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The validation of aerodynamic models created using flight test data is a time consuming

and often costly process. In this paper a new method for the validation of global non-

linear aerodynamic models based on multivariate simplex splines is presented. This new

method uses the unique properties of the multivariate simplex splines, a recent type of of

multivariate spline, to speedup the process of aerodynamic model validation. Multivariate

simplex splines are defined on non-rectangular domains and can be used to accurately fit

scattered nonlinear datasets in any number of dimensions. The simplex splines consist of

piecewise defined, ordinary multivariate polynomials with a predefined continuity between

neighboring polynomial pieces. A recent method for nonlinear system identification based

on multivariate simplex splines was used to create a global nonlinear aerodynamic model of

the Cessna Citation II laboratory aircraft operated by the Delft University of Technology.

In this paper, the multivariate spline based aerodynamic model for the pitching moment

coefficient will be validated using both a model residual analysis as well as a statistical

model quality analysis. It will be demonstrated that these new analysis methods, which

are both unique to the multivariate simplex splines, provide a highly efficient and powerful

new method for aerodynamic model validation.

Nomenclature

c̄ = mean aerodynamic chord, m
d̂ = total number of polynomial terms in basis function
B = global data location matrix
c = global B-coefficient vector
D = global data sifting matrix
H = smoothness matrix
I = inertia matrix, kg ·m2

X = regression matrix
Y = measurement vector
T = triangulation formed by a set of simplices
Ax, Ay, Az = specific forces along body X/Y /Z axis, m/s2

ax, ay, az = kinematic accelerations along body X/Y /Z axis, m/s2

b = barycentric coordinate
Bd

κ(b) = individual polynomial basis function term of degree d
C = general dimensionless coefficient,-
cκ = individual B-coefficient
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d = polynomial degree
g = gravity constant, m/s2

L,M,N = combined aerodynamic and thrust moments about the body X/Y /Z axis, N ·m
m = mass, kg
n = spline dimension
p(b) = general polynomial in barycentric coordinates
p, q, r = roll, pitch, and yaw rates around the body X/Y /Z axis, rad/s
r = continuity order of spline function
S = wing area, m2

Sr
d = spline space of degree d and continuity order r
Tc = dimensionless thrust, -
ti = single simplex
ub, vb, wb = airspeed velocity components along body X/Y /Z axis, m/s
ue, ve, we = airspeed velocity components along Earth’s fixed X/Y /Z axis, m/s
V = airspeed, m/s
X, Y, Z = combined aerodynamic and thrust forces along the body X/Y /Z axis, N
x, y, z = position coordinates along X/Y /Z axis, m (reference frame varies)

Symbols

α, β, γ = angle of attack, angle of sideslip, and flightpath angle, rad
δ = control surface deflection, rad (subscript determines specific control surface)
κ = multi-index
λ = bias
φ, θ, ψ = roll, pitchm and yaw angles, rad
ρ = air density, kg/m3

Subscripts

κ = multi-indexed entity
a, e, r = aileron, elevator and rudder
c.g. = center of gravity
i, j = general indexers
l,m, n = combined aerodynamic and thrust moment about the body X/Y /Z axis, N ·m
sp = spoiler
tr = trim tab

Superscripts

a, e, r = aileron, elevator and rudder
c.g. = center of gravity
l,m, n = combined aerodynamic and thrust moment about the body X/Y /Z axis, N ·m
sp = spoiler
ti = simplex identifier

I. Introduction

High quality aerodynamic models are essential in the adequate functioning of flight simulators and flight
control systems. Identifying and validating aerodynamic models using flight test data is a costly and often
time consuming task. Currently, the most widely used method for identifying aerodynamic models uses
a parameter estimation method like least squares or maximum likelihood to estimate the parameters of
a polynomial regression model.1,2, 3, 4, 5, 6, 7, 8, 9 More complex models can be created by identifying local
polynomial models on sub-partitions of the flight envelope. The set of local polynomial models can then be
blended into a single smooth structure using fuzzy blending techniques or neural networks.10 However, these
blending methods suffer from a number of important drawbacks such as loss of transparency, loss of the
linear-in-the-parameter property of the polynomial models and the arbitrariness of the blending operation.

