 408 2
Pessimistic 4,808 44 408 3

11:11

Stochastic 4,469 40 469 2
Optimistic 5,509 50 509 3
Expected-value 4,853 44 453 3
Pessimistic 5,340 48 540 3

11:16

Stochastic 4,539 40 539 2
Optimistic 5,514 50 514 3
Expected-value 4,923 44 523 3
Pessimistic 5,358 48 558 3

11:21

Stochastic 4,987 44 587 2
Optimistic 5,866 54 466 3
Expected-value 5,371 48 571 3
Pessimistic 5,371 48 571 2

Average

Stochastic 4,527 41 470 –
Optimistic 5,445 49 502 –
Expected-value 4,912 45 454 –
Pessimistic 5,043 46 472 –

VSS 4,912−4,527 = 385
Improvement 385/4,912 = 7.8%

Tables 4.7 to 4.9 indicate that compared to the deterministic method, the stochastic
method is more likely to generate better rescheduling solutions for uncertain disrup-
tions by less cancelled train services and/or train delays. This is mainly because the
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stochastic method generates solutions that are flexible to the short-turning patterns
under different disruption durations. We explain this by the example of the actual
disruption end time of 10:36 in case II as follows.
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Figure 4.7: The rescheduled timetable by the optimistic strategy at stage 1 in case II
(disruption end time: 10:06)
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Figure 4.8: The rescheduled timetable by the optimistic strategy at stage 2 in case II
(disruption end time: 10:36)

Figures 4.7 and 4.8 show the time-distance diagrams of the rescheduled timetables ob-
tained by the deterministic method for the optimistic strategy at stages 1 and 2 in case
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II, respectively. The dashed (dotted) lines represent the original scheduled services that
are cancelled (delayed) in the rescheduled timetables, while the solid lines represent
the services scheduled in the rescheduled timetables. The red triangles indicate extra
stops. Compared to stage 1 (Figure 4.7), more services were cancelled at stage 2 (Fig-
ure 4.8) due to the extended disruption. At stage 1, the operation of a dark blue train
from stations Mt to Bk is cancelled (Figure 4.7), which is why the operation of another
dark blue train from stations Bk to Mt has to be cancelled at stage 2 (Figure 4.8) to
keep consistent control decisions.
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Figure 4.9: The rescheduled timetable by the stochastic approach at stage 1 in case II
(disruption end time: 10:06)
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Figure 4.10: The rescheduled timetable by the stochastic approach at stage 2 in case II
(disruption end time: 10:36)

Figures 4.9 and 4.10 show the time-distance diagrams of the rescheduled timetables
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obtained by the stochastic method at stages 1 and 2 in case II, respectively. Compared
to the solution of the optimistic strategy at stage 1 (Figure 4.7), more services were
cancelled/delayed in the solution of the stochastic method at stage 1 (Figure 4.9) due
to the anticipation towards longer disruption durations in consideration. Just because
of the anticipation, at stage 2, the solution of the stochastic approach resulted in less
cancelled services and train delays, compared to the solution of the optimistic strategy
(Figure 4.10).

It is found that the robustness of the solution by the stochastic method can be af-
fected by the range of the disruption end time update. An example is given as follows.
Figures 4.11 and 4.12 show the time-distance diagrams of the rescheduled timetables
obtained by the stochastic method at stages 1 and 2 in case I, respectively. Recall that
cases I and II have different ranges of the disruption end times at stage 1, but the same
range of the disruption end times at stage 2 (see Table 4.4).

At stage 1, compared to the solution of case II (Figure 4.9) that considered the end time
range of [10:06,10:36], the solution of case I (Figure 4.11) resulted in less cancelled
services and train delays due to an earlier end time range of [9:51,10:21] considered. In
case II (Figure 4.9) the cancelled operation of a dark blue train from stations Mt to Bk
was after the minimum end time of stage 1, 10:01, and thus this cancellation decision
was a look-ahead decision at stage 1, which did not need to be respected at stage 2 (see
Figure 4.10); while in case I (Figure 4.11) the cancelled operation of a dark blue train
from stations Mt to Bk was before the minimum end time of stage 1, 9:51, and thus this
cancellation decision was a control decision at stage 1, which had to be respected at
stage 2 (see Figure 4.12) causing the operation of another dark blue train from stations
Bk to Mt cancelled at stage 2.
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Figure 4.11: The rescheduled timetable by the stochastic approach at stage 1 in case I
(disruption end time: 9:51)
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Figure 4.12: The rescheduled timetable by the stochastic approach at stage 2 in case I
(disruption end time: 10:36)

This shows that the range of the disruption end time affects the flexibility of a solution,
which is relevant to short-turning patterns. Smooth short-turning patterns for possible
longer disruptions like in case II (Figures 4.9 and 4.10) help to reduce cancelled train
services. Case II has an later range of the disruption end time at stage 1 than case I,
while both cases have the same range of the disruption end time at stage 2. In that
sense, compared to case I, case II considers that longer disruption durations are more
likely to happen at stage 1, which turns to be true due to another range update at stage
2. From the results of both cases, we infer that in the situations where longer disruption
durations are more likely to happen, short-turning the last train services approaching to
the predicted minimum disruption end time (e.g. Figure 4.9 corresponding to case II)
rather than cancelling them (e.g. Figure 4.11 corresponding to case I) might be helpful
to improve solution flexibility.

4.3.2 Computation analysis

Table 4.10: Computation times [sec] at each update stage

Approach
Case I Case II Case III

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2
Stochastic 234 66 244 51 244 51
Optimistic 10 3 9 3 9 3
Expected-value 10 3 11 3 11 3
Pessimistic 11 3 10 2 11 3

Table 4.10 shows the computation times for the stochastic method and the deterministic
method for different strategies at stage 1 and 2 for all cases. In each case, the computa-
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tion time of each approach to stage 1 is longer than the one to stage 2. This is because
at a later stage only the dispatching decisions for the new control and look-ahead hori-
zons (for the extended duration) need to be made. The deterministic method for each
strategy costs much less computation time than the stochastic method, as it considers a
single disruption scenario at each computation. Although the stochastic method is re-
latively time-consuming, the rescheduling solutions are robust to uncertain disruption
durations. Table 4.11 shows the numbers of variables, binary variables and constraints
required respectively by the stochastic method and the deterministic method using a
pessimistic strategy. We only show the pessimistic strategy in Table 4.11, because
it needs more variables and constraints compared to the optimistic or expected-value
strategy due to longer disruption duration considered. Because the stochastic method
handled 7 scenarios at a stage, the required variables and constraints (see Table 4.11)
were longer than the ones of the deterministic method using a pessimistic strategy,
which handled only 1 scenario at a stage.

Among all cases, the longest computation time of a stochastic solution was around 4
min. This shows the applicability of applying the proposed stochastic approach assum-
ing that the range of the disruption end time prediction update is provided at least 10
min before the current minimal end time prediction (`= 10 min).

4.4 Conclusions

This chapter proposed a rolling horizon two-stage stochastic timetable rescheduling
model to manage uncertain disruptions with better solutions. It was tested on a part
of the Dutch railways and compared to a deterministic rolling horizon timetable res-
cheduling model. The results showed that compared to the deterministic method, the
stochastic method is more likely to generate better rescheduling solutions for uncertain
disruptions by less train cancellations and/or delays, due to the flexibility towards the
short-turning patterns under different disruption durations. The flexibility of a solu-
tion by the stochastic method can be impacted by the range of the disruption end time.
From the results we infer that in the situations where longer disruption durations are
more likely to happen, short-turning the last train services approaching to the predicted
minimum disruption end time rather than cancelling them might be helpful to improve
solution flexibility. This will be examined in near future. The stochastic programming
model considers several scenarios simultaneously, is therefore larger and thus takes
longer computation time. The computation time might be reduced without affecting
the solution quality by optimizing the number of scenarios, the size of the network, the
length of the look-ahead horizon, or exploiting the periodic structure of the (resched-
uled) timetable.

This chapter used a discrete uniform distribution over the range of the estimated dis-
ruption end to define scenarios with the same occurrence probabilities. From the case
study results we found that although some scenarios had different disruption durations
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the rescheduling solutions to these scenarios were the same. The scenario estimation
method can be improved by identifying various different scenarios with essentially
different outcomes to find a rescheduling solution. As we rely on a periodic planned
timetable there should be a finite number of discrete scenarios that lead to essentially
different outcomes. It is beneficial to identify these representative scenarios, of which
the probabilities can be assigned based on the relative sub-range that they would occur.
This will be part of future work.



Chapter 5

Dynamic railway timetable
rescheduling for multiple connected
disruptions

Apart from minor updates, this chapter has been submitted as:

Zhu, Y., Goverde, R.M.P., 2019. Dynamic railway timetable rescheduling for mul-
tiple connected disruptions. Transportation Research Part C: Emerging Technologies,
under review.

5.1 Introduction

Railways play a significant role in passenger transportation. For example, there are
approximately 1.3 million trips by train every day in the Netherlands (NS, 2018).
Thus, reliable train services are important. However, railway operations are often dis-
turbed by unexpected events like extreme weather, accidents and infrastructure fail-
ures, which are getting worse in recent years. On the Dutch railways, the number of
unplanned disruptions occurring each year was 1846 in 2011 and increased to 4085
in 2017 (RijdendeTreinen, 2018). Such disruptions usually last for a few hours, caus-
ing considerable negative impact on passengers and imposing much extra workload
on personnel. In practice, disruptions are still handled manually by traffic controllers
who make dispatching decisions (e.g. cancelling, delaying and short-turning) with pre-
designed contingency plans as guidelines, while each contingency plan corresponds to
one disruption at a specific location. When disruptions occur simultaneously at dif-
ferent locations, the contingency plans corresponding to them may conflict with each
other. Under these circumstances, traffic controllers have to adjust the timetable based
on their own experiences without any guidelines, which leads to time-consuming and

123
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suboptimal solutions (Ghaemi et al., 2017b). Therefore, it is necessary to develop a
more efficient way of handling multiple disruptions, which has not been dealt with in
the literature so far.

In this chapter, we are concerned with unplanned disruptions that cause complete track
blockages between stations for hours. Our focus is on rescheduling the timetable in
case of multiple complete track blockages where each is connected to another by at
least one train line. In these cases, train services should be adapted to multiple time-
space disruption windows that are located in different locations and may start/end at
different time instants. The main challenge is that the service adjustments towards one
disruption window may influence the one towards another disruption window, and vice
versa.

To solve this challenge, we put forward a multiple-disruption rescheduling model
based on the single-disruption rescheduling model of Chapter 3. The single-disruption
rescheduling model applies delaying, reodering, cancelling, flexible short-turning and
flexible stopping, and considers station capacity as well as trains turning at terminal
stations. Short-turning means that a train ends its operation at a station before the
blocked tracks and the corresponding rolling stock turns to operate another train in
the opposite direction. Flexible short-turning means that for each train a full choice
of short-turn station candidates is given, and the model decides the optimal station
and time of short-turning the train. Flexible stopping means that for each train the
scheduled stops can be skipped and extra stops can be added. Except skipping stops,
the other characteristics are all kept in the multiple-disruption rescheduling model that
aims to minimize service cancellations and deviations from the planned timetable.

To deal with multiple connected disruptions in a dynamic environment, two approaches
are proposed, which are a sequential approach based on a single-disruption reschedul-
ing model, and a combined approach based on a multiple-disruption rescheduling
model.

The contributions of this chapter are summarized as follows:

• We develop a multiple-disruption timetable rescheduling model for multiple
complete track blockages that are pairwise connected by at least one train line.

• We propose two approaches, the sequential approach and the combined ap-
proach, to deal with multiple connected disruptions in a dynamic environment.

• We propose a new rolling horizon solution method to generate high-quality solu-
tions for long multiple connected disruptions in an acceptable time.

• The sequential and combined approaches are tested on real-life instances on a
subnetwork of the Dutch railways.

• It is shown that the combined approach is able to handle more kinds of multiple
disruption scenarios and generate better solutions than the sequential approach.
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The remainder of this chapter is organized as follows. Section 5.2 gives a literature re-
view on timetable rescheduling models for railway disruptions. Section 5.3 introduces
the sequential approach and the combined approach, and the differences between the
two rescheduling models used in these approaches, the single-disruption model and the
multiple-disruption model. Section 5.4 gives the detailed mathematical formulation of
the multiple-disruption model. In Section 5.6, a case study is carried out to explore the
performance of the sequential or combined approach. Finally, Section 5.7 concludes
the chapter.

5.2 Literature review

A typical consequence of a disruption is that the tracks between two stations are par-
tially or completely blocked. In case of partial blockages, some trains can still use the
remainder track as in Zhan et al. (2016) where a partial blockage is considered in a
double-track railway line. In case of complete blockages, the consequence becomes
more serious that no trains can run through the blocked area at all during the disruption
period. This problem has been dealt with more widely in the literature compared to
partial blockages, see Meng and Zhou (2011), Narayanaswami and Rangaraj (2013),
Zhan et al. (2015), Ghaemi et al. (2017a), Ghaemi et al. (2018a) and Chapter 3. There
are also models focusing on both partial and complete blockages, including Cadarso
et al. (2013), Louwerse and Huisman (2014), Veelenturf et al. (2015) and Binder et al.
(2017b).

Different dispatching measures are used to reschedule the timetable during disrup-
tions. Meng and Zhou (2011) allow retiming trains, while Narayanaswami and Ranga-
raj (2013) allow both retiming and reordering trains. In both papers, the considered
disruption durations are at most 1 hour. For longer disruptions that last for a few
hours, cancelling trains is necessary, because it helps to reduce train delays that may
propagate to the network beyond the disrupted area. Zhan et al. (2015) use retiming,
reordering and cancelling trains focusing on Chinese railways where seat reservations
are needed. Under this circumstance, short-turning trains is not applied in their mod-
els, which however is a common strategy used in the systems without seat reservations,
e.g., metro systems and some European railway systems. The models allowing short-
turning trains include Louwerse and Huisman (2014), Veelenturf et al. (2015), Ghaemi
et al. (2017a), Ghaemi et al. (2018a) and Chapter 3. In general, the last stop of a train
before the blocked tracks is fixed as the station where the train can short-turn, as in
Louwerse and Huisman (2014) and Veelenturf et al. (2015). However, a train may be
completely cancelled rather than short-turned, if the short-turn station lacks capacity.
To reduce the possibility of a train being completely cancelled, both Ghaemi et al.
(2017a) and Ghaemi et al. (2018a) allow a train to short-turn at either of the last two
stations before the blocked tracks, while Chapter 3 introduces more flexibility by al-
lowing a train to short-turn at one of all possible short-turn stations that are before the
blocked tracks. Another way of reducing cancelled trains is rerouting trains. The trains
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that originally plan to run through the blocked tracks can be rerouted through another
corridors to reach the destinations, while part/all of the intermediate stations in the
planned paths may change. This strategy is applied in both Veelenturf et al. (2015) and
Binder et al. (2017b). When passengers are taken into account, particular strategies are
used to mitigate the negative impact on passengers, such as adding additional trains,
adding extra stops and skipping stops. Both Cadarso et al. (2013) and Binder et al.
(2017b) allow adding additional trains. Veelenturf et al. (2017) allow adding stops,
while Chapter 3 allows both adding stops and skipping stops.

Most papers assume that the disruption duration is known at the beginning of the dis-
ruption and will not change over time. However in practice, a disruption could either
end earlier or extend than expected (Zilko et al., 2016). A few papers deal with un-
certain disruptions. Zhan et al. (2016) propose a rolling horizon framework where
the timetable is rescheduled gradually with renewed disruption durations taken into
account. Meng and Zhou (2011) propose a stochastic programming model that takes
the uncertainty of the disruption duration into account. The model reschedules the
timetable dynamically by a rolling horizon approach.

In the real world, multiple disruptions occur on a daily basis, while how to deal with
them is rarely considered in the existing literature. Veelenturf et al. (2015) proposed
a model said to be applicable to multiple track blockages, but no results were given.
Van Aken et al. (2017a) designed alternative timetables for handling multiple planned
disruptions (i.e. infrastructure maintenance possessions). They focus on periodic
timetables for full-day possessions, and as such do not consider the transitions between
the original timetable and the rescheduled timetable, and vice versa. For shorter dis-
ruptions, such transitions have to be taken into account. According to Ghaemi et al.
(2017b), a disruption consists of three phases: the transition phase from the planned
timetable to the disruption timetable, the stable phase where the disruption timetable
is implemented, and the recovery phase from the disruption timetable to the planned
timetable. Veelenturf et al. (2015) and Chapter 3 consider all phases of one single
disruption.

This chapter proposes a Mixed Integer Linear Programming (MILP) model to resched-
ule the timetable in case of multiple disruptions that are pairwise connected by at least
one train line. The multiple-disruption rescheduling model considers all phases of
each disruption that causes complete track blockage for hours. Retiming, reordering,
cancelling, adding stops and flexible short-turning are all formulated into the model
that also takes into account rolling stock circulations and station capacity. Two ap-
proaches are developed to deal with multiple disruptions in a dynamic environment. A
sequential approach applies a single-disruption rescheduling model to handle each new
disruption with the previous rescheduled timetable as the reference. A combined ap-
proach applies a multiple-disruption rescheduling model to handle each new disruption
considering the combined effects of all ongoing disruptions.
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5.3 Problem description

In this chapter, multiple connected disruptions are defined as two or more disruptions
that

• have overlapping periods,
• occur at different geographic locations,
• may start/end at different time instants, and
• are pairwise connected by at least one train line.

Two disruptions having overlapping periods means that a disruption occurs when an-
other disruption is ongoing. To be more specific, suppose a disruption i starts at time
t i
start and will end at t i

end (t i
start < t i

end), and another disruption j starts at time t j
start and

will end at t j
end (t j

start < t j
end). Then, the durations of these two disruptions are overlap-

ping, if t i
start ≤ t j

start < t i
end or t j

start ≤ t i
start < t j

end. It is possible that the disruption periods
of two disruptions are not overlapping, but a train is influenced by a first disruption, and
then later will be affected by a second disruption that started after the other disruption
already ended. In this situation, during the first disruption it is unknown that there will
be a second disruption occurring later. Therefore, these two disruptions can only be
seen as two separate disruptions, and they can still be handled by either the sequential
approach or the combined approach proposed in this chapter. We require overlapping
periods as one of the criteria to define multiple connected disruptions of which the
combined effects can be actually taken into account during timetable rescheduling.

Figure 5.1 illustrates different kinds of multiple disruptions.

8:00 - 9:45

8:20 - 10:15

c. Overlapping disruptions

8:00 - 9:45

16:00 - 17:45

b. Separate disruptions

8:00 - 9:45

8:20 - 10:15

a. Multiple connected disruptions Train line 1

Train line 2

Train line 3

Stop

Figure 5.1: Examples of multiple disruptions
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In each case of Figure 5.1, three train lines are operated in a triangle network where the
stops served by each train line are indicated by circles. In case a, the first disruption
occurs between 8:00 and 9:45 and affects train line 1, while the second disruption
occurs between 8:20 and 10:15 at a different location and affects both train line 1
and train line 2. These two disruptions occur at different locations, have overlapping
period, and are connected by train line 1, which are thus regarded as multiple connected
disruptions. If the second disruption occurs between 16:00 and 17:45 as in case b,
then these two disruptions are separate disruptions, since they do not have overlapping
period. If the second disruption occurs at a different location as in case c, although
these two disruptions have an overlapping period, they are not regarded as multiple
connected disruptions, because they are not connected by any train line. Compared to
case a, cases b and c are more easily handled using the method of Chapter 3, because
there are no/few interactions among the timetable adjustments towards each disruption.

In this chapter, our focus is on handling multiple connected disruptions. To this end,
two approaches are proposed. One is the sequential approach that uses the single-
disruption rescheduling model to solve each disruption sequentially. Another is the
combined approach that applies the multiple-disruption model to handle each extra
disruption with all ongoing disruptions taken into account. The introductions to these
two approaches are given as follows.

5.3.1 The sequential approach

Single-disruption 

rescheduling model

 1st starting 

disruption

1st rescheduled 

timetable

Single-disruption 

rescheduling model

2nd starting 

disruption

2nd rescheduled 

timetable

…
…

Single-disruption 

rescheduling model

3rd rescheduled 

timetable

3rd starting 

disruption

· Adjusted train arrivals and departures

· Cancelling and delaying decisions

· Short-turning decisions 

· Disrupted section

· Start and end times

· Disrupted section

· Start and end times

· Adjusted train arrivals and departures

· Cancelling and delaying decisions

· Short-turning decisions 

· Planned train arrival and 

departure times

· Disrupted section

· Start and end times

……

Planned timetable

Figure 5.2: Dealing with multiple connected disruptions by the sequential approach
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The schematic layout of the sequential approach is shown in Figure 5.2, where the
single-disruption rescheduling model is applied every time a new disruption emerges.
This can be considered as the straightforward extension to multiple disruptions that
traffic controllers would apply to keep the complexity manageable for manual decision
making. As this model can deal with one disruption at a time only, it uses the previous
solution as reference when handling the disruption that starts later. This means that
1) the train services that are previously decided to be cancelled will remain cancelled;
2) the train departures/arrivals that are previously decided to be delayed can no longer
occur before those time instants, as early departures/arrivals are not allowed; and 3) the
short-turnings of the trains that do not run through the new track blockage will remain.

5.3.2 The combined approach

The schematic layout of the combined approach is shown in Figure 5.3. Here, the
single-disruption rescheduling model is applied for the 1st disruption only and the
multiple-disruption rescheduling model is applied every time an extra disruption emerges.
When handling later disruptions, the multiple-disruption rescheduling model makes
service adjustments by taking all ongoing disruptions into account and respecting the
train arrivals and departures that have already been realized according to the previous
rescheduled timetable up to the starting time of the emerging disruption.

Single-disruption 

rescheduling model

Planned timetable

 1st starting 

disruption

1st rescheduled 

timetable

Multiple-disruption 

rescheduling model
 2nd starting 

disruption

2nd rescheduled 

timetable

…
…

Multiple-disruption 

rescheduling model

3rd rescheduled 

timetable
 3rd starting 

disruption

……

· Realized train arrivals and departures 

· Planned train 

       arrival and departure times

· Realized train arrivals and departures 

· Disrupted section

· Start and end times

· Disrupted section

· Start and end times

· Disrupted section

· Start and end times

Figure 5.3: Dealing with multiple connected disruptions by the combined approach

In this chapter, the sequential approach is based on the single-disruption rescheduling
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model of Chapter 3 by removing the measure of skipping stops and replacing the ob-
jective with the one of the multiple-disruption model that is introduced in Section 5.4.

5.3.3 Differences between the single-disruption model and the multiple-
disruption model

Compared to the single-disruption rescheduling model, the multiple-disruption res-
cheduling model additionally considers the interactions among the dispatching de-
cisions towards different disruptions. These interactions mainly occur among short-
turning decisions. Recall that short-turning means that a train ends its operation at a
station before the blocked tracks and the corresponding rolling stock turns to be used
by another train in the opposite direction. With the following example, we explain the
differences between the single-disruption model and the multiple-disruption model.

A

B

C

D

E

F

G

H

I

tr3tr1 tr5 tr7

tr2 tr4 tr6 tr8
Figure 5.4: Example of single-disruption rescheduling solution

A

B

C

D

E

F

G

H

I

tr3tr1 tr5 tr7

tr2 tr4 tr6 tr8
Figure 5.5: Example of multiple-disruption rescheduling solution
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In Figure 5.4, four blue trains, tr1, tr3, tr5,and tr7, operate from station A to station I;
and four yellow trains, tr2, tr4, tr6, and tr8, operate from station I to station A. Between
stations F and G, a disruption occurs for a certain period, which is illustrated by a grey
rectangle. Due to the disruption, two blue trains, tr1 and tr3, are short-turned at station
F to take over the operations of two yellow trains, tr4 and tr6, from station F to station
A; while these yellow trains are short-turned at station G to take over the operations of
these blue trains from station G to station I.

Suppose a little bit later another disruption occurs between stations C and D as Fig-
ure 5.5 shows. Then more short-turnings will happen even to the same train, and some
short-turnings are interdependent. For example, train tr3 is now short-turned at both
stations C and F. Moreover, the short-turning between trains tr2 and tr3 at station D
enables the short-turning between trains tr3 and tr6 at station F, which in turn enables
the short-turning between trains tr6 and tr7 at station D. This indicates that during such
multiple connected disruptions, a train might be short-turned at a station at each side of
each disrupted section, and the short-turning at one station may affect the short-turning
at another station. These are not considered in the single-disruption model, but should
be formulated in the multiple-disruption model.

5.4 The multiple-disruption rescheduling model

5.4.1 Definitions

The multiple-disruption rescheduling model is based on an event-activity network for-
mulated by the method introduced in Chapter 3. Train departures (arrivals) are for-
mulated as departure (arrival) events, which are contained in the set Ede (Ear). Each
event e ∈ Ede∪Ear is associated with the original scheduled time oe, station ste, train
line tle, train number tre, and operation direction dre. A train line indicates the origin,
the destination, all intermediate stops between the origin and the destination, and the
operation frequency (e.g. every 30 minutes).

Directed arcs between events are called activities. Running activities (e,e′) ∈ Arun

describe train running between adjacent stations:

Arun =
{(

e,e′
)
∈ Ede×Ear : tre = tre′, and tre goes directly from station ste to ste′

}
.

Dwell (pass-through) activities (e,e′)∈Adwell (Apass) describe trains dwelling at (passing
through) stations:

Adwell =
{(

e,e′
)
∈ Ear×Ede : tre = tre′,ste = ste′, and oe < oe′

}
,

Apass =
{(

e,e′
)
∈ Ear×Ede : tre = tre′,ste = ste′, and oe = oe′

}
.

Short-turn activities (e,e′) ∈ Aturn describe trains turning at stations before blocked
tracks to operate the trains in the opposite directions from the same train line:

Aturn =
{

a = (e,e′) ∈ E turn
ar ×E turn

de : tle = tle′, tre 6= tre′,dre 6= dre′,ste = ste′,
and oe′+D−oe ≥ La}

(5.1)
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in which the arrival (departure) events are defined by the set E turn
ar (E turn

de ), D is the
maximum delay allowed to an event, and La represents the minimum duration required
for a short-turn activity a. We allow a short-turn activity a to be created from an
arrival event e to a departure event e′ that was originally planned to occur earlier than
e considering that the rescheduled time of e′ may be later than the rescheduled time of
e so that the short-turning between them could be possible.

We also use the original OD turn activities Aodturn to describe trains turning at the
destinations to the opposite trains from the same train line, and headway activities Ahead

to describe the headways of following or crossing trains. Chapter 3 already describes
the sets Aodturn, Ahead, and the constraints or decision variables corresponding to them
(i.e. the constraints or decision variables about OD turns and reordering trains), which
are used also in the multiple-disruption model exactly the same. Hence, for details
we refer to Chapter 3. For the multiple-disruption model, we introduce constraints of
cancelling, delaying, flexible short-turning trains and station capacity, as well as the
decision variables used in these constraints. Recall that flexible short-turning means
that each train is given a full choice of short-turning station candidates, and the model
decides the optimal station and time of short-turning the train. In particular, a train may
short-turn a station earlier if the capacity of a later short-turning station is insufficient.

We will use the following decision variables:

xe : continuous variable deciding the rescheduled time of event e,
de : continuous variable deciding the delay of event e,
ce : binary variable with value 1 indicating that e is cancelled, and 0 otherwise,
ye : binary variable with value 1 indicating that station ste is a short-turn station of

train tre, and 0 otherwise,
ma : binary variable with value 1 indicating that a short-turn activity a ∈ Aturn is

selected, and 0 otherwise.
ue,i : binary variable with value 1 indicating that train tre occupies the ith platform

of station ste,e ∈ Ear, and 0 otherwise.
ve, j : binary variable with value 1 indicating that train tre occupies the jth pass-

through track of station ste,e ∈ Ear, and 0 otherwise.

For the notation of parameters and sets we refer to Appendix 5.A.

5.4.2 Objective

The objective is minimizing train service cancellations and deviations from the planned
timetable,

minimize ∑
e∈Ear

wce + ∑
e∈Ear∪Ede

de, (5.2)
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where Ear (Ede) is the set of arrival (departure) events, and w is a fixed penalty for each
cancelled service. A service refers to a train run between two adjacent stations. This
objective aims to minimize the impact of the disruption to the rest of the network.

