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Logarithmic law of large random correlation
matrices

NESTOR PAROLYA!®, JOHANNES HEINYZ¢® and DOROTA KUROWICKA!P

1Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands,
An.parolya @ tudelft.nl, b4 kurowicka@ tudelft.nl
2Departmem‘ of Mathematics, Stockholm University, Stockholm, Sweden, ®johannes.heiny @math.su.se

Consider a random vector y = x1/2x, where the p elements of the vector x are i.i.d. real-valued random variables
with zero mean and finite fourth moment, and /2 is a deterministic p X p matrix such that the eigenvalues of
the population correlation matrix R of y are uniformly bounded away from zero and infinity. In this paper, we find
that the log determinant of the sample correlation matrix R based on a sample of size n from the distribution of y
satisfies a CLT (central limit theorem) for p/n — vy € (0,1] and p < n. Explicit formulas for the asymptotic mean
and variance are provided. In case the mean of y is unknown, we show that after re-centering by the empirical
mean the obtained CLT holds with a shift in the asymptotic mean. This result is of independent interest in both
large dimensional random matrix theory and high-dimensional statistical literature of large sample correlation ma-
trices for non-normal data. Finally, the obtained findings are applied for testing of uncorrelatedness of p random
variables. Surprisingly, in the null case R =1, the test statistic becomes distribution-free and the extensive simula-
tions show that the obtained CLT also holds if the moments of order four do not exist at all, which conjectures a
promising and robust test statistic for heavy-tailed high-dimensional data.

Keywords: CLT; dependent data; large-dimensional asymptotic; log determinant; random matrix theory; sample
correlation matrix

1. Introduction

Sample correlation matrices have always been of vital importance from both theoretical and practical
points of view. Principal component analysis, for example, extracts valuable information about large
data sets from the eigenvalues of the sample correlation matrix. In particular, the determinant of the
sample correlation matrix is one of the most fundamental matrix functions and has been extensively
studied in the theory of random matrices as well as in multivariate statistics (see, for instance, the
classical monographs Muirhead (1982) and Anderson (2003)). The determinant of a random correlation
matrix has numerous applications in stochastic geometry (volume of parallelotope, see Nielsen (1999))
and hypothesis testing (likelihood ratio test, see Dette and Dérnemann (2020), Dérnemann (2023)) in
multivariate statistics (see, Anderson (2003)). Its properties have been studied by many authors under
various settings (see, e.g., Nguyen and Vu (2014) and references therein). For instance, Goodman (1963)
proved the central limit theorem (CLT) of the logarithmic determinant for random Gaussian matrices,
Tao and Vu (2012) for Wigner matrices, Nguyen and Vu (2014) for real i.i.d. random matrices under
subexponential tail conditions, and Bao, Pan and Zhou (2015), Wang, Han and Pan (2018) for general
i.i.d. matrices under existence of the 4th moments of matrix entries, to mention a few. In some special
cases where a suitable stochastic representation is available, Grote, Kabluchko and Thile (2019) also
proved large deviation results and Heiny, Johnston and Prochno (2022) fast Berry—Esseen bounds.
Our particular interest covers the sample correlation matrix denoted by R which is computed from
a random sample y; ...,y,. The determinant detR is the likelihood ratio test statistic for testing the
independence of the entries of a large dimensional random vector coming from a multivariate normal
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http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/23-BEJ1600
https://orcid.org/0000-0003-2147-2288
https://orcid.org/0000-0002-4680-8836
mailto:n.parolya@tudelft.nl
mailto:d.kurowicka@tudelft.nl
mailto:johannes.heiny@math.su.se

Logarithmic law of large random correlation matrices 347

population. If the population correlation matrix is equal to identity, i.e., R =1, several results are avail-
able about its sample counterpart R. In particular, under multivariate normality the density of detR is
proportional to (det R)("‘I"Z)/ 24R, see, (Muirhead, 1982, Theorem 5.1.3). However, the density of the
eigenvalues of R cannot be obtained in closed form, which makes the analysis of this random matrix
challenging. Nevertheless, some asymptotic properties of the large sample correlation matrix R have
been obtained in case of R = I and for normally distributed data. For example, the empirical distribution
of eigenvalues of R follows the well-known Marchenko-Pastur law as first shown in Jiang (2004a) (see
also Bai and Zhou (2008), Heiny and Mikosch (2018) for more general conditions), while its largest
eigenvalue obeys the Tracy-Widom law Bao, Pan and Zhou (2012). The properly normalized largest
off-diagonal entry of R congerges to a Gumbel distribution as shown in Jiang (2004b) and later gen-
eralized in various directions in Cai and Jiang (2011), Li, Qi and Rosalsky (2012), Liu, Lin and Shao
(2008), Zhou (2007) and most recenty to a point process setting in Heiny, Mikosch and Yslas (2021).

Moreover, under multivariate normality with R = I, the CLT for log detR holds (see, Jiang and
Qi (2015), Jiang and Yang (2013)). These results were further generalized to non-normal populations
by Gao et al. (2017). On the other hand, not much is known in case R # I. Recently the paper by
Jiang (2019) sheds some light on this challenging case when the data comes from multivariate normal
distribution. Particularly, Jiang (2019) showed that the properly normalized logarithmic determinant
of R satisfies the CLT under some conditions on the eigenvalues of the population correlation matrix
(minimum eigenvalue greater than 1/2).

In this paper we will prove the CLT for log det R under very generic conditions on the data generat-
ing process, i.e., non-normality and general population correlation matrix R # I. We provide a closed
form expression of the asymptotic mean and variance and discuss how these correspond to Jiang (2019)
in case of normality. The work is under setting of increasing dimension p and sample size n diverg-
ing to infinity simultaneously, while their ratio tends to a constant y € (0,1]. Our results are further
applied to testing the uncorrelatedness of the elements of a high-dimensional random vector from an
arbitrary population with finite 4th moments. Moreover, we investigate in detail the behavior of the
log-determinant near singularity, i.e., p/n — 1 as n — oo, and we construct a test on uniformity of
entries of the sample correlation matrix. Interestingly, it turns out that under R = I the distribution
of the test statistic is independent of the population’s fourth moments. This property indicates a very
well-behaved statistic for heavy-tailed distributions of the entries of a large data matrix and opens a
new direction for research on independence tests for heavy-tailed data.