Many authors have therefore suggested the use of polynomial spline functions for fitting flight data.11,12,8

Spline functions are piecewise defined polynomials with a predefined continuity order between pieces. The
approximation power of spline functions is proportional with the degree of the polynomial but also with
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the number and density of the polynomial pieces. Polynomial spline functions are capable of fitting highly
nonlinear datasets over large domains. While one-dimensional, or (i.e. univariate) spline theory is well
known and developed, multi-dimensional (i.e. multivariate) spline theory is still an active research field.
Many different multivariate spline types exist, such as the DMS-spline13 and the well known and much
used tensor product B-spline.14 Multivariate tensor product splines have been successfully used in the past
to model aircraft aerodynamics. Smith,11 Klein4 and Bruce12 used bivariate tensor product splines in a
linear regression framework for the purpose of aerodynamic model identification. Tensor product splines,
however, have a number of fundamental drawbacks. They are defined exclusively on rectangular domains
which greatly limits their flexibility. More importantly, it is well known that the multivariate tensor product
spline is for fundamental mathematical reasons incapable of fitting scattered data.15 This makes the tensor
product spline useless for the fitting of flight test data, which is inherently scattered.

Recently, a new type of multivariate spline for scattered data approximation was introduced.16 Called
the multivariate simplex spline, it is capable of fitting nonlinear, multi-dimensional scattered data16,17,18

and has an arbitrarily high approximation power. Simplex splines are not defined on rectangular domains
and are therefore much more flexible than tensor product splines. Recently, a linear regression framework
for multivariate simplex splines was introduced18 which allows the use of standard parameter estimation
techniques such as Least Squares (LS) or Maximum Likelihood (ML) for estimating the parameters of the
simplex spline polynomials. A significant advantage of the new identification method over other methods
is that polynomial structure selection is performed during the parameter estimation step, rather than in a
separate polynomial model structure selection step like in the state of the art method presented by Lombaerts
et al. in.19 Instead of selecting individual polynomial terms beforehand, all polynomial terms of total degree
d are considered during parameter estimation. This is possible because the local basis functions of the
simplex splines are members of the complete space of polynomials of degree d.

Fig. 1 Cessna Citation II laboratory aircraft

In two recent papers, the authors demonstrated a new method for aerodynamic model identification based
on multivariate simplex splines. In20 a global aerodynamic model based on multivariate simplex splines for
the F-16 fighter aircraft was created. This spline model was based on simulated flight test data from a public
domain NASA subsonic wind tunnel model of the F-16. In21 a multivariate spline based global aerodynamic
model for the Cessna Citation II laboratory aircraft (PH-LAB) was created. This model is based on flight
data obtained during 76 flight test manoeuvres, and is used in the demonstration of the new model validation
method.

The objective of this paper is the demonstration of a new method for validating aerodynamic models
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based on multivariate simplex splines. The multivariate simplex splines have a number of unique properties
that enable two new approaches to model quality analysis. The first new approach in model quality analysis is
a model residual analysis, which results in a new multivariate spline function for empirical model confidence
bounds. The second new approach is a statistical model quality analysis which results in a Cramér-Rao
Lower Bound (CRLB) parameter hyper-surface. This is possible because the parameters of the multivariate
simplex spline each have a unique spatial location within the model domain, which means that their respective
variances and CRLB’s are bound to that same spatial location.

The new model validation method was demonstrated on the multivariate simplex spline based model for
the aerodynamic pitching moment coefficient of the Cessna Citation II. The two new model quality analysis
methods clearly show that the quality of this model varies strongly across the flight envelope. While the
quality of the model is shown to be very high in the central regions of the flight envelope, regions closer to
the model domain boundaries have a significantly lower quality.

II. Preliminary on Multivariate Simplex Splines

In this section a brief introduction is given on the basic theory of multivariate simplex splines. For an
excellent in-depth coverage of the matter we would like to refer to the work of Lai and Schumaker.22

A. The Simplex and Barycentric Coordinates

The individual spline pieces of the simplex spline are defined on simplices. A simplex is a geometric structure
that provides a minimal, non-degenerate span of n-dimensional space. For example, the simplex of 2-
dimensional space is the triangle and the simplex of 3-dimensional space the tetrahedron. Note that in the
following we use ’n-simplex’ as shorthand for ’the simplex of n-dimensional space’. A simplex is defined as
follows. Let V be a set of n+ 1 unique, non-degenerate, points in n-dimensional space:

V := {v0, v1, . . . , vn} ∈ R
n (1)

Then the convex hull of V is the n-simplex t:

t := 〈V 〉 (2)

The boundary edges of a simplex are called facets. A facet of an n-simplex is a (n−1)-simplex by definition;
it is constructed from all but one of the vertices of the n-simplex.

