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A Bayesian Network Approach for Condition
Monitoring of High-Speed

Railway Catenaries
Hongrui Wang , Student Member, IEEE, Alfredo Núñez , Senior Member, IEEE,

Zhigang Liu , Senior Member, IEEE, Dongliang Zhang, and Rolf Dollevoet

Abstract— The growing variety of data from condition moni-
toring of high-speed railways offer unprecedented opportunities
to improve railway infrastructure maintenance. For condition
monitoring of railway catenaries, this paper proposes a data-
driven approach that uses a Bayesian network (BN) to integrate
the inspection data from catenaries into a key performance
indicator (KPI). The BN topology is structured based on the
physical relationships among data types, including train speed,
dynamic stagger and height of the contact wire, pantograph head
acceleration, and pantograph-catenary contact force. The tailored
performance indicators are individually defined and extracted
from the five types of data as the BN input. As the output of
the BN, the KPI is defined as the overall condition level of the
catenary considering all defects that can be reflected by the data
types. Finally, using historical inspection data and maintenance
records from a section of the Beijing-Guangzhou high-speed
line in China, the BN parameters are estimated to establish
a probabilistic relationship between the input and output. An
approach that applies the estimated BN to catenary condition
monitoring is proposed. Testing of the BN-based approach using
new inspection data shows that the output KPI can adequately
represent the catenary condition, leading to a nearly 66.2%
reduction in the false alarm rate of defect detection compared
with current practice. It is also tested that when the input data
quality is not ideal, the approach can still work acceptably on
noisy data with a signal-to-noise ratio greater than 3 dB or with
one type of data missing.

Index Terms— High-speed railway, catenary, condition mon-
itoring, Bayesian network, inspection data, key performance
indicator.

I. INTRODUCTION

CONDITION monitoring of the railway infrastructure
currently plays an important role in railway asset man-

agement. It and enables condition-based maintenance that can
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improve the reliability, availability, and safety of the railway
infrastructure. In recent years, emerging techniques have been
developed for monitoring the conditions of the tracks [1]–[3],
catenaries (overhead lines) [4]–[6], bridges [7], tunnels [8],
etc. These techniques vary with the different demands of the
railway networks, which are expanding worldwide [9].

The catenary is a predominant structure used in power
transmission of electrified railways. It is normally constructed
along the track with a contact wire suspended above so that
trains can collect electric current from the catenary using a
pantograph. Figure 1 shows the basic elements of a catenary
and a pantograph mounted on the train roof. While a train
is running on the track, the pantograph slides through and
presses against the contact wire of the catenary, and thus
electric current can flow from the contact wire to the train
locomotive through the pantograph. To ensure that the trains
have a continuous and stable power supply, it is important to
maintain a good current collection quality resulting from the
dynamic interaction between the catenary and pantograph [10].
Well-maintained catenaries not only enhance the safety and
reliability of train operations but also lead to a reduction in life
cycle costs. To this end, technical standards and specifications
[11], [12] have been developed in which catenary condition
monitoring is an indispensable measure. In China, defective
catenaries require an average of more than 2 hours to repair,
and up to 64% of these repairs lead to a loss of power
for an average duration of 1.3 hours, which interrupts train
services.

As a distributed structure spanning kilometers of distances,
condition monitoring of the catenary is commonly performed
by specialized inspection trains that run through the catenary
such that the entire catenary structure can be covered. Tra-
ditionally, condition monitoring is periodically performed to
inspect the geometrical parameters of the contact wire, includ-
ing height, stagger and thickness [13], [14]. This approach
is widely applied for conventional lines with an inspection
interval between six months and one year. However, the
geometrical parameters cannot reflect the dynamic response
of the catenary in operation. Thus, dynamic parameters such
as the contact force between the pantograph and catenary [4],
[10], [15], the acceleration of the pantograph head (collector)
[13], the displacement of the contact point [16], and the
dynamic height and stagger of the contact wire [17], are
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Fig. 1. Elements of a railway catenary and a pantograph.

becoming preferable in practice [18], [19], especially for high-
speed lines. Other components of catenary systems, such as
the insulator, isoelectric line, etc., are also monitored [20]–[22]
because they are important to ensure the full functionality of
the catenary.

Depending on the measurements applied for condition
assessment, the condition of the catenary is commonly quan-
tified by a performance indicator (PI) extracted from mea-
surement data. For geometrical parameters, PIs consist mostly
of comparisons with a threshold that is predefined accord-
ing to nominal values or expert experience. The PIs based
on dynamic parameters can be highly diverse because the
dynamic responses of the catenary and pantograph, in terms
of amplitude and frequency of vibrations, are contained in
the measurement data. Therefore, the statistical distribution,
kurtosis, power spectrum density and time-frequency represen-
tation of the pantograph-catenary contact force (PCCF) were
selected as PIs to detect contact wire irregularities attributed
to a wide range of catenary defects [10], [23]–[25]. As a
substitute for PCCF, the pantograph head acceleration (PHA)
is more cost-efficient to measure. Similarly, PIs such as the
root mean square [13] and wavelet entropy [26] of the PHA
were also chosen to detect contact wire irregularities. Based on
the physical meanings of PIs, the condition of the catenary can
be quantified for further assessment and maintenance decision-
making.

In recent years, condition monitoring techniques deployed
in practice are gradually making greater use of data-driven
approaches [27]. For catenary condition monitoring, the types
of geometrical and dynamic parameters measured and the
increasing frequency of inspections [26] generates a large
volume of multivariate data sets. However, approaches that can
make full use of these data sets are lacking. In previous studies,
PIs were mostly extracted from a single type of parameter. For
defect detection of high-speed lines in China, the false alarm

rate can reach up to 30.5% based on only one type of catenary
data measured from a single inspection run, according to
maintenance records. Learning from techniques developed for
other applications, such as bearing fault diagnosis [28]–[30]
and rail condition monitoring [31]–[33], improvements in
condition monitoring of the high-speed railway catenary can
be realized by the following:

1) Extraction of multiple PIs from one type of parameter;
2) Measurement of multiple parameters to extract and fuse

the respective PIs.

This paper proposes an approach that combines both measures.
As specified in the technical standard for condition moni-

toring of high-speed railways in China [12], the PCCF, the
PHA, and the dynamic height and stagger of the contact
wire are simultaneously inspected by specialized measurement
trains. Individually, these parameters can reflect the condition
of the catenary under dynamic interaction with a pantograph,
although from different perspectives, and they are also physi-
cally related to each other as the results of pantograph-catenary
interaction. Because of the inherent physical relationships,
the measurement data of the parameters contain probabilistic
correlations in terms of dynamic responses. This feature can
be used in enhanced condition monitoring in which the output
rarely suffers from disadvantages due to a single type of data,
such as measurement errors or missing data.

It is observed in the literature that multiple types of data
are simultaneously measured and applied for monitoring the
condition of a single system or device. For example, the
diagnosis of power systems [34], airplane engines [35] and
heat pumps [36] relies on multiple data types as the input.
A similarity among these applications and catenary condition
monitoring is fusion of multiple data types for assessment
of the overall condition of a system. The data can be fused
because of the probabilistic correlations between different
data types indicating the healthiness of the same system. The
Bayesian network (BN) [37], which mathematically represents
a set of variables and their probabilistic relationships, can pre-
cisely address the data fusion problem described. Multiple PIs,
each extracted from the different types of data measured for a
catenary, can be fused using a BN to perform comprehensive
condition assessment.

This study is an extension of a previous work [38]. In sum-
mary, the contributions and extensions of this study include
the following:

1) A new BN is structured specifically for condition mon-
itoring of the catenary.

2) Tailored PIs are proposed for different types of catenary
inspection data and used as the input of the BN.

3) A data-driven approach using the BN is proposed to
supply a comprehensive assessment of the catenary
condition based on inspection data.

The remainder of this paper is organized as follows.
Section II introduces the basic theory of BN. Section III
proposes a BN for catenary condition assessment. Based on the
proposed BN, an approach for catenary condition monitoring
is presented in Section IV using inspection data from a
high-speed railway line. Section V demonstrates the results
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and performances of the approach. Conclusions are drawn in
Section VI.