Our paper is structured as follows: in Section 2 we formulate the main result, namely the CLT
for the logarithmic determinant of the sample correlation matrix for observations with mean zero.
We also prove a similar CLT for observations with non-zero mean, for which an additional centering
by the sample mean is needed. Section 3 is devoted to applications of the obtained results. Here we
study the behavior of the test statistic for testing the uncorrelatedness of the entries of large random
vector and testing the uniformity of the entries of a large random correlation matrix. Section 4 and the
Supplementary Material Parolya, Heiny and Kurowicka (2024) contain the proofs of the main results.
Section 5 with auxiliary lemmas finishes the paper.

2. Logarithmic law of sample correlation matrix

We consider a p-dimensional population y = ©1/2x, where the p elements of the vector x are i.i.d.
real-valued random variables and X'/2 is a deterministic p X p matrix. The corresponding population
correlation matrix of y is then given by R = diag(£)~!/2 X diag(X)~'/2, where diag(X) denotes the
diagonal matrix with the same diagonal elements as X. We write ||R|| for the spectral norm of R, that
is the square root of the largest eigenvalue of RRT.
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For a sample (y1,...,y») = £/2X from the population y with X = (xij)i=1,....p:j=1,...,n» the (non-

centered) sample correlation matrix R is given by
R= diag(S)fl/2 S diag(S)fl/2 ,

where S = (1/n)2'/2XXT£!/2 is the (non-centered) sample covariance matrix. We are interested in the
asymptotic fluctuations of the logarithmic determinant of R as p and n tend to infinity simultaneously.

Throughout the paper, we will assume that the dimension p is a function of the sample size n, i.e.,
P = pn, and that p/n — vy € (0,1]. All limits are for n — oo, unless explicitly stated otherwise. Strictly
speaking, the sample correlation and covariance matrices as well as their population counterparts de-
pend on n, that is, R= ﬁn,S =S,,R=R,,X =X,. For simplicity, we suppress the dependence on n

in our notation. We write I for the identity matrix if the dimension is clear from the context, and —
denotes convergence in distribution.

The following CLT is our first main result.

Theorem 2.1 (Logarithmic law in the non-centered case). Assume that x;; are i.i.d. random vari-
ables with mean zero, variance one and finite fourth moment E|x11|* < oo, and let the eigenvalues of R
be uniformly bounded away from zero and infinity. If p/n — 7y € (0,1] with p < n, and

1 -1
in =logdet(R) + (p—n+ 5 | log(1- L= ) —(p - 1) + £+ LBl * - 3) (G - 1)
2 n n 2n
-1
7t =-2tog 1= 22| <2 42w -12)p,
n n n

then

logdet®) ~stn 4, Nr0,1), oo, (1)

On

2
where Cgip = I%HRI/2 o R1/2||12T = I% tr (Rl/2 o Rl/z) ], ’o’ denotes the Hadamard product and R'/?

is the symmetric square root of the matrix R.

The proof of Theorem 2.1 is given in Section 4. Note that the terms Cgi2 and tr(R — I)2/p are
uniformly bounded in p due to our assumption of boundedness of the largest eigenvalue (spectral norm)

of R. The term log(1 — pT_l) is kept instead of log(1 — %) in order to incorporate the case p = n. In
particular, if p = n, we deduce from Theorem 2.1 that (1) holds with

un =logdet(R) — %log(n) —n and 0',2, =2logn.

Noteworthy, if the true mean of the data generating process is known one can already use the above
CLT for the purpose of testing but in general one needs to estimate the population mean vector. Thus,
one has to consider rather a centered sample correlation matrix

R = diag(S.)™"/ S, diag(S.)™/2, )

where S, is the centered (by the sample mean) sample covariance matrix given by

1
S = m21/2(x —x1T)(X-x17)"2!/? with X = X1/n the sample mean 3)
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and 1=(1,...,1)T denotes the n-dimensional vector of ones. In our second main result, we provide a
CLT for the logarithmnic determinant of the centered sample correlation matrix.

Theorem 2.2 (Logarithmic law in the centered case). Assume the conditions of Theorem 2.1 and
p<nlIfp/n— 1, weassume p/n=1+ O(n_l/lz). Then we have for the logarithmic determinant of the
centered sample correlation matrix R,

logdetRe) = in 4, \r0,1), s oo, @

On

where fi, = pn—1 and py,,oy are defined as in Theorem 2.1.

The proof of Theorem 2.2 is given in Supplementary Material Parolya, Heiny and Kurowicka (2024).
This result is inline with the substitution principle derived by Zheng, Bai and Yao (2015) for linear
spectral statistics of sample covariance matrices in the sense that a substitution of n with n — 1 in the
expression for yu, yields /i, up to lower order terms.

Remark 1. We compare our result with previous ones given in the literature.

(1) It must be noted that the case R = Iin Theorem 2.2 was proven for general linear spectral statistics
by Gao et al. (2017), one has to, however, compute complex contour integrals first to see the structure
of the CLT. The CLT in Theorem 2.2 is proven under milder conditions including arbitrary R with
bounded norm, the case p/n — 1; and it obeys a closed form. We also point out that no information
is required about the limiting spectral distribution of the population correlation matrices R, which
appears in the characterization of the Stieltjes transform of the limiting spectral distribution of R.; see
for example (El Karoui, 2009, Theorem 1).

(2) Theorem 2.2 generalizes the recent result of Jiang (2019) to an arbitrary distribution of the entries
x;; and removes the restriction on the smallest eigenvalue of R. Indeed, assuming that p/n — y < 1
one can rewrite the limiting mean /,, and variance o= in the following way

n—2
fn =logdet(R) + (p—n+ %) log (1 - %) - mp+ %(E|x11|4 -3) (CRI/Z - 1) +o0(1),

oﬁz—zmg@— P )—2 p

2
R-1)2+o(1
n—1 n—1+n—1tr( )" +o(l),

which coincide with the centering and normalization sequences in Theorem 1 of Jiang (2019) up to
the term %%(EMH 1*-3) (Crij2 — 1), which is obviously equal to zero in case x;j ~ N(0,1) or, more
generally, E|x;|* = 3. Nevertheless, it is not the single case when this term disappears, it happens also
if R =I. Indeed, by Jensen’s inequality Cgi2 > 1 with equality if and only if R = L. Interestingly, in
this case the statistic on the left-hand sides in (1) and (4) become independent of the moment of order
four and one could expect that the restriction E|xj;|* < co could be weakened'.

In Figure 1, we have simulated the entries of X from a ¢-distribution with different degrees of free-
dom and from inverse gamma distribution (symmetrized for the case with infinite 4th moment). In
case the 4th moment is finite we took the population correlation matrix R = {0.5//~/ |}f’ i1 while
when the 4th moment is infinite R = I. We generate R, 1000 times and produce the histogram for
(logdet(R.) — fin)/0oy. Then we compare the obtained histogram and kernel density with the standard

normal bell curve in order to judge the goodness of fit.