The simplex has its own local coordinate system in the form of the barycentric coordinate system. The
barycentric coordinate system is instrumental in the definition of the stable local polynomial basis for the
multivariate spline. The principle of barycentric coordinates is the following; every point x = (x1, x2, . . . , xn)
inside or outside the convex hull of a simplex t, with t as in Eq. (2), can be described in terms of a unique
weighted vector sum of the vertices of t. The barycentric coordinate b(x) = (b0, b1, . . . , bn) of x with respect
to simplex t are these vertex weights:

x =
n
∑

i=0

bivi (3)

The barycentric coordinates are normalized, i.e.

n
∑

i=0

bi = 1 (4)

B. Triangulations of Simplices

A triangulation T is a special partitioning of a domain into a set of J non-overlapping simplices.

T :=
⋃

{ti, i = 0, 1, . . . , J} (5)

In a valid triangulation simplices are not allowed inside the convex hull of other simplices:

ti ∩ tj ∈
{

∅, t̃
}

, ∀ti, tj ∈ T (6)
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Fig. 2 2-D Delaunay triangulation consisting of 31 triangles (left) and 3-D Delaunay triangulation consisting
of 6 tetrahedrons (right, two tetrahedrons are colored for clarity).

with t̃ a k-simplex with 0 ≤ k ≤ n− 1.
One of the most common triangulation methods is the Delaunay triangulation. Fig. 2 shows two Delaunay

triangulations. In the left hand plot the Delaunay triangulation of 20 randomly distributed vertices in 2-D
is shown. This triangulation consists of 31 triangles. In the right hand plot the Delaunay triangulation of
8 uniformly distributed vertices in 3-D is shown. This triangulation consists of 6 tetrahedrons. It should
be noted at this point, that creating a triangulation using the Delaunay algorithm does not always result in
a well-defined triangulation, as has been pointed out in the literature.23 It is possible that so-called sliver

simplices are produced, which are simplices which have a very large circum (hyper) sphere compared to their
size.23 Polynomials defined on sliver simplices tend to be badly conditioned possibly leading to numerical
instability, so their creation should be avoided as much as possible.

For our applications, we have developed a simple but powerful method for creating well defined trian-
gulations suitable for use in aerodynamic model identification. This method does not use the Delaunay
triangulation method, but instead fits a predefined number of (hyper) cubes inside the convex hull of a
given dataset. The hypercubes themselves are then triangulated individually, resulting in a well defined
triangulation such as that demonstrated in Fig. 3.

C. Spline Spaces

A spline space is the space of all spline functions s of a given degree d and continuity order Cr on a given
triangulation T . Such spline spaces have been studied extensively, see e.g.242522 We use the definition of
the spline space from:22

Sr
d(T ) := {s ∈ Cr(T ) : s|t ∈ Pd, ∀t ∈ T } (7)

with Pd the space of all polynomials of total degree d. The definition of the spline space in Eq. (7) provides
a convenient notation for stating the degree, continuity and triangulation of a spline solution without having
to specify individual spline functions. For example, S1

3(T ) is the space of all cubic spline functions with
continuity order C1 defined on the triangulation T .

D. The B-form of the multivariate simplex spline

The polynomials of the simplex spline can be expressed in the so-called B-form. The B-form provides
an elegant notation for the linear combination of Bernstein basis functions on a single n-simplex. In the
following, we will provide a derivation of the B-form of the multivariate simplex spline. Starting with the
definition of the multinomial theorem, we have:

(b0 + b1 + · · ·+ bn)
d =

∑

κ0+κ1+···+κn=d

d!