II. BAYESIAN NETWORKS

BNs, also known as belief networks, are a type of proba-
bilistic graphical model based on directed acyclic graphs [39].
This approach combines graph theory and probability theory,
which makes it intuitively interpretable and mathematically
rigorous. A BN constitutes of a set of random variables
with conditional dependencies between the variables. In the
directed acyclic graph of a BN, a node represents a random
variable, and a directed arc pointing from node A (the parent
node) to node B (the child node) indicates that the value of
variable B depends on the value of variable A. Informally, the
directed arc between a parent node and its child node forms a
cause-effect relationship between the corresponding variables.
This representation can be summarized as the local Markov
property of BN, which states that each variable is independent
of its nondescendents given its parent variables, where the
descendants are the set of variables that can be reached on
a direct path from the variable [40]. Although the directions
of the arcs encode the cause-effect relationships among all
variables, inference in a BN can be performed both forward
along the arc directions and backward in the reverse directions.
In practice, this feature enables estimation of the effect of an
event when the status of causes is observed or identification of
the causes when the effects are observed. This paper belongs
to the former category.

A BN is defined by a pair (G,�), where G is a
directed acyclic graph on a set of n nodes (variables)
X = {X1, X2, . . . , Xn} with independence assumptions among
the variables according to the local Markov property,
and � is a set of n conditional probability distributions
� = {p(x1|π1), . . . , p(xn|πn)} corresponding to each realiza-
tion xi of variable Xi conditioned on πi , which is the set
of parents of Xi in G. The joint probability distribution of
variables X defined by the BN can be described as

p(X) =
n∏

i=1

p(xi |πi ). (1)

When certain of the variables in the BN are observable,
they supply evidence for the probabilistic inference of BN to
obtain the posterior probability distributions of unobservable
variables. This aspect is fundamental for BNs to address
the uncertainties associated with diagnosis or prognosis [41],
evaluation or assessment [42], forecast or prediction [43], etc.

For most practical problems, the BN must be learned from
prior information and relevant data, including specification
of both the graph structure and parameters of BN, to fully
represent the joint probability distribution. Depending on the
problem to be solved, the BN can be learned or estimated in
the case in which the graph structure is unknown or certain
variables are not fully observable. In this paper, the graph
structure is first established based on the physical relationships
among the variables involved in catenary condition monitor-
ing. The parameters of the BN with the specific structure
are estimated from historical measurement data. Because the

Fig. 2. Graph structure of the BN for catenary condition monitoring.

overall condition of the catenary is considered to be a partially
observable variable in the proposed BN, the BN parameters
in such a case can be estimated by the expectation maxi-
mization algorithm [44] or the Markov chain Monte Carlo
algorithm [45].

III. A BN FOR CATENARY CONDITION MONITORING

A. Graph Structure

The directed acyclic graph G consists of n = 6 variables
X = {X1, . . . , X6} representing the speed of inspection train,
the PIs extracted from the contact wire dynamic stagger (CDS)
and dynamic height (CDH), PHA, PCCF, and the status of
catenary condition (SCC), respectively. Figure 2 depicts the
structure of graph G, where the conditional dependencies
among the six variables are indicated by the directed arcs. The
physical relationships underlying the structure are described as
follows:

1) Variable X1 represents the train speed at the moment
when the data are measured. As a parent node, it is directed
to the four variables representing the PI extracted from CDS,
CDH, PHA and PCCF, respectively. This direction is based
on the fact that the faster the train speed, the more intense the
vibration excited between the pantograph and catenary, which
leads to higher amplitude of oscillations in the four types of
dynamic responses. Thus, the PIs from the four types of data
are dependent on the level of train speed when the data are
measured. At the same time, the speed of inspection train itself
is irrelevant to the SCC, and thus no arc is connecting the two
variables.

2) Variables X2, X3, X4, and X5 represent PIs extracted
from CDS, CDH, PHA and PCCF, respectively. Because they
are all indicators for the SCC X6, they affect the value of the
SCC with four directed arcs pointing to the SCC in the graph
structure shown in Figure 2.

3) Variable X2 represents the PI extracted from the CDS,
which is the only parameter measured in the lateral direction
parallel to the ground. This variable reflects whether the
stagger of the contact wire is within an acceptable range
for pantograph contact. The CDS is not physically related to
the data of CDH, PHA and PCCF, because the latter three
parameters are defined and measured in the direction vertical
to the ground.

4) Variables X3, X4, and X5 represent the PIs extracted from
CDH, PHA and PCCF, which are all dynamic responses in
the vertical direction. Assuming that at a time instant t during
the pantograph-catenary interaction, the CDH hc(t) is uplifted
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by the pantograph head with an acceleration ap(t). If the
contact between the pantograph and catenary is continuously
maintained by the PCCF fc(t) > 0, the CDH hc(t) becomes
numerically equivalent to the vertical displacement of the
contact point, and the PHA ap(t) becomes equivalent to the
vertical acceleration of the contact point. Thus, the relationship
between the CDH hc(t) and the PHA ap(t) can be written as

ap(t) = d2

dt2 hc(t). (2)

This relationship can be transformed from the time domain to
the frequency domain by the Fourier transform as

âp(ξ) = F (
ap(t)

) = (2π iξ)2ĥc(ξ) = −4π2ξ2ĥc(ξ) (3)

where F (
ap(t)

)
denotes the Fourier transform of ap(t),

ĥc(ξ) = F (hc(t)), and ξ denotes frequency. This formulation
reflects that ∣∣ap(ξ)

∣∣ ∝
∣∣∣ξ2ĥc(ξ)

∣∣∣ . (4)

Therefore, when the vibration response induced by a defect or
fault of the catenary with a certain frequency can be captured
by the CDH, it can also be observed from the PHA with a
higher level of spectral energy. This representation forms a
correlation between the PIs of CDH and PHA that can be
mapped into the directed acyclic graph of BN as a directed
arc between the two variables, as shown in Figure 2. In the
measurements, the PCCF fc(t) is considered to be the sum of
three component forces [46], [47], i.e. the pressure measured
by force sensors fsensor(t), the inertia force finertia(t) and the
correction of aerodynamic force faero(t),

fc(t) = fsensor(t) + finertia(t) + faero(t). (5)

The inertia force finertia(t) is calculated depending on where
the force sensors are installed on the pantograph. If the sensors
are installed under the pantograph head, i.e., the majority of
the cases, the inertia force is given by

finertia(t) = m p · ap(t) (6)

where m p is the mass of the pantograph head. It can be
observed that the measurement data of PCCF depend on the
PHA data. The PCCF fc(t) inherits a portion of the dynamic
responses contained in the PHA ap(t). Thus, a directed arc
pointing from variable X4 to variable X5 is established in
the BN, as shown in Figure 2, indicating a cause-effect
relationship between the data of PHA and PCCF.

Through the relationships formed between the six variables,
the graph structure of the BN supplies a physics-based model
that integrates all available sources of PIs to comprehensively
evaluate the SCC. The next step is quantifying the SCC,
namely, obtaining a comprehensive key performance indicator
(KPI) of the catenary by specifying the probabilistic relation-
ships between the variables based on historical observations.

B. Variable Extraction

The observations of the six variables are extracted from his-
torical measurement data, and the method of extraction varies
for each variable. As a prerequisite, the different types of

Fig. 3. Comparison between the static and the dynamic spatial position of
contact wire.

measurement data should be synchronized to ensure matching
sampling frequency and spatial location. A synchronized data
set ensures that the data of different catenary parameters reflect
the same dynamic responses excited at the same moment.
This condition is fairly important for obtaining accurate prob-
abilistic relationships between variables. In practice, it is
uncommon to have perfectly synchronized data because the
data are measured by separate sensors, especially when the
inspection train runs at a high speed. Therefore, it is necessary
to mitigate synchronization errors that might cause inaccurate
outputs generated from the data. This synchronization can be
performed by calibrating the position of all data based on
a unified reference position in the data set. In addition, the
data can also be reconstructed by downsampling to a lower
frequency to offset minor errors in position. In this manner,
synchronization errors between different data types can be
mitigated, especially those leading to shifting of features in
spatial position.

