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Abstract—In spite of progress on hardware design languages,
the design of high-performance hardware accelerators forces
many design decisions specializing the interfaces of these accel-
erators in ways that complicate the understanding of the design
and hinder modularity and collaboration. In response to this
challenge, Tydi is presented as an open specification for streaming
dataflow designs in digital circuits, allowing designers to express
how composite and variable-length data structures are trans-
ferred over streams using clear, data-centric types. In contrast,
Chisel, with its high level of abstraction and customizability offers
a suitable platform to implement Tydi-based components. In this
paper, Tydi-Chisel is presented along with an A-to-Z design-
process description. Tydi-Chisel aims to simplify the design of
data-streaming accelerators through the integration of the Tydi
interface standard in Chisel, along with helper components and
syntax sugar. In combination Chisel and Tydi help bridge the
hardware-software divide, making solo-design and collaboration
between designers easier.
Project repository: https://github.com/ccromjongh/Tydi-Chisel

Index Terms—big data, streaming interfaces, HW design,
testing

I. INTRODUCTION

The deceleration in performance gain of CPUs signals the
advent of the post-Moore’s Law era [1, 2]. Nonetheless,
computational demands, especially from fields like machine
learning and big data, continue to escalate rapidly. To meet
these growing needs, there has been a pivot towards hetero-
geneous computing platforms that include GPUs and FPGAs.
Yet, the process of algorithm implementation on FPGAs tends
to be more prolonged and intricate compared to that on
GPUs. While there are several frameworks, like HLS (High-
Level Synthesis), OpenCL [3], and HLS4ML [4], designed
to streamline FPGA development, challenges remain. These
challenges are amplified in the big data domain [5], where
developers can typically write a few lines of SQL to execute
a query, whereas translating the same query to FPGA requires
thousands of lines of hardware description code. Sampson
[6] accentuates this disparity, advocating for a transition from
Hardware Description Language (HDL) to Accelerator Design
Language (ADL). Chisel has emerged as a promising way to
achieve this transition.

Chisel [7] aims to lower design complexity by providing
designers more powerful design tools. These tools empower

designers to craft highly parameterized generator components,
seamlessly manipulate intricate signal-aggregates, and utilize
high-level programming paradigms. Since Chisel is tailored
for broad-spectrum hardware design, however, an opportunity
exists to further refine the design process through a domain-
specific strategy, particularly for data-streaming accelerators.

A central challenge in designing data-streaming accelerators
pertains to the transfer of structured and dynamically-sized
data between components in a flexible manner. Peltenburg’s
observations provide insight into this conundrum: “We have
explored active (open-source) hardware frameworks, including
classical HDLs and contemporary ones (Cλash, Chisel, and
Spatial). All these HDLs support compound types that map
onto bit-vectors and statically sized aggregate types, but lack
inherit support for dynamically sized aggregate types mapped
onto streamspace. This is unsurprising; the type systems of
these frameworks reason only about space, but not about
stream transfers (the latter being typically left to the designer)
as the goal is to describe hardware just above the register-
transfer level.” [8, pp. 123].

To address these issues, the idea for Tydi (Typed Dataflow
Interface) was proposed. Figure 1 aims to illustrate the differ-
ence by showing a metaphorical representation of a raw data
stream, handshaked stream, and Tydi stream.

Without a common interface standard like Tydi, designers
are often left designing their own communication protocol.
While in simple cases this is often trivial, design complexity
frequently increases during development and optimization.
With increasing complexity, communication solutions will be-
come more specific and divergent. When adapting IP or work-
ing between projects, this creates a lot of unnecessary overhead
in specification and conversion. Debugging and interpreting
the communication flow easily becomes very hard. Standards
and tooling can help alleviate hardship in design choices,
implementation effort, and debugging & interpretation. Tydi
aims to be a standard that can offer this. In this paper, we show
how to create a Tydi-based communication flow specification
for complex structured data and how Chisel is a suitable
implementation platform using Tydi-Chisel.

This paper is organized as follows: in Section II, a back-
ground on Tydi and Chisel is given. Section III provides an
overview of related works regarding streaming design and
accelerator design. In Section IV, a Tydi-driven design work-
flow is explored with a simple example use-case. Additional979-8-3503-3757-0/23/$31.00 ©2023 IEEE
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Fig. 1. A comparison of stream types represented as checkout conveyor belts.
The Tydi stream has n = 3 lanes and a dimensionality of d = 2.
stai, endi, and strb relate to data-lane validity. last transfers dimen-
sionality information.