κ0!κ1! · · ·κn!

n
∏

i=0

bκi

i . (8)
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Scattered: CΞ = T (149 triangles)Uniform: CΞ ∈ T (261 triangles)

Uniform: T ∈ CΞ (177 triangles)Uniform rectangular: CΞ ∈ T (320 triangles)

Fig. 3 Four different methods of triangulating a data domain (shaded area). Top left: a uniform rect-
angular triangulation; top right: an underfitted uniform triangulation; bottom left: a overfitted uniform
triangulation; bottom right: an exact fit scattered triangulation
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Now let the multi-index κ be defined as follows:

κ := (κ0, κ1, . . . , κn) ∈ N
n+1. (9)

The 1-norm of the multi-index is given by:

|κ| = κ0 + κ1 + · · ·+ κn = d, d ≥ 0. (10)

The multi-index provides a convenient mechanism for covering all possible integer permutations that sum
up to a value d.

� Example: List all valid permutations of κ for |κ| = 2 and n = 2. For n = 2 we have κ = (κ0, κ1, κ2).
The set of valid permutations of κ are:

κ ∈ {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}.

�

Hu26 and Lai22 introduce a very useful lexicographical sorting order on the elements of the multi-index:

κd,0,0···0 > κd−1,1,0···0 > κd−1,0,1,0···0 > · · · > κ0···0,1,d−1 > κ0···0,0,d. (11)

The total number of valid permutations of κ is d̂:

d̂ =
(d+ n)!

n!d!
. (12)

Using the multi-index from Eq. (9) the multinomial equation Eq. (8) can be simplified into:

(b0 + b1 + · · ·+ bn)
d =

∑

|κ|=d

d!

κ!
bκ. (13)

� Example: Expand the multinomial expression for n = 2 and d = 2 using the multi-index κ.
In this case we have κ = (κ0, κ1, κ2) with permutations κ ∈ {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}.
The multinomial equation Eq. (13) then is:

(b0 + b1 + b2)
2 =

∑

|κ|=2

2!

κ!
bκ

=
2!

2!0!0!
b20b

0
1b

0
2 +

2!

1!1!0!
b10b

1
1b

0
2 +

2!

1!0!1!
b10b

0
1b

1
2 +

2!

0!2!0!
b00b

2
1b

0
2 +

2!

0!1!1!
b00b

1
1b

1
2 +

2!

0!0!2!
b00b

0
1b

2
2

= b20 + 2b0b1 + 2b0b2 + b21 + 2b1b2 + b22.

�

The basis function Bd
κ(b) of the multivariate spline can now be defined as follows:

Bd
κ(b) :=

d!

κ!
bκ. (14)

De Boor proved27 that
{

Bd
κ(b), κ ∈ N

n+1, |κ| = d
}

is a stable basis for the space of polynomials of degree
d. This means that any polynomial p(b) of degree d can be written as a linear combination of Bd

κ. This
linear combination of basis function is the B-form, which has the following notation:

p(b) =
∑

|κ|=d

cκB
d
κ(b), (15)

with cκ a vector of linear coefficients called control coefficients, or more commonly, B-coefficients. The
subscript multi-index κ is alternatively called the indexer of c. The total number of B-coefficients for a d-th
order basis function on an n-dimensional simplex is equal to the total number of valid permutations of κ:
d̂, with d̂ given by Eq. (12). The B-form can be evaluated using with the de Casteljau algorithm from,26 or
directly by simply expanding the B-form Eq. (15), which is computationally more efficient.
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E. The B-coefficient net

The B-coefficients are strongly structured in what is called the B-coefficient net, or B-net for short. The
B-net has a spatial representation that provides insight into the structure of the B-form. The B-net is also
very useful in the visualization of the structure of continuity between simplices. The graphical representation
of the B-net is well known in the literature, see e.g.28,29,22 In Fig. 4 the graphical representation of the B-net
corresponding with a third degree basis function (i.e. d = 3) defined on a triangulation consisting of the
three simplices ti, tj and tk is shown. There exists a direct relationship between the index of a B-coefficient
and its spatial location, or barycentric coordinate within a simplex:

b(cκ) =
κ0vp0

+ κ1vp1
+ · · ·+ κnvpn

d
, |κ| = d (16)

with b(cκ) the barycentric coordinate of B-coefficients and vpi
, i = 0, 1, . . . , n the simplex vertices.

ci
300

ci
210

ci
201

ci
120

ci
111

ci
102

ci
030

ci
021

ci
012

ci
003

ck
300

ck
210

ck
201

ck
120

ck
111

ck
102

ck
030

ck
021

ck
012

ck
003

c
j
300

c
j
210

c
j
201

c
j
120

c
j
111

c
j
102

c
j
030

c
j
021

c
j
012

c
j
003

ti tk

tj

vcvb

ve

va

vd

Fig. 4 B-net for d = 3 basis function on 3 simplices together with C1 continuity structure

The graphical interpretation of the B-net has many uses in multivariate simplex spline theory. In this
paper, the B-net plays an important role in the definition of the variance and CRLB hyper-surfaces.