IThe investigation of this observation is continued in a subsequent paper Heiny and Parolya (2023).
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p =63, n = 100, t—distribution with 5 degrees of freedom p =63, n = 100, t-distribution with 3.5 degrees of freedom
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Figure 1. Logarithmic law for ¢+ and inverse gamma distribution (left with R = {0.5|i_j |}f =1 and right with
R =1) and p = 63, n = 100 with 1000 repetitions.

We proceed by discussing Theorem 2.1 which provides elegant and unified formulas for the asymp-
totic mean and variance that, in contrast to previous results, avoid heavy computations involving fac-
torials. The CLT in Theorem 2.1 is also valid in the case p/n — 1 for both p < n and p = n, which
recently has received particular attention for sample covariance matrices in Bao, Pan and Zhou (2015),
Nguyen and Vu (2014), Wang, Han and Pan (2018). The following remark sheds additional light on this
case.

Remark 2. (1) We point out that in case p/n — 1 the leading term in variance of the provided CLT
tends to infinity. For example, if n — p is constant, o> is of order logn. Therefore, provided that the
largest eigenvalue of R is uniformly bounded in p, the terms in the asymptotic mean and variance,
which are proportional to p/n, (E|xy;|* — 3) (Criz—1) and tr(R - I)2/p will vanish asymptotically.
Although one can expect that the convergence to the normal distribution is much slower in this case, this
observation has an interesting implication on the test of uncorrelatedness, i.e., R = I. More precisely,
it reveals the fact that this test will loose its power asymptotically in case p/n — 1 on any alternative
hypothesis R # I as long as R has no large eigenvalues (spikes). A very similar result was recently found
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by Bodnar, Dette and Parolya (2019) by constructing the test on block diagonality of large covariance
matrices.

(2) Interestingly, in case p/n — 1 Theorem 2.1 also generalizes several results in the literature. First,
it is the first result related to the works of Wang, Han and Pan (2018) and Bao, Pan and Zhou (2015),
where the sample covariance matrix was considered. Secondly, one can recover up to the vanishing
constants the result of (Hanea and Nane, 2018, Theorem 3) taking the result of the CLT for the non-
centered sample correlation matrix R, setting p = n and x;; ~ N(0,1). The latter we will further use
for testing on uniformity on the entries of the large random correlation matrix because the obtained
CLT applies also for non-normal data. For illustration we again simulate the entries of the data matrix
X from ¢ and inverse gamma-distribution 1000 times, similarly as in Figure 1. In Figure 2 we plot
the kernel densities together with histograms of properly standardized (as to Theorem 2.2) logarithmic
determinant of centered sample correlation matrix R. in case p = 98 and n = 100. The asymptotic
formula provides still a very convenient fit to the sampled logarithmic determinant. Moreover, the extra
assumption p/n = 1 + O(n~'/12) seems to be purely technical.

p =98, n = 100, t—distribution with 5 degrees of freedom p =98, n = 100, t—distribution with 3.5 degrees of freedom

il - = Kernel density
—— Asymptotic
—— Histogram

0.6

il - = Kernel density
—— Asymptotic
—— Histogram

06

04

Density
0.3
|
Density

logdet

p =98, n = 100, inverse gamma-—distribution with shape=5 and rate=2

06

B - - Kernel density
—— Asymptotic
—— Histogram

03 04 05
1 1
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1

logdet

logdet

p =98, n = 100, symmetrized inverse gamma with shape=3.5 and rate=2

Q- - - Kernel density
—— Asymptotic
—— Histogram

05

Density

logdet

Figure 2. Logarithmic law for ¢ and inverse gamma distribution (left with R = {0.5|i_j |}f.’ =1 and right with

R=1I)and p =98, n=100.
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At last, the proof of the main results reveals a very interesting fact about the logarithmic determinant
of sample correlation matrix. Indeed, one can show, for example in non-centered case, under generic
conditions that the following expansion holds

logdet(R) = log det(R'/>SR'/?) — tr(R'/2SR!/? - 1) + { tr(diag(R'/>SR'?) ~ 1)* + 02(1),  (5)

where § = n"!XXT and op(1) is a random variable that converges to zero in probability as n — co.
One may call this asymptotic expansion of the logarithmic determinant of sample correlation matrix.
It shows how the logarithmic determinant of the sample covariance matrix is connected with the latter
one for correlation matrix asymptotically. Precisely, going through the proof of Theorem 2.1 one can
show that under the asymptotic regime p/n — y € (0,1), as n — oo, the first and the second summands
in (5) are asymptotically jointly normal, whereas the third one is converging to a constant in probability.
This result is the key ingredient for further investigations of the centered sample correlation matrix and
gives very convenient interpretation of the obtained results.

3. Applications

In the subsequent sections the derived CLT will be applied for testing the uncorrelatedness of the
elements of y and uniformity of the entries of random correlation matrix.

3.1. Testing the uncorrelatedness

Assume that we are interested in testing the hypothesis
Hy:Corr(y)=1 vs. H;:Corr(y) #1. 6)

In order to provide a proper statistical test we need to construct a test statistic and specify its
asymptotic pivotal distribution under Hy. In view of Theorem 2.2, a natural test statistic is given by
T = (logdet(R.) — fin)/o which is asymptotically standard normal under Hy. We will reject the null
hypothesis Hy in case T is “too large”, for example larger than the 97.5% quantile of standard normal
distribution for a two-sided test. Furthermore, we will compare with the well-known Schott’s test Schott
(2005), which is based on the sum of squared sample correlations.

For that reason we generate the data (yy,...,y,) with y; = 1/2x;, where the components of the noise
vector Xx; are i.i.d. ¢t-distributed random variables with 5 degrees of freedom, mean zero and variance
equal to one. The experiment was repeated N = 10* times. Without loss of generality we assume that
the population covariance matrix X is equal to the correlation matrix R (standardized data), which is
generated in the following manner:

1. Uncorrelated case: R =1; o
2. Autoregressive case: R = {a"‘”}f}.=1 fora € (-1,1);
3. Equicorrelated case: R = (1 — p)I + p117 for p € (0,1).

First, we present the empirical sizes of the uncorrelated case in Table 1. For our proposed test (Logdet)
they are plausible even for small values of (n,p) although the size of 5% is a bit overestimated for
n < 100. In general, the larger p the more pronounced is this effect but it vanishes if we increase p and
n as expected. Even for v = 0.9 the test is holding its confidence level quite well, which emphasizes
its applicability for moderate finite samples. The same cannot be said about Schott’s test as it does not
hold the nominal level of 5% properly. Especially for y = 0.9 its empirical size reaches 0.07 and higher.
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Table 1. Empirical sizes of the test on uncorrelatedness (y = p/n, N = 10000, @ = 0.05).