5.4.3 Constraints

5.4.3.1 Cancelling and delaying trains

For each train departure or arrival event e, the rescheduled time xe is relevant to the
delaying decision de and the cancelling decision ce as follows:

M1ce ≤ xe−oe ≤M1, e ∈ Ear∪Ede, (5.3)

xe−oe = de +M1ce, e ∈ Ear∪Ede, (5.4)

de ≥ 0, e ∈ Ear∪Ede, (5.5)

de ≤ D, e ∈ (Ear∪Ede)\ENMdelay. (5.6)

Constraint (5.3) states that the rescheduled time of a cancelled event e (i.e. ce = 1) is
the original scheduled time oe plus M1 that is set to 1440 minutes here. Constraint (5.4)
states that the rescheduled time of an non-cancelled event is the original scheduled time
plus the delayed time. Constraints (5.5) and (5.6) require that the delay of an event is
non-negative, and should be no larger than D minutes if the event does not belong to
ENMdelay. The set ENMdelay contains all events that are not imposed with the upper
delay limit. These events correspond to the trains that have already started from the
origins before a disruption starts. These trains can no longer be cancelled and short-
turning them could also be impossible due to rolling stock or station capacity shortage,
and thus they have to dwell at the last possible stations before the blocked tracks until
the disruption ends.

5.4.3.2 Avoiding trains entering any disrupted section

Suppose the current emerging disruption is the nth disruption (n ≥ 2), then trains are
forbidden to enter the blocked tracks due to any disruption i (1 ≤ i ≤ n) during the
corresponding disruption period that starts at time t i

start and ends at time t i
end:

xe ≥ t i
end(1− ce), e ∈ Ede,ste = st i,tre

en , t i
start ≤ oe < t i

end,1≤ i≤ n, (5.7)

where st i,dre
en represents the entry station of the ith disrupted section in direction dre that

is either upstream or downstream. For instance in Figure 5.5, for the downstream blue
train tr3: the entry station of the 1st disrupted section (i.e. section F-G) is F and the
entry station of the 2nd disrupted section (i.e. section C-D) is C, while for the upstream
yellow train tr4: the entry station of the 1st disrupted section is G and the entry station
of the 2nd disrupted section is D. It is assumed that the duration of a disruption is
known at the beginning of the disruption and will not change over time.
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5.4.3.3 Operation consistency for trains without short-turning possibilities

For each train, the operation consistency of the two events that constitute the same
running activity is always kept (i.e. both events are cancelled/kept simultaneously):

ce′− ce = 0, (e,e′) ∈ Arun, (5.8)

and the operation consistency of the two events that constitute the same dwell/pass-
through activity is always kept if neither of them is relevant to any short-turn activity
(i.e. no short-turning possibility):

ce− ce′ = 0, (e,e′) ∈ Astation,e ∈ Ear\E turn
ar ,e′ ∈ Ede\E turn

de , (5.9)

where the set of station activities Astation = Adwell∪Apass. Recall that E turn
ar (E turn

de ) is the
set of arrival (departure) events that are the tails (heads) of short-turn activities. The
tail (head) of an activity a is the event that a starts from (points to).

5.4.3.4 Breaking operation consistency for trains with short-turning possibilities

If a train is short-turned at a station, the operation consistency of its arrival and de-
parture events at the station must be broken. For example in Figure 5.6 where section
E-F is completely blocked and five possible short-turn activities (grey arcs) are created
between trains tr1 and tr2. If possible the short-turn activity at station D is selected, then
for train tr1 the arrival event e1 must be kept while the departure event e′1 must be can-
celled, and for train tr2 the arrival event e2 must be cancelled while the departure event
e′2 must be kept. In this case, e1 ∈ E turn

ar ,e′1 ∈ Ede\E turn
de , and e2 ∈ Ear\E turn

ar ,e′2 ∈ E turn
de .

A

B

C

D

E

F

G

2tr

1tr 3tr

2e

2e
1e 1e

Figure 5.6: Example of short-turning options under one single disruption
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To decide whether to break the operation consistency of such two events e and e′ that
form a station activity and only one of them has a short-turning possibility, the follow-
ing constraints are established:

ce ≤ ce′, (e,e′) ∈ Astation,e ∈ E turn
ar ,e′ ∈ Ede\E turn

de , (5.10)

ce′ ≤ ce + ye, (e,e′) ∈ Astation,e ∈ E turn
ar ,e′ ∈ Ede\E turn

de , (5.11)

ce′ ≥ ye, (e,e′) ∈ Astation,e ∈ E turn
ar ,e′ ∈ Ede\E turn

de , (5.12)

ce′ ≤ ce, (e,e′) ∈ Astation,e ∈ Ear\E turn
ar ,e′ ∈ E turn

de , (5.13)

ce ≤ ce′+ ye′, (e,e′) ∈ Astation,e ∈ Ear\E turn
ar ,e′ ∈ E turn

de , (5.14)

ce ≥ ye′, (e,e′) ∈ Astation,e ∈ Ear\E turn
ar ,e′ ∈ E turn

de , (5.15)

where ye is a binary decision variable with value 1 indicating that station ste is chosen
as the short-turn station of train tre, and 0 otherwise. If station ste is not chosen as
the short-turn station of arriving train tre (i.e. ye = 0), then constraints (5.10) and
(5.11) ensure that the operation consistency of events e and e′ are kept; otherwise,
constraint (5.12) requires event e′ that does not have a short-turning possibility to be
cancelled. Constraints (5.13) - (5.15) are similar but consider the different case where
the departure event e′ has a short-turning possibility while the arrival event e does not.

A train could be affected by two or more disruptions such as train tr2 shown in Fig-
ure 5.7 where another section B-C is also disrupted. In this case, more short-turning
activities are created due to the extra disruption, and in particular events e2 and e′2 both
have short-turning possibilities, e2 ∈ E turn

ar ,e′2 ∈ E turn
de , but at most one of them will

make it.

2e

2e

A

B

C

D

E

F

G

2tr

1tr 3tr

1e 1e 3e
3e

Figure 5.7: Example of short-turning options under two connected disruptions
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To decide whether to break the operation consistency of such two events e and e′ that
form a station activity and both of them have short-turning possibilities, the following
constraints are established:

ce− ce′ = ye′− ye, (e,e′) ∈ Astation,e ∈ E turn
ar ,e′ ∈ E turn

de , (5.16)

ye + ye′ ≤ 1, (e,e′) ∈ Astation,e ∈ E turn
ar ,e′ ∈ E turn

de , (5.17)

ce′ ≥ ye, (e,e′) ∈ Astation,e ∈ E turn
ar ,e′ ∈ E turn

de , (5.18)

ce ≤ 1− ye, (e,e′) ∈ Astation,e ∈ E turn
ar ,e′ ∈ E turn

de , (5.19)

ce ≥ ye′, (e,e′) ∈ Astation,e ∈ E turn
ar ,e′ ∈ E turn

de , (5.20)

ce′ ≤ 1− ye′, (e,e′) ∈ Astation,e ∈ E turn
ar ,e′ ∈ E turn

de , . (5.21)

Constraint (5.16) ensures that if ye and ye′ are both equal to 0, then the operation
consistency of events e and e′ must be kept. Constraint (5.17) requires that at most one
of ye and ye′ can be 1. Constraints (5.18) and (5.19) ensure that if ye = 1 and ye′ = 0,
then event e′ must be cancelled, whereas event e must be kept due to the short-turning.
Constraints (5.20) and (5.21) ensure that if ye = 0 and ye′ = 1, then event e must be
cancelled, whereas event e′ must be kept due to the short-turning.

5.4.3.5 Limiting the short-turning stations for each train

At each side of the ith disrupted section, at least one short-turn station is chosen for a
train if its operation in the disrupted section is cancelled:

∑
e:tre=tr

ye ≥ ce′, tr ∈ TRi
turn,e ∈ E i,turn

ar ,e′ ∈ Ede, tre′ = tr,ste′ = st i,dre′
en ,1≤ i≤ n,

(5.22)

∑
e′:tre′=tr

ye′ ≥ ce, tr ∈ TRi
turn,e

′ ∈ E i,turn
de ,e ∈ Ear, tre = tr,ste = st i,dre

ex ,1≤ i≤ n,

(5.23)

where E i,turn
ar ⊂ E turn

ar (E i,turn
de ⊂ E turn

de ) is the set of arrival (departure) events relevant
to the short-turn activities corresponding to the ith disruption, TRi

turn is the set of
trains corresponding to the events in E i,turn

ar ∪E i,turn
de , and st i,dre′

en (st i,dre
ex ) represents the

entry (exit) station of the ith disrupted section in direction dre′ (dre ). In (5.22) and
(5.23), we use “≥” instead of “=” because the short-turn activities relevant to one train
could correspond to different disruptions. In other words, it is possible that an event
e ∈ E i,turn

ar ∩E j,turn
ar (or e′ ∈ E i,turn

de ∩E j,turn
de ), while i 6= j,1 ≤ i, j ≤ n. For example in

Figure 5.7, the short-turn activity from train tr2 to train tr1 at station F corresponds
to the first disruption and also corresponds to the second disruption as an early short-
turning. In this case, the arrival event of train tr2 at station F must belong to both E1,turn

ar
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and E2,turn
ar , and the departure event of train tr1 at station F must belong to both E1,turn

de
and E2,turn

de .

At one side of all disrupted sections, the number of short-turn stations chosen for a
train cannot be larger than the number of its departure (arrival) events that originally
occur at the entry (exit) stations of these disrupted sections but were cancelled.

∑
e:tre=tr

ye ≤∑
e′

ce′, tr ∈ TRturn,e ∈ E turn
ar ,e′ ∈ Ede, tre′ = tr,ste′ ∈ STdre′

en ,1≤ i≤ n,

(5.24)

∑
e′:tre′=tr

ye′ ≤∑
e

ce, tr ∈ TRturn,e′ ∈ E turn
de ,e ∈ Ear, tre = tr,ste ∈ STdre

ex ,1≤ i≤ n,

(5.25)

where STdre′
en =

⋃n
i=1 st i,dre′

en and STdre
ex =

⋃n
i=1 st i,dre

ex . Constraint (5.24) ensures that at
one side of all disrupted sections, the number of short-turn stations chosen for train
tr is not larger than the number of its departure events that originally occurred at the
entry stations of the disrupted sections but were cancelled. Constraint (5.25) ensures
that at the other end of all disrupted sections, the number of short-turn stations chosen
for train tr is not larger than the number of its arrival events that originally occurred at
the exit stations of these disrupted sections but were cancelled.

5.4.3.6 Selecting short-turn activities

For each train, at most one short-turn activity will be selected at a short-turn station.
This is formulated by

∑
a∈Aturn,

tail(a)=e

ma = ce′− ce,
(
e,e′
)
∈ Astation,e ∈ E turn

ar ,e′ ∈ Ede\E turn
de , (5.26)

∑
a∈Aturn,

head(a)=e′

ma = ce− ce′,
(
e,e′
)
∈ Astation,e ∈ Ear\E turn

ar ,e′ ∈ E turn
de , (5.27)

∑
a∈Aturn,

tail(a)=e

ma = ce′− ce + ye′,
(
e,e′
)
∈ Astation,e ∈ E turn

ar ,e′ ∈ E turn
de , (5.28)

∑
a∈Aturn,

head(a)=e′

ma = ce− ce′+ ye,
(
e,e′
)
∈ Astation,e ∈ E turn

ar ,e′ ∈ E turn
de . (5.29)

where ma is a binary decision with value 1 indicating that the short-turn activity a is
selected. Constraints (5.26) and (5.27) are for the cases where a train is affected by
one disruption only, while constraints (5.28) and (5.29) are for the cases where a train
is affected by two or more disruptions. In (5.28), it may happen that ce′ = 0 and ce = 1,
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which makes ce′ − ce = −1 while the left term of this equality must be non-negative.
Considering this, ye′ is added to the right side, of which the value must be 1 in this case
due to constraints (5.16) and (5.18). A similar reasoning is applied for adding ye to the
right side of (5.29).

If a short-turn activity is selected, the minimum short-turn duration must be respected,
which is formulated by

M1ce +2D(1−ma)+ xe′− xe ≥ maLa, a = (e,e′) ∈ Aturn, (5.30)

where Aturn is the set of all possible short-turn activities, and La represents the min-
imum duration required for short-turn activity a. If a short-turn activity a ∈ Aturn is not
selected (i.e. ma = 0) while event e is not cancelled (i.e. ce = 0), 2D is added to xe′ to
make constraint (5.30) still feasible, as xe′ could be smaller than xe. In this case, 2D
is sufficient enough to make (5.30) feasible according to the definition of a short-turn
activity given in Section 5.4.1.

5.4.3.7 Respecting realized train services

Recall that the current emerging disruption is the nth disruption (n≥ 2) starting at time
tn
start. Then, each departure or arrival event e that has occurred before tn

start must be
respected:

ce = 0, e ∈ Ear∪Ede,re < tn
start,n≥ 2, (5.31)

xe− re = 0, e ∈ Ear∪Ede,re < tn
start,n≥ 2, (5.32)

where re is a known value that refers to the previous rescheduled time of event e. Be-
sides, each departure or arrival event e of which the previous rescheduled time re was
after tn

start cannot be rescheduled to before tn
start in the current rescheduling procedure:

xe ≥ tn
start, e ∈ Ear∪Ede,re ≥ tn

start,n≥ 2. (5.33)

5.4.3.8 Station capacity

Each arriving train must be assigned with a track to stop at or pass through a station,
and the track has to be a platform track if the train stops at the station. These are
formulated by

∑
N p

ste
i=1 ue,i +∑

Nth
ste

j=1 ve, j = 1− ce, e ∈ Ear, (5.34)

∑
N p

ste
i=1 ue,i ≥ 1− sa− ce− ce′ e ∈ Ear,a = (e,e′) ∈ Astation, (5.35)

∑
N p

ste
i=1 ue,i ≥ ∑

a∈Aturn,
tail(a)=e

ma e ∈ E turn
ar , (5.36)

∑
N p

ste
i=1 ue,i = 1− ce, e ∈ Eodturn

ar , (5.37)
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where ue,i (ve, j) is a binary variable with value 1 indicating that train tre occupies the ith
( jth) platform (pass-through) track at station ste and 0 otherwise, N p

ste (Nth
ste) represents

the number of platform (pass-through) tracks at station ste, and sa is a binary variable
to realize adding stops. A station activity a= (e,e′)∈ Astation corresponds to a true stop
(either a kept scheduled stop or an added stop), if and only if sa = 0,ce = 0 and ce′ = 0.
For the constraints of determining sa we refer to Chapter 3. Constraint (5.34) requires
one station track to be assigned to an arriving train tre if event e is not cancelled. A
platform track must be assigned to an arriving train tre if 1) it stops at the station
((5.34) and (5.35)); 2) it short-turns at the station ((5.34) and (5.36)); or 3) it reaches
the destination ((5.34) and (5.37)). Eodturn

ar is the set of arrival events that occur at the
destinations and thus the corresponding rolling stock turns to operate the trains in the
opposite directions. For the details of Eodturn

ar we refer to Chapter 3.

If two trains occupy the same track of a station, there must be a minimum time interval
to be respected between their occupations. In other words, the arrival of a train has
to be a certain time later than the departure of another train that uses the same station
track earlier. This is formulated by

xe′− xe′′ ≥ he,e′+M2
(
qe,e′− ce− ce′− ce′′+ue,i +ue′,i−3

)
,

e,e′ ∈ Ear,ste′ = ste,(e,e′′) ∈ Astation,
(5.38)

xe′− xe′′ ≥ he,e′+M2
(
qe,e′− ce− ce′− (1−ma)+ue,i +ue′,i−3

)
,

e,e′ ∈ Ear,ste′ = ste,a = (e,e′′) ∈ Aturn∪Aodturn,
(5.39)

xe′− xe′′ ≥ he,e′+M2
(
qe,e′− ce− ce′− ce′′+ ve, j + ve′, j−3

)
,

e,e′ ∈ Ear,ste′ = ste,(e,e′′) ∈ Astation,
(5.40)

xe′− xe′′ ≥ he,e′+M2
(
qe,e′− ce− ce′− (1−ma)+ ve, j + ve′, j−3

)
,

e,e′ ∈ Ear,ste′ = ste,a = (e,e′′) ∈ Aturn∪Aodturn,
(5.41)

where M2 is a large positive number set to twice of M1, he,e′ is a given parameter
representing the minimum time interval required between the occurring times of e and
e′ if corresponding to trains occupying the same station track, and qe,e′ is a binary
variable with value 1 indicating that event e occurs before event e′ and 0 otherwise.
For the constraints of determining qe,e′ we refer to Chapter 3, as well as the set Aodturn

that contains all OD turn activities. Constraint (5.38) means that if arrival event e
occurs before arrival event e′ (i.e. qe,e′ = 1), events e,e′ and e′′ are all not cancelled
(i.e. ce = 0,ce′ = 0 and ce′′ = 0) and both events e and e′ occupy the same platform
track (i.e. ue,i = 1, and ue′,i = 1), then event e′ must occur at least he,e′ later than the
departure event e′′ in the station activity corresponding to e. Constraint (5.39) means
that if arrival event e occurs before arrival event e′ (i.e. qe,e′ = 1), events e and e′ are
both not cancelled (i.e. ce = 0 and ce′ = 0), the short-turn (OD turn) activity a relevant
to e is selected (i.e. ma = 1), and both events e and e′ occupy the same platform
track (i.e. ue,i = 1 and ue′,i = 1), then event e′ must occur at least he,e′ later than the
departure event e′′ in the short-turn (OD turn) activity corresponding to e. Constraint
(5.40) ((5.41)) is similar to (5.38) ((5.39)), but considers a pass-through track.
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5.5 Rolling horizon solution method

The multiple-disruption rescheduling model can be solved to optimality or near-optimality,
if the disruption durations are not long (e.g. 2-hour disruptions). However in some dis-
ruption scenarios, a solver may not find high-quality solutions in an acceptable time
if the disruption durations become rather long (e.g. 6-hour disruptions). Therefore,
we propose a rolling-horizon solution method to the multiple-disruption model, which
considers the periodic pattern of the rescheduled train services in the second phase of
a disruption to speed up the computation.

A disruption consists of three phases: the 1st phase from the planned timetable transit-
ing to the disruption timetable, the 2nd phase where the disruption timetable is in use,
and the 3rd phase from the disruption timetable recovering to the planned timetable
(Ghaemi et al., 2017b). A periodic short-turning/cancelling pattern exists among the
rescheduled train services in the 2nd phase, due to the periodicity of the planned
timetable (Chapter 3). That means, for example, if a train is short-turned at station
A then another train that serves the same train line in a later period will be short-turned
at the same station as well. Taking such a periodic pattern into account is helpful
to release the computational burden by first obtaining the pattern considering a relat-
ively short time horizon and then applying this pattern to the following train services
gradually over time. How often the pattern will repeat varies with train lines. It is ob-
served that for the train lines that are only affected by one disruption the length of the
period is equal to the cycle time of the planned timetable, while for the train lines that
are affected by at least two disruptions the period of the disruption solution may take
longer than the planned cycle time and varies with disruption scenarios. An example
is given in Figure 5.8, where (a) shows that a train line is planned to operate between
station A and station F periodically, (b) shows that the rescheduled train services due
to one disruption have a periodic pattern and the length of the period is the same as
the planned cycle time, and (c) shows that the rescheduled train services due to two
disruptions also have a periodic pattern but the length of the period could be much
longer than the planned cycle time. Note that the length of the period may be further
increased by increasing the short-turning durations to reflect the possible lower passen-
ger demand. The dotted (dashed) lines in Figure 5.8(b) and (c) represent the original
train services that are delayed (cancelled) in the rescheduled timetable, and the red arcs
refer to the short-turning activities. In Figure 5.8(b) and (c), train services are delayed
to respect the minimum short-turning durations, and all train services that were origin-
ally planned to operate in the disrupted sections are cancelled. Also in Figure 5.8(c),
some train services from station C to station E are cancelled (the thick dashed lines),
because they can only be kept if delayed by one planned cycle time to be operated by
the rolling stock of the previous short-turned train, but another train service belonging
to the same train line will already operate at that time.
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Periodic pattern

Periodic pattern

(a) Planned train services

(b) Rescheduled train services that are affected by one disruption

(c) Rescheduled train services that are affected by two disruptions
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Figure 5.8: Illustration of the periodic pattern of train services

The rolling-horizon method divides the time horizon, from the starting time of a new
connected disruption until the latest ending time among all connected disruptions, into
successive stages. For the train lines that are only affected by one disruption, the peri-
odic pattern is computed at stage 1, which is applied to the corresponding train services
in the following stages. For the train lines that are affected by at least two disruptions,
no periodic pattern will be computed at stage 1, because as explained before the length
of the corresponding period varies with disruption scenarios and thus determining the
pattern with an assumed length may affect the solution quality. Therefore, the train
services corresponding to these train lines are rescheduled at each stage from scratch.

An illustration of the rolling-horizon method is given in Figure 5.9, while the de-
tails are given in Algorithm 5.1. The notation used in the algorithm is listed in Ap-
pendix 5.B. Algorithm 5.1 needs the following inputs: the set of ongoing disruptions
DIS = {1, · · · ,n}, the starting (ending) time t i

start (t i
end) of the ith disruption, the set

TLi
dis,1 containing the train lines that are only affected by the ith disruption, the set STtl

containing the planned stopping and passage stations of train line tl ∈ TLi
dis,1, the length

of a disruption hr considered at a stage, and the maximum allowed delay per event D.
All ongoing disruptions in DIS are sorted in ascending order according to their starting
times, and the nth disruption is the emerging disruption. The setting of hr affects the
solution quality as well as the computation time. The value of hr is set to at least big-
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ger than D. A larger hr may lead to a better solution but meanwhile could cost longer
computation time. The influence of hr on a solution is investigated in Section 5.6.3.

Algorithm 5.1: A rolling-horizon solution method to the multiple-disruption
timetable rescheduling model

Input: DIS = {1, · · · ,n} ,
{(

t i
start, t

i
end,TLi

dis,1

)}
i∈DIS

,{STtl}tl∈TLi
dis,1

,hr,D

Output: The rescheduled timetable for n connected disruptions
1 k = 1 ; // Stage 1

2 DISk = {1, · · · ,nk} ,nk = n;
3 t̃k

start = tnk
start, i ∈ DISk;

4 t̃ i,k
end = min

{
t̃k
start +hr, t i

end
}
, i ∈ DISk;

5 Solve the multiple-disruption model considering the ith disruption with duration
[
t̃k
start, t̃

i,k
end

]
, i ∈ DISk to

obtain the set of the cancelled events Ek
cancel;

6 Ear
cancel = /0,Ear

keep = /0; // Extract the periodic pattern (lines 6-20)

7 for i = 1 : nk do
8 foreach tl ∈ TLi

dis,1 do

9 Define Etl,i
ar =

{
e
∣∣∣e ∈ Ear, tle = tl, t̃k

start ≤ oe ≤ t̃ i,k
end, t̃

i,k
end < t i

end

}
;

10 foreach st ∈ STtl do
11 Define Est,tl,i

ar =
{

e
∣∣∣e ∈ Etl,i

ar ,ste = st
}

;

12 Find e′ = argmin
{

oe′ : e′ ∈ Est,tl,i
ar

}
;

13 if e′ ∈ Ek
cancel then

14 Ear
cancel = Ear

cancel
⋃

e′;

15 else
16 Find e′′ = argmin

{
oe′′ : e′′ ∈ Est,tl,i

ar \e′
}

;

17 if e′′ ∈ Ek
cancel then

18 Ear
cancel = Ear

cancel
⋃

e′′;

19 else
20 Ear

keep = Ear
keep

⋃
e′′;

21 Remove the ith disruption from DISk if t̃ i,k
end = t i

end, i ∈ DISk, and then update the number of the
remainder disruptions as nk+1 and define DISk+1 = {1, · · · ,nk+1};

22 while nk+1 ≥ 1 do
23 k = k+1 ; // Stage 2 and onwards

24 t̃k
start = t̃ j,k−1

end −D, i ∈ DISk, j corresponds to the sequence of the current ith disruption at the
previous stage;

25 t̃ i,k
end = min

{
t̃k
start +hr, t i

end
}
, i ∈ DISk;

26 for i = 1 : nk do // Determine the events that will follow the pattern
(lines 26-30)

27 foreach tl ∈ TLi
dis,1 do

28 Define Etl,i,k
fix =

{
e
∣∣∣e ∈ Ear, tle = tl, t̃k

start ≤ oe ≤ t̃ i,k
end−D

}
;

29 Define Etl,i,k
cancel =

{
e
∣∣∣e ∈ Etl,i,k

fix ,e′ ∈ Ear
cancel, tle = tle′ ,ste = ste′ ,dre = dre′ ,

}
;

30 Define Etl,i,k
keep =

{
e
∣∣∣e ∈ Etl,i,k

fix ,e′ ∈ Ear
keep, tle = tle′ ,ste = ste′ ,dre = dre′ ,

}
;

31 Add constraints
{

ce = 1,e ∈
⋃

i∈DISk Etl,i,k
cancel

}
to the multiple-disruption model; // Apply the

pattern

32 Add constraints
{

ce = 0,e ∈
⋃

i∈DISk Etl,i,k
keep

}
to the multiple-disruption model; // Apply the

pattern
33 Solve the multiple-disruption model considering the ith disruption with duration[

t̃k
start, t̃

i,k
end

]
, i ∈ DISk;

34 Remove the ith disruption from DISk if t̃ i,k
end = t i

end, i ∈ DISk, and then update the number of the
remainder disruptions as nk+1 and define DISk+1 = {1, · · · ,nk+1};

35 Return the rescheduled timetable obtained at final stage k; // Terminate
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Algorithm 5.1 is called every time a new connected disruption occurs. The algorithm
starts in stage 1 by defining the set of ongoing disruptions at the current stage as DIS1

where the number of ongoing disruptions n1 is set to the value n (lines 1-2). For each
disruption i ∈ DIS1, the starting time t̃1

start considered at stage 1 is set to equal to the
starting time of the emerging disruption (line 3), while the ending time t̃ i,1

end considered
at stage 1 is set to the minimal value among t̃1

start +hr and t i
end, where in the latter case

t̃1
start + hr is larger than the ending time of the disruption t i

end (line 4). The multiple-
disruption model is solved considering that each disruption i lasts from t̃1

start to t̃ i,1
end

to obtain the set E1
cancel containing all cancelled events at stage 1 (line 5). Note that

at stage 1 (and at each following stage), the rescheduling solution is computed until
the normal schedule has been recovered. Based on E1

cancel, the periodic pattern of the
rescheduled train services is obtained into two sets, Ear

cancel and Ear
keep, which include

the representative arrival event e at each stopping/passage station st ∈ STtl of train line
tl ∈ TLi

dis,1, of which the determined cancellation decision ce should be followed by
the same kind of event in the following periods (lines 6-20). Recall that any arrival
and departure events that constitute the same running activity are cancelled or kept
simultaneously due to constraint (5.8), which is why only Ear

cancel and Ear
keep are defined.

: time-distance disruption window Stage 1

Stage 2

Stage 3

Time

Stage 4

rh

rh

rh

D
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1

startt

1

startt
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endt
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kt : the starting time of each disruption 
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,

end

i kt : the ending time of the ith disruption

  considered at stage k

start

it : the starting time of the ith disruption

end

it : the ending time of the ith disruption

1

startt

Figure 5.9: Illustration of the rolling-horizon solution method with two connected
disruptions: the method is called when the 2nd disruption occurs

Before Algorithm 5.1 proceeds to the next stage k+1, the disruption of which the total
duration has been considered completely in the current stage will be excluded from the
ongoing disruptions of which the number is then updated as nk+1 (line 21). If there is
at least one disruption remaining (line 22), then the algorithm will proceed to the next
stage (line 23). For each disruption i∈DISk at the current stage, the considered starting
time t̃k

start is set to its previous considered ending time minus the maximum allowed
delay per event D (line 24). Recall that the previous considered ending time t̃ j,k−1

end is
the previous considered starting time t̃k−1

start plus hr (see line 4) while hr is set larger
than D. In that sense, t̃k

start = t̃ j,k−1
end −D is equivalent to t̃k

start = t̃k−1
start +hr−D, in which

hr −D is always positive. Note that a disruption of which the previous considered
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duration is smaller than hr has already been removed from the ongoing disruptions
before proceeding to the current stage (see line 21), and is not considered at the current
stage, nor any following stages. Setting the considered starting time at the current
stage as in line 24 avoids unnecessary train delays/cancellations due to the recovery
phase at the previous stage. This is explained in Figure 5.10 where case (a) is the
example of setting the starting time of a disruption considered at stage k to its ending
time considered at stage k−1, and case (b) is the example of setting the starting time
of a disruption considered at stage k to its ending time considered at stage k−1 minus
D. As the train departures/arrivals to be rescheduled at the current stage cannot occur
before the start time of this stage (the ones outside the blue shadow), two train services
(the thick lines) are delayed longer in case (a) than in case (b).