Tydi-Chisel features are covered in Section V. Section VI
summarizes the whole paper.

II. BACKGROUND

A. Tydi specification

The Tydi specification was first introduced in [8]. This initial
version defines a methodology for representing composite,
dynamically-sized data structures along with the physical-level
streaming protocol. Later, a refined version of Tydi specifi-
cation was released [9]. Based on this refined version, Tian
et al. proposed a high-level hardware description language to
raise the abstraction level of typed streaming hardware and
reduce the design effort for hardware designer [10]. In addi-
tion, Reukers et al. developed an intermediate representation
tailored for hardware circuit design using the Tydi framework,
accompanied by a compiler for VHDL translation [11]. The
terms utilized within the Tydi intermediate representation and
their meanings are summarized in Table I. For a broader
perspective, a comparative study between Tydi and prevalent
protocols such as AXI and Avalon can be consulted in Table
4 of [8].

The basic data types used in Tydi intermediate representa-
tion are Null, Bits, Group and Union. The Stream is a wrapper
of basic data types, adding extra streaming properties, such as
complexity, dimension and throughput.

• Complexity: denotes the intricacy of the physical pro-
tocol. The present Tydi specification delineates eight

distinct complexity levels, ranging from 1 to 8. A lower
complexity value implies a more straightforward protocol,
yet correspondingly, the component may necessitate in-
creased complexity to guarantee data availability. Figure 2
visually represents the protocol of complexities at levels
1 and 8. It is noteworthy that a source port with a lower
complexity is able to connect with a sink port of a higher
complexity.
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Fig. 2. The stream complexity property [11]

• Dimension: indicates the number of dimensions of data.
Consider the representation of the phrase “she is a dol-
phin” in terms of data dimensions as it transits between
components. Conceptually, this phrase can be parsed as
a 2-dimensional array: [ [s,h,e], [i,s], [a],
[d,o,l,p,h,i,n] ]. Given that each character re-
quires 8 bits for representation, the appropriate stream-
ing type for this data structure would be designated as
Stream(Bit(8), dimension=2).

• Throughput: indicates the designed throughput. Refer-
ring back to the streaming sentence example, if the
throughput is specifically designed to be 3, then the total
data lane would be 24 bits (8 bits per character multiplied
by 3).

Tydi’s design flexibility promotes teamwork in engineering,
enabling one group to concentrate on the source component
and another on the sink. This adaptability in design also means
components can be easily used in different setups without
needing extra steps like manual protocol conversion.

Several projects have emerged that utilize Tydi-related
methodologies. Among these, Tydi-JSON [12] is a collection
of Tydi-interfacing hardware components that can be used to
create a JSON parser written in VHDL. Building upon the
foundations laid by [12] and [11], JSON-TIL [13] examines
a provided JSON reference input, subsequently generating
the requisite Tydi-IR (TIL) and VHDL files. This process
facilitates the creation of a comprehensive JSON parser tai-
lored to the specific JSON schema in question. Additionally,
the VHDL-regex match generator [14] incorporates Tydi in-
terfaces. This initiative enables the generation of hardware
blueprints for regular expression matchers that operate on
UTF-8-encoded strings.

B. Chisel

Chisel [7] (Constructing Hardware In a Scala Embedded
Language) is an open-source hardware construction language
developed to facilitate the design of highly parameterized
hardware components. Traditional HDLs primarily focus on
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TABLE I
TYDI TERMS AND CORRESPONDING MEANING

Term Type Software equivalent Chisel equivalent Meaning
Null Tydi logical type Null Bits(0) Empty data, a stream of Null type will be optimized out.
Bits Tydi logical type Any primary data type Any non-aggregate Data object Represents data that requires x hardware bits to represent.

Group Tydi logical type Struct Bundle A tuple of several other logical types. Total hardware width would
be the sum of child elements.

Union Tydi logical type Union Bundle & tag A union of several other logical types. The active field can
be selected with the tag. This field can also be a stream.

Stream Tydi logical type Bus –
Represents a stream of a Tydi logical type. The stream can also

specify the data dimension, protocol complexity, hardware
synchronicity, and throughput.