F. Continuity between Simplices

A spline function is a piecewise defined polynomial function with Cr continuity between its pieces. Continuity
between the polynomial pieces is enforced by continuity conditions which are defined for every facet shared
by two neighboring simplices. The formulation of the continuity conditions in this subsection are well known
in the literature see e.g.27,30,22,18 We use the formulation for the continuity conditions from Awanou16 and
Lai:22

cti(κ0,...,κn−1,m) =
∑

|γ|=m

c
tj
(κ0,...,κn−1,0)+γ

Bm
γ (σ), 0 ≤ m ≤ r, (17)

with γ = (γ0, γ1, . . . , γn) a multi-index independent of κ and ti and tj neighboring simplices. Eventually we
want all continuity conditions for all facets formulated in the following matrix form:

Hc = 0, (18)

with matrix H the so-called smoothness matrix and c the global vector of B-coefficients defined as follows:

c =
[

ct1 ct2 · · · ctJ ,
]

(19)

with cti the lexicographically sorted vectors of per-simplex B-coefficients, see.18

In18 an example was given for the construction of H. It was also shown that, in general, H is not of full
rank. For the purposes of system identification with simplex splines, however, we require H to be of full
rank. The simplest way to achieve a full rank smoothness matrix is to reduce H into a row-reduced echelon
form, and then truncate the resulting matrix so as to exclude all rows containing only zeros.
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G. Estimating B-coefficients

The B-coefficients from Eq. (15) completely determine the shape of the spline model. In18 a least squares
method for estimating the B-coefficients of simplex splines was presented. It was shown that the estimation
problem can be formulated as a Karush-Kuhn-Tucker (KKT) system as follows:

[

X⊤X H⊤

H 0

][

c

ν

]

=

[

X⊤Y

0

]

(20)

with X the regression matrix of B-form polynomials, H the smoothness matrix from Eq. (18), c the array
of all B-coefficients for the complete triangulation and with ν a set of Lagrange multipliers. The system
Eq. (20) can then be solved either directly18 or iteratively.16

III. System Identification with Simplex Splines

In this section a brief introduction on system identification with simplex splines is be given. The linear
regression scheme presented in this section is from18 where it was first introduced.

A. Preliminaries on linear regression with simplex splines

Consider the pair of observations (x(i), y(i)) related as follows:

y(i) = f(x(i)) + r(i), i = 1, 2, . . . , N, (21)

with f an unknown function and with r(i) a residual term. In18 a linear regression model structure for
approximating f with B-form polynomials is presented. This model structure is equivalent to a linear
combination of B-form polynomials in b(i), with b(i) the barycentric coordinate of x(i) with respect to the
simplex tj as in Eq. (3). The B-form polynomials are of degree d and defined on a triangulation consisting
of J simplices:

y(i) =

J
∑

j=1



δjk(i)
∑

|κ|=d

ctjκ B
d
κ(b(i))



+ r(i), (22)

with δjk(i) the simplex membership operator defined as follows:

δjk(i) =

{

1, if j = k(i)

0, if j 6= k(i)
, (23)

and with k(i) an index function that produces the index of the simplex which contains the data point x(i),
i.e., x(i) ∈ tk(i), ∀i.