Y
n 0.3 0.5 0.7 0.9

Logdet  Schott Logdet Schott Logdet Schott Logdet  Schott

40 0.0467 0.0413 0.0505 0.0495 0.0573 0.0616 0.0581 0.0746
60 0.0515 0.0515 0.0532 0.0532 0.0555 0.0555 0.0601 0.0601
80 0.0519 0.0516 0.0559 0.0598 0.0506 0.0656 0.0547 0.0797
100  0.0478 0.0502 0.0548 0.0598 0.0541 0.0655 0.0540 0.0747
500  0.0477 0.0530 0.0495 0.0595 0.0505 0.0648 0.0536 0.0763
1000  0.0521 0.0526  0.0501 0.0551 0.0508 0.0680 0.0537 0.0736

This indicates that Schott’s statistic is converging slower to its asymptotic limit than the Logdet one,
which would also explain the high power of the Schott’s test observed in the literature Mao (2014).
Next, in Figure 3 we present the empirical powers of the Logdet test against the equicorrelated case
for p € (0,0.1), where the test shows non-trivial power. On the top part of the Figure 3 we consider the
equicorrelation case. Left we take n = 100 and p is varying to get different gamma’s from 0.3 to 0.9 with
a step of 0.2, while on the right figure we fix p = 100 and proceed in the same way but with changing
n. For fixed n = 100 we observe a tendency towards more power in case of smaller values of y except
of the case y = 0.3, which can be easily explained by too small value of p = 30, where our asymptotic
result seems not to work well. This indicates that p and n should be at least 50 in this situation to
guarantee a reasonable approximation. Indeed, when p is fixed to 100 we see a natural ranking of the
power curves because both p and n are large enough. Interestingly, we have still nontrivial power for
p as small as 0.08 even in case when vy is near to singularity, i.e., ¥ = 0.9. A very similar picture is
observed on the bottom part of Figure 3, where the power of test against autocorrelation structure was
examined. Again, even in the worst case y = 0.9 the test still provides a reasonable power for || < 0.2.
In general, the powers in the autocorrelated case are a bit smaller than in case of equicorrelation, which
is not surprising because the correlations are decaying to zero exponentially for the former one.

In Table 2 we compare the empirical powers of the Logdet and Schott’s tests for y = 0.9 and different
values of p = {0.07,0.08,0.09,0.10} and a = {0.07,0.08,0.09,0.10}. Schott’s test has the higher power
in both cases, although the power is smaller in the autoregressive case. However, as seen above, Schott’s
test is a liberal procedure, unlike the Logdet test.

3.2. Testing the uniformity

In case of independent normal distributed data, the joint density of the elements of the sample correla-
tion matrix is proportional to its determinant. More direct (independent of the data generating process)
approach of generating a random correlation matrix, such that the density of its entries is proportional
to power of the determinant has been proposed by Joe (2006). In this paper it was shown that any
positive definite correlation matrix R can be parameterized in terms of appropriately chosen corre-
lations and partial correlations taking independently values from the interval (—1,1). If these partial
correlations are beta distributed (beta distribution transformed to the interval (—1, 1)) with parameters
dependent on the size of the conditioning sets of the partial correlations, then the joint density of en-
tries of the correlation matrix is proportional to det(R)7~!, where > 0. Each correlation coefficient in
such correlation matrix has a Beta(n — 1 + p/2,n — 1 + p/2) distribution on (-1, 1). The uniform joint
density is obtained in case 7 = 1.
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Figure 3. Empirical powers of the test on uncorrelatedness for different values of y = p/n for equicorrelation
R=(1-p)I+pllT (top) and autocorrelation R = {ali=] |}l[.’ =1 (bottom). Left: n fixed and p changing, right:
fixed p and n changing.

Using this fact and the proven CLT we construct a test on the uniformity of the entries of random
correlation matrix.

Hy : 7 =1 (uniformity) vs. Hy :  # 1 (non-uniformity) .

To test this hypothesis to the level of 5% we generate N = 10000 random correlation matrices of
dimension p X p using the expansion of the determinant based on partial correlations (due to Joe (2006))
for different values of 17 and apply our CLT in Theorem 2.1 for n — p = 2. Note that in this situation
we do not need to generate data samples, compute correlation matrix and its determinant. We observe
only the determinant of p-dimensional correlation matrix. Moreover, the formula for the determinant
of Joe (2006) gives us the possibility to generate really large matrices without loss of efficiency. First,

Table 2. Empirical powers of the Logdet and Schott’s tests on uncorrelatedness (y = p/n, N = 10000, @ = 0.05).

Equicorrelation Autoregressive

P Logdet  Schott a Logdet  Schott

0.07 0.6983 1.0000 0.07 0.0623  0.1579
0.08 0.8304 1.0000 0.08 0.0671 0.1973
0.09 09097 10000 0.09 0.0721 0.2385
010 09611 1.0000 0.10 0.0857 0.3046
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Figure 4. Box-plots of empirical sizes of the test on uniformity

in Figure 4 we plot the box-plots of empirical sizes where we observe a slight overestimation of the
nominal level of 5% for small dimensions. The convergence to the right size of 0.05 seems to be quit
slow. This is in line with our theoretical finding, where the variance was of order of logn. So, in order
to apply our test dimension p must be reasonably large.

Next we look at the power of the test against alternative  # 1. The empirical power functions for
p =100 and p = 1000 in case of n < 1 and 1 > 1 are presented in Figure 5. One clearly observes an
increasing power when dimension gets larger, e.g., for > 2.5 (similarly for 7 < 0.2) both power curves
are close to one. In order to investigate their behavior closer we plot the corresponding ROC (Receiver
Operating Characteristic) curves for some fixed values of 7 > 1. The results are given in Figure 6. The
effect of increasing dimension is more pronounced here but the obtained results show an acceptable
behavior even for small changes like 7 = 1.4. This indicates the usefulness of the obtained CLT for the
sample correlation matrix in the extreme case p = n for a large class of distributions.