Streamlet Tydi hardware element Interface Trait with IO definitions Represents the port map of a component. This term is almost
the same as the “entity” term in VHDL.

Impl Tydi hardware element Class with functionality Module “impl” is the abbreviation of “implementation”, representing
the inner structure of a component.

the structures and interconnections of hardware components.
Chisel allows designers to leverage Scala’s built-in features
such as high-level abstraction and type inference features
to describe components more efficiently. This allows for
the creation of sophisticated hardware modules with reduced
development effort. Importantly, designs written in Chisel
are ultimately translated to low-level Verilog code, ensuring
compatibility with existing digital design flows.

C. Fletcher

The Fletcher project [15] was developed to facilitate the
delivery of in-memory Apache Arrow data to hardware accel-
erators. To achieve this, Fletcher offers an automated toolset
capable of generating VHDL components directly from data
schemas. Complementarily, it provides a software framework
tailored for efficient data delivery to these generated com-
ponents. At its core, Fletcher serves as a comprehensive
framework, designed to bridge FPGA accelerators with soft-
ware tools and frameworks that employ Apache Arrow [16].
However, despite Fletcher’s capabilities in generating compo-
nents for memory data access, the challenge of designing the
processing circuits on FPGAs remains. This is an applica-
tion domain where Tydi proves relevant, especially since in-
memory data structures tend to be both complex and dynamic.

III. RELATED WORK

The field of stream processing has been the subject of exten-
sive research across varied contexts. This research trajectory
has culminated in the development of multiple languages and
frameworks for software-oriented stream design [17–20] on
multi-threaded CPUs and GPUs. Moreover, specific studies
have focused on the intricacies of FPGA-oriented streaming
[21, 22]. Notably, these studies primarily address data transfer
at the bit stream level, often neglecting the complexity and
dynamic nature of the data from software side. Beyond the
specific research domains mentioned, [23] proposed a holistic
language, meticulously crafted for universal streaming logic.

Simultaneously, the evolving landscape of hardware design
workflows has given rise to innovative languages and represen-
tations [24, 25], although their objectives diverge from those
of Tydi. Efforts have been made for their seamless integration
with existing languages & frameworks to simplify the design

process [26]. In response to the challenges posed by com-
ponent interface compatibility, several industry standards have
been established [27–29]. However, these existing works focus
on the hardware signals rather than an effective representation
of complex data, which is addressed by Tydi.

With DecoupledIO, Chisel has a built-in way to create
handshaked connections, although support for dimensionality
information and throughput scaling lacks. With the dsptools
library, Chisel also features a DspBlock component. A
DspBlock implements signal-processing functionality with
an interchangeable interface (TileLink, AXI4, APB, AHB,
. . . ). While this also offers more flexible implementation in
a project, it is implementation centered, whereas Tydi is
interface centered. Tydi therefore leads to interface-driven
design, a successful concept in software development.

IV. CHISEL EXTENSION WITH TYDI

This section describes how Tydi, Tydi-Chisel, and Chisel
can be used to develop a hardware design that operates on
a streaming dataflow. This design flow is illustrated with an
example.

A. Conceived design pipeline

In this scenario, desired is a hardware design for a stream-
processing problem that already has a software implementa-
tion. A step-by-step pipeline going from a software specifica-
tion to a hardware design would look like this:

1) Idea / software definition
2) Write interface specifications in Tydi-lang code
3) Transpile with Tydi-lang-2 & Tydi-lang-2-Chisel
4) Write component functionality in Chisel with generated

interfaces
5) Test with testing utilities
6) Synthesize using vendor tools

These steps and relevant toolchain projects are depicted in
Figure 3.

B. Number pipeline example

To illustrate the aforementioned pipeline, we will work with
an example. This example is purposefully kept simple and
we want to remind the reader that the advantage of Tydi’s
ecosystem is greater with more complex projects. In this
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Fig. 3. Tydi toolchain components

example, we take in a stream of numbers with timestamps
attached. This stream first gets filtered on value ≥ 0 and then
reduced to statistics: min value, max value, sum of values,
and average. The block schedule for this system is given in
Figure 4 In Apache Spark, one could execute this process as
in Listing 1.