� Example: Define the regression model as a first degree multivariate spline function defined on two
triangles. In this case the dimension n = 2, which leads to the following model structure:

y(i) =
∑

|κ|=1

ct1κ B
1
κ(b(i)) +

∑

|κ|=1

ct2κ B
1
κ(b(i)) + ǫ(i)

= ct1100b0(i) + ct1010b1(i) + ct1001b2(i) + ct2100b0(i) + ct2010b1(i) + ct2001b2(i) + ǫ(i)

�

In18 a matrix formulation of the B-form for a triangulation consisting of J simplices was presented. It
was shown that a data-membership matrix operator must be defined to ensure that the matrix formulation
is valid for the complete triangulation. For a single observation on the complete triangulation, this matrix
operator was defined as follows:

D(i) =
[

(

Dtj (i)
)

j,j

]J

j=1
∈ R(J·d̂)×(J·d̂) (24)

in which the sub blocks Dtj (i), located on the main diagonal of D(i), are defined as follows:

Dtj (i) =
[

(δj,k(i))q,q
]d̂

q=1
∈ Rd̂×d̂ (25)
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with δj,k(i) the membership operator from Eq. (23). The full-triangulation basis function vector for a single
observation is found using Eq. (27):

Bd(i) = [ Bd
t1
(i) Bd

t2
(i) · · · Bd

tJ
(i) ] ∈ R1×J·d̂ (26)

with Bd
tj
(i) the individual, lexicographically sorted basis function terms from Eq. (14):

Bd
tj
(i) = [Bd,tj

κ (b(i))]|κ|=d ∈ R1×d̂ (27)

The B-form of the multivariate simplex spline for the complete triangulation is the result of combining
Eq. (19), Eq. (26) and Eq. (24):

p(b(i)) = Bd(i) ·D(i) · c ∈ R1×1 (28)

Now let X(i) be a single row in the full-triangulation regression matrix for all observations X ∈ RN×J·d̂ as
follows:

X(i) = Bd(i) ·D(i) ∈ R1×J·d̂ (29)

Returning to the linear regression model from Eq. (22), we then have for a single observation y(i):

y(i) = X(i)c+ r(i) ∈ R1×1 (30)

which, for all observations, leads to the well known formulation:

y = Xc+ r ∈ RN×1 (31)

B. A least squares estimator for the B-coefficients

Equation Eq. (31) can be solved using many different methods, depending on the assumptions made on the
nature of the residual term r. We will introduce a least squares (LS) estimator for Eq. (31), which implies
the following assumptions on the residual r:

E(r) = 0, Cov(r) = σ (32)

The well known LS cost function is:

JLS(c) =
1

2
(Y −Xc)⊤(Y −Xc) (33)

Up to this point we have not discussed how continuity between simplices is achieved in the frame of the new
regression scheme. As explained in Section F, the continuity conditions are contained in the smoothness
matrix H from Eq. (18). The continuity conditions act as constraints on B-coefficients located in the
continuity structure of a triangulation. Therefore, the complete optimization problem can be stated as an
equality constrained GLS problem (ECGLS) as follows:

min
c

JLS(c), subject to Hc = 0 (34)

Using Lagrange multipliers this optimization problem can be formulated as a Karush-Kuhn-Tucker (KKT)
system:

[

X⊤X H⊤

H 0

][

c

ν

]

=

[

X⊤Y

0

]

(35)

with ν vector of Lagrange multipliers. The coefficient matrix in Eq. (35) is the KKT matrix. The solution
of the KKT system is:

[

ĉ

ν̂

]

=

[

C1 C2

C3 C4

]

·

[

X⊤Y

0

]

(36)

with ĉ and ν̂ estimators for c and ν respectively. Rao shows in31 that the matrix in Eq. (36) is equal to the
inverse of the KKT matrix:

[

C1 C2

C3 C4

]

=

[

X⊤X H⊤

H 0

]−1

(37)

Note that the sizes of the submatrices C1, C2 and C3 in Eq. (37) are equal to the sizes of X⊤X, H⊤ and
H respectively.
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IV. Aerodynamic Model Validation

In this section the multivariate simplex spline based model for the aerodynamic pitching moment coef-
ficient of the Cessna Citation II is validated. This model was identified using flight data collected during
76 longitudinal 3211 flight test maneuvers.21 Flight path reconstruction techniques based on an iterated
extended Kalman filter (IEKF) were used to get a crisp estimation of aircraft state.32 The linear regression
scheme for multivariate simplex splines from Sec. II was then used with the reconstructed aircraft state to
identify a simplex spline based model for the non-dimensional aerodynamic pitching moment coefficient Cm.