Power
Power

Figure 5. Power functions of the test on uniformity for < 1 (left) and > 1 (right).
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Figure 6. ROC curves for the test on uniformity for p = 100 (left) and p = 1000 (right) dimensions

Conclusions

In this work we prove the CLT for logarithmic determinant of the large dimensional sample correlation
matrix under weak assumptions on data generating process, i.e., we need the existence of the moments
of order four. It is also assumed that the dimension of the matrix is proportional to the sample size; the
case when they are equal is treated as well. In our work we distinguish between two cases a centered and
a non-centered one with slightly different limiting means. Moreover, at the end we apply our obtained
results to the testing on uncorrelatedness of high-dimensional random vectors and uniformity of the
entries of large random correlation matrix. Simulations suggest that the fourth moment assumption
can be further weakened, which opens a new research direction for heavy-tailed sample correlation

matrices.

4. Proofs of the main results

We recall that the dimension p is a function of the sample size n, i.e., p = p,, and that p/n — y € (0,1].
All limits and asymptotic equivalences are for n — oo, unless explicitly stated otherwise.

4.1. Proof of Theorem 2.1

From Section 2 we recall the definition of the population correlation matrix R and write X =
(X1,...,X,) €RPX". Denote S = 1/n Y} Xl-xl.T and rewrite log det(R) in the following way

logdet(R) = log det(diag(S)_l/2 -S- diag(S)_l/z) = logdet(S) — log det(diag(S))
= logdet(S) — log det(diag(E)_l/2diag(S)diag(E)_1/2) + logdet(R)
= log det(R'/>SR'/?) — log det(diag(R'/>SR'/?)), (7)

where the last equality follows from the fact that
diag(2)"!diag(x S22 )diag(2)™!/2 = diag (diag(x) 2!/ 2Sx! Adiag(x)~12)

= diag(Rl/ZSR1/2).



Logarithmic law of large random correlation matrices 357

Now we proceed to the second term in (7). With the vector §; denoting the ith row of the matrix
R!/2X, it holds

14
log det(diag(R'/2SR1/2)) = Z log(§; §i/n).
i=1

Note that although the elements of one vector ¥; are independent zero mean, unit variance variables,
the vectors §,. . ., ¥, depend through the nonzero covariances in the matrix X, i.e., Cov(§x,¥;) = I, Ry ;
fork,l=1,...,p

Due to Heiny (2022) we have max;-; .. p |§'l.T5'i /n — 1| — 0 almost surely. Recall that all limits
are for n — oo, unless explicitly stated otherwise. Therefore, using Taylor expansion of 1og(ley,»/ n) =
log(1 + (§]§i/n — 1)) around the point zero we get

log(yl ¥i/n) = (yl Ji/n-1)-1/2 (yl §i/n—1)"+ (yl ¥i/n—1)1
Z Z Z D= -

i=1 g=3

~ 1 ~
= tr(R'/2SRY/? 1) - 3 tr(diag(R'>SRY?) = 1) + &, ,,,
where &, ,, is defined by the last equality. Together with (7) this gives

~ ~ ~ 1 ~
logdet(R) = logdet(R'/2SR'/?) — t((R'/2SR'/? - 1) + 5 tr(diag(R'SRY?) - 1)> - &, .

Next we show that &, ), 5 0as p/n — 7y > 0. Because we assumed that E|x;;|* = v4 < co we can use
the same truncation method as Bai and Silverstein (2004) page 559, namely we can choose a positive
(arbitralily) slowly decreasing to zero sequence o, such that, e.g.,

1/4 A 4
Sn =0, un'* — 00, S, B(x{| 1|y, 156, vir) = O- (8)
Thus, we may truncate the variables by £11 = x111 )y, <5, v} Without altering the asymptotic results.
Note that on the contrary to the original variables all the moments of the truncated variables exist.
Indeed, it holds for fixed n
El#n]? <64 *n T 2B(xd). ©)
Using Lemma 5.1 and (8) we get for any 2 < ¢ < blog(nv;](iﬁ) andi=1,...,p
By §i/n— 1|7 < va(40b?)75:0 47" .

Denote s, = b log(nvgléfl) and obtain for &, ;, the following bound

O K E g1 1
Hogl < 33,0l <L lin 3 S e
i=1 g=3 4 g=3i=
L 5.1 Sn
L qim S Ly d0p?yas2et
n—
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25 —4 +00
< dim Zy(40077 lim Y (VAObG,)" < C Y (VAO0bS,)"
n—oo 3n n—oo
m=2 m=2
=C<
+00
= C| D (VA0bs,)™ — 1 - VA0bs, | = 0(5}) = o(1), (10)
m=0
-1
where one has to fix b such that 1 < b < % for n large enough. Now using (10) we immediately get

P
that &, , — 0 for p/n — y > 0 and, thus, this result is also valid for y € (0,1] and p < n.
As a result, we have got the following asymptotic expansion of the logarithmic determinant

log det(R) = log det(R'/>SR!/?) — tr(R1/2SR'/? — 1) + | tr(diag(R"/>SR'/?) ~ 1)* + 0p(1).  (11)
The asymptotic equality (11) is the key ingredient. It obviously holds
log det(RI/ZSRI/z) = log det(S) + log det(R) .

In the sequel, we will show that the first two summands of the expansion (11) are asymptotically jointly
normal, whereas the last one converges to some constant in probability. More precisely, in Section 4.2
we will prove for y € (0,1) that

log det(S) — tr(R/2SRY/2 - 1) —
og det(S) — tr( ) Hlog iN(O,l) (12)

On

. -1
with 110 =p(pl/j';n log (1-2) - 1) +3log(1-L£) — $(B(x},) - 3)2 and

-1
o2 =-2log (1 - p—) 2P P yR-1?p.
n n n
In Section 4.2.2 we will prove that
1 ~ 1
~ tr(diag(R'/28R1/2) — 1) — [-B(E(xfl) —3)Cqui + ‘—’] 5o. (13)
2 2n n
Finally, a Taylor expansion yields for y € (0,1), as n — oo,
1 -1
(p—n+—) 1og(1—3)—1og(1—p—)]—>—1. (14)
2 n n

In view of (11), equations (12), (13) and (14) imply Theorem 2.1 for y € (0,1). The case p/n — 1 will
be discussed in Section 4.2.3.

4.2. Proof of (12)

Our goal is to find the asymptotic distribution of (log det(S), tr(R'/2SR'/2 — 1)) in the case p/n — y €
(0,1).
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First, consider the term log det(S). Now we can apply the CLT proved in Bai and Silverstein (2004)
for the sample covariance matrix of noise, namely S, with the function log(x); see also (Yao, Zheng
and Bai, 2015, p. 37); and get for p/n — y < 1,

log det(S) ~ Mlog i}
w1

N(O,1) (15)

with pijog as in (12) and w? = —2log(1 — (p — 1)/n) + (B(x{,) — 3)p/n. Here, we prefer to write log(1 —
(p—1)/n) instead of the asymptotically equivalent log(1 — p/n) in order to obtain a unified formula that
incorporates the case p = n.