The following describes the PI extraction of every variable
in a manner that best reflects and quantifies the catenary
condition.

1) Speed X1: As the only variable with unconditional
probability in the proposed BN, the train speed X1 is of
great importance. Without knowing the level of train speed,
evaluation of the catenary condition based only on the four
types of dynamic responses is meaningless and invalid. To
establish a corresponding relationship between the level of
speed and the intensity of the dynamic responses using
the available data, a step size sstep is chosen to partition
the data into different levels of speed. This step size is
selected to ensure that sufficient data are measured under
each level of speed for estimation of the parameters of
BN. In this way, the data for extracting variables X2, X3,
X4 and X5 are automatically partitioned by the levels of
speed.

2) CDS X2 and CDH X3: Compared with the static position
of the contact wire, the dynamic position of the contact point
during operation (hereafter referred as the dynamic position
of the contact wire) vibrates in both the vertical and lateral
directions, resulting in the CDS and CDH, as schematically
shown in Figure 3. For evaluation of the catenary condition,
the CDS and CDH behave in a similar manner and are
normally equal to or greater than the static values because a
positive contact force always uplifts and also laterally deflects
the contact wire. Thus, an excessive peak or trough in the
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Fig. 4. Illustration of the percentile-based clustering.

CDS and CDH indicates a strong impact on the contact
wire, loss of contact, or abnormal contact wire position-
ing, which reflects an unfavorable condition that requires
attention.

To extract PIs for variables CDS X2 and CDH X3 that
can supply evidence for variable X6, the frequency contents
contained in the CDH and CDS are not extracted because
according to (4), an anomaly is more significantly perceived
in the frequency domain of acceleration rather than that of dis-
placement. Additionally, in the proposed BN, the frequency-
domain PI is considered for variable X4. Therefore, the PIs
for variables X2 and X3, both extracted from a measure of
displacement, are time-domain indicators determined by the
deviations of CDS and CDH from their healthy states. The
definitions of healthy states for CDS and CDH are dependent
on the levels of speed segmented by the step size sstep. Based
on large amounts of historical data partitioned into every speed
level, the PIs of CDS X2 and CDH X3 can be extracted at each
speed level, thus building the dependencies of X2 and X3 on
the speed level X1.

To determine whether the value of CDS or CDH is healthy
or not, the judgement is highly dependent on the monitored
catenary because the structural parameters (including the sus-
pension type, nominal position of contact wire, contact wire
tension, etc.) are diverse by design for different railway lines.
Thus, the healthy range of variation for CDS and CDH should
be defined with respect to the change in speed for a specific
catenary. This definition can be constructed in a data-driven
manner based on sufficient historical data from the same
catenary. It is also implied that the majority of the observations
should represent a healthy condition of the catenary for the
data to be sufficient. The percentile of available observations
can be used to perform statistics-based clustering in which the
probability of a value falling into a certain condition level is
quantitatively considered.

Concretely, assuming that a set of CDS or CDH data
C = {c1, c2, . . . , cN } is partitioned to a certain speed level,
the N observations can be clustered into J (2 ≤ J ≤ N) sets
S = {S1, S2, . . . , SJ } corresponding to J levels of condition
of CDS or CDH, which are viewed as the time-domain PIs
extracted from CDS or CDH at the specific speed level. As
an example shown in Figure 4, the observations in C can be
clustered based on the percentile intervals defined by the per-
centile boundary of healthy observations h1, which is defined
as the data located in the middle of the full percentile, and the
percentile boundaries of unhealthy observations {h2, . . . , h J },
which are data located at both ends of the full percentile. This

Fig. 5. Schematic of contact wire stiffness varying cyclically with the
catenary structure. The left vertical axis shows the height of catenary structure
including the messenger wire, contact wire and droppers, and the right vertical
axis shows the stiffness.

representation can be mathematically written as

Sj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P(h1) \ P(100 − h1), j = 1

P(h j ) \ P(100 − h1) \
j−1⋃

m=1
Sm , 2 ≤ j < J

P(100) \
J−1⋃
m=1

Sm , j = J

(7)

where ‘\’ denotes the set difference operator, and P(h j )
denotes the h j th percentile of the data in set C . To include
all data in C , h J should be equal to 100. The selection of
h1(h1 > 50) determines the tolerance of the system against
unhealthy conditions reflected by CDS or CDH, and the
sensitivity to report such unhealthy conditions through the
system. The number of levels J depends on the demand to
subdivide the levels of unhealthy conditions; nevertheless, it
cannot be too large by displaying too many levels of unhealthy
conditions that produce redundant information. Normally, a
classic description of healthy or low, medium, high or extreme
risk levels in risk assessment can be sufficient, meaning that
J = 5. In this context, the values from h2 to h J should ascend
in a decelerating manner such that SJ contains the smallest
set of data for the most extreme condition. When the CDS or
CDH data partitioned to every speed level are clustered based
on the corresponding percentiles, the influences of speed on
CDS or CDH are automatically considered for evaluation of
the catenary condition.

3) PHA X4 and PCCF X5: As noted by previous studies
[24], [26], both PHA and PCCF contain frequency contents
that are useful for reflecting the catenary condition. In partic-
ular, the catenary structure wavelengths (CSWs) have a strong
correlation with the catenary structure, including anomalies
such as installation errors and structural defects. As shown
in Figure 5, the CSWs are frequency components of PHA
and PCCF attributed to the cyclic variation of the contact
wire stiffness along the catenary structure. Thus, the PHA
and PCCF can be decomposed into two signals, namely, the
CSWs and the non-CSW signal. The former is often used as an
indication for structure-related defects, and the latter mostly
reflects local defects such as hard points and uneven wear
on the contact wire. In this way, diagnoses based on PHA
and PCCF can be performed with less interference and thus
output more accurate results compared with the situation in
which the PHA and PCCF are not decomposed. Empirical
mode decomposition (EMD) [48] is commonly selected to
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perform an adaptive decomposition so that the PHA and PCCF
measured from different catenary systems can be consistently
decomposed into the CSWs and the non-CSW signal. The
general steps needed to obtain the two signals are described
as follows using the PCCF signal fc(t) as an example:

Step 1: Decompose the PCCF signal fc(t) into a number of
intrinsic mode functions (IMFs) fc,l(t) and a residual
r(t) using EMD or its improvements,

fc(t) =
∑

fc,l (t) + r(t). (8)

Step 2: Identify the CSWs from all IMFs by checking
whether the dominant wavelength (or spatial fre-
quency) of an IMF falls into the range of struc-
ture wavelengths. Two generic wavelength intervals
[4m,10m] and [40m,70m] indicating the wavelengths
of interdropper distances and spans, respectively, can
be used in the identification, even if no prior infor-
mation on the catenary is available to narrow them
down.

Step 3: Based on the IMFs identified as CSWs fc,l (t), l ∈
C , compute the CSWs fc,C (t) and non-CSW signal
fc,N (t) by

fc,C (t) =
∑
l∈C

fc,l (t) (9)

and

fc,N (t) =
∑

fc,l (t) − fc,C (t), (10)

respectively.