The new model validation method was then used to assess the quality of the created spline model. Two
different analysis methods were used: the first method is a model residual analysis, and the second method
is a statistical analysis of the parameters of the multivariate splines. It will be shown that both validation
methods complement each other and together provide an extremely powerful method for assessing the quality
of an aerodynamic model.

A. Aerodynamic model identification with multivariate splines

Using the theory from Sec. II and Sec. III a multivariate simplex based model for the pitching moment
coefficient Cm was identified. The data for aerodynamic model identification was collected during 76 longi-
tudinal 3211 flight test manoeuvres. The manoeuvres where executed between 5000 and 5500 meters, with
airspeed ranging from 90 m/s till 170 m/s while the thrust setting was kept constant. The aircraft was in
a clean configuration during all manoeuvres. The flight path reconstruction technique from Mulder et al.32

was used to derive crisp aircraft states from the measurement data. The crisp aircraft states where used to
calculate the aerodynamic pitching moment coefficient Cm as follows (see e.g. Stevens and Lewis33):

Cm =
1

1
2ρV

2Sc̄

(

Iy q̇ − (Iz − Ix)rp− Ixz(r
2 − p2)

)

, (38)

(39)

with p, q and r the angular rates about the FB . Ix, Iy, and Iz are the products of inertia, while Ixz is the
single non-zero cross-product of inertia.

The following model structure was used for the aerodynamic model for Cm:

Cm = fm(α, q, δe) ∈ S1
3(T ) (40)

with fm(α, q, δe) a trivariate spline function of the angle of attack α, the pitch rate q and the elevator
deflection δe. The spline function is a member of the spline space S1

3(T ) which is of degree 3 with C1

continuity on the triangulation T which in this case consisted of 18 simplices (tetrahedrons), see Fig. 5.
This particular model structure was chosen because it was the simplest model structure to produce adequate
results.

The multivariate simplex spline model was identified with a least squares estimator which used a subset
of the complete dataset as identification dataset. The model output from the spline function fm(α, q, δe)
modeling the pitching moment coefficient Cm is shown in Fig. 6. The model of Cm shows some interesting
facts. First, it is clear that Cm is highly nonlinear along all model dimensions. Second, the slope of the
model for Cm in the direction of α is observed to be positive at some flight conditions, that is, Cmα

> 0. This
is somewhat unexpected for a statically stable aircraft like the Cessna Citation II. In Table 1 the numerical
results from the experiment are presented.

B. Validating the multivariate simplex spline based aerodynamic model

The multivariate spline based aerodynamic model was validated using two different methods. First, a model
residual analysis was performed in which the local model error was itself modeled with a secondary simplex
spline function. Second, an analysis of the estimated variances in the B-coefficients of the multivariate
simplex splines was performed. The data used to validate the model was a subset of the complete dataset
which was completely independent of the identification dataset.

Starting with the model residual analysis, we define the model residual as follows:

ǫm(α, q, δe) := fm(α, q, δe)− Cm. (41)
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Fig. 5 The triangulation consisting of 18 tetrahedrons together with the dataset used for aerodynamic
model identification.

Spline model at (α, q, δe = −1.9[deg])
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Fig. 6 Four 3-D slices through the global spline model fm(α, q, δe) for Cm along the δe axis
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with Cm the measured aerodynamic pitching moment coefficient from Eq. (39).
The model residual is calculated using the validation dataset, which is unrelated to the identification

dataset used to identify fm. In Fig. 7 the measured output for Cm together with the spline output fm and
the model residual ǫm from Eq. (41) is plotted. Global numerical results from the model validation are shown
in Table 1.

Sample

C
m

Validation data (red) and Spline model output (blue) for Cm

Sample

C
m

Spline model error for Cm

0 5000 10000 15000

0 5000 10000 15000
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.004

.006

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Fig. 7 Comparison between measured values for Cm and model output from fm(α, q, δe) (top) and the
model residual ǫm (bottom).