For the second term tr(R'/2SR!/2 —T) = tr[(S — I)R] it is easy to check that

E (tr(Rl/ZSRI/ 2_ 1)) —u(R-T)=0, (16)

- - 2 1 &
Var(tr(R'/28R'/2 —1)) = E (tr(Rl/ZSRl/z - 1)) = D E(x]Rx; — u(R))’
i=1
1 n
== ZVar (x; Rx;)
i=1

= lz Z [Ztr (RQ’) =+ (E(xéltl) — 3) tr(R o R)
n i=1
= 2tr(R2)/n -2p/n+ (]E(xi‘l) - 1)p/n

=2t(R -1 /n+ (E(x},) - p/n, 17)

where for the calculation of the variance we have used Lemma 5.2.
Next, we calculate the covariance. Since diag(R) =TI it holds

Cov(logdet(S), tr(R'/28R'/2 — 1)) = E (1og det(S) - tr[(S — I)R])
-E (log det(S) - tr[(S - 1)]) +E (1og det(S) - t[S(R — I)]) . (18)

Due to Wang and Yao (2013) we know that as n — oo and p/n — 7y € (0,1) we have
E (logdet($) - tl(S - 1)) = (B(xfy) - D2 +o(1). (19)

Concerning the second term in (18), it is shown in Section 4.2.1 that
lim B (1og det(S) - tS(R — 1)]) -0. (20)
Altogether, we obtain from (18), (19) and (20) that

Cov(logdet(S), tr((R'/>SR'/ - 1)) = (E(x)) - 2 + o(1) (1)

independently of the structure of population correlation matrix R.
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Now using the result of Najim and Yao (2016) we get for y < 1,
dep (.E(log det(S) — pripg. tr(RV2SR/Z —1))T L(Nn)) -0, n-oo, (22)

where dp p denotes the Levy-Prokhorov distance [we refer to Najim and Yao (2016) for its definition] and
L(Y) denotes the law of random vector Y. The vector Ny, := (Ny,.1,Ny,2)" follows a two-dimensional

2
.. . . . . w W12,n ..
normal distribution with mean vector zero and covariance matrix , = ( Hon 21| Tt is important
W12,n wzz n
to note that convergence in Levy-Prokhorov distance implies convergence in distribution.

Next, we determine the entries of €,,. From (15) we get w%l’n = —2log(1 - (p — 1)/n) + (B(x},) -

3)p/n. Along the lines of the proof of (17) one can show that ]E| tr(R'/2SR1/2 — I)|2+6 is uniformly
bounded in n for some ¢ > 0. Thus, DasGupta (2008, Theorem 6.2) ensures that also the moments of
linear combinations of the components of (log det(S), tr(R'/2SR!/2—T))T converge to the corresponding
moments of N,. From (17) and (21), we deduce that the remaining entries of €2, can be chosen as

w%z’n =2tr(R-1)?/n+ (B(x},) - D)p/n and wiz,, = (B(x},) = DE so that
q, _[2loe(1-5) + B -3)% (B(x4) - 1)E '
(E(xf)-DE 2t(R -1 /n+ (B(x}) - DE

Let 0, as in (12) and observe that

N, 1— N,
L2 N(O,1).
On
In conjunction with (22) this implies (12).
4.2.1. Proof of (20)
- n
Using S = 1/n ¥ x;x; we get
i=1
- - 1< -
E (1og det(S) - trS(R — 1)]) --Y'E (log det(S) - x] (R - 1)x,~) .
n
i=1

By the matrix determinant lemma we may write

- ~ 1 1 1 —~ -
log det(S) = log det ( S- ;x,xlT +;x,~xiT) =log (1 + leTS(_Jx,) +logdet(S;)),
—_———

=)

which, because of the independence of x; and S(i) and E(xiT(R - D)x;) =tr(R —I) =0, implies

. ~ 1 < 1 -
E (1og det(S) - t[ SR — 1)]) -~ ;E (log (1 +—x]8) xi) x](R - I)Xi) . 23)
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Next we consider the term log (1 + xTS( )x,) It holds

| rg1 L+ XSG
10g(1+;xi S(l.)xi)zlog ﬁ +10g(1+ tr(S()))

leS( ) tr(S

1+ z tr(S(_l)

© )+log(1+ tr(S()))

=Z;

This implies that

E(logdet(S) a[SR — )] ) ZE [(10g(1 +Z:) +10g(1 42 tr(S(l)))) .xl.T(R—I)xi]

l n
=~ ZE [(log(1+Z:)) - x] (R -T)x;] .
i=1
Now, using Lemma 5.1 we can see that

E|Z|* <E|- TS(l)xl— tr(S <CE[||S()||]6ﬁn’1=0(6in’1),

@)

because IIS(‘I; [|—(1- \/7)‘2 < co. By the union bound and Markov’s inequality, we have for any small
>0,

.....

. . . P .. .
which implies that max;=;,__,|Z;| — 0 as n — oco. The latter justifies the Taylor expansion of the
logarithm, namely it holds that

+o 1)q+1 )
log(1+%;)= Z—— Z i=1,...,n.
Thus, we get 1&
;ZE[log(1+Zi)-xiT(R—I)xi]
i=1
1< 1 v
ZZZE[ZI--X;(R—I)XI —ﬂZE[ XT(R-D)x; | +6,,
i=1 i=1

where 6,, = % >, E . Regarding the first term we have using Lemma 5.2

to0 g+l
23 C 70 xT (R-Dx;
q:

1x] S@) LSt

1+ —tr(S

(@)

E [Zl' ~X;~I—(R—I)Xl’] ZE(E 'X;-I—(R—I)Xi S(i)

@
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S(f)])
2 wR-T) _

~ onH=om™.
1—y1+%" +0(n™)=0(n"")

=E

1 | pp—— 1 ., .
W E [(;Xl S(i)Xi - tr(S(i))) X (R-T)x;
n i

2 S—
2 tr(s(l.; (R-1))
1+ %tr(s(‘i;

The symbol “~” in the last line means asymptotic equivalence in terms of the convergence of ab-
solute difference to zero. This result follows from Bodnar, Parolya and Schmid (2018, Lemma Al)2
and convergence is uniform over i because S(,-) can be safely replaced by S without altering the limit.
Similarly, for the second term we have again due to Lemma 5.2 and Bodnar, Parolya and Schmid (2018,
Lemma Al and (A.18))

E [ 7 xT(R - I)x[] . ( 5 tr(S(‘l;) tr(S(‘i; R-D)+ 5 tr(s{ﬁ R-T))

(1+ 5 w(S;))?