Listing 1. Example Spark code
df.filter(col("value") >= 0).agg(
min("value").as("min_value"),
max("value").as("max_value"),
sum("value").as("sum_value"),
avg("value").as("avg_value")

)

Timestamped
numbers

Timestamped
numbers

Filter
non-negative
numbers

Statistics
Reduce
Calculate
statistics

Numbers
input

Statistics
output

Fig. 4. Number pipeline structure

C. Tydi-lang specification & Transpiling

As explained before, Tydi-lang was designed to close the
gap between software and hardware design. Listing 2 shows
Tydi-lang code for our example. Connections between com-
ponents can be specified within Tydi-lang, components that
require practical implementations are left empty. Tydi-Chisel
code for this specification can be obtained by first running
tydi-lang-2, obtaining a JSON description that is used to
generate the Chisel code with Tydi-lang-2-Chisel.

Listing 2. Example Tydi-lang source code
#### package pack0;
UInt_64_t = Bit(64); // UInt<64>
SInt_64_t = Bit(64); // SInt<64>

Group NumberGroup {
value: SInt_64_t;
time: UInt_64_t;

}

Group Stats {
average: UInt_64_t;
sum: UInt_64_t;
max: UInt_64_t;
min: UInt_64_t;

}

NumberGroup_stream = Stream(NumberGroup, t=1.0, d=1, c=1);
Stats_stream = Stream(Stats, t=1.0, d=1, c=1);

#### package pack1;
use pack0;

streamlet NumsFilter_interface {
std_out : pack0.NumberGroup_stream out;
std_in : pack0.NumberGroup_stream in;

}

impl NonNegativeFilter of NumsFilter_interface {}

streamlet NumsToStats_interface {
std_out : pack0.Stats_stream out;
std_in : pack0.NumberGroup_stream in;

}

impl Reducer of NumsToStats_interface {}

impl PipelineExample of NumsToStats_interface {
instance filter(NonNegativeFilter);
instance reducer(Reducer);
filter.std_out => reducer.std_in;
reducer.std_out => self.std_out;
self.std_in => filter.std_in;

}

A snippet of the generated Chisel code is given in Listing 3.
The code shows the transformed Element datatypes, interface
specifications (from streamlets), and implementation skeletons.
Since Tydi focuses on the structure of the data, not the prim-
itive data-types, after code generation, the correct primitive
types must be substituted for the UInt placeholders. The code
includes an assert to check if the used datatype adheres to
the specified bit-width. After finishing the specification with
primary types, implementations for Modules must be written,
following the streamlet _interface definitions. A simple
implementation of the filter function is given in Listing 4,
where the data-lane is turned off for filtered items. The
cost of this simple implementation is that the output stream
complexity is raised to C ≥ 7. The next component must do
work to re-align the items when the sequence is required.

Listing 3. Chisel output code from Tydi-lang transpilation
object MyTypes {

/** Bit(64) type, defined in pack0 */
def generated_0_7_AudkORtF_29 = UInt(64.W)
assert(this.generated_0_7_AudkORtF_29.getWidth == 64)

/** Bit(64) type, defined in pack0 */
def generated_0_7_CTh3cRpJ_27 = UInt(64.W)
assert(this.generated_0_7_CTh3cRpJ_27.getWidth == 64)

}

/** Group element, defined in pack0. */
class NumberGroup extends Group {

val time = MyTypes.generated_0_7_CTh3cRpJ_27
val value = MyTypes.generated_0_7_AudkORtF_29

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 12:40:59 UTC from IEEE Xplore.  Restrictions apply. 



}

/** Group element, defined in pack0. */
class Stats extends Group {

val average = MyTypes.generated_0_7_CTh3cRpJ_27
val max = MyTypes.generated_0_7_CTh3cRpJ_27
val min = MyTypes.generated_0_7_CTh3cRpJ_27
val sum = MyTypes.generated_0_7_CTh3cRpJ_27

}

/** Stream, defined in pack0. */
class NumberGroupStream extends PhysicalStreamDetailed(e=

new NumberGroup, n=1, d=1, c=1, r=false, u=Null())

object NumberGroupStream {
def apply(): NumberGroupStream = Wire(new

NumberGroupStream())
}
// ... other stream definitions

/** Streamlet, defined in pack1. */
class NumsFilter_interface extends TydiModule {