Table 1 Results of the model validation

Spline model Simplices error RMS relative error RMS

fm(α, q, δe) ∈ S1

3(Tm) 18 1.84e-003 1.72%

Using Chebychev’s inequality, confidence bounds were calculated for the residual of the spline model.
Chebychev’s inequality states that any set of data, no matter its distribution, is more than k standard
deviations away from its mean. More precisely, if µ is the mean of ǫm and σ is its standard deviation, then
Chebychev’s inequality is:

P (|ǫm − µ| ≥ kσ) ≤
1

k2
(42)

It is important to note that the confidence bounds calculated using Chebychev’s inequality are more
conservative than bounds calculated based on the normal distribution. Using k = 4 in Eq. (42), 94% of the
model residual should be within the confidence bounds. Instead of calculating global confidence bounds,
the complete model was partitioned into 1300 subregions, each containing sufficient data to allow the use of
Chebychev’s inequality. After the partitioning, confidence bounds were calculated for each subregion. These
local confidence bounds then contained at 94% of the local model residual. A new multivariate simplex
spline function of the same degree as fm was then used to blend the local confidence bounds together into
a new global confidence bound model fbound.
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The resulting 4σ confidence bound model fbound is shown in Fig. 8. The confidence bound model clearly
shows that the quality of the spline model at the edges of the model domain is of lower quality than in the
interior regions. Especially the regions in the model domain for which q < −4 and q > 4 have significantly
wider 4σ confidence bounds than interior model regions.

Following the model residual analysis, a statistical model quality analysis was performed. This quality
analysis uses the estimated covariances of the B-coefficients to create a variance hyper-surface. It was found
in18 that the B-coefficient covariance matrix is given by:

Cov(ĉ) = diag(C1), (43)

with C1 the upper left block of the Fisher Information Matrix from Eq. (37). From Eq. (43) the variance of
the B-coefficients can be found as follows:

V ar(ĉ) = diag(C1), (44)

The Cramér-Rao Lower Bound (CRLB) of the B-coefficients is then given by:

CRLB(ĉ) ≥ V ar(ĉ), (45)

The CRLB of the B-coefficients can now be used to define a special hyper-surface containing the B-
coefficient CRLB’s. This is possible because the B-coefficients have a unique spatial location within a simplex.
A B-coefficient variance, or CRLB, can therefore be directly translated to a spatial location. In Fig. 9 the B-
coefficient CRLB surface of the spline model fm is shown. The CRLB surface clearly shows that there are two
model regions in which the B-coefficient CRLB is extremely high; the region (α < −2 [deg], q < −3 [deg/s])
and the region (α > 4 [deg], q > 4 [deg/s]). These regions correspond to parts of the flight envelope which
contain little to no flight data, see Fig. 5. The variance surface can also point to areas in the model in which
the identification has a high noise content
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Fig. 8 Four 3-D slices through the 4σ spline confidence model fbound(α, q, δe) for Cm along the δe axis.
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CRLB model at (α, q, δe = −1.9[deg])
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Fig. 9 Four 3-D slices through the parameter CRLB model fm(α, q, δe) for Cm along the δe axis

V. Conclusion

In this paper, a global nonlinear aerodynamic model of the Cessna Citation II laboratory aircraft is
validated using two new model validation approaches. These new model validation approaches are made
possible by a new method for aerodynamic model identification based on multivariate simplex splines. The
multivariate simplex splines have a number of unique properties, such as the ability to fit scattered multi-
dimensional data on non-rectangular domains, and the fact that the parameters of the simplex splines have
a unique spatial location within the spline model.

The first new validation approach is a model residual analysis which results in a secondary simplex spline
function for the confidence bounds of the aerodynamic model. The second new approach is a statistical
model quality analysis which produces a parameter variance surface in which the variance of each individual
model parameter has a unique spatial location within the model domain. The parameter variance surface
then allows the pinpointing of regions of high parameter variance within the aerodynamic model.

The new model validation approaches were demonstrated by validating a multivariate simplex spline
based model for the aerodynamic pitching moment coefficient of the Cessna Citation II. This model was
identified using a set of 5 million data points collected during 76 longitudinal flight test maneuvers. The
statistical model quality analysis showed that the quality of the multivariate spline based model was high
except for parts of the flight envelope in which data was scarce.

Together, the two new model validation approaches provide a powerful new method of assessing the
quality of an aerodynamic model based on multivariate simplex splines. The two new model quality measures
in the form of the confidence bound spline model and the parameter variance surface can be used to efficiently
and accurately pinpoint regions within the aerodynamic model which require more or higher quality flight
data.
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