After obtaining the CSWs and the non-CSW signal of PHA
and PCCF, the energy density of both signals corresponding to
the instantaneous frequencies can be computed as the sources
of frequency-domain PIs. Using the CSWs of PCCF fc,C (t)
as an example, the analytic forms of its IMFs fc,l (t), l ∈ C
can be obtained with the Hilbert transform:

z(t) = fc,l(t) + i · H[ fc,l(t)] = a(t)eiθ(t) (11)

where H[ fc,l(t)] denotes the Hilbert transform of fc,l(t),

a(t) =
√

fc,l(t)2 + H[ fc,l(t)]2 (12)

and

θ(t) = arctan

(
H [ fc,l(t)]

fc,l (t)

)
. (13)

The instantaneous frequency is defined as

ω(t) = dθ(t)

dt
. (14)

Thus, the Hilbert spectrum of fc,C (t) can be obtained as the
real part R in the following form

H (ω, t) = R
{∑

l∈C

a(t) exp

[
i
∫

ω(t)dt

]}
(15)

which is a time-frequency representation showing the energy
density distributed with the change in time and instantaneous
frequency. To examine the instantaneous energy level of the

CSWs fc,C (t) at a certain time instant, the accumulated energy
density can be computed as

A(t) =
∑
l∈C

a(t)2. (16)

This parameter indicates the intensity of vibration at a fre-
quency range identical to that of the CSWs or non-CSW signal.
It can thus be applied for fault diagnosis in general and also
supplies PIs for the catenary at the specific location.

The PIs input into the BN as values of variable PHA X4
and PCCF X5, similar to the time-domain PIs extracted from
CDS and CDH, should be indicators clustered into different
levels. For consistency with the PIs from CDS and CDH,
it is ideal that those from PHA and PCCF share the same
number of condition levels. Because the PIs result from the
same excitations, a certain coherence is preserved if they are
clustered in the same way, in the sense that an equivalent
PI among the four types of variables indicates the same
degree of ‘unhealthiness’ or defect. Moreover, this coherence
can be passed down to the final variable SCC X6 in the
form of evidence for probabilistic inference. However, both
PHA and PCCF are decomposed into two signals and thus
have two independent indicators AC(t) and AN (t) via (16)
from the CSWs and the non-CSW signal, respectively. Both
indicators represent the catenary condition in the frequency
range corresponding to their own physical meanings. This is
a unique feature of the indicators extracted from PHA and
PCCF, because no such frequency contents can be found in
CDS and CDH. Thus, a PI of variable X4 or X5 should
be constructed to preserve the information contained in both
indicators. A maximum criterion is proposed to combine the
two indicators. Concretely, for the PHA or PCCF, indicators
AC(t) and AN (t) can be partitioned by the same speed levels
defined by step sstep such that the influences of speed variation
are eliminated. Sets CC and CN are indicators partitioned
to a same speed level from AC(t) and AN (t), respectively.
Using percentile-based clustering according to (7), sets SC =
{SC,1, SC,2, . . . , SC,J } and SN = {SN,1, SN,2, . . . , SN,J } can
be obtained from CC and CN , respectively. Consequently, this
formulation gives a condition level to every value in AC(t)
and AN (t). Assuming at any time instant t ′,

AC (t ′) ∈ SC,a and AN (t ′) ∈ SN,b . (17)

which equivalently assigns condition levels, namely, PIs a and
b to AC(t ′) and AN (t ′) as

LC (t ′) = a and L N (t ′) = b. (18)

The maximum criterion defines a combined PI as

L(t ′) = max(LC (t ′), L N (t ′)). (19)

In this manner, an unhealthy condition can be always reported
regardless of its indicative frequency range. It is not only
consistent with PIs of CDS and CDH, but also offers necessary
evidence for the variable SCC X6.
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TABLE I

LIST OF SCC VALUES (KPIS) WITH RESPECT TO
VERIFYING PARAMETERS

4) SCC X6: This is the only variable with partial observ-
ability in the BN and is also an output as the quantification
of SCC for maintenance decision-making. In this context,
the available observations of variable X6 are defined as the
severity of defects that are detected in an inspection run
and, most importantly, verified later by human inspectors
on site. Due to the massive workload required to perform
manual verifications, in most cases, only a portion of historical
inspection results can be selectively verified and recorded as
observations, thus creating the partial observability.

Although the protocols established to verify catenary defects
differ from one railway line to another, the results normally
conclude whether a defect exists and its severity. The SCC X6
supplies such a conclusion based on the evidence given by the
other variables, whereas previously, only the observations from
one variable in a single run were considered. Thus, the value
of SCC is the overall condition level of the catenary, namely,
a KPI that considers all potential defects reflected by the
available observations of other variables. This can be achieved
by unifying the different severities of all known defect types.
Based on expert experience, the unified value can be manually
estimated according to the severity of defects defined in
protocols. In a protocol designed to quantify the severity level
of catenary defects, the severity levels are commonly defined
by a group of multidisciplinary experts who consider both the
mechanical and electrical performances of the catenary. To
propose a unified severity level considering all types of defects,
the potential negative effects or consequences of a defect at
different severity levels should first be quantitatively estimated
in terms of cost, loss of time, etc. Subsequently, the probability
of such effect actually occurring is also estimated using main-
tenance records and available knowledge. By multiplying the
effect with the corresponding probability, the risk of a defect
can be obtained as a unified value indicating the healthiness
of the catenary. In this manner, a unified condition level can
be defined rationally with controllable variations depending on
the accuracy of the effect and probability estimations.

As a new paradigm, Table I proposes a summarized list of
the estimated catenary condition levels in the case of high-
speed lines in China. The condition levels correspond to a
certain type of catenary defect indicated by a verification
parameter measured on-site. A total number of 12 verification

parameters, each with several levels of severity determined by
predefined thresholds, are assigned to the unified values of
SCC X6 as a standardization effort. It can be observed from
Table I that depending on the type of verification parameter,
the numbers of the severity levels are different. This scenario
is defined by the protocol for inspection of high-speed railway
catenaries, in which parameters such as the contact wire height
are divided into four levels of value corresponding to four
severity levels, and other parameters such as the percentage
of arcing has two levels and the catenary voltage has one
level, meaning that it is out of a required range. The values of
SCC, namely, the KPIs range from 1 to 5 with 1 representing
a healthy state and higher values representing unhealthier
conditions. The range is consistent with the values defined
for variables from X2 to X5. This list is applied to obtain
the available observations of variable X6 that indicate the
verified condition level of the catenary in the maintenance
record. In addition, a number of observations with value 1
(healthy) are assigned to variable X6, when the corresponding
observations of variables from X2 to X5 are 1, showing no
indication that the catenary is unhealthy. Similarly, a number
of observations with value 5 (extreme risk) are also assigned
when the observations of the four variables are all equal
to 5. For a specific railway line, the list can be modified
by considering the differences in operation condition and
pantograph-catenary dynamic characteristics.

C. Parameter Estimation

The proposed BN has a known structure but incomplete
observability for variable SCC X6. In the case of full observ-
ability, the maximum likelihood estimation can directly find
a set of parameters that maximize the likelihood function of
the given set of probabilistic relationships defined by the BN
structure. When data are partially missing, an initial set of
BN parameters can be assumed to complete the missing data
through inference. A new expected likelihood function can
be computed based on the newly completed data set. This
procedure is known as expectation. The set of BN parameters
can be updated by maximizing the current expected likeli-
hood function, which is known as maximization. By iterating
between the expectation and the maximization, a final set of
parameters can be eventually estimated when the likelihood
function converges, which is the well-proven realization of
the expectation maximization (EM) algorithm for estimating
parameters of the BN with incomplete data [44]. The use of
the EM algorithm requires that the data are missing at random,
meaning that the value of X6 and the event that X6 is missing
are conditionally independent, given other observed variables,
which is true in this case because the existence of SCC is
independent of whether the SCC is verified on site or not.

In this application, the parameters estimated based on a set
of data by nature inherit the dynamic characteristics of the
specific catenary type and pantograph-catenary couple from
the line on which the data set is measured. Therefore, the
input data should be measured from the same railway line
when the same pantograph is mounted. This situation is often
realized by a specialized inspection train.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2020 at 09:31:48 UTC from IEEE Xplore.  Restrictions apply. 



4044 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 10, OCTOBER 2020

Fig. 6. Brief flowchart of the BN-based approach. The dashed lines denote
alternative flows.

IV. A BN-BASED APPROACH

Based on an established BN, a data-driven approach for
catenary condition monitoring is proposed. Figure 6 depicts
the general architecture of the approach for a railway line
with inspection data available. The approach initiates with BN
parameter estimation. New inspection data can subsequently
be input for catenary condition assessment. The BN parameters
are updated after on-site verifications are performed.