A

B

C

D

A

B

C

D

E

A

B

C

D

E

E

A

B

C

D

E

D

D

start

kt
start

kt

Stage k-1

Stage k

, 1

end

i kt 
, 1

end

i kt 

(a) Set the starting time of each disruption considered at 

stage k to its ending time considered at stage k-1

(b) Set the starting time of each disruption considered at stage k 

to its ending time considered at stage k-1 minus D

-1

start

kt -1

start

kt

,

end

i kt ,

end

i kt

Figure 5.10: Two examples of setting the starting time of a disruption considered at a
stage (case (b) is used by the rolling-horizon approach)

The ending time of a disruption considered at the current stage is set in the same way
as introduced before (line 25). Recall that only the periodic pattern of the train lines
that are affected by one disruption is computed. Thus for each disruption i, we iterate
over the train line tl ∈ TLi

dis,1 that is only affected by the ith disruption to define the

set Etl,i,k
fix , which includes the events that should follow the determined periodic pattern

of train line tl at the current stage k. The set Etl,i,k
cancel ⊆ Etl,i,k

fix (Etl,i,k
keep ⊆ Etl,i,k

fix ) that
includes the events that should be cancelled (kept) at the current stage k is defined
according to Ear

cancel (Ear
keep) (lines 26-30). Etl,i,k

fix does not contain the events that were
originally planned to occur during the recovery phase of a disruption, in which the
periodic pattern may not be applicable. A recovery phase may start at D minutes
before the disruption ending time due to constraints (5.6) and (5.7), in which a train
can be delayed to the end of a disruption rather than short-turned at a station before the
blocked tracks like the similar trains in the previous periods (as Figure 5.10 shows).
The constraints that demand the events in

⋃
i∈DISk Etl,i,k

cancel (
⋃

i∈DISk Etl,i,k
keep ) to be cancelled
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(kept) are added to the multiple-disruption model, which is then solved considering that
each disruption i lasts from t̃k

start to t̃ i,k
end (lines 31-33). Next, the disruption of which the

total duration has been completely considered at the current stage will be excluded
(line 34). If there is at least one disruption remaining, the algorithm proceeds to the
next stage. Otherwise, the algorithm terminates by returning the rescheduled timetable
obtained at the final stage (line 35).

5.6 Case study

We tested the model on a subnetwork of the Dutch railways. There are 38 stations
located in this network with 10 train lines operating half-hourly in each direction. The
train lines operating in the network are shown in Figure 5.11. We distinguish between
intercity (IC) and local (called sprinter (SPR) in Dutch) train lines. In the model, trains
turning at the terminals to operate the opposite operations (i.e. OD turnings) are taken
into account. Table 5.1 lists the terminals of the train lines that are located in the
considered network, while the terminals outside the considered network are neglected.
The model was developed in MATLAB on a desktop with Intel Xeon CPU E5-1620
v3 at 3.50 GHz and 16 GB RAM. The solver GUROBI release 7.0.1 was used either
to solve the model directly or called by the rolling-horizon method to solve the model
gradually over time.
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Figure 5.11: The train lines operating in the considered network
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Table 5.1: Train lines in the considered network

Train line Terminals in the considered network

IC800 Maastricht (Mt)
IC1900 Venlo (Vl)
IC3500 Heerlen (Hrl)
SPR6400 Eindhoven (Ehv) and Wt
SPR6800 Roermond (Rm)
SPR6900 Sittard (Std) and Hrl
SPR9600 Ehv and Dn
SPR32000 —
IC32100 Mt and Hrl
SPR32200 Rm

The schematic track layout of the considered network is shown in Figure 5.12 where
stations Tg, Rv and Sm are located on single-track railway lines while the others are
located on double-track railway lines. Due to the infrastructure layouts, some stations
do not allow short-turning trains that operate in a specific direction or even both dir-
ections. In Figure 5.12, the stations that prohibit short-turning trains to both sides are
colored in full grey, the stations that allow short-turning trains to both sides are colored
in full green, and the stations that allow (prohibit) short-turning trains to one side are
colored in half green (grey).
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WtMzHzeEhv
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Srn
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Gln Sbk Sn Nh
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VkSglMes

Mtn

Lut

Bk

Bde

Mt

Gp

Stations allowing short-turning to both directions

Stations allowing short-turning to one direction (the green side)

Stations prohibiting short-turning to both directions

Figure 5.12: The schematic track layout in the considered network

We set the minimum duration required for short-turning or OD turning to 300 s, the
minimum duration required for each headway to 180 s, and the penalty of cancelling
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a service to 100 min. Recall that a service refers to a train run between two adjacent
stations. The maximum delay allowed for a train departure or arrival event e ∈ Ear∪
Ede\ENMdelay is set to 25 min. This is because we use a periodic planned timetable that
has a cycle time of 30 min. Under this circumstance, delaying a train arrival/departure
by 30 min might be unnecessary since at that time there will be a same kind of train
departure/arrival originally scheduled. We allow extra stops to be added, considering
that a train may dwell at a station where it originally passes through to wait for the
platform capacity to be released in a downstream station where it will be short-turned.
The minimum dwell time of an extra stop is set to 30 s.

In the following, Section 5.6.1 explores the performance of the sequential and com-
bined approaches on two connected disruptions occurring in different locations. Each
of the two disruptions is considered to last for 2 hours approximately, and their dur-
ations are almost fully overlapped. Section 5.6.2 investigates whether and how the
length of the overlapping duration would affect the performance of the sequential and
combined approaches. Section 5.6.3 analyzes the performance of the proposed rolling-
horizon solution method when dealing with two connected disruptions with longer
durations.

5.6.1 Multiple connected disruptions occurring in different sec-
tions

Table 5.2: Characteristics of scenarios 1-32

Scenario
First Second

Scenario
First Second

disruption disruption disruption disruption
1 Bk - Lut Rm - Wt 17 Hze - Gp Bk - Lut
2 Bk - Lut Wt - Mz 18 Hze - Gp Lut - Std
3 Bk - Lut Gp - Ehv 19 Hze - Gp Mt - Bde
4 Bk - Lut Hze - Gp 20 Hze - Gp Srn -Ec
5 Lut - Std Rm - Wt 21 Rm - Wt Bk - Lut
6 Lut - Std Wt - Mz 22 Rm - Wt Lut - Std
7 Lut - Std Gp - Ehv 23 Rm - Wt Mt - Bde
8 Lut - Std Hze - Gp 24 Rm - Wt Srn -Ec
9 Mt - Bde Rm - Wt 25 Wt - Mz Bk - Lut
10 Mt - Bde Wt - Mz 26 Wt - Mz Lut - Std
11 Mt - Bde Gp - Ehv 27 Wt - Mz Mt - Bde
12 Mt - Bde Hze - Gp 28 Wt - Mz Srn -Ec
13 Srn -Ec Rm - Wt 29 Gp - Ehv Bk - Lut
14 Srn -Ec Wt - Mz 30 Gp - Ehv Lut - Std
15 Srn -Ec Gp - Ehv 31 Gp - Ehv Mt - Bde
16 Srn -Ec Hze - Gp 32 Gp - Ehv Srn -Ec
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We establish 32 scenarios where each has two complete blockages occurring in dif-
ferent sections as shown in Table 5.2. For each scenario, we consider that the first
disruption starts at 8:06 and ends at 10:06, while the second disruption starts at 8:12
and ends at 10:16. Both disruptions are connected by at least one train line. Consid-
ering the real-time requirement for computation, we set 300 s as the upper time limit
to get a solution from either the sequential approach or the combined approach by a
solver. Table 5.3 shows the results of handling scenarios 1-32 by both sequential and
combined approaches.

In Table 5.3, the objective value, the number of cancelled services, the total train delay,
the computation time, and the optimality gap are indicated for each solution obtained
by either approach for each scenario. Recall that a service refers to a train run between
two adjacent stations. For each solution, the optimality gap is the difference between
the current best integer objective (i.e. the upper bound) and the current lower objective
bound of the solution divided by the upper bound. We use “↓” to highlight the cases
where smaller values were obtained in the objectives, the numbers of cancelled ser-
vices, and the total train delays by the combined approach (compared to the sequential
approach), while using “↑” to highlight the cases where larger values were obtained.
In terms of objective values, the combined approach generated the solutions that were
at least as good as the sequential approach. In 20 of 32 scenarios, the combined ap-
proach generated better solutions that resulted in less cancelled services and/or less
train delays. For example in scenarios 1 and 5, the combined approach reduced both
cancelled services and train delays. In some scenarios, it cancelled less services at the
expense of introducing more train delays (e.g. scenarios 3); while in one scenario (i.e.
scenario 4), it resulted in less train delays at the expense of cancelling more services.

Under the computation time limit of 300 seconds, the combined approach found op-
timal solutions for 30 of 32 scenarios, and high-quality solutions with an optimality
gap of less than 0.60% for the other two scenarios. Scenarios 1 and 5 are the hardest to
solve, which are the two cases resulting in less cancelled services and less train delays
at the same time. This is due to the wider search spaces in both scenarios, helping to
find better solutions but costing more computation times. The size of the search space
is relevant to the location of each disruption. Compared to the combined approach,
the sequential approach took less times to compute optimal solutions, which however
cannot find feasible solutions for scenarios 13 and 24 where the disrupted sections are
the same though the sequence of the occurrence is the other way around. In both scen-
arios, some services that were required to be cancelled when handling the first disrup-
tion cannot be cancelled when handling the second disruption, due to the starting times
and locations of both disruptions. This is in conflict with that the sequential approach
relies on the previous cancellation decisions, and thus leads to infeasible solutions.

Using scenario 5 as an example, we show the time-distance diagrams of rescheduling
solutions obtained by the sequential and combined approaches. The 1st rescheduled
timetable corresponding to the 1st disruption obtained by the sequential or combined
approach is the same, which is shown in Figure 5.13. The solid lines represent the res-
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cheduled services, the dotted (dashed) lines represent the original scheduled services
that are delayed (cancelled) in the rescheduled timetable, and the red triangles indic-
ate extra stops. Due to the infrastructure layout, station Lut prohibits short-turning
the trains coming from station Bk, which is why these trains short-turn earlier at sta-
tion Bk. As station Bk has two tracks only, a minimum headway has to be respected
between the arrival of a train and the departure of another train that previously arrives
at station Bk from the same direction. Thus, three trains from SPR6800 (in dark blue)
have to be delayed at station Bde to respect the minimum headway between their ar-
rivals and the departures of previous arriving trains from IC800 (in orange) at station
Bk. The similar reasoning is applied for the extra stops and delays happening to three
trains from IC800 (in orange) at station Bde.

IC800

IC3500

SPR6400

SPR6800

Figure 5.13: The 1st rescheduled timetable obtained by the sequential/combined ap-
proach for scenario 5: from Eindhoven (Ehv) to Maastricht (Mt)

IC800

IC3500

SPR6400

SPR6800

Figure 5.14: The 2nd rescheduled timetable obtained by the sequential approach for
scenario 5: from Eindhoven (Ehv) to Maastricht (Mt)
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The 2nd rescheduled timetable obtained by the sequential approach is shown in Fig-
ure 5.14. Compared to Figure 5.13, there are more train services from IC800 (in or-
ange) cancelled between stations Std and Rm in Figure 5.14. This is because trains
from IC800 (in orange) have to be short-turned at station Rm due to the emerging
disruption (disrupted section Rm-Wt), which however may be inoperable due to their
short-turnings at station Std. An earlier short-turning is observed at station Srn between
trains from IC800 (in orange). This is because if this short-turning occurs at station
Rm instead, although there would be four services cancelled less, the resulting train
delays are more than the penalty on cancelling four services. At the top of the dis-
rupted section Rm-Wt, four trains from IC3500 (in pink) additionally dwell at station
Mz. This is because station Wt has four tracks while only two of them are alongside
platforms. Thus, each of these four trains from IC3500 (in pink) has to wait at station
Mz to ensure the headway between its arrival and the departure of a short-turned train
from SPR6400 (in light blue) at station Wt where a train from IC800 (in orange) is
still occupying another platform at that time. At station Wt, the departures of four up-
stream trains from IC800 (in orange) are delayed more than necessary. This is because
in the sequential approach, the delaying decisions made for the previous disruption are
kept. Hence, the adjusted arrival and departure times from the previous step are now
the reference timetable, while early arrivals/departures are not allowed, which now is
with respect to this timetable.

IC800

IC3500

SPR6400

SPR6800

Figure 5.15: The 2nd rescheduled timetable obtained by the combined approach for
scenario 5: from Eindhoven (Ehv) to Maastricht (Mt)

The 2nd rescheduled timetable obtained by the combined approach is shown in Fig-
ure 5.15 where different short-turning patterns of trains from IC800 (in orange) are
observed. For example in Figure 5.15 trains from IC800 (thick solid lines in orange)
were short-turned at station Rm around 10:10 instead of at station Srn around 10:15 as
in the sequential approach (Figure 5.14) in which four more services were cancelled
(thick dashed lines in orange). With the combined approach (Figure 5.15), four up-



152 Passenger-Oriented Timetable Rescheduling

stream trains from IC800 between Wt and Ehv (thick solid lines in orange) were less
delayed than when using the sequential approach (Figure 5.14).

From these results it is concluded that the combined approach is able to handle more
kinds of multiple-disruption scenarios and find better solutions than the sequential ap-
proach in some cases. This is because the combined approach does not rely on pre-
viously taken decisions, thus having a wider search space that helps to find a better
solution but also costs longer computation time.

5.6.2 Multiple connected disruptions with different overlapping
durations

Section 5.6.1 considers two disruptions that last for around 2 hours, respectively, and
the overlapping duration is 1 hour and 54 minutes (almost fully overlapping). To ex-
plore whether the length of the overlapping duration affects the performance of the
combined approach and the corresponding computation time, this sections considers
two disruptions that have the same durations as in Section 5.6.1 but are overlapping
to different extents. Several instances differing in the overlapping durations are estab-
lished as shown in Table 5.4, in which instance * represents the duration setting used
in Section 5.6.1.

Table 5.4: Two disruptions with different lengths of overlapping durations

Instance
First disruption Second disruption Total disruption duration Overlapping duration

period period (in HH:MM format) (in HH:MM format)
* [8:06,10:06] [8:12,10:16] 02:00 + 02:04 01:54
a [8:06,10:06] [8:32,10:36] 02:00 + 02:04 01:34
b [8:06,10:06] [8:52,10:56] 02:00 + 02:04 01:14
c [8:06,10:06] [9:12,11:16] 02:00 + 02:04 00:54
d [8:06,10:06] [9:32,11:36] 02:00 + 02:04 00:34
e [8:06,10:06] [9:52,11:56] 02:00 + 02:04 00:14
f [8:06,10:06] [10:12,12:16] 02:00 + 02:04 00:00

From Table 5.3 we know that compared to the sequential approach, the combined ap-
proach performed much better in scenario 1 , slightly better in scenario 6, and the same
in scenario 9 when considering overlapping duration instance *. Hence, we take scen-
arios 1, 6 and 9 as examples to test whether the performance of the combined approach
would be different when considering different overlapping duration instances in the
same scenario. We implemented instances a-f in these scenarios, and displayed the
results in Table 5.5. The result of implementing instance * on each of these scenarios
has already been shown in Table 5.3, which is also displayed in Table 5.5.
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Table 5.5: Results of considering the duration instances of Table 5.4

Instance
Sequential (solver) Combined (solver)

Obj Gap Time Obj Gap Time Obj
[min] [%] [sec] [min] [%] [sec] decrease

Scenario 1

* 6,286 0.00 39 5,621 ↓ 0.56 300 665
a 5,172 0.00 10 5,038 ↓ 0.00 30 134
b 5,102 0.00 9 5,015 ↓ 0.00 14 87
c 5,778 0.00 40 5,518 ↓ 0.00 45 260
d 5,312 0.00 12 5,265 ↓ 0.00 18 47
e 5,242 0.00 12 5,242 ↓ 0.00 11 0
f 5,350 0.00 15 5,350 ↓ 0.00 16 0

Scenario 6

* 7,035 0.00 32 6,916 ↓ 0.00 125 119
a 7,987 0.00 67 7,675 ↓ 0.00 165 312
b 6,974 0.00 40 6,902 ↓ 0.00 50 72
c 7,021 0.00 45 6,934 ↓ 0.00 60 87
d 7,658 0.00 40 7,452 ↓ 0.00 50 206
e 6,671 0.00 42 6,670 ↓ 0.00 38 1
f 6,680 0.00 28 6,680 ↓ 0.00 28 0

Scenario 9

* 6,618 0.00 18 6,618 ↓ 0.00 25 0
a 6,931 0.00 22 6,872 ↓ 0.00 141 59
b 6,530 0.00 10 6,530 ↓ 0.00 11 0
c 6,770 0.00 35 6,721 ↓ 0.00 40 49
d 6,947 0.00 71 6,888 ↓ 0.00 50 59
e 6,530 0.00 11 6,529 ↓ 0.00 11 1
f 6,778 0.00 25 6,730 ↓ 0.00 30 48

Table 5.5 indicates that the performance of the combined approach can change with
the overlapping duration between disruptions, and that the change is scenario depend-
ent. Recall that a scenario is different from another scenario in terms of the disrupted
sections (see Table 5.2). In scenario 1 (scenario 6), the combined approach performed
the best in terms of the objective under instance * (instance a) in which disruptions
were time overlapping to a large extent. In these scenarios longer overlapping dura-
tion means more interactions between disruptions, and therefore more interdependent
decisions relevant to multiple disruptions need to be decided. These interdependent de-
cisions do not exist in the sequential approach that is unable to consider the combined
effects of multiple disruptions. Thus with the increase of interdependent decisions, the
solution space of the combined approach becomes larger so that it is more likely to
generate a better solution than the sequential approach but meanwhile requires longer
computation time. For example either in scenario 1 or scenario 6, the longest compu-
tation time happened in the instance where the largest objective decrease was obtained
by the combined approach. When considering a much shorter or even zero overlap-
ping duration (instance e or f), the computation times of the combined approach were
shorter, and there were few or no differences between the performances of the com-
bined and the sequential approaches in scenarios 1 and 6. Compared to scenario 1
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or 6, scenario 9 showed less objective decrease from the combined approach in most
instances. The performance of the combined approach in scenario 9 was not relevant
to the length of the overlapping disruption duration as in scenario 1 or 6. This is be-
cause in scenario 1 or 6 the number of trains that were less delayed or of which less
services were cancelled due to the combined approach increased with the overlapping
duration, whereas in scenario 9 only one train was delayed less due to the combined
approach, which occurred in specific instances depending on the starting/ending times
of the disruptions but not on the length of the overlapping duration.

5.6.3 Multiple connected disruptions with longer (overlapping) dur-
ations

In Sections 5.6.1 and 5.6.2, the duration considered for each disruption is 2 hours
approximately. For two connected disruptions with such durations, the combined ap-
proach outperforms the sequential approach in terms of solution quality by up to 300
seconds computation. For longer disruptions, whether this still holds should be invest-
igated. This is for the consideration that the combined approach needs longer compu-
tation time than the sequential approach and thus may generate sub-optimal solutions
under the required time limit, which then could be worse than the solutions obtained by
the sequential approach. This section tests both approaches on longer disruptions using
300 seconds as the computation time limit still. Particularly in the combined approach,
the multiple-disruption model is solved by the rolling-horizon approach proposed in
Section 5.5, as well as an optimization solver for comparison.

According to Table 5.3, scenario 1 is chosen as an example, because it is the most
difficult scenario to be solved by the combined approach. Twelve cases of disruption
durations are considered for this scenario, which are shown in Table 5.6.

Table 5.6: Two connected disruptions with longer (overlapping) durations

Case
First disruption Second disruption Total disruption duration Overlapping duration

period period (in HH:MM format) (in HH:MM format)
* [8:06,10:06] [8:12,10:16] 02:00 + 02:04 01:54
I [8:06,10:26] [8:12,10:36] 02:20 + 02:24 02:14
II [8:06,10:46] [8:12,10:56] 02:40 + 02:44 02:34
III [8:06,11:06] [8:12,11:16] 03:00 + 03:04 02:54
IV [8:06,11:26] [8:12,11:36] 03:20 + 03:24 03:14
V [8:06,11:46] [8:12,11:56] 03:40 + 03:44 03:34
VI [8:06,12:06] [8:12,12:16] 04:00 + 04:04 03:54
VII [8:06,12:26] [8:12,12:36] 04:20 + 04:24 04:14
VIII [8:06,12:46] [8:12,12:56] 04:40 + 04:44 04:34
IX [8:06,13:06] [8:12,13:16] 05:00 + 05:04 04:54
X [8:06,13:26] [8:12,13:36] 05:20 + 05:24 05:14
XI [8:06,13:56] [8:12,13:56] 05:40 + 05:44 05:34
XII [8:06,14:06] [8:12,14:16] 06:00 + 06:04 05:54
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The results of applying the sequential/combined approach to deal with duration cases
I-XII in scenario 1 are indicated in Table 5.7. These results are obtained by the optim-
ization solver GUROBI. We use O-gap to indicate the percentage difference between
the obtained solution and the optimal solution. If no optimal solution was obtained
by the solver up to 24h computation, we calculated U-gap and L-gap to represent the
percentage difference between the obtained solution and the best found upper bound,
and the percentage difference between the obtained solution and the best found lower
bound, respectively. The sequential approach found optimal solutions within 300 s
for most cases, except case XII (the longest disruption case) for which it took 572 s
to find the optimal solution. Although the combined approach computed sub-optimal
solutions within 300 s, these solutions were still better than the optimal solutions by
the sequential approach. By up to 24h computation, the combined approach obtained
optimal solutions for cases I-III, and near-optimal solutions for cases IV-XII.

The proposed rolling-horizon solution method was also applied for the combined ap-
proach to solve cases I-XII in scenario 1. The computation time at each stage of the
rolling-horizon method is restricted to 300 s. The results under different settings of
hr are shown in Table 5.8. Recall that hr represents the length of a disruption con-
sidered at each stage (except the final stage). By comparing Table 5.8 with Table 5.7,
we found that the solutions obtained by the rolling-horizon method under whichever
setting of hr were better than the ones obtained by the solver up to 300 s computa-
tion. When increasing hr from 1h to 1.5h, optimal solutions were found for cases I-III,
and solutions with improved U-gaps and L-gaps were obtained for cases IV-XII. When
increasing hr from 1.5h to 2h further, the solutions obtained for cases I-VI were the
same, but the solutions found for cases VII-XII mostly became worse (U-gaps and L-
gaps both increased). This is due to the computation limit of 300 s required at a stage
of the rolling-horizon method. When hr was set to 1h or 1.5h, an optimal solution
was always obtained at each stage within the required time limit. When hr was set to
2h, sub-optimal solutions were obtained at specific stages due to the time limit, which
affected the overall solution optimality.

Figure 5.16 shows the stage computation times of cases I-XII under different settings
of hr. Each circle indicates the computation time at a specific stage that is distinguished
by color. The circles on the same vertical line correspond to the same case. Because
the disruption durations are different among cases, the number of stages needed at a
case can be different from one to another case although both cases were under the
same setting of hr. When hr=1h, the stage computation times were mostly below 25
s with 7 exceptions that ranged from 35 s to 210 s and all corresponded to the final
stages of the relevant cases. When hr=1.5h, stage computation times increased due to
longer disruption durations considered, and the most time-consuming stages took 225
s, which were the first stages in all cases. A stage computation time is very sensitive
to the starting and ending times of disruptions considered at the stage, which is why
it varied with stages although under the same setting of hr. When hr increased to 2h,
most stage computation times reached the limit of 300 s, and in some cases only the
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circles that indicated the final stage computation times are visible, because the ones
that represented the previous stages were overlapping due to the same computation
times. The total computation time of the rolling-horizon method is the sum of the
computation times required at all stages. Table 5.9 shows the minimum, average and
maximum total computation times across cases under the same setting of hr in scenario
1. These values all increase with the growth of hr. For example when hr=1h the
maximum total computation time was below 300 sec, while when hr=2h the minimum
total computation time was over 300 sec. Although the total computation times were
mostly (all) longer than 300 sec when setting hr to 1.5h (2h), the corresponding stage
computation times were all below 300 sec as shown in Figure 5.16. Therefore in
practice, a rescheduling solution can be rapidly obtained at a stage and immediately
delivered to traffic controllers, and then updated gradually over time for the following
stages. Although we assume that the disruption durations will not change over time,
with minor changes the proposed rolling-horizon method can be used to deal with the
dynamic variations regarding the disruption durations.
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Figure 5.16: Stage computation times [sec] under different settings of hr in the rolling-
horizon method
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Table 5.9: The minimum, average and maximum total computation times [sec] of the
rolling-horizon method for the combined approach across cases in scenario 1

hr Min Avg Max
1h 47 124 260
1.5h 245 355 490
2h 315 609 900

In scenario 1, the combined approach performs much better than the sequential ap-
proach, and thus the sub-optimal solutions by the combined approach can still be bet-
ter than the optimal solutions by the sequential approach. For the scenarios where the
combined approach performs at least as good as the sequential approach, it is able to
generate solutions below the required computation time limit. According to Table 5.3,
scenarios 6 and 9 are chosen as two more example instances, and the corresponding
results are shown in Tables 5.10 and 5.11, respectively. In these two scenarios, we set
hr to 2h, under which optimal solutions were always obtained at stage level under the
required time limit in all cases.

Table 5.10 shows that for scenario 6, the combined approach found better solutions
than the sequential approach in all cases when using the rolling-horizon solution method,
which however was not achieved when using a solver. The optimality gaps of the solu-
tions by the rolling-horizon method were all below 0.40%. Table 5.11 shows that for
scenario 9, the combined approach found the solutions that were at least as good as the
ones obtained by the sequential approach in all cases when using either a solver or the
rolling-horizon method. In both scenarios, the maximum stage computation time of
the rolling-horizon method was below the required time limit of 300 sec. These results
indicate that the computational complexity of the combined approach is scenario de-
pendent, and that the proposed rolling-horizon method is able to generate high-quality
solutions in an acceptable time.

Table 5.10: Results of scenario 6

Case
Sequential (solver) Combined (solver) Combined (rolling-horizon)
Obj O-gap Time Obj O-gap Time Obj O-gap Max stage

[min] [%] [sec] [min] [%] [sec] [min] [%] time [sec]
I 8,569 0.00 162 8,462 ↓ 0.00 93 8,462 ↓ 0.00 170
II 9,588 0.00 188 9,366 ↓ 0.00 100 9,366 ↓ 0.00 170
III 10,568 0.00 145 10,425 ↓ 0.00 69 10,425 ↓ 0.00 170
IV 12,165 0.00 282 12,064 ↓ 0.64 300 11,987 ↓ 0.00 170
V 13,185 0.00 241 12,967 ↓ 0.59 300 12,904 ↓ 0.10 170
VI 14,204 0.00 300 14,305 ↑ 2.49 300 13,965 ↓ 0.11 170
VII 15,785 0.00 300 18,314 ↑ 15.25 300 15,580 ↓ 0.38 170
VIII 16,804 0.00 300 16,764 ↓ 2.09 300 16,451 ↓ 0.22 170
IX 17,888 0.58 300 17,564 ↓ 0.52 300 17,539 ↓ 0.38 70
X 19,825 2.24 300 19,755 ↓ 3.59 300 19,063 ↓ 0.09 170
XI 20,490 0.43 300 23,552 ↑ 15.34 300 19,980 ↓ 0.21 170
XII 21,451 0.15 300 21,205 ↓ 0.99 300 21,039 ↓ 0.21 170
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Table 5.11: Results of scenario 9

Case
Sequential (solver) Combined (solver) Combined (rolling-horizon)
Obj O-gap Time Obj O-gap Time Obj O-gap Max stage

[min] [%] [sec] [min] [%] [sec] [min] [%] time [sec]
I 8,090 0.00 15 8,090 ↓ 0.00 93 8,090 ↓ 0.00 45
II 9,170 0.00 21 9,170 ↓ 0.00 100 9,170 ↓ 0.00 45
III 10,089 0.00 45 10,089 ↓ 0.00 69 10,089 ↓ 0.00 45
IV 11,561 0.00 73 11,561 ↓ 0.00 300 11,561 ↓ 0.00 45
V 12,641 0.00 105 12,641 ↓ 0.00 300 12,641 ↓ 0.00 45
VI 13,560 0.00 231 13,560 ↓ 0.00 260 13,560 ↓ 0.00 45
VII 15,032 0.00 300 15,032 ↓ 0.00 300 15,032 ↓ 0.00 45
VIII 16,112 0.00 300 16,112 ↓ 0.00 300 16,112 ↓ 0.00 45
IX 17,031 0.00 300 17,031 ↓ 0.00 300 17,031 ↓ 0.00 45
X 18,503 0.00 300 18,503 ↓ 0.00 300 18,503 ↓ 0.00 45
XI 19,583 0.00 300 19,583 ↓ 0.00 300 19,583 ↓ 0.00 90
XII 20,518 0.08 300 20,506 ↓ 0.02 300 20,502 ↓ 0.00 45

From these results we conclude that the proposed rolling-horizon method is helpful
to solve longer multiple connected disruptions by high-quality rescheduling solutions
in an acceptable time. The value of hr used in the rolling-horizon method affects the
overall solution optimality due to the time limit of 300 s required for a stage compu-
tation. In different scenarios the appropriate setting of hr can be different, but under
whichever setting of hr ( 1h, 1.5h, or 2h), the rolling-horizon solution method performs
well regarding the solution quality.