/** Stream of [[in]] with input direction. */
val inStream = StatsStream().flip
/** IO of [[inStream]] with input direction. */
val in = inStream.toPhysical
/** Stream of [[out]] with output direction. */
val outStream = NumberGroupStream()
/** IO of [[outStream]] with output direction. */
val out = outStream.toPhysical

}

/** Streamlet, defined in pack1. */
class NumsToStats_interface extends TydiModule {

// ... code for NumberGroup in, Stats out
}
// ... other interface and implementation definitions

/** Implementation, defined in pack1. */
class NonNegativeFilter extends NumsFilter_interface {}

/** Implementation, defined in pack1. */
class PipelineExample extends NumsToStats_interface {

// Modules
val filter = Module(new NonNegativeFilter)
val reducer = Module(new Reducer)

// Connections
reducer.in := filter.out
out := reducer.out
filter.in := in

}

Listing 4. Example implementation of single-lane filter
class NonNegativeFilter extends NonNegativeFilter_interface

{
outStream := inStream
outStream.strb := inStream.strb(0) && inStream.el.value

>= 0.S
}

Tydi-Chisel’s library was designed for ease of use both
in new projects and in converting existing code. Next to
syntax, care is given to the implementation of Tydi-Chisel’s
components. This implementation in Chisel consists of a few
parts.

• Tydi Element types
The Element types are implemented as superclasses of
Chisel’s Bundle class.

• Tydi Stream implementation
A Stream is from Tydi’s perspective also an Element, and
is therefore also implemented as a Bundle. This allows
nesting streams and using the stream directly for IO.

– Connecting streams is done using Chisel’s directional
:= notation.

• TydiModule base module
This module has methods and overrides to allow Chisel
→ Tydi-lang transpilation.

By staying close to Chisel’s normal components and
paradigms, it is expected that working with Tydi-Chisel will
feel familiar to Chisel programmers and adapting it should be
easy and intuitive for new and existing projects.

D. Advanced number pipeline example

As a demonstration of Tydi-Chisel’s utilities and the modu-
larity of well-specified Tydi components, an advanced version
of the number pipeline was developed. In this version, the
number of lanes is increased. In a project, one might want to
do this to increase throughput. The design is parameterized,
so the number of lanes is arbitrary, but n = 4 is chosen for
this example.

T/N

Interleave

T/N StatsT/N
Stream

Complexity
Converter

Numbers
input

Statistics
output

Calculate
statistics
multilane

Filter

Filter

Filter

Filter

Fig. 5. Advanced number pipeline structure (T/N stands for timestamped
numbers)

In the original number pipeline, filter and reducer compo-
nents are available or created that are both single lane. These
components must be adapted or replaced to accept multiple
lanes. Since the number elements can be independently fil-
tered, the filter component can be put inside an interleave
component (described in Section V). Each filter then processes
a single lane and the interleave infrastructure routes the signals
such that, from the outside, the block acts like a multi-lane
filter. Specifically, the filter modules operate on the strobe
signal. This raises the stream complexity to C ≥ 7.

For the reduction step, the elements are not independent, so
a new multi-lane version must be designed. For this example,
we specify an input stream complexity of C = 3. At this
complexity, stop bits are included in the same transfer as
elements and the number of items can be derived from endi.
The output stream complexity of the multi-lane filter block
is now higher than the specified input stream complexity of
the statistics reducer. To solve this, the stream complexity
converter (Section V) can be inserted between the components.
The buffer size of the complexity converter must be chosen
to be at least as big as the longest (filtered) sequence. The
resulting system structure is shown in Figure 5 and code in
Listing 5. This code showcases advanced use of Tydi-Chisel
utilities, in contrast to the generated code before.

E. Stream-processing modules

The generated code expressed in Listing 3 is a functional
representation of the hardware that is described for this
pipeline and does not need to be altered if all connections
are specified. When writing a component’s implementation it
is rather verbose, however, and seems far off from the original
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software example (Listing 1) that uses method-chaining, a
paradigm used by many big-data frameworks because of its
convenience and conciseness. Therefore, a pipeline notation
was developed to more naturally formulate a data-stream
processing pipeline and provide a better overview of what
is happening to a data-stream. This notation is shown in
Listing 5. The processWith method instantiates the module
it gets passed, connects the input stream of the module to
the referenced output stream, and returns the module’s output
stream for further chaining. The convert method does this
with a stream complexity converter with specified buffer size.