When the BN parameters are estimated, the ratio of variation
(ROV) of a parent variable to its child can be computed. This
value quantifies the importance or contribution of a parent
variable that leads to the value of its child. For the proposed
BN, the ROV can be used to describe which of the four
variables representing the PIs of CDS, CDH, PHA and PCCF,
respectively, have more impact on the final KPI of SCC.
Concretely, the ROV of variable Xi with respect to the final
variable X6 is defined as:

R(Xi ) = p(xi �= 1|x6 = j) − p(xi �= 1)

p(xi �= 1)
(20)

where p(xi �= 1) is the marginal probability of xi �= 1,
representing the probability that variable Xi is unhealthy.

A. Input

An estimated BN can be applied as a diagnostic tool for-
mulated based on the historical data for parameter estimation
and expert knowledge for defect verification and severity
quantification. Because the BN is estimated using inspection
data from a certain railway line, it can only function correctly
when the input is also extracted from new data measured in
the same line. New inspection data containing CDS, CDH,
PHA and PCCF together with the train speed can be used in
input extraction. The BN inputs are values of variables from
X1 to X5, namely, the speed level, PIs extracted from CDS,
CDH, PHA and PCCF. The PIs should be extracted in the same
manner as described in the previous section and summarized
as follows:

Step 1: Synchronize data with respect to sampling frequency
and spatial position.

Step 2: Decompose the PHA and PCCF data into CSWs and
non-CSW signal by (9) and (10).

Step 3: Partition the CDS, CDH, decomposed PHA and
PCCF data into different speed levels determined by
a step size sstep.

Step 4: Extract the PIs of CDS and CDH based on their data
percentiles using (7), and the PIs of PHA and PCCF
using (19).

It should be noted that the BN parameters can always be
updated by new inspection data and the corresponding verified
defects. This update can be performed regularly to make the
BN more knowledgeable and up to date for catenary condition
assessment. The feedback loop formed among the BN-based
condition assessment, the on-site defect verification and the
BN parameter updates can further improve the accuracy of
condition assessment and defect detection.

B. Output

Given the BN input, i.e., the values of variables from X1 to
X5, as evidence for BN inference, the posterior probability
of the final KPI x6 = j , i.e., p(x6 = j |{x2, x3, x4, x5}),
can be inferred. The expectation of the posterior probability
distribution of variable SCC X6 can be computed as the final
output:

E(X6) =
J∑

j=1

p (x6 = j | {x2, x3, x4, x5}) · j. (21)

The output KPI indicates the expected condition level of
the catenary at the corresponding location where the data
are measured. Alternatively, the output KPI can be the most
probable value of variable X6

arg max
j

p (x6 = j | {x2, x3, x4, x5}) . (22)

This KPI of SCC is stricter and especially useful for recogniz-
ing unhealthy conditions compared with the expected value.
Depending on the preference of the decision makers, the
expected value can be used in general condition assessment,
and the most probable value is better for determining whether
a track visit is necessary by looking at SCC at suspicious
unhealthy locations.

V. RESULTS AND PERFORMANCE DISCUSSIONS

This section presents the results of BN estimation and
application of the estimated BN. The condition monitoring
performances of the BN-based approach for reducing false
alarms and addressing low-quality data are discussed. Here-
after, the potential defects of the catenary represent defects
that are identified based only on the inspection data without
on-site verifications. When on-site verifications are performed
for the potential defects, the hits and false alarms are defined as
the successfully verified defects and falsely identified defects,
respectively. Accordingly, the hit rate and false alarm rate
are the ratios of the numbers of hits and false alarms to the
total number of potential defects, respectively. In practice,
because on-site verifications were not performed for every
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Fig. 7. Number of observations distributed with inspection train speed.

potential defects found from historical data, this study con-
siders the defects that were actually verified when calculating
the number hits and false alarms detected by the proposed
approach.

A. BN Estimation

The BN parameters can be estimated through available
observations extracted from historical data. In this paper, the
data used as the source of observations are periodic inspection
data measured from a section of Beijing-Guangzhou high-
speed line in China during a period from December 2014 to
June 2018. All measurements of speed, PCCF, PHA, CDH and
CDS have a synchronous sampling interval of 0.25 m with the
position recorded and calibrated by differential GPS and radio-
frequency identification (RFID) using RFID tags attached on
the masts of the catenary along the railway line. Observa-
tions of variables are extracted per procedures presented in
the previous section. As a result of the periodic inspection,
approximately 1.546 × 106 observations are acquired from
an accumulated mileage of 1546.4 km of the catenary in the
same section of railway line with the speed of the inspection
train ranging from 100kmh−1 to 300kmh−1. Data measured
below 100kmh−1 are omitted because the data size is too small
to represent a set of balanced observations at lower speed
levels. These data can still be added for estimation of the
BN parameters if sufficiently collected. Figure 7 shows the
number distribution of observations with respect to the speed
above 200kmh−1, which contains 94.9% of all observations.
Because the inspection train is dedicated to run near 290kmh−1

in every inspection, 78.7% of observations are located at
speeds between 280kmh−1 and 300kmh−1. Other speeds are
mostly measured when the inspection train is accelerating or
decelerating.

In this study, the step size sstep =2kmh−1 is selected for
data partitioning, meaning that for every 2kmh−1 increase
from zero speed, the data measured within an increment are
considered under the same speed level. Once all data are
partitioned by speed levels X1, the values of variables from X2
to X5 are extracted. Figure 8 depicts the PI values j of CDS
X2 and CDH X3 clustered by (7) using the set of percentile
boundaries {h1, . . . , h5} = {95, 97.5, 99, 99.8, 100}, which
represent the condition level of healthy, low risk, medium risk,
high risk, and extreme risk, respectively. It can be generally
observed that the greater the speed, the larger the deviation
of CDS and CDH. An outburst of extreme-risk conditions
occurs at approximately 290kmh−1, because the observations
are concentrated at this speed level, which is close to the
highest speed designed for this railway line. The clustered
CDS in Figure 8(a) are evenly distributed around the median,
which is approximately zero, whereas the median of CDH and

Fig. 8. Clustered (a) CDS and (b) CDH with respect to speed levels.

Fig. 9. Clustered instantaneous energy of CSWs and non-CSW signal of
PHA (left) and PCCF (right).

the range of healthy CDH ( j = 1) gradually increase as the
speed increases in Figure 8(b). A sudden narrowing of the
CDH range can be noted near the highest speed level, which
is caused by the drastic drop in observation number starting
from 296kmh−1, as shown in Figure 7.

For variables X4 and X5, the CSWs and non-CSW signal are
first extracted to obtain the accumulated instantaneous energy
via (16). Using the same percentile boundaries for CDS and
CDH, Figure 9 depicts the clustered energy of the CSWs and
non-CSW signal of PHA on the left and those of PCCF on
the right. It can be observed that the distribution of unhealthy
indicators ( j > 1) differs between the CSWs and the non-
CSW signal, and between the PHA and PCCF. In all four
types of clustering results, the catenary condition worsens
at high speeds near 290kmh−1. On the left, the CSWS of
PHA reveals a particularly sensitive speed at approximately
245kmh−1, where the condition also worsens, whereas the
result of non-CSW signal shows no such particularity. This
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Fig. 10. Clustering results from (a) PHA and (b) PCCF showing the ratio of
clustered observation number to the total observation number at every speed
level when j ≥ 2.

TABLE II

ROVS OF VARIABLES FROM X2 TO X5 WITH RESPECT TO X6

result indicates that for this pantograph-catenary couple, the
dynamic responses related to the structural parameters of the
catenary are sensitive under this operation speed. Similarly,
the results of PCCF on the right reflect that speeds near
225kmh−1 and 215kmh−1 are particularly sensitive for the
CSWs and non-CSW signal of PCCF, respectively. These
results are crucial for inclusion in probabilistic inference such
that the influences of speed variation, especially these sensitive
speeds, are already considered in the parameter estimation of
BN. Consequently, Figure 10 depicts the final clustering results
from PHA and PCCF combining those from CSWs and non-
CSW signal by applying (19). As the combination between two
independent indicators covering different frequency ranges, the
percentage of unhealthy condition levels increases compared
with the predefined percentile boundaries. Additionally, an
overall tendency to increase with the increasing speed is also
found in the results of both PHA and PCCF. This result shows
that the catenary performance gradually declines as more PIs
worsen at higher speeds. This observation is in line with the
time-domain PIs extracted from CDS and CDH.