5.7 Conclusions and future research

To deal with multiple connected disruptions that occur unexpectedly, this chapter pro-
posed two approaches, the sequential approach and the combined approach. The se-
quential approach is based on the single-disruption rescheduling model proposed by
Chapter 3, which solves disruptions one by one with the previous rescheduling de-
cisions as reference. The combined approach is based on the multiple-disruption res-
cheduling model developed in this chapter, which reschedules all train services to-
gether each time an extra disruption occurs. Both approaches were applied to a sub-
network of the Dutch railways with 38 stations and 10 train lines operating half-hourly
in each direction. Numerous experiments revealed that the combined approach resulted
in less cancelled train services and/or train delays than the sequential approach. The
outperformance of the combined approach may change with the overlapping duration
between disruptions, and the change is relevant to the disruption locations. To deal
with long multiple connected disruptions in a more efficient way, we proposed a new
rolling-horizon method that is able to generate high-quality rescheduling solutions in
an acceptable time. The case study applied both approaches to deal with two connected
disruptions. In future work, we will test larger railway networks where three or more
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connected disruptions are more likely to happen. This may need the technique of de-
composing the large-scale network into several coordinated local rescheduling zones
to release the potential computational burden considering that the network scale and
the number of disruptions both increase. In addition, it is important to take into account
the uncertainty of disruption durations, for which both the technique of stochastic pro-
gramming and a rolling-horizon method need to be employed. This is better to be
explored from single-disruption cases first and then extended to multiple-disruption
cases due to its complexity.

Appendix 5.A

Table 5.12: Notation

Symbol Description

oe The original scheduled time of event e
tle The corresponding train line of event e
tre The corresponding train of event e
ste The corresponding station of event e
dre The operation direction of event e
w Cancellation penalty
n The nth disruption that currently emerges
re The previous rescheduled time of event e
t i
start The start time of the ith disruption, 1≤ i≤ n

t i
end The end time of the ith disruption, 1≤ i≤ n

st i,dr
en The entry station of the ith disrupted section in direction dre ∈ {up,down}

st i,dr
ex The exit station of the ith disrupted section in direction dre ∈ {up,down}

tail(a) The tail of activity a: which is the event a that starts from
head(a) The head of activity a: which is the event a that points to
D The maximum allowed delay per event
La The minimum duration of an activity a
M1 A positive large number that is set to 1440
M2 A positive large number that is set to twice of M1: M2 = 2M1

he,e′ A minimum interval between the occurring times of events e and e′ if
corresponding to trains occupying the same station track

Arun Set of running activities

Adwell Set of dwell activities

Apass Set of pass-through activities

Astation Set of station activities: Astation = Adwell∪Apass

Aturn Set of short-turn activities

Ai
turn Set of short-turn activities for the ith disruption: Ai

turn ⊂ Aturn

continued on next page
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continued from previous page

Symbol Description
Aodturn Set of OD turn activities
Ear Set of arrival events
Ede Set of departure events

ENMdelay Set of events that do not have upper limit on their delays

E turn
ar The subset of Ear, which includes all tails of activities in Aturn:

E turn
ar =

⋃
a∈Aturn

tail (a)

E i,turn
ar The subset of E turn

ar , which includes all tails of activities in Ai
turn:

E i,turn
ar ⊂ E turn

ar

Eodturn
ar The subset of Ear, which includes all tails of activities in Aodturn:

Eodturn
ar =

⋃
a∈Aodturn

tail (a)

E turn
de The subset of Ede, which includes all heads of activities in Aturn:

E turn
de =

⋃
a∈Aturn

head (a)

E i,turn
de The subset of E turn

de , which includes all heads of activities in Ai
turn:

E i,turn
de ⊂ E turn

de

STdre
en Set of entry stations of all disrupted sections in direction dre ∈ {up,down}

STdre
ex Set of exit stations of all disrupted sections in direction dre ∈ {up,down}

TRturn Set of trains that correspond to the events contained in E turn
ar ∪E turn

de

TRi
turn Set of trains that correspond to the events contained in E i,turn

ar ∪E i,turn
de

Appendix 5.B

Table 5.13: Notation used in Algorithm 5.1

Symbol Description
t̃k
start The considered starting time of a disruption at stage k

t̃ i,k
end The considered ending time of the ith disruption at stage k

hr The duration of a disruption considered at a stage (except the final stage)

nk The number of ongoing disruptions at stage k
DISk The list of ongoing disruptions at stage k

TLi
dis,1 The set of train lines that is only affected by the ith disruption

STtl The set of planned stopping and passage stations of train line tl

Ek
cancel The set of events that are cancelled at stage k

Ear
cancel The set of cancelled arrival events

Ear
keep The set of kept arrival events

Etl,i
ar The set of arrival events from train line tl that is affected by the ith disruption

Est,tl,i
ar The set of arrival events occurring at station st and belonging to train line tl

that is affected by the ith disruption

continued on next page
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continued from previous page

Symbol Description
Etl,i,k

fix The set of events that should follow the determined periodic pattern of train
line tl at stage k ≥ 2

Etl,i,k
cancel The set of events from train line tl, which should be cancelled at stage k ≥ 2

Etl,i,k
keep The set of events from train line tl, which should be kept at stage k ≥ 2





Chapter 6

Integrated timetable rescheduling and
passenger reassignment during
railway disruptions

Apart from minor updates, this chapter has been submitted as:

Zhu, Y., Goverde, R.M.P., 2019. Integrated timetable rescheduling and passenger re-
assignment during railway disruptions. Transportation Research Part B: Methodolo-
gical, under review.

6.1 Introduction

Railway systems play an important role in people’s daily travelling so that the op-
erations are required as reliable as possible to ensure passenger punctuality. Unfortu-
nately, unexpected disruptions occur in the railways on a daily basis (Zhu and Goverde,
2017b), during which many train services are delayed and cancelled that disturb pas-
senger planned journeys significantly. When rescheduling a timetable in case of a
disruption, traffic controllers decide which services have to be delayed or cancelled
in terms of pre-designed contingency plans, where the impact on passengers is con-
sidered to a very limited extent (Ghaemi et al., 2017b). As a result, the rescheduled
train services may not be passenger-friendly. For example, passengers may hardly find
alternative train services to reach the expected destinations in reasonable travel times.
To provide passengers with better alternatives during disruptions, it is necessary to
reschedule a timetable in a more passenger-oriented way.

Passenger-oriented timetable rescheduling started from the field of delay management
that decides whether a train should wait for a delayed feeder train to guarantee the
transfer connection of some passengers. Schöbel (2001) is the first one dealing with
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this problem based on the assumption that if passengers missed the transfer connec-
tions, they would wait for a complete cycle time to catch the next connection consid-
ering that the planned timetable is periodic. Dollevoet et al. (2012) make an extension
by introducing the possibility of rerouting passengers who are assumed to take the
shortest paths for their following travels in case of transfer missing. Both papers de-
scribe the infrastructure at a macroscopic level neglecting signals and block sections.
To improve solution feasibility in practice, Corman et al. (2016) propose a delay man-
agement model in which the infrastructure is described at a microscopic level. Albert
et al. (2017) formulate passenger behaviours in stations (e.g. queueing in boarding
trains) at a microscopic level to describe passenger influences on train delays rather
than considering the impact of train delays on passenger behaviours only.

Delay management deals with the interaction between timetable and passengers, but
not the interaction between timetable and reduced infrastructure availability, which
however must be taken into account by disruption management. Operator-oriented
disruption management considers only the latter kind of interaction, while passenger-
oriented disruption management considers both kinds of interactions.

Most literature on disruption management is operator-oriented, including Meng and
Zhou (2011); Louwerse and Huisman (2014); Veelenturf et al. (2015); Zhan et al.
(2015,0); Ghaemi et al. (2017a,0); Zhu and Goverde (2019). The differences among
these papers lie in the considered railway lines (single-track lines or double-track
lines), the adopted dispatching measures, whether considering the transition from the
planned timetable to the disruption timetable and vice versa, the extent of infrastruc-
ture description (macroscopic or microscopic level), the number of considered disrup-
tions (single disruption or multiple disruptions), and/or the characteristic of disruption
length (deterministic or uncertain). The similarity among these papers is that they all
use operator-oriented objectives: e.g., minimizing train delays and/or cancellations, in
which a constant cancellation penalty is used to represent the delay of cancelling each
train. However, train delays are not equal to passenger delays that also depend on the
amount of passengers and the route choice of passengers.

A few works focus on passenger-oriented disruption management. Cadarso et al.
(2013) propose a two-step approach in which a frequency-based passenger assignment
model is performed first to estimate the passenger demand and then a rescheduling
model (for timetable and rolling stock) is solved to accommodate the passenger de-
mand as much as possible. The adopted dispatching measures are limited to cancelling
original trains and inserting additional trains. Chapter 3 adopts a schedule-based pas-
senger assignment model to obtain the travel path of each passenger in terms of the
planned timetable. With this information, the potential impact of each dispatching
decision on passenger planned travels is estimated, which is used as weight in the ob-
jective to minimizing passenger delays. The adopted dispatching measures include
re-timing, re-ordering, cancelling, flexible stopping (i.e. adding extra stops and skip-
ping scheduled stops), and flexible short-turning (i.e. each train is given a full choice
of short-turning station candidates). Both Cadarso et al. (2013) and Chapter 3 con-



Chapter 6. Integrated timetable rescheduling and passenger reassignment 167

sider static passenger demand, which neglect that passengers may choose other travel
paths rather than the planned ones due to the rescheduled train services. To formu-
late passenger behaviour in a more realistic way, it is necessary to take into account
passenger responses towards the rescheduled train services. Veelenturf et al. (2017)
propose an iterative approach that embeds a timetable rescheduling model and a pas-
senger assignment model into an iterative framework where at each iteration an adjust-
ment will be applied on the timetable if it reduces the total passenger inconvenience
as evaluated by the passenger assignment model. The adjustments are restricted to
adding stops. Binder et al. (2017b) propose an integrated approach of formulating the
timetable rescheduling and the passenger assignment into one single model that com-
putes a rescheduled timetable by an optimization solver directly. The applied dispatch-
ing measures include re-timing, re-ordering, cancelling, global re-routing and inserting
additional trains. The rolling stock circulations at the short-turning and terminal sta-
tions of trains are neglected. Gao et al. (2016) also propose a timetable rescheduling
model considering dynamic passenger flows, while focusing on the recovery phase
of a disruption. As the target case is a metro corridor, all passengers are assumed to
choose direct trains (i.e. no transfers). The dispatching measures of stop-skipping and
re-timing are used to adjust the timetable to reduce passenger waiting times at stations.
Due to the computational complexity, the master problem of generating a rescheduled
timetable is decomposed into a series of sub-problems that each reschedules one train
only. When solving a sub-problem for one train, the stopping patterns and time sched-
ules of the previous considered trains are all fixed.

Compared to the literature, this chapter extends Chapter 3 by a new formulation to
integrate dynamic passenger behaviour with timetable rescheduling. The main chal-
lenges lie in two aspects. First, it is difficult to formulate the dynamic interactions
between passengers and rescheduled timetables: a rescheduled timetable affects pas-
senger path choices and vice versa. A path refers to a sequence of train services from
his/her origin to the destination, which has multiple attributes like in-vehicle times, the
number of transfers, and waiting times at stations. A rescheduled timetable determines
whether a path is available, and also the attributes of the path. The attributes of the
paths affect passenger path choices which in turn affect how the timetable should be
rescheduled to provide paths with better attributes that can mitigate passenger incon-
veniences. The difficulty of formulating the dynamic interactions between passengers
and rescheduled timetables increases further when allowing both flexible stopping and
flexible short-turning trains, which can lead to more changes to planned services and
thereby more path options to passengers whose responses towards these options might
be different and have to be modelled properly. The second challenge is designing an
efficient algorithm to solve the integrated passenger-oriented timetable rescheduling
model with high-quality solutions in an acceptable time. This has been reported as a
challenging task in the literature so far (Corman et al., 2016; Binder et al., 2017b).

The key contributions of this chapter are summarized as follows:

• Passenger re-routing and timetable rescheduling are integrated into a new Mixed
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Integer Linear Programming (MILP) model, which applies re-timing, re-ordering,
cancelling, flexible stopping and flexible short-turning trains to obtain a resched-
uled timetable with the objective of minimizing generalized travel times (i.e.
weighted travel times considering passenger preferences on waiting times at ori-
gin/transfer stations, in-vehicle times, and the number of transfers).

• An iterative algorithm is designed to solve the passenger-oriented timetable res-
cheduling model with high-quality solutions in an acceptable time.

• The passenger-oriented timetable rescheduling model is tested on real-life in-
stances on a subnetwork of the Dutch railways, and compared to an operator-
oriented timetable rescheduling model.

• It is shown that the passenger-oriented model is able to generate rescheduling
solutions with shorter generalized travel times than an operator-oriented model.

In this chapter, each train is assumed to have unlimited capacity, which means that
a passenger is able to board any train if he/she decides to board this train. This is
because we focus on providing better alternative train services to passengers so that
the possible impact of vehicle capacity on passengers is neglected. In this way, we can
get the optimal rescheduled timetable in terms of generalized travel times. This optimal
rescheduled timetable can then be used as an input to rolling stock rescheduling that
aims to accommodate the passenger demand as much as possible. For example, Kroon
et al. (2014) and Van der Hurk et al. (2018) both deal with passenger-oriented rolling
stock rescheduling with a rescheduled timetable given as input. We also assume that
the duration of a disruption is known at the beginning of the disruption, and will not
change over time.

The remainder of the chapter is organized as follows. Section 6.2 introduces the gen-
eral framework of establishing the passenger-oriented timetable rescheduling model.
Section 6.3 explains how to formulate a timetable into an event-activity network to de-
scribe passenger path choices. The planned timetable can be formulated into an event-
activity network Ωplan, which is then extended to a transition network Ω∗ that enables
the dynamic formulation of event-activity networks during timetable rescheduling. The
method of constructing a transition network is introduced in Section 6.4. Based on a
transition network, the passenger-oriented timetable rescheduling model is proposed
in Section 6.5 followed by Section 6.6 that introduces the methods of reducing the
computational complexity of the model. In Section 6.7, numerous experiments were
carried out to a part of the Dutch railways. Finally, Section 6.8 concludes the chapter
and points out future research directions.

6.2 General framework

This chapter integrates timetable rescheduling with passenger re-routing into an MILP
model, for which two processing steps are needed. Figure 6.1 gives an overview of the
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model.

The first preprocessing step transforms the planned timetable into an event-activity net-
work Ωplan, which is a directed acyclic graph used to describe passenger path choices.
The method of constructing an event-activity network from a timetable is introduced in
Section 6.3. In case of a disruption, the planned timetable will become infeasible, and
so does the corresponding event-activity network Ωplan that now is unable to reflect the
paths currently available in the railways. Under this circumstance, the timetable has
to be rescheduled, and during rescheduling the corresponding event-activity networks
have to be updated as well to consider timetable-dependent passenger behaviours. To
enable a dynamic event-activity network formulation during timetable rescheduling,
we perform the second preprocessing step to construct a transition network Ω∗. A
transition network is extended from the event-activity network Ωplan by adding all
events and activities that could exist in any event-activity network Ωdis corresponding
to a feasible rescheduled timetable obtained for a specific disruption. In other words,
Ω∗ =

⋃
iΩ

i
dis ∪Ωplan, where Ωi

dis refers to the event-activity network corresponding
to the ith feasible rescheduled timetable. For one specific disruption there are usu-
ally multiple feasible rescheduled timetables. Note that Ω∗ varies with the disruption
characteristics (i.e. location and starting/ending time) and the dispatching measures
allowed. A transition network Ω∗ is not a directed acyclic graph as it includes the
possibility of changing the order of trains. The method of constructing a transition
network is introduced in Section 6.4.

The constructed transition network, the planned timetable, the disruption character-
istics, and the allowed dispatching measures are all necessary inputs to establish the
passenger-oriented timetable rescheduling model, which is formulated as an MILP in
this chapter. This model consists of the constraints for three purposes: 1) timetable
rescheduling, 2) dynamic event-activity network formulation, and 3) passenger reas-
signment. The timetable rescheduling constraints ensure a rescheduled timetable does
not violate any infrastructure and operational restrictions. The constraints relevant to
the dynamic event-activity network formulation decide which activities and events of
Ω∗ should be selected to construct an event-activity network Ωdis in terms of a res-
cheduled timetable. The passenger reassignment constraints decide the weight of each
activity of Ωdis from the perspectives of passengers, and assign each passenger to one
path only. A path is described by a sequence of connected activities. The total activity
weight of a path is the generalized travel time of this path. The objective of the model
is minimizing the generalized travel times of all passengers. By this model, a res-
cheduled timetable that leads to the shortest generalized travel times of all passengers
can be obtained, as well as the path chosen by each passenger under the rescheduled
timetable.
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Figure 6.1: An overview of the passenger-oriented timetable rescheduling model

6.3 Event-activity network

An event-activity network is a representation of a timetable, based on which passenger
path choices can be described. Chapter 2 introduce a method of constructing such an
event-activity network from a timetable, which is improved in this chapter by includ-
ing more kinds of passenger-related events/activities and redefining certain types of
activities in a more reasonable way while still ensuring the constructed event-activity
network is a directed acyclic graph. For example in this chapter, whether a train ar-
rival/departure event corresponds to passenger boarding/alighting is explicitly formu-
lated, penalty events/activities are introduced to formulate passenger leaving the rail-
ways, and the transfer activities defined in Chapter 2 are redefined as boarding activit-
ies, for which the weights are also calculated differently here. More details about the
improved event-activity network formulation method are introduced as follows.

6.3.1 Events

Six types of events are created in an event-activity network. They are arrival events,
departure events, duplicate departure events, entry events, exit events and a penalty
event, which constitute the sets Ear, Ede, Edde, Eentry, Eexit and Epenal, respectively.
Therefore, the set of events is

E = Ear∪Ede∪Edde∪Eentry∪Eexit∪Epenal.



Chapter 6. Integrated timetable rescheduling and passenger reassignment 171

In particular,
Ear = Ealight

ar ∪Epass
ar , and Ede = Eboard

de ∪Epass
de ,

where Ealight
ar is the set of arrival events that correspond to passenger alighting, and

Eboard
de is the set of departure events that correspond to passenger boarding. For ex-

ample, if a train stops at a station, then its arrival (departure) event at this station cor-
responds to passenger alighting (boarding). The arrival (departure) events associated
to a through train that do not correspond to passenger alighting (boarding) constitute
the set of Epass

ar (Epass
de ).

Each event e ∈ E\Epenal is assigned with an attribute ste to indicate the corresponding
station of e. For event e ∈ Ear∪Ede, the attributes of tre, tle and oe are assigned, which
refer to the corresponding train, train line and scheduled time of e, respectively. A
train line is served by a series of trains that are operated with the same stopping pattern
between the same origin and destination under certain frequency. An event e ∈ Edde is
the duplicate of a departure event e′ ∈ Eboard

de with exactly the same attributes which e′

has, and with an extra attribute λe to indicate the departure event e′ corresponding to e:

Edde =
{

e
∣∣∣λe = e′,e′ ∈ Eboard

de

}
.

One and only one duplicate is created for a departure event e′ ∈ Eboard
de . Duplicate

departure events are used for constructing wait, boarding and transfer activities, which
are explained in more detail in Section 6.3.2. Note that this chapter defines these
activities differently than Chapter 2. As for Epenal, it contains only one penalty event
for constructing the penalty arcs that enable passengers who cannot find preferred paths
to leave the railways. Table 6.1 shows the notation of event attributes.

Table 6.1: Event attributes

Symbol Description
ste The corresponding station of event e ∈ E\Epenal

tre The corresponding train of event e ∈ Ear∪Ede∪Edde

tle The corresponding train line of event e ∈ Ear∪Ede∪Edde

λe The corresponding departure event of e ∈ Edde

oe The scheduled time of event e ∈ Ear∪Ede∪Edde

6.3.2 Activities

An activity is a directed arc between two different events. Ten types of activities are
created in an event-activity network. They are running activities, dwell activities, pass-
through activities, wait activities, transfer activities, boarding activities, entry activit-
ies, exit activities, entry penalty activities and exit penalty activities, which constitute
the sets Arun, Adwell, Apass, Await, Atrans, Aboard, Aentry, Aexit, Aenpenal and Aexpenal, re-
spectively. Therefore, the set of activities is

A = Arun∪Adwell∪Apass∪Await∪Atrans∪Aboard∪Aentry∪Aexit∪Aenpenal∪Aexpenal.
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Different activities are established between different events depending on specific rules
that are explained as follows.

Entry activities enable passengers to enter the railways when arriving at the origins,

Aentry =
{(

e,e′
)∣∣e ∈ Eentry,e′ ∈ Edde,ste = ste′

}
.

Exit activities enable passengers to leave the railways when arriving at the destinations,

Aexit =
{(

e,e′
)∣∣∣e ∈ Ealight

ar ,e′ ∈ Eexit,ste = ste′
}
.

Entry penalty activities and exit penalty activities together enable passengers to drop
the railways in case no preferred paths can be found,

Aenpenal =
{(

e,e′
)∣∣e ∈ Eentry,e′ ∈ Epenal

}
,

Aexpenal =
{(

e′e
)∣∣e′ ∈ Epenal,e ∈ Eexit

}
.

Boarding activities enable passengers to board a train,

Aboard =
{(

e,e′
)∣∣∣e ∈ Edde,e′ ∈ Eboard

de ,e′ = λe

}
,

where each duplicate departure event is linked to its corresponding departure event.

Running activities enable passengers to travel from one station to another in a train,

Arun =
{(

e,e′
)∣∣e ∈ Ede,e′ ∈ Ear, tre = tre′,ste is the upstream station adjacent to ste′

}
.

Dwell activities enable passengers to wait at a station in a train,

Adwell =
{(

e,e′
)∣∣∣e ∈ Ealight

ar ,e′ ∈ Eboard
de , tre = tre′,ste = ste′,oe′−oe > 0

}
.

Pass-through activities enable passengers to pass through a station in a train,

Apass =
{(

e,e′
)∣∣e ∈ Epass

ar ,e′ ∈ Epass
de , tre = tre′,ste = ste′,oe′−oe = 0

}
.

Wait activities enable passengers to wait at a station,

Await =

{(
e,e′
)∣∣∣∣e ∈ Edde,e′ = argmin

{
oe′|oe′ ≥ oe,e′ ∈ Edde, tre′ 6= tre,ste′ = ste

}}
,

where each duplicate departure event is linked to the next time-closest duplicate depar-
ture event that is at the same station but corresponds to another train.

Transfer activities enable passengers to transfer from one train to another,

Atrans =
{
(e,e′)

∣∣∣e ∈ Ealight
ar ,e′ = argmin

{
oe′

∣∣∣oe′ ≥ oe + `trans
e,e′ ,e

′ ∈ Edde, tre′ 6= tre,

ste′ = ste}} ,
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where each arrival event is linked to the next time-closest duplicate departure event that
occurs at least `trans

e,e′ later at the same station but corresponds to another train. Here,
`trans

e,e′ represents the minimum transfer time required from the arrival train tre to an-
other departure train tre′ , which are alongside the same platform or different platforms
affecting the value of `trans

e,e′ .

An event-activity network is Ω = E ∪ A, which is a directed acyclic graph (DAG).
An example of formulating an event-activity network from a timetable is given below.
Example 1: Figure 6.2 shows a timetable with three stations A, B and C, and four
trains tr1, tr2, tr3 and tr4. Train tr1 runs from station A to station C with a stop at B.
Train tr2 runs from station A to station C directly. Trains tr3 and tr4 both run from
station B to station C. The event-activity network formulated from this timetable is
shown in Figure 6.3.

A

B

C

tr1 tr2

tr3 tr4

Time

Figure 6.2: A timetable with three stations and four trains

Suppose a passenger plans to travel from station A to station C, and he/she arrives at
station A before train tr1 departs from station A. Then, the passenger has five alternat-
ive paths.

• Path 1 is taking train tr1 from station A to station C directly:

(entry, A)
entry→ (dde, tr1, A)

board→ (de, tr1, A)
run→ (ar, tr1, B)

dwell→ (de, tr1, B)
run→ (ar,

tr1, C)
exit→ (exit ,C);

• Path 2 is taking train tr2 from station A to station C directly:

(entry, A)
entry→ (dde, tr1, A)

wait→ (dde, tr2, A)
board→ (de, tr2, A)

run→ (ar, tr2, B)
pass→

(de, tr2, B)
run→ (ar, tr2, C)

exit→ (exit ,C);

• Path 3 is taking train tr1 at station A and then transferring to train tr3 at station B
to reach station C:
(entry, A)

entry→ (dde, tr1, A)
board→ (de, tr1, A)

run→ (ar, tr1, B)
transfer→ (dde, tr3, B)

board→ (de, tr3, B)
run→ (ar, tr3, C)

exit→ (exit ,C);

• Path 4 is taking train tr1 at station A and then transferring to train tr4 at station B
to reach station C:
(entry, A)

entry→ (dde, tr1, A)
board→ (de, tr1, A)

run→ (ar, tr1, B)
transfer→ (dde, tr3, B)

wait→
(dde, tr4, B)

board→ (de, tr4, B)
run→ (ar, tr4, C)

exit→ (exit ,C);
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• Path 5 is leaving the railways:

(entry, A)
entry→ (penalty)

exit→ (exit, A).

Which of these five paths will be chosen by the passenger depends on the general-
ized travel times of these paths. The generalized travel time of a path is obtained by
summing up the weights of activities in the path.

6.3.3 Weights of activities

For running, dwell and pass-through activities, the weights are set to the time differ-
ences between the corresponding events multiplied by βvehicle that represents passenger
preference on in-vehicle times. For wait activities, the weights are set to the time differ-
ences between the corresponding events multiplied by βwait that represents passenger
preference on waiting times at stations. For each transfer activity, the weight is set to
the sum of the time difference between the corresponding events multiplied by βwait

and a fixed value βtrans representing the time penalty of one transfer.

The weight of an entry activity is passenger-dependent. Suppose a passenger g arrives
at the origin at time tori

g . Then the passenger can only choose an entry activity (e,e′)
that corresponds to his/her origin and of which the time of the corresponding duplicate
departure event e′ occurs no earlier than tori

g . For example in Figure 6.3, if station A is
the origin of passenger g and tori

g is between the time of event (dde, tr1, A) and the time
of (dde, tr2, A), then g can only choose the entry activity from (entry, A) to (dde, tr2,
A), of which the weight is set to the multiplied difference between the time of (dde,
tr2, A) and tori

g by βwait. The weight of an entry penalty activity is also passenger-
dependent. If the maximum generalized travel time accepted by passenger g is T max

g ,
the weight of an entry penalty activity perceived by this passenger will be set to T max

g .

The weights of boarding, exit and exit penalty activities are all set to 0, as these activ-
ities are not used to distinguish paths.

6.4 Transition network

According to the approach of Section 6.3, the planned timetable can be formulated
as an event-activity network Ωplan to describe passenger path choices on normal days.
When a disruption occurs, the planned timetable has to be rescheduled, while during
the rescheduling the corresponding event-activity networks Ωdis have to be formulated
to describe the alternative paths currently available to passengers. To enable a dynamic
event-activity network formulation during timetable rescheduling, a transition network
is introduced.
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A transition network Ω∗ is extended from the event-activity network Ωplan by adding
all events and activities that could exist in any event-activity network Ωdis correspond-
ing to a feasible rescheduled timetable obtained for a specific disruption. A trans-
ition network varies with the characteristics of the disruption, as well as the applied
dispatching measures. In this chapter, we consider the disruption of complete track
blockages between two stations, and apply the dispatching measures of re-timing, re-
ordering, cancelling, flexible stopping, and flexible short-turning. Before giving the
details of constructing a transition network, an example on a simple case is given be-
low to explain the basic idea.

Example 2: Figure 6.4 shows a planned timetable with three stations A, B and C,
and two trains tr1 and tr2. Train tr1 runs from station A to station C by intermediately
stopping at station B, while train tr2 runs from station A to station C directly. The
constructed transition network Ω∗ from the timetable is located in the blue box.