Listing 5. Compositing of advanced pipeline in Chisel
class MultiNonNegativeFilter extends MultiProcessorGeneral(
Definition(new NonNegativeFilter), 4, new NumberGroup,

new NumberGroup, d=1
)

class PipelinePlusModule(n: Int = 4, bufferSize: Int = 50)
extends SimpleProcessorBase(

new NumberGroup, new Stats, nIn = n, nOut = 1, cIn = 7,
cOut = 1, dIn = 1, dOut = 1) {

out := in.processWith(new MultiNonNegativeFilter)
.convert(bufferSize)
.processWith(new MultiReducer(n))

}

At the time of writing, this notation is not used in automatic
generation. Since this notation is not as of yet used in Tydi-
lang, additional analysis would be required to implement this.

F. Testing utilities

When testing high-level, data-driven circuits, it is unde-
sirable to poke and peek individual wires at set times.
Instead, a more asynchronous approach of enqueueing data
on the input streams and waiting for and checking the validity
of the data that is dequeued at the output stream(s) is a
more functional approach. To aid designers with writing these
functional tests for Tydi-interface using components, a test
driver was developed for Tydi stream signals. This driver is
based on the DecoupledIO driver from the chisel-test
package. An example of a test for our Tydi-based module can
be seen in Listing 6.

Listing 6. Testing a TydiModule
test(new PipelineWrap) { c =>
// Initialize signals
c.in.initSource().setSourceClock(c.clock)
c.out.initSink().setSinkClock(c.clock)

// Generate list of random numbers
val nums = randomSeq(n = 50)
val stats = processSeq(nums) // Software impl.

// Test component
parallel({
for ((elem, i) <- nums.zipWithIndex) {

c.in.enqueueElNow(_.time -> i.U, _.value -> elem.S)
}
c.in.enqueueEmptyNow(last = Some(c.in.lastLit(0->1.U)))

},{
c.out.waitForValid()
// Utility for comprehensively printing stream state
println(c.out.printState(statsRenderer))
c.out.expectDequeue(_.min -> stats.min.U, _.max ->

stats.max.U, _.sum -> stats.sum.U, _.average ->
stats.average.U)

})

All Tydi-Chisel utilities and Tydi compliance have been
verified. See the project repository or thesis [30].

V. ADDITIONAL UTILITIES

A. Helper components

To prevent unnecessary verbosity in common use-cases,
several helper components were developed.

As explained in Subsection II-A, in Tydi, connections with
complexities Csink ≥ Csource are compatible. Connecting a
high-complexity source to a low-complexity sink thus requires
a conversion step. A stream complexity converter component
is available that does this by taking in an incoming high-
complexity stream and outputting a low-complexity outgoing
stream. The multi-processing or interleaving component can
be used to split a multi-lane stream to multiple components
operating on a single stream. This can be used to easily scale
up throughput if the data elements can be processed on an
element-by-element basis. For an overview, see [30, Ch. 4].

B. Reverse-transpilation

The example in Section IV assumes a situation where a
complete reference implementation or blueprint is already
available. In reality, it often happens that specifications change
during a project, or influencing factors are overlooked at
the start. To facilitate a more design-cycle like workflow, a
“reverse”-transpiler is also available, as seen in Figure 3. This
functionality allows generating Tydi-lang code from a Chisel
definition of a Tydi Element or TydiModule, including its
dependencies. This simplifies making changes to the Tydi-lang
spec, or generate a first draft spec when converting existing
projects.

VI. SUMMARY

Tydi’s standard and specification abilities allow software
and hardware designers to work together better in an interface-
driven approach. It also allows hardware designers to avoid
the pitfalls of designing or working with custom dataflow
communication solutions.

Through this and previous projects, the tools developed
encompass specification of dataflows in the design, creation
of hardware design boilerplate code from this specification,
utilities for writing the implementations, testing, and gener-
ating software-hardware interfaces for communication trough
Apache Arrow. In the future, Tydi-related tooling can be
expanded to aid developers in various stages of accelerator
development.

Eventually the authors envision an ecosystem of IP com-
ponents with Tydi interface specifications. Designers working
on a data-streaming hardware design project could then use
these IP components, needing to concern themselves only
the data communication specification, which is easy to im-
plement, and not the component’s implementation, avoiding
implementation-dependent design.
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