The observations of the final variable SCC X6 are verified
defects quantified through Table I and healthy observations
indicated by parent variables. As a variable with incomplete
observability, the available observations are assigned to X6
according to the location of a defect and the corresponding
observations of parent variables from X2 to X5 that triggered
the verifying procedure. In total, 9.090 × 103 observations
of defects are assigned to X6, and 8.446 × 105 healthy
observations are found as all values of parent variables are
1, which results in a 55.2% observability of variable X6.
The remainder of the observations and BN parameters are
estimated by the EM algorithm such that the BN is finally
inferable.

Table II gives the ROVs of variables from X2 to X5
when j ≥ 2 defined by (20). It is shown that at condition

Fig. 11. A segment of new and reconstructed inspection data set with PIs
extracted and shown. The speed, CDS, CDH, PHA, and PCCF are depicted
from top to bottom.

levels of variable X6 from 2 to 5, variables representing
the PHA, CDH, PHA and CDS have the highest impact on
the SCC, respectively. These variables are more indicative
at the specific condition level than other variables. Notably,
the CDS becomes highly impactful for the worst SCC when
j = 5, because it is the only source of indicator measured
in the lateral direction and thus offers particularly strong
evidence indicating a severe condition. Overall, the total ROVs
accumulated from all unhealthy SCC show that the PIs of
PCCF X6 contribute the most to an unhealthy SCC among
all variables. This observation is in line with the fact that
PCCF is considered to be a direct reflection of the catenary
performance.

B. Reduction in False Alarms

Hereafter, new inspection data are applied for result analy-
sis. The differences of measurement condition in different
inspection runs are considered insignificant for the collection
and quality of data. Figure 11 depicts a set of new inspection
data for extraction of the BN inputs. The PIs are extracted
from the CDS, CDH, PHA and PCCF and are shown by
different colors. From the speed profile, it can be observed
that this data set represents first a uniform motion followed
by a deceleration of the inspection train. The effect of decel-
eration on the four types of parameters can be observed
from 2238 km to the end. The ranges of parameter variation
become narrower as the speed decreases. Some unstable
vibrations are also found during the deceleration, especially
in the lateral direction reflected by the CDS. These effects
are considered by the proposed BN with the BN parameters
estimated based on historical data with similar characteristics.
For the PHA and PCCF, PIs are extracted based on frequency
features such that they can indicate an unhealthy condition
even when the corresponding time-domain value is low. The
speed levels and PIs generated from the new data can be
subsequently input into the BN to obtain the output through
inference.
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TABLE III

IMPROVEMENTS IN HIT RATE AND FALSE ALARM RATE

According to the record of on-site verifications performed
based on the new segment of inspection data, this data section
resulted in a 58.3% rate of false alarm among 132 potential
defects verified on site, which is particularly high out of
all data sections from the same inspection run. The on-site
verification procedures were triggered by predefined thresholds
that identified potential defects as peaks or troughs in the
data.

By applying the BN-based approach, Table III gives the
summarized statistics of the detection results from the data
section compared with previous results. The first two columns
present the previous results using the traditional threshold-
based method that identified 132 potential defects in total.
The output KPIs of SCC are the most probable values from
BN inference by (22). It can be observed that most of the
previous false alarms are recognized as medium risk or lower
with j ≤ 3 and most of the previous hits are recognized
as high or extreme risk with j ≥ 4. When the criterion
for determining a potential defect and triggering an on-site
verification is that the output risk level at a certain location
is high or extreme with a KPI j ≥ 4, only 16.9% of
previous false alarms remain, and 96.4% of previous hits
are still correct. This results in an improved false alarm rate
of 19.7%, i.e., 66.2% lower than the previous rate, and a
new hit rate of 80.3% out of all 66 new potential defects
with KPI j ≥ 4. Both the amount of potential defects and
the rate of false alarms are largely reduced according to
the output most probable SCC values. Thus, the BN-based
approach offers the potential to save a notable amount of
maintenance resources if implemented for an entire railway
line or network.

As examples, Figure 12 depicts three previous false alarms
that are identified as medium or lower risk ( j ≤ 3) by the BN
output KPI. In Figure 12(a), the CDH on the top becomes
too low, which triggered an on-site verification, while the
output KPI using the most probable value (MPV) by (22)
and the expected value (EV) by (21) shows that the CDH
reflects a medium risk at most, because the PIs of CDH are
the only ones indicating unhealthy conditions among all four
types of PIs, which lack supporting evidence from PHA and
PCCF. Similarly, Figure 12(b) shows a previous false alarm
triggered by a sudden rise of PHA in the middle location.
However, the PI of PHA is the only indication of an unhealthy
condition such that the output MPV and EV are both lower
than j = 4. The PIs of PCCF in Figure 12(c) suffer from the
same lack of supporting evidences, although the time-domain
PCCF have high amplitudes and the frequency-domain PIs
are j = 3.

Fig. 12. Three previous false alarms that are identified as medium risk or
below ( j ≤ 3) by the BN-based approach. The false alarms were previously
triggered by the (a) CDH, (b) PHA and (c) PCCF data shown at the top,
respectively. The data PIs and BN outputs using the most probable value
(MPV) and the expected value (EV) are shown at the bottom.

Fig. 13. Three previous hits that are identified as high or extreme risk ( j ≥ 4)
by the BN-based approach. The hits were previously triggered by the (a) CDS,
(b) CDH and (c) PHA data shown at the top, respectively. The data PIs and
BN output KPI using the MPV and the EV are shown at the bottom.

In contrast, Figure 13 shows three examples of previous hits
that are also confirmed by the BN-based approach with the
output MPV indicating a high or extreme risk. Figure 13(a)
shows that an unhealthy PI of CDS is in itself a sufficient
indication because it has and requires no supports as the only
indicator in the lateral direction. For the unhealthy PIs of
CDH and PHA in Figure 13(b) and (c), respectively, they are
supported by the unhealthy PIs of PCCF, resulting in high
or extreme risks at the corresponding locations. These results
also suggest that to confirm whether an on-site verification is
necessary, the MPVs should be checked instead of the EVs,
which could be smaller than the MPVs due to averaging by
probabilities.

Overall, the output of the BN-based approach is effective in
reducing the number of potential defects and the false alarm
rate. This result is the main merit of the approach that fuses
all types of input data into an integrated KPI. Maintenance
decisions made based on such a KPI can be more convincing
and reliable compared with the current practice.
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TABLE IV

RESULTS COMPARISION WITH ALTERNATIVE BN STRUCTURES

C. Comparison With Alternative BN Structures

The proposed BN structure is crucial for the performance
of the BN-based approach. The directed arcs in the structure
establish a representation of the physical relations between
the included dynamic data types of the catenary. Among
all arcs, the two between variables CDH X3, PHA X4 and
PCCF X5 are of great importance as correlated dynamic
responses in the vertical direction. To show the effects of
both arcs, two alternative structures between the three vari-
ables are applied to the same data for comparison. As pre-
sented in Table IV, alternative structure 1 cancels the arcs
between the three variables, and alternative structure 2 reverses
the directions of both arcs. The former ignores the physi-
cal relations between variables, whereas the latter reverses
them.

The alternative BNs are estimated with the same historical
data and applied to the new data. The detection results are
given in Table IV. Among 132 potential defects from the
original maintenance record, all BN structures identify a lower
number of potential defects, showing the general effect of
combining multiple data types. The proposed structure outputs
the least number of potential defects that results in the lowest
false alarm rate, and the structure with reverse arcs performs
better than the one without any arc. This result is in line with
theoretical analysis based on equations from (2) to (6), where
the cause-effect relationships are found between the data of
CDH, PHA and PCCF in the same manner. Therefore, it is
necessary to not only establish the physical relations through
arcs, but also set the arc directions in a physics-based manner
considering the characteristics of data.