In Figure 6.4, Ω∗ is extended from Ωplan by adding a new event and new activities
(both are colored in orange) that do not exist in the planned timetable but could exist in
a rescheduled timetable. Due to the dispatching measure of re-ordering, train tr1 could
depart later than train tr2 at station A, although train tr1 was originally planned to depart
earlier than train tr2. Considering this possible train order change, an extra wait activity
is added from event (dde, tr2, A) to event (dde, tr1, A). Due to the dispatching measure
of flexible stopping, an extra stop could be added to train tr2 at station B. Thus, a new
event (dde, tr2, B) is added as well as six new activities: 1) an entry activity from event
(entry, B) to event (dde, tr2, B); 2) a boarding activity from event (dde, tr2, B) to event
(de, tr2, B); 3) a wait activity from event (dde, tr2, B) to event (dde, tr1, B) in case
train tr2 departs before train tr1 at station B; 4) a wait activity from event (dde, tr1, B)
to event (dde, tr2, B) in case train tr1 departs before train tr2 at station B; 5) a transfer
activity from event (ar, tr1, B) to event (dde, tr2, B) considering passengers in train tr1

may transfer to train tr2; and 6) an exit activity from event (ar, tr2, B) to event (exit,
B). As can be seen entry/exit penalty activities always remain the same no matter what
changes made to the planned timetable.

In the following, we introduce how to construct a transition network by extending the
event-activity network Ωplan corresponding to a planned timetable. The set notation
with the superscript of plan represents the events/activities sets in Ωplan. Table 6.2
shows the notation of sets relevant to a transition/event-activity network.
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Table 6.2: Sets relevant to a transition/event-activity network
Notation Description
Ω∗ Transition network: Ω∗ = E∗∪A∗

Ωplan Event-activity network formulated from the planned timetable:
Ωplan = Eplan∪Aplan and Ωplan ⊂Ω∗

Ωdis Event-activity network formulated from any possible disruption timetable by
adjusting the planned timetable: Ωdis ⊂Ω∗

E∗ Set of events in Ω∗

Eplan Set of events in Ωplan: Eplan ⊂ E∗

Eplan
i Set of i events in Ωplan, i ∈ {ar,de,dde,entry,exit,penal}: Eplan

i ⊂ Eplan

Ealight,plan
ar Set of arrival events that correspond to passenger alighting in Ωplan:

Ealight,plan
ar ⊆ Eplan

ar

Epass,plan
ar Set of arrival events that do not correspond to passenger alighting in Ωplan:

Epass,plan
ar = Eplan

ar \Ealight,plan
ar

Eboard,plan
de Set of departure events that correspond to passenger boarding in Ωplan:

Eboard,plan
de ⊆ Eplan

de

Epass,plan
de Set of departure events that do not correspond to passenger boarding in Ωplan:

Epass,plan
de = Eplan

de \E
board,plan
de

A∗ Set of activities in Ω∗

A∗i Set of i activities in Ω∗: A∗i ⊂ A∗, i ∈ {wait, trans,board,entry,exit}
Aplan Set of activities in Ωplan: Aplan ⊂ A∗

Aplan
i Set of i activities in Ωplan: Aplan

i ⊂ Aplan,
i ∈ {run,dwell,pass,wait, trans,board,entry,exit,enpenal,expenal}

Aundis
k Set of undisrupted k activities in Ω∗: Aundis

k ⊂ Aplan
k ,

k ∈ {run,dwell,pass,wait, trans,board,entry,exit}

Adis
k1

Set of disrupted k1 activities in Ω∗: Adis
k1

= Aplan
k1
\Aundis

k1
, k1 ∈ {run,dwell,pass}

Adis
k2

Set of disrupted k2 activities in Ω∗: Adis
k2

= A∗k2
\Aundis

k2
,

k2 ∈ {wait, trans,board,entry,exit}

6.4.1 Extended events

In a transition network Ω∗, the set of events E∗ is defined as

E∗ = Eplan
ar ∪Eplan

de ∪E∗dde∪Eplan
entry∪Eplan

exit ∪Eplan
penal,

where only the set of duplicate departure events E∗dde is extended: E∗dde ⊇ Eplan
dde . Recall

that in an event-activity network, duplicates are only created for departure events that
correspond to passenger boarding. Instead in a transition network, a duplicate is cre-
ated for each departure event e ∈ Ede no matter e corresponds to passenger boarding or
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not in a planned timetable. In other words,

E∗dde =
{

e
∣∣∣λe = e′,e′ ∈ Eplan

de

}
,

where Eplan
de = Eboard,plan

de ∪ Epass,plan
de . Here, Eboard,plan

de refers to the set of departure
events that correspond to passenger boarding in the planned timetable, and Epass,plan

de
represents the set of departure events that do not correspond to passenger boarding in
the planned timetable.

6.4.2 Extended activities

In a transition network Ω∗, the set of activities A∗ is defined as

A∗ = Aplan
run ∪Aplan

dwell∪Aplan
pass∪A∗wait∪A∗trans∪A∗board∪A∗entry∪A∗exit∪Aplan

enpenal∪Aplan
expenal,

where five types of activities are extended: A∗wait,A
∗
trans,A

∗
board,A

∗
entry and A∗exit. In other

words, we have A∗k ⊇ Aplan
k ,k ∈ {wait, trans,board,entry,exit} .

To distinguish whether an activity could be affected by the disruption, each type of
activities is further classified into two categories: undisrupted or disrupted, except
entry/exit penalty activities. Thus, we have

Aplan
i = Aundis

i ∪Adis
i , i ∈ {run,dwell,pass} ,

A∗k = Aundis
k ∪Adis

k , k ∈ {wait, trans,board,entry,exit} ,

An activity is defined as undisrupted, if both of the corresponding events will not
be delayed/cancelled due to the considered disruption. Otherwise, the activity will
be defined as disrupted. In this chapter, we ensure an arrival (departure) event that
was originally scheduled to occur before the disruption starting time tstart or at least
R minutes later than the disruption ending time tend will not be delayed/cancelled,
in which R is the time length required for the normal schedule to be recovered after
the disruption ends. This also applies to duplicate departure events, which are al-
ways with the same occurrence times as their corresponding departure events. In other
words, event e ∈ Eplan

ar ∪Eplan
de ∪E∗dde will not be delayed/cancelled in any feasible res-

cheduled timetables, if the original scheduled time oe is not within the time period
[tstart, tend +R). Otherwise, this event could be delayed/cancelled in a rescheduled
timetable. Based on these, we decide whether an activity is undisrupted or disrupted
as follows.

6.4.2.1 Running, dwell, and pass-through activities

Disrupted running, dwell, or pass-through activities are defined as:

Adis
i =

{(
e,e′
)
∈ Aplan

i |tstart ≤ oe < tend +R or tstart ≤ oe′ < tend +R
}
,

i ∈ {run,dwell,pass} ,
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where oe refers to the original scheduled time of e, tstart (tend) represents the start
(end) time of the disruption, and R represents the duration required for the disrup-
tion timetable resuming to the planned timetable after the disruption ends. Undisrup-
ted running, dwell, or pass-through activities are defined as Aundis

i = Aplan
i \Adis

i , i ∈
{run,dwell,pass}.

6.4.2.2 Entry activities

The planned entry activities that could become inapplicable due to the disruption are
defined as

Adis,1
entry =

{(
e,e′
)
∈ Aplan

entry |tstart ≤ oe′ < tend +R
}
.

The entry activities that are not in Ωplan but might be needed due to extra stops added
in a rescheduled timetable are defined as

Adis,2
entry =

{(
e,e′
)∣∣∣e ∈ Eplan

entry,e
′ ∈ E∗dde\E

plan
dde ,ste = ste′, tstart ≤ oe′ < tend +R

}
.

Then, the disrupted entry activities are defined as Adis
entry = Adis,1

entry ∪ Adis,2
entry, while the

undisrupted entry activities are defined as Aundis
entry = Aplan

entry\A
dis,1
entry.

6.4.2.3 Exit activities

The planned exit activities that could become inapplicable due to the disruption are
defined as:

Adis,1
exit =

{(
e,e′
)
∈ Aplan

exit |tstart ≤ oe < tend +R
}
,

The exit activities that are not in Ωplan but might be needed due to extra stops added in
a rescheduled timetable are defined as

Adis,2
exit =

{(
e,e′
)∣∣∣e ∈ Epass,plan

ar ,e′ ∈ Eplan
exit ,ste = ste′, tstart ≤ oe < tend +R

}
.

Then, the disrupted exit activities are defined as Adis
exit = Adis,1

exit ∪Adis,2
exit , while the undis-

rupted exit activities are defined as Aundis
exit = Aplan

exit \A
dis,1
exit .

6.4.2.4 Boarding activities

The planned boarding activities that could become inapplicable due to the disruption
are defined as:

Adis,1
board =

{(
e,e′
)
∈ Aplan

board |tstart ≤ oe′ < tend +R
}
.
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The boarding activities that are not in Ωplan but might be needed due to extra stops
added in a rescheduled timetable are defined as:

Adis,2
board =

{(
e,e′
)∣∣∣e ∈ E∗dde\E

plan
dde ,e

′ ∈ Epass,plan
de ,e′ = λe, tstart ≤ oe′ < tend +R

}
.

Then, the disrupted boarding activities are defined as Adis
board = Adis,1

board∪Adis,2
board, while the

undisrupted boarding activities are defined as Aundis
board = Aplan

board\A
dis,1
board.

6.4.2.5 Wait activities

To construct disrupted wait activities, we first define three event sets,

Emax
dde =

{
argmax

{
oe|e ∈ Eplan

dde ,oe < tstart,ste = st
}}

st∈ST
,

Emin
dde =

{
argmin

{
oe|e ∈ Eplan

dde ,oe ≥ tend +R,ste = st
}}

st∈ST
,

Edis
dde = {e ∈ E∗dde |tstart ≤ oe < tend +R} ,

in which ST is the set of stations. Set Emax
dde includes at each station st ∈ ST the duplicate

departure event of which the original scheduled time is nearest to the disruption starting
time tstart among all duplicate departures that were originally planned to occur before
tstart at this station. Set Emin

dde includes at each station st ∈ ST the duplicate departure
event of which the original scheduled time is nearest to the disruption ending time tend

plus the recovery length R among all duplicate departures that were originally planned
to occur after tend +R at this station. The events in Emax

dde and Emin
dde will not be affected

by the disruption, while set Edis
dde includes all duplicate departure events that could be

affected by the disruption. Based on Emax
dde , Emin

dde and Edis
dde, we construct the disrupted

wait activities:

Adis,1
wait =

{(
e,e′
)∣∣∣e ∈ Emax

dde ,e
′ ∈ Edis

dde,ste′ = ste,oe′−oe ≤ `max
wait

}
,

Adis,2
wait =

{(
e,e′
)∣∣∣e ∈ Edis

dde,e
′ ∈ Emin

dde ,ste′ = ste,oe′−oe ≤ `max
wait +D

}
,

Adis,3
wait =

{(
e,e′
)∣∣∣e,e′ ∈ Edis

dde,e 6= e′,ste = ste′,0≤ oe′−oe ≤ `max
wait +D

}
,

Adis,4
wait =

{(
e,e′
)∣∣∣e,e′ ∈ Edis

dde,e 6= e′,ste = ste′,−D≤ oe′−oe < 0
}
,

where D represents the maximum allowed delay per event, and `max
wait represents the

maximum waiting time that a passenger would like to spend at a station. We assume
that `max

wait ≥ D.

Examples on constructing Adis,1
wait , Adis,2

wait , Adis,3
wait , and Adis,4

wait are described by Figures 6.5
to 6.8, respectively, where the dashed arcs represent the constructed disrupted wait
activities, the black solid circles represent the duplicate departure events that could be
delayed/cancelled, and the blue solid circles refer to the duplicate departure events that
will not be delayed/cancelled. In Figure 6.5, we construct a disrupted wait activity
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a ∈ Adis,1
wait from the event e2 ∈ Emax

dde to an event e′i ∈ Edis
dde, i = {1,2,3,4} if the time

difference between them is smaller than the maximum acceptable waiting time `max
wait.

Otherwise, there is no need to construct such a wait activity since passengers would not
wait for so long. Note that in Figures 6.5 to 6.8 the time difference between two events
is calculated based on the original scheduled times of these events. In Figure 6.6, we
construct a disrupted wait activity a ∈ Adis,2

wait from an event ei ∈ Edis
dde, i = {1,2,3,4}

to the event e′1 ∈ Emin
dde if the time difference between them is smaller than `max

wait +

D. Compared to constructing Adis,1
wait (Figure 6.5), here we increase the required time

difference by D minutes. This is because an event e ∈ Edis
dde could be delayed by at

most D minutes. The same reasoning applies to the situation in Figure 6.7, where
a disrupted wait activity a ∈ Adis,3

wait is constructed between two different events from
{e1,e2,e3,e4} ⊆ Edis

dde if the time difference between these two events is smaller than
`max

wait +D. Considering train orders could change, a disrupted wait activity a ∈ Adis,4
wait

will be constructed from an event e∈ Edis
dde to another event e′ ∈ Edis

dde that was originally
planned to occur before e, if the absolute time difference between them is smaller than
D. This is illustrated by Figure 6.8. We use the disrupted wait activity (e2,e1) ∈ Adis,4

wait
as an example: e1 could be delayed after e2 in a rescheduled timetable so that (e2,e1)

could be effective in the corresponding event-activity network.

1e 2e
1e 2e

Time points: 

startt

endt R

3e
max

wait

max

wait

4e

Figure 6.5: Example on constructing Adis,1
wait (the dashed arcs): e1 ∈ Eplan

dde \E
max
dde ,e2 ∈

Emax
dde ,e

′
i ∈ Edis

dde, i = {1,2,3,4}

1e 2e1e 2e 3e
Time points: 

startt

endt R

max

wait D 

max

wait D 

4e

Figure 6.6: Example on constructing Adis,2
wait (the dashed arcs): ei ∈ Edis

dde, i =

{1,2,3,4} ,e′1 ∈ Emin
dde ,e

′
2 ∈ Eplan

dde \E
min
dde
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Time points: 

startt

endt R

1e 2e 3e 4e
max

wait D 
max

wait D 

max

wait D 

Figure 6.7: Example on constructing Adis,3
wait (the dashed arcs): ei ∈ Edis

dde, i = {1,2,3,4}

Time points: 

startt

endt R

1e 2e 3e 4e

D

D

D

Figure 6.8: Example on constructing Adis,4
wait (the dashed arcs): ei ∈ Edis

dde, i = {1,2,3,4}

The set of disrupted wait activities is defined as Adis
wait =

⋃
j∈{1,...,4}Adis, j

wait . Then, undis-

rupted wait activities are defined as Aundis
wait = Aplan

wait\
(

Aplan
wait∩Adis

wait

)
.

6.4.2.6 Transfer activities

To construct disrupted transfer activities, we first establish two event sets:

E trans
ar =

{
e
∣∣∣e ∈ Eplan

ar ,oe < tstart,(e,e′) ∈ Aplan
trans, tstart ≤ oe′ < tend +R

}
,

Edis
ar =

{
e
∣∣∣e ∈ Eplan

ar , tstart ≤ oe < tend +R
}
.

Set E trans
ar contains the arrival events that will not be delayed/cancelled by the disruption

but the corresponding planned transfer activities could become inapplicable due to the
disruption. Set Edis

ar includes the arrival events that could be delayed/cancelled due to
the disruption. Then, we construct the disrupted transfer activities:

Adis,1
trans =

{(
e,e′
) ∣∣∣e ∈ E trans

ar ,e′ ∈ Emin
dde , tre′ 6= tre,ste′ = ste, `trans

e,e′ ≤ oe′−oe ≤ `max
trans

}
,

Adis,2
trans =

{(
e,e′
) ∣∣e ∈ E trans

ar ,e′ ∈ Edis
dde, tre′ 6= tre,ste′ = ste,oe′−oe ≤ `max

trans} ,

Adis,3
trans =

{(
e,e′
) ∣∣∣e ∈ Edis

ar ,e
′ ∈ Emin

dde , tre′ 6= tre,ste′ = ste, `trans
e,e′ ≤ oe′−oe ≤ `max

trans +D
}
,

Adis,4
trans =

{(
e,e′
) ∣∣∣e ∈ Edis

ar ,e′ ∈ Edis
dde, tre′ 6= tre,ste′ = ste,0≤ oe′−oe ≤ `max

trans +D} ,

Adis,5
trans =

{(
e,e′
)∣∣∣e ∈ Edis

ar ,e
′ ∈ Edis

dde, tre′ 6= tre,ste′ = ste, `trans
e,e′ −D≤ oe′−oe < 0

}
,

where `trans
e,e′ represents the minimum transfer time, and `max

trans represents the maximum
transfer time that a passenger would like to spend at a station. We assume that `max

trans ≥
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D > `trans
e,e′ . Adis,1

trans and Adis,2
trans are both relevant to E trans

ar , while Adis,3
trans, Adis,4

trans and Adis,5
trans are

all relevant to Edis
ar .

Examples on constructing Adis,1
trans, Adis,2

trans, Adis,3
trans, Adis,4

trans and Adis,5
trans are described in Fig-

ures 6.9 to 6.13, respectively, where the dash double dotted arcs represent the con-
structed disrupted transfer activities, and the hollow (solid) circles refer to the arrival
(duplicate departure) events. The events that will not be delayed/cancelled due to the
disruption are colored in blue, while the events that will be delayed/cancelled due to
the disruption are colored in black.

In Figure 6.9, we construct a disrupted transfer activity a ∈ Adis,1
trans from an arrival event

ei ∈ E trans
ar , i = {1,2} to the duplicate departure event e′1 ∈ Emin

dde if the time difference
between these two events is larger than the minimum transfer time `trans

ei,e′1
and smal-

ler than the maximum transfer time `max
trans. Note that the time differences are calcu-

lated based on the original scheduled times of events in Figures 6.9 to 6.13. In Fig-
ure 6.10, we construct a disrupted transfer activity a ∈ Adis,2

trans from an arrival event
ei ∈ E trans

ar , i = {1,2} to a duplicate departure event e′j ∈ Edis
dde, j = {1,2} if the time dif-

ference between these two events is smaller than `max
trans. In this case, it is unnecessary to

require the time difference to be larger than the minimum transfer time, because event
e′ ∈ Edis

dde was originally planned to occur after event e∈ E trans
ar and could be delayed by

at most D minutes (D > `trans
e,e′ ), in which case the minimum transfer time must be satis-

fied. In Figure 6.11, we construct a disrupted transfer activity a ∈ Adis,3
trans from an event

ei ∈ Edis
ar , i = {1,2,3,4} to the event e′1 ∈ Emin

dde if the time difference between these two
events is larger than `trans

ei,e′1
and smaller than `max

trans +D. Compared to constructing Adis,1
trans

and Adis,2
trans, the upper limit on the time difference is increased by D when constructing

Adis,3
trans because the tail of an activity a ∈ Adis,3

trans is an event e ∈ Edis
ar , which could be

delayed by at most D minutes. The same reasoning applies to the situation in Fig-
ure 6.12, where a disrupted transfer activity a ∈ Adis,4

trans is constructed from an arrival
event ei ∈ Edis

ar , i = {1,2} to a duplicate event e′j ∈ Edis
dde, j = {1,2} that was originally

planned to occur later than ei if the time difference between ei and e′j is smaller than
`max

trans+D. A lower limit on the time difference is not needed similar to the construction
of Adis,2

trans. In Figure 6.13, we construct a disrupted transfer a ∈ Adis,5
trans from an arrival

event ei ∈ Edis
ar , i = {1,2} to a duplicate event e′j ∈ Edis

dde, j = {1,2} that was originally
planned to occur earlier than ei if the absolute time difference between between ei and
e′j is larger than D− `max

trans. We use the disrupted transfer activity (e′2,e2) ∈ Adis,5
trans as an

example: e′2 could be delayed by at most D minutes in a rescheduled timetable so that
(e′2,e2) can satisfy the minimum transfer time.
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1e 2e1e
Time points: 

startt

endt R

2e

max

trans
max

trans

2 1

trans

,e e

Figure 6.9: Example on constructing Adis,1
trans (the dash double dotted arcs): ei ∈E trans

ar , i=
{1,2} ,e′1 ∈ Emin

dde ,e
′
2 ∈ Eplan

dde \E
min
dde

1e 2e1e
Time points: 

startt

endt R

2e

max

trans

max
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Figure 6.10: Example on constructing Adis,2
trans (the dash double dotted arcs): ei ∈
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Figure 6.11: Example on constructing Adis,3
trans (the dash double dotted arcs): ei ∈Edis
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Figure 6.12: Example on constructing Adis,4
trans (the dash double dotted arcs): ei ∈Edis
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1e 2e 1e 2e
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Figure 6.13: Example on constructing Adis,5
trans (the dash double dotted arcs): ei ∈Edis

ar , i=
{1,2} ,e′j ∈ Edis

dde, j = {1,2} ,

The set of disrupted transfer activities is defined as Adis
trans =

⋃
j∈{1,...,5}Adis, j

trans. Undis-

rupted transfer activities are then defined as Aundis
trans = Aplan

trans\
(

Aplan
trans∩Adis

trans

)
.

In summary, this section introduced the method of constructing a transition network
Ω∗ to include all possible events and activities. In other words, Ω∗ =

⋃
iΩ

i
dis∪Ωplan,

where Ωi
dis refers to the event-activity network corresponding to the ith feasible res-

cheduled timetable for a specific disruption, and Ωplan represents the event-activity
network corresponding to the planned timetable.

6.5 Passenger-oriented timetable rescheduling model

In this section, we formulate the passenger-oriented timetable rescheduling problem
as an MILP model, with as objective minimizing generalized travel times and which
consists of three constraint modules: 1) timetable rescheduling, 2) dynamic event-
activity network formulation, and 3) passenger reassignment.

The timetable rescheduling module adjusts the planned timetable by delaying, re-
ordering, cancelling, flexible stopping and flexible short-turning trains, and considers
station capacities and rolling stock circulations at both short-turning and terminal sta-
tions of trains. It computes a rescheduled timetable from the starting of a disruption
until the normal schedule is recovered. The dynamic event-activity network formula-
tion module formulates an event-activity network Ωdis corresponding to a rescheduled
timetable based on the constructed transition network Ω∗. To be more specific, the dy-
namic event-activity network formulation module decides which events and activities
of Ω∗ should be selected to formulate Ωdis in terms of a rescheduled timetable, by re-
specting the rules of constructing an event-activity network introduced in Section 6.3.
The passenger reassignment module decides the weight of each activity a ∈ Ω∗ per-
ceived by each passenger, and assigns each passenger to one path only. A path is a
sequence of connected activities that all belong to the formulated Ωdis. The total activ-
ity weight of a path is the generalized travel time of this path. Under the objective
of minimizing generalized travel times, the passenger reassignment module assigns
each passenger to the path with the shortest generalized travel time perceived by this
passenger.
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The constraints used in the timetable rescheduling module are all from Chapter 3 so
that we do not present them in this chapter, neither the decision variables that are only
used in this module. We refer to Chapter 3 for details. In this chapter, we present
the constraints in the modules of the dynamic event-activity network formulation and
the passenger reassignment, as well as the corresponding decision variables. Table 6.3
lists these decision variables and the modules in which they are used. The notation of
parameters/sets can be found in the Appendix 6.A.

Due to flexible stopping, scheduled stops could be skipped and extra stops could be
added. The scheduled stops (non-stops) can also be cancelled, due to short-turning
or complete train cancellation. Tables 6.4 and 6.5 show all possible stop types in a
rescheduled timetable, and the corresponding values of the relevant decision variables.
There are specific constraints in the timetable rescheduling module to limit the value
combinations of ce,ce′ and sa. We refer to Chapter 3 for details.

Table 6.4: The stop type of activity a = (e,e′) ∈ Aplan
dwell in a rescheduled timetable

according to ce,ce′ and sa

ce ce′ sa Stop type
0 0 0 Stop
0 0 1 Skipped stop
1 0 0 Cancelled stop
0 1 0 Cancelled stop
1 1 0 Cancelled stop

Table 6.5: The stop type of activity a = (e,e′) ∈ Aplan
pass in a rescheduled timetable ac-

cording to ce,ce′ and sa

ce ce′ sa Stop type
0 0 0 Extra stop
0 0 1 Non-stop
1 0 1 Cancelled non-stop
0 1 1 Cancelled non-stop
1 1 1 Cancelled non-stop

6.5.1 Dynamic event-activity network formulation

The dynamic event-activity network formulation module decides which events and
activities of the transition network Ω∗ are effective in an event-activity network Ωdis

corresponding to a rescheduled timetable by respecting the rules of constructing an
event-activity network introduced in Section 6.3. Recall that Ω∗ = E∗ ∪A∗, where
E∗=Eplan

ar ∪Eplan
de ∪E∗dde∪Eplan

entry∪Eplan
exit ∪Eplan

penal, and A∗=Aplan
run ∪Aplan

dwell∪Aplan
pass∪A∗wait∪

A∗trans∪A∗board∪A∗entry∪A∗exit∪Aplan
enpenal∪Aplan

expenal. In particular, Aplan
i = Aundis

i ∪Adis
i , i ∈

{run,dwell,pass}, and A∗j = Aundis
j ∪ Adis

j , j ∈ {wait, trans,board,entry,exit}, which
means that in the transition network Ω∗, each kind of activity set consists of two
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subsets: an undisrupted activity set, and a disrupted activity set. For an undisrupted
activity, both of the corresponding events will not be delayed/cancelled by the disrup-
tion; while for a disruption activity, at least one of the corresponding events could be
delayed/cancelled by the disruption.

6.5.1.1 Deciding which events are effective in Ωdis

The binary cancellation decision ce of an event e ∈ Eplan
ar ∪Eplan

de ∪E∗dde is equivalent
to deciding whether this event is effective in Ωdis. An event e ∈ Eplan

ar ∪Eplan
de ∪E∗dde

is effective in Ωdis if it is not cancelled, ce = 0. The cancellation decision ce and the
rescheduled time xe of an arrival (departure) event e ∈ Eplan

ar (e ∈ Eplan
de ) are determined

in the timetable rescheduling module. A duplicate departure event e′ ∈ E∗dde is required
to be cancelled/kept simultaneously as its corresponding departure event e∈ Eplan

de , and
the rescheduled times of both events are forced to be the same:

ce′ = ce, e′ ∈ E∗dde,e ∈ Eplan
de ,λe′ = e, (6.1)

xe′ = xe, e′ ∈ E∗dde,e ∈ Eplan
de ,λe′ = e, (6.2)

where λe′ is a given attribute indicating the departure event corresponding to duplicate
departure event e′.

An event e ∈ Eplan
entry∪Eplan

exit ∪Eplan
penal is always effective in any Ωdis.

6.5.1.2 Deciding which activities are always effective in any Ωdis

Entry/exit penalty activities, and undisrupted activities are effective in any Ωdis:

ya = 1, a ∈ Aplan
enpenal∪Aplan

expenal, (6.3)

ya = 1, a ∈
{

Aundis
k

}
k∈K

,K = {run,dwell,pass,wait, trans,board,entry,exit} ,

(6.4)

where ya is a binary variable with value 1 indicating that activity a is effective in Ωdis,
and 0 otherwise. Recall that both of the events corresponding to an undisrupted activity
will not be delayed/cancelled due to the disruption.

6.5.1.3 Deciding which disrupted run activities are effective in Ωdis

Recall that a running activity is from a departure event e to an arrival event e′, which
correspond to the same train at neighbouring stations. A disrupted running activity in
the transition network Ω∗ will be effective in an event-activity network Ωdis if neither
of the corresponding events is cancelled:

ya = 1− ce, a = (e,e′) ∈ Adis
run, (6.5)

ya = 1− ce′, a = (e,e′) ∈ Adis
run. (6.6)
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Note that in the timetable rescheduling module (Chapter 3), the departure event e and
the arrival event e′ in the same running activity are forced to be cancelled/kept simul-
taneously: ce=ce′ , which is why we use equalities for (6.5) and (6.6).

6.5.1.4 Deciding which disrupted dwell/pass-through activities are effective in
Ωdis

Recall that a dwell (pass-through) activity is from an arrival event e to a departure
event e′, which correspond to the same train at the same station. We decide whether a
disrupted dwell (pass-through) activity of Ω∗ will be effective in Ωdis by:

ya ≤ 1− ce, a = (e,e′) ∈ Adis
dwell∪Adis

pass, (6.7)

ya ≤ 1− ce′, a = (e,e′) ∈ Adis
dwell∪Adis

pass, (6.8)

ya ≥ 1− ce− ce′, a = (e,e′) ∈ Adis
dwell∪Adis

pass. (6.9)

Constraints (6.7) and (6.8) mean that a disrupted dwell (pass-through) activity will not
be effective in Ωdis if at least one of the corresponding events is cancelled; otherwise,
it must be effective ((6.9)). Recall that Adis

dwell ⊆ Aplan
dwell and Adis

pass ⊆ Aplan
pass.