(R -Dn + o t(R=Dn?

~ (1 7)2
1—')/

Thus, to finish the proof of (20) it is enough to show that 6,, E 0. Indeed, similarly to (10) we use
Cauchy-Schwarz (CS) inequality, the uniform boundedness of ||R|| and Lemma 5.1 to receive

+o(n H=om™.

|6n

IN

& +00 s o
2 20 2B R =Dy '< 257 5B BV (R D)

i=1gq i=1 g=3

1 1/2
EY2(|12;]%) - (— tr(R - I)z)
n

IA
) |"
.M:

Lemmasl C 0 & a0p |7 -
emga _szlﬂ( \/_ ) 62 2}1_1/2SC =0(5p),

(1=+7)

+00 \/4—017 m
S(am)

m=0

—1/1_
provided that 1 < b < % for some n large enough. By Markov’s inequality, it follows that 8, 5
0, which in turn establishes (20).

4.2.2. Proof of (13)

- P /5Tw. 2
Set np = 5 tr(diag(R'/2SR!/2) —1)? = § ‘21 (% - 1) . Denote the elements of the matrix R!/2 =
2

{ray.ij }f’jzl and let r(j/2); be the ith row of R!/2, while the vector §; is the ith row of the matrix

R'/2X. In order to proceed we need to rewrite the vector §; in the following way

¥i =X"r1/2). (24)

21t has to be noted that Bodnar, Parolya and Schmid (2018) need here 4 + £ moments to exist, while we assume E|x|; |4 < o0,
This is due to the fact that they consider the almost sure convergence, while in our situation the convergence in probability is
enough. Indeed, it can be easily shown that this extra & comes from the Borel-Cantelli lemma.
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and, thus,

1 n n

1 1
= (1/2)1XX Y(1/2).i = Z;X T(1/2),i (1/2)1"1 Z;X;Rixj- (25)
Jj= Ji=

yyt
n

Here we denoted for simplicity R; = r(j/2), ir(Tl 12).i° Note that from the construction the following ele-
mentary identities hold

P p
1/2pl/2
R=R'RY =) rapiri, = 2R 6)
i=1

i=1
tr(R;) = tr(R?) = vl )it/ = 1. (27)

Let us proceed to 17, using (25), (27) and Lemma 5.2 it holds

1 &
_52

2 n

ynyl) %i Zx R;x;

<Te.

2y (§]3i
E E
i=1

E(’]p) =

| =

=

1 & 1 &
=5 Z Var(X]TRixj) + p Z Cov(x; Rixi,x] Rix;)
i=1 j=1 i=1 k>1

=0

P P n
Z BOxi)=3) Y R+ = Y 2, (R
j=1 = i=1 j=1

1
__2

1 Mt

p

M=

= __(E( 11) 3) (r(1/2),irgrl/2)’,')ik +

< -

k=1

4

(E(xn) 3) Tapik T,

M= I
M=

SRS
m

k

1l
—_

Denoting 1, = (1, ... ,1)T and using the properties of the Hadamard product one can simplify the
p times

rro,
sum El kzzll T2k 3 follows

p P

4 T(R1/2 o 1/2 1/2 1/29 1T
-1 (R R )1 (R R!21,1
;];r(l/z) ik 4t1mecs) I‘( 4t1me§ )

1/2 1/2 1/2 1/2
:tr([R 26 R2J(R? o RY )01,,1;])
—r ([R1/2 o R1/2]2) ’
which (recalling the definition of Cg1/2) implies

I I I
E(yp) = E5(}5(;&1‘1) -3 ([Rl/z o R1/2]2) + %’ - 5‘Z(E(x;‘l) —3)Cpi + % . (28)
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To prove (13), we will show that the variance of 17, converges to zero as n — co. We have
4Var(np) = 4E(n,) — 4(E(1p))* (29)
and E(77,) is given in (28). For 1 <i<pand 1 <t <nset Q;; = QE?) =X, TR;x; — 1 and observe

that E[Q;;] = 0. Since xi,...,X, are independent, it follows that E[Q;;, Qjr,] = 0 whenever 1 # t,. By
definition of 77, and (25), we have

S R )

i=1

Therefore we get

(30)
p
Z (ZE[Q,,Q,,H > EIQ} 15103, 1+2 ) B0, 0 | B0, 0jis]) -

i,j=1 1H#t 1 #0)

In view of E[Q;; Q] = E[x; Rix;x/ R;x;] — 1 and tr(R;) = tr(Rz) =1, an application of Lemma 5.2
yields

E[QiQje]=2 tr(R;R;) +(E[x},]-3)tr(R; oR;) <2 +E[x},]. (31

S— S~—
[ R2R2 <tr(R;) tr(R;)
< JuRjtr Rj ' J

This implies that for a constant C > 0 not depending on n (which may change from one appearance to
the next), we have

p p
> ElQi, 011 1EQin,Qj] < C Y ElQin Q)]
ij=1 i,j=1

p
<C ) (20RR)) + @] - R o R))) (32)

ij=1
< C(tr(R?) + tr(R o R)) < C(p|IR]| + p)
<Cp.
Here we used Y; R; = R and tr(R?) < ||R]| tr(R).

Next, set k = E[xf]] —3. By (31) and the definition of Cg1/2, we have Zle E[Q?t] =p2+kCgip). It
easily follows that

P D
Z ”1 thz]_(ZE l[l) =p2(2+KCRI/2)2-

i=1



Logarithmic law of large random correlation matrices 365

Hence, we deduce that

Ly 3" 502, 15102, 1 - @) = " 0 - B2

n#t) i ] 1 (33)
2
= —%(2 + KCR1/2)2

A combination of (29), (30), (32) and (33) shows that
1 & &
AVar(yp) = — Z ZE (02,03 1+0(1/n),  n—oco. (34)

n i,j=11=1

It remains to prove that
1 & &
p le;E =o(1). (35)
i1,j=11t=

To this end we bound E[Q szz] Write R; = (R; x;). Using the inequality (a + b)*> < 2(a® + b?) we get

( Z Ri o (xg, — 1)+ Z Ri ke XiiXer ) <2(A}, + B;,
k=1 kzt

=Ai; :=Bj;
and therefore
E[Q;,07,1<4 (E[AftAf,] +E[B},B},] + E[A],B},] + E[Aftgft]) : (36)
We proceed by bounding the terms in (36). Regarding the first term, a direct calculation yields
2 42 4 4
E[A}, A7, 1= ZRL KR J Bl = DY < CE[XII]ZRL KR ] e <Cn’ s, ZRL R ] e G7)
k=1
For the second term, an application of Lemma 5.3 and tr(R%) =1 yield