D. Tolerance Against Bad Data

In practice, measurement data can be noisy or missing lead-
ing to inaccurate detection results. It is important to address
these issues when the detection itself is methodologically
difficult to achieve. Although the noisy data can be addressed
by denoising techniques using on-board filtering devices or
pre-processing procedures before data usage, the randomly
missing data are not easy to address. The following discusses
variations in the BN outputs based on the same inspection data
used above.

1) Noisy Data: The inspection data were pre-processed with
high-frequency noises filtered out in all types of measurements
except for speed. To test the performance of the BN outputs

Fig. 14. Detection results when the SNR of input data changes from 0.1dB
to 30dB. The left vertical axis show the total amount of potential defects and
false alarms while the right one shows the corresponding rate of false alarm.

with general noisy input and the degree of noise tolerance,
synthetic noises are added to the inspection data used as a
noise-free reference. White noises resulting in a signal-to-
noise ratio (SNR) ranging from 0.1dB to 30dB are added
to the CDS, CDH, PHA and PCCF data before perform-
ing the data reconstruction. A lower SNR means stronger
noises that are more likely to contaminate the detection
results.

Figure 14 depicts the detection results using the BN-based
approach when the input data contain noises. The statistics
under a certain SNR are the average results of generating
and adding random noises that satisfy the SNR for ten times.
It can be observed that when the SNRs are greater than or
equal to 15dB, the results are almost identical to those of
the noise-free data that output 66 potential defects and 19.7%
false alarm rate. As the SNR decreases, both the amount of
potential defects and false alarms increase, leading to increase
of the false alarm rate up to 52.1%. Considering that the
previous results output by the traditional method have 132
potential defects and a 58.3% false alarm rate, the proposed
approach can be acceptable with the false alarm rate limited to
below 30% when the SNR is greater than 3dB. This ability to
tolerate noise is due to the percentile-based extraction of PIs,
which can mitigate the effects of noises. Nevertheless, it is
still advisable to pre-process highly noisy data because there
are sophisticated methods to improve signal SNRs from below
10dB to higher.

2) Missing Data: Missing data occur commonly and ran-
domly during continuous measurements due to glitches in the
measurement system. When only a few sampling points are
missing in between recorded data, they can be interpolated
based on the adjacent recorded data. However, this process
introduces errors into the measurement data that can poten-
tially lead to inaccurate detection results. When a temporary
failure of a component in the measurement system occurs
during inspections, it causes missing data over a much longer
duration, a situation that is not suitable for interpolation. For
the inference of the proposed BN, the output KPI can still be
estimated if one or more types of input data are missing. In
practice, it is unlikely that two or more types of data among the
speed, CDS, CDH, PHA and PCCF are missing at the same
time because of separately operating sensors and according
to historical records. Thus, the performance of the BN-based
approach is investigated when one type of missing data are
encountered. The missing data are considered to cause the
corresponding missing inputs (PIs) for the BN.

a) Short duration of missing data: The randomly missing
short-duration data can be neglected unless the event occurs
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Fig. 15. The output MPVs of three examples of hits when the data is
complete and one type of data is missing. The markers falling outside of the
solid lines are deviated MPVs caused by the missing of corresponding data.

exactly when the pantograph is passes through a defect of
the catenary. In such less likely cases, unhealthy PIs from the
missing data are absent for the BN input. For the proposed
BN, the missed CDS data are unfavorable because they are
the only data measured in the lateral direction that indicate
a lateral defect. The missing speed, CDH, PHA and PCCF
data are comparatively less impactful, because the speed is
not directly linked to the SCC, and the other three types of
data are complementary to each other leading to the SCC.
Concretely, Figure 15 depicts the output MPVs when one of
the five types of data are missing for the three hits shown
in Figure 13. Compared with the MPVs from complete data,
Figure 15(a) shows that when the defect is reflected by the PI
of CDS, only the missing CDS data cause the loss of hit,
whereas other missing data minimally influence the output
MPVs. In the vertical direction, Figure 15(b) shows that the
missing CDH and PCCF data can falsely reduce the output
MPVs, when the defect is reflected by the PI of CDH with
the PI of PCCF as the main supporting evidence. The upside is
that the unhealthy MPVs are not completely eliminated, as in
the case missing CDS, which is the sole source of unhealthy
PI in the lateral direction. For the same reason, Figure 15(c)
shows that when the hit is triggered by the PI of PHA and
supported by the PI of PCCF, the loss of PHA and PCCF
reduces the MPVs compared with the MPVs from complete
data.

b) Long duration of missing data: According to the record of
inspection data from the high-speed line studied, this situation
has occurred before, i.e., one type of measurement data is
almost completely missing due to sudden component failures
that could not be instantly fixed on a moving train. It is highly
costly to run the inspection again, and thus making use of the
incomplete data set is valuable to avoid wasting an inspection
run entirely. Using the data shown in Figure 11 as an example,
detection results based on the BN output when one of the five
types of data is completely missing are obtained. In the case of
missing speed, the data partition step (Step 2) in extraction of
the BN input must be skipped. Table V presents the number
of potential defects and hits identified by the output MPVs
when handling long-duration missing data. It can be observed
that when a certain type of data is completely missing, it
consequently reduces the number of potential defects due to
the loss of unhealthy PIs from that type of data. However,
the missing CDH, PHA, or PCCF data do not largely reduce

TABLE V

DETECTION RESULTS WHEN ONE TYPE OF DATA
IS COMPLETELY MISSING

the number of hits, thus resulting in a higher hit rate at the
price of overlooking several potential defects. At the same
time, the potential defects overlooked by the missing CDS
are all hits that are actually missed, leading to the lowest hit
rate. The missing speed data minimally influence the results
in this case, because the speed variation of the input data
set is rather small. It is expected that the missing speed are
more impactful when the speed changes frequently during an
inspection.

In the undesired events of missing data, the BN-based
approach can still estimate the output KPI of SCC, because
it partially extracts and preserves the useful information of
the incomplete data set to avoid the total waste of recorded
data. Although the outputs are not completely satisfactory in
terms of hit rate, especially when the CDS data are missing
at defective locations, it is still a manageable situation for the
proposed approach, considering that occurrences at the exact
locations are few.

VI. CONCLUSION AND OUTLOOK

This study addresses practical problems in condition mon-
itoring of the catenary in high-speed railway lines, including
the underutilization of inspection data and the high false
alarm rate in defect detection. A generic data-driven approach
for improved catenary condition monitoring is proposed.
The approach applies a new BN that fuses key information
extracted from multiple types of inspection data into a sole
KPI. The BN structure is established based on the physical
relations between the data of speed, CDS, CDH, PHA and
PCCF, which are all crucial data types for assessing the
catenary condition. Tailored PIs that can properly reflect the
catenary condition are defined and extracted from the CDS,
CDH, PHA and PCCF according to their data characteristics
resulting from the pantograph-catenary interaction. Using the
four tailored PIs as the input of BN, the KPI that indicates
the overall catenary condition by considering all input PIs is
defined as the BN output. In this way, the KPI can reflect all
types of catenary defects causing abnormal dynamic responses
in the four types of data. Based on the proposed BN, an
approach to obtain the KPI for the comprehensive condition
assessment of the catenary is presented.

To test the performance of the BN-based approach, the
historical inspection data and maintenance records from a
section of the China Beijing-Guangzhou high-speed railway
line in the past three years are used as an example. Preliminary
results show that with the BN-based approach, the BN outputs
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from new inspection data can significantly reduce the false
alarm rate by up to 66.2%, thus increasing the hit rate for
defect detection. In addition, the effectiveness of the proposed
BN is proven by outperforming the alternative BN structures
with the same input. Furthermore, the approach is also feasible
when the input data quality is poor by acceptably tolerating
noisy data with a SNR higher than 3dB or one type of data
occasionally missing in inspections.