6.5.1.5 Deciding which disrupted entry activities are effective in Ωdis

Recall that an entry activity is from an entry event e to a duplicate departure event
e′, which both correspond to the same station. We use a binary parameter re′ with
value 1 to indicate that a (duplicate) departure event e′ corresponds to a train origin
departure, and 0 otherwise. For a disrupted entry activity a = (e,e′) of which the
duplicate departure event e′ corresponds to a train origin departure, a will be effective
in Ωdis if e′ is not cancelled:

ya = 1− ce′, a = (e,e′) ∈ Adis
entry,re′ = 1. (6.10)

For a disrupted entry activity a = (e,e′) of which the duplicate departure event e′ does
not correspond to a train origin departure, we established the following constraints to
decide whether a is effective in Ωdis:

ya ≤ 1− ce′, a = (e,e′) ∈ Adis
entry,re′ = 0, (6.11)

ya ≤ 1− sa′+ ce′′+ ce′′′, a = (e,e′) ∈ Adis
entry,re′ = 0,e′′′ = λe′,

a′ = (e′′,e′′′) ∈ Adis
dwell∪Adis

pass, (6.12)

ya ≥ 1− sa′− ce′′− ce′′′, a = (e,e′) ∈ Adis
entry,re′ = 0,e′′′ = λe′,

a′ = (e′′,e′′′) ∈ Adis
dwell∪Adis

pass. (6.13)

Constraint (6.11) means that a disrupted entry activity a= (e,e′) will not be effective in
Ωdis if its corresponding duplicate departure event e′ is cancelled. Otherwise, a will be
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effective only if its corresponding duplicate departure event e′ is associated with a real
stop a′ = (e′′,e′′′) ∈ Adis

dwell∪Adis
pass that has ce′′ = 0,ce′′′ = 0 and sa′ = 0 (see Table 6.4

and Table 6.5), in which e′′′ is the departure event corresponding to e′: e′′′ = λe′ . This
is represented by (6.12) and (6.13).

6.5.1.6 Deciding which disrupted boarding activities are effective in Ωdis

Recall that a boarding activity is from a duplicate departure event e to the corres-
ponding departure event e′. For a disrupted boarding activity a = (e,e′) of which the
duplicate departure event e corresponds to a train origin departure, a will be effective
in Ωdis if e is not cancelled.:

ya = 1− ce, a = (e,e′) ∈ Adis
board,re = 1. (6.14)

For a disrupted boarding activity a = (e,e′) of which the duplicate departure event e
does not correspond to a train origin departure, we decide whether a is effective in Ωdis

by

ya ≤ 1− ce, a = (e,e′) ∈ Adis
board,re = 0, (6.15)

ya ≤ 1− sa′+ ce + ce′, a = (e,e′) ∈ Adis
board,re = 0,a′ = (e′′,e′) ∈ Adis

dwell∪Adis
pass,

(6.16)

ya ≥ 1− sa′− ce′′− ce′, a = (e,e′) ∈ Adis
board,re = 0,a′ = (e′′,e′) ∈ Adis

dwell∪Adis
pass.

(6.17)

Constraint (6.15) means that a disrupted boarding activity a will not be effective in
Ωdis if its corresponding duplicate departure event e is cancelled. Otherwise, a will
be effective only if its corresponding departure event e′ is associated with a real stop
a′ = (e′′,e′) ∈ Adis

dwell∪Adis
pass that has ce′′ = 0,ce′ = 0 and sa′ = 0. This is represented by

(6.16) and (6.17).

6.5.1.7 Deciding which disrupted exit activities are effective in Ωdis

Recall that an exit activity is from an arrival event e to an exit event e′, which both
correspond to the same station. We use a binary parameter fe with value 1 to indicate
that an arrival event e corresponds to a train destination arrival, and 0 otherwise. For
a disrupted exit activity a = (e,e′) of which the arrival event e corresponds to a train
destination arrival, a will be effective in Ωdis if e is not cancelled:

ya = 1− ce, a = (e,e′) ∈ Adis
exit, fe = 1. (6.18)

For a disrupted exit activity a = (e,e′) of which the arrival event e′ does not correspond
to a train destination arrival, we established the following constraints to decide whether
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a is effective in Ωdis:

ya ≤ 1− ce, a = (e,e′) ∈ Adis
exit, fe = 0, (6.19)

ya ≤ 1− sa′+ ce + ce′′ , a = (e,e′) ∈ Adis
exit, fe = 0,a′ = (e,e′′) ∈ Adis

dwell∪Adis
pass,

(6.20)

ya ≥ 1− sa′− ce− ce′′ , a = (e,e′) ∈ Adis
exit, fe = 0,a′ = (e,e′′) ∈ Adis

dwell∪Adis
pass,

(6.21)

Constraint (6.19) means that a disrupted exit activity a = (e,e′) will not be effective
in Ωdis if its corresponding arrival event e is cancelled. Otherwise, a will be effective
only if its corresponding arrival event e is associated with a real stop a′ = (e,e′′) ∈
Adis

dwell∪Adis
pass that has ce = 0,ce′′ = 0 and sa′ = 0. This is stated by (6.20) and (6.21).

6.5.1.8 Deciding which disrupted wait activities are effective in Ωdis

Recall that a wait activity is from a duplicate departure event e to the next time-closest
duplicate departure event e′ that occurs at the same station but corresponds to a differ-
ent train. We decide whether a disrupted wait activity a = (e,e′) is effective in Ωdis

by

ya ≤ 1− ce, a = (e,e′) ∈ Adis
wait, (6.22)

ya ≤ 1− ce′ , a = (e,e′) ∈ Adis
wait, (6.23)

ya ≤ 1− sa′+ ce′′+ ce′′′, a = (e,e′) ∈ Adis
wait,re = 0,e′′′ = λe,

a′ = (e′′,e′′′) ∈ Adis
dwell∪Adis

pass, (6.24)

ya ≤ 1− sa′+ ce′′+ ce′′′, a = (e,e′) ∈ Adis
wait,re′ = 0,e′′′ = λe′,

a′ = (e′′,e′′′) ∈ Adis
dwell∪Adis

pass, (6.25)

ya + ya′ ≤ 1, a = (e,e′) ∈ Adis
wait,a

′ = (e′,e) ∈ Adis
wait (6.26)

∑
a∈Adis

wait,
tail(a)=e

ya ≤ 1, e ∈ Edis
dde, (6.27)

∑
a∈Adis

wait,

head(a)=e′

ya ≤ 1, e′ ∈ Edis
dde, (6.28)

xe′− xe′′ ≤M(1− ya), a = (e,e′) ∈ Adis
wait,a

′ = (e,e′′) ∈ Adis
wait, (6.29)

xe′′− xe′ ≤M(1− ya′), a = (e,e′) ∈ Adis
wait,a

′ = (e,e′′) ∈ Adis
wait, (6.30)

xe′− xe ≥−M(1− ya), a = (e,e′) ∈ Adis
wait, (6.31)

where tail(a) refers to the tail event of an activity: the event which an activity starts
from, head(a) refers to the head event of an activity: the event which an activity directs
to, and M is a sufficiently large number of which the value is set to 2880. Constraints
(6.22) and (6.23) mean that a disrupted wait activity will not be effective in Ωdis if at
least one of the corresponding events is cancelled. Constraint (6.24) ((6.25)) requires
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a disrupted wait activity a = (e,e′) to be ineffective if the corresponding duplicate de-
parture event e (e′) does not correspond to a train origin departure and is not associated
with a real stop. A duplicate departure event could be relevant to multiple disrup-
ted wait activities in a transition network (see Figure 6.8 as an example), while at most
one of these activities can be effective in an event-activity network Ωdis ((6.26)-(6.28)).
Constraints (6.29)-(6.31) together ensure that a duplicate departure event e can only be
linked to the next time-closest duplicate departure event to construct an effective wait
activity in Ωdis.

6.5.1.9 Deciding which disrupted transfer activities are effective in Ωdis

Recall that a transfer activity is from an arrival event e to the next time-closest duplicate
departure event e′ that occurs at the same station as e but corresponds to a different
train. We decide whether a disrupted transfer activity a = (e,e′) is effective in Ωdis by

ya ≤ 1− ce, a = (e,e′) ∈ Adis
trans, (6.32)

ya ≤ 1− ce′, a = (e,e′) ∈ Adis
trans, (6.33)

ya ≤ 1− sa′+ ce + ce′′ , a = (e,e′) ∈ Adis
trans, fe = 0,

a′ = (e,e′′) ∈ Adis
dwell∪Adis

pass, (6.34)

ya ≤ 1− sa′+ ce′′+ ce′′′, a = (e,e′) ∈ Adis
trans,re′ = 0,e′′′ = λe′,

a′ = (e′′,e′′′) ∈ Adis
dwell∪Adis

pass, (6.35)

∑
a∈Adis

trans,
tail(a)=e

ya ≤ 1, e ∈ E trans
ar ∪Edis

ar , (6.36)

xe′− xe′′ ≤M(1− ya), a = (e,e′) ∈ Adis
trans,a

′ = (e,e′′) ∈ Adis
trans, (6.37)

xe′′− xe′ ≤M(1− ya′), a = (e,e′) ∈ Adis
trans,a

′ = (e,e′′) ∈ Adis
trans, (6.38)

xe′− xe ≥−M(1− ya)+ `trans
e,e′ , a = (e,e′) ∈ Adis

trans, (6.39)

where `trans
e,e′ refers to the minimum transfer time. Constraints (6.32) and (6.33) means

that a disrupted transfer activity will not be effective in Ωdis if at least one of the cor-
responding events is cancelled. Constraint (6.34) requires a disrupted transfer activity
a = (e,e′) to be ineffective if the corresponding arrival event e does not correspond to a
train destination arrival and is not associated with a real stop. Constraint (6.35) requires
a disrupted transfer activity a = (e,e′) to be ineffective if the corresponding duplicate
departure event e′ does not correspond to a train origin departure and is not associated
with a real stop. Constraint (6.36) means that for an arrival event e ∈ E trans

ar ∪Edis
ar ,

which has multiple disrupted transfer activities starting from it (see Figure 6.13 as
an example), at most one of these activities will be effective in an event-activity net-
work Ωdis. Constraints (6.37)-(6.39) together ensure that an arrival event e can only
be linked to the next time-closest duplicate departure event to construct an effective
transfer activity of which the minimum transfer time must be respected.
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6.5.2 Passenger reassignment

There could be multiple passengers who share exactly the same journeys in terms of the
planned timetable: the same origin station, the same arrival time at the origin station,
the same expected destination, and the same expected generalized travel time from
the origin to the destination. These passengers form a same group g ∈ G, which is
assumed to be inseparable in case of a disruption. G represents the set of passenger
groups, possibly consisting of a single passenger. Recall that a path is a sequence
of connected activities. Deciding which path will be chosen by a passenger group is
equivalent to deciding which activities will be chosen by this group, while each group g
is associated with the same activity choice set A∗. The passenger reassignment module
decides which activity a ∈ A∗ will be chosen by a passenger group g and the weight of
each activity a ∈ A∗ perceived by g.

6.5.2.1 Assigning each passenger group to one path only

An activity a ∈ A∗ cannot be chosen by a passenger group if a is not effective in Ωdis

(ya =0):

ug
a ≤ ya, a ∈ A∗,g ∈ G, (6.40)

where ug
a is a binary decision with value 1 indicating that activity a ∈ A∗ is chosen by

passenger group g ∈ G, and 0 otherwise.

A path that could be chosen by a passenger group g must start from an entry (entry
penalty) event corresponding to his/her origin Og, end in an exit (exit penalty) event
corresponding to his/her destination Dg, and include at least one intermediate event to
connect them:

∑
a∈Aundis

entry∪Adis
entry∪Aplan

enpenal,

sttail(a)=Og

ug
a = 1, g ∈ G, (6.41)

∑
a∈Aundis

entry∪Adis
entry∪Aplan

enpenal,

sttail(a) 6=Og

ug
a = 0, g ∈ G. (6.42)

∑
a∈Aundis

exit ∪Adis
exit∪Aplan

expenal,

sttail(a)=Dg

ug
a = 1, g ∈ G, (6.43)

∑
a∈Aundis

exit ∪Adis
exit∪Aplan

expenal,

sttail(a) 6=Dg

ug
a = 0, g ∈ G; (6.44)

∑
a∈Ine

ug
a = ∑

a′∈Oute

ug
a′, e ∈ E∗\

{
Eplan

entry,E
plan
exit

}
,g ∈ G, (6.45)

M(1−ug
a)+ xe′ ≥ tori

g , a = (e,e′) ∈ Aundis
entry ∪Adis

entry,ste = Og,g ∈ G, (6.46)
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where
{

Aundis
entry ,A

dis
entry,A

plan
enpenal

}
contains all entry and entry penality activities in Ω∗,

and
{

Aundis
exit ,Adis

exit,A
plan
expenal

}
contains all exit and exit penalty activities in Ω∗. Recall

that an entry (entry penalty activity) is from an entry event to a duplicate departure
(penalty) event, while an exit (exit penalty activity) is from an arrival (penalty) event to
an exit event. sttail(a) refers to the corresponding station of the tail event of an activity,
Ine (Oute) is the set of activities going in (going out) event e, and tori

g represents the time
of passenger group g arriving at origin station Og. Constraint (6.41) means that among
the entry and entry penalty activities relevant to the origin of a passenger group, one
and only one of them will be chosen by this group. Constraint (6.42) means that among
the entry and entry penalty activities that do not correspond to the origin station of a
passenger group, none of them will be chosen by this group. Constraint (6.43) means
that among the exit and exit penalty activities relevant to the destination of a passenger
group, one and only one of them will be chosen by this group. Constraint (6.44) means
that among the exit and exit penalty activities that do not correspond to the destination
station of a passenger group, none of them will be chosen by this group. Constraint
(6.45) is for flow balance at intermediate events (i.e. excluding entry and exit events).
It means that if an activity a = (e′,e), which goes into an intermediate event e, is
chosen by a passenger group g (ug

a=1), then another activity a′ = (e,e′′), which goes
out from event e should also be chosen by this group (ug

a′=1). Constraint (6.46) means
that an entry activity a = (e,e′) that corresponds to the origin station of a passenger
group could be chosen by this group only if the rescheduled time xe′ of the duplicate
departure event e′ in a is later than the time of this group arriving at the origin station
tori
g .

6.5.3 Deciding the weight of each activity perceived by a passenger
group

Suppose we use wa to represent the decision on the weight of an activity a. Then, the
generalized travel time of a passenger in group g can be described as ∑a∈A∗wa · ug

a,
which is a nonlinear formulation because wa and ug

a are both decision variables. To
formulate the generalized travel time of a passenger in a linear way, we use wg

a instead,
which is a continuous variable indicating the weight of an activity a perceived by each
passenger in group g. The generalized travel time of each passenger in group g is then
formulated as ∑a∈A∗wg

a. The value of wg
a is forced to be 0 if activity a is not chosen

by group g. Otherwise, the value of wg
a is determined according to the time cost of

activity a and passenger preference on the type of a. In the following, we introduce the
constraints of deciding wg

a for each kind of activity.
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If an activity a is not chosen by group g (ug
a = 0), the weight of this activity will be 0:

wg
a ≤M∗ug

a, a = (e,e′) ∈ Aundis
j ∪Adis

j , j ∈ {entry,wait, run,dwell,pass, trans} ,g ∈ G,

(6.47)

wg
a ≥ 0, a = (e,e′) ∈ Aundis

j ∪Adis
j , , j ∈ {entry,wait, run,dwell,pass, trans} ,g ∈ G,

(6.48)

where M∗ is a sufficiently larger number, of which the value is set to βwaitM. Here,
βwait is the multiplier of waiting time perceived by passengers at stations.

If an entry activity a is chosen by group g (ug
a = 1), the weight of this entry activity

perceived by each passenger in group g is determined by

wg
a ≤ βwait

(
xe′− tori

g

)
+M∗ (1−ug

a) , a = (e,e′) ∈ Aundis
entry ∪Adis

entry,g ∈ G, (6.49)

wg
a ≥ βwait

(
xe′− tori

g

)
−M∗ (1−ug

a) , a = (e,e′) ∈ Aundis
entry ∪Adis

entry,g ∈ G, (6.50)

where wg
a is forced to be βwait

(
xe′− tori

g
)

if ug
a = 1, in which case xe′ must be larger

than tori
g due to (6.46).

If a wait activity a is chosen by group g (ug
a = 1), the weight of this wait activity

perceived by each passenger in group g is determined by

wg
a ≤ βwait (xe′− xe)+M∗ (1−ug

a) , a = (e,e′) ∈ Aundis
wait ∪Adis

wait,g ∈ G, (6.51)

wg
a ≥ βwait (xe′− xe)−M∗ (1−ug

a) , a = (e,e′) ∈ Aundis
wait ∪Adis

wait,g ∈ G, (6.52)

where wg
a is forced to be βwait (xe′− xe) if ug

a = 1, in which case xe′ must be larger than
xe (otherwise a would not be effective and then would not be chosen by g).

If a run, dwell or pass-through a is chosen by group g (ug
a = 1), the weight of this

activity perceived by each passenger in group g is determined by

wg
a ≤ βvehicle (xe′− xe)+M∗ (1−ug

a) , a = (e,e′) ∈ Aundis
j ∪Adis

j ,

j ∈ {run,dwell,pass} ,g ∈ G, (6.53)

wg
a ≥ βvehicle (xe′− xe)−M∗ (1−ug

a) , a = (e,e′) ∈ Aundis
j ∪Adis

j ,

j ∈ {run,dwell,pass} ,g ∈ G, (6.54)

where βvehicle is the multiplier of in-vehicle time perceived by passengers. Here, wg
a is

forced to be βvehicle (xe′− xe) if ug
a=1, in which case xe′ must be larger than xe (other-

wise a would not be effective and then would not be chosen by g).

If a transfer activity a is chosen by group g (ug
a = 1), the weight of this transfer activity

perceived by each passenger in group g is determined by

wg
a ≤ βtrans +βwait (xe′− xe)+M∗ (1−ug

a) , a = (e,e′) ∈ Aundis
trans ∪Adis

trans,g ∈ G,

(6.55)

wg
a ≥ βtrans +βwait (xe′− xe)−M∗ (1−ug

a) , a = (e,e′) ∈ Aundis
trans ∪Adis

trans,g ∈ G,

(6.56)
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where βtrans is the fixed time penalty of one transfer. Here, wg
a is forced to be βtrans +

βwait (xe′− xe) if ug
a=1, in which case xe′ must be larger than xe (otherwise a would not

be effective and then would not be chosen by g).

The weight of an entry penalty activity is determined by

wg
a = µ ·T plan

g ·ug
a, a = (e,e′) ∈ Aplan

enpenal,g ∈ G,µ ≥ 1, (6.57)

where T g
plan refers to the expected generalized travel time of passenger group g in terms

of the planned timetable, and µ ·T g
plan refers to the maximum generalized travel time

which passenger group g would accept during a disruption. Both T g
plan and µ are given

parameters.

The weight of a boarding activity, an exit activity, or an exit penalty activity is set to 0:

wg
a = 0, a = (e,e′) ∈

{
Aplan

expenal, Aundis
board, Adis

board, Aundis
exit , Adis

exit

}
,g ∈ G. (6.58)

6.5.4 Objective

The objective is to minimize the generalized travel times of all passengers, which is

zp = ∑
g∈G

∑
a∈A∗

ngwg
a, (6.59)

where ng represents the number of passengers in group g.

To summarize, the proposed passenger-oriented timetable rescheduling model (POTR)
is given by constraints (6.1) - (6.58) presented in this chapter, as well as the constraints
presented in Chapter 3, with objective (6.59).

6.6 Reducing the computational complexity of the passenger-
oriented timetable rescheduling model

When dealing with a large railway network and/or considering numerous passengers,
the proposed passenger-oriented timetable rescheduling model (POTR) may not be
able to find a high-quality solution in an acceptable time, because a binary variable
ug

a is created for each activity a ∈ A∗ associated with each passenger group g ∈ G,
of which the total number is |A∗|× |G|. To reduce the computational complexity, we
propose 1) a pre-processing method to shrink the activity choice set for each passenger
group in a reasonable way, and 2) an iterative solution method to solve the model with
limited passenger groups considered in each iteration, which also restricts the solution
space to avoid excessive operational deviations that are not preferred by the railway
operators. We introduce both methods in this section.
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6.6.1 Shrinking the activity choice set of a passenger group

The passenger-oriented timetable rescheduling model proposed in Section 6.5 con-
siders A∗ as the activity choice set for each passenger group g ∈ G, while A∗ contains
some activities that will never be chosen by g. Thus, we introduce a method of con-
structing an improved activity choice set A∗g for passenger group g ∈ G by excluding
the activities that will never be chosen by g. In other words, A∗g ⊂ A∗. Recall that
A∗ = Aplan

run ∪Aplan
dwell∪Aplan

pass∪A∗wait∪A∗trans∪A∗board∪A∗entry∪A∗exit∪Aplan
enpenal∪Aplan

expenal.

To decide which activities of A∗ should be selected to construct A∗g, we first define that

• an arrival event e could be reachable by passenger group g if tori
g + `min

Og,ste−D≤
oe ≤ tori

g +µT plan
g − `min

ste,Dg
and ste 6= Og, and

• a (duplicate) departure event e could be reachable by passenger group g if tori
g +

`min
Og,ste−D≤ oe ≤ tori

g +µT plan
g − `min

ste,Dg
and ste 6= Dg.

in which oe is the original scheduled time of event e, D is the maximum allowed delay
per event, Og (Dg) represents the origin (destination) of passenger group g, tori

g is the
time of passenger group g arriving at the origin, µT plan

g is the maximum acceptable
generalized travel time of passenger group g, `min

Og,ste represents the minimum train run-
ning time from the origin of group g to the corresponding station of event e, and `min

ste,Dg

represents the minimum train running time from the corresponding station of event e
to the destination of group g.

Then, we add

• an activity a= (e,e′)∈ Aplan
i to Aplan

i,g for any i∈ {run,dwell,pass} , if both events
e and e′ could be reachable by passenger group g,

• an activity a = (e,e′) ∈ A∗i to A∗j,g for any j ∈ {wait, trans,board} , if both events
e and e′ could be reachable by passenger group g,

• an activity a = (e,e′) ∈ A∗entry to A∗entry,g if duplicate departure event e′ could be
reachable by passenger group g and ste′ = Og,

• an activity a = (e,e′) ∈ A∗exit to A∗exit,g if arrival event e could be reachable by
passenger group g and ste′ = Dg, and

• each activity a ∈ Aplan
enpenal∪Aplan

expenal to A∗g.

Thus, A∗g =
{

Aplan
i,g

}
i∈I
∪
{

A∗k,g
}

k∈K
∪Aplan

enpenal∪Aplan
expenal, in which I = {run,dwell,pass},

K = {wait, trans,board,entry,exit}. The constructed A∗g reduces the number of binary
variables ug

a and continuous variables wg
a, as well as the corresponding constraints in
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the passenger-oriented timetable rescheduling model. For example, due to the im-
proved entry and exit activity sets, A∗entry,g and A∗exit,g, constraints (6.42) and (6.44) are
not needed.

Table 6.6: Activity sets relevant to passenger group g
Notation Description
A∗g The activity choice set associated with passenger group g: A∗g ⊂ A∗

Aplan
i,g Set of i activities associated with passenger group g:

Aplan
i,g ⊂ Aplan

i , i ∈ {run,dwell,pass}

A∗k,g Set of k activities associated with passenger group g::
A∗k,g ⊂ A∗k ,k ∈ {wait, trans,board,entry.exit}

6.6.2 An iterative solution method

We propose a method (Algorithm 6.1) to solve the passenger-oriented timetable res-
cheduling model iteratively by considering limited passenger groups in each iteration,
where the timetable rescheduling problem is solved for all train services although re-
stricted passenger groups are considered. Each iteration determines the activities for
the next set of additional considered groups while keeping the activities of the previous
considered groups as fixed.

The number of new passenger groups nnew considered in an iteration determines the
number of required iterations I=

⌈
|G|

nnew

⌉
, where G represents the set of all passenger

groups, which is sorted in a descending order regarding the total expected generalized
travel times of all passengers contained in a group: ngT plan

g ,g∈G. The impacts of nnew

on the solution quality and the computation time of the iterative solution method are
investigated in Section 6.7.3. The iterative solution method terminates until either all
passenger groups in G are considered or the total running time limit T stop is reached,
while in the latter case one more process will be needed to evaluate the responses of
all passengers towards the rescheduled timetable finally obtained. At each iteration a
computation time limit tstop is set to avoid excessive searching for the optimal solution,
while a longer computation than tstop will be allowed to find a feasible solution in case
no feasible solution can be obtained within tstop.

Algorithm 6.1 needs the following inputs: the operator-oriented timetable rescheduling
model (OOTR), the passenger-oriented timetable rescheduling model (POTR), the set
of passenger groups G, the set of events E∗, the activity choice set A∗g of each passenger
group g ∈ G, the number of new passengers nnew considered in each iteration, the
computation time limit tstop of each iteration, the total computation time limit T stop,
and the maximum allowed deviation ∆ from the optimal operator-oriented objective
value in terms of train cancellations and delays. The OOTR model is the timetable
rescheduling module from Chapter 3, which in this chapter adopts the objective of
minimizing train cancellations and delays: zo = ∑e∈Eplan

ar
wcce+de, where ce is a binary
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cancellation decision, de is a continuous decision representing the delay of event e,
and wc is the penalty of cancelling a train service between two neighbouring stations.
Solving the OOTR model to optimality gets the optimal operator-oriented objective z∗o.
The POTR model consists of the timetable rescheduling module, the dynamic event-
activity network formulation module, and the passenger reassignment module, which
aims to minimize the generalized travel times of passengers: zp = ∑g∈G ∑a∈A∗g ngwg

a.

Algorithm 6.1: Iterative solution method
Input: OOTR,POTR,G,E∗,

{
A∗g
}

g∈G ,nnew, tstop,T stop,∆

1 Solve the OOTR model to get z∗o;
2 Add constraint ∑e∈Eplan

ar
wcce +de ≤ z∗o +∆ to the POTR model;

3 I=
⌈
|G|

nnew

⌉
;

4 G′ = /0;
5 POTR1 = POTR;
6 i = 1;
7 while i≤ I and T stop is not reached do
8 if i < I then
9 Gnew =

{
g j+1, · · · ,g j+nnew

}
⊂ G, j = (i−1)nnew;

10 G′ = G′∪Gnew;
11

{
x̃e, ũ

g
a, z̃p

}
← solve POTRi for all g ∈ G′ within tstop or until a feasible solution is

found, using the solution of OOTR model as an initial solution if i = 1 or the
solution of POTRi−1 as an initial solution if i≥ 2 ;

12 Construct POTRi+1 by adding constraints: ug
a = ũg

a,a ∈ A∗g,g ∈ Gnew, into POTRi ;
13 i = i+1;
14 else
15 Gnew =

{
g(i−1)nnew+1, · · · ,g|G|

}
⊂ G;

16 G′ = G′∪Gnew = G;
17

{
x̃e, ũ

g
a, z̃p

}
← solve POTRi for all g ∈ G within tstop or until a feasible solution is

found, using the solution of POTRi−1 as an initial solution;

18 if G′ 6= G then
19 Construct POTR′ by adding constraints: xe = x̃e,e ∈ Eplan

ar ∪Eplan
de ∪E∗dde, into POTR ;

20
{

x̃e, ũ
g
a, z̃p

}
← solve POTR′ for all g ∈ G;

21 Return
{

x̃e, ũ
g
a, z̃p

}
finally obtained;

In Algorithm 6.1, the OOTR model is solved first to obtain the optimal operator-
oriented rescheduled timetable that has the operator-oriented objective value of z∗o (line
1). To find a passenger-friendly rescheduled timetable that can also be preferred by rail-
way operators, we add a constraint to the POTR model to require that the passenger-
oriented rescheduled timetable obtained by the POTR model will not deviate from
the optimal operator-oriented rescheduled timetable by ∆ in terms of train cancella-
tions and delays (line 2). Line 3 initializes the number of iterations needed to solve the
POTR model, and line 4 initializes the set of passenger groups considered at each itera-
tion as an empty set. In line 5, we define the passenger-oriented timetable rescheduling
model to be solved in the 1st iteration as POTR1. The iteration is initialized in line 6.
If the required iterations are not completely performed and the total computation time
until the current iteration is shorter than T stop, then the while-loop starting from line 7
continues.

If the current iteration is not the final iteration (line 8), we select nnew passenger groups
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from G as the passenger groups that are newly considered in the current iteration (line
9), which are then added to G′ (line 10). Considering all passenger groups in G′, the
current POTRi model is solved within the required time limit tstop or until a feasible
solution is found (line 11). To speed up the computation time, we give an initial feas-
ible solution to the solver. When the current iteration is the first iteration, the initial
solution is chosen as the solution obtained earlier from the OOTR model. When the
current iteration is the second or a later iteration, the initial solution is chosen as the
solution from the POTRi−1 model in the previous iteration. The outputs of the current
model POTRi include the rescheduled time x̃e of event e ∈ Eplan

ar ∪Eplan
de ∪E∗dde, the

choice ũg
a of passenger group g ∈G′ on activity a ∈ A∗g, and the passenger-oriented ob-

jective value z̃p that represents the generalized travel times over all passenger groups
in G′. In line 12, we construct the passenger-oriented timetable rescheduling model
POTRi+1 to be solved in the next iteration by adding constraints to the current POTRi.
These constraints require the activity choices of the passenger groups that are newly
considered in the current iteration to be fixed in all following iterations. In line 13, we
proceed to the next iteration.