DT ( HZRI keXka X ])1 <C(E[ xn])l/z(ZR, kf) /2SC

k#l k#l

By Cauchy-Schwarz, we have

E[B2B2] < E[B}]E[B},]<C. (38)

it gt

Now we turn to the third and fourth terms. We have

E[A% B2 ] < \[E[A} BB ] <Cn62(ZRt kk) <Cné?
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from which it easily follows that

E[A}, B3] + B[A},B},] < Cn6;,. (39)

it2jt

Finally, we prove (35). Combining (36) and the inequalities for the individual terms (namely (37), (38)
and (39)), we obtain

1 P& 4
e ZZ leth ( On Zlek ]kk+1+n6)
j=11=1 111

C64 p p
ZRzkk

Since 37| R; = R and diag(R) = I, we have Zle Rl.zkk < 3", Ri xk = 1. This completes the proof of
(35). ’

+0(1/n) + 0(82).

4.2.3. The case p/n — 1
One important difference in the case p/n — 1 is that the variance o2 tends to infinity. More precisely,
it holds that

~1 1
ot = —210g(1 - ”T) —2’;’ +2§tr(R—I)2/p ~ —210g(1 - pT) S . (40)

In Section 4.2, we have shown that the last summand in (7) is Op(1), which gives us log det(R) =
log det(R!/28R!/2) + Op(1). Using that 0'% — oo and Slutsky’s lemma, we deduce that the CLT in (1)
follows from

log det(S) — 1
l0gdetl®) ~Hn 4, \i01), 0 oo, (@1)

On

where 11, = (p -n+ %) log (1 - pT_]) —p and E%l —2log (1 - —) It remains to prove (41). To this
end, we refine the result of Wang, Han and Pan (2018) using the unified expression. So, due to Wang,
Han and Pan (2018) we get thatas p/n — land p <n

log det(S) — Z log(1 —i/n)

op

4, N(O,1) (42)

and otherwise if p = n we have
logdet(S) + nlogn — log(n — 1)!

\2logn

We start with the case p = n, where Ei = 2logn. Using the Stirling formula log(n!) = nlog(n) —n +
(1/2)log(2nn) + O(1/n), it is straightforward to show that

N0, (43)

+o(l) = % +o(1).

nlogn—log(n—1)! Ilogn+n
\2logn v2logn

In view of (43), this establishes (41) in the case p = n.




Logarithmic law of large random correlation matrices 367

Next, we turn to the case p/n — 1 and p < n. Taking the logarithm on both sides of the identity

P 1 i\ _n(l-p/n) nlln-p) (n-1)!
1:1[( _;)_(n—p)!nl’ _n(n—p)!nl’_(n—p—l)!nl”
we get

P
Zlog(l—i/n):log(n—l)l—plogn—log(n—p—l)!, p<n. 44)
i=1

Using (44) one can rewrite the CLT in (43) for log det(S) in the case p < n as

logdet(S) — log(n — 1)! + plogn + log(n — p — 1)!

On

N0,

Now we apply the Stirling formula to approximate the centering terms for p < n —2 and n — oo as
follows
plog(n) +log(n—p—1)! —log(n—1)!
=plog(n)+(n—p-1logn—-p-1)—(n-p-1)+1/2log2n(n - p - 1))
—(n—1)logln—-1)+(n—-1)—-1/2log2r(n—1))+ 0(1)

-p-1 -p-1 -p-1
=(n-1)log i —plog i +%10g i +p+0Q)
n-1 n n-1

:—(p—n+%)10g(l—l%1) +p+0(1)

-1
=—(p-n+1%) log(l _p_) +p+0(1).
n
Since 0, — oo we conclude that for p <n -2

plog(n) +log(n—p—1)! —log(n—1)! _Hp
Tn T

+o(1). (45)

A similar argument shows that (45) also holds if p = n — 1. In view of (42), this establishes (41) in the
case p/n— 1 and p < n.

5. Auxiliary results

Lemma 5.1 (Bai and Silverstein (2010), Lemma 9.1). Let A = (a;;) be an n X n nonrandom matrix
and X = (x1,...,Xxn) be a random vector of independent entries. Assume that E(x;) = 0, E(xlz) =1,
sup; E(x?) = vy < 00, and |x;| < p\/n. Then for any given 2 < g < blog(nv;léﬁ) and b > 1, we have

E|xTAx — tr(A)|? < v4n (40677 ||A||96:9 7" .

We need the following lemma; see for example parts b) and d) of Theorem in Wiens (1992).
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Lemma 5.2 (Moments of quadratic forms). Let z = (Z1,...,Z,)" be a random vector with i.i.d.
entries, with B[Z] = O,E[le] = vz,E[Zi‘] = vy < oo, and let A,B,C be real and symmetric n X n non-
random matrices. Then
E[z"Az - 2" Bz] = tr(A) tr(B) + 2 tr(AB) + (v4 — 3)tr(A o B),
where o denotes the Hadamard product. As a special case we get the variance
Var(z" Az) = 2tr(A%) + (v4 — 3) tr(A o A).

If aditionally E[Zl6] = v < 00, one has

E[zTAz-2"Bz-2"Cz] = trAtrBtrC + 2 (tr A - tr(BC) + tr B - tr(AC) + tr C - tr(AB))
+(v4=3)(trA-tr(Bo C)+ trB - tr(A o C) + tr C - tr(A o B))
+4(vs = 3)(tr(A- (B o C)) + tr(B - (A o C)) + tr(C - (A o B))
+ (vg — 15v4 + 30) tr(A o Bo C) + 8tr(ABC).

Particularly,
E[(zT Az - E[z" Az])®] = 8 tr(A%) + 12(v4 — 3) tr(A 0 A%) + (v — 15v4 + 30)tr(A 0 Ao A).
The next result is Lemma 7.10 in Erdds and Yau (2017).

Lemma 5.3. Let Xy,...,Xn be independent centered random variables and assume that
ElX:|9)Y9 <p,, 1<i<N;g=23,...
for some fixed constants ug. Then we have for any deterministic complex numbers a;j,1 <i,j < N that
N N
q1\ /q 1/2
(EH Z ainin’ ]) SCCIH%( Z |aij|2) . g=23,...,
i#j=1 i#j=1

where the constant C does not depend on q.
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