To further develop the proposed approach, four major
improvements can be considered. The first improvement is
inclusion of additional data types in the BN structure, such
as geometrical data and images, such that the BN output
is more comprehensive by covering a wider range of PIs
of the catenary. The second one is expansion of the BN
output into indicators for specific types of defects such that
defect classification can be achieved following detection. The
third one is application of automatic feature identification
and extraction techniques such as deep learning to define PIs
that are beneficial for defect classification. The final one is
updating of the BN parameters that consider the different
degradation stages in the full service life of the catenary,
potentially with a dynamic BN. These improvements require
notably large amounts of data and information accumulated
from a long-term periodic inspection. To implement this
approach for a catenary in practice, it is important to first
decide on the monitored data types and thus the BN structure,
and the selected measurement data and maintenance records
of the catenary should be stored in a manner that is easily
traceable through geographic locations or distance marks along
the rail.
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J. Bielak, “A data fusion approach for track monitoring from multiple
in-service trains,” Mech. Syst. Signal Process., vol. 95, pp. 363–379,
Oct. 2017.

[33] G. Wang, T. Xu, T. Tang, T. Yuan, and H. Wang, “A Bayesian network
model for prediction of weather-related failures in railway turnout
systems,” Expert Syst. Appl., vol. 69, pp. 247–256, Mar. 2017.

[34] Y. Zhu, H. Limin, and J. Lu, “Bayesian networks-based approach for
power systems fault diagnosis,” IEEE Trans. Power Del., vol. 21, no. 2,
pp. 634–639, Apr. 2006.

[35] F. Sahin, M. Ç. Yavuz, Z. Arnavut, and Ó. Uluyol, “Fault diagnosis for
airplane engines using Bayesian networks and distributed particle swarm
optimization,” Parallel Comput., vol. 33, no. 2, pp. 124–143, 2007.

[36] B. Cai et al., “Multi-source information fusion based fault diagnosis
of ground-source heat pump using Bayesian network,” Appl. Energy,
vol. 114, pp. 1–9, Feb. 2014.

[37] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network clas-
sifiers,” Mach. Learn., vol. 29, no. 2, pp. 131–163, Nov. 1997.

[38] H. Wang, A. Núñez, R. Dollevoet, Z. Liu, and J. Chen, “Intelligent
condition monitoring of railway catenary systems: A Bayesian network
approach,” in Proc. 25th Int. Symp. Dyn. Vehicles Roads Tracks (IAVSD),
vol. 2. Rockhampton, QLD, Australia: CRC Press, 2017, Aug. 2017,
p. 663.

[39] T. D. Nielsen and F. V. Jensen, Bayesian Networks and Decision Graphs.
Berlin, Germany: Springer, 2009.

[40] I. Ben-Gal, “Bayesian networks,” in Encyclopedia of Statistics in Quality
and Reliability, vol. 1. Chichester, U.K.: Wiley, 2008.

[41] D. A. Tobon-Mejia, K. Medjaher, and N. Zerhouni, “CNC machine tool’s
wear diagnostic and prognostic by using dynamic Bayesian networks,”
Mech. Syst. Signal Process., vol. 28, pp. 167–182, Apr. 2012.

[42] C. Chen, X. Liu, H.-H. Chen, M. Li, and L. Zhao, “A rear-end collision
risk evaluation and control scheme using a Bayesian network model,”
IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 264–284, Jan. 2018.

[43] S. Sun, C. Zhang, and G. Yu, “A Bayesian network approach to traffic
flow forecasting,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 1,
pp. 124–132, Mar. 2006.

[44] N. Friedman, “The Bayesian structural em algorithm,” in Proc. 14th
Conf. Uncertainty Artif. Intell. San Mateo, CA, USA: Morgan Kauf-
mann, 1998, pp. 129–138.

[45] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction
to MCMC for machine learning,” Mach. Learn., vol. 50, no. 1, pp. 5–43,
Jan. 2003.

[46] Railway Applications. Current Collection Systems. Requirements for
and Validation of Measurements of the Dynamic Interaction Between
Pantograph and Overhead Contact Line, CENELEC Standard BS EN
50 317, 2012.

[47] Railway Applications—Currentcollection Systems—Requirements
Forand Validation of Measurements of the Dynamic Interaction
Betweenpantograph and Overhead Contact Line, China National
Railway Administration, 2016.

[48] N. E. Huang et al., “The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis,” Proc.
Royal Soc. London A, Math., Phys. Eng. Sci., vol. 454, no. 1971,
pp. 903–995, 1998.

Hongrui Wang (S’15) received the B.S. degree
in electrical engineering and automation from
Mao Yisheng Class, Southwest Jiaotong University,
Chengdu, China, in 2012. He is currently pursuing
the Ph.D. degree with the Section of Railway Engi-
neering, Delft University of Technology, Delft, The
Netherlands.

His research interests include signal processing,
machine learning, and their applications in the
condition monitoring and maintenance of railway
infrastructure.

Alfredo Núñez (M’02–SM’14) received the Ph.D.
degree in electrical engineering from the Universi-
dad de Chile, Santiago, Chile, in 2010.

He was a Post-Doctoral Researcher with the Delft
Center for Systems and Control, Delft, The Nether-
lands. Since 2013, he has been with the Section
of Railway Engineering, Department of Engineering
Structures, Faculty of Civil Engineering and Geo-
sciences, Delft University of Technology. He is cur-
rently an Assistant Professor (tenured) in data-based
maintenance for railway infrastructure. He was a

Work Package Leader with the Development of New Sensor Technologies
(static, moving, and crowd-based sensors) for railway networks in Romania,
Turkey, and Slovenia, in the European project H2020 NeTIRail-INFRA
Project. He has authored a book Hybrid Predictive Control for Dynamic
Transport Problems in the Series of Advances in Industrial Control (Springer-
Verlag, 2013). He has coauthored more than 100 international journal papers
and international conference papers. He is in the Editorial Board of the
Journal Applied Soft Computing. His current research interests include the
maintenance of railway infrastructures, intelligent conditioning monitoring in
railway systems, big data, risk analysis, and optimization.

Zhigang Liu (M’06–SM’16) received the Ph.D.
degree in power system and automation from South-
west Jiaotong University, Chengdu, China, in 2003.

He is currently a Full Professor with the School of
Electrical Engineering, Southwest Jiaotong Univer-
sity. His current research interests include electrical
relationship of vehicle-grid in high-speed railway,
power quality considering grid-connect of new ener-
gies, pantograph-catenary dynamics, fault detection,
status assessment, and active control.

Dr. Liu was elected as a fellow of The Institution
of Engineering and Technology (IET) in 2017. He is an Associate Editor
of the IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

journal. He is also in the Editorial Board of the IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY journal.

Dongliang Zhang received the B.S. degree in elec-
trical engineering from Southwest Jiaotong Univer-
sity, Chengdu, China, in 2016, where he is currently
pursuing the master’s degree in electrical engineer-
ing. His research interest includes the dynamics and
condition monitoring of railway catenary.

Rolf Dollevoet received the M.Sc. degree in
mechanical engineering from the Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands,
in 2003, and the Ph.D. degree in rail research
on rolling contact fatigue from the University of
Twente, Enschede, The Netherlands, in 2010.

Since 2003, he has been with the Railway Sector,
ProRail, Utrecht, The Netherlands. Since 2012, he
has been appointed as a part-time Professor with the
Section of Railway Engineering, Delft University of
Technology, Delft, The Netherlands. He was also a

Railway System Expert with ProRail, where he was responsible for all the
scientific research and innovation with the Civil Engineering Division, ProRail
Asset Management.

Dr. Dollevoet was a recipient of the Jan van Stappen Spoorprijs 2010 Award
(a yearly prize for contributions to the travel quality and service for passengers
in The Netherlands) from the railway sector for his Ph.D. research and its huge
potential to reduce track maintenance costs.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2020 at 09:31:48 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