If the current iteration is the final iteration (line 14), we add the passenger groups
that have not be considered yet (line 15) to the G′ (line 16), which now includes all
passenger groups of G. Considering all passenger groups in G, the current POTRi

model is solved within the required time limit tstop or until the first feasible solution is
found by giving the solution from the previous iteration as an initial feasible solution
to the solver (line 17). In this case, the algorithm terminates by returning the results
from POTRi (lines 21).

The while-loop could end before all required iterations are performed due to the total
computation limit of T stop. Under this circumstance, the passenger groups in G have
not been completely considered (line 18), which means that the z̃p finally obtained in
the while-loop does not represent the generalized travel times of all passenger groups in
G. Therefore, we construct POTR′ by adding constraints to the original POTR model,
which require the rescheduled timetable finally obtained in the while-loop to be fixed
(line 19). In that sense, solving POTR′ is not to compute a new rescheduled timetable
but to evaluate the generalized travel times of all passenger groups in G under a given
rescheduled timetable that is finally obtained in the while-loop (line 20). Hence, the
computation time of solving POTR′ is not counted in T stop.

6.7 Case study

The case study aims to investigate the performance of the passenger-oriented timetable
rescheduling model on shortening generalized travel times during railway disruptions,
and to analyse the computational efficiency of the proposed iterative solution method to
the passenger-oriented timetable rescheduling model. Section 6.7.1 describes the case
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study, while Section 6.7.2 and Section 6.7.3 report the performance of the passenger-
oriented model and the computational efficiency of the iterative method, respectively.

6.7.1 Setup

The case study is performed to a part of the Dutch railways, of which the schematic
track layout is shown in Figure 6.14. The considered network is totally around 128
km long, which has both single-track (23.5 km) and double-track (104.5 km) railway
lines with in total 17 stations. The stations that allow short-turning to both directions
are colored in full green, the stations that prohibit short-turning to both directions are
colored in full grey, and the stations that allow (prohibit) short-turning to one direction
are colored in half green (grey). Six train lines operate half-hourly in each direction in
the considered network, of which the scheduled stopping patterns are indicated in Fig-
ure 6.15, as well as the terminal stations of these train lines in the considered network.
The rolling stock circulations at the short-turning and terminal stations of trains are
both dealt with. We distinguish between intercity (IC) and local (called sprinter (SPR)
in Dutch) train lines. All experiments were carried out in MATLAB on a desktop
with Intel Xeon CPU E5-1620 v3 at 3.50 GHz and 16 GB RAM. The solver GUROBI
release 7.0.1 was used either to solve the passenger-oriented timetable rescheduling
model directly or called by the iterative solution method to solve the model iteratively.

The parameters used to construct an event-activity/transition network `trans
e,e′ , `max

trans and
`max

wait are set to 5 min, 30 min and 30 min, respectively. Recall that `trans
e,e′ represents the

minimum transfer time, and `max
trans (`max

wait ) represents the maximum transfer (waiting)
time which a passenger is willing to spend at a station. The maximum delay allowed
to a train departure/arrival D is set to 25 min. The disruption timetable is required
to recover to the planned timetable no later than 25 min after the disruption ends:
R= 25. Passengers are assumed to leave the railways if they cannot find paths with less
than two times of their expected generalized travel times within the railways: µ = 2.
The coefficient of waiting time at an origin/transfer station βwait is set to 2.5 and the
coefficient of in-vehicle time βvehicle is set to 1 (Wardman, 2004). The penalty of one
transfer βtrans is set to 10 min (de Keizer et al., 2012). For the iterative solution method
to the passenger-oriented timetable rescheduling model, we set the total computation
time limit T stop to 300 s, and the computation time limit of each iteration tstop to 30 s.
The passenger group set G is sorted in a descending order regarding the total expected
generalized travel times of all passengers contained in a group: ngT plan

g ,g ∈ G. In that
sense, a group g with a larger value of ngT plan

g will be handled at an earlier iteration.
Table 6.7 lists the parameter values.
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Figure 6.14: The schematic track layout in the considered network
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Figure 6.15: The train lines operating in the considered network

Table 6.7: Parameter settings
Parameter Value Parameter Value Parameter Value Parameter Value

`trans
e,e′ 5 min βtrans 10 min D 25 min tstop 30 s

`max
trans 30 min βvehicle 1 R 25 min T stop 300 s

`max
wait 30 min βwait 2.5 µ 2

We consider four cases with increasing disruption length. We consider the passengers
whose arrival times at the origin stations are during the period of [tstart, tend +R]. We
form the passengers who share the same expected journey in terms of the planned
timetable into the same group g ∈ G. The number of passenger groups |G| varies with
the disruption starting/ending time and the required recovery time length. Table 6.8
indicates the total numbers of passenger groups and the total numbers of passengers
considering different disruption durations but the same required recovery time length
25 min. The numbers of passengers in different groups can be different. In each case of
Table 6.8, the largest group contains 126 passengers, while the smallest group contains
1 passenger only. Figure 6.16 shows the numbers of passenger groups considering
different group sizes. Recall that ng refers to the number of passengers in a group g.
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In each case, most groups contain less than 10 passengers, and few groups contain 30
passengers or more.

Table 6.8: Disruption and passenger demand cases

Case
Disruption Disruption Travel starting Total number of Total number of

start end period passenger groups |G| passengers ∑g∈G ng

I 8:00 8:30 [8:00,8:30+00:25] 334 2,557
II 8:00 9:00 [8:00,9:00+00:25] 477 3,320
III 8:00 9:30 [8:00,9:30+00:25] 618 3,897
IV 8:00 10:00 [8:00,10:00+00:25] 728 4,357
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Figure 6.16: Passenger group sizes

Table 6.9: Notation relevant to a passenger-oriented (operator-oriented) solution
Notation Description

zo The objective of the OOTR model: minimizing train cancellations and
arrival delays, zo = ∑e∈Eplan

ar
wcce +de

wc The penalty of cancelling a train service between neighbouring stations,
wc = 100

zp The objective of the POTR model: minimizing the generalized travel times
over all passengers, zp = ∑g∈G ∑a∈A∗g ngwg

a

z∗o The objective value of the optimal rescheduled timetable obtained by the
OOTR model

z̃o The resulting train cancellations and arrival delays of a rescheduled timetable
obtained by the POTR model, z̃o = ∑e∈Eplan

ar
wcce +de,

z̃p The resulting generalized travel times over all passengers of a rescheduled
timetable obtained by the OOTR model, z̃p = ∑g∈G ∑a∈A∗g ngwg

a

∆ The maximum allowed deviation of z̃o from z∗o
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We consider cases in which a section is completely blocked during four disruption
periods (as Table 6.8 shown), respectively. The operator-oriented timetable reschedul-
ing model (OOTR) uses the objective zo of minimizing train cancellations and arrival
delays, which is used to solve each disruption case to obtain optimal z∗o. The passenger-
oriented timetable rescheduling model (POTR), which uses the objective zp of minim-
izing generalized travel times, is used to solve each disruption case by requiring that
the resulting train cancellations and arrival delays cannot exceed z∗o +∆, where ∆≥ 0.
The resulting generalized travel times of the rescheduled timetables obtained by the
OOTR model are evaluated and denoted by z̃p. The resulting train cancellations and
arrival delays of the rescheduled timetables obtained by the POTR model are evalu-
ated and denoted by z̃o. Table 6.9 gives the notation relevant to a passenger-oriented
(operator-oriented) solution. Note that the penalty wc of cancelling one service is set
to 100.

6.7.2 The performance of the passenger-oriented timetable reschedul-
ing model

We consider section Mz-Hze (between Eindhoven and Roermond) to be completely
blocked during the considered four disruption periods (see Table 6.8), respectively.
Table 6.10 shows the optimal solutions obtained from both the operator-oriented and
the passenger-oriented timetable rescheduling models by using Gurobi directly (i.e.
not using the iterative approach). Due to different objectives, the optimality gap of
a solution obtained by the operator-oriented model is different from the optimality
gap of a solution obtained by the passenger-oriented model, and thereby we use ‘O-
gap (zo)’ and ‘O-gap (zp)’ to distinguish them. In each case, the passenger-oriented
solution reduced generalized travel times (zp− z̃p) by over 5000 min with at most 10
min additional train delay (z̃o− zo) than the optimal operator-oriented solution when
setting ∆ to 10 in the passenger-oriented model.

Table 6.10: General results by using a solver directly: disrupted section Mz-Hze

Case
Operator-oriented (solver) Passenger-oriented (solver): ∆=10

zo z̃p Time O-gap (zo) z̃o zp Time O-gap (zp) zo− z̃o zp− z̃p

[min] [min] [sec] [%] [min] [min] [sec] [%] [min] [min]
I 848 116,211 5 0.00 857 110,757 28 0.00 9 - 5,454
II 2,742 161,057 7 0.00 2,752 154,568 150 0.00 10 - 6,489
III 4,639 195,944 10 0.00 4,649 189,322 370 0.00 10 - 6,622
IV 6,536 221,773 12 0.00 6,546 216,481 250 0.00 10 - 5,292

Table 6.11: Train-related results by using a solver directly: disrupted section Mz-Hze

Case
Operator-oriented (solver) Passenger-oriented (solver): ∆=10

# Cancelled Train arrival # Extra # Skipped # Cancelled Train arrival # Extra # Skipped
services delays [min] stops stops services delays [min] stops stops

I 6 248 3 2 6 257 6 4
II 24 342 3 2 24 352 6 6
III 42 439 3 2 42 449 6 7
IV 60 536 4 2 60 546 5 8
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Table 6.11 gives train-related results in more detail. In each case, the numbers of can-
celled services were the same in the operator-oriented and the passenger-oriented solu-
tions. This is because the deviation of a passenger-oriented solution from the optimal
operator-oriented solution cannot exceed 10 (∆ = 10) while the penalty of cancelling
one train service is set to 100 (wc=100). The resulting total train arrival delays were
different in the operator-oriented and the passenger-oriented solutions, as well as the
numbers of extra stops and skipped stops. The number of both extra stops and skipped
stops in a passenger-oriented solution was more than in the operator-oriented solution
of the same case, because larger operation deviation was allowed in the passenger-
oriented model which thereby made more changes on train stopping patterns to reflect
on passenger needs. We want to emphasize that in the passenger-oriented model the
decisions of adding or skipping stops were made with the aim of reducing generalized
travel times, whereas in the operator-oriented model these decisions were made with
the aim of reducing train cancellations and arrival delays. For example in the operator-
oriented model an extra stop will be added to a train at the station where this train
was originally planned to pass through but now has to dwell at this station for waiting
on platform capacity to be released in a downstream station where this train will be
short-turned.

Table 6.12 gives passenger-related results in more detail, where the symbol ↓ (↑ ) is
used to denote the decrease (increase) in a passenger-oriented solution compared to the
operator-oriented solution of the same case. We can see that compared to the operator-
oriented solutions, the passenger-oriented solutions resulted in less passenger groups
leaving the railways, and the total number of passengers in these groups was also
smaller. The passenger-oriented solutions also helped to shorten passenger waiting
times at stations in all cases and reduce the number of transfers in most cases. In cases
I-III, the passenger-oriented solutions resulted in longer passenger in-vehicle times,
because in the passenger-oriented objective waiting times at stations were penalized 2.5
times of in-vehicle times considering passenger preferences (βwait=2.5 and βvehicle=1).
Under this circumstance, the passenger-oriented model tends to delay the departures
of specific trains at specific stations, which is beneficial to passengers who could now
catch the train. The waiting times of these passengers were reduced by earlier boarding
because of the delayed train departures, whereas other passengers who were on-board
the delayed trains experienced longer in-vehicle times.

To investigate the impact of maximum allowed operation deviation ∆ on the solutions
obtained by the passenger-oriented model, we performed 10 more experiments on case
IV using different values of ∆. The results are shown in Figure 6.17. Each green
triangle indicates the performance of a solution obtained by the passenger-oriented
model using a specific ∆, and each blue circle indicates the performance of the optimal
solution obtained by the operator-oriented model. On the one hand, with the increase
of ∆ the passenger-oriented model resulted in larger weighted train cancellations and
train arrival delays (z̃o). The number of cancelled services always remained the same
while train arrival delays increased gradually with the growth of ∆. More extra stops
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and skipped stops were created under larger ∆. On the other hand, with larger operation
deviation allowed the passenger-oriented model resulted in shorter generalized travel
times (zp). The generalized travel time of a passenger is the sum of the weighted
waiting time, in-vehicle time and the number of transfers. It can be seen that larger
∆ led to shorter waiting times but longer in-vehicle times, whereas the number of
transfers almost remained the same. This is because waiting time is perceived 2.5
times of the same length of in-vehicle time by passengers so that the model tends
to reduce the waiting times of some passengers at the expense of longer in-vehicle
times of other passengers. Under whichever ∆, the number of passengers who chose
to leave the railways was always smaller in a passenger-oriented solution compared to
the operator-oriented solution.

Train-related results Passenger-related results

Passenger-oriented solution Opertor-oriented solution

Figure 6.17: The optimal passenger-oriented solutions for case IV under different set-
tings of ∆: disrupted section Mz-Hze

We take case IV as an example to show the operator-oriented solution in Figure 6.18,
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and the passenger-oriented solutions of ∆ = 10 and ∆ = 30 in Figure 6.19 and Fig-
ure 6.20, respectively. The grey rectangle indicates the time-distance disruption win-
dow, the dashed (dotted) lines represent the original scheduled services that were can-
celled (delayed), the solid lines represent the services scheduled in the rescheduling
solution, and the red triangles (circles) represent the extra (skipped) stops. The dif-
ferences of train stopping patterns in each of the passenger-oriented solutions (Fig-
ure 6.19 or Figure 6.20) compared to the operator-oriented solution (Figure 6.18) are
highlighted by dashed black rectangles. Because station Hze lacks turning facilities,
downstream trains from line SPR6400 (in dark blue) and line IC800 (in yellow) were
both short-turned at an earlier station Gp. Because station Mz lacks turning facilities
for short-turning upstream trains, an upstream train from line IC3500 (in pink) had to
be delayed until the disruption ended, and a train from line SPR6400 (in dark blue),
which reached its destination (station Wt) around 8:00, had to wait until the disruption
ended to operate in opposite direction. These happened in both the operator-oriented
solution (Figure 6.18) and the passenger-oriented solutions (Figures 6.19 and 6.20).

Compared to the operator-oriented solution (Figure 6.18), the passenger-oriented solu-
tion of ∆ = 10 (Figure 6.19) added 1 more extra stop to an upstream train from line
IC3500 (in pink) at station Gp around 10:15, skipped 6 more scheduled stops of two
downstream trains from line SPR9600 (in light blue) at stations Hm, Hmh, and Hmbv,
and delayed more train services, e.g., the departures of two downstream trains from
line SPR9600 (in light blue) at station Hmbh. These departure delays reduced the
waiting times of the passengers who arrived at station Hmbh just after the original de-
parture times of these two trains and originally had to board other trains departing later.
Due to the delayed departures, the passengers who were on-board these two trains at
station Hmbh would experience arrival delays at their destinations so that the model
skipped the following stops at stations Hm, Hmh and Hmbv to avoid the destination
arrival delays of these passengers. Compared to these on-board passengers, there were
much fewer passengers who would board/leave these two trains at station Hm, Hmh
or Hmbv, which was another reason why the model decided to skip these stops. Due
to the additional stop at station Gp around 10:15 in the passenger-oriented solution of
∆ = 10 (Figure 6.19), one passenger group (including six passengers) that arrived at
station Gp at 10:00 and expected to station Ehv benefitted from earlier boarding by
shorter generalized travel times, and another three passenger groups chose not to leave
the railways. These three groups include (1) one passenger who arrived at station Rm
at 9:00, (2) one passenger who arrived at station Wt at 9:15, and (3) one passenger
who arrived at station Rm at 9:45, whose destinations were all station Gp. Given the
passenger-oriented solution (Figure 6.19), these passengers all took the same train from
line IC3500 (in pink), which additionally stopped at station Gp around 10:15. Without
this stop (as in the operator-oriented solution shown by (Figure 6.18), these passengers
would have to take an upstream train to station Ehv first and then transfer to another
downstream local train from line SPR6400 (in dark blue) to reach the destination Gp.
This would cost much longer than what these passengers would tolerate, which is why
they were observed to leave the railways under the operator-oriented solution. Recall
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that we assume the maximum generalized travel time a passenger is willing to accept
under a rescheduled timetable is twice of his/her expected generalized travel time in
terms of the planned timetable.

7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00
Rm

Wt
Mz

Hze

Gp

Ehv

Hmbv
Hmh
Hm

Hmbh

Dn

Hrt

Br
Vl

Tg

Rv

Sm

Rm

Figure 6.18: The optimal operator-oriented rescheduling solution for case IV: disrupted
section Mz-Hze

Figure 6.19: The optimal passenger-oriented rescheduling solution for case IV: disrup-
ted section Mz-Hze and ∆ = 10

Figure 6.20: The optimal passenger-oriented rescheduling solution for case IV: disrup-
ted section Mz-Hze and ∆ = 30
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More differences on train stopping patterns from the operator-oriented solution (Fig-
ure 6.18) were observed in the passenger-oriented solution of ∆ = 30 (Figure 6.20)
due to the increase of ∆, which helped to shorten generalized travel times further. For
example, the four more extra stops (highlighted by dashed black rectangles in Fig-
ure 6.20) helped to shorten the generalized travel times of 31 passengers. Eight of
these passengers were observed to leave the railways under the operator-oriented solu-
tion (Figure 6.18) or the passenger-oriented solution of ∆ = 10 (Figure 6.19), who
however chose to travel by train under the passenger-oriented solution of ∆ = 30 (Fig-
ure 6.20). When ∆ = 10 the passenger-oriented solution (Figure 6.19) skipped two
scheduled stops at station Wt as in the operator-oriented solution (Figure 6.18) in or-
der to enable the additional train delay below the current ∆. When increasing ∆ to
30 the passenger-oriented solution (Figure 6.20) kept these two scheduled stops al-
though leading to more train delay that was acceptable under the current ∆. By keep-
ing these two scheduled stops at station Wt, two more passenger groups chose to not
leave the railways compared to either the operator-oriented solution (Figure 6.18) or
the passenger-oriented solution of ∆ = 10 (Figure 6.19). These two passenger groups
include (1) 15 passengers who arrived at station Ehv at 9:30, and (2) 14 passengers
who arrived at station Ehv at 9:45, whose destinations were all station Wt. These
results indicate that the proposed passenger-oriented timetable rescheduling model is
able to provide better alternative train services during disruptions with shorter general-
ized travel times and also helps railway operators to keep more passengers within the
railways. By allowing only 10 min additional train delay than the optimal operator-
oriented solution, the passenger-oriented model reduced generalized travel times by
thousands of minutes, which is a significant improvement to passengers. By allowing
more operation deviations from the optimal operator-oriented solution, the passenger-
oriented model can reduce generalized travel times further.

Compared to the operator-oriented model, the passenger-oriented model is able to find
better rescheduling solutions to passengers while the needed computation times are
longer. From Table 6.10 we know that by using a solver directly an optimal solution
can be obtained from the operator-oriented model in seconds, while obtaining an op-
timal solution from the passenger-oriented model took 370 s in the worst case. With the
increase of disruption duration, more passenger groups need to be taken into account,
which is why in case I (0.5 h disruption) the passenger-oriented model only took 28 s
to get an optimal solution, but in case II (1 h disruption), case III (1.5 h disruption), or
case IV (2 h disruption) it consumed longer time to generate an optimal solution (see
Table 6.10). Although case III considered a half-hour shorter disruption than case IV,
it took a longer computation time than case IV. This is because the disruption durations
in both cases are not significantly different and the computation time can be affected
by the starting/ending time of a disruption.
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6.7.3 The performance of the iterative solution method

To solve the passenger-oriented model in a more efficient way, we proposed an iterative
solution method in Section 6.6, which is used here to solve the passenger-oriented
model for the same cases considered in Table 6.10. The results from the iterative
method are indicated in Table 6.13, in which nnew refers to the number of passenger
groups newly considered in an iteration. Ineed and Ifinish refer to the number of required
iterations and the number of completed iterations within T stop, respectively. Recall that
we set the computation time limit of each iteration to 30 s and the total computation
limit to 300 s. Table 6.13 showed that when nnew=10 the iterative solution method
terminated when reaching the required computation limit in case III or IV, whereas
when nnew=50 or 100 the required iterations were all completed within the required
computation limit in each case. It was observed that with more passenger groups newly
considered in an iteration, the total computation time was shorter and the obtained
solution was also better. This is because larger nnew requires less iterations, at each of
which the quality of the solution obtained can also be improved. For each disrupted
section the appropriate value of nnew to obtain a good solution in short time can be
different. For disrupted section Mz-Hze, nnew = 100 is better than nnew = 50 while we
found that for disrupted section Hze-Gp nnew = 50 is better than nnew = 100. This will
be introduced later.

For disrupted section Mz-Hze, under whichever setting of nnew the optimality gaps of
the obtained solutions were all small, among which the worst case was 1.23% and the
best case was 0.00%. By comparing Table 6.13 with Table 6.10, it was found that the
passenger-oriented solutions obtained by the iterative method were all better than the
operator-oriented solutions of the same case regarding the generalized travel times of
all passengers zp. For the most difficult case considered: case IV that is associated
with 2 h disruption and 728 passenger groups, the iterative method obtained a solution
with optimality gap of 0.25% in 107 s if nnew=100.

In addition, we used case IV as an example to investigate the computational efficiency
of the iterative method when allowing larger maximum operation deviation in the
passenger-oriented model. Table 6.14 shows the results by using a solver directly and
the iterative method to solve the passenger-oriented model under different values of ∆.
The time needed to find an optimal solution by a solver directly became longer with
the increase of ∆, because a larger solution space needed to be explored. On average,
the solver took 1,156 s to find an optimal solution, which would not be acceptable
for real-time application. In contrast, the iterative solution with nnew = 100 method
took 125 s on average to find a near-optimal solution. It was observed that the com-
putation time needed by the iterative method was much less sensitive to the increase
of ∆ compared to the solver. The passenger-oriented solutions of ∆ = 10 and ∆ = 30
by the iterative method are shown in Figure 6.21 and Figure 6.22, respectively. The
dashed rectangles highlight the differences on train stopping patterns compared to the
operator-oriented solution (Figure 6.18). Compared to the optimal passenger-oriented
solution (Figure 6.19 or Figure 6.20), the passenger-oriented solution by the iterative
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method (Figure 6.21 or Figure 6.22) was slightly different on the stopping patterns of
trains that were originally planned to run through the disrupted section. This is be-
cause the passengers who planned to travel through the disrupted section were handled
at later iterations due to their shorter expected generalized travel times in this case,
while it was observed that the iterative method determined the solution mainly accord-
ing to the needs of passengers handled at earlier solutions.

Table 6.14: The passenger-oriented solutions for case IV under different ∆: disrupted
section Mz-Hze

Solver Iterative method (nnew=100)

∆ zp Time O-gap (zp) zp Ineed Ifinish
Time O-gap (zp)

[min] [sec] [%] [min] [sec] [%]

0 221,704 213 0.00 221,704 8 8 104 0.00
10 216,481 250 0.00 217,018 8 8 107 0.25
20 213,693 246 0.00 214,010 8 8 110 0.15
30 212,321 472 0.00 212,365 8 8 124 0.02
40 211,331 640 0.00 211,656 8 8 132 0.15
50 210,439 527 0.00 210,986 8 8 131 0.26
60 209,649 834 0.00 210,038 8 8 131 0.19
70 209,175 1,291 0.00 209,369 8 8 128 0.09
80 208,835 1,935 0.00 209,236 8 8 136 0.19
90 208,477 2,212 0.00 208,842 8 8 134 0.17
100 208,129 4,101 0.00 208,312 8 8 135 0.09

Average 1,156 0.00 Average 125 0.14

Figure 6.21: The sub-optimal passenger-oriented solution by the iteration method for
case IV: disrupted section Mz-Hze and ∆ = 10
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Figure 6.22: The sub-optimal passenger-oriented solution by the iteration method for
case IV: disrupted section Mz-Hze and ∆ = 30

The previous experiments were carried out on the same disrupted section Mz-Hze. To
investigate the performance of the passenger-oriented rescheduling model and the it-
erative solution method on other disrupted locations, we performed experiments to all
sections shown in Figure 6.15. In each of these experiments, the maximum allowed
deviation from the optimal operator-oriented solution ∆ is set to 10 in the passenger-
oriented model, and the number of passenger groups newly considered in each iteration
nnew is set to 100 in the iterative method. Table 6.15 shows the resulting generalized
travel times z̃p of the optimal operator-oriented solutions, and the resulting general-
ized travel time zp of the optimal passenger-oriented solutions obtained by the solver
directly and by the iterative solution method. It is observed that an optimal operator-
oriented solution was obtained quickly for each disrupted section, but the resulting total
generalized travel time is longer than either the one of the optimal passenger-oriented
solution or the one of the passenger-oriented solution from the iterative method. We
use ↓ to highlight the decrease in a passenger-oriented solution compared to the cor-
responding optimal operator-oriented solution. The computation time of generating
an optimal passenger-oriented solution by the solver directly varied across disrupted
sections. Disrupted section Hrt-Br took the shortest computation time of 41 s, while
disrupted section Wt-Mz took the longest computation time of 5,666 s. The reason is
relevant to the number of train lines that were originally scheduled to run through a
disrupted section and the starting/ending time of the considered disruption, which both
affect the solution space to be explored.

From Table 6.15 we see that in all disrupted sections, the iterative method found better
solutions in terms of generalized travel times than the corresponding operator-oriented
solutions. It is observed that the passenger-oriented solution by the iterative method
reduced generalized travel times by thousands of minutes in each disrupted section,
which is indicated by zp− z̃p. The gap of a solution from the iterative method to the
corresponding optimal passenger-oriented solution was 0.54% in average. The average
computation time of obtaining a passenger-oriented solution from the iterative method
was 99 s. In 16 out of 17 disrupted sections, the required iterations were completely
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finished with at most 132 s in total. An exception was disrupted section Wt-Mz, for
which only one iteration was finished and the corresponding computation time reached
the required computation time limit: 300 s. This is because disrupted section Wt-Mz
was the most difficult section to be solved and thus including 100 new passenger groups
in each iteration was still computation-consuming to the passenger-oriented model.

Therefore, we performed another experiment to disrupted section Wt-Mz by including
50 new passenger groups in each iteration. For each rescheduling solution computed
in an iteration, we evaluated the resulting generalized travel times of all passengers.
Figure 6.23 shows the iterative results of disrupted section Wt-Mz by setting nnew to
50 and 100, respectively. The operator-oriented solution was also indicated for com-
parison. The x-axis refers to the iteration number, and the y-axis refers to generalized
travel times. When nnew=100, only one iteration was completed due to reaching the
total computation time limit of 300 s, while the obtained passenger-oriented solution
was still better than the operator-oriented solution. When nnew=50, the required 15
iterations were all completed. This indicates that for a disruption case that is difficult
to be solved using a smaller value of nnew helps to find a better solution quickly. It was
observed from Figure 6.23 that when nnew = 50 the passenger-oriented solution by the
iterative method was the same as the operator-oriented solution at the 1st iteration, but
was largely improved in the 2nd and 3rd iterations. From the 4th iteration until the fi-
nal iteration, the passenger-oriented solution was barely improved. This indicates that
the quality of the final solution obtained by the iterative method is mainly determined
by earlier iterations. This is because the path choices of passenger groups who have
already been considered at an earlier iteration were fixed in the iterative method at
the following iterations where new passenger groups were included but reducing their
generalized travel times may increase the ones of earlier considered passenger groups
so that very few/none schedule adjustments were made to avoid affecting earlier con-
sidered passengers. Recall that in the case study the passenger groups with larger
expected generalized travel times are considered at earlier iterations.

Passenger-oriented solution: 

Opertor-oriented solution

Passenger-oriented solution: new 100n 

new 50n 

66 sec

300 sec

Figure 6.23: Results for disrupted section: Wt-Mz (∆=10)

We also take disrupted section Mz-Hze and disrupted section Hze-Gp as two more
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examples to explore the performance of the iterative method. Figures 6.24 and 6.25
show the relevant results, respectively. It is observed that in both disrupted sections,
the quality of the passenger-oriented solutions by the iterative method are mainly de-
termined by earlier iterations when nnew=50 or 100, and are all better than the cor-
responding operator-oriented solutions. In disrupted section Mz-Hze (Figure 6.24), a
stable passenger-oriented solution was obtained after 1 iteration when nnew=100, and
after 2 iterations when nnew=50. Here, we describe a solution as stable when no/few
improvements were made on this solution in all following iterations in the iterative
method. The computation time for generating the stable solution was no longer than 30
s when nnew=50 or 100. In disrupted section Hze-Gp (Figure 6.25), a stable passenger-
oriented solution was obtained after 4 iteration when nnew=100, and after 3 iterations
when nnew=50. In these two situations, the computation times for generating the stable
solutions were 66 s and 45 s, respectively. It is observed that in disrupted section Hze-
Gp the quality of the solution when setting nnew to 100 is worse than the quality of the
solution when setting nnew to 50. The reason is when nnew=100 the solution obtained
at the 1st iteration was a suboptimal solution, which took 30 s reaching the required
computation time limit of an iteration. The relatively poor quality of the 1st solution
affects further improvements in the following iterations. Whereas when nnew=50, the
solution obtained at the 1st iteration was an optimal solution, which helps for further
improvements in later iterations. These results indicate that the performance of the
iterative method is relevant to the number of passenger groups newly considered at
an iteration, the computation time limit required at an iteration, the total computation
limit, and the disrupted section. The passenger groups considered at earlier iterations
play an important role in determining the quality of the solution finally obtained by
the iterative method. In that sense, the computation time of obtaining a high-quality
passenger-oriented solution by the iterative method can be improved further by only
performing a few iterations.

Passenger-oriented solution: 

Opertor-oriented solution

Passenger-oriented solution: new 100n 

new 50n 

28 sec

22 sec

Figure 6.24: Results for disrupted section: Mz-Hze (∆=10)
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Passenger-oriented solution: 

Opertor-oriented solution

Passenger-oriented solution: new 100n 

new 50n 

45 sec

66 sec

Figure 6.25: Results for disrupted section: Hze-Gp (∆=10)

6.8 Conclusions and future directions

This chapter developed a novel MILP model that integrates timetable rescheduling
with passenger reassignment to compute passenger-oriented rescheduled timetables in
case of railway disruptions. The objective is minimizing generalized travel times of
passengers, which consist of in-vehicle times, waiting times at origin/transfer stations
and the number of transfers. Multiple dispatching measures were adopted to adjust the
timetable with respect to passenger needs, including re-timing, re-ordering, cancelling,
flexible stopping and flexible short-turning trains. An iterative solution method was
proposed to solve the model efficiently, by considering restricted passenger groups at
each iteration.

The passenger-oriented timetable rescheduling model was applied to a part of the
Dutch railways, and compared to an operator-oriented timetable rescheduling model
that does not formulate passenger reactions so that the objective is minimizing train
cancellations and arrival delays. It was observed that the passenger-oriented model
was able to shorten generalized travel times by thousands of minutes with only 10 min
more train arrival delay than the optimal operator-oriented solution. With more oper-
ation deviations allowed, the passenger-oriented model is able to shorten generalized
travel times further. When given a passenger-oriented rescheduling solution, more pas-
sengers chose to continue their train travels after the disruption started, compared to
an operator-oriented solution for the same disruption case. By the proposed iterative
solution method, high-quality rescheduling solutions were obtained by the passenger-
oriented model in an acceptable time. It was found that the quality of the final solution
obtained by the iterative method is mainly determined by the number of new passenger
groups considered at earlier iterations.

In future, we will apply the passenger-oriented model to a larger railway network, by
which the computation time will increase further as more train services and passengers
will be considered. For this situation, the iterative solution method proposed in this
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work might also be able to obtain a good solution efficiently as long as representat-
ive passenger groups that determine the solution quality can be identified. Then, only
these passenger groups need to be handled. During disruptions, trains could become
crowded due to detouring passengers whose planned trains were cancelled, and then
some passengers would be denied to board specific trains because of lacking capacit-
ies. Therefore, we also will take limited vehicle capacity into account to handle both
timetable rescheduling and rolling stock rescheduling for providing passengers with
more reliable alternative train services in case of railway disruptions. Besides disrup-
tion management, the proposed passenger-oriented timetable rescheduling model can
be applied to disturbance management by few modifications, which is also promising
to be used for improving an existing non-cyclic timetable in terms of generalized travel
times. For example, because our model formulates flexible stopping it can be used to
determine the planned train stopping patterns of a timetable according to passenger
needs.

Appendix 6.A.

Table 6.16: Parameters and sets

Symbol Description
head(a) The event which activity a starts from

tail(a) The event which activity a directs to

fe Binary parameter with value 1 indicating that arrival event e is a train destination
arrival, and 0 otherwise.

re Binary parameter with value 1 indicating that (duplicate) departure event e is
a train origin departure, and 0 otherwise.

Ine Set of activities going in event e

Oute Set of activities going out from event e

G Set of passenger groups

G′ Set of passenger groups that are considered in an iteration in the iterative solution
method: G′ ⊆ G

Gnew Set of passenger groups that are newly considered in an iteration in the iterative
solution method: Gnew ⊆ G′

Og The origin of passenger group g

Dg The destination of passenger group g

tori
g The origin arrival time of passenger group g

ng The number of passengers in passenger group g

continued on next page
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continued from previous page

Symbol Description
T plan

g The expected generalized travel time of passenger group g in terms of
the planned timetable

µT plan
g The maximum acceptable generalized travel time of passenger group g in terms

of a rescheduled timetable: µ ≥ 1

`min
trans The minimum transfer time needed at a station

`max
trans The maximum transfer time which a passenger would like to spend at a station

`max
wait The maximum waiting time which a passenger would like to spend at a station

βwait The multiplier of waiting times perceived by passengers at stations

βvehicle The multiplier of in-vehicle times perceived by passengers

βtrans The fixed time penalty perceived by passengers on one transfer

tstop The computation time limit of each iteration in the iterative solution method

T stop The total computation time limit of the iterative solution method

nnew The number of passenger groups newly considered in each iteration of the
iterative solution method

tstart Start time of disruption

tend End time of disruption
R The time length required for the planned timetable to be recovered after the

disruption ends

D Maximal allowed delay per event

M A sufficiently larger number whose value is set to 2880

M∗ A sufficiently larger number whose value is set to βwaitM





Chapter 7

Conclusions

This thesis is dedicated to improving railway disruption management so that it becomes
more efficient, operator-friendly, and passenger-friendly. Several research questions
were posed to achieve the research objective, which are answered throughout Chapters
2 to 6. In this chapter, Section 7.1 presents the main findings. Sections 7.2 and 7.3 give
future research directions and recommendations to practice, respectively.

7.1 Main findings

The main research question proposed in this thesis is: “How to support railway disrup-
tion management by rescheduled timetables that are operator-friendly and passenger-
friendly? ” . To answer this main question, 5 sub-questions were defined. The answers
to these questions are summarized as follows.

• How to predict and affect passenger flows for a given rescheduled timetable?
(Chapter 2)

In Chapter 2, a schedule-based dynamic passenger assignment model has been
developed to formulate passenger responses towards major service variations
like short-turn/cancelled trains due to disruptions. The model considers denied
boarding due to insufficient vehicle capacity. On-board passengers are given
priority over waiting passengers, and waiting passengers are boarding under the
first-come-first-serve rule. The model can cope with different information pro-
visions to inform passengers with service variations and/or train congestion at
different locations, to investigate how passengers will change their path choices
depending on the information received. Experiments showed that when vehicle
capacities were always sufficient (no denied boarding), informing passengers
with service variations at both stations and trains helped to shorten their travel
times while additionally publishing train congestion did not make any sense.

223
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When vehicle capacities were in short supply (denied boarding exists), addi-
tionally publishing train congestion was able to shorten generalized travel times
depending on how a train was defined as highly congested to proactively avoid
some passengers boarding the next run of the train.

• How to obtain a rescheduled timetable that minimizes the impact on passengers’
travel plans and has a high implementability in practice? (Chapter 3)

In Chapter 3, an MILP model has been developed to deal with timetable res-
cheduling in case of disruptions. The dispatching measures of re-timing, re-
ordering, cancelling, flexible stopping and flexible short-turning trains are all
formulated in the model with the objective of minimizing the impact on passen-
gers’ expected travel paths that are estimated according to the planned timetable.
The number of affected passengers and the resulting lateness/earliness to these
passengers due to a decision of cancelling a service, delaying a train arrival,
adding a stop or skipping a stop are both considered to estimate the passenger-
dependent objective weight. In this way, the timetable rescheduling model rap-
idly computes a more passenger-friendly rescheduled timetable that can also be
preferred by operators. Experiments showed that applying flexible stopping and
flexible short-turning trains resulted in less passenger delays compared to apply-
ing either or neither of them.

The proposed timetable rescheduling model distinguishes between platform tracks
and pass-through tracks at a station level to assign each train with a platform at
a station where passengers will board/leave the train. The rolling stock circu-
lations at both short-turning and terminal stations of trains are considered, as
well as whether a station has turning facilities for the rolling stock coming from
different directions. All phases of a disruption are dealt with, which means that
the model computes a rescheduling solution from the starting of a disruption
until the planned timetable is recovered. Experiments showed that shortening
the recovery duration mitigated the post-disruption consequence by less delay
propagation but at the expense of more cancelled train services during the dis-
ruption.

The timetable rescheduling model proposed in Chapter 3 assumes a fixed dis-
ruption duration, deals with the single-disruption case, and considers static pas-
senger demand. This model is then extended in Chapter 4 to take uncertain
disruption duration into account, in Chapter 5 to deal with multiple connected
disruptions, and in Chapter 6 to consider dynamic passenger demand, respect-
ively.

• How to handle a disruption with uncertain duration by robust rescheduled timetables?
(Chapter 4)

In Chapter 4, a rolling-horizon two-stage stochastic programming model has
been developed to generate robust rescheduled timetables for uncertain railway
disruptions. The ending time of a disruption is assumed to be a random variable
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that has a finite number of realizations, called scenarios, with given probabil-
ities. In each scenario, the considered time horizon is divided into a scenario-
independent control horizon and a scenario-dependent look-ahead horizon. The
dispatching decisions (e.g. cancelling a train service) relevant to the control
horizons are forced to be the same in all scenarios, while the decisions relev-
ant to the look-ahead horizons can be different among scenarios. In this way,
the stochastic model computes the optimal rescheduling solution for the control
horizon, which is robust to all scenarios. The stochastic model is embedded
in a rolling-horizon approach so that every time a prediction about the range
of the disruption end time is updated new scenarios are defined and the model
recomputes a robust rescheduling solution accordingly. The stochastic rolling-
horizon method is compared to a deterministic rolling-horizon method that uses
the deterministic timetable rescheduling model from Chapter 3 to compute a res-
cheduled timetable with one possible disruption ending time considered. Exper-
iments showed that the stochastic method was able to reduce train cancellations
and/or delays compared to the deterministic method.

• How to deal with multiple connected disruptions in an efficient and operator-
friendly way? (Chapter 5)

In Chapter 5, two approaches have been developed to deal with multiple disrup-
tions that occur at different geographic locations but have overlapping periods
and are pairwise connected by common train lines. One is the sequential ap-
proach, in which a single-disruption rescheduling model is applied to handle
each new disruption with the last solution as reference. Another one is the com-
bined approach, in which a multiple-disruption rescheduling model is proposed
to handle each extra disruption by considering the combined effects of all on-
going disruptions. The interactions among the dispatching decisions associated
with different disruptions are explicitly formulated in the multiple-disruption
rescheduling model. Experiments showed that the combined approach was able
to find rescheduling solutions with less cancelled train services and/or delays
than the sequential approach. For long disruptions, we propose a rolling-horizon
solution method, which considers the periodic pattern of the rescheduled ser-
vices in the stable phase of a disruption to speed up the computation. Experi-
ments showed that the rolling-horizon approach is able to generate high-quality
rescheduling solutions in an acceptable time.

• How to formulate a timetable rescheduling model considering dynamic passen-
ger flows, and obtain a high-quality solution rapidly? (Chapter 6)

In Chapter 6, timetable rescheduling and passenger reassignment have been
formulated into one MILP model to compute passenger-friendly rescheduled
timetables. The objective is minimizing generalized travel times, which include
waiting times at origin/transfer stations, in-vehicle times, and the number of
transfers. An improved event-activity network formulation is proposed to de-
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scribe passenger path choices in terms of a timetable. Passengers are allowed
to drop the railways if they cannot find preferred alternative travel paths from
a timetable. We introduce a method of formulating a transition network that
enables to include dynamic event-activity networks in the proposed passenger-
oriented timetable rescheduling model so that the model is able to consider
timetable-dependent passenger behaviours. An iterative solution method has
been developed to solve the passenger-oriented rescheduling model in an effi-
cient way. In each iteration, the timetable rescheduling problem is solved for
all train services with restricted passenger groups taken into account. Exper-
iments showed that the passenger-oriented timetable rescheduling model was
able to reduce the number of dropped passengers and the generalized travel times
of passengers significantly. The iterative solution method was able to generate
high-quality solutions in an acceptable time.

7.2 Future research directions

This section points out several directions for future research, which are elaborated as
follows.

The timetable rescheduling models developed to deal with uncertainty in disruption
duration (Chapter 4) and multiple connected disruptions (Chapter 5) are both operator-
oriented with the same objective of minimizing train cancellations and delays. Incor-
porating dynamic passenger behaviour and combining the models will be one of the
future directions. Furthermore, the passenger-oriented timetable rescheduling model
proposed in Chapter 6 is for disruption cases, but it can be adapted also to passenger-
oriented timetabling and delay management with few modifications.

Improving passengers’ travelling experiences can be in conflict with the benefits of op-
erators. In Chapter 6 we found that shortening the generalized travel times of passen-
gers came at the expense of introducing more deviations from the planned timetable.
Hence, when rescheduling a timetable we can also explicitly consider a trade-off between
passengers and operators so that both can be satisfied to a large extent.

It is found from Chapter 6 that a passenger-oriented solution obtained under the ob-
jective of minimizing generalized travel times is sensitive to passenger preferences on
different journey components including waiting times at stations, in-vehicle times and
the number of transfers. Currently, these preferences are extracted from the existing
literature that focuses on passenger behaviour on normal days (no service variations),
whereas during major service variations passengers attitudes towards the journey com-
ponents could be different. More research needs to be done on analysing passenger
behaviour during major service variations to provide accurate passenger preferences
in the passenger-oriented rescheduling models so that train services can be adjusted to
cater for passenger actual needs.
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Besides providing passengers with better train services, it is also important to notify
passengers with more reliable and timely information on service variations and sta-
tion/train congestion. How to generate this information considering the uncertainties
during railway operations (e.g. uncertain disruption duration) will be another future
research direction.

Passengers’ path choices vary with the information received. Chapter 2 investigated
how passenger flows were affected given different information provisions under a
given rescheduled timetable. In the future, it is recommended to include the impact
of information provisions into passenger-oriented timetable rescheduling models, in
order to formulate passenger behaviour in a more realistic way. When vehicle capacity
is in short supply, the path choice of one passenger can affect the one of another pas-
senger. Therefore, a further step will be taking limited vehicle capacity into account in
passenger-oriented timetable and/or rolling stock rescheduling, in which the influence
of train congestion on passenger path choices need to be considered as well.

More efficient solution approaches should be explored in the future to ensure that the
passenger-oriented optimization models can be applied in the real world. It is found
from Chapter 6 that the computation time of the passenger-oriented model increases
with more passengers considered, while the solution quality is mainly determined by
a few of the considered passengers. This indicates that a column generation method
may be promising to solve the passenger-oriented models. The basic idea of column
generation is to split the problem into a master problem that corresponds to the original
problem but with only a subset of variables, and a sub-problem that aims to find the
key variables that are able to improve the objective value of the master problem. In
a passenger-oriented model, finding the key variables will be identifying the variables
relevant to the passengers who play an important role in determining the solution qual-
ity. Besides focusing on integrated passenger-oriented models as proposed in Chapter
6, it is also recommended to design a closed-loop framework where a dynamic passen-
ger assignment model and a timetable rescheduling model are performed iteratively
with the output from the assignment model as a feedback to the rescheduling model.
This helps to find a feasible solution rapidly. The challenge is how to design the feed-
back mechanism to improve the solution in each new iteration and ensure that the
improvement is as large as possible so that a high-quality solution can be obtained
after a few iterations.

7.3 Recommendations to practice

The timetable rescheduling models developed in Chapters 3 to 6 can be used either
for off-line application of automatically generating improved contingency plans that
deal with all phases of disruptions or for on-line application of real-time timetable
rescheduling to a similar size of railway network as considered in this thesis. Adding
additional stops and skipping scheduled stops are not commonly applied in the railways
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nowadays, but are recommended to be used in future. Using these two measures may
provide more alternative train services that help to shorten passengers’ travel times
during disruptions. They can also be used for overcrowding situations. For example
skipping a stop of a train if the train is already full or adding a train with an extra stop
where many passengers are waiting at the station.

The passenger assignment model developed in Chapters 2 and 6 can help traffic con-
trollers to foresee the impact of possible dispatching decisions on passengers so that the
timetable can be adjusted in a more passenger-friendly way. The model of Chapter 2
can also be used to identify potential congested trains, based on which operators can
take some mitigation strategies in advance such as allocating more vehicles to the
potential congested trains and suggesting some passengers to take other uncrowded
trains. This helps to prevent denied boarding on the one hand, and avoid prolonged
train running times due to overcrowding (which may incur additional delays) on the
other hand.

Improving information provision system is highly recommended. Passengers should
be informed with any service adjustments determined by traffic controllers in a more
timely manner so that they can re-plan their journeys in time, which gives more choices
to passengers than what they have given delayed information. Besides information on
service variations, information on train congestion also need to be provided to passen-
gers to reduce the possibility of denied boarding, particularly during rush-hours.
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Summary

Disruptions are unavoidable in daily operations of railways due to a variety of unexpec-
ted events such as blocked tracks due to rolling stock breakdown or switch failures. In
case of a disruption, the planned timetable will be inapplicable because of unavailable
scheduled routes. In current practice, traffic controllers then have to manually ad-
just the timetable based on pre-designed contingency plans. This is a time-consuming
procedure, in which the impact to passengers is rarely considered. As a result, the
rescheduled timetable may be of worse quality to passengers than necessary.

This thesis aims to develop a methodological framework for improving railway disrup-
tion management so that it becomes more efficient, operator-friendly and passenger-
friendly. To this end, a novel passenger assignment model has been developed to es-
timate passenger inconvenience under a given rescheduled timetable and to investigate
the effectiveness of information on reducing the inconvenience. A timetable reschedul-
ing model has been developed to deal with disruptions of given durations considering
static passenger demand. Extensions to this model have been developed resulting in
three more timetable rescheduling models respectively for handling disruptions with
uncertain durations, multiple connected disruptions, and dynamic passenger demand
during the rescheduling. A summary for each of the five developed models is given as
follows.

First, we applied the technique of discrete-event simulation to formulate a schedule-
based dynamic passenger assignment model. The model simulates passenger path
choices during disruptions where cancelling/short-turning of trains are unavoidable.
Train arrivals and departures at stations are events, which trigger changes of passen-
ger behaviour that are also influenced by the information received. We designed dif-
ferent information provisions and simulated the impact on passengers. Experiments
showed that informing passengers on service variations both at stations and in trains
was helpful to shorten their travel times, while additionally publishing train conges-
tion information was able to avoid denied boarding when vehicle capacity was in short
supply.

Second, we developed a Mixed Integer Linear Programming (MILP) model to rapidly
compute feasible rescheduled timetables from the beginning of disruptions until the
normal schedule was recovered. The model applies re-timing, re-ordering, cancelling,
flexible short-turning and flexible stopping trains. The impact of dispatching measures
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on passengers’ planned travels are quantified as weights to decision variables included
in the objective of minimizing passenger delays. Platform track capacity and rolling
stock circulations at terminal and short-turning stations are all considered to improve
the solution implementability in practice. Experiments showed that the measures of
flexible short-turning and flexible stopping trains were helpful to improve the perform-
ance of rescheduled timetables compared to using either or neither of them.

Third, we developed a rolling-horizon two-stage stochastic programming model to
compute rescheduled timetables for disruptions with uncertain durations that were up-
dated over time. The stochastic model considers multiple possible disruption dura-
tions (called scenarios with given probabilities) and computes the rescheduling solu-
tion that is optimal considering all scenarios. The optimal rescheduling solution results
in the smallest expected consequence measured in train delays and cancellations over
all scenarios. We also proposed a rolling-horizon deterministic timetable reschedul-
ing model, which considers one possible disruption duration that is estimated using an
optimistic, a pessimistic or an expected-value strategy. Experiments showed that the
average performance of the stochastic method was better than the deterministic method
using any strategy in terms of train cancellations and delays. The improvement per-
centages with respect to the value of the stochastic solution (VSS) were between 6.1%
and 10.2% in our cases, demonstrating the benefit of the stochastic method.

Fourth, we proposed two approaches for rescheduling timetables in case of multiple
disruptions that occur at different locations but are connected by common train lines.
One is a sequential approach that uses a single-disruption timetable rescheduling model
to handle each extra disruption with the last rescheduling solution as a reference. The
second one is a combined approach, in which a multiple-disruption model was de-
veloped to handle each extra disruption while considering the combined effect on all
ongoing disruptions. Experiments showed that compared to the sequential approach,
the combined approach resulted in less cancelled trains and train delays but required
longer times to compute optimal solutions. Therefore, a rolling horizon method was
developed to solve the multiple-disruption model in the combined approach to rapidly
generate sufficiently good solutions.

Fifth, we integrated the timetable rescheduling and passenger reassignment problems
in a single MILP model to compute rescheduled timetables with the objective of min-
imizing the weighted travel times over all passengers. The model takes into account
passengers’ preferences on in-vehicle times, waiting times at stations and the number
of transfers. An iterative solution method was developed to reschedule all train ser-
vices with restricted passengers considered at each iteration. Experiments showed that
the iterative method was able to find high-quality rescheduling solutions in an accept-
able time, and that the solution quality is mainly determined by passengers that were
considered at earlier iterations.

In summary, this thesis developed a methodological framework for passenger-oriented
railway disruption management and demonstrated its effectiveness in improving pas-
sengers’ travelling experiences during disruptions.



Samenvatting

In het dagelijkse treinverkeer zijn verstoringen onvermijdelijk door onverwachte ge-
beurtenissen als versperringen door materieeldefecten of wisselstoringen. Bij een stor-
ing is de geplande dienstregeling niet meer mogelijk omdat de geplande rijwegen niet
meer beschikbaar zijn. In de huidige praktijk moeten verkeersleiders dan de dien-
stregeling handmatig aanpassen op basis van vooraf bepaalde versperringsmaatregelen.
Dit is een tijdrovend proces waarin de invloed op de passagiers nauwelijks meegewo-
gen kan worden. Als gevolg hiervan kan de aangepaste dienstregeling onvriendelijker
zijn richting de reizigers dan nodig is.

Dit proefschrift heeft als doel een methodologische aanpak te ontwikkelen voor het
verbeteren van maatregelen bij verstoringen van het treinverkeer, zodat die efficiënter
worden en beter aansluiten bij de wensen van vervoerder en reiziger. Hiertoe is een
nieuw reizigerstoedelingsmodel ontwikkeld dat het ongemak voor reizigers schat voor
een gegeven aangepaste dienstregeling en waarmee de effectiviteit van informatie kan
worden onderzocht op het verminderen van dit ongemak. Daarnaast is een optimal-
iseringsmodel ontwikkeld voor het aanpassen van de dienstregeling bij verstoringen
met gegeven storingsduur gebaseerd op statische vervoervraag. Dit model is verder
uitgebreid voor het afhandelen van storingen met onzekere tijdsduur, meerdere elkaar
rakende verstoringen en dynamische vervoervraag tijdens de herplanning. Hieronder
volgt een samenvatting van elk van deze vijf ontwikkelde modellen.

Discrete-event simulatie is gebruikt voor de formulering van een dienstregeling-gebaseerd
dynamisch reizigerstoedelingsmodel. Het model simuleert de routekeuzes van reizi-
gers tijdens verstoringen waarbij het onvermijdelijk is dat treinen uitvallen of vroeg
keren op stations voor de versperringen (kortkeren). Aankomsten en vertrekken van
treinen op stations zijn gebeurtenissen die het gedrag van passagiers beı̈nvloeden af-
hankelijk van de ontvangen informatie. We hebben de impact van verschillende in-
formatievoorzieningen op het reizigersgedrag gesimuleerd. De experimenten toonden
aan dat het informeren van passagiers over dienstregelingsaanpassingen op zowel sta-
tions als in treinen nuttig was om hun reistijden te verkorten, en daarnaast kon met het
publiceren van informatie over drukte in de trein voorkomen worden dat reizigers niet
konden instappen als de voertuigcapaciteit schaars was.

Ten tweede hebben we een gemengd-geheeltallig lineair programmeringsprobleem
(MILP) ontwikkeld om snel toelaatbare aangepaste dienstregelingen te berekenen vanaf
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het begin van de storingen totdat de oorspronkelijke dienstregeling weer is hersteld.
Het model kan tijden en volgordes aanpassen, treinen laten uitvallen of eerder laten
keren, en flexibel laten stoppen. Het effect van de versperringsmaatregelen op de ge-
plande reizen van passagiers wordt gekwantificeerd door gewichten toe te voegen aan
de beslisvariabelen in de doelfunctie om reizigersvertragingen te minimaliseren. Per-
roncapaciteit en materieelomlopen op eindstations en kortkeerstations zijn meegeno-
men om de implementeerbaarheid van de oplossing in de praktijk te verbeteren. Exper-
imenten toonden aan dat flexibel kortkeren en/of flexibel halteren nuttige maatregelen
zijn om de prestaties van aangepaste dienstregelingen te verbeteren.

Ten derde hebben we een twee-staps stochastisch programmeringsmodel met rollende
horizon ontwikkeld om aangepaste dienstregelingen te berekenen voor storingen met
onzekere tijdsduur die in de loop van de tijd worden geüpdatet. Het stochastische
model houdt rekening met meerdere mogelijke storingsduren in scenario’s met gegeven
kansen en berekent de aangepaste dienstregeling die optimaal is rekening houdend met
alle scenario’s. We hebben ook een deterministisch herplanningsmodel met rollende
horizon ontwikkeld, waarbij de storingsduur wordt geschat met een optimistische,
pessimistische of verwachte-waarde strategie. Experimenten toonden aan dat de gem-
iddelde prestaties van de stochastische methode beter waren dan de deterministische
methode (ongeacht de strategie) in termen van vertragingen en het aantal vervallen
treinen.

Ten vierde hebben we twee benaderingen voorgesteld voor het herplannen van dien-
stregelingen bij meerdere verstoringen die op verschillende locaties optreden, maar
verbonden zijn door gemeenschappelijke treinseries. De eerste is een sequentiële aan-
pak die het optimaliseringsmodel voor individuele storingen gebruikt voor iedere ex-
tra storing met de laatste oplossing als referentiedienstregeling. De andere is een ge-
combineerde aanpak, waarbij een optimaliseringsmodel is ontwikkeld voor meerdere
storingen tegelijk, waarbij de oplossing voor elke extra storing rekening houdt met de
gecombineerde effecten van alle lopende verstoringen. Experimenten toonden aan dat
in vergelijking met de sequentiële aanpak, de gecombineerde aanpak resulteerde in
minder geannuleerde treinen en treinvertragingen, maar dat het langer duurde om op-
timale oplossingen te berekenen. Daarom is een rollende horizon methode ontwikkeld
om voor het meervoudige storingsmodel met de gecombineerde aanpak snel goede
oplossingen te vinden.

Ten vijfde hebben we een MILP model ontwikkeld waarin het herplanningsprobleem
en de reizigerstoedeling zijn geı̈ntegreerd met als doel de gewogen reistijden voor alle
passagiers te minimaliseren. Het model houdt rekening met de voorkeuren van passa-
giers voor de reistijd in de trein, wachttijden op stations en het aantal overstappen. Een
iteratieve oplossingsmethode is ontwikkeld om alle treindiensten te herplannen waar-
bij een toenemend aantal reizigers werd meegenomen in elke iteratie. Experimenten
toonden aan dat de iteratieve methode in staat was om hoogwaardige aangepaste di-
enstregelingen te vinden in een acceptabele tijd, en dat de kwaliteit van de oplossing
voornamelijk werd bepaald door de reizigers die bij de eerste iteraties werden meegen-
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omen.

Samenvattend is in dit proefschrift een methodologische aanpak ontwikkeld voor reizi-
gersgericht herplannen van treindienstregelingen bij versperringen en is de effectiviteit
hiervan aangetoond op het verbeteren van de reiservaring van reizigers tijdens ver-
storingen.
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